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Chapter 1

Introduction

Although the theory of Markov processes is well-developed, the numerical analysis of
large-scale Markov processes remains a difficult problem. The Power-Series Algorithm
(PSA) is a method to compute performance measures for such processes. Over the past
ten years, numerous papers have been written with successful applications of the PSA to
various Markov processes, in particular to Markov processes arising in queueing theory.

The objective of this thesis is twofold. The first objective is to improve the theo-
retical basis of the PSA. Analyticity of the performance measures in light traffic will be
proved for a wide class of models and remedies will be found for previous imperfections
of the algorithm. The second objective is to extend the applicability of the PSA. The
class of models to which the PSA can be applied will be enlarged and the PSA will be
adapted for transient analysis. The applications included in this thesis are not meant as
a thorough numerical analysis of new models. They are illustrations of the behaviour of
the method in difficult situations and of its wide applicability and flexibility.

1.1 Steady-state analysis of Markov processes

The main part of this thesis is devoted to the problem of finding the steady-state distri-
bution of an ergodic continuous-time Markov process on a countable state space. This
steady-state distribution can be found by solving the so-called balance equations. How-
ever, in practice, these linear equations can only be solved either if the state space of the
problem is small enough or if the problem has some special structure.

1



2 Chapter 1. Introd uction

If the state space is small, the balance equations can be solved using direct methods,
for example LU decomposition by Gaussian elimination [59J or the GTH algorithm [64J.
The increased speed and memory capacity of modern computers make it possible to
apply these methods to ever larger problems. However, the computation time of direct
methods grows fast in the size of the problem. Therefore, they are less efficient for
larger problems. New methods have been developed to overcome this problem, like the
iterative Gauss-Seidel and successive overrelaxation or the projection methods [132J.
These methods can often take advantage of the fact that the balance equations are
sparse [14J. If the problem is still too large, the problem needs to be reduced to a
manageable size. lnfinite state spaces must necessarily be truncated. Sometimes, bounds
on the thus introduced error can be obtained [51,78J. Much research has been devoted to
nearly-completely decomposability [44] and aggregation/disaggregation methods. Recent
developments on many of these topics are described in the proceedings and monograph
by Stewart [130,131,132].

In queueing theory, problems often have some special structure. Therefore, it may
be possible to analyze the Markov process by other methods than solving the balance
equations. Then the problem of large state spaces could be avoided. Sometimes infinite
state spaces are even an advantage, because they result in simple mathematical expres-
sions. For example, many one-dimensional Markov processes with a finite supplementary
space can be analyzed with the matrix-geometric method [102,113J and spectral expan-
sion [53,110J. Several two-dimensional models can be analyzed using methods based
on generating functions, like the boundary-value method [42] and the uniformization
technique [54J. Multidimensional models can only be analyzed in some cases, such as
when the joint distribution has a product form [85,50J. A special structure of the transi-
tion probabilities allows for application of the compensation approach [5,6,77]. Discrete
Fourier transforms have been successfully applied to some polling models [96,97J. Also,
the recent developments in the numerical inversion of generating functions [2] allow
for the numerical solution of many one-dimensional models and some multidimensional
models like resource-sharing and special polling models.

Another approach to study Markov processes is to consider limit behaviour. For
many Markov processes, a notion of heavy and light traffic can be defined. This can,
for example, be based on arrival rates or the number of queues. Interpolation methods
can be used to combine heavy and light-traffic results. In heavy traffic and with an
appropriate normalization, many processes behave like a reflected Brownian motion or
a related process on a continuous state space [46,70]. Especially light traffic approaches
have received considerable attention lately. Some of these approaches will be discussed
in section 1.1.2, as they are closely related to the PSA.



1.1. Steady-state analysis of Markov processes 3

1.1.1 The Power-Series Algorithm

The short and incomplete overview above illustrates that there is a great diversity of
methods to analyze Markov processes, each with its own merits and drawbacks. In this
wide field of methods, the PSA can best be classified as a light-traffic method. It is not
restricted to any subclass of Markov processes, but it aims to be an efficient method for
Markov processes with a multidimensional state space.

The main idea of the PSA is to consider the steady-state distribution of the Markov
process as a function of a system parameter. Consider a queueing system with several
queues and Poisson arrival processes at all queues. Multiply all arrival rates by p and
normalize the arrival rates in such a way that the model is stable for p E [0,1). For
small values of p the system is in light traffic and will be relatively empty, for large
values of p it is in heavy traffic and busy. Clearly, the steady-state probabilities are
functions of p. Assume that these functions are analytic in light traffic, so that they
are determined by the coefficients of the power-series expansion in p, around p = o.
The balance equations also depend on p. Substituting the power-series expansions of the
steady-state probabilities in the balance and normalization equations renders equalities of
analytic functions. Analytic functions are only equal if all coefficients of the power-series
expansions are identical. This renders equations that allow for the recursive calculation
of these coefficients.

This idea was first used by Benes in 1965 (see chapter 8 in [16]). He considers
a physical communication system consisting of a set of terminals, a control unit which
processes the information needed to set up calls, and a connecting network through which
calls are switched between terminals. The principal problem treated is the calculation of
the grade of service, as measured by the probability of blocking. The considered processes
have a finite state space. From this, Benes proves that the steady-state probabilities
are rational functions of the arrival rate and therefore analytic. He provides recursive
calculation schemes to calculate the power-series expansions, not only in light traffic.

The idea was independently rediscovered by Keane, about twenty years later. In a
paper by Hooghiemstra, Keane and Van de Ree [73], it is applied to a model in which
a single exponential processor distributes its capacity over a number of Poisson arrival
streams. Contrary to the model considered by Benes, the state space is infinite. The
total number of customers in the system behaves like a single M/M/1 queue. Because of
this structure, analyticity of the steady-state probabilities can be proved in light traffic.
In a later paper [15], the coefficients of the expansions were obtained explicitly for the
symmetric two-queue model. Since then, the PSA has been developed further, mainly
by Blanc. It was applied to general queueing models with a quasi birth-death structure,
such as queues in parallel [20], for instance the shortest-queue model [19,24]' and various
polling models [27,23]. The introduction of the epsilon algorithm greatly improved the
convergence properties [22]. In a paper on the BMAP/PH/l queue [74], the PSA was
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extended to queues with more general arrival processes and service time distributions.
Because of the (finite) batch arrivals, the process is no longer a quasi birth-death process.
For an overview of these applications, see [25]. In all these papers, the transition rates
of the arrival process are multiplied by p and normalized such that the system is stable
for p E [0,1). The parameter p can thus be interpreted as the load of the system.
Unfortunately, this light-traffic approach is not generally applicable. For example, only
networks can be analyzed that have finite batch arrivals and a feed-forward structure
(see section 2.8.5). In this thesis a more general approach will be proposed to overcome
these limitations.

Koole [87] shows that the PSA can be applied to general Markov processes with
a single recurrent class. Each state x in the state space is assigned a level f( x). The
transition rate from state x to state y is then multiplied by l(y)-l(x), for all states z , y
such that f(x) < f(y). Koole provides sufficient conditions under which the coefficients
of the steady-state probabilities can be calculated recursively. For any Markov process
with a single recurrent class, level functions exist such that these sufficient conditions
are satisfied. Different level functions lead to different algorithms, but it is not clear
how the level function can best be chosen to obtain efficient algorithms. The queueing
applications above assign to each state the level equal to the total number of customers.
Koole provides numerical results for a fork-join model and a bounded Petri net.

Instead of as a light-traffic method, the PSA can also be interpreted as a homo-
topy method: the transition rates of the original Markov process are transformed with
a parameter {' such that for { = 1 the transformed process is the original process and
the asymptotic process for { in a neighbourhood of { = 0 is easy to analyze. Then the
information from the problem near { = 0 can be used to solve the problem at { = l.
This approach will be followed in this thesis. It has the disadvantage that the parameter
{ may not have a physical interpretation, but it allows for a more general transformation
and less restrictive models.

The major advantage of the PSA is its flexibility. Except for the assumption that the
process is Markovian, very little special structure needs to be assumed. More complicated
balance equations lead to a more complex algorithm, but rarely give rise to theoretical
problems. Other advantages are that the main idea is simple and that no advanced
mathematical procedures are needed for integration or inversion, for example. It is
essential that sophisticated extrapolation methods are used to make the PSA applicable
also for intermediate and quite heavy traffic, but these methods can be used routinely.
A disadvantage of the PSA is that it is quite sensitive to extreme parameter values
and that it suffers from the curse of dimensionality because it directly depends on the
balance equations. Also it has been impossible so far to find useful error bounds. The
credibility of the results is established by the convergence of the obtained power series
and by checking known characteristics of the model, like the probability of an empty
system, marginal distributions or conservation laws. For a more detailed discussion of
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the characteristics of the PSA, see section 2.3.5.

1.1.2 Other light-traffic approaches

Reiman and Simon [118,119,125] consider Poisson-driven queueing networks and obtain
expansions of performance measures from a sample path argument, restricting the total
number of arrivals in the sample path. Because of the complexity of the approach
only a few coefficients can be calculated, which they combine with heavy traffic limits.
Analyticity of Poisson-driven stochastic systems was proved by Zazanis [139].

The MacLaurin series approach by Gong and Hu [60] for the GI/G/I queue and by
Zhu and Li [140] for the Markov-modulated G/G/I queue is quite similar to the approach
of the PSA. Starting from the Lindley equation instead of the balance equations, they
directly obtain the expansions of the moments of the system time and the delay, without
computing the queue-length distribution. Let A and S be generic interarrival and service
times, and T and W the steady-state sojourn and waiting times of a customer. The
distributions of these variables are related by

T 1= W + S 4. max{ 0, T - A } + S. (1.1)

When S == OX with X independent of 0, then the moments of T and Ware functions of O.
The power-series expansions of these functions can be obtained from (1.1). In [61], Pade
approximation is used to improve the convergence of these power series. Analyticity
of GI/G/1 queues in light traffic is shown by Hu [79], for analytic interarrival-time
distributions. This approach allows for non-Markovian (but not general) interarrival
and service times. The complexity of the algorithm is comparable to the complexity of
the PSA.

Similar ideas are used by Blaszczyszyn, Frey and Schmidt [30] and by Baccelli
and Schmidt [11]. The first paper analyzes Markov-modulated multi-server queues, and
the second considers systems that have a so-called Poisson-driven (max,+ )-linear struc-
ture [9]. Such systems can model non-Markovian stochastic Petri nets in the class of
event graphs. Examples are queueing models like fork-join networks, tandem queues
and synchronized queueing networks. But also manufacturing models, such as Kan-
ban networks and Job-Shop systems. High-order moments can be calculated because
of the use of higher-order moment measures and Palm distributions of general marked
point processes. Similar light-traffic approaches to analyze risk processes can be found
in [31,56].

There are also several papers on optimal control that obtain the optimal policy in
light traffic. Here, light-traffic analysis is not used as a numerical method. To determine
which policy is optimal, one only needs to obtain the first coefficient of the power-series
expansion of the criterion function at which the policies differ. This coefficient can often
be determined symbolically. The approach has been applied to the problem of repairman
allocation [126], load-balancing problems [82,83,84,88,99] and the order of servers for
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tandem queues [67]. In [29], the symbolic and numerical approach were combined to find
the optimal Bernoulli service discipline of cyclic polling systems. A general framework
is provided by Koole and Passchier [89].

1.2 Transient analysis of Markov processes

In chapter 3, the PSA will be adapted to analyze the transient distribution of Markov
processes. In practice, systems are rarely in steady state. This can be either because i)
the system is not ergodic, so it will never reach steady state, or because ii) the system
started in a situation different from steady state and not enough time has passed to elim-
inate the influence of the initial condition, or because iii) one or more of the parameters
of the system vary over time. The question whether a system is ergodic or not can often
be answered with techniques that are less computational than the techniques for finding
the steady-state or transient distribution [72,101,109]. But if a steady-state distribution
has been calculated, the system must necessarily be ergodic. On this fact, the ergodicity
condition in appendix A is based. If a system is ergodic, then it is interesting to know
how fast the system will approach the steady-state situation. The relaxation time is a
measure of the time needed to reach steady state [17,18,21,26,41]. If the relaxation time
is small, then it will not be necessary to study the transient distribution.

Like for the steady-state analysis, there are many different methods to study the transient
behaviour of Markov processes. If the process is homogeneous with generator Q, then the
transient distribution 7r(t) at time t is determined by the differential equations 7r'(t) =
7r(t)Q with solution 7r(t) = 7r(O)exp(Qt). Most general-purpose methods are based on
one of these characterizations. The main problem in calculating transient distributions
is stiffness. This occurs when the Markov process has transition rates of different orders
of magnitude, and it is especially troublesome when t is large.

There are many ways to calculate the matrix exponential exp(Qt), but none of
them is completely satisfactory when the model is stiff or the state space is large [4,111].
A promising new method is based on Krylov subspaces [117,123]. Explicitly computing
the exponential of a matrix is avoided by Jensen's method [81,68,62,63,47,48,36]. This
method will be described in section 3.1.2. It does not handle stiffness very well, but
this can be partly solved by using steady-state detection [40,104]. Some of the general
methods to solve the ordinary differential equation (ODE) 7r'(t) = 7r(t)Q are especially
designed to handle stiffness [132]. Malhorta, Muppala and Trivedi [104] provide a com-
parison for TR-BDF2 (the trapezoidal rule with second order backward difference) and
implicit Runge-Kutta methods. They conclude that these ODE solvers are only prefer-
able when the model is extremely stiff.

The transient distribution of a non-homogeneous process with generator Q(t) is deter-
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mined by the differential equation 7r'(t) = 7r(t)Q(t). General ODE-solvers can be used to
solve this equation. The closed-form solution is no longer the exponential of a matrix and
Jensen's method or similar methods can not be used. The usual way to overcome this
problem is to reduce the non-homogeneous Markov process to a homogeneous Markov
process by considering small enough time intervals [120,45,49J. The idea is to assume
that the generator Q(t) is constant on these intervals, so that on each interval the pro-
cess can be treated as a homogeneous process. This approach is exact if the generator
is piece-wise constant and it will be a good approximation if Q(t) is continuous and the
intervals are small enough.

Nowadays, the need for non-homogeneous models has decreased because of the
homogeneous models that are available. For example, the variability of peak hours can
very well be modelled by a Markov-Modulated Poisson Process or a Markovian Arrival
Process. These can not model peak hours with an exactly deterministic duration, but
can approximate any arrival process arbitrarily close [8J. If both the arrival and the
service process vary with time, a random environment can be used [113J.

Several approximations for non-homogeneous processes are available. Often non-
homogeneous processes are cyclic. Then a common, cautious, approach is to analyze the
worst-case homogeneous Markov process, for example based on busy-hour parameters.
Another approximation is the pointwise-stationary approximation, obtained by assum-
ing that the transient distribution is constantly equal to the steady-state distribution
of the current generator [66,105J. This approximation will be accurate if the generator
Q(t) changes slowly, compared to the relaxation times. For more sophisticated approxi-
mations, see [45,52,94,114,121J.

In the previous section LIon steady-state analysis, it was observed that the special
structure of queueing models could be exploited to design more efficient solution pro-
cedures. This appears to be more difficult for the transient analysis. Exceptions are
some one-dimensional birth-death processes [86,92,116J. Especially the MIMl1 queue
has received ample attention, both in the homogeneous [1,3,10,43,90,95J and in the
non-homogeneous case [105,122J. For the homogeneous BMAPIG/1, two-dimensional
transforms are available, with one transform variable relating to time. These can be
inverted numerically [37,103J. The non-homogeneous Erlang loss model was studied
in [32,45J. For networks of queues, only the infinite-server case seems to be tractable
[17,33,69,80,93,106]' because different customers do not influence each other.

1.3 Contents of the thesis

This thesis consists of two main parts, chapters 2 and 3. Chapter 2 provides and studies
the PSA to analyze the steady-state distribution of continuous-time Markov processes.
It starts with a simple example to illustrate the main idea of the method. The method
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that will be proposed is a generalization of the light-traffic approach used in all previous
papers. It has the advantage that it can be used to analyze very general networks of
queues, as done in [75] and section 2.8 of this thesis. These networks have a Multi-queue
Markovian Arrival Process (M MAP), Markovian Service Process (M SP) and Marko-
vian routing. The M M AP is a network generalization of the Batch Markovian Arrival
process (BMAP). The MSP is also very similar to the BMAP, but for the service
process instead of the arrival process. Both the M MAP and the M S P were not intro-
duced before, probably because this type of networks is too general to be analyzed by
other methods. For some models, the transformation parameter has a physical interpre-
tation, like the load of the system or a blocking probability. A recursive algorithm is
derived to obtain the coefficients of the power-series expansions of the steady-state prob-
abilities, but also of other performance measures and their derivatives. The algorithm
is extensively studied and remedies are found for several previous imperfections of the
algorithm. It is shown for a wide class of models that the steady-state probabilities are
analytic functions of 'Y. So far, this could only be proved for very special models. Since
analyticity is the basic assumption of the PSA, this greatly improves the theoretical basis
of the PSA.

Chapter 3 tries to use the ideas of the PSA to calculate the transient distribution of
a continuous-time Markov process. First, Jensen's method is described and it is shown
that this method can be made uniformly convergent over time when information about
the steady-state distribution is used. The PSA for transient analysis is a generalization
of Jensen's method. It will turn out that this generalization does not lead to efficient
algorithms for homogeneous processes. However, it does provide interesting theoretical
results. For non-homogeneous processes there is reason to believe that the algorithm can
be useful, but this has not yet been tested numerically.

The appendices contain supplementary information on Markov processes, analytic
functions and extrapolation methods. Appendix A gives a short overview of definitions
from the theory of Markov processes. Also, it provides sufficient conditions for ergodicity
of Markov processes that are less restrictive than existing conditions in the literature. It
is based on the existence of a non-null solution to the balance equations, but does not
require that this solution is positive or that the Markov process is uniforrnizable, Ap-
pendix B provides an overview of some parts of the theory of analytic functions. Knowl-
edge of these results is essential for a good understanding of the theoretical background
of the PSA. Appendix C describes some extrapolation methods. They are indispensable
for an efficient implementation of the PSA.

1.4 Notation

For reference, some of the notation used in this thesis is reviewed here. Throughout the
thesis, double numbers will be used to refer to formulae, theorems, tables and figures.
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The first number indicates the chapter or appendix. References to formulae will be
between brackets. The abbreviation LHS will be used for the left-hand side of a formula
and RHS for the right-hand side.

Vectors

Unless indicated otherwise, vectors will be row vectors. The vector 0 is a vector of zeros
and e a column vector of ones. The unit vectors es are row vectors of zeros except for
component s, which equals 1. All these vectors have appropriate size. If the size of the
vector is S, then eo = eS+l = o.

The plus and minus signs are used as superscripts of vectors to denote the element-
wise maximum and minimum of a vector with the zero vector: x- ~ 0 ~ x+ and
x = z " + x+. Inequalities of vectors are true if they are true element-wise.

The operator I::!. can be applied to elements of vectors and will denote the first order
difference with respect to the subindex: I::!.xk = Xk+1 - Xk. The l'-th order difference is
recursively defined by I::!.I = I::!. and I::!.( = I::!.I::!.(-\ for l' :::=: 2. When applied to a vector of
size I<, I::!.x denotes the vector of size I< - 1 with the k-th element equal to I::!.Xk.

Matrices

Matrices will be printed in capitals, the elements of matrices in the corresponding small
letters with subindices: A = [aijJ. The matrix 0 is a matrix of zeros and I the usual
unit matrix, both with appropriate size. The matrices I( are the unit matrices of size R.

The operator @ denotes the Kronecker product and 8 the Hadamard (or element-
wise) product:

. ( au.bn
A8B= :

amlbml
)

The exponential of a matrix A is the matrix formally defined by

. ~ 1 kexp(A) = L...J -k,A .
k~O •

(1.2)

When a scalar is added to a matrix, this is an abbreviation for adding the scalar to
all diagonal elements: A + 0 = A + 01. The matrix A* will denote the matrix that is
equal to A, but with the first column removed. The notation [x, A*] will be used for the
matrix that is equal to A, but with the first column replaced by the column vector x.
The superscripts d and 0 will be used to denote the diagonal and off-diagonal parts of a
matrix: A = Ad + AO, with Ad a diagonal matrix.



10 Chapter 1. Introd uction

Norms of matrices

Throughout this thesis, the maximal-absolute-row-sum norm will be used:

IIAII==sup L laijl·
I j

(1.3)

Notice that Ilell = 1, because e is a column vector, whereas lIeTIl is equal to the size
of the vector. The triangular inequality IIA+ BII ~ IIAII+ liB II holds and the norm
is submultiplicative: IIABII ~ IIAIIIIBII· The norm of the exponential of a matrix is at
most equal to the exponential of the norm of the matrix: IIexp(A)11 ~ exp(IIAII). Finally,
IIA"II~ IIAIIand II[x,A*lll < Ilxll + IIAII·

The maximal-absolute-row-sum norm (1.3) is used for convenience. Applied to
probabilistic quantities, it renders much nicer results than for example the spectral norm.
H A is a stochastic matrix or row vector, then IIAII= 1. Also, this norm is very convenient
when A is a generator, that is if A is non-negative except for the non-positive diagonal
elements and if Ae ~ 0 (see page 104 of appendix A). Then the maximal-absolute-row-
sum norm has a close relation to the maximal-absolute-element norm

O'(A) ==suplaijl.
i,j

(1.4)

If A is a generator, then O'(A) = SUPilaiil and the following inequalities hold:

O'(A) ~ IIAII~ 20'(A),
IIA+ all ~ O'(A) + IO'(A) - o], for all a E IR.

If A is an honest generator, that is Ae = 0, then the second and third inequalities hold
with equality.

On finite matrices of equal size, all norms are equivalent: for any two different norms
11·11tand 11·112'positive constants a, (3 exist such that the inequalities a11A11t~ IIAI12~
(3IIAlh hold for any matrix A. On infinite matrices, this is no longer true. As a result of
this, depending on the norm that is used, a sequence of matrices may converge or not. For
example, consider the maximal-absolute-column-sum norm IIAIIt = SUPjLi laijl = IIAT II
and the maximal-absolute-row-sum norm IIAI12= IIAII. Let Xk be the row vector with
the first k elements equal to 1/k and the other elements equal to zero. Then Ilxkllt = 1/k
and IIxkl12= 1, for all k ~ O. So, according to the first norm the sequence of vectors Xk

converges to the zero vector o. But, according to the second norm, the sequence does not
converge to 0 nor to any other vector. Row vectors will be used more frequently than
column vectors in this thesis. For row vectors, convergence according to the maximal-
absolute-row-sum norm (1.3) implies convergence according to any norm 11.113such that
SUPiIleill3 < 00. This is true for the normally used norms, like the maximal-absolute-
column-sum, maximal-absolute-element and the spectral norm.
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Sets and functions

Sets will be denoted by calligraphic symbols (just as stochastic variables) and # denotes
the number of elements in a set. The indicator function l(w) is equal to one if expression
w is true and zero otherwise. The operators r.l and l.J denote rounding up and down:

rx 1 == min { z E 71.. I z ~ x} , lxJ==max{zE71.1 z~x},

for all x E IR.
For any £ E IN, the set '0 (Xl), for x 1 0' will denote the set of all functions

f : ([ -+ ([ satisfying

Similarly, for any ex~ 0, the set '0 (e-aX
), for x -+ 00' denotes the set of all functions

f : IR -+ IR satisfying

3D,M~O such that x > D ~ If(x)1 ~ Me-ax.

The notation 0 (xl) and 0 (e-aX
) will be used to denote arbitrary functions from these

sets of functions.





Chapter 2

The PSA for steady-state analysis

The PSA for steady-state analysis is best illustrated by a very simple example. Consider
the two-state continuous-time Markov process (CTMP) in figure 2.1. The transition rate
from state 1 to state 2 is equal to 1 and the transition rate back from state 2 to state 1
is equal to 2. This Markov process is ergodic and the steady-state distribution can be

~• •
~

Figure 2.1: The original process

calculated from the balance and normalization equations

1 7rl = 2 7rz,
7rl + 71"2 = 1.

The first equation reflects that in steady state the rate at which the process leaves a
state is equal to the entrance rate to that state. The second equation sets the total
probability equal to one. Now, suppose that solving this set of two linear equations with
two unknowns would be a task too difficult to accomplish. One could then try to solve
the above problem by considering the more general Markov process in figure 2.2. The

13
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~• •
~

Figure 2.2: The transformed process

transition rate from state 2 to state 1 is still equal to 2, but the upward rate is replaced
by" The steady-state distribution of this new process can be found from the balance
and normalization equations

, 11'1 = 2 11'2,

11'1 + 11'2 = 1.

The solution is now a function of " so at first sight this does not simplify the problem
at all. However, suppose that the steady-state probabilities are analytic functions of "
at , = O. Then the steady-state probabilities can be represented by power series in T

00

L ,'UITl
T=O
00

L ,'U2r'
r=O

Substituting this in the balance and normalization equations renders

00 00

L ,rHUlr = 2 L ,rU2Tl
r=O r=O

~ ,r [Ulr + U2r] = l.
r=O

Analytic functions are only identical if all corresponding coefficients of their power-series
expansions are identical. So in the equalities above, the constants on either side of the
equality sign must be equal and also the linear coefficients, the quadratic coefficients,
and so on. This renders the equalities

0= U20,

UI0 + U20 = 1,
Ul,r-l = 2 U2T>

Ulr + U2r = 0,
for all r ?: 1,
for all r ?: 1.

These equations allow for the recursive calculation of the coefficients of the power-series
expansions:

r 0 2 3 4 5
Ulr 1 1 1 _1 .i,-2' 4 8 16

i -, i -, t -, i -, i -, i
U2r 0 1 _1 1 1

2' 4 8 -16



The closed-form solution is
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(_!2)T,U1T :=

U2T:= - (-!)' 1(r > 0),
for all r ~ 0,
for all r ~ O.

Truncating the power series after the R-th coefficient renders the approximations

ii\(,) t ,T (-!)'
T=O

*2(,) := - t ,T (-~)'
T=l

(
1 ) R+11- -'21

1+h '1 (1 )R+12' + -21
(2.1 )

1+h
To solve the original problem in figure 2.1, the power-series expansions can be evaluated
at 't := 1:

R
1.00000
0.00000

o 1 2
0.68750
0.31250

0.50000
0.50000

0.75000
0.25000

3 4 5
0.62500
0.37500

0.65625
0.34375

These approximations converge to 11"1 := ~ and 11"2 := ~, when R --t 00. So, without
explicitly solving any sets of equations, the original problem can be solved to any degree of
accuracy by calculating enough coefficients of the power-series expansions and evaluating
these expansions at , := 1.

Application of the PSA always essentially follows this procedure: introduce a trans-
formation parameter " assume that the steady-state probabilities are analytic in "
substitute the power-series expansions in the balance and normalization equations and
equate the coefficients of corresponding powers of f. To illustrate possible difficulties,
notice that the power-series expansions (2.1) only converge for R --t 00 if III < 2. They
converge slowly if, is close to 2 and diverge if , ~ 2. However, there are methods
to overcome these problems. In section 2.6 and appendix C, a number of methods is
discussed. For example, the epsilon algorithm would greatly improve the convergence
properties in this example. It would guess that the obtained truncated power series come
from the functions 2!, and if:;y. The truncation level R := 2 would then suffice to find
the correct steady-state distribution for any , ~ O.

The rest of this chapter deals with the justification of the above approach and the
extension to general Markov processes. In section 2.1 the notation of the general Markov
process is introduced, in section 2.2 that of the transformed process. In section 2.3, the
recursive algorithm is derived to find the power-series expansions of the steady-state
probabilities, performance measures and derivatives of the transformed process. This
section also contains a discussion of the characteristics of the algorithm, compared to
other methods. Some general remarks on analyticity of Markov processes will be made
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in section 2.4. For the transformed Markov process considered by the PSA, section 2.5
provides sufficient conditions to ensure convergence of the power-series expansions, for
small values of the transformation parameter. Section 2.6 studies what can still go wrong
if these conditions are satisfied and section 2.7 discusses what may happen if they are
not satisfied. Finally, in section 2.8, the algorithm is applied to a wide class of queueing
networks and some different ways of applying the PSA are compared. Several definitions
of concepts from the theory of Markov processes can be found in appendix A.

2.1 The Markov process

The PSA is especially well suited for multidimensional Markov processes. The notation
will explicitly reflect this multidimensional nature. Continuous-time Markov processes
{(M,It); t ?:: O} will be considered on state space n = INS x {l, ... , I}. This state space
consists of the S-dimensional vectors of natural numbers and a finite supplementary
space. In a queueing context, S could be the number of queues, M the queue-length
process and It a supplementary variable to model for example non-exponentiality of the
arrival and service processes. This thesis was written with the application to queueing
models in mind. Therefore, queueing terminology will be used, although the consid-
ered Markov process need not be a queueing process. Many multidimensional Markov
processes can be rephrased as queueing processes.

In principle, all transitions and transition rates are allowed:

(n, i) ----+ (n + b,j) with rate O'bj(n, i), (2.2)

for all (n, i), (n + b,j) E n. The transition rates are indexed by the change b of the
queue-length variable, and not the new value n + b, which is more usual. The reason for
this is that the transformed process presented in the next section will explicitly depend
on b and not on n + b.

In this chapter, the problem will be considered of finding the steady-state distri-
bution of the CTMP {(M, It); t ?:: OJ, with performance measures and derivatives. The
vector (N, I) will denote random variables with the same distribution as the steady-
state distribution. To ensure that the problem is well defined, it will be assumed that
the Markov process is non-instantaneous and ergodic. Then the steady-state probabili-
ties, defined by

p(n,i) == lim IP{ (Nt,Id = (n,i)} = IP{ (N,I) = (n,i)},
t--->oo

exist for all (n,i) E n and are independent of the initial conditions (Na,Ia). They are
uniquely determined by the balance and normalization equations

p( n, i) a( n, i)

L p(n, i)
(n,i)EO

L p(n - b,j) O'bi(n - b,j), for all (n,i) E n,
(n-b,j)EO

i,
(2.3)
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with a(n, i) equal to the total transition rate out of state (n, i):

a(n, i) == L: Qbj(n, i), for all (n, i) E n.
(n+b,iJEO

To suppress the variable for the supplementary space, it will be convenient to write the
balance and normalization equations in matrix notation:

p(n)A(n)

L p(n)e
nEl\Is

L p(n - b)Ab(n - b), for all n E INs,
n_bEl\Is

1,
(2.4)

with
p(n)
Ab(n)
A(n)

[p(n, i) ],
[ Qbj(n, i) ],
[ a(n, i) l(i == j) ],

for n, n + b E INs and with e a column vector of ones. The i-th element of the row vector
p(n) is the steady-state probability of state (n, i). The (i,j)-th element of the matrix
Ab( n) is the transition rate from state (n, i) to state (n + b, j) and the matrix A( n) is the
diagonal matrix with the i-th diagonal element equal to the total departure rate from
state (n,i).

2.2 The transformed Markov process

The set of balance equations (2.4) can in general be infinite and hence difficult to solve.
The PSA aims to be an efficient way of solving it. The PSA transforms the original
Markov process with a parameter, in such a way that for, == 1 the transformed process
is equal to the original process. The steady-state probabilities of the transformed process
can be regarded as a function of ,. If the transformation is chosen in an appropriate
way, they will be analytic functions of , at , == 0 and the coefficients of the power-series
expansions can be calculated recursively. The steady-state distribution of the original
process is then found by evaluating these power series at I == l. When the transformation
parameter, has a physical interpretation, a range of values, E [0, ,*) will be of interest.

Not any transformation will do. In the example in the introduction of this chapter,
if not only the upward but also the downward transition rate had been multiplied by"
then the coefficients could not have been calculated recursively. In this section one par-
ticular transformation will be proposed and, in section 2.5, sufficient conditions will be
derived under which this particular transformation is appropriate. This transformation
is not necessarily the best or the only possible choice. For some Markov processes it may
not work or other transformations may work better. In sections 2.7.5 and 2.8.5, alterna-
tive transformations will be considered. However, for many quasi birth-death processes
and many queueing applications the transformation proposed here seems to be the most
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natural transformation.

The transformed Markov process for arbitrary values of the transformation parameter
, E [0,1] will be called the ,-process. The O-process is the ,-process with, = o. The
l-process is the ,-process with, = 1, which will be equal to the original process. To
specify the ,-process, define the following subsets of 7ls:

z; ..0. {b E tls I be < 0 },

Z~ ..0. {b E 7l.s I be 2 0 } .

Transitions (n, i) -4 (n + b,j) with bE Z< decrease the total queue length and will be
called downward transitions. Those with b E Z~ will be called upward transitions. Also,
the vectors b themselves will be called downward or upward transitions, even though
strictly speaking they are vectors and not transitions of the process. A selfloop is a
transition with b = 0, which possibly changes the supplementary variable but does not
change the queue length.

In the -y-procese, the downward transitions b E Z< will be the same as in the
original Markov process. The upward transitions will be transformed. For each upward
transition b E Z~, define the number

1"b == { be,
1,

if be> 0,
if be = O.

This number is equal to the increase of the total queue length caused by transition b
if this increase is positive and equal to 1 if the total queue length remains constant.
In the transformed process, each upward transition (n, i) -4 (n + b, j) is split into two
transitions:

(n,i) -4 (n+b,J)
(n,i) -4 (n+b-,j)

with rate ,Tb
with rate (1 - 't" )

abj(n,i),
abj(n,i), (2.5)

for all bE Z> and, E [0,1]. The original transition (n, i) -4 (n + b,j) is still possible,
but the original rate abj( n, i) is multiplied by ,rb• The total transition rate from each
state is the same as in the original Markov process, but the upward transition b is with
probability (1 - ,Tb) replaced by the transition b-, a downward transition or selfloop.
The vector b: is the element-wise minimum of b and the zero vector (see section 1.4).
Hence, b: is always non-positive and b- = 0 if and only if b is non-negative. If both (n, i)
and (n + b,j) are in n, then so is (n + b: ,j). Some examples can be found in table 2.1,
at the end of this section.

If the ,-process is ergodic, the steady-state distribution is uniquely determined by
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the balance and normalization equations:

ph',n)A(n) L: ph,n - b) Ab(n - b)
bEZ<

+ L: ,Tb ph,n - b) Ab(n - b)
bEZ<! (2.6)+ L: ( 1 - ,Tb ) ph,n - b-) Ab(n - b-),
bEZ<!

L: ph, n)e 1,
nEl\Is

for n E INs and, E [0,1]. The transitions b E Z< are the same as in (2.4). The
transitions b E Z? are split into transition b with probability ,Tb and transition b: with
probability ( 1 - ,Tb ).The l-process is the same as the original Markov process, with
balance equations (2.4). The O-process is a Markov process with only downward transi-
tions and selfioops.

The most important aspect of the transformation is that the rates of transitions that
increase the total number of customers by r are multiplied by ,T (r = be > 0). As
a consequence of this, the order of each steady-state probability is equal to the total
number of customers ne in the system:

ph',n) E Ohne
), for ,10 and n E INs. (2.7)

Tills property will be referred to as the order property and will be proved in section 2.5.
Also, sufficient conditions will be given for Ph', n) to be analytic in f. If these conditions
hold, the functions Ph', n) can be represented by their power-series expansions (see (2.8)
below). Property (2.7) then implies that the coefficients corresponding to ,T are zero for
all states with more than r customers in the system, so for each fixed r there is only a
finite number of non-zero coefficients. Otherwise it would be impossible to calculate the
coefficients.

A second aspect of the transformation is that transitions that keep the total number
in the system constant (be = 0) are multiplied by v. Without this, in the r-th step of
the algorithm one large set of equations would have to be solved with, in general, size
I x (T~~~l),while now (r~~~l)sets of equations with size I need to be solved, which is
usually much easier. This will be illustrated in section 2.8.5.

Finally, the extra transitions b: are added, for b E Z?. These transitions are added
to extend the class of Markov processes that can be handled. In section 2.3 it is shown
that the algorithm is well defined if the O-process has a single recurrent class consisting
of only empty states. Since the extra transitions are non-positive, these extra transitions
extend the class of models for which this assumption is satisfied. For example, without
these extra transitions only feed-forward networks could be analyzed, while now net-
works with general Markovian routing can be studied [75]. For an extensive example,
see section 2.8.5. If all upward transitions are strictly positive and do not change the
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supplementary variable, like in all birth-death processes and some quasi birth-death pro-
cesses, then all added transitions are selfloops. These can be ignored without changing
the behaviour of the process.

Example 2.1 Consider the network in figure 2.3. Customers arrive simultaneously at
both queues, according to a Poisson process with rate A. At queue I, the service rate is
Ji-l and each customer whose service is completed joins queue 2. At queue 2, the service
rate is Ji-2 and each customer whose service is completed leaves the network.

-iJIIB ~JIIB~
A 1 2A l'

=rrB- =rrB
i i

n2 n2

p, Y' ,Ji-l ,2 A

(\ _ ,)p, ~ (\ - ,'),

Ji-2 Ji-2

nl ~
Figure 2.3: The original and the transformed queueing network

An arrival increases the total queue length by two, so in the transformed model
the arrival rate is multiplied by ,2. The associated new transition b: is a selfloop with
rate (1 - ,2)).. This selfloop does not influence the behaviour of the process, so it can
be ignored. A service completion at queue 1 does not change the total queue length, so
the rates of these transitions are multiplied by v. Customers now leave queue 1 to join
queue 2 with rate ,Ji-l' The associated new transition is a departure from the network
with rate (1 - ,)f.Ll' A service completion at queue 2 decreases the total queue length,
so these transitions are downward and they are not transformed. The parameters are
given in table 2.1.
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b (Xb( n) rb b-

( ~) A 2 (~)
(~l) PI l( n1 2: 1) 1 (-01)

U1) J-!2 1(n2 2: 1)

Table 2.1: The parameters of the network.

0

2.3 The Power-Series Algorithm

In this section the algorithm is derived to analyze the transformed process introduced in
the previous section. For the steady-state probabilities, it calculates the coefficients of
the power-series expansions in the transformation parameter I' From these, the power-
series expansions of performance measures and derivatives with respect to some model
parameter will be obtained. The original process can be analyzed by evaluating the
')'-process at ')' = 1. In the derivation of the algorithm, the assumption is made that the
steady-state probabilities are analytic in ')' and that several orders of summation can be
reversed. Sufficient conditions for this are given in section 2.5.

An essential part of an efficient implementation of the PSA is formed by procedures
to improve the convergence of the power series, like conformal mappings and the epsilon
algorithm. These will be discussed in section 2.6 and appendix C.

2.3.1 The steady-state distribution

For now, assume that the steady-state probabilities are analytic functions of 1 at ')' = O.
For a brief overview of the theory of analytic functions, see appendix B.3. Because
the steady-state probabilities are analytic, they can be represented by the power-series
expansions:

p(J,n) = L.: ')'Tu(r,n), for all n E INS.
T~ne

(2.8)

The summation starts at r = ne because of the order property (2.7). If the -y-process is
ergodic, then the steady-state probabilities satisfy the balance and normalization equa-
tions. Substituting the expansions in these equations renders equalities between func-
tions of J. Analytic functions are only identical if all corresponding coefficients of their
power-series expansions are identical. This leads to equalities between the coefficients of
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the power-series expansions that allow the recursive calculation of the coefficients. The
idea of equating coefficients of analytic functions is a powerful idea. For example, it
also gave birth to Pade approximation and Jensen's method for the transient analysis of
Markov processes.

In more detail, the derivation of the recursive algorithm is as follows. Substituting the
power-series expansions (2.8) in the balance and normalization equations (2.6) renders

L: I'Tu(r, n)A(n) L: L: I'T u(r,n-b) Ab(n-b)
r~ne bEZ< ,.~ne-be

+ L: L: I'Tb+r u(r,n-b) Ab(n-b)
bEZ? T~ne-be

+ L: L: ( 1 -I'rb hT u(r,n - b-) Ab(n - b-),
bEZ? T~ne-b-e

L: L: I'Tu(r,n)e l.
nENs T2:ne

(2.9)
These equations are equalities between functions of". If the functions on either side of
the equality signs are analytic in 1', then the coefficients of corresponding powers of I'
on either side must be equal (see theorem B.7): the constants on either side are equal,
but also the linear term, the quadratic term and so on. Equating the r-th order term on
either side leads to the equations

u(r,n)A(n) L: u(r, n - b) Ab(n - b)
bEZ<

+ L: u(r - rb, n - b) Ab(n - b)
bEZ?

+ L: u(r, n - b-) Ab(n - b-) (2.10)
bEZ?

L: u(r-rb,n-b-) Ab(n - b-),
bEZ?

L: u(r,n)e 1(1' = 0),
ne~T

for 0 :::; ne :::;r, Basically, these are the recursive equations of the algorithm. To use
them computationally, they need to be rewritten slightly. In the third summation of the
RHS, the terms with bE INS must be brought to the left because then u(r,n - b-) =
u(r, n - 0) = u(r, n). Some of the terms in the second and fourth summation cancel out,
namely those with b = b: = o. With the definitions

B(n) A(n) - L: Ab(n),
bENs

for all n E INS ,

if n f/. INS or r < ne, (2.11 )0,

z, \ {o},Z; \ INS,
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this leads to the following equalities

u(r,n)B(n) L u(r, n - b) Ab(n - b)
bEZ<

+ L u(r-rb,n-b) Ab(n-b)
bEZj

+ L u(r, n - b-) Ab(n-b-) (2.12)
bEZ,

L u(r - rb, n - b-) Ab(n - b-),
bEZj

u(r,o)e l(r = 0) - L u(r, n)e,
O<ne$T

for n E INs and r 2: ne.
For the I coefficients of the empty states, there are I + 1 equations. One of them

can be ignored, which comes down to ignoring one of the balance equations. For any
matrix A, let A* denote the matrix that is equal to A but with the first column removed
(see section 1.4). Then, ignoring the balance equation of the first empty state (0,1),
equation (2.12) for n = ° can be reduced to

u(r,o)B*(o) L u(r, -b) A:( -b)
bEZ<

+ L u(r, -b-) A:( -b-)
bEZ, (2.13)
L u(r - rb, -b-) A:( -b-),

bEZj

u(r,o)e L u(r, n)e,
O<"e$r

for r > 0. The second summation on the RHS of (2.12) can be omitted here, because it
is empty: -b rf. INs for any b E Zl. For r = 0, the equations can be simplified further:

u(O,o)B*(o)
u(O,o)e

0,

1.
(2.14)

Now, all summations on the RHS can be omitted because of the order property (2.7).

These equations (2.12), (2.13) and (2.14) allow for the recursive calculation of all
coefficients. They can be calculated in such an order that all coefficients on the RHS are
obtained previous to the coefficient u(r,n) on the LHS. The coefficients u(r,'Ii) on the
RHS of both (2.12) and (2.13) satisfy either r < r or they satisfy r = r and 'lie > ne.
Because u(r, n) = ° whenever ne > r , this implies that all coefficients can be calculated
recursively for increasing values of r and, for each fixed r, for decreasing values of ne
starting with ne = r, So, if the expansions of the steady-state probabilities (2.8) are to
be calculated up to the coefficients of the R-th power of /, the following algorithm can
be used:
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Power-Series Algorithm
calculate u(O,o) from (2.14),
for r := 1 to R do

for N := r down to 1 do
for all n E INs with ne = N do

calculate u(r,n) from (2.12),
calculate u(r,o) from (2.13).

This algorithm is well defined if all sets of equations (2.12), (2.13) and (2.14) have a
unique solution. Elementary linear algebra shows that necessary and sufficient for this
is the following assumption:

Assumption 0' The matrices B(n), for n i- 0, and [e,B"(o)] are non-singular.

Applied to birth-death processes, it reduces to the condition derived in [20]. This alge-
braic assumption 0' has a simple probabilistic interpretation:

Assumption 0 The O-process has a single recurrent class consisting of only empty states,
which will eventually be reached from any state in O.

This assumption can often be verified much easier. The equivalence of both assumptions
will be proved in lemma 2.1. If there is no supplementary space (I = 1), the proof
is elementary. Assumption 0' then reduces to the assumption that the scalars B(n)
are non-zero for all n i- 0. This is the same as assuming that, in the a-process, each
non-empty state has a positive transition rate to other states. Since the O-process has
only downward transitions and selfloops, this means that the empty state is the only
absorbing state and will eventually be reached.

Lemma 2.1 Assumption 0' and assumption 0 are equivalent.

Proof: The equivalence of both assumptions will be shown by studying the O-process in
more detail. Besides the ')'-processes on the complete state space 0, Markov processes
will be considered on finite sets with fixed queue length: On = {n} X {I, ... , I} and
O~ = {n} x {I, ... ,I,!:::"}, where zx will be an absorbing state.

First, consider the non-empty states. The diagonal elements of B(n) are equal to
the rates in the a-process out of the states in On to other states in 0; the non-diagonal
elements are equal to minus the rates in the O-process from states in On to other states
in On. Therefore, the elements of the vector B(n)e are equal to the total rate in the
a-process of transitions from states in On to states not in On. Since the a-process has no
upward transitions, these transitions can only be downward and once the O-process has
left On it will never return. Aggregate all states not in On into a single state A = O\On'
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Starting from a state in nn, the O-process then reduces to a process on the finite state
space n~. Entering 6. corresponds to a downward transition from nn in the O-process.
The process on n~has the following balance and normalization equations:

( ) (
B(n) -B(n)e) _ ( 0)11",11"", 0 0 - 0, ,

The state space is finite, so one balance equation can be ignored. Replace the balance
equation of state 6. by the normalization. If and only if B(n) is invertible, the process
on n~has the unique steady-state distribution (11",11"",) equal to

The assumption that B( n) is inverti ble for n -# 0 is therefore equivalent to the assumption
that, in each Markov process on n~,the state 6. is the only absorbing class. This in turn
is equivalent to the assumption that, in the O-process, all non-empty states are transient
and the empty states will eventually be reached.

Next, consider the O-process after it has reached an empty state. Once the O-process
is in the set no, it will never leave no. On no, the steady-state distribution is determined
by the balance and normalization equations

1I"B(0) = 0, 1I"e = 1. (2.15)

This set of equations uniquely determines the steady-state distribution if and only if the
Markov process on the finite state space no has only one recurrent class, but also if and
only if the matrix [e, B*( 0)] is invertible. Therefore, assumption 0' and assumption 0 are
indeed equivalent. 0

2.3.2 Performance measures

Often, one is not only interested in the steady-state distribution, but also in performance
measures like means and (co)variances of the queue length distri bution or the expectation
of some reward or cost function. From the expansions of the steady-state probabilities,
the expansions of any such performance measure can be obtained if it can be expressed
as the expectation of a function f : n -t fR. Let f(n) be the column vector with the i-th
element equal to f(n, i). Then

e, {f(N,I) } L pb,n) f(n)
nEl\Is

L L IT u(r,n) f(n) (2.16)
nEl\Is T~ne

L IT v(r ),
T~O
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with
v(r) = 2: u(r,n)f(n), for all r:::: O.

ne$r

(2.17)

The reversal of the order of summation in (2.16) is justified under very mild conditions.
These will be derived in section 2.5. Examples of performance measures are:

F>..,{ (./II,I) E £}

P..,{./II=n}

IE.., { (./IIe)l }

E..,{./IIsl}

E.., { ./IIsAft }

L: ,..( L: ui(r, n) 1 ((n, i) E £), for all e ~ 0,
T~O ne<T,l<i<1

L: -yTu(r, ~)~, for all n E INS
T;?:ne

L: -y' L: (ne)l u(r,n)e, for all i > 0, (2.18)
T~O ne$r

L: -y' L: n; u(r, n)e, for all 1 :::;s ::; 5, t :::::0,
T~O neST

L: -y' L: nsnt u(r, n )e, for all 1 < s, t < 5.
T~O neST

These are the probabilities of a particular subset of states or queue length, the £-th
moment of the total queue length or the queue length at queue s, and the cross-product
of the queue lengths at queue s and t.

To calculate the r- th coefficient v( r) of the expansion of the expectation, only the
r-th coefficients u(r, n) of the steady-state probabilities are needed and these coefficients
are non-zero only for the finitely many states with ne :::;r. So, if assumption 0 is satisfied,
then also the power-series expansions of performance measures can be calculated. All
that needs to be changed in the algorithm is that after the calculation of all r-th order
coefficients of the steady-state probabilities, also the r-th order coefficient v(r) of the
performance measures is calculated:

Power-Series Algorithm for performance measures
calculate u(O,o) from (2.14),
calculate v(O) from (2.17),
for r := 1 to R do

for N := r down to 1 do
for all n E INS with ne = N do

calculate u(r,n) from (2.12),
calculate u(r, 0) from (2.13),
calculate v(r) from (2.17).

This renders all the coefficients of the R-th order truncated power-series expansion of
the performance measure (2.16).

2.3.3 Derivatives

For optimization purposes one may be interested in calculating the derivatives of the
steady-state probabilities or performance measures (see [27,29]). The power-series ex-
pansion in -y immediately provides the derivatives with respect to 'Y- Of course, this is
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only interesting if the transformation parameter, has a physical interpretation. In this
section, the PSA will be extended to calculate also derivatives of arbitrary order with
respect to some other model parameter u .

The i-th derivative of a function I with respect to v will be denoted by I{l) and
I{O) == f. Repeated application of the product rule shows that the i-th derivative of the
product of two functions I and 9 is equal to [JgJll) = Li=o (!) I{k) g(l-k). The derivatives
of vectors and matrices will be the element-wise derivatives.

Assume that the derivatives of the steady-state probabilities are analytic functions of,
at , = 0 and also in o(,ne), for ,10:

p(i)("n) = L ,ruk,n), for all n E INS.
r~ne

(2.19)

The parameter, is a parameter independent of the system parameter u, Repeated
differentiation of p(" n) shows that the coefficients of the power-series expansions of the
derivatives of the steady-state probabilities are the derivatives of the coefficients of the
power-series expansions of the steady-state probabilities:

Ul(r,n) = u{l)(r,n), for all 0:::; ne:::; r. (2.20)

That is, provided that differentiation and summation can be reversed. This assumption
is obvious if pb,n) is analytic in v , but it is not easily proved and not generally true.

If the reversal of differentiation and summation is allowed, then the recursive rela-
tions that determine the coefficients ul(r,n) can be found by differentiating the recursive
relations that determine the u(r,n) = uo(r,n). Taking the i-th derivative in equations
(2.12), (2.13) and (2.14) leads to

ul(r, n)B(n) If (l) Uk(r, n) B(l-k)(n)
k=O k

l Afl-k)(n - b)+ L L (I) Uk(r, n - b)
bEZ< k=O kI Af1-k)(n - b)+ L L (l) uk(r - rb,n - b) (2.21 )
bEZI k=O k

l Afl-k)(n - b-)+ L L (I) uk(r, n - b-)
bEZ, k=O kI Afl-k)(n - b-),
bEl k~O W uk(r - rb,n - b-)
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for n E INs \ {o}, r ~ ne,

+

ltl (e) u,,(r,o) B·(e-k)(o)
k=O k

l A:(l-k)(_b)L L (l) uk(r, -b)
bEZ<k=O k

l
A:(l-k\ -b-)

b52k~0 m uk(r, -b-) (2.22)

l A:(l-k)( -b-),
b51k~0 W uk(r - rb, -b-)

L ue(r,n)e,
O<ne~T

ul(r,o)B*(o)

+

for n = 0, r > 0, and

ue(O,o)B*(o)

Ul(O, o)e
(2.23)

From the expansions of the derivatives of the steady-state probabilities, the expansions
of derivatives of performance measures can be obtained:

E~l) { f(N,I) } L (Ph, n )f( n )](l)
nENS

L L ,T [u(r, n)f(n)](l)
nENS r~ne (2.24 )
L ,T L [u(r, n)f(n)](l)
T~O ne$. T

L ,T ve(r),
T~O

with

ve(r) = n~r ~ (!)uk(r, n) f(l-k)(n), for all r ~ 0, (2.25)

for e times differentiable functions f :n ---.IR.
So if the expansions of the first L derivatives of the steady-state probabilities (2.19)

and performance measures (2.24) are to be calculated up to the coefficients of the R-th
power of " the following algorithm can be used:

Power-Series Algorithm for derivatives
for e := 0 to L do

calculate Ul(O,O) from (2.23),
calculate Vl(O) from (2.25),
for r := 1 to R do

for N := r down to 1 do
for all n E INs with ne = N do

calculate ul(r,n) from (2.21),
calculate ul(r,o) from (2.22),
calculate vt(r) from (2.25).
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If the transition rates and functions are L times differentiable, assumption 0 is again
necessary and sufficient for all these sets of equations to have a unique solution. So,
except for differentiability of each individual transition rate, no extra assumptions need
to be made for the algorithm to be well defined.

2.3.4 Memory allocation

The maximal truncation level R of the power series is usually determi.ned by the available
memory space to store the calculated coefficients. Therefore, the memory should be used
as efficient as possible. This section contains some comments on memory allocation.

The coefficients u(r,n) form an (5 + 1)-dimensional array of vectors, since rEIN
and n E INs. Most programming languages only support rectangular data structures.
These should not be used. For a truncation level R, all coefficients u(r, n) are calculated
with 0 s: r :::;Rand ne :::;r . Therefore, a rectangular data structure would need to have
size (R + 1)S+1. The number of used elements is much less:

The quotient of both is approximately equal to 5!, so especially with large numbers
of queues only a small portion of the available memory is used. A more efficient way
of storing the coefficients is by mapping the (5 + I)-dimensional array onto a one-
dimensional array with the mapping

S

S (S + r - L: nt)C(r, n) = L t=5+1.
5=0 S + 1

For an efficient way to calculate these values, see [22]. The coefficients can be calculated
in increasing order of C(r, n). Apart from more efficient memory use, this mapping also
has the advantage that the data structure does not depend on the number of queues.
This simplifies writing a single computer program for models with different numbers of
queues.

If the maximal increase of the total queue length by a single transition is finite and
one is not interested in all steady-state probabilities, the memory requirements are much
smaller. Let B be the size of the largest possible batch arrival:

B = sup { be I a state n exists such that Ab( n) > 0 }.
bEZ:2:

The calculation of the r-th order coefficient v(r) of performance measures only calls for
the r-th order coefficients u(r, n) of the probabilities (see formula (2.17)). From the
recursive equations (2.12) it is clear that to compute coefficient u(r, n), only coefficients
u(s, m) are used with r - B :::;s :::;r and me :::;s. Therefore, the coefficients of order
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smaller than r - B can be removed from memory. The maximal number of coefficients
that need to be stored is equal to

Especially if B is small, this is considerably less than (S"t~~R). The easiest way to
implement this idea is not to use the mapping C(r, n), but instead use

The coefficients are now stored in the array in a cyclic way. The memory space of
coefficients that are no longer needed is used for newly calculated coefficients. In specific
cases, like quasi birth-death processes and symmetric models, the required memory size
can be reduced further (see [22,24]).

2.3.5 Characteristics of the algorithm

According to Moler and Van Loan [111], the effectiveness of an algorithm is determined
by the following attributes, listed in decreasing order of importance: generality, relia-
bility, stability, accuracy, efficiency, storage requirements, ease of use and simplicity. In
this section, the PSA will be discussed with respect to these various characteristics.

A method is general if it can be applied to a wide class of problems. On this characteristic
the PSA scores very well. Only mild assumptions need to be made on the transition
structure. Assumption 0 is satisfied for many queueing applications. Even if it is not
satisfied, the algorithm can often be adjusted in such a way that the PSA is applicable
(see section 2.7.5 and [87]). Other methods need to assume far more structure, like for
example that there are only two queues or that the network is a product-form network.

Although the PSA does not need to assume much structure on the type of transi-
tions, stiffness does provide limitations on the problems that can be analyzed. Stiffness
arises when the transition rates of different transitions are of different orders of magni-
tude. If the system is stiff or heavily loaded, then the power series are likely to converge
slowly or even diverge. Many coefficients will need to be calculated, introducing more
round-off errors and leading to large computation times and memory requirements. Ex-
trapolation methods are very helpful, but do not solve the problems completely. Any
numerical method will suffer from this problem of stiffness, but it seems to affect the
PSA quite strongly.

The generality of the PSA is both caused and limited by the fact that it directly
depends on the balance equations. On the one hand, it has the effect that if the balance
equations are slightly changed, then also the recursive equations of the PSA are only
slightly changed. This makes the PSA very flexible. On the other hand, it also lays the
curse of dimensionality on the PSA. Because of the direct dependence on the balance



2.3. The Power-Series Algorithm 31

equations, a large state space will cause large memory requirements for the PSA. Typ-
ically, models with up to 4-6 queues can be handled, depending on the structure, the
stiffness and the load of the system, on the desired accuracy and on the available time
and memory space. For some special models the curse can be lifted. For the symmetric
shortest-queue model, up to 30 queues can be analyzed [24].

More general alternatives for the PSA are simulation and other methods for solving
the balance equations. Simulation is more flexible and larger systems can be analyzed,
also non-Markovian. For moderately sized systems, the PSA is faster and more accurate.
Solving the balance equations by some other method is often not a feasible option for
multidimensional models. The PSA greatly benefits from the fact that extrapolation
methods can be used in a natural way. With the help of these methods, the PSA can
be applied to models with quite heavy traffic. The PSA truncates in a very implicit
and flexible way. Other methods for solving the balance equations truncate explicitly.
The state space needs to be truncated at a level such that the probability mass in the
truncated states is negligible. For more heavily loaded systems this often results in trun-
cation levels that are too high. Only for stiff models, solving the balance equations by a
stable truncation method will be preferred.

When considering reliability, stability and accuracy, it is important to distinguish be-
tween characteristics of a problem and those of a method. A method for inverting
matrices can not be blamed for having trouble in inverting nearly singular matrices.
Similarly, a method for finding the steady-state distribution of a Markov process can not
be blamed for having troubles with stiff Markov processes. Stiffness does provide a good
criterion for comparison of different methods.

An algorithm is reliable if it provides warnings when errors are introduced. Un-
fortunately, the PSA does not have error bounds. Without extrapolation methods, the
power series often diverge, so these extrapolation methods are indispensable. Apart
from convergence, it is usually very difficult to make meaningful statements about the
extrapolated series. Therefore, it seems unlikely that useful error bounds will be found
in the future. Still, the results turn out to be quite reliable. In all numerical evalua-
tions so far, the obtained (extrapolated) power series either diverged or converged to a
reasonable answer. The reliability of the results can be established by comparing the
series at different truncation levels. Validation by means of known characteristics of the
model has shown that the variation in the results for consecutive truncation levels is a
trustworthy indication of the error.

An algorithm is stable if it does not introduce more sensitivity to perturbation
than is inherent to the underlying problem. An unstable method can be reliable if the
instability can be detected. The PSA is not a very stable method. In the paragraph on
generality it was already mentioned that it seems more sensitive to stiffness than other
methods. However, this is only sufficient reason to discard an algorithm if there are
other superior methods. Superior methods may exist for models with special structures
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but many models can not be analyzed by methods other than the PSA.
As defined in [111], accuracy primarily refers to the error introduced by truncat-

ing a series or by terminating iterations. The results of the PSA mostly become more
accurate when a higher truncation level is used. However, this can not be guaranteed in
general. In the high-order coefficients, the round-off errors become more severe. Using
a bilinear mapping reduces this problem, but does not solve it completely. With models
that are too stiff, it can be observed that initially the results get more accurate with
increasing truncation levels. At a certain level the round-off errors take over and result
in a fast divergence of the power series.

It is difficult to evaluate the efficiency and the storage requirements of the PSA, because
it is not known in general what truncation level R can or needs to be used. This number
varies from, say, 20 up to 120. Also, these characteristics can not be compared to other
methods because other methods are often not available. What can be done is to evaluate
the efficiency and memory requirements for a fixed number of queues S and truncation
level R. The memory requirements and computation time of the PSA grow fast in both
Sand R. This limits the number of queues and the stiffness that can be handled. For
most models, the memory capacity is more restrictive than the computation time.

In the previous section it was shown that the number of coefficients that need to
be calculated is equal to (Si~;R). The number of coefficients that need to be stored is

at most equal to (S+~-B) + ... + (SiR). The amount of work to compute a particular
coefficient very much depends on the model under consideration. Each coefficient is
a linear function of previously calculated coefficients. Therefore, an upper bound on
the required number of matrix multiplications for a single coefficient is given by the
number of calculated coefficients (S~~;R). The total number of matrix multiplications

is therefore at most (S~~iRr.This very crude bound is a polynomial in R, with order
2(S + 1). For most models, however, the number of matrix multiplications to compute
a single coefficient is bounded in R. Then the total number of matrix multiplications is
a polynomial in R with order (S + 1). This is true for all quasi birth-death processes.

Calculating more performance measures hardly increases the memory requirements
and computation time, because the coefficients of a performance measure form a one-
dimensional array, whereas the coefficients of the steady-state probabilities form a mul-
tidimensional array. If L is the order of the highest derivative, then the memory require-
ments are linear in L and the computation time is quadratic in L.

On ease of use and simplicity, the PSA compares favourably to many other methods.
The main idea is quite straightforward. Except for sophisticated extrapolation methods,
no complicated mathematical procedures are used. A thorough understanding of extrap-
olation methods is advisable, but not absolutely necessary to obtain satisfactory results.
It is often sufficient that the user can establish whether a series converges or not.
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The reader is challenged to see for him or herself how easy and simple the PSA is, by
applying it to the fork-join model [87J. Consider the model with S queues, simultaneous
arrivals at all queues according to a Poisson arrival process with rate>. and different
exponential service times with rate /1-s at queue s. The balance equations of this Markov
process are

[>.+ ~>sl(ns > 0)] p(n) = >.p(n - e) + ~J.lsp(n + es),

for all n E INS and>' < min, J.ls. Applying the PSA as described in this chapter
comes down to the following. Multiply>. by -ys. Substitute the power-series expan-
sions pb,n) = f: -yTu(r,n) in the new balance equations and equate coefficients of

T=ne
corresponding powers of T This renders recursive relations for the coefficients of all
non-empty states. The coefficients of the empty state can be obtained by substituting
the power-series expansions in the normalization equation Ln p( -y, n) = 1 and equating
corresponding powers of -y. To analyze the original process, evaluate the obtained power
series at -y = 1. Even without extrapolation methods, inspiring results will be obtained.

The considerations above lead to the conclusion that if specific methods are available to
analyze a certain class of continuous-time Markov processes, then these methods may
well be preferred to the PSA. However, the PSA is a flexible, fairly reliable and easy to
use method that can handle many models unmanageable by other methods, provided
the dimension of the problem is moderate and stiffness is mild.

2.4 Analyticity of Markov processes

In the transformed process, the transition rates are analytic functions of T Under
what conditions does the analyticity of the transition rates of a Markov process imply
analyticity of the steady-state probabilities? In this section, examples will be given to
elucidate this question. In the next section, sufficient conditions will be derived under
which the transformed process of the PSA has analytic steady-state probabilities.
If the state-space of an ergodic Markov process is finite and the transition rates are
analytic functions of some parameter, then the steady-state probabilities are also an-
alytic in that parameter. This is immediately shown by applying Cramer's rule for
the inversion of a matrix to the balance and normalization equations: if xA = b, then
Xi = det(Ai)/ det(A), where Ai is the matrix A with the i-th row replaced by b. The
determinant of a finite matrix is a finite sum of finite products of elements of the matrix.
So, if each element of a matrix is an analytic function of some parameter, then so is
the determinant of the matrix. The quotient of two determinants is a rational function,
and therefore analytic if the determinant in the denominator is non-zero. If the Markov
process is ergodic, the balance and normalization equations are non-singular. Therefore,
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the determinant in the denominator is indeed non-zero and the steady-state probabilities
are analytic. A formal proof is given in the first paper on the PSA by Hooghiemstra,
Keane and Van de Ree [73].

On infinite state spaces, this is no longer true. In the same paper [73], a counter-
example by Aaronson and Gilat is given. In the example, the transition rates are analytic
functions of a particular parameter, whereas the steady-state distribution is not even
continuous in this parameter, let alone analytic. Example 2.2 below is a continuous-time
version of this example.

If the steady-state probabilities are analytic, they need not be entire functions. The
radius of convergence of the power-series expansion of a function is equal to the distance
between the origin and the nearest singularity (see theorem B.8). Three examples will be
given to illustrate where these singularities can be located. They are all examples of the
transformed processes considered by the PSA. In example 2.3, the radius of convergence
is infinite because there are no singularities at all. In example 2.4, the singularities are
on a circle around the origin. In example 2.5, the singularities can be arbitrarily close to
the origin, so the radius of convergence can be arbitrarily small. Usually, the singularities
of the steady-state probabilities are equal for all states. The probabilities are related by
the balance equations. If the RHS of a balance equation has a singularity at a particular
place, then the LHS must also have a singularity there. However, the singularities on the
RHS may cancel out. For example, it is not unusual that the probability of an empty
system has a much simpler form than the other probabilities, without any singularities.
Also, the Pollaczek-Khintchine formula shows that the singularities of the steady-state
probabilities need not be singularities of the expected queue length.

Example 2.2 This example is based on the properties of the summation

00

" -y~n .
n=l

(2.27)

This summation converges for all y E ([ such that Re y > 1. The corresponding analytic
function has an analytic continuation to ([ \ {I}, which is generally known as the Rieman
zeta function ((y). In y = 1, it has a simple pole with residue 1, so limy->oy( (1 + y) = l.
For more details, see for example [134].

Consider the following CTMP on IN. From all non-empty states n, the only possible
transition is down to state n - 1, with rate 1. From the empty state, transitions are
possible to all non-empty states, with rates

These rates are real and positive for all x E IR. The total departure rate from the empty
state is

00 00 00

a(x) = L O'n(x) = LTn + X2 L n-2
-
x2 = 1+ X2 ((2 + X2).

n=l n=l n=l
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Let p(x, n) denote the steady-state probability of state n E IN for a given value of x E IR.
The balance equations of the Markov process are

a(x)p(x,O)
p(x,n)

p(x,I),
Cl'n ( X ) p( x, 0) + p( x, n + 1), for all n 2: 1.

It is easily checked that the normalized solution to these equations is given by

p(x,O) [1 + k~1 kCl'k(X)r
1

00

p(x,O) 2: Cl'k(X), for all n 2: 1.
k=n

p(x,n)

If x == 0, then the probability of the empty state is

[

00 ] -1
p(O,O) == 1 + L k 2-k == [1 + 2r1 == ~.

k=1

On the other hand, if x is positive but small, then

limp(x,O)
xlO

1.
4 .

Therefore, p(x, 0) is neither right-continuous nor analytic in x at x == 0, even though the
transition rates are analytic. 0

Example 2.3 There are systems for which the power-series expansions of the steady-
state probabilities are entire functions. Consider the M IM II queue with arrival rate "(
and service rate 1-'. The steady-state probabilities of this queue are equal to

These are finite polynomials in "(, so the steady-state probabilities are entire functions
of "(, even though the system is only ergodic if 0 $ "(< 1-'.

More generally, for an MX ICEJ/1 queue, it can be shown by studying the balance
equations that the steady-state probabilities of the "(-process are finite polynomials in "(
[74]. The arrival process MX has exponential interarrival times and batch arrivals with
finite maximal batch size. The CEJ service time distribution is a generalized Erlang
distribution, i.e. the convolution of J independent, not necessarily identical, exponential
distributions. 0

Example 2.4 Consider again the MIMI1 model but with at most m customers in the
system. The steady-state probabilities are now

(2.28)
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These steady-state probabilities have (removable) singularities where the denominator is
zero, that is at , = fl exp (m~1211"i). Therefore, the power series converge if 0 :::;"t < fl,
whereas the system is ergodic for all, ~ O. This is quite the opposite of the behaviour
of the open system in the previous example. 0

Example 2.5 Consider the following single server queue. The service-time distribution
is exponential with rate fl. Customers arrive with interarrival times that have inde-
pendent identical hyper-exponential distributions. The rate is equal to either C¥1 or C¥2,

with probability 11"1 and 11"2, respectively. Choose the mean interarrival time equal to 1:
~ + ~ = 1. At arrival, a customer is either accepted to the queue with probability,
or rejected with probability (1-,). This process is the ,-process of the HdMl1 queue.
The load of the queue is ,I fl. Provided that fl > 1, the queue is stable for all, E [0,1].

The Laplace-Stieltjes transform of the hyper-exponential interarrival-time distri-
bution is

1>(8) _ C¥1C¥2 + as
- (C¥1 + 8) (Q2 + s) ,

with a = 1I"1Q1 + 1I"2Q2. In the ,-process, each arriving customer is rejected with proba-
bility (1-,). Therefore, the ,-process is also a GIMII queue, but the interarrival time
consists of a geometric number of original interarrival times. By conditioning on this
number, the Laplace-Stieltjes transform can be shown to be equal to

,1>( 8)

1/;(s) = 1 - (1 -,)1>(s)

According to standard G IM II theory (see section II.3.2 in [41]), the steady-state queue-
length distribution is equal to

pb, n) = (1 -,Ifl) I(n = 0) + bl fl) (1 - r)rn-1I(n > 0), for all n ~ O. (2.29)

Here, r is the solution in the interval (0,1) of the equation 1/; (fl(I - r)) = r:

r = L [Q1 + Q2 + fl - (1 -,)a - V(Q1 + Q2 + fl- (1 -,)a)2 - 4,(C¥1C¥2 + fla)] .

This solution r is a function of,. The only singularities of this function in , are the
branch points where the root is zero, that is at

Since a is in between C¥1 and Q2, the first root is the root of a negative number. The
second root is the root of a positive number. The absolute value of both branch points
is equal to
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This can be made arbitrarily small. Choose a2 = all. Then 11"1 = 07+1 = 1 - 11"2 and
the expression reduces to (J.L + 1)of _";] +1. This is small if a1 is large.

The steady-state queue-length probabilities (2.29) are finite polynomials in r , so
they all have singularities in "t where r has singularities in,. The Markov process
has only two supplementary states for each queue length. Therefore, for each n, each
singularity of r must also be a singularity of at least one of the steady-state probabilities
ph, n, 1) and p(" n, 2). Singularities close to the origin typically occur when the model
is stiff, that is when it has parameters that are of different orders of magnitude like a]

and a2 here. 0

2.5 Analyticity in the transformation parameter of
the PSA

The basic assumption of the PSA is that the steady-state probabilities and performance
measures of the -y-process are analytic functions of , at , = o. The example 2.2 with
the zeta function, shows that this assumption is by no means obvious. The theorems
in this section show that it is justified under certain conditions. For models where,
can be interpreted as a measure of the load of the system, the theorems are light-traffic
theorems.

Initially, extrapolation methods like conformal mapping and the epsilon algorithm
were not used. Therefore, it was very important that the steady-state probabilities were
analytic in " since this would imply direct convergence of the power-series expansions.
The model in the first paper on the PSA [73J does not have singularities in the unit
disk. Therefore, the power-series expansions converge for all iii < 1, that is in both light
and heavy traffic. Example 2.5, with singularities arbitrarily close to the origin, shows
that this is not generally true. The radius of convergence can be very small. Except
for some special models, it does not seem likely that general conditions can be obtained
that guarantee analyticity on the entire complex unit disk. Maybe, it is possible to prove
analyticity not only at, = 0, but for all, in the real unit interval [O,IJ. This would
be theoretically interesting and seems reasonable for many models. However, it would
not really improve the theoretical foundation of the PSA as a numerical method. The
radius of convergence of the power-series expansions is determined by the nearest sin-
gularity, irrespective of whether this singularity is real or complex valued. And because
only a finite number of coefficients of the expansion around the origin is available, the
analytic continuations along the unit interval can not be obtained. Analyticity at , = 0
is important, because it underlies the derivation of the algorithm. Also, it is a necessary
condition for most extrapolation methods. These methods lessen the importance of an-
alyticity in heavy traffic, because even divergent power-series expansions can often be
made to converge to the correct value.
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Define the vector-functions qe(-y, n) as the functions determined by the produced power
series for the steady-state probabilities:

qeb,n) == L: 'y'ue(r,n), for all n E INs.
r~ne

(2.30)

Also, define Eeb) as the functions determined by the produced power series for the
performance measures:

Etb) == L:'y'Vt(r).
T~O

(2.31 )

Theorem 2.1 shows that assumptions 1 and l' are both sufficient conditions for conver-
gence of the power series (2.30), for, small enough. Similarly, theorem 2.2 shows that
assumption 2 is sufficient for convergence of the power series (2.31).

Convergence does not immediately imply convergence to the right value. Do the
produced power series have any connection with the ,-process? By definition, the func-
tions qo(" n) satisfy the balance and normalization equations. From this and assump-
tion 3, theorem 2.3 shows that indeed the qob, n) are equal to the steady-state prob-
abilities pb, n). Together with the absolute convergence of the power-series expansion
of Eob) this immediately implies that Eob) is equal to the steady-state performance
measure E,. { f(N,I) }. So, under assumptions 1 or 1', 2 and 3, both the steady-state
distribution and the performance measures are analytic functions of ,.

For the derivatives (of order 1 or higher) things are less clear. It is difficult to jus-
tify the reversal of differentiation and summation used to obtain (2.20). Assumptions 1
or l' and assumption 2 do imply convergence of the obtained power series, but not nec-
essarily to the right value. And convergence around, = 0 does not imply that the power
series can be extrapolated to obtain correct results at , = l. No characterization of the
derivatives exists that can be used to check convergence to the right value. Example 2.2
shows that differentiability of the transition rates does not imply differentiability of the
steady-state distribution. If the original process is ergodic for a particular value t/ = va,
then it may not even be ergodic on any neighbourhood of va, as can be seen from the
third part of example 2.6 on page 65. Nevertheless, if the obtained power series do
converge then the right value seems to be the most likely candidate for the limit value.
Derivatives have been calculated with success in several applications [27,29].
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Define for all n E INs\ {o} and £ 2: 0:

cl(n) -0. IIB(l)(n)B-1(n)11
+ 2: IIAft)(n - b)B-l(n)11

bEZ<

+ 2: IIAfl)(n - b-)B-1(n)11
bEZ,

1(£>0)
+2:

bEZ,

+2:
bEZ,

IIAfl)(n - b)B-l(n)11

IIA~l)(n - b-)B-I(n)ll,

11[0, B*(l) (o)][e, B*(O)J-I II
11[0,A:(l\ -b)][e, B*(0)J-11I

II [0, A:(l) (-b-)][ e, B*( 0 )J-111

1(£ > 0)

II [0, A:(l)( -b-)][e, B*( 0 )J-111.

(2.32)
These constants are the norms of the loth order matrices on the RHS of the recurrence
relations (2.21) and (2.22), after multiplication by B-l(n) and [e,B*(0)J-1. The used
matrix norm is the maximal-absolute-row-sum norm (1.3). The definition for the empty
states is more complicated because the balance equation of the first empty state is
replaced by the normalization constraint.

Theorem 2.1 shows that assumption 1 is sufficient to ensure convergence in a neigh-
bourhood of, = 0 of the power series produced by the PSA for steady-state probabilities
and their derivatives with respect to the system parameter v (see page 26), up to order L:

Assumption 1 The transition rates are L times differentiable and

sup cl(n) < 00, for all 0::::;£ ::::;L.
nEl\Is

For the interpretation of this assumption, consider the case without supplementary space
(1 = 1). Then all matrices on the RHS of (2.32) are positive scalars. The norm of a
positive scalar is the scalar itself. For £ = 0, the eo( n) are sums of terms Ab(. )B-1 (n).
The Ab(.) correspond to transition rates into state n, whereas B-l(n) is the inverse of the
transition rate out of state n. Multiplied by the appropriate steady-state probabilities
and powers of " the balance equations of the -y-process state that the rate-in is equal
to the rate-out (see (2.6)). Assumption 1 requires that without these multiplications
the total rate-in is not too large compared to the rate-out, so it is related to a stability
condition. For £ > 0, the assumption requires that the derivatives of both the rate-in
and the rate-out are not too large, compared to the rate-out.

A sufficient condition for assumption 1 to be true is that the state-dependence of
the balance equations is limited. If there is only a finite number of essentially different
balance equations, there is also only a finite number of different values of cl(n). Then
the supremum is the maximum of these values, which is necessarily finite because the
original Markov process is non-instantaneous. More formally, this sufficient condition is
described in the next assumption:
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Assumption l' The transition rates are L times differentiable and a finite set S c INs
and function f : INs -+ S exist such that

The assumption requires that the possible transitions from any state n f:- S are iden-
tical to the transitions from state f(n) E S. In that case, the number of essentially
different balance equations is at most the number of states in S. It is easily shown that
assumption l' implies assumption 1:

sup cl(n) = sup cl(J(n)) = supc((n) < 00.

nElNs nENs nES

Assumption l' is more restrictive than assumption 1. For example, it excludes all models
that are not uniformizable. However, it is readily checked and satisfied in most queueing
models. For example, consider a network of S queues where the arrival and routing pro-
cess do not depend on the queue lengths and the service process at a particular queue
only depends on whether that queue is empty or not (like in example 2.1). Then as-
sumption l' is satisfied, with S = {O,l}s and f.(n) = minj Ln,} for alII::; s::; S.
Similar models with a finite number m , of servers at queue s are also included. In that
case S = TI;=l{O, ... ,ms} and fs(n) = min{m.,ns} for all I ::; s::; S. Models with
infinitely many servers do not satisfy assumption l' but often do satisfy assumption 1,
because Ab(n - b), Ab(n - b-) and B(n) usually grow about equally fast in n for these
models. The model in the third part of example 2.6, to be presented on page 65, satisfies
neither assumption l' nor assumption 1.

In theorem 2.1, lemma 2.2 will be used to find a geometric bound on the coefficients,
which proves analyticity for small "f. The lemma shows that a solution to a certain set
of inequalities is bounded by any solution to the same set but with reversed inequalities.

Lemma 2.2 For all i ~0) let gi : IRi
-+ IRbe a non-decreasing function. If

Xi ::; gi(XO, ... ,xi-d,
Yi ~ gi(YO,"" Yi-I),

for all i ~1,
for all i ~1

and Xo ::; Yo) then
Xi ::; Vi, for all i ~O.

Proof: Suppose that Xi ::; Yi, for some j ~0 and all 0 ::; i ::;j. This is true for j = O.
Then,

Xj+! ::; gj+I(XO, ... , Xj) ::; gj+l(YO,'" 'YJ) ::; Yj+l·

Therefore, Xi ::; u. for all 0 ::; i ::;j + 1 and by induction for all i ~O. o
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Theorem 2.1 Under assumptions 0 and 1, and in a neighbourhood of ,= 0, the func-
tions ql(/, n) are analytic in, for all n E INs, 0 ~ f ~ L.

Proof: Scalar sequences Ut(r, n) will be obtained, for all n E INs and 0 ~ f ~ L, such
that

(2.33)

and such that the series

2: ,rUI(r,n)
T~ne

(2.34)

converge in a neighbourhood of , = O. If such convergent majorants exist, the power
series produced by the algorithm for steady-state probabilities and their derivatives are
absolutely convergent and analytic in the convergence region of the majorant (see theo-
rem B.1 and the definition of analyticity on page 112).

Define

Cl == sup c((n), for all 0 ~ e ~ L.
nENs

By assumption 1, the values of all c( are finite. Multiplying equation (2.21) by B-1(n),
taking norms and using the triangular inequality and submultiplicativity leads to

Ilu,(r,n)11 ~ (f! m Iluk(r,n)11 IIB«(-k)( n )B-1 (n )11
k=Oe

IIAll-k)(n - b)B-1(n)11+ E E (l) Iluk(r,n - b)11
bEZ< k=O k

e
IIAll-k)(n - b)B-l(n)1I+ bli k;;O m Iluk(r - rb, n - b)11

e
IIAll-k)(n - b-)B-l(n)1I+ bl1, i: m lIuk(r,n - b-)II

l
IIAll-k)(n - b-)B-l(n)11+ E E (l) Iluk(r - rb, n - b-)II

bEZ, k=O k

< Lto mCt} max{ max Iluk(r,n)ll,O$k$l-l
max IIUk(r,n - b)ll,

bEZ<, O$k$l
max IIUk(r - rb' n - b)ll,

bEZ" O$k$t
max IIUk(r,n - b-)II,

bEZ"099
max Iluk(r-rb,n-b-)1I },

bEz,,099

for n E INS \ {o}, r 2: ne. The second inequality follows from replacing all the norms
of coefficients by the maximum of all these norms and from the definition of the ct(n)
and Ct. The recurrence relations for the empty states (2.22) can be written in a single
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matrix equation:

Ut(r, o)[e, B*(o)] li3 (l) uk(r,o) [0, B*(l-k) (0)]
k=O k

l
[0, A:(l-k) (-b)]+ L L (l) uk(r, -b)

bEZ< k=O k
e

[0, A:(l-k) (-b-)]+ L L (l) uk(r, -b-) (2.35)
bEZ2k=O k

t
[0, A:(l-k)( -b-)]-

bE, k~O W
uk(r - rb, -b-)

L ul(r,n) [e,O*],
O<ne~r

for r > O. The matrix 0* is an I by (I -1) matrix of zeros. Multiplying by [e,B*(o)]-1
and taking norms renders

Ilut(r,o)11 < L~oWCt} max{ o~TtL
max

bEZ<, O~k~l
max

bEZ2, O~k~f
max

bEZ" O~k~f
+ II[e,O*j[e,B*(o)]-111 L

O<ne~r

Iluk(r,o)ll,

Iluk(r, -b)ll,
lIuk(r, -b-)II,

Iluk(r-rb,n-b-)II}

Ilu,( r, n) II,

(2.36)

for r > O. Here, it is used that II[o,A"]11 ~ IIAII, for any matrix A. Let the numbers
uf(r,n) be such that they satisfy the reversed inequalities:

ut(r,n) ~ L~oWCk} max{ otftf-I uk(r,n),

max uk(r, n - b),
bEZ<, O~k9

max uk(r - rb, n - b),
bEZ" O~k9

max
bEZ2, 0~k9

max
bEZ"O<k<£

ut(r,o) ~ Lto (!)Ck} max{ o~Tt;-I- uk(r,o),

max
bEZ<, 0~k9

max
bEZ2, 0~k9

max
bEZ,,099

+ lI[e,O*j[e,B*(o)]-111 L ut(r,n),
O<ne~r

Ilul(O,o)lI,

Uk(r,n - b-),

uk(r - rb, n - b-) },

(2.37)

Uk(r, -b),

uk(r, -b-),
uk(r - rb, -b-) }

for r ~ ne ~ 1 and 0 ~ f. ~ L. Because all coefficients are calculated sequentially,
lemma 2.2 then shows that

lIue(r,n)11 ~ ut(r,n), for all 0 ~ ne ~ r.
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The three inequalities (2.37) are indeed satisfied by the sequences

- ( ) - C c:» C1(n=o) c:Ue r ,n - O,l 1 2 3' (2.38)

for n E INs, r ~ ne, and with

co,o ..:.. lIuo(O, 0)11= 1,
CO,t ..:.. max { Ilul(O, 0) II, CO,l-l }, for all 1 ::; f ::; L,

C1 > max { kto (~)Ck' 1 },

C2 ..:.. 1+ II[e,O*][e,B*(o)]-lll (1 - Ci1r
S

,

C3 ..:.. C12C2.

(2.39)

That Co,o = Iluo(O, 0) II = 1, is because uo(O, 0) is a distribution, as can be seen from
comparing (2.14) and (2.15). The constants CO,l are non-decreasing in f. The bounds
ut(r, n) are the product of three factors. The first factor c..c; only depends on f. It
is non-decreasing in f, so the maxima in the first and second inequality of (2.37) are all
attained for the largest value of k. The second factor Cine C~(n=o) only depends on n
and the third factor C; only depends on r.

The first inequality in (2.37) holds because the following five inequalities hold:

{t (!)Ck} max uk(r, n) <k=O O~k~t-l
<

{t (!)Ck} max uk(r,n - b)::;k=O bEZ<, O~k~t

C1 ul_l(r,n)

ut(r,n),

C1 maxue(r,n - b)be<O
U (r n) max C1+be

l, be<O )
Ut(r,n),

C1 max ut(r - rb, n - b)be?:O
ul(r, n) max ct+bec~(n=b) c;rb

be?:O
< ut(r,n) max (ClC2Ybc;rbbe?:O

ul(r,n),

Ue(r,n) max C:+b-ec;rb
be?:O

< ue(r,n),



44 Chapter 2. The PSA for steady-state analysis

for all r ~ ne ~ l.
The second inequality in (2.37) is checked in two steps. In a similar way as for the

first inequality, it can be shown that

t~J!)Ck} { oSrrtf-1
maxbEZ<,0SkSt
maxbEZ2,OSks[
maxbEZ"OSkS[

Uk(r, -b),
uk(r, -b-),

uk(r - rb, -b-) }::; Co,lCiC;.

(2.40)

Also, it is true that

lI[e,O*][e,B*(o)]-11l L: ut(r,n) ::; lI[e,O*][e,B*(o)]-111 Co,tCiC; L: Cine
O<neST nENS

= II[e,O*][e,B*(o)]-111 Co,tCiC; (1- CilfS.
(2.41)

Here, it is used that CI > l. Together, (2.40) and (2.41) prove the second inequality in
(2.37), because the sum of the RHSs of (2.40) and (2.41) is equal to vAr, 0):

Co,lcic; + II[e,O*][e, B*(o)tlll Co,tCiC; (1 - C1lfs = Co,fcic2c; = ul(r, 0),

for all r ~ l.
Finally, the third inequality in (2.37) holds because

Therefore, the solution (2.38) satisfies all inequalities in (2.37) and is a majorant as
claimed in (2.33).

What remains to be proved is that the solution (2.38) converges in a neighbourhood
of, = 0, as claimed in (2.34). This is indeed true, because the solution is geometric in
r and converges if iii < Cil. Therefore, ut(r, n) is a convergent majorant, which proves
the theorem. 0

The lower bound on the radius of convergence Cil is uniform for all n E INs. Bounds
on the truncation error can be constructed from the bounds on the coefficients:

L: ,Tuf(r,n)
T>R+I
-" TC ct-ne C1(n=o) CT

L.., , 0,1 I 2 3
T>R+l

~ cl-ne Cl(n=o) hC3)R+I
O,l 1 2 1 C'

-, 3

for 1,1 < c;', Unfortunately, the bound Cil is usually very small. It can be slightly
improved by making it depend on f. instead of on L. The majorant (2.38) is valid for all

II
L: ,Tu,(r,n)ll::;

T?:R+1

<
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fixed L ~ O. So, in the definition of C1 in (2.39), L can be replaced by f.. Then C1 and
C3 are both increasing functions of f. and independent of L.

Even with this improvement, the lower bound on the radius of convergence is too
small to have any real practical importance. For the case without supplementary space,
it will be shown that the lower bound can be at most 0.113401. This will be done
by maximizing C31 over the possible values of 5 ~ 1 and C1 > 1. If I = 1, then
C2 = 1+ (1 - C11fS. This is increasing in 5, so C31 = [C;C2r1 is decreasing in 5 for
all fixed C1. At 5 = 1, C31 is equal to (C1 - 1) (2C1 -ltl C12

. This is maximal at
C1 = [7 + JI7] 18 ~ 1.39039, with value 0.113401. So, even if the steady-state proba-
bilities are entire functions of" like for the MIMl1 and MIM/oo queues, the obtained
lower bound on the radius of convergence is very small. This unfavourable behaviour is
caused by the fact that C1 needs to be at least 1, for C2 to be well defined in (2.39).

Convergence of the power series for the steady-state probabilities with their derivatives
does not immediately imply convergence for the performance measures and their deriva-
tives. For this, the additional assumption 2 on the function f : n ~ IR from section 2.3.2
is sufficient:

Assumption 2 The function f is L times differentiable and finite constants Fl, G( ~ 0
exist such that

f(l}(n i) < F or, _ l i, for all (n, i) E nand 0 :::;f. :::;L.

The assumption requires that the function f(n, i) and its derivatives grow at most ex-
ponentially in n, which is a weak condition. The moments and covariances in the ex-
amples (2.18) on page 26 are all bounded by a polynomial in n, so the assumption is
satisfied for f. = O. Since these examples do not depend on any system parameter v at
all, the derivatives are all identically zero. Therefore, assumption 2 is satisfied for all
f. ~ O.

In theorem 2.2, analyticity of the power-series expansions for performance measures
and their derivatives (2.31) is shown by proving absolute convergence (see theorem B.1),
using the bounds for the steady-state probabilities found in theorem 2.1.

Theorem 2.2 Under assumptions 0, 1 and 2, and in a neighbourhood of,
functions Eih) are analytic in , for all 0 < f. :::;L.

0, the

Proof: These functions are analytic because their power-series expansions (2.31) with
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coefficients defined by (2.25) are absolutely convergent:

if bl < Gil and 1,1< Cl(C3GetI, for all 0 ::; f. ::; L. The first inequality follows from
the triangular inequality and submultiplicativity. In the second inequality, assumption 2
and bound (2.38) are used. 0

The functions qo(" n) would be the desired steady-state probabilities p(" n) if they sat-
isfy the balance equations of the ,-process and if the ,-process is ergodic. They satisfy
the balance equations if the reve~sals of the order of summation were justified in the
derivation of the PSA in section 2.3. The ergodicity of the -y-process will be obvious in
many applications. The ,-process is such that upward transitions in the original process
are replaced by downward transitions or selfloops. So, if the original process is ergodic,
then the ,-process will usually also be ergodic for all ,in [0,1]. However, this is not true
in general as will be illustrated by the second part of example 2.6 on page 65. Both for
the reversal of the order of summations and for the ergodicity for small values of " the
following additional assumption is required:

Assumption 3 Finite constants F, G .:::0 exist such that

a(n,i)::; F c=, for all (n,i) En.

This assumption requires that in the original process, and therefore in each ,-process,
the total transition rate out of state (n, i) grows at most exponentially in n. Since the
growth rate G is allowed to be arbitrarily large, this assumption is very weak. For ex-
ample, it is much weaker than assumption l' or the assumption that the Markov process
is uniformizable. Theorem 2.3 will show that assumption 3 is sufficient to ensure that
indeed qo(/, n) = ph, n), for all n E INS and for, small enough. In the technical proof
of the theorem, the usual ergodicity theorems can not be used because it is not known in
advance that the functions qo(" n) are non-negative and because the process need not be
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uniforrnizable. The theorems A.l and A.2 in appendix A do not make these assumptions.

Theorem 2.3 Under assumptions 0, 1 and 3, and in a neighbourhood of --y= 0, the
--y-process is ergodic with steady-state probabilities qOi(--y, n) for all (n, i) En.

Proof: The case --y= 0 will be considered separately. Assumption 0 ensures that the
process will always end up in the single finite recurrent class of empty states. Comparison
of (2.14) and (2.15) shows that the steady-state probabilities are equal to qOi(O, n) =
UOi(O, o)l(n = 0), for (n, i) En. Therefore, the theorem holds for --y= O. For --y> 0 but
sufficiently small, it will be checked in the rest of the proof whether the -y-process and
the functions qOi(--Y, n) satisfy the conditions (A.4), (A.5) and (A.6) of theorem A.2 in
appendix A.

The I-process was assumed to be irreducible and non-instantaneous. For --y> 0,
each transition in the l-process is also possible in the --y-process, so the --y-process is also
irreducible. The total transition rate in the -y-process from each state is constant in
--y(or non-decreasing in --yif selfloops are ignored) and therefore the -y-process is also
non-instantaneous for all --yE (0,1]. As a consequence of assumption 3, the following
inequality holds:

EIIAb(n)11 < maxa(n,i) :S r o=, (2.42)
bEZ 19S1

for any Z ~ 7ls and n E INS.
That the balance equations (A.4) are satisfied can be shown as follows. Rearranging

equations (2.12) for n -1= 0, renders

uo(r, n)A(n) L uo(r,n-b) Ab(n - b)
bEZ<

+ L uo(r-rb,n-b) Ab(n - b)
bEZ~

+ L uo(r,n-b-) Ab(n - b-)
bEZ~

L uo(r - rb, n - b-) Ab(n - b-),
bEZ~

for r ~ ne. Multiplying both sides by --yT,summing over r ~ ne and changing the order
of the summations on the RHS renders

L --yTuo(r, n)A(n) L L --yT uo(r, n - b) Ab(n-b)
r~ne bEZ< T~ne

+ L --yTb L --yT uo(r,n-b) Ab(n-b)
bEZ~ r~ne-Tb

(2.43)+ L L --yT uo(r, n - b-) Ab(n-b-)
bEZ~ r2:ne

L --yTb L --yT uo(r, n - b-) Ab(n - b-).
bEZ~ r~ne-Tb
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Since uo( r, n) = 0 for all r < ne, this is equivalent to

qo(-y, n)A( n) z= qob, n - b) A.(n - b)
bEZ<

+ z= ,T. qo(-y, n - b) A.(n - b)
bEZ",

+ z= ( 1 - 1". ) qo(-y, n - b-) A.(n - b-).
bEZ",

This coincides with the balance equations of the ,-process (2.6) for the non-empty states.
The only operation in the derivation above that may not be allowed is the reversal of
the order of summation (just as in the reverse derivation that leads from (2.9) to (2.12)).
Changing the order of summations is justified when assumption 2 is satisfied, because
then the four individual terms on the RHS of (2.43) are all absolutely convergent for
, small enough (see theorem B.2 in appendix B). In the first term, the order of the
summations over rand b can be reversed because:

L: z= ,Tlluo(r, n - b)11 IIA.(n - b)11
bEZ< T2:ne

:::; z= z= ,T Clne+beC2C~ ro-:» l(n - b E INS)
bElls T2:ne-be

= 1~2~ z= (, c11C3G) (n-b)e l(n - b E INS)
"( 3 bEllS

=..2::J.E.... " ('VC-1C3G) ne
1-,,(03 Z:: I I

nENS

= 1~~~3 (1-,CIIC3Gfs ,

if 1,1 < Ci1 and 111 < C1 (C3GJ-l. The bound (2.38) was used and also inequality (2.42)
with Z = {b}. In the second term of (2.43) the order of summations can be reversed
because the summation over b has a finite number of terms. There is only a finite number
of upward transitions that can lead to state n:

# { bE Z2: In - b E INS} = (ne; S).

In the third term of (2.43) the order of summations can also be reversed. This will be
shown by conditioning on the value of b".



2.6. Extrapolation methods 49

if 1,1 < Cil and 1,1 < C1(C3Gtl. Here, inequality (2.42) was used with n replaced by
n - d (which is fixed) and with Z = { b E Z~ I b: = d }. That in the fourth term of
(2.43) the order of summations can be reversed can be shown in a similar way as for the
third term. A similar approach applied to equations (2.13) and (2.14) also leads to the
balance equations of all empty states, except state (0,1). This completes the part of the
proof that shows that condition (A.4) holds, with the omitted state denoted by k equal
to state (0,1).

That the normalization equation (A.5) is satisfied can be shown as follows. Rear-
ranging the normalization parts of equations (2.13) and (2.14) renders

L uo(r,n)e = l(r = 0),
O~ne~T

for r ~ o. Multiplying both sides by ,T, summing over r ~ 0 and changing the order of
the summations over rand n renders

L L ,Tuo(r,n)e = L qOiCr,n) = l.
nENs T~ne (n,i)Efl

Here, the order of summations can be reversed because again the power series are abso-
lutely convergent (see theorem B.2 in appendix B):

(2.44)

if 1,1 < c;' and ITI < CI C:i""I.
Finally, condition (A.6) is satisfied because

L IqoiCr,n)la(n, i) = L IlqoCr,n)lla(n, i)
(n,i)Efl nEINs

< L L f c=c.c; rc=
nEINs T~ne
...E2.L. '" (-vC-1 C G)ne
1-,,(03 L, J 1 3

nENs

1~;b3 ( 1 - ,C11C3G) -5 < 00,

if ITI < C:i""l and ITI < C1(C3Gtl. With this it has been shown that the ,-process and
the functions qOiCr, n) satisfy all conditions of theorem A.2 in appendix A, which finishes
the proof of theorem 2.3. 0

2.6 Extrapolation methods

Even if all assumptions of the previous section are satisfied, the PSA may still not work.
All that is guaranteed by the assumptions, is that the algorithm is well defined and that



50 Chapter 2. The PSA for steady-state analysis

the power-series converge for small enough values of ,. For larger " particularly at , = 1,
the power-series may converge very slowly or diverge, as was shown in examples 2.4 and
2.5. If convergence is slow, then many coefficients need to be calculated, leading to large
computation times and memory requirements, but also to round-off errors. In appendix C
some general extrapolation methods are described to improve the convergence of power
series. In this section it will be studied how these methods can be used to improve the
convergence of the power series produced by the PSA.

2.6.1 Bilinear mapping

In appendix C.1, it is shown how bilinear mappings can be used to enlarge the radius of
convergence of power series. There, the coefficients of the new power series are calculated
from the coefficients of the original power series. However, when applying the bilinear
mapping to the PSA, the new coefficients can also be calculated directly. This makes the
algorithm numerically more stable, because the mapping is such that the new coefficients
have a smaller growth rate than the original coefficients. Also, it reduces round-off errors.
The steady-state distribution will be considered not as a function of " but as a function
of 0, with

e = ~ 0 with 0 :S G:S H - 1. (2.45)
1 + G"/ ' "/ = H - GO'

This mapping maps the interval [0, Hal) onto itself. If "/ can be interpreted as a measure
of the load of the system and the system is stable for "/ E [0, "/"), then it is natural to
choose H = 1+G,,/". All interesting values of,,/ are then in the interval [0, Hal) = [0, "/").
If "/has no physical interpretation and one is interested in, = 1, numerical experiments
have shown that the choice H = 1 + 1.1G often yields satisfactory results. The choice of
G depends on the particular model. If the model is quite regular, then G can be small
(:S 2), otherwise it needs to be large. Unfortunately, the speed of convergence often
decreases with G (whereas the radius of convergence increases with G).

The use of the mapping will be illustrated by application to general l-dimensional Markov
processes without supplementary space. Generalization to multidimensional processes
with supplementary space is straightforward. Let B (:S 00) be the maximal size of
upward transitions:

Qb(n) = 0, for all b » Band n E IN.

In the ,,/-process, the upward transition rates Qb(n) are multiplied by l. The added
transitions are selfloops with total rate 'El=l (1 - ,b) Qb( n), for all n E IN. The balance
equations of the ,,/-process are

[J~nQb(n) + b~l ,,/bQb(n)] ph, n)
-1 B

= L Qb(n - b)pb, n - b) + L ,,/bQb(n - b)pb, n - b),
~-oo ~l
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for all n E IN. If the steady-state probabilities ph, n) are analytic in 'Y at 'Y = 0, then
the steady-state probabilities as functions of B are analytic in B at B = 0, also with
order n (see appendix C.l). Consequently, they can be represented by the power-series
expansion in B:

p(B,n)=p(H~GB,n) =~Bru(r,n), forallnEIN. (2.46)

Replacing 'Y in the balance equations renders

(2.47)

First assume that B is finite. Multiplying by (H - GB)B removes all fractions:

[J~n(H - GB)B Cl:b(n) + b~l Bb (H - GB)B-b Cl:b(n)] p(B, n)
-1 BL (H-GB) Cl:b(n-b) p(B,n-b)

b=-oo
B+ L Bb(H_GB)B-b Cl:b(n-b) p(B,n-b).

b=l
Applying Newton's binomial formula renders

[J~nJo (f)HB-k (-GB)k Cl:b(n) + bE :~: (B;:b)Bb HB-b-k (-GB)k Cl:b(n)] p(B, n)

E f (~)HB-k(_GB)k Cl:b(n-b) p(B,n-b)
b=-oo k=O

+ f Bib (B;:b)Bb HB-b-k (-GB)k Cl:b(n- b) p(B, n - b).
b=l k=O

Dividing by HB and substituting the power series expansions (2.46) and equating cor-
responding powers of B renders the recursion

Cl:b(n) u(r-k,n)

Cl:b(n) u(r-b-k,n) (2.48)

Cl:b(n-b) u(r - k, n - b)

Cl:b(n-b) u(r-b-k,n-b).

In particular cases these expressions can greatly simplify, especially for birth-death pro-
cesses.
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If the maximal size of the upward transitions B is infinite, then multiplying by
[H - GBlB in (2.47) is not possible. Instead, the following identity can be used:

Substitution in (2.47) also removes all fractions:

[J~nQ:b(n) + bEk~O (b~~ik)H-b-kGkBb+kQ:b(n)] p(B,n)
-1
L Q:b(n-b) p(B,n-b)

b=-oo
n

+ Lb=l

Equating corresponding powers of () now renders

[J~nQ:b(n)] u(r, n) =
rf r-tn (b- ~+k) H-b-k Gk
b=l k=O b 1
-1

Lb=-r+n
n
Lb=l

u(r-b-k,n)

+

Q:b(n-b) u(r,n-b)

Q:b(n-b) u(r-b-k,n-b).

+

This recursion can also be used if B is finite. It renders the same coefficients as recursion
(2.48), but requires slightly more calculations.

2.6.2 Value and pole extrapolation

The extrapolation of values and poles as described in appendix C.2 depends very much
on the application. In many queueing models on an infinite state space, an upper bound
/* exists such that the system is stable for 'Y E [O,'Y*). See, for instance, example 2.3
with /* = /1. In that case the steady-state probabilities will all have value zero at
/ = /*. Also, it is not unusual that the k-th moment of the queue length has a k-th
order pole at / = 'Y*.See, for instance, the Pollaczek-Khintchine formula for the M/G/1
queue. The residue of this pole can either be obtained from heavy-traffic analysis or be
estimated in the way suggested in appendix C.2. If the mapping is applied first, with
the recommended choice H = 1 + G'Y*, then the zeros and poles at 'Y= /* will remain
there. Especially the pole extrapolation is very effective in improving the accuracy of
the results obtained by the PSA.
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2.6.3 The epsilon, theta and Levin algorithms

Extrapolation methods, as described in appendix C.3, are often very effective in Im-
proving the convergence speed of the power series produced by the PSA. Experience has
shown that the epsilon algorithm is usually more effective than the others. This would
be in accordance with the observation in [128] that the epsilon algorithm is preferable
unless the series is alternating or logarithmically convergent, which is rarely the case.
Usually, the series have irregular sign patterns and linear convergence. However, since
the structure of the power series produced by the PSA· is not known in advance, it is
advisable to use several algorithms. A satisfactory choice is to use the epsilon and theta
algorithms and Levin's u-transform. Also, the relative variation criterion to choose be-
tween the algorithms works well (see (C.14) with", = 5), applied to all even columns of
the epsilon and theta algorithms and the subsequent estimates of Levin's u-transform.
This is the procedure that was used for the network examples in section 2.8.4.

The procedure described above can be used routinely, but not as a black box.
Studying the original power series and the different extrapolated series provides valuable
information about the reliability of the results. If possible, the results should be vali-
dated, using known characteristics like for example the probability of an empty system,
marginal distributions or conservation laws.

If applicable, first the mapping and value or pole extrapolation should be applied.
The new series thus obtained can be analyzed by the epsilon, theta and Levin algorithms.
In theory, the main diagonal of the epsilon algorithm is invariant under the mapping.
That is, if fb) = g(8) with "( and 8 related by (2.45), then [LIL]fb) = [LIL]g(8) (for
definitions, see appendix C.3). However, usually the growth rate of the mapped sequence
is smaller, so applying the mapping will still be useful to make the PSA numerically more
stable. Also, the main diagonal does not always contain the better approximants. In
the M IM [m model, for example, the structure of the steady-state probabilities with less
than m customers is different from the structure of those with more than m customers.
Therefore, the [L + rm/211 L - rm/21] Pade approximant of the mean queue length will
be better than the [LI L] approximant because the first m partial sums are not used. And
since the non-diagonal approximants are calculated anyway, one might as well consider
all columns of the epsilon table.

2.7 What if ...
In this section, it will be studied what happens if the assumptions of the PSA are not
satisfied. First, the assumptions of section 2.1 will be considered, namely the assumptions
that n = INS x {I, ... , I} and that the original process is irreducible, non-instantaneous
and ergodic. Next, it will be considered what happens if assumption 0 in section 2.3 is
not satisfied, that is if the O-process has several recurrent classes. Finally, assumptions 1,
2 and 3 from section 2.5 will be studied. The problems that arise when the assumptions
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are not satisfied will be discussed and possible remedies will be illustrated by small size
Markov processes. Unless stated otherwise, only one assumption at a time is assumed
to be not satisfied. In the figures illustrating the examples, the process on the left is the
original process, and the process on the right is the "'(-process. All transitions without
indication of the transition rate have rate equal to 1.

2.7.1 What if the state space is incomplete?

What if n is not equal to INs x {I, ... , I}, so nc == INs x {I, ... , I}\n is non-empty?
This usually does not cause any real problems. All steady-state probabilities in nc are
zero, and so are the coefficients of the power-series expansions. In the example in the
introduction of this chapter 2, the state space n = {I, 2} was only a small part of IN and
all states in nc could simply be ignored.

However, problems may arise when the added transitions make jumps to states in
nc. For example, consider the process on n = {(O,0), (1, 1), (2, O)} in figure 2.4. In the

.~.
Figure 2.4

original process, the state (1,0) could not be reached, so no departure rate was defined.
In the ",(-process, this state can be reached and it is absorbing. Therefore, assumption °
is not satisfied and the PSA can not be applied in this form. However, it is not difficult to

"'(2/~"'(
/ l-"'(~

'~------' . *"=:::::::_----- .
Figure 2.5

find a remedy for this problem. Add state (0,1) to the state space n and add a transition
to the original process from state (1,0) to state (0,0) with rate 1, like in figure 2.5. This
new process has the same steady-state distribution as the original process and it can
be analyzed with the PSA since assumption 0 is satisfied. This remedy can be used in
general: from all states in f}' that can be reached in the ",(-process, add a transition to a
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state in 51. These new transitions should be non-positive, otherwise the O-process will not
be irreducible so assumption 0 will be violated. For numerical stability, the transition
rates of the new transitions should be of the same order of magnitude as other rates of
the Markov process.

Sometimes, it may even be an advantage when the state space is not equal to
INs x {I, ... , I}, namely when the state space is finite. In that case, the steady-state
probabilities are rational functions of , (see section 2.4). For rational functions it is
known that the epsilon algorithm needs only a finite number of coefficients to obtain the
correct value. The finiteness can also give the opportunity to use the PSA for heavy-

Figure 2.6

traffic analysis. As a simple example, consider the M/M/I/3 queue. Figure 2.6 is the
standard light-traffic approach. Because the number of states is finite, the order of the
states can be reversed. Then, each downward transition is multiplied by" instead of
each upward transition (see figure 2.7). Now, small, correspond to low service capacity,
so the approach is a heavy-traffic approach.

Figure 2.7

2.7.2 What if the original process is reducible?

There are different types of reducibility. The harmless type is when the state space
of the original process consists of a recurrent class and transient states that eventually
lead to this recurrent class. Then the steady-state distribution of the original process
is well defined and all transient states have steady-state probability zero. Examples are
the process in figure 2.7 in the previous section and the process on 51 = {O,1, 2} in
figure 2.8 below. The transient states of the original process can still be transient in
the ,-process for all, E [0,1], like state 2 of the process in figure 2.8. The coefficients
of the power-series expansions of the steady-state probabilities of such transient states
are all zero. On the other hand, the transient states of the original process may also
be recurrent in the ,-process, like state (1,0) in the process of figure 2.7. Then, for
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.~ ...---
Figure 2.8

such a transient state, the coefficients are non-zero but the power-series expansion of the
steady-state probability evaluated at , = 1 is equal to zero. In either case, the problem
is well defined and the PSA will work as long as assumption 0 is satisfied.

Another type of reducibility is when the original process has transient states that
do not eventually lead to a recurrent class, like the process on IN in figure 2.9. From

._e _e_ e---- .L.L.L. _..-

Figure 2.9

each state n E IN, the only possible transition is to state n + 1. Now, the PSA will not
work because in the O-process each state is absorbing. Therefore, assumption 0 is not
satisfied. This is not surprising, since the original process is not ergodic. No solution
procedure can be blamed for not being able to solve an ill-defined problem.

The final type of reducibility is when the original process has more than one re-
current class and the process will eventually reach one of the classes. Again, this is not
really a problem since the problem of finding the steady-state distribution is ill defined.
Usually, the -y-process will also have several recurrent classes, so assumption 0 will not
be satisfied and the PSA will not work. In some cases, the extra downward transitions
of the -y-procees will make it irreducible. Consider the process on n = {n E IN2

1 ne ::;3}
in figure 2.10 below. In the original process, all states n E n with ne ::;2 are transient,

.
~. .

1 r

jt?-.~
._.--

Figure 2.10

and the process will eventually end up in either the recurrent class {(O,3), (1, 2)} or the
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recurrent class {(2, 1), (3,0)}. The long-run distribution depends on the initial distribu-
tion, so the steady-state distribution is ill defined. In the )'-process, the states in the two
previously recurrent classes have new transitions back to the previously transient states
and all states form a single recurrent class. Assumption 0 is satisfied, so the power-series
expansions of the steady-state probabilities of the )'-process can be calculated and evalu-
ated at)' = 1. This renders the distribution with probability mass ~ in each of the states
(0,3), (1,2), (2,1) and (3,0). This is the correct steady-state distribution if the original
process started in one of the transient states, or if it started in either of the recurrent
classes with probability ~. So, even though the original problem is ill defined, the PSA
does come up with a solution and this solution corresponds to a particular choice of the
initial distribution of the process. Of course this example is contrived, but it does show
that a successful application of the PSA does not necessarily imply that the original
problem was well defined.

2.7.3 What if the original process has instantaneous states?

Instantaneous states are states with infinite total transition rate. This can be either
because individual transition rates are infinite or because the total transition rate is a
divergent sum of finite individual transition rates. In either case, solving the sets of
recursive equations in (2.12), (2.13) and (2.14) will generally cause problems.

When in each state at most a finite number of individual transition rates is infinite,
the instantaneous states can often be removed from the state space. Usually, probabilities
can then be specified such that the instantaneous state (m, k) leads to state (m + b, j)
with probability 7rbj(m,k). Then the instantaneous state can be removed by changing
the transition rates of the other states:

I (.) (.) (.)7rn+b-m,j(m, k)abj n, z = abj n, z + am-n,k n, z (k) ,
1-7rokm,

(2.49)

for all (n, i) E 0\ {(m, k)}. Instead of via the instantaneous state, the process Imme-
diately makes a transition to the new state. The new rate is the direct transition rate
plus the rate of the transition via the instantaneous state. For the removal of several
instantaneous states, possibly with cycles, see [65] or also [63,39].

When all individual transition rates are finite but their sum is infinite, removing the
instantaneous states will not be possible because the distribution tt can not be specified.
However, because all individual transition rates are finite, the only possible problems
in solving the recursive equations of the PSA caused by instantaneous states can come
from the infinity of B(.) = .4(.) - L:bENs Ab(.). If these matrices are all finite, then the
power-series expansions can be calculated without any problems. This is always true in
the one-dimensional case (5 = 1). In the multidimensional case without supplementary
space (5 > 1, I = 1) it is equivalent to the condition that for each state the sum of all
the rates of transitions b rf- INS is finite. Still, even if all matrices B(.) are indeed finite,
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this only guarantees that all calculations can be carried out and all coefficients are finite.
Convergence of the obtained power series is likely to give problems.

2.7.4 What if the original process is not ergodic?

If the original process is not ergodic but assumptions 0, 1, 2, and 3 are satisfied, then
the power-series expansions of the steady-state probabilities as a function of I are well-
defined analytic functions for small I. The question is what happens if these power series
are evaluated at I = 1.

---. . .----
Figure 2.11

Consider the M/ M/1 queue with arrival rate). and service rate J.I. All assumptions
are satisfied here, except that the original process is ergodic only if ). < J.I. The steady-
state probabilities of the I-process and the first two moments are equal to

p(r,n)
E-y{ N}

E-y{N2}

(1 - I~) (,~r,for all n 2:: 0,

(1 - I~) Ln~o n (r~r I~ (1 - I~rl ,

(1-,~) Ln~on2 (,~r (,~)(1+I~) (1-,~r2
The power-series expansions of the steady-state probabilities are finite polynomials, so
they converge at I = 1. The power-series expansions of both moments converge at I = 1
only if the original process is ergodic. However, with the techniques from appendix C,
they can easily be made to converge at I = 1, even if the original process is not ergodic.
In the non-ergodic case, the power-series expansions of the steady-state probabilities
evaluated at I = 1 render negative values. Also the first moment renders a negative
value, but the second moment is always positive.

The M/M /1 queue is typical for the general case. If the process is not ergodic, the
power-series can not converge to a distribution. By construction, if they converge then
they satisfy the balance equations and sum up to 1. Therefore, they must either diverge
or converge to values that are not non-negative. If only particular performance measures
are computed this convergence to incorrect values may not be noticed, like the second
moment in the M/M /1 case. So, carefulness is in order.

2.7.5 What if assumption 0 is not satisfied?

If the original process is irreducible, then so are the -y-prccesses for I E (0,1), since all
original transitions can still be made (but with different rates). Therefore, if the 1-process
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is ergodic for, E (0,1), then the steady-state distribution is uniquely determined by the
balance and normalization equations. However, in the O-process all upward transitions
vanish. As a result of this, assumption ° may not be satisfied since the G-process may
have several recurrent classes. Then the steady-state distribution is no longer uniquely
determined by the balance and normalization equations. Since the PSA is based on the
information of the ,-process at , = 0, it will not be applicable if the problem at , = ° is
ill behaved. Nevertheless, the algorithm can often be applied after some modifications.
Four methods will be discussed in this section. The first approach removes states from
the original process. The second approach removes coefficients from the recurrence re-
lations. The third derives extra information from a continuity assumption, but is not
generally applicable. The fourth approach changes the transformation. Which method
is best suited depends on the particular application.

The first two approaches are illustrated by the same small-size example. Both approaches
can be used in many cases, but how easily they can be applied depends on the particular
model. Consider the Markov process in figure 2.12. For the original process, the balance

Figure 2.12: A troublesome process

equations of the non-empty states and the normalization equation are

p(I,O) = prO, 0), p(l, 1) = p(l, 0), pro, 1) = p(l, 1),
pro, 0) + p(l, 0) + p(l, 1) + pro, 1) = 1.

Standard application of the PSA multiplies the arrival rates from state (0,0) to state(I,O)
and from (1,0) to (1,1) by v. For the ,-process, the balance and normalization equations
are

,p(r, 1, 0) = ,p(r, 0, 0), p(r, 1, 1) = ,p(r, 1, 0), p(" 0,1) = p(r, 1, 1),
p(r, 0, 0) + p(r, 1,0) + p(r, 1, 1) + p(r, 0, 1) = 1.

The recurrence relations for the power-series expansions of the steady-state probabilities
of the original model are therefore

u(r, 1, 0) = u(r, 0, 0), u(r, 1, 1) = u(r - 1,1,0), u(r,O, 1) = u(r, 1, 1),
u(r,O,O)+u(r,I,O) +u(r,l,l) +u(r,O,I) = l(r =0),
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for r ~ 0, with u( -1,1,0) = 0. The usual order of calculation is for increasing values
of r and decreasing values of nl + n2. This is not possible here: to calculate coefficient
u(r, 1,0), coefficient u(r,O,O) is needed, but this coefficient has not yet been calculated.
The coefficients u(r, 0, 0) and u(r, 1, 0) need to be calculated simultaneously by solving
a small set of equations. Assumption ° is not satisfied: for I = 0, both state (0,0) and
state (1,0) are absorbing. Also, the order property (2.7) is not satisfied.

The first approach to solve this problem changes the original problem, such that the
new problem can be analyzed with the PSA. The problem is caused by state (1,0), so the
obvious cure is to remove this state from the process. Substituting the balance equation
p( 1,0) = p(O,O) and choosing a different normalization renders the new untransforrned
process in figure 2.13.

/
Figure 2.13: The process with state (1,0) removed

The balance and normalization equations are

p(l, 1) = ]3(1,0), ]3(0,1) = ]3(1,1),
p(O, 0) + ]3(1,1) + ]3(0,1) = 1.

The only recurrent state of the (l-process of this new Markov process is state (0,0), so
the PSA can be applied to find ]3b, 0, 0) = 1+;,,2 and ]3b, 1,1) = pb, 0,1) = d;,,2'
Evaluated at I = 1, this renders the distribution with probability mass ~ in all three
states. The solution to the original problem can then be found by finding the probability
of the removed states, which will in general require solving a set of equations, and
renormalizing:

(0 0) - -.i1Q& (1 0) - -.i1Q&p, - It0(O'j)' p, - 1+,,(0,0)'
_ -1,1 _~

p(l, 1) - 1+,,(0,0)' p(O, 1) - 1+,,(0,0)'

This finally renders the distribution with probability mass ~ in all four states.
The second approach is essentially very similar to the previous one. The first

approach removes the states that cause problems from the balance equations. The
second approach removes the coefficients of these states from the recurrence relations.
The coefficients of state (1,0) can be removed by substituting u(r, 1,0) = u(r, 0, 0):

u(r, 1,1) = u(r - 1,0,0), u(r,O, 1) = u(r, 1, 1),
2 u(r,O,O) + u(r, 1, 1) + u(r,O, 1) = l(r = 0),
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for r 2: 0, with u( -1,0,0) = O. Now, the coefficients can be calculated recursively in
the usual order, followed by the calculation of the coefficient of state (1,0). This renders
p(-r, 0, 0) = 2:2,,/' p(-r, 1, 1) = p(-r, 0,1) = m:r and p(-r, 1,0) = 2:2,,/' Evaluated at I = 1,
this renders the distribution with probability mass ~ in all four states. The advantage
of this approach over the first is that the original process is not altered and no renor-
malization is needed. For a more extensive discussion of this approach, see [28]. There,
it is applied to polling models in which the cyclic server is allowed to rest at the queues
when the system is empty.

The third approach is not generally applicable. When it is applicable, it will usually
be preferred over the other approaches. For I > 0 the process is irreducible, because
the original process is irreducible. For I = 0, all upward transitions vanish, which can
lead to violation of assumption O. When there are indeed several recurrent classes, the
solution of the balance equations is no longer unique. Often, the distribution p(O,.) ==
lifllrylop( I, .) will be one of the distributions that satisfy the balance equations. How can
this distribution be obtained? Sometimes, it is possible to find extra equations that are
true for I > 0, but not necessarily for I = O. The third approach is to require that the
extra equations are also true for I = 0, hoping that this reduces the number of solutions
to 1. If so, then this unique steady-state distribution at I = 0 is the solution that makes
the steady-state probabilities right-continuous at I = O.

As an example, consider the M / HJ /1 model. At a queue, customers arrive and are
served by a single server. The interarrival time has an exponential distribution with rate
).. The service-time distribution is hyper-exponential: with probability rrj it has rate !-tj,
for all 1 ~ j ~ J. Let M be the diagonal matrix with the service rates on the diagonal
and rr the row vector of initial probabilities. Then the mean service time is equal to
!-t-1 = «Mr?«. The service phase is chosen right after the departure of the preceding
customer. In the -y-process, the arrival rate is multiplied by I' The I-process is ergodic
for I in the interval (0,).-1!-t) and the balance and normalization equations are

p(-r,n) b). + M1(n > 0)] = p(-r,n -lh). + p(-r,n + l)Merr, for all n 2: 0,
00

L: p(-r,n)e = 1,
n=O

with p(-r, -1) == O. Replacing the probabilities by their power-series expansions and
equating corresponding powers of I renders

u(r,n)M
u(r,O)e

-u(r-1,n)).+u(r-1,n-1)).+u(r,n+l)Merr, for all r 2:n 2: 1,

l(r = 0) - t u(r,n)e, for all r 2: 0,
n=l

(2.50)
with u( r, n) = 0 if n = -lor r < n. Unless J = 1, assumption 0 is not satisfied because
all empty states are absorbing if I = O. Therefore, the coefficients for the empty states
can not be calculated by the above equations (2.50). The balance equations provide no
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useful information and the normalization equation only determines their sum. However,
extra equations can be obtained here. If I > 0 and the system is empty, then the service
phase is equal to j with probability 7rj. Therefore:

p{t,O) = p{t,O)e7r, ih> O. (2.51 )

If I = 0, the process is reducible and the steady-state distribution is ill-defined. Nev-
ertheless, suppose that (2.51) is also true for I = O. Substituting the power-series
expansions in (2.51) and equating coefficients of corresponding powers of I renders the
additional equations

u(r,O) = u(r,O)e7r, for all r? o.
Together with the second equation in (2.50), this extra information allows for the re-
cursive calculation of all the empty coefficients. More extensive examples are given in
the network model of section 2.8 and the papers [74,75]. Other sources of additional
equations can be independence or symmetry properties of the model or for example con-
servation laws.

The fourth approach is to use a different transformation. According to assumption 0,
problems arise when the O-process has several recurrent classes. The solution to the
problem could be to use a different transformation such that assumption 0 is satisfied.
One way to accomplish this is to prevent that certain transitions vanish at I = O. For
example, the problems with the process in figure 2.12 are caused by the fact that the
transition from state (1,0) to state (1,1) vanishes when I = O. This can be avoided
by not transforming this transition and keeping the transition rate equal to 1 in the 1-
process. Another way to satisfy assumption 0 is to add more transitions to the I-process
such that the O-process has only one recurrent class consisting of all empty states. For
instance, this can be done by adding the following transitions to the I-process:

(n, i) ---7 ( [ n - eT ]+, i )
(o,i) ---7 (o,i mod J + 1)

with rate 5(1 - I),
with rate 5(1 -I),

for all 1 ::; i ::;J and n i- 0,

for all 1 ::; i ::;J,
(2.52)

for some fixed 5 > O. The vector x+ denotes the element-wise maximum of the zero
vector 0 and x (see section 1.4). This way, all non-empty states have a transition to a
state with less customers, so for I = 0 the non-empty states can not be recurrent. For
the empty states, a set of cyclic transitions is added so that all the empty states form one
recurrent class. The I-process with I = 1 is still equal to the original process. Setting
up the balance equations and the recurrence relations for the coefficients of the power-
series expansions shows that indeed for this extended transformation all coefficients can
be calculated recursively with an algorithm similar to the algorithm described before.
With the extra transitions suggested in (2.52), assumption 0 is satisfied for any Markov
process. However, it may not be the most efficient way to add transitions. For specific
models, other ways may yield power series with better convergence properties.
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In the example below, a number of different ways to add transitions is compared.
The different transformations are tested on a multiprocessor model with breakdowns
and repairs. Let S be the number of available servers (processors) and C the number
of customers (jobs). Servers arrive at rate 77. Each server departs at rate ~, the total
departure rate is S~ and the number of available servers behaves like an M/M /00 queue.
Customers arrive at rate A. They are served by the available servers at rate fl, so the
departure rate is fl min {C, S}. The mean number of available servers is Z and the system
is stable if A < flZ. This model was analyzed by Ettl and Mitrani [53] using the spectral
expansion method. This method compares favourably with the PSA because it is less
sensitive to extreme parameter values, more specifically larger numbers of customers
served per server. A disadvantage of the method is that it can only be applied to one-
dimensional problems, so the state space needs to be truncated by limiting the number
of servers.

In the transformed process of the PSA, the arrival rates of both servers and cus-
tomers is multiplied by f. Since both the number of servers and the number of customers
increase linearly with 'Y, the transformed process is ergodic for all 'Y> 0, provided the
original system is ergodic. The balance equations of this birth-death process are

b77 + ~s + 'YA + fl mini s, e}] p( s, e)
'Y77 p(s - 1, e) + ((s + 1)

+ 'YA p(s,e-1) + flmin{s,e+1}
p(s + 1, e)
p(s, e + 1),

for all (s,e) E IN2
. The parameter values 77 = ~ = A = 1 and fl = 2 were chosen. On

average, a server serves only a single customer. All states with no servers are absorbing
if'Y = 0, so assumption ° is not satisfied. The following ways to add transitions will be
compared:

transformation 1:
transformation 2:
transformation 3:
transformation 4:

transition
(s,e) ---+ (s -I,e -1)+,
(s, e) ---+ (s, e - 1),
(s, e) ---+ (s, e - 1),
(s,e) ---+ (s,e -1),

at rate
8(I-'Y),
8(1 - 'Y),
8(1 - 'Y),
8(1 - 'Y)2,

from states
s ~ 0, e ~ 0,
s~o, e~l,
s=O, e~I,
s ~ 0, e ~ 1,

all with the same value of 8. The first transformation is as suggested in the general
approach (2.52). The process is no longer a birth-death process. In the interior of the
state space the new transitions are of the same kind, but not on the boundary. For
example, state (s,O) can be entered by an extra transition not only from (s+l,l) but also
from (s+l,O). In the second transformation, only the number of customers is decreased.
The third one decreases only the number of customers when there are no servers, so only
the states that violate assumption ° are altered. In these first three transformations,
the transition rate becomes negative for 'Y > 1. The fourth transformation may be
better, because this system is well-defined for all 'Y ~ 0. Setting up the new balance
equations, substituting the power-series expansions and equating corresponding powers
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of { renders recursive algorithms. The obtained power series for the probability that
there are no customers in the queue are evaluated at truncation levels 5, 10, 20, 40, 60,
80 and 100. These power series do not converge at { = 1, but they do after application of
the procedure as described in section 2.6.3. The results were validated by calculating the
marginal distribution of the number of servers, which should be a Poisson distribution
with mean t-

5 10 20 40 60 80
Transformation 1 0.80508 0.37926 0.28239 0.28968 0.28943 0.28942
Transformation 2 1.11703 1.11336 0.28895 0.28945 0.28942 0.28942
Transformation 3 1.15225 0.22784 0.28992 0.28908 0.28942 0.28943
Transformation 4 5.14300 0.52296 -46651.7 0.25399 0.25244 0.28924

Table 2.2: The four transformations, all with 5 = 1.

All approaches converge to the answer 0.28942, the second transformation faster than
the others. This indicates that the extra transitions should be added in such a way that
the distortion is as evenly as possible (transformation 1 versus 2) and that changing the
process evenly is more important than making less alterations (transformation 2 versus
3). This is probably because the epsilon algorithm can remove the influence of the extra
transitions better if the transformation is more evenly. Transformation 4 requires more
calculations and yields power series that are more irregular. Next, the value of 5 will be
varied for the second transformation.

5 10 20 40 60 80
5 = 0.25 32.14995 -0.205918 -1.313Ell 0.363251 0.290917 0.289349
5=1 1.117034 1.113363 0.288949 0.289448 0.289424 0.289424
5=4 0.276481 0.201189 0.278093 0.289260 0.289424 0.289424
5 = 16 0.734703 0.547376 0.311964 0.291300 0.292388 0.288278

Table 2.3: Transformation 2, for different values of 5.

The results show that the precise value of Ii is not very important, but it should be in
the order of magnitude of the other transition rates.

2.7.6 What if assumptions 1, 2 or 3 are not satisfied?

Assumptions 1, 2 and 3 are sufficient conditions for convergence. Contrary to assump-
tion 0, if they are not satisfied the PSA can still be applied. In that case, there is
no guarantee that the obtained power series converge. Example 2.6 shows that if as-
sumption 1 is not satisfied, the {-process can indeed be ill behaved, even for small {.
Assumptions 2 and 3 are very weak. If they are not satisfied, then usually the original
process and the PSA are either both ill behaved or both well behaved. Example 2.7 is an
example where assumption 2 is not satisfied and both are ill behaved. In example 2.8,
assumption 3 is not satisfied but both are well behaved.
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Example 2.6 Consider the Markov process on IN2 illustrated in figure 2.14. When
no rate is indicated, the rate equals 1. This process always ends in the finite cycle
(0,0) --+ (3,1) --+ (2,0) --+ (1,1) --+ (0,0), so the steady-state distribution exists. The
transition-diagram of the corresponding ,-process (without the selfloops) is given in
figure 2.15. For, = 0, the process will always end up in the origin, so assumption 0 is
satisfied. Assumption 1 is satisfied if SUPk Ak < 00 (eo(2k + 2, 0) = 2+ Ak, for k ~ 1). No
moments will be considered, so assumption 2 does not apply. Assumption 3 is satisfied
if Ak grows at most exponentially in k.

When the ,-process is in a state (2k,0), with k ~ 1, then in two steps it will go
either up to state (2k + 2,0) or down to state (2k - 2,0). The probability of going up
is equal to '7rk(/') = (1 - ,) Ak/'3(1 + An3)-I, which is the probability of going first to
state (2k - 1,0) and then to state (2k + 2,0).

/~/~/~/~/(0,0) • _ • • -+-- • • _ . . _ . . _

Figure 2.14: The original process

First, consider the case Ak == A < 2048/27. Then, going down is more likely than
going up: '7rk(l) < ~, for all k ~ 1 and, in [0,1]. Therefore, the ,-process is ergodic for
all, in [0,1]. Applying the PSA will give no problems.

Next, take Ak == A ~ 2048/27. Then the equation '7rk(/') = ~ has solutions ,1
and ,2 with 0 < ,1::; i ::;,2 < ~. The ,-process is ergodic for, E [0,'1) U (/'2,1],
null-recurrent for, E {,l"d and transient for, E (/'1, '2)' Therefore, the ,-process is
ergodic at , = 1 (as was assumed in section 2.1) and in a neighbourhood of, = 0 (as
was proved in theorem 2.3 ), but it is not ergodic for all values of, in between. Applying
the PSA will render functions that will be negative on , E (11, '2), but the techniques
in appendix C can be used to obtain convergence at "t = 1.

Finally, take Ak = k, for k ~ 1. Then lim '7rk(/') = 1-, >~, for all, in (0, ~). On
k~oo

the other hand, '7rk(l) < 1 -, ::; ~, for all k ~ 1 and, in [~, 1]. Therefore, the ,-process
is ergodic for, E {OJ U [~, 1] and transient for, E (O,~) . That the ,-process is not
ergodic in a neighbourhood of , = 0 is not in contradiction with theorem 2.2, because
assumption 1 is not satisfied. Application of the PSA will not be successful here.

In this example, the transient behaviour of the ,-process can be avoided by not
considering the original process as a process on IN2 but as a process on IN x {O, I}. On
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Figure 2.15: The transformed process on IN2

IN2
, the transition (2k,0) -+ (2k -1,1) is an upward transition and hence redirected

to the transition (2k,0) -+ (2k - 1,0). From the state (2k - 1,0), the process has a
high probability to go up to state (2k + 2, 0). This way, replacing upward transitions by
downward transitions results in more visits to states from which large upward transitions
are likely. Considered as a process on IN x {O,I}, the transition (2k,0) -+ (2k -1,1) is
downward instead of upward, and is therefore not redirected. 0

/~/~/~/~/(0,0) • _ . • _ • • _ • • _ • • _

Figure 2.16: The transformed process on IN x {O,I}

Example 2.7 Moments of functions that grow faster than geometric in the queue-length
will usually be infinite even for small" because the queue-length distribution often has
geometric tails. Consider again the M/M /1 queue from section 2.7.4. The function
f(n) = n! grows faster than exponentially in n, so it does not satisfy assumption 2. The
expectation for the original process is infinite. By the Cauchy-Hadamard theorem B.3,
the radius of convergence of the expansion

e, {N! } = (1 - ,~) L n! (,~) n
f1 n~O f1

is equal to

[ I (
A)nI1/n] -1 -1

lim sup n! - = i: [limsup(n!)l/n] =!!:. [ 00 r1 = 0.
n-e co f1 A n-c-oo A
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Therefore, the expectation is not analytic in " not even for small v, o

Example 2.8 Consider the birth-death process on n = IN in figure 2.17. From state
n E n, the upward transition rate is equal to 1 and the downward transition rate is equal
to n!. Assumption 3 is not satisfied here. Still, the ,-process is ergodic for any, > O.

, I I.--... .--... .--... ----- ...---.. ...---.. ...---.. -----~ ~ ----- .----- .
------ ~ ----- ------1! 2! 3! I! 2! 3!

Figure 2.17

The faster than exponential growth of the transition rates is no problem because the
upward rates are finite. The PSA can be applied without any problem. 0

2.8 Networks of queues

To illustrate the generality of the PSA it will be applied to a very wide class of network
models. Networks of queues are usually difficult to analyze, both analytically and nu-
merically. Except for product-form networks and some special two-queue models, very
few results are available. The class of models that will be introduced in this section is too
general for analysis by other methods and the arrival and service processes that are used
have not been introduced before. The arrival process will be a Multi-queue Markovian
Arrival Process (M MAP), which is a multi-queue generalization of the Batch Markovian
Arrival Process (BMAP) introduced by Lucantoni [102]. On top of the ability of the
B M AP to model dependencies between inter arrival times and batch sizes, the M M AP
can also model all kinds of dependencies between arrivals at the different queues, like
fork and round-robin arrivals. At each queue the service process is a Markovian Service
Process (M SP). It includes for example set-up times, sequences of phase-type distribu-
tions and multi-server queues. The routing of customers is Markovian, which includes a
large variety of network structures.

Because of the 'curse of dimensionality', the number of queues in the networks
must necessarily be moderate. Networks of up to 4 or 5 queues can be analyzed if
the algorithm is programmed carefully, extrapolation methods are employed and the
parameters of the model are not too extreme. With a good user interface to determine
the parameters for a particular model, the PSA provides a means to easily evaluate
many different models. The wide range of models that can be analyzed makes the PSA
a valuable aid for studying the interaction between queues and for developing and testing
approximations of performance measures and heuristics.
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2.8.1 The network process

The number of queues in the network will be denoted by S. Each queue has an unbounded
capacity. Finite buffers could be handled, but would require specifying the blocking
process.

In the examples described below, a phase-type distribution has generator T, initial
distribution 0: and TO == -Te (conform Neuts [113], but without probability mass at
zero). Such a phase-type distribution has probability distribution F( x) = 1-0: exp(Tx)e
and density function F'(x) = o:exp(Tx)TO, for x 2: o. The k-th non-central moment is
equal to (_1)k k! ( o:T-k e). The class of phase-type distributions includes the Erlang and
hyper-exponential distributions as well as finite mixtures of these.

Multi-queue Markovian Arrival Process

The arrival process is a Multi-queue Markovian Arrival Process. This very general arrival
process can model all kinds of interactions between the arrivals at the different queues.
It is far more general than the models usually considered in the literature and renders
intractable results for other methods. It has an underlying irreducible Markov process
with Jo states. In this underlying process, a transition j --; h is made with rate O:jh
(1 :S j,h:S Jo < 00). The S-dimensional vectors b1,· .. ,bM are the possible batch
arrivals, with bm E INs\ {o} for all 1 :S m :S M :S 00 and bo == o. A transition j --; h in
the underlying process causes an arrival of batch b.; with probability qmjh.

A == [O:jh], A == diag(Ae),
o; == [qmjh], L~=oo: = eeT

,

Am == A 0 Qm = [O:jhqmjh], L~=o Am = A.

The pure M M AP {(Nt, 3t), t 2: O} on state space INS x {1, ... , Jo} is identical to the
EM AP if 5 = 1 and b.; = m (0 :S m :S 00). It then has generator

(

Ao - Ii AJ _ A2 )
o Ao - A AJ .QMMAP _ _

- 0 0 Ao-A ....
· ..· . .· . .

Like in a pure birth process, only upward transitions are possible. Lucantoni [102] lists
a number of special cases of the EM AP, like the Poisson process, Markov-modulated
Poisson processes, PH-renewal processes and processes with correlated batch arrivals.

If each queue has an independent EM AP, this can be modeled as an M M AP for
the network. Other special cases of M MAPs are:
1) Independent Poisson arrivals with rate As at queue s:

_ S
Jo = 1, Ao - A = - LAs>

$=1
bs = es, As = As> for all 1 :S s :S 5 = M.
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2) Round-robin arrivals, an arrival at queue s is followed by an arrival at queue s + 1
with the interarrival time exponentially distributed with rate As:

Jo = S, Ao - A = -diag(A),
b, = e., As = Asese;+I' for all 1 ::; s ::; S = M.

3) Fork arrivals, simultaneous arrivals at each queue with independent phase-type inter-
arrival times (with f phases):

Jo = t, Ao - A = T,
b1 = e, Al = TOa:, M = l.

Markovian Service Process

The service processes at all queues are independent Markovian Service Processes. Like
the M M AP, the M S P is more general than the service processes usually considered
in the literature. An M S P has an underlying Markov process with J states and the
transition rates are allowed to depend on the number of customers n at that queue.
A transition j --+ h is made with rate f3jh(n) and such a transition causes a service
completion of t customers with probability rljh(n) (1::; j,h::; J < 00; 0::; f::; n::; (0).
Which f customers leave the queue will not be specified because it is not essential for
the queue-length process (but it is for the waiting times).

E(n) ~ [f3jh(n)],
Rl(n) ~ [rljh(n)],
Et(n) ~ E(n) 8 Rt(n) = [f3jh(n)rtjh(n)],

E(n) == diag(E(n)e),
Ll=O Rt(n) = eeT,
Ll=O Ee(n) = E(n).

A pure MSP {(Nt, .:7t), t 2: O}on state space IN x {I, ... , J} has generator

., 'j...

Like in a pure death process, only downward transitions are possible. A number of
assumptions will be made about this service process. First, it is assumed that all non-
empty states are transient, so from any initial state the empty states will eventually be
reached. Furthermore, it is assumed that when the M SP reaches the empty states, it
enters state (0, j) with known probability </>j, where it remains. For this it is sufficient
(but not necessary) that

E(O) = 0, Ei(f) = Ee(f)e</>, for all e 2: 1.

For a queue, this implies that the M SP is idle if and only if the queue is empty and
during an idle period the MSP is in state j with probability </>j. These two assumptions
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are essential for the algorithm (to satisfy assumption 0 on page 24 and derive equation
(2.58)).

Two further assumptions are made that are not necessary for the algorithm but
that do greatly simplify the balance equations. The first is that customers are not served
in batches:

Rt(n) = 0, for all n ::::::0 and t > 2.

Without this assumption a more complicated routing process would need to be defined.
The second assumption is that an arriving customer does not cause a change in the
service process.

Despite these assumptions, the remaining class of service processes is still a very rich
class and includes the examples of M S Ps listed below. Here, the vectors el and ez are
the unit vectors of size 2.
1) Independent phase-type service-time distributions:

Bo(n) - B(n) = T,
BI(n) = roa,
¢ = a.

for all n ::::::1,
for all n ::::::1,

2) As 1), but with set-up times: after each idle period the first service time has initial
clistribution aI, all other service times have initial distribution az:

Bo(n) - B(n) = T,
BI(l) = TOal,
BI(n) = TOaz,
¢ = al'

for all n ::::::1,

for all n ::::::2,

Any pair of phase-type distributions tt;al) and Ci'z, az) can be modeled by a single
generator T with two different initial distributions al and az, by taking T block diagonal

T - T - - -(T = elel 18) T, + ezez 18) Tz, al = el 18) al and az = ez 18) az).
Examples 1 and 2 are special cases of sequences of phase-type distributions

{(Tt,at), f ::::::I}. Because the number of phases J of the MSP is finite, such se-
quences must, after a number of set-up distributions, start repeating itself, either in a
deterministic or in a probabilistic sense. Because the M S P starts anew at the beginning
of each busy period, also mixtures of sequences are possible. This could be used to model
for example a situation where at the beginning of each busy period, either a fast or a
slow server is chosen. Other examples of M S Ps are multi-server queues:
3) c identical exponential servers with rate p.:

Bo(n) - B(n) = -J.Lmin{c,n},
Bl(n) = J.Lmin{c,n},
¢=l.

for all n ::::::1,
for all n ::::::1,
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4) c identical phase-type servers:

Bo(n) - B(n) = E~=1I._I @ T @ Ic-.,

Bo(n) - B(n) = E~=1Is-1 @ T @ Ie-s,
B1(n) = [(E~=1Is-1 @ TO @ 1n-s)(In-l @ a)] @ Ic-n,

Bl(n) = E~=11s-1 @ TOa @ 1c-.,
¢> = a@ ... @a.

for all 1 :::;n :::;c,
for all c < n,
for all 1 :::;n :::;c,
for all c < n,

Here, Is is a unit-matrix with size f' for 0 :::;s :::;c, where £ is the number of phases
of the phase-type distribution. The transitions are defined such that if there are no
waiting customers in the queue (n :::;c), then the first n servers are active and the other
c - n servers are idle; when server s completes service, then the customers at servers
s + 1, ... ,n move to servers s, ... ,n - 1, continuing service in the same phase. Server n
becomes idle, with the service phase distributed according to a. This way, no variables
need to be added to keep track of which servers are active, and when a new customer
arrives, service can be started without changing the state of the MSP.

Modelling non-identical servers would require an extra phase for each server to
indicate whether it is active or not. Then, an arriving customer would need to activate
a server, which violates the assumption that arrivals of customers can not change the
state of the M S P. The number of phases of the M S P is equal to £c, so infinite-server
queues can only be modeled in the exponential case.

Markovian routing process

The routing is Markovian: after service completion at queue s the customer joins queue
t with probability Xst and leaves the network with probability Xso ( 1 :::;s, t :::;S ):

x == [X.t], Xo == [X.o], X e + Xo = e.

Markovian network process

The above described arrival, service and routing processes determine the network process
{(Nt "Jt), t ~ O} on state space

The state (n,j) E n denotes that there are n., customers at queue s, the arrival process
is in state jo and the service process at queue s is in state i, ( 1 :::;s :::;S). To introduce
matrix notation, it is convenient to map the (2S + I)-dimensional state space n onto the
(S + 1)-dimensional state space
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where I = Jo x ... x Js. This can be done 'lexicographically' with the mapping

s
i(j) = 1 + L(j, -l)J,+I,.=0

where J. = Js x ... x Js for 0 ~ s ~ Sand Js + 1 = l. The reverse mapping is

js(i) = 1+ [(i -1) mod Jsl div J.+1, for all 0 < s < S.

This mapping determines the network process {{Nt, It), t ~ O} on state space n. If the
network is stable, the steady-state probabilities of this process

pi(n) ~ lim IF' {(N;,It) = (n, i)}
t .....oo

exist for all (n, i) E n. They are independent of the initial state (No,Io) and uniquely
determined by the balance and normalization equations. For any matrix A, let double
brackets denote the Kronecker product

Then the balance equations are

p(n) { [[A - Aollo + stl [[Bs(n.) - Bso(n.) - XssBsl(n.)]J.}
M
L p(n - bm) [Am]o

m=1
S S

+ L L x.t p(n+es-et) [B.1(n. + 1)].,
.=1 t = 0

t oF s

(2.53)

for n E INS, with p(n) = a if n rf. INS. The matrices Ao and Bso(ns) on the LHS
correspond to changes in the arrival and service processes without arrival or service
completion. The matrix XssBsl(ns) corresponds to the event that a customer joins the
same queue again, which does not change the queue lengths. The first expression on the
RHS corresponds to an arrival and the second to a service completion followed by either
a departure from the network (t = 0) or a transition to another queue (t i- 0, s).

2.8.2 The transformed network process

Applying the PSA as described in section 2.3 to the networks described above, comes
down to transforming the arrival and routing process of the network as follows. Let
rm = bme denote the number of customers in batch bm, for 1 ~ m ~ M. Replace the
probability matrices Qm by

iTmQm, for all 1 ::; m ::; M,
M M

Qo + L (1 -I'm )Qm = eeT - L iTmQm.
m=l m=l



2.8. Networks of queues 73

The probability of an arrival of r customers is multiplied by,', and the remaining
probability mass is added to the probability of no arrival, so L~=o Qm(,) = eeT for
, E [0,1] and Qm(l) = Qm for 1 s:; m s:; M. For smaller" less arrivals occur on average
at each queue and for, = ° no arrivals occur at all. This transformation comes down
to rejecting arriving customers. Larger batches are more likely to be rejected.

Let x» denote the diagonal matrix with the same diagonal as the routing matrix
X, and XO the off-diagonal part of X, so x» + XO = X. In the transformed network
process, the routing probabilities X and XO are replaced by

The probability to go from queue s to queue t, with t =f. s, is multiplied by" and
the remaining probability mass is added to the probability to leave the network, so
X(,)e + Xo(,) = e, for all, E [0,1], and X(l) = X , Xo(l) = Xo. For smaller " the
customers on average visit less queues, because after each service completion they leave
the network with higher probability. For, = 0, customers only visit a single queue,
possibly several times.

The arrival rates at the queues from outside the network are equal to the elements of
the vector

M

A(,) = L ,'m bm ~Ame,
m=1

(2.54)

where ~ is the steady-state distribution of the Markov process underlying the M M AP,
which can be calculated from ~(A - A) = 0, ~e = 1. The arrival rates both from outside
the network and from the other queues are equal to the elements of the vector

11(,) A(,) [1- X(,)r1

= A(,)(I - Xd)-1 L~o"[X°(I - Xd)-1r} .
(2.55)

This power series converges and since it has only non-negative coefficients, 11(,) is in-
creasing in ,: for larger, there are more arrivals and customers leave the network less
often. The service process at each queue does not depend on ry. From this it is easily
seen that if the original network is stable, the transformed network is also stable for all
, in [0,1]. The steady-state probabilities are, up to a multiplicative constant, uniquely
determined by the balance equations:

p(" n) { [[A - At + s~ [[Bs(ns) - Bso(ns) - xs•Bs1(n5)]L}
M
L ,'m {p("n - bm) - p("n)} [Am]o

m=l
S S (2.56)

+ L L ,X.t {p("n+es-et)-p("n+es)} [Bs1(n5+1)].
5=1 t = 1

t oF.
s+ L (I-x ss) p("n+es) [B.1(ns+l)].,

.=1
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for n E INs, with ph, n) = 0 if n rt INs.

2.8.3 The Power-Series Algorithm

The transformed model does not satisfy assumption 0 from section 2.3. All non-empty
states are transient, but the empty states consist of 11 x ... x ls recurrent classes, since
the states of the service processes do not change when there are no customers. Below, it
will be shown that the third approach from section 2.7.5 can be used to overcome this
problem. Assumption 1 is satisfied if the state dependence of the service processes at all
queues is limited. A sufficient condition is that a constant N ~ 0 exists such that

Bso(n) = Bso(N) and BSI(n) = Bs1(N), for all n ~ Nand 1 ~ s ~ S.

In that case, assumption l' is satisfied with set S = {O, ... ,N}S and function fs(n) =
min{N, n,']. This assumption is very weak and immediately implies assumptions 1 and
3. Assumption 2 is satisfied for all usual performance measures, like the moments and
(co)variances of the queue length (2.18). So under very weak conditions, the steady-state
probabilities and performance measures are analytic functions of 'Y at 'Y = 0 and they
can be represented by their power-series expansions

00

ph,n) = L: 'YTu(r,n), for all n E INS. (2.57)
r=ne

The transformed network process is such that the coefficient vectors u(r,n) of these
power-series expansions can be calculated recursively by the PSA. This will be shown
first for the empty states, and then for the non-empty states.

The M MAP is not influenced by the queue-length and the service processes. Summing
the steady-state probabilities of the network over all possible queue lengths and states
of the service processes must therefore render the steady-state distribution of the arrival
process:

L: ph, n) [IJo ('9 e] =~,
nENS

where e is a vector of ones with size 11 x ... x Js- When the network is empty, the states of
the service processes at all queues are distributed according to the initial distributions cPs:

ph,o) = {ph, 0) [Ilo ('9 en ('9 cP,

where cP = cPl ('9 ... ('9 cPs. Combining both renders
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Substituting the power-series expansions (2.57) and equating the coefficients of corre-
sponding powers of I on either side of the equality sign shows that the coefficients of the
expansions of the empty states p( ,,0) satisfy

u(O, 0)

u(r, 0)
= ~~ </I,

=-{ L u(r,n)[IJo~el}~</I,
O<ne,$r

for all r ~ l.
(2.58)

Notice that u(O, o)e = 1, so for I = 0 all probability mass is at the empty states.
Substituting the power-series expansions (2.57) in the balance equations (2.56) and

equating the coefficients of corresponding powers of I on either side of the equality sign,
shows that the coefficients of the power-series expansions of the non-empty states satisfy
the following recurrence relations:

u(r, n) { [[A - Allo + .t [[B.(n.) - B.o(n.) - x ss e; (n.) lL}
M
L

m ee I
S S

+ L Ls=1 t =!
t", s
S
L.=1

X.t {u(r -1, n + e, - et) - u(r -1, n + es)} [Bs!(ns + l)]s

+ (1 - X.s) u(r, n + es) [B.!(ns + 1)].,
(2.59)

for n E INs, r ~ ne, and with u(r, n) = 0 if r < ne or n f/. INS. At the end of section 2.3.1,
the equivalence of assumptions 0' and 0 was shown. This implies that the matrix on the
LHS,

S

[[A - At + L: [[Bs(ns) - Bso(n.) - XssBs1(ns)lL,.=1
is invertible for all n E INS

\ {o}, since all non-empty states are transient for I = O.
The coefficients u(r, Ti) on the RHS either have i' < r or have i' = r and Tie > ne. All
coefficients u(i', Ti) with Tie > r are zero because of the order property (2.7). Together,
this implies that the coefficients of the expansions of the steady-state probabilities up
to the R-th power of I can be calculated recursively, for increasing values of r and, for
each fixed r, for decreasing values of ne, starting with ne = r:

Power-Series Algorithm
Calculate u(O, 0) from (2.58),
for r = 1, ... , R do

for N = r, ... , 1 do
for all n E INS with ne = N do

Calculate u(r,n) from (2.59),
Calculate u(r,o) from (2.58).
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The storage requirements of the algorithm can be substantially reduced if the maximal
batch size f = supm rm is finite. From (2.59) it can be seen that in step r of the algo-
rithm, coefficients u(f, Ti) with f < r - f are no longer needed to calculate the remaining
coefficients. The same is true for coefficients with f = r - f and Tie > ne + 1, because
customers leave one at a time.

The M SPat queue s depends only on the queue length at queue s. The state dependence
could be made more general, not only for the service processes but also for the arrival
and routing processes. The state dependence of the service and routing processes must
be such that, for I = 0, all non-empty states of the transformed network process are
transient, so that eventually the network will be totally empty. Then the service processes
must be stopped and the distribution cP over the service phases must be known (but <p
need not be the Kronecker product <PI ® ... ® cPs). The Markov process underlying the
M M AP must be state independent to calculate ~, but the probability matrices Qm can
be state dependent. This way, the coefficients of the empty states can still be calculated
from (2.58) and the coefficients of the non-empty states can be calculated from (2.59) if
the parameters are replaced by the state dependent parameters.

2.8.4 Examples

Two examples are presented to illustrate the flexibility and strength of the PSA. The
first example below considers the optimal order of queues in series. The second example
shows that the total number of customers in cyclic networks depends mainly on the first
moment of the service-time distributions. The mapping and pole extrapolation were not
used because the power series were regular enough to obtain convergence by means of
only the epsilon algorithm, which performed better than the theta and Levin algorithms
(with the relative variation criterion and r;, = 5).

Optimal order of queues in series
An important design problem in queueing theory is
how to order queues in series. How can the mean
total queue length, or equivalently the mean so-
journ time, be minimized for given arrival process
and service-time distributions?

Exact analysis is in general very difficult, even for only 2 queues. Whitt [136]
proposes a heuristic based on the approximation of the departure process of each queue
by a renewal process, characterized by the first two moments of the renewal interval.
Greenberg and Wolff [67] proposed a heuristic based on light-traffic behaviour and gave
some examples where both heuristics did not give the same solution. They warned that
extreme caution must be used in applying approximations to develop design procedures
and stated that a heuristic based only on mean and squared coefficient of variation of the

- :=oD-JillD-
Figure 2.18
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various distributions cannot be expected to work well. However, they did not indicate
how large the difference in performance of both suggested solutions would be. Using
simulation, Suresh and Whitt [133] later reported that when the heuristics disagree, the
difference is negligible. This conclusion is supported by the example below, now using
the PSA.

Consider the following model. According to a Poisson process with rate )" cus-
tomers arrive to obtain service from two servers in series. Both servers have an Erlang(2)
service-time distribution, one with mean 1 and the other with mean 4. Should the cus-
tomers first visit the fast or the slow server and does the optimal order depend on the
arrival rate A ? According to Whitt [136] the optimal order is to visit the fast server
first; Greenberg and Wolff [67] suggest that, in light traffic, the slower server should be
visi ted first. In the table below, the expected total number of customers is shown for
both orders and different loads. The value of Ils is the mean service time at queue s.
The indicated load is the load of the slower server and corresponds to arrival rates 0.4,
1.2, 2.0, 2.8 and 3.6.

1, 4
4, 1

0.1337
0.1335

0.4745
0.4734

1.009
1.005

2.118
2.111

7.231
7.218

111,112 p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

Table 2.4: Mean total queue length for different orders and loads.

To visit the slower server first is better for all loads, but clearly the difference is negligible.
Numerical experiments indicate that this conclusion remains valid when the interarrival
time distribution is Erlang or hyper-exponential, when the service time distributions are
both exponential or hyper-exponential or when the means of the service-time distribu-
tions are taken further apart, just as long as the service time distributions have equal
coefficient of variation. If the interarrival times and the service times are all exponential,
then the system is a product-form network and the total queue length is independent of
the order of the queues. In fact, this insensitivity holds for arbitrary arrival processes if
the service time distributions are all exponential [135] or all deterministic [57].

Convergence of the power series was slowest for the model with p = 0.9 and the
fast server first. In the table below the original series VR(I) == L~=ou, and the series
after applying the epsilon algorithm t[VR(I)] are shown.

R 1 5 10 20 40 60
VR(l) 0.2250 1.766 3.245 4.877 6.410 6.945

t[VR(1)] 0.2250 1.766 7.362 7.232 7.231 7.231

Table 2.5: Approximations at different truncation levels.

The original series seems to converge monotonically, but after applying the epsilon al-
gorithm, convergence is much faster. Convergence is usually slower if the load of the
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original network is higher or if the parameters of the model are more extreme. For
example, hyper-exponential distributions result in slower convergence than Erlang dis-
tributions. In general, convergence can only be guaranteed for light traffic and careful
analysis of the behaviour of the power series is essential to validate the results.

Insensitivity for higher moments

Consider the following model. Customers arrive
according to a process that is a mixture of single
arrivals and fork arrivals. At each queue, single
customers arrive according to independent Pois-
son processes, all with rate AI' According to an-
other independent Poisson process with rate A2,
customers arrive simultaneously at all queues:

1=1,
M = S + 1,
qO,l,1 = 0,

all = SAl + A2,
bm = em (1 ~ m ~ S),
q - ~ (1 <m< S)m,l,l - 5'\,+).2 - - ,

Figure 2.19

bS+1 = e,
-~

qS+I,I,1 - S).'+).2·

The routing is such that, after service completion at a queue, customers either leave
the network with probability p, or go to the next queue with probability 1 - p:

if t = 0,
if t = (s mod S) + 1,
otherwise.

Depending on the coefficient of variation, the service-time distributions at the various
queues are either Erlang, exponential or hyper-exponential with balanced means. In table
2.6 below, the probability of an empty network and the mean queue lengths are given
for four different models with 3 queues, Al = A2 = 0.09,p = 0.2 and JlI = Jl2 = Jl3 = 1.
This way, all queues have identical load PI = P2 = P3 = 0.9. The difference between
the four models is in the variance 0"; of the service-time distributions at the queues, but
their sum is equal to 3 for all models.

O"i, O"i, 0"5 P{N = o} E{Nd E{N2} IE{N3} E{Ne}
1,1,1 0.0033 10.28 10.28 10.28 30.84
2 I I 0.0038 12.95 9.928 7.760 30.63, 2' 2

I!,1, ! 0.0035 11.39 10.97 8.426 30.78
~,1, 1~ 0.0035 9.141 9.701 11.95 30.79

Table 2.6: Performance measures for different variances.

The convergence of the power series of E{N e} in the second model was poorest:
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R 1 5 10 20 40 60
VR(l) 0.2700 2.007 4.326 8.387 14.79 19.37

t[VR(l)] 0.2700 -0.2523 0.1951 32.41 30.59 30.63

Table 2.7: Approximations at different truncation levels.

Again, both series seem to converge, but more coefficients need to be calculated to
stabilize than in table 2.5.

It can be seen that the mean queue length of each queue is increasing in the variance
of the service-time distribution of both the queue itself and the preceding queue. From
the last column it can be seen that the expected total number of customers in the network
is approximately equal for all four models. For P = 1, this follows immediately from the
Pollaczek-Khintchine formula, because then all queues are M/0/1 queues with identical
load and mean service time, so:

The variances of the service-time distributions were chosen such that their sum is equal
for all four models. The individual variances and the shapes of the distributions vary.
Numerical experiments indicate that the property that the mean total queue length
is mainly determined by the sum of the variances also holds for more general models,
namely for networks with a symmetric arrival process, generalized-cyclic routing and
equal loads at the different queues. Here, a symmetric arrival process can have an
arbitrary underlying Markov process. If bm is a possible arrival then each permutation
of bm is also a possible arrival and if b", is a permutation of bm, then Q", = Qm. More
intuitively, a symmetric arrival process is such that at each arrival of a batch, an arrival
of any permutation of this batch would have been equally likely. A generalized-cyclic
routing matrix X is a routing matrix such that

X.,t = X(s mod 5)+1,(t mod 5)+1' for all 1 :::;s, t :::;S.

For example, if S = 4, then a generalized-cyclic routing matrix is of the form

(

PI P2 P3 P4)
X = P4 PI P2 P3 .

P3 P4 PI P2
P2 P3 P4 PI

If the arrival process is symmetric and the routing generalized-cyclic, then the loads at
the queues are identical if the mean service times are identical. For such networks the
following hypothesis can be formulated: for networks of ./0/1 queues, with a symmetric
arrival process, generalized-cyclic routing and equal loads at all queues, the expected total
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number of customers in the network is mainly determined by the sum of the variances
of the service-time distributions, and not so much by their shapes. Of course such a
hypothesis could never be proved by the PSA, but it can be used to evaluate various
'randomly' chosen models and models that are likely to be counter-examples.

2.8.5 Alternative transformations

A disadvantage of the transformation described in section 2.8.2 is that the transforma-
tion parameter i does not always have a physical interpretation. For the first model
with queues in series in figure 2.8.4, , can be interpreted as the probability to accept
an arriving customer. In the cyclic model in figure 2.8.4, customers from the different
Poisson processes are accepted with different probabilities. In general, the interpretation
is not obvious. In this section two alternative transformations will be considered. These
alternatives have the advantage that the transformation parameter can be interpreted as
the load of the network. However, they can only be applied to a subclass of the networks
and the second approach is computationally less attractive.

The usual definition of the load of a single-server queue is the probability that the server
at this queue is busy. It is not obvious how to generalize this into a scalar measure of
the load of a network of queues. The maximal load of the individual queues seems more
reasonable than the average load or the probability that any of the servers is busy.

Although a good definition of the load of a network is not obvious, the transfor-
mation parameter, is not a good measure. The load of the individual queues does
increase with i, as can be seen from the arrival rates in formula (2.55). However, be-
cause the transition rates of arrivals of larger batches of customers are multiplied by
higher powers of i, the dependence is non-linear. A more reasonable measure of the load
can be obtained when a different transformation is applied. In the approach above, the
batch-size probabilities are transformed. A more straightforward approach would be to
only multiply all the transition rates A of the Markov process underlying the M M AP
by i. The new arrival process M M AP-y is equal to the original arrival process, but on a
different time scale. For larger values of I the arrival process moves faster, so there are
more arrivals. The vector of arrivals per time unit is now equal to

(2.60)

instead of formula (2.55). The dependence on , is now linear and much simpler. Since
the service process is independent of" the load of each queue is also linear in f. Let ,.
be such that all queues, and therefore also the network, are stable for 0 -:; i < ,* and
unstable for, 2 I"' Then the load of the network process with arrival process M M AP-y
could be defined as ,Ii., the reciprocal of the factor with which the arrival process must
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be made faster to make the network unstable. For this type of models this is identical
to the maximal load of the individual queues.

The difference between the transformation suggested in section 2.8.2 and the time-
scale transformation suggested above is best illustrated by applying both to the G1/ G/1
queue. Both transformed processes are again GI/G/l queues, but now with different
interarrival-time distributions. The transformation in section 2.8.2 would accept each
arriving customer with probability, and reject the customer with probability 1-,. The
transformed interarrival-time distribution is the convolution of a geometric number of
original interarrival-time distributions. With the time-scale transformation, the trans-
formed interarrival-time distribution has the same shape as the original distribution,
but with a different scale parameter: the mean interarrival time is divided by y. Both
approaches are identical for the M/ G/1 queue.

So, why use the complicated transformation from section 2.8.2? Because, in gen-
eral, just changing the time scale of the arrival process does not lead to a recursive
algorithm for the computation of the coefficients of the steady-state distribution of the
transformed process. It renders a recursive algorithm only if the maximal batch size
B = sUPm(bme) is finite and if the network is a feed-forward network. It was used in [74]
for the analysis of the BMAP/PH/1 queue with finite maximal batch size. With the
time-scale transformation, the balance equations of the transformed process are

p(r, n) {, [[A - Aollo + st [[Bs(ns) - Bso(ns) - XssBsl(ns)lL}
M
L , p(r, n - bm) [Am]o
m=lS S

+ L L Xst p(r,n+es-et) [Bs1(ns+l)]',
s=1t = 0

t i- s

for n E INS, and with p(r, n) = 0 if n rt INS. The difference with the balance equa-
tions (2.53) of the original process is that the transitions of the arrival process are mul-
tiplied by,. Replacing the probabilities by their power-series expansions and equating
the coefficients of corresponding powers of , renders the recursive equations

u(r, n) .t1 [[B.(ns) - Bso(ns) - XSSBS1(ns)lL = -u(r - 1,n) [[A - Aollo
M+ L u(r - 1,n - bm) [Am]o

m=1
S S+ L L Xst u(r,n+es-ed [Bs1(ns+l)]',

.=1 t = 0
t i- s

for n E INS and r ;:::ne, and with u(r, n) = 0 if r < ne or n rt INS. The order of the
steady-state probabilities is equal to the number of transitions in the M MAP required
to reach the particular state:

p(r, n) = a (,r(nolIBl), for all, I0 and n E INS, (2.61 )
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where rx 1 denotes x rounded upward (see section 1.4). If the steady-state probabilities
are analytic, then the initial coefficients are zero:

00

p(-y,n) = L -(u(r,n), for all n E INs.
r=r(ne)/Ml

If the maximal batch size B were infinite, then all steady-state probabilities of non-
empty states would be in 0 (-Y), for / 1 O. The power-series expansions would all have
a linear coefficient u(l,.) and it would be impossible to calculate this infinite number of
coefficients. If the maximal batch size is finite, then u(r, n) = 0 if ne > r B. The number
of non-zero vectors of r-th order coefficients is at most

(2.62)

The coefficient u(r,n) is a function of coefficients u(r - 1,.) but also of coefficients
u(r, n + es - et) if Xst > O. For each r and fixed total queue length, a set of linear equa-
tions needs to be solved. The number of variables in each set of equations is (Bri.!I-I).
This increases fast with r , which hampers the calculation of the coefficients unless the
set of equations has some special structure that makes it easy to solve. Such a special
structure exists if the network is a feed-forward network. Then the queues can be or-
dered such that Xst = 0 for all s < t. For fixed r , first calculate the coefficients with only
customers at the last queue, then the coefficients with only customers at the last two
queues and so on. The coefficients of the empty state are calculated in a similar way as
before.

If the network is not feed-forward and the time-scale transformation is used, then sets
of equations of increasing size need to be solved. This can be prevented by transforming
the routing process as well. This can be done as follows:

X(O") = Xd + aX"; XO(O") = O"Xo+ (1 - 0")(/ - Xd)e,

with 0 :::; 0" :::; l. This is the same transformation as in section 2.8.2, but with a
transformation parameter (J, different from /. For smaller values of 0", customers will
sooner leave the network instead of visiting other stations. Together with the time-scale
transformation of the M MAP, this process has balance equations

p(-Y,O",n) {/ [[A - Aollo + S~I [[Bs(ns) - Bso(ns) - XssBsI(ns)lL}
M
L / p(-y, 0", n - bm) [Am]o

m=l
S S

+ L L (Jx.t {p(-y,(J,n+es-ed
s=1 t = 1

t '" s

+
s
L
s=1

(1 - XSS)

-p(-y, (J, n + es)}

p(-y, 0", n + es)

[BsI(ns + l)t

[BsI(ns + l)t 1
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for n E INs, and with ph, a, n) = 0 if n fj.INs. The order as a function of, is the same
as in formula (2.61). If the steady-state probabilities are analytic functions of both,
and a they can be represented by the two-dimensional power-series expansions

00 00

p(r,a,n) = L L,rasu(r,s,n), for all n E INs.
r=r(ne)/Mj s=o

Substituting this in the balance equations and equating equal powers of both, and a
renders the recursive equations

uir ;s, n) st [[Bs(ns) - Bso(ns) - XssBsl (ns) 11. = -u(r - 1, s, n) [iii - Ao11o
M

+ L u(r -l,s,n - bm) [Am]o
m=1S S

+ L L Xst {u(r,s-l,n+es-et)
.=1 t = 1

t "I s

-u(r,s - 1,n + es)}

+
S
L
s=1

(1 - Xss) u(r, s, n + es)

[BSl(ns + 1)].

[Bsl(ns + 1)].,

for n E INs, r 2:: ne and s 2:: 0, and with u(r,s,n) = 0 if r < ne, s < 0 or n fj.INs The
coefficients can be calculated for increasing values of rand s. For each fixed rand s,
the coefficients can be calculated in decreasing order of ne, starting from ne = Br .

From the above, the following conclusions can be drawn. The time-scale transformation
applies to feed-forward networks with finite maximal batch size. The major advantage
of this approach is the fact that, after normalization, the transformation parameter
, can be interpreted as the usual measure for the load of the system. If the arrival
process consists of Poisson processes at each queue, then this approach is identical to the
approach in section 2.8.2. The Poisson processes are allowed to be state dependent, but
an arrival is not allowed to coincide with a change of the supplementary variable. If the
two approaches are not identical, then it is not clear which approach is preferable. The
analyticity results in section 2.5 can also be obtained for the time-scale transformation. It
has the advantage of the interpretation. However, if the maximal batch size is larger than
1, it has the disadvantage that for each r the number of non-zero r-th order coefficients
is much larger: (Br;S) instead of (rts).

The double transformation described above can also be used for non-feed-forward
networks. It has the advantage that, after normalization, , can be interpreted as the
load of the system. The parameter a is a measure of the extent to which customers
travel between the different queues. However, the advantage of this interpretation is
less convincing than for the feed-forward networks. And the double transformation has
major disadvantages. Because it involves double power series, the number of coefficients
that need to be calculated will be much larger. Also the methods to accelerate the
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convergence of double power series are less effective than those for univariate power
series (see appendix C.4).

The disadvantage of the double power series can be avoided by using the same
transformation parameter 'Y to transform also the routing process. The approach is then
very similar to the approach in section 2.8.2. However, the maximal batch size must be
finite, 'Y no longer has a physical interpretation and the number of non-zero coefficients
increases faster with r if the maximal batch size is larger than 1. Therefore the approach
in section 2.8.2 will normally be preferable.



Chapter 3

The PSA for transient analysis

The transient analysis of Markov processes is generally considered to be more difficult
than the steady-state analysis. Even for very simple processes like the M / M /1 queue,
it is not easy to describe the transient behaviour. In the previous chapter, it was shown
that the PSA can be useful for steady-state analysis. In the present chapter, an attempt
will be made to apply the same ideas to the transient analysis, both homogeneous and
non-homogeneous. This is done by considering the transient distribution of Markov
processes with initial distribution and transition rates that are analytic functions of a
model pararneter v. This parameter can have any physical interpretation.

Unfortunately, for homogeneous Markov processes it will turn out that the ideas
of the PSA do not lead to efficient numerical procedures. For the steady-state analysis,
direct methods would require the inversion of a matrix which is a complicated opera-
tion for large matrices. Instead of this, the PSA uses a large number of simple matrix
multiplications. For the transient analysis, existing direct methods already require only
simple operations. The PSA merely increases the amount of work to be done. Computa-
tionally, the PSA is only helpful if one is explicitly interested in the transient distribution
as a function of some model parameter v. Also, the PSA provides interesting theoretical
insights. The power-series expansions of the transient distribution as a function of both
time and I are obtained in closed form. With this closed form, it is shown that the
transient distribution is an analytic function of both time and ,. For finite state spaces
this is obvious, but not for infinite state spaces.

By choosing the model parameter, equal to time, non-homogeneous Markov pro-
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cesses can be considered. This provides a numerically stable way to compute the transient
distribution and easily shows that if the transition rates are analytic functions of time,
then also the transient distribution is an analytic function of time.

This chapter is organized in the following way. First, in section 3.1, direct methods will
be discussed to find the transient distribution of Markov processes. It will be shown that
what is usually called Jensen's method can be improved if knowledge about the steady-
state distribution is available. The extended method has convergence uniform over time.
A framework is described that includes the Taylor expansion, Jensen's method and the
extended method. This framework is generalized in section 3.2 to find the transient
distribution as a function of both time and r», Section 3.3 shows that the obtained power-
series expansions converge. By choosing 1 equal to time, a method for non-homogeneous
Markov processes is obtained in section 3.4.

In the previous chapter on the steady-state analysis using the PSA, a particular
transformation of the transition rates was considered. The notation explicitly reflected
the multidimensional nature of this transformation. The framework of the present chap-
ter on the transient analysis allows for general transformations. Consequently, the state-
space need not reflect the multidimensional nature. It can be one-dimensional, since
any countable state space can be mapped onto the non-negative natural numbers. If the
state space is large or infinite, it may be necessary to truncate the state space. This
will be ignored here. By aggregating all truncated states into a single absorbing state,
bounds on the truncation error can be obtained [107,108].

3.1 Direct methods

Let {Xt, t 2': O} be an honest, uniformizable and homogeneous CTMP on the countable
state space n with initial distribution </J, generator Q and qi = -qii for all i E n. The
transient distribution 'Ir(t) at time t is determined by the forward differential system

'Ir'(t) = 7r(t)Q, 'Ir(O)= </J. (3.1 )

The formal solution is 'Ir(t) = </Jexp(tQ) (see appendix A).

3.1.1 The Taylor-series expansion

The Taylor-series expansion of the transient distribution 'Ir(t) = </J exp(tQ) is equal to
Lk:o t</JQk. An approximation can be found by truncating this expansion:

K tk
'lrK(t) = L kiUk,

k=O .
Uo = </J, Uk = Uk-l Q = </JQ\ for all k 2 1.
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The calculation of this approximation involves negative numbers because the diagonal
of Q is negative, which can cause severe round-off problems.

The transient distribution is analytic in t, but the power-series expansion does
not converge uniformly in t. This can be shown as follows. Since Q is uniformizable,
/lQ/I = 2suPi qi is finite. The truncation error is bounded by

The final summation is the tail of the power-series expansion of exp (t /IQ /I). For any fixed
t ;::::0, this error can be made arbitrarily small by choosing I< large enough. Therefore,
7r(t) is an entire function of t and the expansion converges point-wise, that is for each
fixed t. Convergence is not uniform: for any I< ;::::0 fixed, the approximation is a finite
polynomial in t, so it diverges for t -t 00, whereas 7r(t) converges to 7r. In other words,
for each fixed truncation level I<, the Taylor approximation is bad for large enough values
of time.

3.1.2 Jensen's method

The use of negative numbers is avoided by Jensen's method [81J. In this approach,
dummy transitions are introduced from each state i to itself with rate q - qi, with
q ;::::sUPi qi· This way, the transition rate from each state is equal to q, and a transition
to state j is made with probability (%/q) + l(i = j). Because only dummy transitions
are introduced, the transient distribution of this new process is equal to the transient
distribution of the original process and it can be found by conditioning on the number
of transitions up to time t. Because the transition rate is q, uniform over all states,
the number of transitions has a Poisson distribution with mean qt. Conditioning on the
number of transitions leads to the approximation

The vector Vi< is the distribution after k uniformized transitions. The method only
involves positive numbers and no subtractions, which makes it quite stable.

Like with the Taylor-series expansion, the approximation does converge point-wise,
but not uniformly. For any t ;::::0 fixed, analyticity of 7r(t) again guarantees convergence
for I< -t 00, with truncation error

Equality holds because all quantities are positive. The error is equal to the probability
mass in the tail of the Poisson distribution with mean qt. This implies that, to obtain
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a certain accuracy, the truncation point J( is O(qt). If the state space is small, this can
be reduced to O(vfiF), by not only truncating the summation to the right but also to

K -li!t .the left: 7rL,K(t) = 2: e qt qkl Vk (see [47]). For J( fixed and t -+ 00, e-qt will decrease
k=L .

to 0 faster than the finite polynomial in t diverges. For large t, Jensen's approximation
will thus be close to 0 instead of rr. Therefore:

lim sup 117r(t) - 7rK(t) II ~ lim lim 117r(t) - 7rK(t)11 = lim Ilrr - 011 = 1,
K --+00 t~O K --+00 t--+oo K--+oo

so convergence is still not uniform. For each fixed truncation level J(, the Jensen ap-
proximation is bad for large enough values of time.

3.1.3 Using steady-state information

Assume that the CTMP {Xt, t ~ O} is ergodic with steady-state distribution rr, deter-
mined by rrQ = 0, rre = l. This implies that the discrete-time Markov chain (DTMC)
at (dummy) transition moments {Yk,k ~ O} with transition matrix [Q/q + I] is also
ergodic, for large enough q. This can be seen as follows. According to the first Foster
criterion [55], sufficient for ergodicity of the DTMC is the existence of a finite solution
to the balance equations, together with aperiodicity. The distribution rr is finite and
satisfies the balance equations rr[Q/q + I] = rr. Aperiodicity holds if q > infiEo qi. So, if
not all qi are identical, then q = sUPiEOqi is large enough to make the DTMC ergodic.
Otherwise, q should be chosen slightly larger.

Without loss of generality, assume that the DTMC {Yk, k ~ O} is ergodic with
steady-state distribution rr, satisfying rr [Q / q + I] = ii . Since Vk is the distri bution of the
DTMC after k transitions, it will converge to the steady-state distribution 1i". Actually,
the Vk are the consecutive estimates of 1i" produced by the power method to find the
eigenvector of the largest eigenvalue [112]. If 1i" is known in advance, then it can be
used as an estimate of the uncalculated Vk for large k. This leads to the following
approximation:

(3.3)

The second expression shows that this approximation will be a good approximation of
7r(t) for small values of t, since it is close to Jensen's approximation. The third expression
shows that it will also be a good approximation for large values of t, since it is close to rr.

In fact, this approximation of the transient distribution was already introduced by
Jensen [81] in the first paper on this subject. It seems to have been forgotten since then
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and the term Jensen's method is usually associated with the approach in the previous
section. In this chapter, the term standard Jensen method will be used for the method
described in the previous section and the term extended Jensen method for the method
that uses the steady-state distribution.

Analyticity again guarantees convergence for any fixed t ::::0, now with error bound

(3.4)

For the last inequality, it is used that [Q / q + I] is a stochastic matrix, so it has norm
IIQ/q + III = l. In the standard Jensen approximation, the accuracy is obtained by
making the summation small, which requires the calculation of O(qt) coefficients. Now,
accuracy can also come from the fact that VK converges to 1r. This convergence is
independent of t and geometric in K, To obtain a certain maximal error E, the truncation
level K is o (log E). Convergence will be slow if the subdominant eigenvalue of [Q/q + I]
is close to 1. Because the convergence of VK is independent of t, the new approximation
has uniform convergence:

lim sup 117r(t) - 7rK(t)11 <
K-+oo t~O

• _ 00 (qt)k
[im IlvK - 11"11 sup 2: e-qt-kl](-+00 t~O k=K+l .

lim IIvK - 1r11 = O.
](-+00

So, contrary to the Taylor and the standard Jensen approximation, the truncation level
K can be chosen such that the approximation has a specified accuracy for all values
of time. It seems that this uniform convergence has not been established before in the
literature.

The extended Jensen method is quite similar to the steady-state-detection method
[40,104]. This method is reported to render considerable computational savings when
the Markov process is stiff. Basically, it uses VK as an estimate of 1r and checks the con-
vergence. If VK has converged enough, then approximation (3.3) is used with 1r replaced
by the estimate VK. A disadvantage of this method is that no exact error bounds are
available. Based on the geometric convergence of v» it is possible to give approximate
error bounds. It can easily be shown that the difference between the extended Jensen
approximation and the steady-state-detection approximation is equal to the error bound
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of the extended Jensen method in (3.4):

II{7r + k~O e-
qt

(q~t [Vk - 7r]} - {VK + k~O e-
qt (~t[Vk - VK] }II

= 11[7r - VK] + f: e_qt(qt)k [VK - 7r]11
k=O k!

= 117r - VKII ~ e-qt (qt)k.
k=K+1 k!

This immediately implies that the error of the steady-state-detection method is at most
2117r - vK11 and that it also has uniform convergence. The obvious advantage of the
steady-state-detection method is that it does not require prior knowledge of 7r. However,
if Vk converges slowly it may be worth the computational effort to find better estimates of
the steady-state distribution, either based on the computed distributions Vk or by some
other method like solving the (truncated) balance equations or the PSA. The similarity
of both methods and the good performance on stiff models of the steady-state-detection
method shows that also the extended Jensen method will work well on stiff models.

Often, one is not interested in the transient distribution 7r(t), but only in transient
expectations f(t) = 7r(t)f, with f a column vector. Then, knowledge of the steady-state
distribution 7r is not needed, but only knowledge of the steady-state expectation J = 7r f:

- ~ (qt)k [ _]
fK(t) = 7rK(t)J = f + ~ e-qtT! vd - f .

Like in the steady-state-detection method, if J is not known it can be replaced by the
estimate VK f. In this scalar case, better estimates of J can easily be found by applying
an extrapolation method to the series vof, vs], ... ,VK f·

3.1.4 A general framework

The three expansions of the previous sections all fall in the class of expansions of the
form

tk
7r(t) = iii + e-qt L -k,Wk' (3.5)

k •

For q = 0, this reduces to the Taylor expansion. For q = SUPi qi, it is the standard Jensen
method if w = a and it is the extended Jensen method if w = 7r. The summation in (3.5)
is the power-series expansion of eqt [7r(t) - w]. This is an entire function since 7r(t) is an
entire function. Thus, the summation converges.

A recursive algorithm to calculate the coefficients of expansion (3.5) will be derived
by equating corresponding powers of time. This is similar to how Jensen's method was
derived. Substituting the expansion in the forward differential system (3.1) renders

00 1 00 tk
-qt '"' [ktk-1 tkJ _ -Q + -qt '"' Q - + A.e t:a k! - q Wk - W e ~ kiWk , W Wo = I{',
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or
00 tk 00 (qt)k _ 00 tkE k! Wk+l = ET!wQ + E k! Wk[Q + q], w + Wo = r/>.

Equating coefficients of corresponding powers of t leads to the following approximation:

K tk
7rK(t) = w + e-qt L ,Wk,

k=O k.
Wo = r/> - w,
Wk = qk-1WQ + Wk-I[Q + q], for all k ~ 1.

(3.6)

In general, this recursion involves negative numbers. However, it has closed-form solution

Wk = 1>[Q+q]k -wl, for k ~ O. (3.7)

From this, recursions can easily be obtained that avoid negative numbers, by splitting it
into two positive parts.

An approximation 7rK(t) is a good approximation of 7r(t) if J{ can be small for
fixed t and if for fixed J{ it behaves well for large t. For small values of time, all
approximations in the general framework are very similar. If the approximation must
converge to the right limit 71" for t -+ 00 and each J{ ~ 0, then q should be positive and
w = 71". The relaxation time n is the smallest R such that 117r(t)-71"11 E 0 (e-t/R), for
t -+ 00. If 7rK(t) must not only converge to 71" but must also have the right relaxation
time n for each fixed I<, then q should be chosen equal to n-l and w = 71". The matrix
[Q + n-l] will usually not be non-negative which would introduce numerical instability.
Numerical experiments show that the choice q = sUPiqi renders better results, especially
for intermediate values of t. Actually, the only interesting special cases of the general
framework are those discussed in the previous sections. The general framework discussed
here will be helpful in section 3.2 for applying the PSA, since all three special cases can
be considered simultaneously.

3.1.5 Comparison

Consider an M / M /1 queue with service rate 1.0 and arrival rate 0.5. The queue is
initially empty. The steady-state probability of an empty queue is 0.5. Figure 3.1 shows
the probability that the queue is empty for t ::;20. The true curve is obtained by the
extended Jensen method with I< = 100 (the maximal error for t ::;20 is close to machine
precision and the maximal error for any t ~ 0 is at most 1171" - vlooll = 0.0000311).
The approximations are all obtained by truncating the expansions at I< = 10 and with
q = 1.5. The SS-detection curve is the curve obtained by the steady-state-detection
method. The dotted lines are the error bounds for Taylor's method, and both the
standard and the extended Jensen method.

As expected, Taylor's approximation diverges and the standard Jensen approxima-
tion converges to the wrong limit O. The steady-state-detection method performs better,
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Figure 3.1: Probability of an empty queue for t :s; 20

but after 10 (dummy) transitions the probability of an empty queue is equal to 0.530, so
it has not converged to 0.5 yet. Therefore, it is less accurate for large values of t. Nev-
ertheless, even with this estimate of the steady-state value the results are considerably
more accurate than the standard Jensen approximation. The extended Jensen method
with the correct steady-state value is accurate for large values of time. More careful
study shows that it converges to 0.5 too fast.

For the MIMil queue above, the obtained accuracy for a fixed value of K was considered.
In [104], the value of K required to obtain a certain precision is considered. This is done
for the M 1M 111m model with arrival rate>. = 9, service rate J1. = 10, buffer size m = 50
and q = 19. The queue is initially empty and the distribution at time t = 1000 is
calculated. For this model, the steady-state distribution can easily be calculated (see
example 2.4).

Figure 3.2 shows the required truncation level K to obtain different levels of accu-
racy. The number of coefficients needed by the standard Jensen method is only slightly
increasing in the required accuracy and roughly equal to 20000 (> qt = 19000). Due
to the geometric convergence of Vk, the graphs of the extended Jensen method and
the steady-state-detection method are nearly straight lines. The steady-state-detection
method requires about 20% more coefficients for this model.

From these examples it can be concluded that the steady-state distribution can be used
to extend Jensen's method and to obtain convergence uniform over time. If (a good
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Figure 3.2: Required number of coefficients to obtain prescribed accuracy

estimate of) the steady-state distribution is available or can be calculated without too
much effort, the extended Jensen method is preferable. It is similar to the steady-state-
detection method, but converges faster and has reliable error bounds.

3.2 The Power-Series Algorithm

Encouraged by the success of the PSA for steady-state analysis, an attempt will be made
to extend the PSA to transient analysis. The idea of the PSA for steady-state analysis is
to transform the Markov process with a certain transformation parameter 'Y and analyze
the process as a function of this parameter. A particular transformation was used (see
section 2.2) and conditions were derived under which the steady-state probabilities are
analytic functions of -r. For the transient analysis in the present chapter, not a particular
transformation will be considered but the class of all analytic functions Q("(). Also, the
initial distribution tf>("() is allowed to depend on 'Y. The expansion of the transient
distribution 7r(t, 'Y) will be obtained, as a function of both time t and "f. The value 'Y = 1
will not be the only value of interest, because 'Y need not be an artificial parameter. It
can be any model parameter, as long as tf>("() and Q("() are analytic in this parameter.

In this chapter, the expansion of the product of two functions is repeatedly used.
Suppose that h(x) = f(x)g(x) and that f(x) = Lk:o xk!k and g(x) = L~o xtgt are both
analytic at x = O. Then

0000 00 k

h(x) = 'L'LxkHfk9l = 'Lxk'Lfk-lgt.
k=0 l=O k=O t=o

(3.8)

The coefficients of the expansion of the product of two functions are the convolutions of
the coefficients of the two functions. The radius of convergence of the product is equal
to the minimum of the individual radii.
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Suppose that the initial distribution and the transition rates are analytic functions of T

00

<I>(-Y) (3.9)
00

Q(-y) = 1:,rQr·
r=O

(3.10)

The vector function <I>(-y)should be a distri bution for small enough values of " so <l>oe=
1, <1>0 2:: 0 and <l>re= 0 for all r 2:: 1. The matrix function Q(-y) should be a generator
for small enough values of "t so Qre = 0 for all r 2:: o. For a definition of analyticity of
matrix functions, see appendix B.4. If the initial distribution and the transition rates
are functions of "t then the transient distribution is clearly also a function of T

1I"(t,,) = <I>(-y)exp(tQ(,)).

Similar to the expansion (3.5) for the direct methods, the expansion

(3.11)

can be used here. Just as in formula (3.7), the vector functions Wk(-y) = 2:~o,rwkr are
determined by Wk(-y) = Wk(,) - Wk(-Y), with

WO(,)
wo(,)

<1>(,) ,
w(,),

<I>(-y)[Q(-y) + q(,)]k
w(t)l(-y)

Wk-1(,)[Q(,) + q(-y)],
Wk-1 (-y )q(-y) ,

for all k 2:: l. From this and (3.8), the following approximation and recursion are
immediately obtained:

K R tk
1I"KR(t,,) = w(-y) + e-tq(-y) k~oIo k[,rWkr,
WkT = Wkr - Wkr, for k, r 2:: 0,

WOr = <1>" Wkr = t Wk-1,s[Qr-s + qr-s], for k 2:: 1 and r 2:: 0,
s=o

T

WOr = W" Wkr = 2: wk-1,sqr-s> for k 2:: 1 and r 2:: O.
5=0

(3.12)

With this recursion, the calculation of Wkr and Wkr does not involve negative numbers if
qr 2:: SUPi IqTiil for all r 2:: O. Possibly w(-y) and exp( -tq(-y)) will need to be approximated
as well, but this will be ignored here. The closed-form solution to the recursion (3.12) is

5=0

T k

1:<l>r-s 1: II[Qnt + qnt],
n E INk £=1
ne=s

(3.13)

r k

1:e.,; 1: IIqn"
.=0 n E Nk 1=1

ne=s

(3.14)
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for k, T :2: 0, with the definition IN° == {OJ. Only formula (3.13) will be proved by
induction. The proof of (3.14) is very similar and will be omitted. For k = 0, the
summation in (3.13) is empty unless s = O. The expression correctly reduces to tPr.
Suppose that the closed-form solution is correct for 0 ~ k ~ K - 1. Then

r

WKr = L WK-l,t [Qr-t + qr-tlt=O

t {i: tPt-s L KIf [Qnt + qnt]} [Qr-t + qr-t]
t=O s=O n E INK-l (=1

st tPr-s ttn E ~~~ {7Ql
1

[Qnt + qnt]} [Qt + qt]
ne=s-t

r K
L tPr-s L IT [Qnt + qnt] .

8=0 n E INK l=1
ne=s

For the third equality, first replace s by t - s, then reverse the order of summations, and
finally replace s by T - sand t by T - t. The fourth equality replaces t by nK. This
completes the proof of (3.13).

The approximation (3.12) can be calculated for any choice of w(r) and q(--y). The
obvious choices are analogous to the direct methods in section 3.1. Then the scalar
function q(-r) is either identically zero or qr = sup, Iqr" I for all T :2: O. The vector
function w(r) is either identically zero or equal to the steady-state distribution. For
these choices the recursion can be simplified, because wCY)Q(-r) == o. In that case

WO(-r) = tP(-r) - w(r),
Wk(-r) = [tP(-r) - wCY)] [Q(-r) + q(-r)]k = wk-lb) [Qb) + q(-r)], for k:2: 1.

This renders the recursion

WOr=tPr-wr, T:2:0,

Wkr = t Wk-l,8 [Qr-s + qr-s], T:2: 0 and k :2: l.s=o
(3.15)

Compared to recursion (3.12), this new recursion is simpler and requires slightly less com-
putations, but the number of matrix multiplications remains the same. It is numerically
less stable because it involves negative numbers. It has the closed-form solution

r k

Wkr = L [tPr-s - wr-s] L IT [Qnt + qntl ,
8=0 nE~'~1

ne=s

for k, T :2: o.
It may seem that the recursions (3.12) and (3.15) for the transient PSA are com-

putationally much more expensive than the recursion for the direct methods (3.6). This
need not be true. Multiplying by all the Qr, T :2: 0, will not be much more work than
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multiplying by just Q when the Qr are more sparse. For example, with the transforma-
tion in the previous chapter, the number of non-zero off-diagonal elements of Q is equal
to the total number of non-zero off-diagonal elements of the Qr, r ~ o. Also, it is not
unusual that many of the Qr and qr are identical. Then the amount of work can be
reduced by changing the order of summation and matrix multiplication. So, the number
of coefficients that needs to be calculated is much larger than for the direct methods,
but the amount of work per coefficient need not be much larger.

Like for the steady-state analysis, power-series expansions of performance measures
can easily be obtained from those of the distribution. The transient expectation of the
analytic row-vector function

00 00

f(t,,) = LLtk,rfkr
k=Or=O

can be obtained from the expansion (3.11) of the column vector 7T(t, ,):
00 00

7T(t,,)f(t,,) = wh)f(t,,) + e-tq(-y) L Ltk,rVkT>
k=Or=O

with

Of course, this expression greatly simplifies if f(t,,) is independent of t and/or f.

Applying the ideas of the PSA to transient analysis has led to bivariate power-series
expansions in time t and the model parameter "(. The coefficients of these expansions
are tractable, but the amount of work to obtain the coefficients is considerably increased
compared to the direct methods. The numerical results of the direct approximation (3.6)
correspond to the PSA approximation (3.12) with truncation level R = 00. Thus, the
PSA introduces unnecessary truncation errors. For transient methods and bivariate
power series, extrapolations methods turn out to be less effective in reducing these trun-
cation errors. The only advantage of the PSA seems to be that the coefficients of the
expansions of performance measures need only be calculated once. Subsequently, the
obtained power series can be evaluated at many different values of the model parameter
, without much effort. With the direct methods, each value of , needs to be dealt with
separately.

3.3 Analyticity

It will be shown that the transient distri bution 7T(t, ,) is an analytic function of both time
t and the model parameter ,,(, provided that the initial distribution <Ph) and the transi-
tion rates Qh) are analytic in "(. The way to prove this will be by proving convergence
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of expansion (3.11) for all t ~ 0 and for

111 < R(rf>,Q,q,w) == min{R(rf»,R(Q),R(q),R(w)}.

Here, R(rf», R(Q), R(q) and R(w) are the respective radii of convergence of rf>(r), Q(r),
q(r), and w(r). For a definition of the radius of convergence of analytic matrix functions,
see appendix B.4. Since q(r) and w(r) can be chosen in such a way that they are entire
functions, this implies the analyticity of 71'(t,,). The expansion (3.11) converges for all
values of time and for all values of, for which the power-series expansions of rf>(r) and
Q(r) converge. More than this cannot be expected. If rf>(r) and Q(r) are entire functions
of" then so is the transient distribution 71'(t,,).

The power series in t obtained by the direct methods in section 3.1 converge under
the assumption that the generator Q is uniformizable. Implicitly this is also assumed
here. Analyticity of Q(r) implies that for each R with 0 < R < R(Q), an a exists such
that IIQrl1 :::;«R:' (see appendix B.4). Consequently,

(3.16)

for all 111 < R. The generator is bounded and uniformizable inside the region of conver-
gence.

00 00 k

Theorem 3.1 The summation L L b,rwkrl with
k=Or=O .

r k
WkT = L rf>r-s L Il [Q"t + qntl

s=o " E INk [=1
ne=s

T k
L WT-S L Il q"tl for k, r ~ 0,

s=O 'n E INk [=1
ne=s

converges for all t ~ 0 and 111 < R(rf>,Q,q,W).

Proof: Choose a positive R < R(rf>,Q,q,w). Then, according to appendix B.4, positive
constants a1, a2, a3 and a4 exist, such that
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for all T ~ O. This provides a bound on the coefficients:

r k
L: II4>r-.11 L: flllQnl + qnlll

.=0 n E fIIk [=1
ne=s

r k
L: o.1Rs-r L: Il(0.2 + o.3)R-nl

.=0 n E INk (=1
ne=s

r k
+ L: IIWr-sll L: Il qn,

s=O n E INk (=1
nee s

r k
+ L: o.4Rs-r L: fl o.3R-n,

5=0 n E fIIk 1=1
ne=s

<

r k
L: 0.1(0.2 + o.3)kRS-r L: Il R-n, +

s=O n E INk [=1
ne=s

< 13d3~t R5-r L: tc=
8=0 n E iljk

IM3~tc:# { nn~iNk I ne ::; T }

f3d3~R:' (rtk) ,

r k
L: o.4o.;Rs-r L: fl R-n,

s=O n E INk /=1
ne=s

for all t ~ 0 and hi < R. This is true for all positive R < R(4),Q,q,w), which shows
that the summation is absolutely convergent for all t ~ 0 and hi < R(4),Q,q,w). 0

3.4 Non-homogeneous Markov processes

In section 3.2, the transient distribution 7r(t, 1) was obtained for the Markov process with
generator Q(-y) and initial distribution 4>h). The parameter 1 is allowed to have any
physical interpretation, so it can even denote time. Then the generator Q(t) in (3.10)
varies over time and the Markov process is non-homogeneous. This observation leads to
a promising new algorithm for the analysis of non-homogeneous Markov processes. The
derivation in the previous two sections remains valid but the expansion (3.11) reduces
to a univariate expansion:

00

7r(t) = 7r(t, t) = w(t) + e-tq(t) L tkuk'
k=O

(3.17)

with

(3.18)
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The double array of coefficients wk,r can be calculated by the same recursion as in sec-
tion 3.2. It requires the specification of not only Q(t), but also cP(t), w(t) and q(t). It
makes no sense to consider the initial distribution as a function of time, so cP(t) == cP
(that is cPo = cP and cPr = a for all r ~ 1). If it exists, w(t) can be chosen equal to
the steady-state distribution or the long-run average distribution for periodic models. If
these are unknown, w(t) will usually be simply the zero vector. It will be difficult to find
suitable time-dependent choices for w(t). As before, q(t) can be chosen equal to zero or
such that qr = SUPi Iqrid, to make the matrix [Qr + qrJ non-negative.

The main advantages of the connection between the non-homogeneous case and the
transformed homogeneous case is that the closed-form solution applies to both and that
theorem 3.1 in the previous section is also valid for the non-homogeneous case. Therefore,
it can be concluded that expansion (3.17) converges for small enough t:

00 l
Corollary 3.1 The summation l: ti l: tWk,t-k converges for all 0 ::::t < R( <p, Q, q, w).

l=O k=O'

The functions cP(t), q( t) and w( t) can easily be chosen in such a way that R( <p, Q, q, w) =

R(Q). However, recursion (3.18) is not a very efficient way to calculate the coefficients of
the expansion. A more efficient recursion can be obtained directly from the differential
system determining the transient distribution (see appendix A):

1I"'(t) = 1I"(t)Q(t), 11"(0) = cPo (3.19)

To derive the recursion, first the power-series expansion of exp( -tq( t)) = l:~o ~ [-tq(t)Jk
will be obtained. By induction, it can be shown that the expansion of qk(t) is equal to

00 k

l(t) = Lti L IIs-:
i=O n E INk i=1

ne=l

For special choices of q(t) this may simplify considerably. The expansion of qk(t) leads
to the expansion of exp( -tq(t)):

exp(-tq(t)) = 00 1 k
k~O k! [-tq(t)J
00 ( l)k 00 k
E -=--r E tk+l l: IT qn,

k=O k. l=O n E INk .=1
ne=l

with
r (_I)k k

s. = k~_O~ L IIqn,·
n E JlJk i=1
ne=T-k
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The scalar coefficients ST can be calculated in a number of calculations that is quadratic
in r. Since IN° == {O}, the first constant So is equal to 1. With this, the expansion (3.17)
can be written as

7r(t) = ~ t
k [Wk + ~ SiUk-i] ,

and the differential system (3.19) as

Equating the coefficients of tk-l renders

(3.20)

for all k ~ 1 and with Uo = if;. Since the diagonal of each QT is non-positive, this recur-
sion involves negative numbers. On the other hand, it requires less computations than
computation by (3.18).

Above, the power-series expansion around t = ° was obtained. The power-series expan-
sion around any T ~ ° can be obtained, starting from the differential system

7r'(T + t) = 7r(T + t)Q(T + t), 7r(T) = if;. (3.21)

The power-series expansion of Q(T + t) around T and the distribution if; at time T
should be known. The corollary states that the transient distribution is analytic in t,
but not necessarily entire: convergence is shown only for t < R( if; , Q, q, w). To calculate
the distribution at time T ~ R( if; , Q, q, w), the procedure can be applied several times if
the generator Q(t) is analytic in t for all t E [0, T]. In that case, (3.16) shows that the
generator is bounded for all t E [0, T]. Therefore, explosion can not occur before time
T and the distribution at time T is well-defined. Also, the generator has a power-series
expansion around each t E [0,T] with positive radius of convergence. The functions q(t)
and w(t) can be chosen such that they also have a convergent power-series expansion
around each t E [0,T]. This shows that the interval [0,T] can be divided into a finite
number of intervals [0, Tr], [Tr, T2],' .. [TN, T] in such a way that the distribution at the
end of each interval can be obtained from the distribution at the beginning of the inter-
val. The size of each interval should be smaller than the radius of convergence of the
expansions at the beginning of the interval. Choosing the intervals large will decrease the
number of intervals, but increase the number of coefficients that need to be calculated
for each interval to obtain a certain accuracy.

The method described here is new and seems promising, especially in cases where the
computational complexity can be reduced. It is not necessary to consider ever smaller
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time intervals to increase the accuracy, like in [120,45]. For a given interval, smaller
than the radius of convergence, accuracy can be increased by increasing the number of
calculated coefficients. Possibly, both methods could be combined. If the problem is ill-
conditioned, the stable formula (3.18) can be used to avoid negative numbers. Otherwise,
the more efficient (3.20) can be used.





Appendix A

~arkov processes

In this appendix, some concepts from the theory of Markov processes will be reviewed
and sufficient conditions for ergodicity of Markov processes will be considered. For irre-
ducible and aperiodic discrete-time Markov chains, the first Foster criterion [55J shows
that a sufficient condition for ergodicity is that the balance equations have an absolutely
convergent non-null solution. It is not required beforehand that this solution is positive.
For continuous-time Markov processes, similar conditions for ergodicity available in the
literature do require that the solution is positive or that the process is uniformizable. The
PSA provides a way to calculate a solution to the balance equations. Since in general the
coefficients of the obtained power series will not be non-negative, there is no guarantee
that the calculated solution to the balance equations is non-negative. Therefore, ergod-
icity conditions that assume that the solution is positive can not be used in section 2.5.
Also, the condition that the process is uniformizable is stronger than necessary. The
theorems in this appendix do not make these assumptions.

Consider a continuous-time Markov process (CTMP) {Xt; t ~ O} on a countable state
space n and transition probability matrix P(s, t) = [PiAs, t)] defined by

..( ) -'- { P { Xt = j I Xs = i },
P.) s, t - 1( . _ .)

t - J ,
for all t > s ~ 0 and i, j E n,
forall t=s~O and i,jEn.

The transition probability matrix is called standard if it is right continuous in t at t = s
for all s ~ O. Then, the (infinitesimal) generator Q(s) = [%(s)] is the right-hand
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derivative of P(s, t) with respect to t at t = s:

()'l' Pij(s,t)-l(i=j)
qij s = irn ,

tls t - s
for all s ~ 0 and i,j EO.

The Chapman-I<olmogorov equation states that the process after time t is completely
determined by the state Xt at time t: P(s, r) = P(s, t)P(t,r), for all r > t > s ~ O. This
can be used to obtain the transition probability matrix from the generator. Subtract
P(s, t), divide by r - t and let r approach t. This renders the differential system

P'(s,t) = P(s,t)Q(t), P(s,s) = I, for all t > s ~ 0,

where differentiation is with respect to t. If at time s = 0 the distribution on 0 IS

according to </>, then the distribution at time t satisfies

7T'(t) = 7T(t)Q(t), 7T(0) = r/>, for all t ~ O.

This is easily deduced from 7T(t) = </>P(O,t).
The process is homogeneous if P(s, s + t) is independent of s. In this case, define

P(t) == P(O, t) and Q == Q(O). The differential system reduces to 7T'(t) = 7T(t)Q, with
formal solution 7T(t) = r/>exp(Qt) = r/> Lk~O tQk. A homogeneous process is called honest
if the departure rate from each state is equal to the sum of the transition rates to the
other states:

qi == -qii = L qij, for all i E O.
jEf2\{i}

The process is uniJormizable if the departure rates are bounded: SUPi qi < 00. A state
i E 0 is absorbing if qi = 0 and instantaneous if qi = 00. The jump matrix R = [rij] is
the transition probability matrix of the embedded discrete-time Markov chain (DTMC)
at jump moments:

l(i -I j),

l(i = j),

if qi > 0, for all i,j E 0,

if qi = 0, for all i,j E 0,

provided all states are non-instantaneous. Let Rk = [rfj] denote the k-th power of the
jump matrix, so rt is the probability that the jump chain is in state j after k jumps,
starting from state i. The process is irreducible if a finite k exists such that r7j > 0 for all
i, j E 0, that is if starting from any state any other state can be reached. It is recurrent
if Lk~l rf; = 00 for any i E 0, that is if the expected number of returns to any state is
infinite.

A homogeneous process is ergodic if it is both irreducible and recurrent and has a
stationary distribution, that is a distribution 7T on 0 such that 7TP(t) = 7r, for all t ~ O.
If a process is ergodic, then the steady-state distribution

7r == lim 7r(t) = lim </>P(t)
t_oo t-t<X>
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exists, independent of the initial distribution 1>, and

ftQ = lim '/r(t)Q = lim '/r'(t) = o.
t-oo t--+oo

If a process is ergodic, the steady-state distribution can be found by solving the balance
equations ftQ = 0 and the normalization equation fte = 1. The reverse is not true: the
existence of a solution '/r to the balance and normalization equations does not imply
that the process is ergodic. Besides the conditions that the process is irreducible, honest
and non-instantaneous, additional conditions are required. According to Asmussen it
is sufficient that '/r ~ 0 and Li '/r;q; < 00 (section 11.4 of [7]). According to Cohen it
is sufficient that sup; q; < 00 and L; l'/ril < 00 (sections 1.3.2 and 1.3.4 of [41]). The
theorem below shows that the weaker condition L; l'/r;lq; < 00 is also sufficient. That
the solution is positive is not assumed beforehand but is deduced from the fact that
the solution for the embedded jump chain is positive. All these conditions ensure that
the process is non-explosive, so almost surely only a finite number of transitions occur
in each finite time interval. For other recent approaches to ergodicity of homogeneous
processes, not based on a solution to the balance equations, see Lindvall [101] and Meyn
and Tweedie [109].

Theorem A.I An irreducible, honest, non-instantaneous continuous-time Markov pro-
cess on state space n is ergodic if a solution '/r = ['/ri] exists such that

'/riq; = 2: «n«, for all i E n,
jHI\{i}

(A.l )

(A.2)

2: l'/rdq; < 00.
iEO

(A.3)

In that case tt is the steady-state distribution.

Proof: First it is shown that the assumptions imply that the jump chain is ergodic, using
theorem 1.7.1 in Chung [38]. Since the continuous-time Markov process is irreducible,
the jump chain is also irreducible, with period d ~ 1 and long-run distribution a = [at]
with a, ='= ~ limk->oorfik ~ O. Define 1> == [1>;] by 1>i ='= '/riqi. Then the balance equations of
the continuous-time Markov process (A.1) and equation (A.3) can be written as

1>i = L 1>jrji, for all i E n,
JEO

L l1>il < 00.iEO

This shows that 1> is a solution to the balance equations of the jump chain and is abso-
lutely convergent. Hence, 1> is a multiple of the long-run distribution of the jumpchain:
1> = ca , with c E IR. Consequently, equation (A.2) shows that LiEO '/ri = LiEO ~ =
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C L:iEO ; = 1. Since all a, are non-negative, c and at least one of the a, must be positive.
This finally implies that the jump chain is ergodic and that c, (7 and <p are all strictly
positive.

By proposition II.2.4 in Asmussen[7], the ergodicity of the jump chain implies that
the continuous-time Markov process is non-explosive. That <p is strictly positive implies
that also 7r is strictly positive. From the normalization (A.2) it then follows that 7r is a
probability distribution satisfying the balance equations. Together with the irreducibility
and the non-explosiveness, theorem II.4.3 in Asmussen [7] asserts that then the Markov
process is ergodic with steady-state distribution 7r. 0

The second theorem is very similar but has slightly weaker conditions. The assumption
that the balance equations are satisfied for all states in the state space is relaxed. The
balance equations need only be satisfied for all but one state. It is concluded that the
balance equations are then satisfied for all states. This requires a reversal of the order
of summation, which is justified without making any additional conditions.

Theorem A.2 An irreducible, honest, non-instantaneous continuous-time Markov pro-
cess on state space n is ergodic if a solution 7r = [7ri] exists such that for some kEn:

7riqi= L «n«, foralliEn\{k),
jEO\{i}

(A.4)

L7ri = 1,
iEO

(A.5)

L l7rilqi < 00.
iEO

In that case 7r is the steady-state distribution.

Proof: Summing the balance equations (A.4) over all i E n\ {k} and reversing the order
of summation renders

(A.6)

L: L: 7rjqji
iEO\{k} JEO\{i}

L: L: 7rjqji L: "Trjqj - L: 7r]q]k'
JEO iEO\{j,k} JEO JEO\{k}

The reversal is justified because the final summation is absolutely convergent:

L: 7riqi
iEO\{k} (A.7)

L l7rjlqj + L l7rjlqjk::; 2 L l"Trjlqj < 00.
JEO jEO\{k} JEO

Subtracting L:iEO 7riqi (which is finite) from (A.7) and reversing the sign, renders the
balance equation of state k:

7rkqk = L 7rjqjk·
jEO\{k}

Therefore, the balance equations are satisfied for all states, the assumptions of this the-
orem imply the assumptions of the previous theorem and the validity of this theorem
follows from the previous theorem. 0



Appendix B

Analytic functions

In this appendix, results from the theory of analytic functions are reviewed. Without
thorough knowledge of these results, a good understanding of the PSA is impossible.
None of the results is new. They can be found in good textbooks on complex analysis;
like [71,115,129]. The approach followed here will be the approach of Weierstrass, based
on power-series. For computational purposes, this is more appropriate than the approach
of Riemann, based on complex differentiability.

The primary reasons to include this appendix are to make the thesis more self-
contained and to give the reader a concise overview to refresh his or her memory. A
secondary reason is that, in many text-books, integration along paths is employed in an
early stage. This is avoided here, because it is not useful for the purpose of this thesis.
Proofs are included because they are mostly short and instructive.

B.1 Series

Let the series Lk:,O Uk be an infinite sum of complex numbers and let SK = L;;=o Uk

be the K-th partial sum of the series. The series is said to converge if S = limK.....oo SK
exists and is finite. It converges absolutely if Lk:,O IUkl converges. A majomnt of the
series Lk:,O Uk is a series Lk:,O v» such that IUkl ::; Vk for all k ~ O.

Theorem B.1 proves that if a series has a convergent majorant, then it is (absolutely)
convergent. It immediately implies that an absolutely convergent series is convergent.

107



108 Appendix B. Analytic functions

Theorem B.2 provides sufficient conditions for the reversal of summations.

Theorem B.l (convergent majorant) If IUk I ::; Vk for all k > 0 and the series
Lk:o Vk converges, then the series Lk:o Uk converges (absolutely).

Proof: For all f{ ~ 0,

Because L~o Vk converges, the right-hand side converges to 0 for K --+ 00. Therefore,
all terms converge to 0 and the series L~o Uk converges (absolutely). 0

Theorem B.2 (reversal of summations) If either of

converges, then both

converge and are equal.

Proof: Let 17 be the minimum of the convergent limits in the assumption (in fact, it
immediately follows from this theorem B.2 that if either of them converges then both
converge and are equal). Then Lf=o IUijl ::; 17 for all i, J ~ 0 and this implies that
L~o IUijl ::; 17 for all i ~O. Thus L~o Uij is (absolutely) convergent for all i ~O.
In a similar way, L{=oI L~o uijl ::; 17 for all I ~ 0 implies that L~o I L~o uijl ::;: 17,

and thus L~o (L~o Uij) is (absolutely) convergent. Equivalently, it can be shown that
L~o (L~o Uij) is (absolutely) convergent.

What remains to be shown is that both double series converge to the same limit.
For all f{ ~ 0, 17K = L~o Lf=o IUijl ::;: 17, so 17K is bounded and increasing in «.
Therefore, it converges and for any ( > 0 a I<, ~ 0 exists such that

L IUijl < (.
(i,j)E IW

max{i,j}>K,

Then L~'o Lf~o Uij = Lf~o L~o Uij differs by at most e from both L~o L~o Uij and
L~o L~o U;j. Therefore, these double series differ at most 2c 0
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B.2 Power series

The power series L~o Uk(Z - a)k around centre a has I<-th partial sum or truncated
power series SK(Z) = L~oUk(Z - a)k. The power series is said to converge in Z E a: if
S(z) = limK.....oo SK(Z) exists and is finite. The radius of convergence of the power series
is the largest r such that the power series converges on the open disk [z - al < r, A
power series converges absolutely in z E a: if L~o IUk(Z - a)kl converges.

The power series converges uniformly on A c a: , if for any E > 0 an integer I«
exists such that IS(z) - SK(z)1 ::; E for all K ~ I<, and all z E A. Loosely speak-
ing, this implies that the function S(z) can be approximated on A to any degree of
accuracy by the truncated power series SK(Z), provided I< is large enough. Notice that
I<, is not allowed to depend on the value of z, which is allowed for pointwise convergence.

The Cauchy-Hadamard theorem B.3 proves that the radius of convergence of a power
series is equal to

R(u) = [limsup IUkll/k ]-1, (B.l)
k .....oo

with the convention that 0-1 = 00 and 00-1 = O. The Weierstrass theorem B.4 proves
that a power series is uniformly convergent and continuous on a closed disk with radius
slightly smaller than R( u). Cauchy's estimate in theorem B.5 provides a geometric upper
bound on the coefficients of a convergent power series. Together with theorem B.I on
absolute convergence this implies that a power series is convergent if and only if it has
a geometric rnajorant, The conversion theorem B.6 shows how a power series around a
can be converted to a power series around b.

Theorem B.3 (Cauchy-Hadamard) The power series L~o Uk( z - a)k is (absolutely)
convergent if Iz - c] < R(u) and divergent if [z - al > R(u).

Proof: If [z - al < R(u), the power series is (absolutely) convergent because it has a
convergent majorant. If R(u) = 0, the set of z E ([ for which convergence needs to be
proved is empty. So suppose that R(u) > 0 and choose r such that Iz - al < r < R(u).
Since r-1 > R(u)-I, IUkll/k will eventually be smaller than r-1. Thus IUkl ::; -:>, say
for all k > I<. Choose a = max {I, luol, IUllr, ... , IUKlrK}. Then IUkl ::; ar-k, for all
k ~ 0, so

00 00 a2: IUk(z - a/I::; 2: ar-klz - alk = _ I _ II .
k=O k=O I z a r

If Iz - al > R(u), then the power series is divergent because the individual terms do not
converge to O. If R( u) = 00, the set of z E ([ for which divergence needs to be proved
is empty. So suppose that R(u) < 00 and choose r such that [z - al > r > R(u). Then
IUk I > r :" infinitely often and therefore

IUk(Z - a)kl = IUkliz - alk > r-krk = 1,
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infinitely often. o

Theorem B.4 (Weierstrass) The power series l::~o uk(z-a)k is uniformly convergent
and continuous on Iz - c] ::::;r for any r such that 0 < r < R(u).

Proof: For any s such that r < s < R(u), an a exists such that IUkl::::;as-k for all k ;::::0
(see the proof of the previous theorem B.3). Choose K, ;::::[In(e]a) + In(sir -1)J/ln(r / s).
Then

for all K ;::::K, and all Iz - c] ::::;r,
Choose an e > 0, z such that Iz - c] ::::;rand d such that Iz + d - al ::::;r. Because

of the uniform convergence, a large enough K exists such that

IS(z + d) - SK(Z + d)1 < t/3 and ISK(Z) - S(z)1 < t/3.

Since SK(Z) is the sum of a finite number of continuous functions, it is continuous.
Therefore, a small enough 8 > 0 exists such that

for all Idl < 8. Combining all three, shows that

IS(z + d) - S(z)1 ::::;£/3 + f./3 + t/3 = e,

for allidl < 0, so S(z) is continuous. o

Theorem B.5 (Cauchy's estimate) If 0 < r < R(u) and

a = sup IS(z)1 < 00,
Iz-al=r

Proof: Consider first the truncated power series SK(Z) = l::f=o Uk(Z - a)k, and define

aK = sup ISK(Z)I.
Iz-al=r

Also, for a given M with 0 ::::;M ::::;K, define

K

TK(Z) = (z - atMSK(z) = UM + I:Uk(Z - a/-M.
k=Ok"lM

Then
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If rP = 27r(I< + 1)-1, then

K 1 e(k-M)it,6(K+l) 0
" en(k-M)it,6 = - = 0
L..- 1_ e(k-M)it,6 1_ e(k-M)i<p = ,
n=O

provided k - M is not a multiple of I< + 1. Thus,

1 K . 1 K K .
-- "T (a + rent<P) = U + -- " U rk-M " en(k-M).<p = U .I<+1L..- K M I<+1L..- k L..- M

n=O k = 0 n=O
kf.M

This provides the bound

IUMIS; ~ t ITK (a + reni<p)I s; ~ t CiKr-M = CiKr-M,+ 1 n=O + 1 n=O

for 0 S; M S; I<, which proves the theorem for finite power series.
To prove the theorem for the infinite power series S(z) = I:%":oUk(Z - a)k, choose

any! > 0 and M ~ O. Since r < R(u), S(z) is uniformly convergent on Iz - c] S; r .

Therefore, a I< ~ M exists such that IS(z) - SK(z)1 S; e for alllz- e] S; r, so CiK S; 0' +!.
Because of the first part of the proof,

IUMIS; O'Kr-M S; (Ci +!) -:";

This is true for any! > 0 and M ~ 0, which proves the theorem. o

Theorem B.6 (conversion) If Iz - bl + Ib - c] < R(u), then
00 00

L Uk(Z - a)k = L Vk(Z - b)k,
k=O k=O

with

Proof: That the two power series around a and b are identical, can be shown by reversing
the order of summation:

f f WUi(b - a)i-k(z - W
k=Oi=k

.f Ui t W(b - a)i-k(z - W
,=0 k=o
00 . 00

I:u; [(b - a) + (z - b)]' I:Ui(Z - a)i.
i=O i=O

This reversal is justified because

which converges if Ib- al + Iz - bl < R(u). o
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Example B.l Consider the power series

The power series is (absolutely) convergent on Izl < 1 = R(u), with limit z(1 - zt2.
The power series is not uniformly convergent on Izl < 1, since for any E > 0 and K 2: 0,
a large enough x < 1 exists such that LbK+! kxk > E. However, the power series is
uniformly convergent and continuous on Izl ~ r for all 0 < r < 1. The coefficients of the
power series do not have a constant majorant, but for any r < 1 = R(u) the coefficients
are bounded by ar-k, with a = r(l- r)-2. The power series around 0 can be converted
to a power series around b:

00 00

I:kzk = I:Vk(Z - W
k=O k=O

with

According to the conversion theorem B.6 this is valid for Ibl+ Ix - bl < 1. In fact, the
power series around b converges to the same limit function z(1 - zt2 for all Ix - bl <
11 - bl = R(v). So for any b =I- 1 it has radius of convergence equal to the distance
between band 1. 0

B.3 Analytic functions

Analyticity is an important characteristic of a function, because analytic functions can be
approximated arbitrarily close by the truncated power series. There are two equivalent
definitions of analyticity, one based on power series and the other on complex differen-
tiability. In the context of this thesis, the first is more useful:

Definition (Analyticity) The function f : ([ --+ ([ is analytic in a E ([ , if a power se-
ries Lbo Uk (z - al exists, convergent and equal to f (z) for all z in a neighbourhood of a.

A function is analytic on A c ([ if it is analytic in all a E A. An entire function is
analytic on ([ . A regular point of a function is a point in which the function is analytic.
The Weierstrass theorem B.4 implies that a function is continuous in all regular points.
The conversion theorem B.6 implies that the set of regular points is an open set.

All points of a function that are not regular are called singularities. There are
different types of singularities. A singularity a is isolated if a has a neighbourhood A,
such that the function is analytic on AI {a}. An isolated singularity a is removable
if f can be made analytic on A by a suitable redefinition of f(a). A non-removable
singularity a is an roth order pole if it is a removable singularity of (x - at f(x) and
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limx_a(x - a)' J(x) = R 1= O. The limit R is called the residue. An isolated singularity
is called essential if it is neither removable nor a pole. Branch points are examples of
non-isolated singularities (see example B.3).

Let A be a neighbourhood of a E ([ , and B a subset of A with accumulation point
a. If a function J : A -t ([ is analytic on A and equal to the function 9 : B -t ([ on B,
then J is called an analytic continuation of g.

The function J is complex differentiable in z if the limit

J'(z) = lim J(z + d) - J(z)
dEC ,d_O d

exists, independent of the direction from which d approaches O. According to the defini-
tion of analyticity based on complex differentiability, a function J is analytic in a if it is
complex differentiable on a neighbourhood of a.

The Taylor theorem B.7 shows that the complex derivative of an analytic function exists
and is again an analytic function. The coefficients of the power series in the definition
of analyticity are uniquely determined by the complex derivatives of J in a. This unique
power series will be called the power-series expansion or Taylor expansion around a of
the function f. Theorem B.8 says that the distance between the centre of a power series
expansion and the nearest singular point is equal to the radius of convergence of the
power-series expansion. Unfortunately, the proof is technical and provides little insight.
The uniqueness theorem B.9 shows that two analytic functions that are equal on a set
with accumulation point are identical in a neighbourhood of the accumulation point.
This implies that the analytic continuation of a function is unique.

Theorem B.7 (Taylor) IJ J : ([ -t ([ is an analytic Junction and equal to
L:~oUk(Z - a)k on Iz - c] < R(u), then all complex derivatives oj J are analytic and
equal to

J(n)( ) - ~ (n + k)! ( )k f II 0z - L.J k' un+k z - a , Jar a n ~ ,
k=O .

on Iz - c] < R(u). The coefficients oj the power-series expansion around a are uniquely
determined by

1
Un = ,J(n)(a), Jar all n ~ O.

n.

Proof: By the conversion theorem B.6, the function J is equal to the power series
around b

J(z) = E [~(i: k)UiH(b - a)i] (z - b)\

if Iz - bl + Ib - al < R(u). The difference quotient in b is equal to

J(b + d) - J(b) _ ~ [~ (i + k) . (b _ )i] dk-1d - L.J L.J k UtH a ,
k=l ;=0
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if Idl < R( u) - Ib- c]. It has positive radius of convergence, so it is continuous in d = O.
Therefore, the complex derivative exists and is equal to a convergent power series around
a:

f'(b) = f(b + d~ - f(bt=o = ~(i + l)Ui+I(b - a)i,

for alllb-al < R(u). Repeated application shows that all complex derivatives exist and
are equal to a convergent power series around a:

for alilb - c] < R(u). Substituting b = a renders f(n}(a) = n!un, for all n ~ O. 0

Theorem B.8 (nearest singularity) If f : ([ -+ ([ is an analytic function and equal
to L:f:o Uk(Z - a)k on Iz - c] < R( u), then f has at least one singular point on the circle
Iz - c] = R(u).

Proof: Let C be the circle [z - c] = R(u) and suppose that all points of C are regular
points of J. This assumption will lead to a contradiction. It implies that each point
c E C has a convergent .power series equal to f on a neighbourhood of c with radius
r(c) > O. For any c E C, let c' E C be such that [c - c/l < r(c)/2. Then, by the
conversion theorem B.6, both r(c/) ~ r(c) -Ic - c'] and r(c) ~ r(c/) -Ic - c'[. Therefore,
Ir(c) - r(c/)1 :S [c - c'] and r(c) is continuous. It is positive on the compact set C and
attains a minimum "i > O. Choose r such that 0 < r < rl' The function f is analytic
on Iz - al < R(u) + rl, so it is continuous on the compact set Iz - c] :S R(u) + rand

is finite.
Choose r2 such that 0 < r2 < rl - r. Choose an

arbitrary C2on the circle Iz - al = R(u) - r2 and let Cj
be the point in C such that ICI- c21= rz- The function
f is analytic in CI and the power-series expansion of f
around CI has radius of convergence r(cj) ~ rj. The
function f is also analytic in C2' Let L:f:o Vk(Z - C2)k be
the power-series expansion of f around C2with radius
of convergence R(v). By the conversion theorem B.6,
R(v) ~ r(cd - ICI- c21 ~ rj - r2 > r, Applying the
Taylor theorem B.7 and Cauchy's estimate from theo-
rem B.5 to the power-series expansion around C2renders

l~f(n}(c2)1 = Ivnl :S -:» sup If(z)l:S o:r-n,
n. Iz-c2!=r

0: = sup If(z)1
!z-a!~R(u)+r

C

Figure B.1
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for all C2 in the circle Jz - aJ = R(u) - tz-
By the Taylor theorem B.7,

for Jz - aJ < R(u). Here, applying Cauchy's estimate from theorem B.5 renders

Multiplying by [R( u) - r2Jkrn, replacing k by i- n, summing over 0 ::; n ::; i and letting
r2 -+ 0 shows that

and

This contradicts the definition of R( u). o

Theorem B.9 (uniqueness) Let the functions f and 9 be analytic in a, an accumula-
tion point of A c ([. If both functions are identical on A, then they are identical on a
neighbourhood of a.

Proof: Let f and 9 be analytic on Jz - aJ < R, with power-series expansions
L~o Uk(Z - a)k and L~o Vk(Z - al. Since a is an accumulation point of A, a sequence
{an} converging to a exists such that an E A, 0 < Jan - aJ < Rand f(an) = g(an) for
all n ~ O.

Both functions are analytic and therefore continuous in a, so

Uo = J(a) = lim f(an) = lim g(an) = g(a) = VO.
n~oo n-c-co

Suppose that Uk = Vk for all 0 ::; k ::; J( - 1. Then

00 00

L: uk(an - a)k = L: Vk(an - a/
k=K k=K

for all n ~ O. Dividing by (an _a)K =I 0 and letting n -+ 00 renders UK = VK. Therefore,
the power-series expansions and thus the functions themselves are identical. 0

Example B.2 The function J(z) = Z2 is analytic on ([ , because the power-series ex-
pansion a2 + 2a(z - a) + (z - a)2 converges and equals J(z) for any z,a E ([. The
function g(z) = JZJ2 = z z is not analytic, as can be seen in the following way. On the
real numbers the functions f and 9 are identical. So if both functions were analytic, they



116 Appendix B. Analytic functions

would be identical on a neighbourhood of any real number. This is not true because 9
is real, whereas J has non-real values on any open set. Another reason why the function
9 is not analytic, is because it is complex differentiable in z = 0 only:

li g(z+rei¢)-g(z) r -2i¢+-+ -i¢ -2i¢+-;ff; rei4> = ;ff] ze z re = ze z.

Unless z=O, the limit depends on the direction rp at which 0 is approached. Therefore,
there is not a single point with a neighbourhood on which 9 is complex differentiable. 0

Example B.3 Consider the square-root function. If x is a non-negative real number,
then fi is unambiguously defined as the non-negative number such that (y'x)2 = x.
The generalisation to complex values of x is less clear. Let J : ([ ~ ([ be a function
such that j2(x) = x for all x E ([ . Then this function maps any point x = rei4> to either
+Jrei¢/2 or -Jrei4>/2. For 0 :S 'if; < 271",let C'" be the set of all complex numbers ([
except for the half line starting in the origin at angle 'if; with the positive real axis. With
appropriate choices of either the plus or the minus sign, the function J can be made
continuous on any set C.p. However, it can not be made continuous on ([ . Nor can it be
made continuous in the branch point x = 0, so surely it is not analytic there.

B.4 Analytic multivariate matrix functions

In the previous section, a scalar function was defined as analytic in a point if it is equal
to a convergent power series on a neighbourhood of this point. This can be generalized
to multivariate matrix functions J : ([ e ~ ([ mxn. Consider the power series around
a E ([ '.

L (z - atUk, (B.2)
kEN'

with z E ([ l, Ui; E ([ mXn for all k E INt, and zk == Z~' X .. , X z;'. This power series will
be called convergent in z if

Iim
'-"Xl

L (z-a)kUk =0,
kEI'II,\N,

for all sequences of sets {o} c No C Nt C ... such that lim;_oo.M = INt. It is
easily shown that the multivariate matrix power series (B.2) converges if the following
multivariate scalar power series of positive numbers converges:

L (z - a)k IIUkll.
kEIN'

This is a generalization of absolute convergence. A function J(z) will be called analytic
in a E ([ l if it is equal to a convergent power series on a neighbourhood of a. If I., m and
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n are finite, like for scalar functions, the concepts of neighbourhood and convergence are
unequivocal because all norms are equivalent. If any of f, m and n is infinite, then these
concepts depend on the norm that is used. A function can be analytic or not, depending
on the norm that is used.

For univariate matrix functions f : ([ -> ([ mxn, the radius of convergence is equal
to

(B.3)

This is a generalization of (B.l) and can be proved in a similar way. Consequently, if a
univariate matrix function is analytic, then for all 0 < r < R(U) an a > 0 exists such
that IIUkl1 ~ ar-k for all k ~ o.





Appendix C

Extrapolation methods

In the previous appendix analytic functions were discussed, with emphasis on the rela-
tion between analyticity of a function and convergence of the power-series expansion.
To find the value of an analytic function one can evaluate the power-series expansion.
However, convergence may be slow or one may want to evaluate the function outside
the convergence region of the power-series expansion. In this appendix, some methods
will be discussed to improve convergence properties. This can be either acceleration of
convergence or even turning divergent series into convergent series. These method are
reviewed here because they are essential for an efficient implementation of the PSA. For
a more elaborate overview of extrapolation methods, see the textbooks by Baker and
Graves-Morris [12,13J and by Brezinski and Redivo Zaglia [34,35J.

An extrapolation method converts a sequence {Sdk~O with limit S, into a new sequence
{Tkh~o with limit T. In this thesis, the elements of these sequences will usually be the
partial sums of a power series. If the new limit T is equal to S, then the extrapolation
method is called regular. A regular method is called accelerating if the new sequence
converges faster to S than the original, that is if lim (Tk - S)/(Sk - S) == o. As examples,

k-+oo
consider the following two transformations:

T _ Sk+! + Sk
k - 2 ' (C.l)

and

(C.2)

119
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The first linear transform (C.1) is very natural if Sk-S is alternating. Clearly it is regular
on any convergent sequence. However, if the original sequence is monotone, then it is not
accelerating. The second transform (C.2) is known as Aitken's [::..2 method. It is especially
suitable for sequences that are mainly geometrically convergent. If Sk = S + o:(3k, with
0: =f 0 and 1(31 < 1, then it immediately finds the right limit S. However, the method
can not be applied if the original sequence is constant. These examples illustrate that
particular methods may work well on certain types of sequences, but poorly on others. In
fact, it can be shown that no extrapolation method exists that accelerates all sequences
(see section 1.10 in [35]). Therefore, the best method does not exist and it makes sense
to use different types of methods.

Extrapolation methods should be used with great caution. Consider the sequence
of numbers 1, 0, 1, O. In an IQ test, the correct guess of the subsequent number would
undoubtedly be 1. However, life is no IQ test. Given these first 4 elements, the k-th
element of the sequence could have been generated by the equation (24 - 34k + 15k2

-

2k3)/3. Then the next number would be -7. Or maybe there is no regularity at all and
the next number could be any number. Another reason to be careful with extrapolation
methods is that sequences often have small errors. For example, consider the case where
the original sequence is constant up to rounding errors. Applying an extrapolation
method would be trying to find regularity in meaningless noise, possibly with disastrous
results.

However, practice has shown that extrapolation methods can be of great help in
accelerating convergence. Also in combination with the PSA, they have proved to be very
effective. The amount of work necessary to compute the coefficients is rapidly increasing
in the number of coefficients. From this, it will be obvious that it is worthwhile to obtain
as much information from the computed coefficients as possible.

c.i Bilinear mapping

The radius of convergence of a power series around the origin is equal to the distance
between the origin and the nearest singularity of the function defined by the power series
(see theorem B.8). Therefore, the radius of convergence can be enlarged by moving
singularities further away. This is possible with the origin preserving bilinear mapping

ax
y = 1 + bx'

y
x = ---,

a - by
a;:::: 1, b > o. (C.3)
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From a power-series expansion in x, the corresponding power-series expansion in y can
be obtained :

00

I:XkUk

::'+ ,~ ra -' by 1\,
Uo + k~1 l~(li:~l)a-k-lblyk+l] Uk

Uo + f yk t e:::;)a-kbk-1Ut
k=l l=1

f ykVk = T(y).
k=O

To calculate the k-th coefficient of the expansion in y, only the first k coefficients of the
expansion in x are needed. Therefore, the K-th partial sum TK(y) = L:r=o ykVk can be
obtained from the coefficients of the K-th partial sum SK(X) = L:r=o xkUk' This is not
true for the general bilinear mapping y = ~t!~,also called the Mobius transformation,
which is not origin preserving.

Suppose that S(x) is analytic at x = 0, with radius of convergence R(u). Then,
because of Cauchy's estimate in theorem B.5, the coefficients of the power-series expan-
sion have a geometric bound iUki :::; nr-k, with n 2: 0 and 0 < r < R(u). Subsequently,
the Cauchy-Hadamard theorem B.3 shows that the radius of convergence R(v) of the
power series in y is positive:

S(x) =

limsup It (;:::;)a-kbk-lUlll/k
k-+oo [=1

< lim sup [t (;:::;)a-kbk-1nr-l] I/k
k-+oo l=1

li~s~p~ [; (1 + b~)k-T/k
1 + br= -- < 00.ar

Therefore, also T(y) is analytic at y = O. In a similar way, it can be shown that if S(x) is
analytic (singular) at x = x' i: 0, then T(y) is analytic (singular) at y = y' = 1~~:'i: 0
(provided x' i: -b-I

). In particular, if S(x) has a k-th order pole with residue R at
x = x', then T(y) has a k-th order pole at y = y*:

lim ( _ *)kT( ) = lim [ a(x - x*) ]k S(x) = akR
y-+y' y y y x-+x' (1 + bX)(1 + bx*) (1 + bx*)2k'

The way the coefficients of the power-series expansion of T(y) are calculated from those
of S(x) immediately shows that if the first K coefficients of S(x) are zero, then also the
first K coefficients of T(y) are zero. In other words: if S(x) E 0 (xK), for x ! 0, then
also T(y) E 0 (yK), for y! O.
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The previous paragraph shows that, if the original power series has positive ra-
dius of convergence then so has the new power series. Now, it will be shown that the
mapping (C.3) can be used to enlarge the radius of convergence. Define

I [0 a-I)
, b '

VI {zEQ: II ~I~ },z - b(2a-l) < b(2a-l)

V2 = {ZEQ: Ilzl < abl }.

The mapping maps the interval I onto itself and maps the disk VI onto the disk V2. If
a > 1 and b > 0, then the disk VI is inside the disk V2. 8y letting b -t 00 with abl

constant, VI can be made arbitrarily close to the smallest disk around the interval I.
The region V2 \ VI is mapped outside V2, includ-
ing all singularities of S(x) in this region. Sup-
pose that S(x) has singularities in V2\VJ, but
not in VI' Then R( u) < ab I , so the power se-
ries in x will diverge for large values of x in I.
Yet R( v) > abl, so for the y corresponding to
these larger values of x, the power series in y
does converge. Cauchy's estimate in theorem 8.5
shows that the coefficients of the power series
have growth rate at most equal to the reciprocal
of the distance to the nearest singularity. This
indicates that applying the mapping to move sin-
gularities further away from the origin will reduce
the growth rate of the coefficients.

I-a-b-
a-I
=t:

Figure C.l

C.2 Value and pole extrapolation

Possible knowledge about values and poles of the function f : IR -t IRcan be used to find
better approximations. For example, in the section on multipoint Pade approximations
of [13] this information is used to find better Pade approximants. The approach here
will be more straightforward. The starting point will be the J( -th truncated power-series
expansion

K

fK(X) = L>kuk = f(x) + O(XK+I).
k=O

New approximations 9K(X) of the function f(x) will be obtained that also satisfy 9K(X) =
f(x) + O(XK+I), but with the specified values or poles.
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C.2.1 Value extrapolation

Consider first the problem of finding an approximant that has function value Yi at Xi,
for 1 :::::i :::::I. A new polynomial approximant wiJl be obtained with order K + I:

I

9K(X) = fK(X) + I>K+ivi.
i=1

Requiring that 9K(Xi) = Yi for 1 :::::i :::::I leads to the set of equations

I
'" K+iYi = JK(Xi) + wXi Vi,
i=1

for 1 :::::i :::::I.

This can be written as the linear set of equations

The RHS is weJl-defined if all Xi are non-zero. The matrix in the LHS is a Vandermonde
matrix and non-singular if all Xi are different. Then all coefficients Vb V2, .. ·, VI can be
calculated. Both restrictions do not really restrict the applicability.

C.2.2 Pole extrapolation with known residues

Suppose that it is known that the function f has a pole at X = Xi with order Ti and
residue Ri, for 1 :::::i :::::I. For definitions, see section B.3 on analytic functions. Then
choose

I K'L X +JVj
9K(X) = JK(x) + --=~,-=1 _

n(x-Xj)"]
J=I

This new approximant has poles of the same order at the same places. The unknown
coefficients VI, ... , VI are determined by requiring that also the residues are the same:

~ xK+jv
~, J

lim (x - Xi)"9K(X) = -r-r-> = R;.x-+x, TI (Xi - Xj)T]
j=l, ]Ii
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Multiplying by the denominator leads to the set of equations

R -K-l
I

1 I-I f1 (Xl - Xi)'}Xl Xl VI 1 Xl
]=1, #1

1 I-I R -K-l
I

X2 X2 V2 2 X2 Il (X2 - X))T}
i=l, #2

I-I R -K-l
I

1 XI Xl VI I XI Il (XI-Xi)'j
j=l, i#

The matrix is again a Vandermonde matrix and the coefficients can be calculated if all
Xi are different and non-zero. Notice that the coefficients do not depend on I< or the
coefficients uo, ... , UK·

C.2.3 Pole extrapolation with unknown residue

Sometimes it is known that a function has an r-th order pole at X =: a, but with unknown
residue R. If this pole is the smallest singularity, then an estimate of the residue can
be found from the calculated coefficients Uo, ... , UK. This was implicitly done in [20].
Suppose that, except for the pole in a, f(x) is analytic on Ixi ::; S with S > 14 Then
f(x) can be written as

The function g(x) is analytic on Ixl ::; S. According to Cauchy's estimate in theorem B.5,
an Q' exists such that IVkl ::; as-k. Therefore,

and thus

(C.4)

For a definition of the difference operator t.r-l, see section 1.4. Formula (C.4) can be
used to obtain an estimate R of R. For example, if the pole is a simple pole and the
coefficients Uk have been calculated for 0 ::; k ::;K, then R =: aK +IUK can be used as an
estimate of R. If the pole has order 2, then the estimate R =: aK +1 [aUK - UK -1] can be
used. In fact, extrapolation methods can be used to increase the convergence speed of
tills estimate.
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The obtained estimate of the residue can be used in the approach of the previous
section C.2.2. This leads to the new approximation

But better estimates are obtained in the following way. Apart from a way to estimate
the residue, formula (C.4) also shows that, for large k, the coefficients Uk will behave like
a polynomial in k with order r - 1:

r-1
Uk ~ L:r-»;

s=O
(C.S)

Estimates of the coefficients wo, ... , Wr-1 can be obtained by requiring that equality
holds in formula (C.S), for the last r calculated coefficients UK-r+l"",UK. This leads
to the set of equations

(

1 K-r+1
1 K-r+2

1 K

... (K-r+1):=:) (WO ) (UK_r+
l
)... (K - r + 2) Wl UK-r+2

· . -. .· ..· ..
. .. Kr-1 Wr-l UK

The matrix is an invertible Vandermonde matrix, so a unique solution exists. If r was
chosen too large, then the higher order coefficients will be approximately zero. The
obtained coefficients Wo, ... ,Wr-l can be used to estimate all uncalculated coefficients
UK+I, UK+2,···:

K 00 r-I
GK(x) I: XkUk + I: xk I: k'»,

k=O k=K +1 s=O
K r-I 00

I: XkUk + I: Vs I: Xk k'
k=O ,=0 k=K +1

The infinite summations can be expressed in closed form:

00

if s := 0,

L: xkks
:= (~::;,[(K+1)-Kx],

k=K+l
if s := 1,

Similar expressions are available for higher values of s.

C.3 The epsilon, theta and Levin algorithms

This section contains a description of three extrapolation methods. The epsilon algo-
rithm is explained in some detail, based on the close connection with Pade approximants.
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The theta and Levin algorithms are only briefly discussed, but in enough detail to im-
plement the algorithms.

The idea of Pade approximation is to approximate a function f(x) = 2::%"=0 XkUk by the
quotient of two polynomials, of order say Land M. Like with the procedures in the
previous section, singularities can be included in the denominator. The difference is that
the singularities are not specified in advance. The polynomials are chosen in such a way
that the power-series expansion of their quotient, denoted by [L/M1J(x), coincides with
the power-series expansion of the function, up to coefficient K = L + M:

L
2:: XlVi K

[L/Ml,(x) = --:~7='::""0-- = LXkUk + 0 (X
K+I

).

2:: xmWm k=O
m=O

(C.6)

Multiplying by the denominator renders

Equating the corresponding coefficients of the first K powers of x renders the set of
equations

min{M,e}

Ve L WmUl-m, for 0 :::;e:::; L, (C.7)
m=O

min{M,l}

0 = L WmUl-m, for L + 1 < f < L + M. (C.8)
m=O

If the normalization Wo = 1 is used, this set of equations is a set of L + M + 1 linear
equations with the L + M + 1 unknowns Vo, ... , VL and WI,"" WM. These equations can
be solved by first solving the second set (C.8), which can be written as

UL-M+! UL-M+2 UL-M+3 UL WM UL+I

UL-M+2 UL-M+3 UL-MH UL+! WM-! UL+2

UL-M+3 UL-MH UL-M+5 UL+2 WM-2 UL+3 (C.g)

UL UL+I UL+2 UL+M-! WI UL+M

with Uk = 0 for all k < O. Next, the coefficients Vo, ... ,VL can easily be calculated from
the first set of equations (C.7).

The set of equations (C.g) is not always non-singular. In other words, it is not
always possible to find a Pade approximant with specified degrees of the polynomials.
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Take, for example, an analytic function with constant term Uo equal to 0, so f(O) == O.
For any [O/K]f(x) Pade approximant, either [O/K]f(O) #- 0 or [O/K]f(x) == o. So, in
general, the defining equation (C.6) will not be satisfied. A more interesting example is
the function f(x) == 1 + x2 It is not possible to find coefficients vo, VI and wo, WI such
that

Vo + VIX 2 0 ( 3)----==l+x + x .
Wo + WIX

In other words, a [l/l]f(x) Pade approximant does not exist for this function.
The [L/O]f(x) Pade approximant is simply the L-th partial sum of the power series:

Wo ==1 and Vi ==Ul for all 0 ~ p. ~ L. For the [0/M]f(x) approximant, the set of equations
(C.g) is triangular with solution

Wo 1,
m
L UlWm-l, for 1 ~ m ~ M.
l=1

(C.10)

The value of the coefficients does not depend on M. Together with Vo == uo, this easily
renders any of the [O/M]f(x) Pade approximants.

The anti-diagonals of the matrix in (C.g) contain only identical elements. This special
structure makes it possible to calculate Pade approximants more efficiently than with
standard equation solvers. One way to do this is by the epsilon algorithm, originated by
Shanks [124] and Wynn [137,138]. It does not produce the coefficients of the polynomials
in (C.6), but the value of the quotient for a particular value of x. The epsilon algorithm
calculates a two-dimensional triangular array:

The elements of this epsilon table are calculated as follows:

The epsilon algorithm
(k) _ (-k-I) - 0

t_1 - t2k -,

t(k) - ~ xiuo - ~ {,
[=0

(k) _ (k+I) + [ (k+!) (k)]-l
tf+! - ti_1 ti - tf ,

k ~ 0,

k ~ 0,

p. ~ 0, k ~ -P./2.

(C.l1)
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The first column and top row are zero. The second column contains the partial sums.
From these all other elements can be calculated. For example, t~O) is calculated from
tb1

), tP) and t~O). The elements t~~) in the even columns can be shown to be equal to
the Pade approximants [f + k/f]f(x). The elements in the odd columns are intermedi-
ate results with no interesting interpretation. Problems arise when a particular Pade
approximant does not exist. Then the denominator in the last equation of (C.lI) is
zero. For a detailed discussion of such problems, see the textbooks mentioned before
[12,13,35].

From the first K coefficients of a power-series expansion, all the approximants
[L/M]f(x) can be calculated with L + M ~ K, provided they exist. It is customary to
choose the approximant with equal degree of the numerator and denominator (L = M),
unless there is reason to do otherwise. In that case the elements t~k) with k < 0 need
not be calculated. At the end of this section a different selection procedure will be ex-
plained that can also be used to choose between different types of extrapolation methods.

Applying a speed-up procedure to the epsilon algorithm, a new algorithm can be derived
called the theta algorithm:

The theta algorithm
(}(k) _ (}(-k-I) - 0 k> 0
-1 - 2k -, - ,

(}~k) = t x(U(, k ~ 0,
(=0 (C.12)

(}(k) _ (}(k) + [(}(HI) _ (}(k)]-I f >_ 0, k >_ -f - 1,
2£+1 - U-I 2l u,

[
(}(k+2) _ (}(k+1)] [(}(k+2) _ (}(Hl)]

(}(k) _ (}(k+1) 2l 2l 2l+1 2l+1 n 0 k n
2(+2 - U + (}(k+2) _ 2(}(k+1) (}(k) , {. ~, :::: -{. - 1.

2l+1 2l+1 + 2l+1

The difference with the epsilon algorithm is in the rule for the calculation of the even
columns. As a result, the number of columns that can be calculated from the same
first K coefficients is less. The odd columns are intermediate results, the even columns
estimates of S. For an extensive discussion of the theta algorithm, see [35].

A third algorithm is the Levin transform [98,35], defined by

i: (_l)i (~) (i + k + 1)(-1 Sk+i

L(k) _ .=0 Rk+i
l - e 1

L:(-l)i(t)(i + k + ly-l-
i=O' Rk+i

The number Rk is an estimates of the error Sk - S. Levin suggests three different
estimates, leading to three different versions of the transform:

t-transform :
u-transform :

Rk = Sk - Sk-I,

Rk = k(Sk - Sk-d,

R; = _ (Sk - Sk-l) (Sk+l - Sk),

Sk+l - 2Sk + Sk-l
v-transform:
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with 5_1 == O. The different estimates are designed for different types of series: the t-
transform for alternating series, the u-transform for monotonic series and the v-transform
is inspired by Aitken's ~2 method (C.2).

If the partial sums 5k are available for 0 S k S I<, then experience suggests that
L~) is the preferred transform. An efficient way of calculation is as follows:

The Levin algorithm
B = (1±!.)K-1 5k

k K+l Rk'
_ (1±!.)K-1 J.-C, - K+1 R '

K k
L(O) _ ~ Bo

K - ~KCo'

for 0 S k S I<,

for 0 S k S I<,
(C.13)

Notice that the method is not applicable if any of the Rk is zero.

Given these different extrapolation methods, which one is the appropriate choice? Smith
and Ford [127,128] compared a number of extrapolation methods, applying them to a
wide range of different sequences. Among others, they considered repeated application of
Aitken's ~ 2 method, the epsilon and theta algorithms and Levin's t ; u and v transforms.
None of the methods was uniformly best and each method was best on some sequence.
As rules of thumb, they suggest to use

• Levin's u-transform for alternating series, both convergent and divergent,

• The epsilon algorithm for linearly convergent series, monotone divergent series and
series with irregular sign patterns,

• The theta algorithm or Levin's u-transform for logarithmically convergent series.

(If a series {5d is logarithmically! linearly or higher order convergent, then the limit
p = limk~oo 15k+! - Sl/15k - 51 satisfies p = 1, 0 < p < 1 or p = 0, respectively.)
There are too many exceptions to these rules of thumb to use them blindly.

Another approach is to use several procedures and select the best. The problem
here is how to determine which is best, because the correct value 5 is unknown. One
possible selection criterion is the amount of relative variation in the last", elements of
the extrapolated sequences:

max ITkl- min ITklK-I<+!<k<K K-«+1<k<K
min ITkl

K-«+!50k50K
(C.14)

A warning is in order. 1£ the extrapolated sequence converges fast to the right limit, then
the relative variation will soon be small. However, it will also be small if the sequence
converges fast to a wrong limit or if it converges slowly but monotonically.
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C.4 Multivariate extrapolation methods

The idea of Pade approximation can easily be generalized to multivariate functions [13].
Let f : IRs -> IR be a function that can be represented by the power-series expansion

f(x) = L XkUk' with xk == X~I X ... X x;t
kEINs

Let K-, £ and M be subsets of INs. Multivariate Pade approximants can be defined as
the quotient of truncated multivariate power series such that

L xlVI

[K-/£/M]J(x)= lEi: =LxkUk+ L xkdk.L xmw
mEM m kEK. kENS\K.

(C.15)

With normalization Wo = 1 and #£ + #M = #K- + 1, multiplying by the denomina-
tor normally renders a set of linear equations with an equal number of equations and
variables. In the univariate case, the choice K = {O, ... , L + M}, £ = {O, ... , L} and
M = {O, ... , M} is obvious. In the multivariate case there is no analogous obvious
choice. Also, even for special choices of K, L and M, the equations generally do not
have a simple structure. Complex and lengthy computer programs are required. Due
to these additional difficulties, the progress with multivariate Pade approximation has
been less satisfactory than in the univariate case.

A less efficient but simple and flexible alternative is to reduce the multivariate case
to the univariate. Let {Ntll>o be a partition of INS, with each Nt finite. For a given
x E IRs, define the following function F : IR -> IR:

00

F(y) = Lylvl'
1=0

with VI = L xkUk'
kENt

(C.16)

Then
00 00

F(1) = 2:>l = L L XkUk = L XkUk = f(x).
l=O l=O kENt kENS

The partial sums of F(1) correspond to partial sums of f(x) and univariate extrapolation
methods can be applied to the partial sums of F(1). The choice of the sets {Nt} is not
obvious. One possible choice are the diagonal sets

Nt = { n E INS I ~n5 = f }.

For this choice, Genz [58] has shown that (C.16) is of the type (C.15), but with #£ +
#M < #K- + 1. Other possibilities are the square sets

Nt = { n E INS I max ns = f }
1$5$8

or asymmetric versions.
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Samenvatting

Veel computer- en communicatiesystemen kunnen worden bestudeerd met behulp van
Markov processen, maar ook bijvoorbeeld verkeers-, voorraad-, produktie- en gezond-
heidsprocessen. Deze beschrijven de toestand waarin een bepaald proces zich bevindt,
de tijd die het proces in die toestand blijft en in welke toestand het proces vervolgens
overgaat. Neem bijvoorbeeld in gedachten een wachtrijproces bestaand uit een kruide-
nier met een kassa. De toestand van het proces is de lengte van de rij voor de kassa.
Deze rijlengte kan toenemen door het aansluiten van een klant of, als de rij niet leeg
is, afnemen door het vertrek van een klant. Voor de beschrijving van dit proces als
een Markov proces zal daarom tenminste bekend moeten zijn hoeveel tijd er gerniddeld
verstrijkt tussen de aankomst van opeenvolgende klanten en ook hoe lang de bediende
gerniddeld nodig heeft om een klant te helpen.

Bij de analyse van Markov processen kan onderscheid worden gemaakt tussen het
lange-termijn (steady-state) gedrag en het korte-termijn (transiente] gedrag. Deze ver-
schillen doordat het proces begint in een specifieke toestand. Zo zal de rij bij de kassa van
de kruidenier vlak na opening eerst leeg zijn. Ook op lange termijn zal het voorkomen
dat de rij leeg is, maar aan het begin van de dag weet je zeker dat hij leeg is. Veel studies
richten zich op het lange-terrnijn gedrag omdat dit eenvoudiger te analyseren is. Naast
dit verschil in termijn is ook het verschil tussen homogeen en niet-homogeen van belang.
Een proces is homogeen wanneer de eigenschappen van het proces gedurende de tijd
niet veranderen. Wanneer in de winkel de hele dag gemiddeld evenveel klanten per uur
aankomen en de bediende de hele dag even hard werkt dan is er sprake van een homogeen
proces. Wanneer er rekening wordt gehouden met de drukte vlak voor sluitingstijd of de
lunchpauze van de bediende dan is het proces niet homogeen. Homogene processen zijn
aanzienlijk makkelijker te analyseren. Daarom wordt in de praktijk vaak verondersteld
dat een proces homogeen is. Dit zal zelden werkelijk zo zijn, maar is gerechtvaardigd
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wanneer de veranderingen gedurende de tijd klein zijn.
Het gemak waarmee een Markov proces kan worden geanalyseerd hangt in sterke

mate af van het aantal toestanden. Een kleine kruidenier met minder dan 10 klanten
in de rij is gemakkelijk te analyseren. Maar het aantal toestanden loopt al op tot een
miljoen bij een middelgrote supermarkt met ook minder dan 10 klanten per rij maar met
6 rijen. De complexiteit neemt nog verder toe wanneer wordt geprobeerd om de werke-
lijkheid beter te benaderen door rekening te houden met piekuren, bedienden die niet
allemaal even hard werken, klanten die in groepen aankomen of die van rij veranderen,
kassa's die stuk gaan en ga zo maar door.

Het machtreeksalgoritme (power-series algorithm) is een methode die zieh, als een van
de weinige, speciaal richt op meerdimensionale Markov processen, zoals processen met
meerdere wachtrijen. Omdat de geheugencapaciteit van computers beperkt is en de
rekentijden van de methode sterk toenemen met het aantal rijen, kunnen over het alge-
meen modellen met 4 tot 6 rijen worden bestudeerd. De methode kan antwoord geven op
vragen van de klanten, zoals 'Hoe groot is de kans dat ik niet hoef te wachten?' en 'Hoe
lang moet ik gemiddeld wachten?'. Maar ook op vragen van de winkelier, zoals 'Hoeveel
kassa's heb ik nodig' of 'Wat is beter: een lange rij of 6 afzonderlijke rijen?'. Gedurende
de afgelopen tien jaar zijn meerdere artikelen geschreven met succesvolle toepassingen
van het maehtreeksalgoritme op verschillende typen Markov processen, in het bijzonder
binnen de wachtrijtheorie. Doel van dit proefschrift is enerzijds de toepasbaarheid verder
te vergroten en anderzijds de theoretische onderbouwing te verbeteren.

De indeling van het proefschrift is als voigt. In hoofdstuk 1 wordt een overzicht
gegeven van het proefschrift en van de relevante literatuur. De hoofdstukken 2 en 3
beschrijven en bestuderen het machtreeksalgoritme voor respectievelijk de lange-termijn
en de korte-terrnijn analyse van Markov processen. Deze hoofdstukken worden hieronder
nader toegelicht. Tenslotte volgen 3 appendices met additionele informatie over Markov
processen, analytische functies en extrapolatie methoden. Kennis van deze resultaten is
essentieel voor een goed begrip van de theoretische achtergrond van het machtreeksalgo-
ritme en onmisbaar voor een efficient gebruik.

Hoofdstuk 2, over de lange-termijn analyse, begint met een eenvoudig voorbeeld
om de belangrijkste ideeen van de methode te illustreren. Het lange-terrnijn gedrag kan
worden geanalyseerd door het oplossen van een stelsel vergelijkingen, de zogenaamde
evenwichtsvergelijkingen. Echter, wanneer het aantal toestanden van het proces groot is
dan is dit stelsel ook groot en meestallastig op te lossen. Het idee van het machtreeksal-
goritme is nu om het proces te verstoren met een transformatieparameter. Het gedrag
van het proces is dan afhankelijk van deze parameter. Door de manier waarop het pro-
ces wordt verstoord reduceert het lastig op te lossen stelsel tot meerdere eenvoudig op
te lossen stelsels. Zo wordt het lange-termijn gedrag van het verstoorde proces verkre-
gen, dat vervolgens kan worden gebruikt om het oorspronkelijke onverstoorde proces te
analyseren.
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De verstoring kan op verschillende manieren worden aangebracht. De in dit proef-
schrift voorgestelde methode is algemener dan de verstoring in voorgaande publikaties.
Dit heeft tot gevolg dat meer modellen met de methode kunnen worden geanalyseerd.
Netwerken van wachtrijen worden over het algemeen lastiger te analyseren naarmate de
verschillende wachtrijen meer van elkaar afhankelijk zijn. De ruime toepasbaarheid van
het machtreeksalgoritme wordt gei'llustreerd door het toe te passen op netwerken met
zeer algemene afhankelijkheden tussen de aankomsten bij de rijen en tussen achtereenvol-
gende bedieningen bij de afzonderlijke rijen. Ook de routes die klanten door het netwerk
kunnen volgen zijn algemener. Voorheen konden klanten bijvoorbeeld niet terugkeren
naar rijen waar ze al eerder waren geweest. Dit soort netwerken is nu wei analyseerbaar.
Voor deze ruime klasse van netwerken kunnen met het machtreeksalgoritme prestatie-
maten worden bepaald zoals de kans dat het hele netwerk leeg is en het gemiddelde
aantal klanten in het netwerk of bij een specifieke rij. Ook kan het machtreeksalgoritme
worden gebruikt om netwerken te optimaliseren, dat wil zeggen zodanig te ontwerpen
dat bijvoorbeeld de gemiddelde rijlengte zo klein mogelijk is.

De theoretische onderbouwing van de methode wordt ook verbeterd. Wiskundig
gesproken is de omweg via het verstoorde proces gerechtvaardigd indien het lange-termijn
gedrag op een analytische manier afhangt van de transformatieparameter. Alhoewel an-
alyticiteit een zeer fundamentele aanname is van het machtreeksalgoritme, kon deze
veronderstelling voorheen alleen worden bewezen voor enkele zeer specifieke modellen.
Dit wordt nu uitgebreid tot een zeer ruime klasse van modellen, die de voorheen gepub-
liceerde modellen omvat. Ook allerlei andere veronderstellingen van de methode worden
geanalyseerd. Er wordt nagegaan wat er kan gebeuren wanneer een model niet aan
de veronderstellingen voldoet en er worden aanpassingen van de methode gevonden die
eventuele problemen kunnen ondervangen.

Hoofdstuk 3 richt zich op het korte-terrnijn gedrag van Markov processen. Er
wordt een poging gedaan om ook hier de ideeen toe te passen die succesvol bleken te
zijn voor de analyse van het lange-termijn gedrag. Dit leidt tot een generalisatie van
wat algemeen bekend staat als de methode van Jensen. Deze methode wordt eerst
beschreven en er wordt aangetoond dat deze methode vooral goed werkt wanneer hij
wordt voorafgegaan door een lange-termijn analyse. Voor homogene Markov processen
blijkt de methode van Jensen dan aanzienlijk doelmatiger dan het machtreeksalgoritme.
Wel zijn er goede redenen om aan te nemen dat het machtreeksalgoritme gebruikt kan
worden voor niet-homogene Markov processen, maar dit is nog niet getest. Ook worden
interessante theoretische resultaten verkregen over analyticiteit van het korte-termijn
gedrag van Markov processen.
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Het Machtreeks-Algoritme is een flexibele en betrouwbare methode, geschikt voor de
analyse van een ruime klasse van meerdimensionale continue-tijd Markov processen waar-
voor veelal geen andere methoden beschikbaar zijn. De beperkingen van de methode
worden bepaald door de dimensie en de stijfheid van het model.

II

Een continue-tijd Markov proces met generator Q = [qii] is ergodisch als een 1r = [1ri]
bestaat, zodanig dat

1rQ = 0, 1re = 1 en Lil1riqid < 00.

In dat geval is 11" de evenwichtsverdeling. Het is niet noodzakelijk om op voorhand te eisen
dat 1r ~ 0 [1] of dat SUPi Iqiil < 00 [2].

[1] S. Asmussen, Applied Probability and Queues, Wiley, Chichester, 1987.
[2] J.W. Cohen, The Single Server Queue, North-Holland, Amsterdam, 1969.

III

Jensen's methode [3] voor de transiente analyse van ergodische continue-tijd Markov
processen, ook wei bekend als uniforrnisatie of randomisatie, is slechts uniform convergent
over de tijd wanneer gebruik wordt gemaakt van de evenwichtsverdeling.

[3] A. Jensen, Markov chains as an aid in the study of Markov processes,
Skand. Aktuarietidskr. 36 (1953), 317-336.

IV

De normalisatieconstante van de produktvorm verdeling van een gesloten Jackson netwerk
met N klanten, een bediende per station en belasting Pi bij station i (1 ~ i ~1) is gelijk
aan de reciproque van

I

S)(N,I,p)= L IlP7;·
n E INi i=)

Inl=N

Voor grote waarden van N is deze uitdrukking lastig te berekenen. Dit kan als voigt
worden ondervangen. Een aantal van de belastingen PI, ... ,PI kan gelijk zijn. Kies J
gelijk aan het aantal verschiUende belastingen, Uj (1 ~ j ~J) gelijk aan de waarden van
de verschillende belastingen en mj (1 ~ j ~J) gelijk aan het aantal stations waarvan
de belasting gelijk is aan Uj. Dan geldt

SdN,I,p) = S2 (N,J,cr,m) = S3 (N,J,u,m),



met
J

SdN,J,a,m) = L n (mJ-nl+nJ)a;',
n E IN) 1=1 }
Inl=N

S (N Jam) = ~ aN " (N+nJ) nJ (mk-1+nk) (~)mk (~)nk .
3 '" ,WI] c: n] nk (TJ-CT/c Uk-UJ

J= n E NJ k = 1
Inl=mJ-I k#i

Het aantal termen in de laatste uitdrukking is onafhankelijk van N, waardoor berekening
ook voor grote waarden van N eenvoudig is.

v
De hoeveelheid informatie vervat in een enkel toevalsgetal

00

R = L lO-kUk,
k=l

uniform verdeeld op het interval [0,1) (met Uk uniform verdeeld op {O,1, ... , 9} voor aile
k = 0,1, ... ) is gelijk aan de hoeveelheid informatie vervat in een rij toevalsgetallen

00

R,. = L 1O-kU2n(2k_I), met n = 0,1, ... ,
k=1

elk uniform verdeeld op het interval [0,1). Dit impliceert dat er a priori geen essentieel
verschil is tussen enerzijds een deterrninistische wereld met toevallige begintoestand en
anderzijds een wereld met voortdurende toevallige inbreng.

VI

Net als Gods almacht niet beperkt wordt door Zijn deterrninistische natuurwetten wordt
Zijn voorzienigheid niet beperkt door Zijn kanswetten. Beide zijn onderdeel van Zijn
voortdurende creatie.

VII
In onze actiegerichte samenleving wordt wachten vooral als hinderlijk ervaren vanwege
de onmacht om het wachtproces te beinvloeden.

VIII

Antwoord op een sollicitatiebrief is een Jobstijding.

IX

Aangezien de doeltreffendheid van medische behandelingen vaak aanzienlijk groter is bij
patienten die zijn opgenomen in een wetenschappelijk onderzoek en betrouwbare kennis
van veel medische aandoeningen en behandelingen ontbreekt, is het wenselijk om de
voltallige Nederlandse bevolking te betrekken in het eerstvolgende medische onderzoek.
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