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Samenvatting

Dit doctoraat is het resultaat van het onderzoek dat ik gedurende vijf jaar
heb verricht bij de SMACS onderzoeksgroep (Vakgroep Telecommunicatie en
Informatieverwerking, Universiteit Gent) en omvat de analyse van wachtlijn-
modellen met groepsbediening. Een wachtlijnmodel is in feite een wiskundige
abstractie van een situatie waarbij klanten aankomen en een wachtlijn vormen
totdat ze bediend worden. Dergelijke fenomenen zijn alomtegenwoordig in het
dagelijkse leven: mensen die wachten aan een loket in een postkantoor of bank,
mensen in de wachtzaal van de dokter, vliegtuigen die wachten om te kunnen
opstijgen, mensen die wachten totdat ze verbinding krijgen met iemand van
het callcenter, datapakketten die opgeslagen worden in een buffer totdat het
transmissiekanaal vrij is, enzovoort.

De analyse van een wachtlijnmodel vormt het onderwerp van de toegepast
wiskundige discipline genaamd wachtlijntheorie en komt neer op het beant-
woorden van vragen zoals: “Hoeveel klanten staan gemiddeld te wachten?”,
“Hoelang moeten klanten gemiddeld wachten?”, “Is daar een grote variantie
op?”, “Wat is de kans dat datapakketten verloren gaan vanwege een volle buf-
fer?”, “Wat is de kans dat een klant extreem lang moet wachten?”, enzovoort.
In de wachtlijntheorie wordt de kans dat een grootheid zoals het aantal klanten
of de wachttijd zeer groot of lang is een staartprobabiliteit genoemd.

Het specifieke aan de modellen die we onderzoeken in dit doctoraat is dat
het mogelijk is om klanten in groep te bedienen, met andere woorden meerdere
klanten kunnen tegelijkertijd bediend worden. Een lift kan men beschouwen als
een schoolvoorbeeld, aangezien meerdere mensen tegelijkertijd naar een andere
verdieping gebracht kunnen worden. Ook in productie- of transportprocessen
komt het dikwijls voor dat meerdere goederen samen verwerkt of getranspor-
teerd worden. In kwaliteitscontrole bijvoorbeeld, kan classificatie van items
als goed of slecht vaak efficiënter gebeuren door deze in groep in plaats van
individueel te testen. Als het resultaat van een groeptest goed weergeeft, kan
besloten worden dat alle items in deze groep goed zijn. In het andere geval,
zijn er één of meerdere items slecht en kan men om de slechte items te localise-
ren de groep opsplitsen in kleinere groepen en die daarna opnieuw testen. De
groeptest strategie komt vooral tot recht wanneer het percentage van slechte
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items laag is.
Daarnaast worden in netwerken vaak pakketten met dezelfde bestemming en
quality of service (QoS) vereisten gegroepeerd in zogenoemde bursts en worden
deze bursts verstuurd over het netwerk. Dit komt de efficiëntie ten goede, omdat
slechts één header per burst dient geconstrueerd te worden, in plaats van één
header per individueel pakket, wat dus leidt tot een toegenomen throughput.
Enkele voorbeelden van technologieën die gebruik maken van pakket aggregatie
zijn Optical burst switched (OBS) netwerken en IEEE 802.11n wireless local
area netwerken (WLANs).

Een inherent aspect van wachtlijnmodellen met groepsbediening is dat een-
maal de bediening gestart is, er geen nieuwe klanten meer aan de bediening
kunnen toegevoegd worden, maar moeten wachten totdat de huidige bediening
voorbij is, zelfs wanneer er nog plaats is in het bedieningsstation. Zo zullen
mensen die toekomen wanneer de lift vertrokken is, moeten wachten totdat de
lift de inzittende mensen naar hun gewenste verdieping gebracht heeft en te-
ruggekomen is, wat mogelijk lang kan duren in hoge gebouwen. Daarom is het
bij groepsbediening van belang om een doordachte beslissing te nemen wanneer
de bedieningsentiteit beschikbaar is en er minder klanten aanwezig zijn dan er
in principe bediend kunnen worden. Deze beslissing wordt bedieningspolitiek
genoemd.
Er bestaat een uitgebreid gamma aan bedieningspolitieken. De bedieningseen-
heid kan bijvoorbeeld telkens wanneer deze opnieuw beschikbaar is een nieuwe
bediening starten. Hoewel de reeds aanwezige klanten van deze aanpak pro-
fiteren, wordt capaciteit verspild: klanten die vlak daarna toekomen kunnen
niet toegevoegd worden aan de reeds begonnen bediening. Een alternatief voor
deze politiek is dat de bedieningseenheid de bediening uitstelt totdat het aantal
aanwezige klanten de bedieningscapaciteit bereikt heeft, wat op zijn beurt een
negatief effect heeft op de wachttijd van de reeds aanwezige klanten. Een soort
van middenweg wordt geboden door de drempelgebaseerde bedieningspolitiek.
Een nieuwe bediening wordt pas gestart van zodra het aantal aanwezige klanten
een zekere drempelwaarde bereikt heeft. Toch is het van belang te realiseren
dat zelfs met deze strategie, de wachttijden van de reeds aanwezige klanten
hoog kunnen oplopen. Daarom combineren wij in deze doctoraatsthesis een
drempelgebaseerde strategie met een tijdsmechanisme om te verhinderen dat
klanten excessieve wachttijden ondervinden door het te lang uitstellen van een
nieuwe bediening.

De bedoeling van dit doctoraat is om een uitgebreid spectrum van performan-
tiematen te berekenen waarmee een brede waaier van situaties met groepsbe-
diening kunnen geëvalueerd worden en waarmee men in staat is een efficiënte
bedieningspolitiek te selecteren. De bestudeerde performantiematen zijn mo-
menten, zoals de gemiddelde waarde en variantie, en staartprobabiliteiten van
het aantal klanten (het aantal klanten in de wachtlijn wordt vaak bufferbezet-
ting genoemd) en hun wachttijd.
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Dit doctoraat is als volgt ingedeeld. In het eerste hoofdstuk motiveren we ons
werk en introduceren we enkele cruciale begrippen zoals probabiliteitsgenere-
rende functies (PGFs), wiens handige eigenschappen vaak aangewend worden
gedurende de analyse. Daarna bestuderen we momenten en staartprobabilitei-
ten van de bufferbezetting in hoofdstuk 2. De resulterende formules bevatten
nog onbekende probabiliteiten die numeriek berekend moeten worden. Aange-
zien die in sommige gevallen voor moeilijkheden kunnen zorgen, stellen we in
hoofdstuk 3 benaderingen op voor de bufferbezetting. Vervolgens worden in
hoofdstuk 4 de momenten en in hoofdstuk 5 de staartprobabiliteiten van de
wachttijd behandeld. Om de momenten te bekomen, vatten we de wachttijd op
als de som van twee niet overlappende delen, terwijl het voor de staartprobabi-
liteiten handiger is om de wachttijd te interpreteren als het maximum van twee
tijdsperiodes. Verder vertoont het aankomstproces van klanten in de praktijk
dikwijls enige vorm van afhankelijkheid, ook nog correlatie genoemd: wanneer
bijvoorbeeld recent veel klanten aangekomen zijn, komen er waarschijnlijk kort
daarna ook veel toe, aangezien dit kan wijzen op een piekmoment. Daarom
onderzoeken we in hoofdstuk 6 de invloed van correlatie in het aankomstproces
op het gedrag van groepsbedieningsfenomenen en de selectie van een efficiënte
bedieningspolitiek. Tenslotte worden de belangrijkste bijdragen samengevat in
het afsluitende hoofdstuk 7.
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Summary

This dissertation is the result of my research work at the SMACS research
group (Department of Telecommunications and Information Processing, Ghent
University) and it concerns the analysis of queueing models with batch service.
A queueing model basically is a mathematical abstraction of a situation where
customers arrive and queue up until they receive some kind of service. These
phenomena are omnipresent in real life: people waiting at a counter of a post
office or bank, people in the waiting room of a doctor, airplanes waiting to take
off, people waiting until they get connected with the call center, data packets
which are temporarily stored into a buffer until the transmisssion channel is
available, et cetera.

The analysis of queueing models constitutes the subject of the applied mathe-
matical discipline called queueing theory and amounts to answering questions
such as “How many customers are waiting on average?”, “How long do cus-
tomers have to wait?”, “Is there a large variation on the waiting time?”, “What
is the probability that data packets are lost due to a full buffer?”, “What is the
probability that a customer suffers a lengthy delay?”, et cetera. In queueing
theory, the number of customers and their waiting time are often denominated
by respectively buffer content and customer delay. In addition, the probability
that a quantity, such as the buffer content or customer delay, is very large or
lengthy, is generally called a tail probability.

The models we investigate throughout this dissertation have in common that
customers can be served in batches, meaning that several customers can be
served simultaneously. An elevator can be viewed as a classic example, as
several people can be transported simultaneously to another floor. Also, in
a variety of production or transport processes several goods can be processed
together.
Furthermore, in quality control, classification of items as good or bad can often
be achieved more economically by examining the items in groups rather than
individually. If the result of a group test is good, all items within it can then
be classified as good, whereas one or more items are bad in the opposite case,
where the items can then be retested by considering smaller groups. Group
testing is especially of importance when the percentage of bad items is small.

xxi
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In addition, in telecommunications networks, packets with the same destination
and quality of service (QoS) requirements are often aggregated into so-called
bursts and these bursts are transmitted over the network. This is mainly done
for efficiency reasons, since only one header per aggregated burst has to be
constructed, instead of one header per single information unit, thus leading
to an increased throughput. Technologies using packet aggregation include for
instance Optical burst switched (OBS) networks and IEEE 802.11n wireless
local area networks (WLANs).

An inherent aspect of batch service is that newly arriving customers cannot
join the ongoing service, even if there is free capacity (we denominate the
maximum number of customers that can be served simultaneously by server
capacity). For instance, an arriving person cannot enter an elevator that has
just left, even if space is available. This person has to wait until the elevator
has transported its occupants to their requested floors and has returned, which
might take a long time in high buildings. In view of this, it is of importance
to take a well-considered decision when the server becomes available and finds
less customers than it can serve in theory. This decision is called the service
policy.
A whole spectrum of service policies exist. The server could, for instance,
start serving the already present customers immediately. Although the present
customers benefit from this approach, capacity is wasted: customers that ar-
rive later cannot join the ongoing service. An alternative for this so-called
immediate-batch service policy is the full-batch service policy. In this case,
the available server postpones service until the number of present customers
reaches or exceeds the server capacity, which, in turn, has a negative effect on
the delay of the customers waiting to form a full batch (postponing delay).
The threshold-based policy is a kind of compromise between immediate-batch
service policy and full-batch service policy. When the number of present cus-
tomers is below some service threshold, service is postponed, whereas service is
initiated when the number of present customers reaches or exceeds this thresh-
old. It is important to realize that even with this compromise, long postponing
delays are possible. Therefore, in this dissertation, we combine a threshold-
based policy with a timer mechanism that avoids excessive postponing delays.

The purpose of this dissertation is to calculate a large spectrum of perfor-
mance measures, which enable to evaluate a broad set of situations with batch
service and aid in selecting an efficient service policy. The studied performance
measures are moments, such as the mean value and variance, and tail proba-
bilities of the buffer content and the customer delay.

This dissertation is structured as follows. In chapter 1, we motivate our work
and we introduce crucial concepts such as probability generating functions
(PGFs), whose useful properties are frequently relied upon throughout the
analysis. Then we deduce moments and tail probabilities of the buffer content
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in chapter 2. The resulting formulas still contain unknown probabilities that
have to be calculated numerically. As this might become unfeasible in some
cases, we compute in chapter 3 approximations for the buffer content. Next,
moments and tail probabilities of the customer delay are covered in respectively
chapters 4 and 5. In order to analyze the moments, we conceive the customer
delay as the sum of two non-overlapping parts, whereas for the tail probabili-
ties, it turns out to be more convenient to interpret the delay as the maximum
of two time periods. Further, in real life the customer arrival process often
exhibits some kind of dependency. For instance, if a large amount of customers
have recently arrived, it is likely that many customers arrive in the near future,
as it might be an indication of a peak moment. Therefore, we investigate in
chapter 6 the influence of dependency in the arrival process on the behaviour
of batch-service phenomena and on the selection of an efficient service policy.
Finally, the main contributions are summarized in chapter 7.
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Chapter 1

Introduction

1.1 Queueing theory

Queueing systems are omnipresent in daily life: people waiting at a counter
of a post office or bank, people in the waiting room of the doctor, airplanes
waiting to take off, people waiting until they get connected to the call center,
traffic jams, et cetera, are all situations whereby customers (people, airplanes,
cars, et cetera) queue up until they receive some kind of service (get money,
being examined by the doctor, et cetera). Also, in telecommunications, there
are numerous occasions where packets (customers) are stored in a queue un-
til the transmission channel (the server) is available. In practice, it is often
of importance to study the behaviour of queueing systems. For instance, the
manager of a call centre has to assess the efficiency of the centre in order to
decide whether or not to recruit additional personnel. The manager will make
a decision based on the answers on several questions, among which “What is
the mean number of customers waiting to get connected?”, “What is the mean
time that customers have to wait until they get connected?”, “What is the
probability that a customer hangs up because he or she has to wait too long?”,
et cetera.
Providing answers to such questions constitutes the subject of queueing the-
ory. Basically, a queueing model is developed for the system under consider-
ation, whereupon performance measures are deduced by which the system
can be evaluated. A queueing model consists, broadly speaking, of two parts,
the queue and one or more servers. Customers arrive and are stored in the
queue until they are processed by a server (Fig. 1.1). After the model has been
developed, several performance measures are computed. In general, moments
(such as the mean value and variance) and tail probabilities (a tail probability
of a random variable X is Pr [X = n] or Pr [X > n] for n a large number) of
the buffer content (the number of customers in the queue and/or in service)
and customer delay (time that customers have to wait) are the preeminent
performance measures.

1
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Figure 1.1: Example of a queueing system: people (customers) queue up until
they are assisted by the employee at the counter (the server)

The Danish mathematician A.K. Erlang (1878-1929) is considered to be the
founder of queueing theory. In 1917, he studied the holding times of conversa-
tions in telephone exchanges (his paper was translated to French in 1925 to ac-
claim worldwide recognition [54]). Since then, queueing theory has been applied
in many disciplines, such as health care and emergency planning ([23]; [95]),
transportation (car, train and air traffic congestion control, [61]; [84]), stock
management and production process planning ([27]; [102]), machine break-
downs and repairs ([55]; [110]), database management and computer networks
([73]), and many others.
When studying a queueing system, it is of the utmost importance to develop an
appropriate model. Several aspects have to be specified such as the frequency at
which customers arrive, the number of present servers, the speed of the servers,
the number of places in the waiting room, et cetera. In order to represent
characteristics of queueing models in a concise manner, Kendall’s shorthand
notation ([72]) in the form A/B/C/D/E has widely been used. Here, A and B
denote interarrival- and service-time distributions (an interarrival time is the
time between two consecutive instants on which one or more customers arrive,
and the service time of a customer is the time required to serve that customer),
C specifies the number of servers, D represents the queue size (i.e. the maxi-
mum number of customers that can be stored in the queue) and E characterises
the service discipline (i.e. the order in which customers are served)1. Often, D
and E are omitted from the notation. When D is not mentioned, the queue
capacity is assumed to be infinite. If E is not specified, the service discipline is
irrelevant, or it is the usual first-come-first-served (FCFS) discipline, whereby

1Classically, the fifth component represents the size of the population. The service dis-
cipline is then characterised by the sixth component. We have chosen not to mention the
population size in the text, as it is always assumed to be infinite throughout this dissertation
and in the cited papers. Moreover, we intend not to add extra complexity with definitions
that do not contribute to the essence of this dissertation.
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customers are served in the order they arrived in.
Some common notations for A are:

• M : memoryless, which means that the interarrival times are exponen-
tially distributed. In addition, one customer arrives at each arrival in-
stant, which we denominate by single arrivals.

• MX : extension of M , whereby several customers (instead of only one
customer) can arrive at an arrival instant (batch arrivals instead of
single arrivals).

• Geo: the interarrival times are geometrically distributed and it concerns
single arrivals.

• GeoX : generalisation of Geo whereby more than one customer can arrive
at an arrival instant. Hence, the superscript X indicates that customers
can arrive in batches2.

As the exponential distribution is continuous and the geometric distribution
discrete, models with codes M and MX for A are classified as continuous-
time queueing models, whereas Geo and GeoX are categorized as discrete-
time queueing models. In case of a discrete-time model, the time-axis is di-
vided into fixed-length contiguous time periods, called slots, and the interarrival
times are expressed as an (integral) number of slots. Also, services can only
be initiated and terminated at slot boundaries, whereas in the continuous-time
counterpart, a new customer is served immediately when the server is available.
Whenever the queueing system under investigation has a slotted nature, it is
appropriate to adopt a discrete-time queueing model. For instance, in telecom-
munications, operations are synchronized to the system clock, so that a slot
corresponds to the clock interval.
The above mentioned interarrival-time distributions have in common that the
number of arrivals in some time interval is independent of the amount of ar-
rivals in another, non-overlapping time interval, which is called independent
arrivals. Codes such as MAP , BMAP and their discrete-time counterparts
D − MAP and D − BMAP correspond to dependent (or correlated) ar-
rivals. We discuss D − BMAP in chapter 6.
With respect to the distribution of the service times, we mention the following
codes for B:

• M : exponential distribution.

• Ek: Erlang distribution with shape parameter k, i.e. a convolution of k
exponential distributions.

• D: deterministic distribution (constant).

• G: general distribution, i.e. an unspecified distribution.

2In some papers, X represents the exact distribution of the number of customers in the
arriving batches.
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1.2 Batch service

Beside service times and number of servers, another distinction can be made in
the service process: traditional versus batch service. Whereas a traditional
server can serve one customer at a time, a batch server can process several
customers simultaneously. In technical terms, a batch server processes batches
which can contain up to c customers (c is called the server capacity).
An elevator can be viewed as a clear example of batch service, since eleva-
tors can bring several people simultaneously to another floor. Other examples
include transport vehicles, busses, ship locks, ovens in production processes, at-
tractions in amusement parks, et cetera. Furthermore, in telecommunications,
it is often the case that information packets are grouped in larger entities
(batches) and these batches are transmitted instead of each packet individ-
ually. This is mainly done for efficiency reasons, since only one header per
aggregated batch has to be constructed, instead of one header per single in-
formation unit, thus leading to an increased throughput. Technologies using
packet aggregation include Optical burst switched (OBS) networks [36], [96]
and IEEE 802.11n wireless local area networks (WLANs) [80]. More applica-
tions can, for instance, be found in [18].
An inherent aspect of batch-service systems is that newly arriving customers
cannot join the ongoing service, even if there is free capacity. For instance,
an arriving person cannot enter an elevator that has just left, even if space is
available. In view of this, a decision has to be taken, called the service policy,
when the server becomes available and finds less than c customers in the queue.
The server could, for instance, start serving the already present customers im-
mediately ([41]; [90]; [117]). Although the present customers benefit from this
approach, capacity is wasted: customers that arrive later cannot join the on-
going service. An alternative for this so-called immediate-batch service policy
is the full-batch service policy ([30]; [32]). In this case, the available server
postpones service until the system contains at least as many customers as its
capacity, which, in turn, has a negative effect on the delay of the customers
waiting to form a full batch (postponing delay). The threshold-based policy
[65] (also called minimum batch size service policy [37], or general batch-service
policy [94]) is a kind of compromise between immediate-batch service policy
and full-batch service policy. When the number of present customers is below
some service threshold l, service is postponed, whereas service is initiated
when the number of customers reaches or exceeds l. In fact, immediate-batch
service policy and full-batch service policy are special cases. Indeed, the first
corresponds to l = 1, whereas l = c represents the latter. It is important to re-
alize that even with this compromise, long postponing delays are possible when
l > 1. Therefore, in this dissertation, we combine a threshold-based policy with
a timer mechanism that avoids excessive postponing delays: when l (0 ≤ l ≤ c)
or more customers are present, a new service is initiated, whereas otherwise a
new service is started only with probability β. Note that the threshold-based
policy is a special case of this policy (β = 0). To finalize this section, we
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mention that batch service is indicated in the Kendall notation by adding the
superscript (l, c) to the code for B (or (l, c, β) if we include our mechanism that
avoids excessive postponing delays).

1.3 Motivation

Bailey [9] was presumably the first to investigate a batch-service queueing sys-
tem. He obtained the distribution of the buffer content at random time epochs
in an M/G(0,c)/1 queueing system. Since then, many papers, as well in con-
tinuous as in discrete time, have been published about batch-service. Downton
[51] examined the customer delay for the same queueing model as in [9]. Neuts
[91] studied the buffer content at random time epochs and at service completion
times in an M/G(l,c)/1 system. Further, the customer delay in an M/M (l,c)/1
system was calculated by Medhi [88]. Chaudhry and Templeton [32] deduced
the distributions of the buffer content at random epochs and the customer de-
lay in the systems M/G(0,c)/1/K, M/G(0,c)/1, M/G(c,c)/1 and the discrete
Geo/G(0,c)/1. Powell and Humblet [94] calculated the buffer content at ser-
vice completion times in the discrete GeoX/GY /1 system for several possible
service policies Y (these are combinations of thresholds and server vacations -
i.e. the server being unavailable to serve for some time [50]; [58]; [108]), and
Zhao and Campbell [117] studied the buffer content at random slot boundaries
in the discrete GeoX/D(1,c)/1 system. Next, Chang and Choi [29] investi-
gated the buffer content at random, service termination and arrival epochs in
the GeoX/G(1,Y )/1/K queue with varying server capacity Y and vacations,
Yi et al. [115] evaluated the buffer content at the same epochs as [29] in
the GeoX/G(a,Y )/1/K queue and Arumuganathan and Jeyakumar [7] exam-
ined the buffer content at various time epochs in an MX/G(l,c)/1 model. The
buffer content at several time epochs in an M/G(l,c)/1 system with vacations
was computed by Sikdar and Gupta [103]. Kim and Chaudhry [75] studied
equivalences between batch-service and multi-service (i.e. c servers of capacity
one) systems and Samanta et al. [98] derived the buffer content at various time
instants in a discrete GeoX/G(l,c)/1/K system with vacations. Other papers
concerning batch service include [3], [28], [33], [34], [63], [64], [66], [70], [104].

From the above literature overview, it follows that most research concerning
batch-service queueing models has focused on the buffer content, that the cus-
tomer delay has only been studied in the case of single arrivals and that nearly
always independent arrivals are considered. In this dissertation, we study sev-
eral novel aspects of a versatile discrete-time batch-service queueing model (this
model is described in detail in section 1.5). In chapter 2, we compute a funda-
mental formula from which a large spectrum of known as well as new results
regarding the buffer content of such batch-service queues are extracted. As
in all batch-service models, the resulting formulas contain unknown probabil-
ities that have to be calculated numerically. This can become an unfeasible
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assignment especially for large c. Therefore, we deduce in chapter 3 light- and
heavy-traffic approximations of the buffer content that require only a few (and
sometimes no) numerical calculations. To the best of our knowledge, light-and
heavy-traffic approximations have not been studied before for batch-service
queueing models. In chapter 4, we examine moments of the customer delay,
whereas in chapter 5, we deal with tail probabilities of the customer delay.
As the inclusion of batch arrivals forms the novel aspect in the delay study of
a batch-service system, we compare our results to those of the corresponding
single-arrival systems. It will become clear that batch arrivals have an unde-
niable impact and therefore have to be included in the model. Since in nearly
all batch-service queueing models considered in the literature, independent ar-
rivals are considered, we include in chapter 6 correlated arrivals in our model
and we evaluate the influence of it on the behaviour of the system. Finally, we
conclude this dissertation by summarizing the main contributions in chapter 7.

1.4 Probability generating functions (PGFs)

Throughout this dissertation, we extensively make use of probability gener-
ating functions (PGFs). Let z be a complex variable. The PGF X(z) of
some random variable X (X can represent, for instance, the number of cus-
tomers in the queue at some random time instant) is then defined as

X(z) , E
[

zX
]

=
∞
∑

n=0

Pr [X = n] zn ,

with E [.] the expectation operator. The main reason to resort to PGFs stems
from their useful properties, which are mentioned below.

Analyticity

The radius of convergence ℜX of a PGF X(z) is defined so that X(z)
is analytic for |z| < ℜX and not analytic for z = ℜX

3. It holds that ℜX ≥ 1.
As a result, each PGF X(z) is an analytic function of z in the open complex
unit disk {z ∈ C : |z| < 1}. In particular, X(z) is bounded in the closed
complex unit disk {z ∈ C : |z| ≤ 1}, implying that a PGF cannot have poles
in this area. This property is frequently invoked throughout this dissertation.
We often obtain a PGF as a fraction that contains unknowns in the numerator.
We then prove that the denominator has several zeroes in the closed complex
unit disk. On account of the analytic property of PGFs, the numerator also
has to vanish in these zeroes, which leads to a set of equations by which the
unknowns can be determined.

3Vivanti’s theorem was implicitly invoked in this definition for radius of convergence.
Vivanti’s theorem states that if X(z) is a power series with real positive coefficients (which is
the case when X(z) is a PGF) and with radius of convergence ℜX , then X(z) is not analytic
at z = ℜX .
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Normalization condition

Every PGF X(z) satisfies the equation X(1) =
∑∞

n=0 Pr [X = n] = 1. Typi-
cally, one extra equation is required in the abovementioned set of equations.
The normalization condition provides this equation.

Probability generating property

Since Pr [X = n] is the coefficient of zn in the Taylor series expansion of X(z)
about z = 0, the mass function can be extracted from the PGF by computing
derivatives at z = 0:

Pr [X = n] =
1

n!

dnX(z)

dzn

∣

∣

∣

∣

z=0

.

This implies in particular that

Pr [X = 0] = X(0) .

Hence, it is possible to deduce the mass function via these formulas. However,
it is frequently required to calculate tail probabilities of X , i.e. Pr [X > n] for
n a large number. In this case, it becomes unfeasible to apply the probability
generating property as calculating n-th order derivatives becomes unfeasible
when n is large. We then resort to an approximation technique, which is based
on Darboux’s theorem:

Theorem 1. Suppose the power series Y (z) =
∑∞

n=0 y(n)zn with positive real
coefficients y(n) is analytic near 0 and has only algebraic singularities αj on
its circle of convergence |z| = ℜY , in other words, in a neighbourhood of αj we
have

Y (z) ∼

(

1 −
z

αj

)−ωj

Gj(z) ,

i.e.

lim
z→αj

Y (z)

Gj(z)

(

1 −
z

αj

)ωj

= 1 ,

where ωj ∈ C \ {0,−1,−2, . . .} and Gj(z) denotes a nonzero analytic function

near αj. Let ω , maxj Re(ωj) denote the maximum of the real parts of ωj.
Then we have

y(n) =
∑

j

Gj(αj )

Γ(ωj)
nωj−1α−n

j + o
(

nω−1ℜ−n
)

,

with the sum taken over all j with Re(ωj) = ω and Γ(ω) the Gamma-function
of ω (with Γ(n) = (n − 1)! for n discrete).

Note on the one hand that when X(z) is a PGF corresponding to a random
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variable X , it holds that

X(z) − 1

z − 1
=

∑∞
n=0 Pr [X = n] zn − 1

z − 1

=
∞
∑

n=0

Pr [X = n]
zn − 1

z − 1

=
∞
∑

n=0

Pr [X = n]

n−1
∑

k=0

zk

=
∞
∑

k=0

zk
∞
∑

n=k+1

Pr [X = n]

=
∞
∑

k=0

Pr [X > k] zk ,

meaning that [X(z)− 1]/(z − 1) is a power series with positive real coefficients
Pr [X > n]. In addition, due to the analyticity of PGFs in the open unit disk,
[X(z) − 1]/(z − 1) is analytic near z = 0. On the other hand, when in a
neighborhood of the dominant singularities αj (a dominant singularity is a
singularity with smallest modulus, thus on the radius of convergence of X(z))

X(z) ∼

(

1 −
z

αj

)−ωj

Gj(z) ,

it also holds that

X(z) − 1

z − 1
∼

(

1 −
z

αj

)−ωj Gj(z)

z − 1
.

Application of Darboux’s theorem then yields

Pr [X > n] ≈
∑

j

Gj(αj)

αj − 1

nωj−1

Γ(ωj)
α−n

j . (1.1)

Summarized, the approach boils down to locating the dominant singularities of
the PGF X(z) and then relying on formula (1.1). Throughout this dissertation,
the dominant singularities are always poles, so that we deal with one of the
following special cases:

Corrolary 1. When the PGF X(z) has k dominant singularities αj, all poles
with multiplicity 1, formula (1.1) transforms into

Pr [X > n] ≈
k
∑

j=1

Gj(αj)

αj − 1
α−n

j =
k
∑

j=1

α
−(n+1)
j

1 − αj

NX(αj )

D
′

X(αj )
, (1.2)

with NX(z) and DX(z) respectively the (mutually indivisible) numerator and
denominator of X(z).

Corrolary 2. When the PGF X(z) has one dominant singularity, being a pole
α with multiplicity m, formula (1.1) transforms into

Pr [X > n] ≈
G(α)

α − 1

nm−1

(m − 1)!
α−n . (1.3)
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Corrolary 3. When the PGF X(z) has one dominant singularity, being a pole
α with multiplicity 1, formula (1.1) transforms into

Pr [X > n] ≈
G(α)

α − 1
α−n =

α−(n+1)

1 − α

NX(α)

D
′

X(α)
. (1.4)

Moment generating property

When the radius of convergence of the PGF X(z) is larger than one (which we
assume for every PGF from now on), all order moments of X exist and can
be calculated by taking derivatives of X(z) at z = 1. For instance, the first
moment (the mean value) is equal to:

E [X] = X
′

(1) ,

(we use primes to indicate derivatives) and the second moment reads:

E
[

X2
]

= X
′′

(1) + X
′

(1) .

As a result, the variance becomes

Var [X] = X
′′

(1) + X
′

(1) − X
′

(1)2 .

Sum of independent random variables

The PGF Y (z) of a sum of independent random variables (X1, X2, ..., Xn)
equals the product of the corresponding PGFs:

Y (z) = X1(z)X2(z)...Xn(z) .

In the probability domain, this would lead to a convolution of the mass func-
tions of the random variables Xi, which is far from straightforward to calculate,
because a convolution of n mass functions leads to n − 1 summations:

Pr [Y = k] =

k
∑

i1=0

k−i1
∑

i2=0

. . .

k−i1−...−in−2
∑

in−1=0

Pr [X1 = i1] Pr [X2 = i2] . . . Pr [Xn = k − i1 − . . . − in−1] .

Joint PGFs

Let x and z be complex variables. The joint PGF, say X̃(z, x), of two ran-
dom variables X and Y is then defined as

X̃(z, x) , E
[

zXxY
]

=
∞
∑

n=0

∞
∑

m=0

Pr [X = n, Y = m] znxm .

From this definition, it is clear that the marginal PGFs X(z) and Y (z) of
respectively X and Y are equal to

X(z) = X̃(z, 1) =
∞
∑

n=0

∞
∑

m=0

Pr [X = n, Y = m] zn =
∞
∑

n=0

Pr [X = n] zn ,



10 CHAPTER 1. INTRODUCTION

Y (z) = X̃(1, z) =
∞
∑

n=0

∞
∑

m=0

Pr [X = n, Y = m] zm =
∞
∑

m=0

Pr [Y = m] zm .

This technique is often referred to as summing out a random variable. In
addition, the PGF of the sum of X and Y is equal to

E
[

zX+Y
]

= X̃(z, z) =
∞
∑

n=0

∞
∑

m=0

Pr [X = n, Y = m] zn+m .

Finally, when X and Y are statistically independent, the joint PGF of X and
Y equals the product of the marginal PGFs:

X̃(z, x) =
∞
∑

n=0

∞
∑

m=0

Pr [X = n, Y = m] znxm

=
∞
∑

n=0

Pr [X = n] zn
∞
∑

m=0

Pr [Y = m] xm

= X(z)Y (x) .

Note that the property of the sum of independent random variables is in fact
a special case of this property.

To close, we would like to stress that the definition and properties for the
joint PGF of three or more random variables is analogous as those mentioned
for two random variables.

1.5 Model description

This section summarizes the properties of the model under investigation.

• We consider a discrete-time queueing model, i.e. the time axis is divided
into fixed-length contiguous periods, referred to as slots.

• Several customers can arrive during each slot (batch arrivals). The num-
ber of customers that arrive during slot k is denoted by Ak. With the
exception of chapter 6, we consider independent arrivals4. In other words,
we assume in chapters 2-5 that the sequence {Ak}k≥1 consists of inde-
pendent and identically distributed (IID) random variables, with common
PGF A(z). The number of customer arrivals during an arbitrary slot is
denoted by A and has, on account of the IID character of the arrivals,
PGF A(z). The mean number of customer arrivals during a random slot,
E [A], is denoted by λ and is, owing to the moment generating property
of PGFs, equal to A

′

(1).

• For mathematical convenience, we assume that the queue is infinitely
large. Therefore, all arriving customers can enter the queue and will

4The combination discrete time, batch arrivals and independent arrivals is equivalent with
geometrically distributed interarrival times whereby a slot corresponds to unity length of time
and whereby batches consisting of one or more customers arrive at an arrival instant.
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eventually be served if the system is stable (which we assume to hold
- see assumption 1 on page 13). This assumption is not as stringent
as it seems, as in practice queues are very large in order to avoid that
customers are lost due to a full queue.

• There is one batch server of capacity c (c fixed), which means that the
server can process up to c customers simultaneously. When the server
becomes available and finds at least as many customers as the service
threshold l (0 ≤ l ≤ c), it initiates a new service, whereas when the
amount of available customers is smaller than l, the server initiates a
service with probability β and with probability 1−β it postpones its ser-
vice. This feature avoids that customers suffer excessive delays because
the server waits to initiate service until enough customers have arrived.
We assume that the already present customers remain in the queue when
the server postpones service. Hence, during each slot, the system con-
tent consists of the customers being served (the server content) and
the customers waiting in the queue (the queue content). Throughout
this dissertation we also frequently mention the term buffer content,
which we adopt as a generic expression for the system content, the queue
content and the server content.

• A service period is the period between the start and end of the service
of one batch of customers. The service periods are synchronized to slot
marks, in the sense that the server always starts and ends processing at
slot boundaries. As a result and because customers arrive during slots
(thus not on slot marks), an arriving customer has to wait for service at
least until the beginning of the next slot. This kind of synchronization is
also known as LAS-DA (late arrival system with delayed access; see e.g.
[98]). The remaining part of the slot wherein a customer arrives is not
included in what we denominate the customer delay, since we express the
customer delay as an integral number of slots.

• A service time is the length of a service period, in terms of number of
slots. The service time of a batch is dependent on the number of cus-
tomers within it. Given this number, the service time is independent of
all previous service times. We denote the service time of a batch con-
taining j customers by Tj and its corresponding PGF is represented by
Tj(z). We assume that Tj(0) = 0. Note that we do not demand that
T0(z) = 1, which means that the server might be serving a batch contain-
ing no customers. This can be conceived as a server vacation whereby
the length is distributed according to T0(z). During such a server vaca-
tion, the server can do some other useful work. For instance, when an
oven in a production process has no goods to process, the operator might
execute some maintenance work. The maintenance has to be completed
before new goods can be processed and can thus be conceived as a server
vacation.
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• The order at which customers are selected from the queue (the queue-
ing discipline) is irrelevant for the buffer content (chapters 2, 3 and 6).
However, the queueing discipline plays a role when studying the customer
delay (chapters 4 and 5). We investigate the customer delay for the first-
come-first-served (FCFS) discipline.

The shorthand notation for this model thus reads GeoX/G(l,c,β)/1. Our model
includes some special cases:

• β = 0: the threshold-based service policy: when less than l customers are
present, no service is initiated ([37]; [65]; [91]; [94]).

• β = 0 and l = 1: immediate-batch service policy: when at least one
customer is present, a new service is initiated ([41]; [90]; [117]).

• β = 0 and l = c: full-batch service policy: the server only processes full
batches, i.e. batches containing c customers ([30]; [32]; [41]).

• l = 0: the server always starts a new service when it becomes available,
even when no customers are present ([9]; [29]; [32]; [51]).

Remark 1. When studying buffer-related quantities, such as the system con-
tent, the queue content, et cetera, we will always observe these at slot marks.
As service times are also synchronised at slot boundaries, we have to order
these events to avoid ambiguity. We assume that the observation epochs are
immediately after the potential service initiation epochs (and thus also after the
service termination epochs). Since customers arrive during slots, but not on
slot boundaries, the observation epochs occur thus prior to potential arrivals.
In order to illustrate the order of possible events in a slot, we have illustrated
them in Fig. 1.2.

Figure 1.2: Overview of the possible events in a slot
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1.6 Assumptions

The results in this dissertation are valid under the following assumptions:

Assumption 1. The load ρ , λE [Tc] /c < 1. In the case that ρ > 1, more
customers arrive on average than the system can process (when many customers
are present, the server nearly always processes c customers, so that on average
c customers leave every E [Tc] slots), which makes the system unstable. In the
other case, the system is stable (see e.g. [94] for a proof), implying that after
a sufficiently long time period, the system reaches a steady state (also called
stochastic equilibrium), meaning that the distributions of all quantities such as
the buffer content become independent of the slot number. In this dissertation,
we focus on the steady-state behaviour of the system.

Assumption 2. The radius of convergence of each PGF is strictly larger than
1. This implies that all order moments are finite and can be calculated by
means of the moment generating property of PGFs. As mentioned in section
1.4, we designate the radius of convergence of some random variable X by
ℜX . In addition, we define ℜn as the radius of convergence of Tn(A(z)) and
ℜ , min{ℜn : 0 ≤ n ≤ c} and ℜT , min{ℜTn

: 0 ≤ n ≤ c}.

Assumption 3. ℜn ≤ ℜA. It is worth mentioning that we believe that this
assumption is actually a fact, as we have not been able to construct one coun-
terexample5. However, as it is tedious to prove that ℜn ≤ ℜA, we mention it
as an assumption.

Assumption 4. zc − Tc(A(z)) is aperiodic, meaning that the highest common

factor of the set of integers
{

{c} ∪
{

n ∈ N : dn

dzn
Tc(A(z))

∣

∣

∣

z=0
6= 0
}}

equals 1.

Assumption 5. limz↑ℜ Tc(A(z))/zc > 1. This assumption will assure that
zc − Tc(A(z)) has a zero in the interval ]1,ℜ[ (see e.g. [106]), which in turn
entails that the tail probabilities of the studied quantities (for instance the sys-
tem content at slot boundaries, the customer delay, et cetera) are dominated
by this zero and not by the specific dominant singularity of Tc(A(z)). Although
we thus exclude some PGFs Tc(A(z)), the commonly adopted PGFs satisfy this
assumption. The main advantage is that we can present a general solution
whereas otherwise an ad hoc approach would have to be adopted for each PGF
Tc(A(z)).

5When trying to construct a counterexample, one should verify that the constructed A(z)
and Tn(z) are indeed PGFs, by checking the normalization condition and verifying that the
coefficients in the Taylor series expansions of A(z) and Tn(z) about z = 0 are probabilities.
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Chapter 2

Buffer content: exact
analysis

2.1 Preface

In the introduction, we have mentioned that most research concerning batch-
service queueing models has focused on some specific aspect of the buffer con-
tent. In this chapter, we compute a fundamental formula (section 2.2) - the
joint PGF of the queue content, the server content and the remaining service
time - from which we extract an entire gamut of known as well as new results
regarding the buffer content (section 2.3). In section 2.4, we briefly mention
how performance measures can be calculated from these quantities and, in sec-
tion 2.5, we demonstrate that these expressions are useful tools to select a good
service policy. Finally, we show how our results can be applied in the study of
group-screening policies (section 2.6).
In our paper [37], we have computed the PGF of the system content in a model
that is included as a special case in the model discussed throughout this disser-
tation: it adopts the threshold-based service policy and the service times are
independent of the number of customers in the served batches (hence β = 0
and Tn(z) = Tc(z), ∀n). In [43], we have deduced the joint PGF of the queue
content, the server content and the remaining service time for the same model
as in [37] and we have extracted various quantities from this joint PGF. In
[38], we have extended our model from [37] and [43] so that the service times
become dependent on the number of served customers. In this chapter, we opt
to analyze the buffer content immediately for the versatile model described in
section 1.5, as the analysis runs mainly parallel as in our contributions [37],
[38] and [43].

15
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2.2 Joint PGF

In this section, we compute the steady-state joint PGF V (z, x, y) of the queue
content, the server content and the remaining service time of the batch in
service:

V (z, x, y) , lim
k→∞

E
[

zQkxSkyRk

]

,

with Qk (Sk) the queue (server) content and Rk the remaining service time at
slot boundary k and z, x and y being complex variables.
We commence by writing down the system equations, which express the relation
between (Qk+1, Sk+1, Rk+1) and (Qk, Sk, Rk):

(Qk+1, Sk+1, Rk+1) =






























































(Qk + Ak, Sk, Rk − 1) if Rk > 1 ,

(0, Qk + Ak, TQk+Ak
) if Rk ≤ 1 and l ≤ Qk + Ak < c ,

(Qk + Ak − c, c, Tc) if Rk ≤ 1 and Qk + Ak ≥ c ,

(0, Qk + Ak, TQk+Ak
)

if Rk ≤ 1, Qk + Ak < l and service starts
(with probability β) ,

(Qk + Ak, 0, 0)
if Rk ≤ 1, Qk + Ak < l and service does
not start (with probability 1 − β) .

Indeed, in the first case (Rk > 1), the ongoing service continues during slot
k+1, so that customers that have arrived during slot k are stored in the queue
(even when 0 ≤ Sk < c, because customers cannot join the ongoing service). In
the other cases, the server is available at slot mark k+1, because Rk ≤ 1 means
that either the server was not processing during slot k (Rk = 0) or slot k was
the last slot of a service period (Rk = 1). Whether a new service is initiated or
not at slot k + 1 is described by the rules mentioned in the model description
(section 1.5) and is thus dependent on the number of available customers, which
is equal to Qk +Ak because the customers that were in service during slot k (if
any) leave the system at the end of slot k. Note that although Rk = 0 implies
Sk = 0 (when there is no service, no customers are in the server) and Qk < l
(when Qk ≥ l, a service would be initiated if the server was available), Sk = 0
does not necessarily imply Rk = 0. Indeed, when the server is available and if
no customers are present in the system, a new service (of a batch containing zero
customers) might still be started with probability β. This can be interpreted
as a server vacation, whose duration is characterized by the PGF T0(z).
The next step is to translate the system equations into PGFs. On account of
the law of total probability, we obtain:

Vk+1(z, x, y) ,E
[

zQk+1xSk+1yRk+1

]

=E
[

zQk+AkxSkyRk−1{Rk > 1}
]

+ E
[

xQk+AkyTQk+Ak {Rk ≤ 1, l ≤ Qk + Ak < c}
]

+ E
[

zQk+Ak−cxcyTc{Rk ≤ 1, Qk + Ak ≥ c}
]

+ E
[

xQk+AkyTQk+Ak {Rk ≤ 1, Qk + Ak < l, service starts}
]

+ E
[

zQk+Ak{Rk ≤ 1, Qk + Ak < l, service does not start}
]

, (2.1)
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with

E
[

zX{condition}
]

, E
[

zX |condition
]

Pr [condition] .

Next, we invoke the property that the joint PGF of independent random vari-
ables equals the product of the corresponding marginal PGFs. Hence, due to
the IID arrival process, the length of a new service only being dependent on
the number of served customers, the probability that a new service starts if not
enough customers are present being independent of all other random variables,
expression (2.1) can be rewritten as:

Vk+1(z, x, y) =
A(z)

y
E
[

zQk xSkyRk{Rk > 1}
]

+ E
[

xQk+Ak yTQk+Ak {Rk ≤ 1, l ≤ Qk + Ak < c}
]

+ z−cxcTc(y)E
[

zQk+Ak{Rk ≤ 1, Qk + Ak ≥ c}
]

+ βE
[

xQk+Ak yTQk+Ak {Rk ≤ 1, Qk + Ak < l}
]

+ (1 − β)E
[

zQk+Ak{Rk ≤ 1, Qk + Ak < l}
]

. (2.2)

Owing to assumption 1 (the load ρ < 1), the queueing system under investi-
gation eventually - i.e. for large enough values of k - reaches a steady state,
implying that the distributions of all involved random variables become inde-
pendent of their time index k. For instance, Vk(z, x, y) and Vk+1(z, x, y) con-
verge to the common steady-state limit V (z, x, y). Before going to the steady
state, we first introduce some definitions:

q0(n) , lim
k→∞

Pr [Qk = n, Rk = 0] , 0 ≤ n ≤ l − 1 , (2.3)

d(n) , lim
k→∞

Pr [Qk + Ak = n, Rk ≤ 1] , 0 ≤ n ≤ c − 1 , (2.4)

F (z, x) , lim
k→∞

E
[

zQkxSk{Rk = 1}
]

. (2.5)

On account of the law of total probability, the IID arrival process, definitions
(2.3)-(2.5) and

V (z, x, 0) =

l−1
∑

n=0

q0(n)zn ,

(because Rk = 0 ⇒ Qk ≤ l − 1 and Sk = 0), equation (2.2) evolves in the
steady state to

V (z, x, y) =
A(z)

y

{

V (z, x, y) −

l−1
∑

n=0

q0(n)zn − yF (z, x)

}

+

c−1
∑

n=l

d(n)xnTn(y)

+
( x

z

)c
Tc(y)

[

A(z)F (z, 1) + A(z)

l−1
∑

n=0

q0(n)zn −

c−1
∑

n=0

d(n)zn

]

+ β

l−1
∑

n=0

d(n)xnTn(y) + (1 − β)

l−1
∑

n=0

d(n)zn . (2.6)

Note that F (z, 1) means that the service time is summed out from F (z, x):
F (z, 1) = limk→∞ E

[

zQk{Rk = 1}
]

. Next, notice that definitions (2.3) and
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(2.4) imply that

q0(n) = d(n)(1 − β) , 0 ≤ n ≤ l − 1 . (2.7)

Indeed, “Qk+1 = n, Rk+1 = 0” means that the server is not processing during
slot k + 1 and that n customers are present at the beginning of that slot.
This can only be the case if the server becomes available at the end of slot k
(Rk ≤ 1) and if n customers are present at that moment (i.e. Qk+Ak = n) and
if the server does not start service anyway at slot mark k + 1 (with probability
(1 − β)). Hence, Pr [Qk+1 = n, Rk+1 = 0] = Pr [Qk + Ak = n, Rk ≤ 1] (1 − β).
Since ρ < 1, this becomes independent of the slot index k (or k + 1), and thus
leads to expression (2.7). Substitution of (2.7) in (2.6) produces

V (z, x, y)

[

1 −
A(z)

y

]

=(1 − β)

[

1 −
A(z)

y

] l−1
∑

n=0

d(n)zn

+
( x

z

)c
Tc(y)[A(z) − 1]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n)
[

xnTn(y) − zn
( x

z

)c
Tc(y)A(z)

]

+
( x

z

)c
Tc(y)A(z)F (z, 1) − A(z)F (z, x)

+

c−1
∑

n=l

d(n)
[

xnTn(y) − zn
( x

z

)c
Tc(y)

]

. (2.8)

Substituting y by A(z) and letting x → 1 leads to the following expression for
F (z, 1):

A(z)F (z, 1) [zc − Tc(A(z))] =Tc(A(z))[A(z) − 1]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n) [zcTn(A(z)) − znTc(A(z))A(z)]

+

c−1
∑

n=l

d(n) [zcTn(A(z)) − znTc(A(z))] . (2.9)

Note that Tn(A(z)) is also a PGF and it represents the number of arriving
customers during a service of a batch of n customers. Next, substituting y by
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A(z) in (2.8) and appealing to (2.9) yields a formula for F (z, x):

zcA(z)F (z, x) [zc − Tc(A(z))]

=zcxcTc(A(z))[A(z) − 1]

l−1
∑

n=0

d(n)zn

+ βxcTc(A(z))

l−1
∑

n=0

d(n) [zcTn(A(z)) − znTc(A(z))A(z)]

+ xcTc(A(z))

c−1
∑

n=l

d(n) [zcTn(A(z)) − znTc(A(z))]

+ β[zc − Tc(A(z))]

l−1
∑

n=0

d(n) [zcxnTn(A(z)) − xcznTc(A(z))A(z)]

+ [zc − Tc(A(z))]

c−1
∑

n=l

d(n) [zcxnTn(A(z)) − xcznTc(A(z))] . (2.10)

Remark 2. When β = 0 and Tn(z) = Tc(z), ∀n, expression (2.8) transforms,
by relying on (2.9) and (2.10), into formula (4) from our paper [43]. In [43],
we have studied several aspects, including the joint PGF of the queue content,
the server content and the remaining service time, of a model that adopts the
threshold-based service policy and whereby the service times are independent of
the number of customers in the served batches.

Expressions (2.8)-(2.10) provide enough information to deduce a sprectrum of
quantities related to the buffer content, which forms the subject of the next
section. However, formulas (2.8)-(2.10) still contain the unknown probabilities
d(n). In order to explain how these can be calculated, set y = 1 and x = z in
(2.8), leading to

V (z, z, 1)[1 − A(z)] = A(z)F (z, 1) − A(z)F (z, z) ,

which can, by applying (2.9) and (2.10), be transformed into

V (z, z, 1)[1 − A(z)] [zc − Tc(A(z))] =(zc − 1)Tc(A(z))[1 − A(z)]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n)gn(z) +

c−1
∑

n=l

d(n)hn(z) , (2.11)

with

gn(z) ,(zn − zc)Tn(A(z))Tc(A(z)) + zn(zc − 1)Tc(A(z))A(z)

− zc(zn − 1)Tn(A(z)) , (2.12)

hn(z) ,Tn(A(z))zc{1 − zn − Tc(A(z))} − Tc(A(z))zn{1 − zc − Tn(A(z))} . (2.13)

One can prove by means of Rouché’s theorem that zc − Tc(A(z)) has c zeroes
(z0, z1, . . . , zc−1) in the closed complex unit disk {z ∈ C : |z| ≤ 1} (see e.g.
[5]). On account of the normalization condition of PGFs (Tc(A(1)) = 1), we
find that one of these zeroes, say z0, equals 1. The other zeroes zi can be
calculated one-by-one, by means of a standard root-finding algorithm such as
Newton-Raphson, by solving the c − 1 equations

zi = Tc(A(zi))
1/cεi , 1 ≤ i ≤ c − 1 ,
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with εi , eı2iπ/c and ı the imaginary unit1 (the εi’s, together with ε0 = 1, thus
represent the c-th roots of 1). Because V (z, z, 1) is a PGF and since PGFs are
normalized (V (1, 1, 1) = 1) and bounded (i.e. they have no poles) in the closed
complex unit disk, the unknowns d(n) can be determined by solving a set of c
linear equations2, consisting of the normalization condition and c−1 equations
expressing that the numerator of V (z, z, 1) (i.e. the right-hand-side of (2.11))
vanishes at zi, 1 ≤ i ≤ c − 1 (for i = 0, it leads to the trivial equation 0 = 0,
which thus produces no information):

[1 − A(zi)]

l−1
∑

n=0

d(n)zn
i + β

l−1
∑

n=0

d(n) [A(zi)z
n
i − Tn(A(zi))]

+

c−1
∑

n=l

d(n)[zn
i − Tn(A(zi))] = 0 , 1 ≤ i ≤ c − 1 , (2.14)

−c + E [Tc]λ = − c

l−1
∑

n=0

d(n) + β

l−1
∑

n=0

d(n)[c + nE [Tc] − cE [Tn]]

+

c−1
∑

n=l

d(n)[nE [Tc] − cE [Tn]] , (2.15)

whereby we have also taken into account that Tc(A(zi)) = zc
i in (2.14). Owing

to the one-on-one relation between a discrete probability distribution and its
PGF and the uniqueness of the stationary distribution of the system content
at slot marks (because the stability condition holds: assumption 1), this set
of equations has a unique solution. Now, we have all the tools at our disposal
required to deduce all kinds of quantities related to the buffer content.

Remark 3. Equation (2.15) can also be established by utilizing that in a system
in steady state the average number of customers that enter the system in a slot
(λ) equals the average number of customers that leave the system in a slot:

λ = lim
k→∞

E [Sk{Rk = 1}]

=
d

dx
F (1, x)

∣

∣

∣

∣

x=1

.

2.3 Quantities related to the buffer content

In this section, we extract from formulas (2.8)-(2.10) a wide spectrum of quan-
tities related to the buffer content. Let us start with the system content at
random slot marks.

1Throughout this dissertation, z1/c represents the principal branch of the complex c-th

root function, i.e. z1/c , |z|1/ceıArg(z)/c with Arg(z) the principal value of the argument
of z, i.e. a mapping in the interval ] − π, π].

2If zc − Tc(A(z)) is periodic, one cannot always determine the unknowns by solving a set
of c linear equations (for instance when c = 2k, l = c, β = 0 and A(z) =

∑∞
n=0 a(2n)z2n).

The reason stems from the fact that when the period equals p, p zeroes from the set of zeroes
zi are also zeroes of zp − 1 and thus of zc − 1 (this is proved in [5]). Instead, one should then
use ad hoc arguments to reduce the problem into a solvable model (we refer to our paper [43]
for an example).
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2.3.1 System content at random slot boundaries

As the system content U equals the sum of the queue and the server content,
its PGF U(z) is, owing to the properties of joint PGFs, equal to V (z, z, 1).
Hence, substituting V (z, z, 1) by U(z) in expression (2.11) yields

U(z)[1 − A(z)] [zc − Tc(A(z))] =(zc − 1)Tc(A(z))[1 − A(z)]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n)gn(z) +

c−1
∑

n=l

d(n)hn(z) , (2.16)

whereby gn(z) and hn(z) are defined by respectively (2.12) and (2.13). In the
special case Tn(z) = z, ∀n, l = 1 and β = 0, (2.16) transforms into expression
(4) from [117], where the PGF of the system content at random slot marks in
the GeoX/D1,c/1 queueing model is obtained. In addition, when β = 0, we
find formula (13) from our paper [38] and when β = 0 and Tn(z) = Tc(z), ∀n,
we obtain expression (9) from [37].

2.3.2 Queue content at random slot boundaries

Next, we continue with the queue content at random slot marks. Its PGF Q(z)
is found by summing out both the server content and the remaining service
time from the joint PGF V (z, x, y). Hence, letting y → 1 and x → 1 in (2.8)
and applying (2.9), we find

Q(z)[1 − A(z)] [zc − Tc(A(z))]

=(zc − 1)[1 − A(z)]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n) [(1 − zn){zc − Tc(A(z))} + (zc − 1){znA(z) − Tn(A(z))}]

+

c−1
∑

n=l

d(n) [zc − zn + (zn − 1)Tc(A(z)) + (1 − zc)Tn(A(z))] . (2.17)

Note that U(z) 6= Tc(A(z))Q(z) as in [74]. In [74], it is shown that for a
broad class of discrete- and continuous-time queueing systems, the stationary
system content is the sum of two independent random variables, one of which
is the stationary queue content and the other is the number of customers that
arrive during the time a customer spends in service. The relation U(z) =
Tc(A(z))Q(z) does not hold here because the service time of a batch is not
independent of the number of customers within it, which is one of the necessary
conditions in [74]. When Tn(z) = Tc(z), ∀n, then we indeed find that U(z) =
Tc(A(z))Q(z).
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2.3.3 System content at service completion times

The system content Ũ at service completion times3 equals the sum of the
queue content at the beginning of the final slot of the service and the number
of customers that have arrived during that slot. Hence, from the definition of
F (z, x) in (2.5), we get

Ũ(z) = A(z)
F (z, 1)

F (1, 1)
,

(note that the division by F (1, 1) is necessary to assure that Ũ(1) = 1). On
account of expression (2.9) for F (z, 1), this can be rewritten as

Ũ(z) =
1

F (1, 1)[zc − Tc(A(z))]

[

Tc(A(z))[A(z) − 1]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n) {zcTn(A(z)) − znTc(A(z))A(z)}

+

c−1
∑

n=l

d(n) {zcTn(A(z)) − znTc(A(z))}

]

, (2.18)

with

F (1, 1) =
1

c − E [Tc] λ

[

λ

l−1
∑

n=0

d(n) + β

l−1
∑

n=0

d(n) {c + E [Tn]λ − n − E [Tc]λ − λ}

+

c−1
∑

n=l

d(n) {c + E [Tn]λ − n − E [Tc] λ}

]

. (2.19)

When l = 0, β = 0, A(z) = 1 − λ + λz and Tn(z) = Tc(z) in (2.18), we find
formula (4.4.1) from [32]. In [32], the system content at service completion
times has been studied for the following queueing models with batch service:
the continuous time M/G(0,c)/1, M/G(0,c)/1/K and M/G(c,c)/1 queues and
the discrete time Geom/GB/1 queue. Note that, as opposed to the model
in this dissertation, the models in [32] do not include batch arrivals, a service
threshold, a timer mechanism and service times being dependent on the number
of customers within it.

2.3.4 Server content at random slot boundaries

The preceding quantities are in particular of importance from a customer point
of view. Indeed, the larger the queue or system content, the longer the delay
that customers suffer. In the following, we establish quantities that are es-
pecially useful from an economic point of view. In practice, service might be
expensive and therefore it is desired to exploit service capacity efficiently. We
now establish quantities that describe the efficiency of the server usage. Let us
start with the server content at random slot marks.

3Note that we again observe immediately after the potential start of service epoch, but
now conditioned on the event that a service just has terminated.
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Its PGF S(z) is found by summing out both the queue content and the remain-
ing service time from V (z, x, y). Hence, by letting y → 1 and z → 1 in (2.8),
thereby applying l’Hôpital’s rule and relying on (2.10) and finally substituting
x by z, we obtain

S(z) [c − E [Tc]λ]

=(1 − β) [c − E [Tc] λ]

l−1
∑

n=0

d(n) + β [c − E [Tc] λ]

l−1
∑

n=0

d(n)znE [Tn]

+ [c − E [Tc] λ]

c−1
∑

n=l

d(n)znE [Tn] + zcλE [Tc]

l−1
∑

n=0

d(n)

+ zcE [Tc]β

l−1
∑

n=0

d(n){E [Tn] λ − n − λ} + zcE [Tc]

c−1
∑

n=l

d(n){E [Tn] λ − n} . (2.20)

Note that S(z) is a polynomial of degree c, which allows us, owing to the defini-
tion of a PGF, to easily extract the corresponding probabilities (we substitute
(1 − β)d(n) by q0(n)):

Pr [S = n] =






















∑l−1
m=0 q0(m) + βE [T0] d(0) if n = 0 ,

βE [Tn] d(n) if 1 ≤ n ≤ l − 1 ,
E [Tn] d(n) if l ≤ n ≤ c − 1 ,

1 −
∑l−1

m=0 q0(m) − β
∑l−1

m=0 E [Tm] d(m) −
∑c−1

m=l E [Tm] d(m) if n = c ,
0 else .

2.3.5 Number of customers in a served batch

The number of customers in a random served batch, S̃, is, because newly
arriving customers cannot join the ongoing service, equally distributed as the
server content at the last slot of the service period, which yields

S̃(z) =
F (1, z)

F (1, 1)
,

and in view of expression (2.10) for F (z, x), we find, after application of
l’Hôpital’s rule,

S̃(z) =
1

F (1, 1)[c − E [Tc] λ]

[

zcλ

l−1
∑

n=0

d(n) + βzc
l−1
∑

n=0

d(n) {E [Tn]λ − n − λ}

+ zc
c−1
∑

n=l

d(n) {E [Tn]λ − n} + β {c − E [Tc] λ}

l−1
∑

n=0

d(n)zn

+ {c − E [Tc]λ}

c−1
∑

n=l

d(n)zn

]

. (2.21)

Notice that S̃(z) is a polynomial of degree c, which allows us to easily extract
the corresponding probabilities:

Pr
[

S̃ = n
]

=























βd(n)
F (1,1)

if 0 ≤ n ≤ l − 1 ,
d(n)

F (1,1)
if l ≤ n ≤ c − 1 ,

1 −
β
∑ l−1

m=0 d(m)+
∑c−1

m=l
d(m)

F (1,1)
if n = c ,

0 else .
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Remark 4. From the probability distribution Pr
[

S̃ = n
]

it is possible to cal-

culate the service time of a randomly tagged customer. By taking into account
that a randomly tagged customer is more likely to be served in a batch with

more customers (see e.g. [24]), the probability Pr
[

Ŝ = n
]

that this customer

is served in a batch with n customers equals

Pr
[

Ŝ = n
]

=
Pr
[

S̃ = n
]

n

E
[

S̃
] .

As a result, the PGF of the service time of a randomly tagged customer reads

c
∑

n=0

Pr
[

S̃ = n
]

n

E
[

S̃
] Tn(z) .

2.3.6 Probability that the server processes

The probability that the server processes a batch during a random slot ensues
almost immediately from the fact that the server is not serving if and only if
Rk = 0, the observation that Rk = 0 ⇒ 0 ≤ Qk ≤ l − 1, the law of total
probability and the definition of q0(n) in (2.3):

Pr [server processes] = 1 −

l−1
∑

n=0

q0(n) . (2.22)

2.3.7 Queue content when the server not processes

The final quantity we deduce is the queue content at a random slot mark given
that the server is not serving. Its PGF Q̃(z) is found by taking into account
that the server is not processing if and only if the remaining service time equals
0. The server content being zero is a necessary but not a sufficient condition
because the server can process a batch containing zero customers. Hence,

Q̃(z) =
V (z, 0, 0)

V (1, 0, 0)
=

∑l−1
n=0 q0(n)zn

∑l−1
m=0 q0(m)

. (2.23)

The corresponding probabilities thus are:

Pr
[

Q̃ = n
]

=

{

q0(n)
∑ l−1

m=0 q0(m)
if 0 ≤ n ≤ l − 1 ,

0 else .

This quantity is of importance as it gives an indication of the number of cus-
tomers suffering an extra delay because service is postponed (postponing delay).

Remark 5. Note that when l = 0 or β = 1, it makes no sense to calculate

Pr
[

Q̃ = n
]

, as the server always processes in that case.

2.4 Performance measures

The performance of actual batch-service systems is often assessed by evaluat-
ing various moments of the abovementioned quantities (2.16)-(2.23). As we
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have assumed that the radius of convergence of each PGF is larger than one
(assumption 2), all order moments exist and can be calculated by applying
the moment generating property of PGFs. In addition, as buffers have a fi-
nite capacity in practice, the loss ratio - defined as the fraction of customers
that cannot enter the system due to a full queue - has to be assessed. Next,
one often has to dimension the queue size so that the loss ratio is below some
threshold. Although we assume an infinite buffer capacity in this dissertation,
it has been shown in [26] that Pr [Q > b] for an infinite buffer system provides
a good approximation for the loss ratio of the corresponding system with buffer
capacity b, when b is large (which is the case in real life, because the loss-ratio
has to be kept small). However, for large b, it becomes unfeasible to calculate
Pr [Q > b] via the probability generating property of PGFs, as it would require
b-th order derivatives to be taken. Therefore, we resort to the approximation
technique mentioned in section 1.4. First, on account of assumptions 1-5, one
can prove, completely analogously as in [106], that Q(z) has one dominant sin-
gularity, say z̃, that it is a pole with multiplicity one and that it is the only zero
of zc − Tc(A(z)) in ]1,ℜ[4. Consequently, application of formula (1.4) yields

Pr [Q > b] ≈
z̃−(b+1)

1 − z̃

NQ(z̃)

D
′

Q(z̃)
, (2.24)

with NQ(z) and DQ(z) respectively the numerator and denominator of Q(z).
Consequently, the minimum buffer capacity b required to assure that Pr [Q > b]
< 10−m (m is some integer) is found by taking the Neperian logarithm of this
equation and on account of (2.24), we find

b =













ln

(

NQ(z̃)

(1−z̃)D
′

Q
(z̃)

)

+ m ln(10)

ln(z̃)













− 1 .

2.5 Numerical examples

In this section, we demonstrate that the abovementioned performance measures
are useful tools to evaluate batch-service queueing systems. We consider an
example whereby

• The number of customer arrivals during a slot is Poisson distributed (i.e.
A(z) = eλ(z−1)).

• The server capacity c is equal to 10.

• The service times are geometrically distributed with mean length be-
ing dependent on the number of customers (say n) in the served batch:
E [Tn] = 8 + 0.2n. The mean service time thus consists of a constant
part and a part dependent on n. Notice that we have opted for a long
constant part as we feel this is more realistic. For instance, in telecom-
munications, the construction of the header for the batch typically takes
a longer time than the actual transmission. Also, delivering goods has a

4The zero z̃ can be calculated by means of a standard root-finding algorithm such as
Newton-Raphson or, because z̃ lies on the real axis, via the bisection method.
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long constant part (e.g. driving on the highway) and a smaller dependent
part (e.g. loading and unloading).

First, we evaluate the influence of the service threshold l when β = 0. We have
therefore depicted the mean system content, the filling degree (i.e. the mean
number of customers in a served batch divided by the server capacity) and the
probability that the server processes a batch in a random slot versus the load ρ
in Fig. 2.1 (recall that the load was defined in chapter 1 as ρ , λE [Tc] /c). We
notice that in case of low load (also called light traffic), a threshold larger than
one leads to a much larger mean system content when no mechanism exists
to avoid long postponing delays (i.e. β = 0). In case of higher loads, larger
thresholds become preferable, because when more customers arrive, it pays off
to wait in order to exploit the server capacity. When the load tends to one (also
called heavy traffic), the influence of the thresholds fades, as nearly always c
customers will be served anyway. The figures also clearly demonstrate that
the larger the threshold, the better the server capacity is utilised (i.e. a larger
filling degree and a smaller probability that the server processes).

Next, we investigate the influence of the probability β to start a service even
when less than l customers are present. Therefore, in Fig. 2.2, the mean system
content is depicted versus the load for l = 5 and several values of β (part a)
and versus β for ρ = 0.01 (part b) and ρ = 0.7 (part c).
The figure exhibits that in case of light traffic β = 1 is the best option, whereas
it is preferable to select a smaller value for β when the load becomes larger.
Indeed, when customers arrive seldomly, it is better not to wait, whereas it
pays off to postpone service when customers arrive frequently. The figures also
demonstrate that β = 0.1 always leads to reasonable results and thus is a good
selection if the load is not known a priori.

Before closing this section, we investigate the influence of β and l on the queue
capacity that is required to assure that the loss ratio is smaller than 10−6 (Fig.
2.3). We perceive that in case of light traffic l > 1 and β = 0 leads to some
larger required buffer capacity. The reason is that customers stay in the queue,
whereas when β 6= 0 or l = 1, customers leave the system almost immediately.
When the load becomes larger, the required buffer capacity increases and the
influence of l and β fades.
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Figure 2.1: Influence of service threshold l on the behaviour of the system;
Poisson arrivals, β = 0, c = 10, Tn geometrically distributed, E [Tn] = 8 + 0.2n
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2.6 Application: group testing

In this section, we discuss an application for which our results are useful: group
testing. The discussion in this section is mainly based on our paper [42].

2.6.1 Background

Classification of items as good or bad occurs in a wide area of applications.
Often these items are group testable. This means that they can be tested in
groups, so that, when a group test returns good, it can be concluded that
all items within it are good, whereas the opposite result implies that the
group contains at least one bad item. In some applications the whole group
is thrown away in the latter case. Hence, no retesting is required in this so-
called incomplete-identification scenario ([13]; [14]; [15]; [16]). When, on the
other hand, the bad items need to be separated from the good, i.e. complete
identification is necessary, retesting is required. This can, for instance, be
achieved by testing all items of the group individually. This is often referred
to as group-individual screening ([2]). However, often the group is divided into
subgroups which are each subjected to a new group test. When adopting this
group-subgroup strategy, one also has to choose the number of subgroups and
their respective sizes. In order to avoid confusion, we adopt the term group
screening for the complete process, i.e. for the first test on the entire (origi-
nal) group and the possibly other tests on subgroups or individual items of the
group. The group size refers to the number of items in a group or subgroup and
the original group size is the number of items making up the original group.
Dorfman [49] was the first to introduce the paradigm of group screening and
he found an immediate application in the detection of syphilitic men drafted
into military service during WWII. He suggested to apply this procedure also
to manufacturing processes where the defective goods have to be eliminated
from the collection of all produced goods. Dorfman concluded that when a
complete elimination of defective items is desired, significant savings in effort
and expense can be obtained by group screening, if the prevalence rate is low
and the original group size is chosen properly. Later on, several researchers ap-
plied this paradigm to HIV screening practice. For instance, Emmanuel et al.
[53] performed a case study of HIV testing in Zimbabwe. They concluded that
pooling five samples for HIV screening may result in a substantial reduction
in costs. In addition, they mentioned that in countries where the prevalence
of HIV is higher than the 23% found in Zimbabwan donors, savings may not
be as great. Behets et al. [17] came to similar conclusions in a case study in
Zaire. Other papers about this application include [2], [109] and [113]. The
range of application even goes further. Macula [82], [83] applied this method
to DNA library screening and Xie et al. [114] and Zhu et al. [118] utilized it
for drug discovery. Furthermore, Sobel and Groll [105] were motivated by an-
other practical need, this time from the industrial sector, to remove all leakers
from a set of devices. In this case, one chemical apparatus is available and the
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devices are tested by putting several of them in a bell jar and testing whether
any of the gas used in constructing the devices has leaked out into the bell jar.
Finally, in the monograph Du and Hwang [52], it is stated that group testing
also emerged from many nontesting situations, such as experimental designs,
multiaccess communication, coding theory, clone library screening, nonlinear
optimization, and computational complexity.
Optimization of the original group size in terms of the minimization (or maxi-
mization) of some variable has been a popular research topic. However, Abol-
nikov and Dukhovny [2] correctly remarked that only few authors have taken
into account the dynamic nature of the item arrivals. A dynamic nature is
proper to many practical situations: items arrive at the testing center in groups
of different and random size, at random moments in time. This entails that less
items than the optimal original group size might be present at the time a new
group can be screened. Hence, an extra decision has to be made: “When is
it allowed to start screening a group with less samples than the original group
size?”. Abolnikov and Dukhovny [2] state that the dynamic nature can be dealt
with by applying methods of queueing theory. Since then, Bar-Lev et al. [16]
also made use of a queueing model to include the dynamic item arrivals.
As opposed to [2] and [16], the model in this dissertation includes a timer
mechanism and we have deduced a spectrum of quantities instead of only the
system content at the end of services.

2.6.2 Group-screening policies

As the model considered in this dissertation includes a general dependency
between the service time of a batch and the number of items within it, a
whole range of screening policies can be studied by defining the PGFs Tj(z)
appropriately. In this section, we demonstrate this for several group-screening
policies. First, we recall that several tests might be necessary to screen a
group. The number of tests is of course dependent on the service policy and
the number of items in the group. Let us introduce T̃j as the number of tests
required to screen a group of j items. Further, we take into account that the
time to execute one test can vary, and we assume that the testing times are
independent of the number of items and that they are IID with common PGF
V (z) (the case whereby the testing times are dependent on the number of items
can also be included by defining Vj as the testing time of a group of j items).

Hence, Tj(z) = T̃j(V (z)). In other words, in order to study some screening

policy, one has to define T̃j(z) properly. We illustrate this by considering
incomplete identification, the group-individual testing and a group-subgroup
screening policy. In the latter policy, when the outcome of a test on a group of
j items is bad, two subgroups of ⌈j/2⌉ and ⌊j/2⌋5 items are subjected to new
group tests and after a bad subgroup test, all items from the bad subgroup are

5We adopt the standard convention that ⌈.⌉ and ⌊.⌋ represent respectively the ceil and

the floor function, i.e. ⌈x⌉ , min{n ∈ Z : n ≥ x} and ⌊x⌋ , max{n ∈ Z : n ≤ x}.
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retested individually. Before studying the policies, it is important to point out
that only one test is required when j = 1, so that

T̃1(z) = z .

In the remainder, we designate the probability of a random item being bad by
p (and let p , 1− p) and we assume that this probability is independent of the
result of the other items.

Incomplete identification

When the outcome of the group test is good, all items within the group are
classified as good, whereas, in the opposite case, the group is ‘thrown away’.
Either way, only one test is required, leading to

T̃j(z) = z , j ≥ 2 .

Group-individual testing

Two situations occur here. In the first case, none of the items is bad (with
probability pj), which leads to a good test result, implying that no retesting
is required. In the second case, one or more items are bad (with probability
1 − pj), so that the j items need to be retested, leading to j + 1 tests. It can
be concluded that:

T̃j(z) = pjz + (1 − pj)zj+1 , j ≥ 2 .

A group-subgroup testing policy

If the outcome is bad in this scenario, the group is split in two subgroups which
are both retested. If the outcome of a test on a subgroup is bad, then all the
items within it are retested individually. In order to construct T̃j(z), we make
a distinction between j = 2, j = 3 and j ≥ 4.

j = 2

If the group test returns bad, two subgroups of 1 item require each only one
extra test. Hence,

T̃2(z) = p2z + (1 − p2)z3 .

j = 3

After a bad result, a subgroup of one and a subgroup of two items are retested.
The subgroup of size two needs another group test, and if this returns bad
again, two extra tests are required. Hence,

T̃3(z) = p3z + p2pz3 + (1 − p2)z5 .
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j ≥ 4

Let us assume that the first subgroup contains ⌈j/2⌉ and the second ⌊j/2⌋
items (when a retest is necessary). This case is split in four subcases, accord-
ing to the number of bad items, i:

• i = 0 (with probability pj); only 1 test is required.

• i = 1. Two subcases:

– The bad item belongs to the first part (with probability ⌈j/2⌉ppj−1);
⌈j/2⌉ + 3 tests are required, namely the original test, the two sub-
group tests and ⌈j/2⌉ individual tests.

– The bad item belongs to the second part (with probability ⌊j/2⌋ p
pj−1); ⌊j/2⌋+ 3 tests are required.

• 2 ≤ i ≤ ⌈j/2⌉. Three subcases arise:

– All the bad items belong to the first subgroup (with probability
(

⌈j/2⌉
i

)

pipj−i); ⌈j/2⌉ + 3 tests are required.

– All the bad items belong to the second subgroup (with probability
(

⌊j/2⌋
i

)

pipj−i); ⌊j/2⌋ + 3 tests are required. Note that this case
cannot occur when i = ⌈j/2⌉ and j odd.

– The bad items are spread over both parts of the group (with prob-

ability
[

(

j
i

)

−
(

⌈j/2⌉
i

)

−
(

⌊j/2⌋
i

)

]

pipj−i); j + 3 tests are required.

• ⌈j/2⌉ < i ≤ j (with probability
(

j
i

)

pipj−i); j + 3 tests are required, as
the bad items are certainly spread over both subgroups.

Summarized, T̃j(z) equals:

T̃1(z) =z , (2.25)

T̃2(z) =p2z + (1 − p2)z3 , (2.26)

T̃3(z) =p3z + p2pz3 + (1 − p2)z5 , (2.27)

T̃j(z) =pjz

+



⌊j/2⌋ ppj−1 +

⌈j/2⌉
∑

i=2

(⌊j/2⌋

i

)

pipj−i



 z⌊j/2⌋+3

+



⌈j/2⌉ ppj−1 +

⌈j/2⌉
∑

i=2

(⌈j/2⌉

i

)

pipj−i



 z⌈j/2⌉+3

+





⌈j/2⌉
∑

i=2

{

(j

i

)

−
(⌈j/2⌉

i

)

−
(⌊j/2⌋

i

)

}

pipj−i

+

j
∑

i=⌈j/2⌉+1

(j

i

)

pipj−i



 zj+3 , j ≥ 4 . (2.28)
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Remark 6. The model, in fact, also includes the individual screening policy;
one just has to set T̃j(z) to be equal to zj.

2.6.3 Example

Evaluating a practical group-testing scenario boils down to plug in the right
parameters in the queueing model, to calculate performance measures for var-
ious values of l, β and c and select those values that lead to the best results.
In order to illustrate this, consider a blood testing centre whereby a laboratory
assistant checks every 5 minutes if a new group can be screened. This is the
case when the test kit is available and when the number of available blood
samples reaches or exceeds l. Next, new samples arrive according to a Poisson
process with parameter 0.05 (samples/minute). Further, it takes 50 minutes
to complete one test and a random blood sample is infected with probability
0.025. Finally, the group-subgroup screening procedure as in section 2.6.2 is
adopted.
This setting can be fit in our model by making the following assumptions:

• Slots correspond to periods of 5 minutes and the slot marks correspond
to the check times.

• Since the arrival process is a Poisson process, the number of arrivals in
a slot is Poisson distributed with mean equal to 0.05 × 5, i.e., A(z) =
e0.25(z−1).

• β = 0.

• p = 0.025.

• A test takes 10 slots, implying that V (z) is equal to z10; hence, Tj(z) =

T̃j(z
10).

• T̃j(z) obeys formulas (2.25) - (2.28).

First, we optimize c and l in terms of the mean time before the result of a
random blood sample is known, E [W ] (this is, on account of Little’s theorem
[57], equal to E [U ] /λ). Therefore, we calculate E [W ] for several values of l
and c and summarize the results in table 2.1. The optimal decision variables,
lopt and copt, are those that correspond to the smallest value for E [W ] in the
table. This value is indicated in bold.
Analogously, we can optimize in terms of other quantities, such as the working
probability (the probability that the test kit is testing during a random slot).
Along the same lines, we summarize the working probability for several l’s and
c’s in table 2.2 and indicate the best value in bold. Note that the optimal
value in this case is different from the optimal value when the optimization
variable was E [W ]. Minimizing a weighted sum of several parameters is also a
possibility.
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As the checking of all combinations of c and l can be a time-consuming as-
signment, we seek, in the remainder of this section, some rules of thumb that
aid in determining lopt and copt. Tables 2.1 and 2.2 exhibit that E [W ] and
the working probability first dramatically decrease as a function of c, then
they fluctuate somewhat around the minimum, whereupon they significantly
increase as c increases. Hence, one algorithm to determine (copt,lopt) starts

with l = c = 1, then checks for every c each l ≤ c, and stops when E [W ]
and the working probability drastically increase, leading to a quadratic time
complexity (usually denoted by the O(n2)).
We now investigate whether a small change in λ and/or p requires that the
algorithm restarts from scratch. Therefore, we display (copt,lopt) for various

values of p and λ in tables 2.3 (E [W ] is minimized) and 2.4 (working probability
is minimized). Table 2.3 shows us that, when E [W ] has to be minimized:

• lopt is small in general; one can take advantage of this observation by first

searching for the best value of c corresponding to l = 1 (c̃opt), and then
seeking for the optimal value of l corresponding to c̃opt. Table 2.1 shows

that the resulting E [W ] is near (or equal) to the E [W ] corresponding to
(copt, lopt). This thus leads to an algorithm of time complexity O(n)
that produces near optimal values of l and c.

• lopt and copt slowly increase as a function of λ. Hence, if λ increases,
start at the previous optimal c-value, instead of at c = 1.

• lopt is not influenced by p. Hence, if p alters, only search a new optimal

value of c, leading to a O(n) time complexity.

• If p decreases, copt increases. Hence, start searching at the previous
optimal value of c.

Table 2.4 shows that, when the working probability has to be minimized:

• lopt=copt. This reduces the time complexity of the algorithm from O(n2)

to O(n).

• λ has little to no influence on copt. Hence, if λ changes, the optimal
values of l and c do not alter.

• Analogously as for E [W ], copt increases if p decreases.

These rules of thumb thus aid in speeding up the search for a new (copt,lopt)

when λ and/or p alters.

Remark 7. The above rules of thumb became clear from an example with a
Poisson distribution for the number of sample arrivals during a time slot. We
have checked this for other distributions as well and all the above rules remain
valid.



36 CHAPTER 2. BUFFER CONTENT: EXACT ANALYSIS

Remark 8. In the example, β was equal to 0. However, one can conceive
β also as a decision parameter and one can thus determine a good value of
β analogously as in the above examples. The purpose of setting β 6= 0 is to
avoid that samples perish because their testing is postponed too long until more
samples have arrived.

Table 2.1: E [W ] for several values of l and c whereby β = 0, p = 0.025 and
λ = 0.25; the optimum is indicated in bold

c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10

l = 1 57.4139 42.4111 37.6298 37.6303 37.5259 39.0722 40.2516
l = 2 57.2731 42.2940 37.5278 37.5399 37.4464 39.0008 40.1824
l = 3 60.1768 45.0087 40.1156 40.1894 40.1384 41.8741 43.2097
l = 4 63.3439 48.1818 43.2285 43.3755 43.3763 45.2714 46.7414
l = 5 —— 52.5499 47.4802 47.6944 47.7292 49.7700 51.3546
l = 6 —— —— 51.1644 51.6063 51.6833 53.8279 55.4936
l = 7 —— —— —— 56.5320 56.7008 58.9817 60.7385
l = 8 —— —— —— —— 60.9422 63.4986 65.3284
l = 9 —— —— —— —— —— 68.6834 70.6856
l = 10 —— —— —— —— —— —— 75.3074

Table 2.2: Working probability for several values of l and c whereby β = 0,
p = 0.025 and λ = 0.25; the optimum is indicated in bold

c = 6 c = 7 c = 8 c = 9 c = 10 c = 11 c = 12

l = 1 0.9796 0.9786 0.9780 0.9778 0.9777 0.9777 0.9778
l = 2 0.9209 0.9173 0.9150 0.9143 0.9138 0.9141 0.9143
l = 3 0.8475 0.8406 0.8361 0.8348 0.8338 0.8344 0.8349
l = 4 0.7852 0.7754 0.7689 0.7672 0.7658 0.7669 0.7677
l = 5 0.7436 0.7316 0.7236 0.7216 0.7200 0.72159 0.7228
l = 6 0.7170 0.7020 0.6928 0.6907 0.6889 0.6909 0.6926
l = 7 —— 0.6891 0.6778 0.6756 0.6738 0.6761 0.6780
l = 8 —— —— 0.6679 0.6653 0.6635 0.6661 0.6682
l = 9 —— —— —— 0.6631 0.6609 0.6638 0.6660
l = 10 —— —— —— —— 0.6591 0.6626 0.6648
l = 11 —— —— —— —— —— 0.6651 0.6678
l = 12 —— —— —— —— —— —— 0.6698
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Table 2.3: (copt,lopt) so that E [W ] is minimized for several values of p and λ;

* means that the test center cannot handle all the samples, because ρ ≥ 1 for
every value of c

p = 0.01 p = 0.015 p = 0.02 p = 0.025 p = 0.03 p = 0.035

λ = 0.05 (8,1) (7,1) (6,1) (6,1) (5,1) (4,1)
λ = 0.10 (8,1) (7,1) (6,1) (6,1) (6,1) (4,1)
λ = 0.15 (8,1) (7,1) (6,1) (6,1) (6,1) (6,1)
λ = 0.20 (8,1) (8,1) (6,1) (6,1) (6,1) (6,1)
λ = 0.25 (8,2) (8,2) (8,2) (8,2) (6,2) (6,2)
λ = 0.30 (10,2) (8,2) (8,2) (8,2) (8,2) (8,2)
λ = 0.35 (10,2) (8,2) (8,2) (8,2) * *

Table 2.4: (copt,lopt) so that the working probability is minimized for several

values of p and λ; * means that the test center cannot handle all the samples,
because ρ ≥ 1 for every value of c

p = 0.01 p = 0.015 p = 0.02 p = 0.025 p = 0.03 p = 0.035

λ = 0.05 (14,14) (12,12) (10,10) (10,10) (8,8) (8,8)
λ = 0.10 (14,14) (12,12) (10,10) (10,10) (8,8) (8,8)
λ = 0.15 (14,14) (12,12) (10,10) (10,10) (8,8) (8,8)
λ = 0.20 (14,14) (12,12) (10,10) (10,10) (8,8) (8,8)
λ = 0.25 (14,14) (12,12) (10,10) (10,10) (8,8) (8,8)
λ = 0.3 (14,14) (12,12) (10,10) (10,10) (8,8) (8,8)
λ = 0.35 (14,14) (12,12) (10,10) (10,10) * *
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Chapter 3

Buffer content:
approximations

3.1 Preface

In this chapter, we establish, driven by numerical and interpretational motives,
light- and heavy-traffic approximations for quantities (2.16)-(2.23) (sections 3.2
and 3.3). In order to calculate the buffer-related quantities (2.16)-(2.23), some
numerical work is required, namely (1) the computation of the c− 1 zeroes zi,
i = 1, . . . , c − 1, of zc − Tc(A(z)) that are inside the closed complex unit disk
and different from 1, and (2) the solution of the following set of c equations in
the c unknown probabilities d(n):

[1 − A(zi)]

l−1
∑

n=0

d(n)zn
i + β

l−1
∑

n=0

d(n) [A(zi)z
n
i − Tn(A(zi))]

+

c−1
∑

n=l

d(n)[zn
i − Tn(A(zi))] = 0 , 1 ≤ i ≤ c − 1 , (3.1)

−c + E [Tc]λ = − c

l−1
∑

n=0

d(n) + β

l−1
∑

n=0

d(n)[c + nE [Tc] − cE [Tn]]

+

c−1
∑

n=l

d(n)[nE [Tc] − cE [Tn]] . (3.2)

The calculation of the zeroes can be a severe and even unfeasible assignment
when c is large. Moreover, even when the zeroes can be computed, those zeroes
might get clustered, which leads to an ill-conditioned set of equations (3.1) and
(3.2) for the unknown probabilities d(n). Next to the numerical motive, we
are also driven by interpretational stimuli. We are eager to get insight into the
behaviour of the system in the cases of light and heavy traffic.
In our paper [43], we have deduced light- and heavy-traffic approximations for
the system content for the model whereby β = 0 and Tn(z) = Tc(z), ∀n. As

39
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the analysis for the more general model considered throughout this dissertation
runs along the same lines as in [43], we expose the analysis for this extended
model.

3.2 Light-traffic approximations

In this section, we deduce light-traffic approximations of the buffer-related
quantities from chapter 2 (section 2.3). As in [8], [19], [20], [47], [62], [97],
[101], we calculate light-traffic approximations by expanding the quantities
in Taylor series about λ = 0 and retaining only the constant and
linear terms (i.e. those corresponding to λ0 and λ1) since the others are
negligible when λ → 0. We demonstrate this approach in detail in the next
subsection, where it is applied on the system content at random slot boundaries.
Thereafter, we also provide light-traffic formulas for the other buffer-related
quantities, but we omit the details of the calculation, as they are analogous as
for the system content at random slot marks.

3.2.1 System content at random slot boundaries

In this subsection, we establish a light-traffic approximation for the system
content at random slot marks by expanding its PGF U(λ, z) in a Taylor series
about λ = 0 and retaining only the constant and the linear terms (note that we
substitute every function f(z) that is dependent on λ by f(λ, z) to underline
this dependency). This approach leads to a formula whereby it is required to
solve a set of equations, but no zeroes have to be computed anymore.

First, recall that the PGF of the system content was established in chapter
2 (formula (2.16)) and is equal to

U(λ, z)[1 − A(λ, z)] [zc − Tc(A(λ, z))] =(zc − 1)Tc(A(λ, z))[1 − A(λ, z)]

l−1
∑

n=0

d(λ, n)zn

+ β

l−1
∑

n=0

d(λ, n)gn(λ, z) +

c−1
∑

n=l

d(λ, n)hn(λ, z) ,

(3.3)

with gn(λ, z) and hn(λ, z) defined as

gn(λ, z) ,(zn − zc)Tn(A(λ, z))Tc(A(λ, z)) + zn(zc − 1)Tc(A(λ, z))A(λ, z)

− zc(zn − 1)Tn(A(λ, z)) , (3.4)

hn(λ, z) ,Tn(A(λ, z))zc{1 − zn − Tc(A(λ, z))}

− Tc(A(λ, z))zn{1 − zc − Tn(A(λ, z))} . (3.5)

and whereby the probabilities d(λ, n) have to be determined by solving the set
of equations (3.1)-(3.2).

Next, let us denote the right-hand-side of expression (3.3) by NU (λ, z) (i.e.
the numerator of U(λ, z)) and its Taylor series expansion about λ = 0 by
∑∞

k=0 NU,k(z)λk. Analogously, DU (λ, z) represents the denominator of U(λ, z),
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i.e. DU (λ, z) = [1−A(λ, z)][zc−Tc(A(λ, z))] and
∑∞

k=0 DU,k(z)λk characterises
its series expansion. The Taylor series of U(λ, z) about λ = 0 can then be writ-
ten as

U(λ, z) =
∞
∑

n=0

λn

n!

{

∂n

∂λn

NU (λ, z)

DU (λ, z)

∣

∣

∣

∣

λ=0

}

=

∞
∑

n=0

λn

n!

{

∂n

∂λn

∑∞
k=0 NU,k(z)λk

∑∞
k=0 DU,k(z)λk

∣

∣

∣

∣

∣

λ=0

}

. (3.6)

Hence, NU,k(z) and DU,k(z) have to be calculated, which, in turn, rely on the se-

ries expansions of A(λ, z) and Tn(A(λ, z)). Let us therefore define A(1n,2m)(x, y),
with kn the series consisting of n consecutive k’s, as

A(1n,2m)(x, y) ,
∂n

∂λn

∂m

∂mz
A(λ, z)

∣

∣

∣

∣

λ=x,z=y

.

In view of this, the Taylor series expansions of A(λ, z) and Tn(A(λ, z)) can be
written as

A(λ, z) =
∞
∑

n=0

λn

n!

{

∂n

∂λn
A(λ, z)

∣

∣

∣

∣

λ=0

}

=1 + λA(1)(0, z) +
λ2

2
A(1,1)(0, z) + O(λ3) , (3.7)

Tn(A(λ, z)) =1 + λE [Tn] A(1)(0, z)

+
λ2

2

[

T
′′

n (1)A(1)(0, z)2 + E [Tn] A(1,1)(0, z)
]

+ O(λ3) . (3.8)

We have thereby taken into account that when λ = 0, no customers will ever
arrive, so that A(0, z) = 1. Note that we have also provided the quadratic
terms in λ, as these will be used later on.

Next, as (3.7) and (3.8) thus exhibit that the constant terms of A(λ, z) and
Tn(A(λ, z)) are equal to 1, we find, by examining expressions (3.3)-(3.5), that

NU,0(z) = DU,0(z) = 0 .

In addition, NU,1(z) 6= 0 and DU,1(z) 6= 0, so that (3.6) transforms into

U(λ, z) =
∞
∑

n=0

λn

n!

{

∂n

∂λn

NU,1(z) + λNU,2(z) + . . .

DU,1(z) + λDU,2(z) + . . .

∣

∣

∣

∣

λ=0

}

=
NU,1(z)

DU,1(z)
+ λ

NU,2(z)DU,1(z) − NU,1(z)DU,2(z)

DU,1(z)2
+ O(λ2) . (3.9)

Further, let us denote the series expansions of d(λ, n) (the unknowns d(λ, n)
depend on λ, due to its appearance in the set of equations (3.1)-(3.2)), gn(λ, z)
and hn(λ, z) by respectively

d(λ, n) =
∞
∑

k=0

dk(n)λk ,

gn(λ, z) =
∞
∑

k=0

gn,k(z)λk ,
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hn(λ, z) =
∞
∑

k=0

hn,k(z)λk .

We then obtain that NU,1(z), NU,2(z), DU,1(z) and DU,2(z) can be written as

NU,1(z) = − A(1)(0, z)(zc − 1)

l−1
∑

n=0

d0(n)zn

+ β

l−1
∑

n=0

d0(n)gn,1(z) +

c−1
∑

n=l

d0(n)hn,1(z) , (3.10)

NU,2(z) = − (zc − 1)

{

E [Tc] A
(1)(0, z)2 +

1

2
A(1,1)(0, z)

} l−1
∑

n=0

d0(n)zn

− (zc − 1)A(1)(0, z)

l−1
∑

n=0

d1(n)zn + β

l−1
∑

n=0

[d1(n)gn,1(z) + d0(n)gn,2(z)]

+

c−1
∑

n=l

[d1(n)hn,1(z) + d0(n)hn,2(z)] , (3.11)

DU,1(z) = − A(1)(0, z)(zc − 1) , (3.12)

DU,2(z) = −
1

2
A(1,1)(0, z)(zc − 1) + A(1)(0, z)2E [Tc] . (3.13)

In addition, gn,1(z), gn,2(z), hn,1(z) and hn,2(z) are equal to

gn,1(z) =A(1)(0, z)
{

(zc − 1)zn(1 − E [Tn]) + (zn − 1)zcE [Tc]
}

, (3.14)

gn,2(z) =(zn − zc)E [Tn] E [Tc]A
(1)(0, z)2

+ zn(zc − 1)

{

E [Tc]A
(1)(0, z)2 +

1

2
A(1,1)(0, z)

}

− zn(zc − 1)
1

2

{

T
′′

n (1)A(1)(0, z)2 + E [Tn]A(1,1)(0, z)
}

+ zc(zn − 1)
1

2

{

T
′′

c (1)A(1)(0, z)2 + E [Tc] A
(1,1)(0, z)

}

, (3.15)

hn,1(z) =A(1)(0, z)
{

zc(zn − 1)E [Tc] − zn(zc − 1)E [Tn]
}

, (3.16)

hn,2(z) =
1

2
zc(zn − 1)

{

T
′′

c (1)A(1)(0, z)2 + E [Tc] A
(1,1)(0, z)

}

−
1

2
zn(zc − 1)

{

T
′′

n (1)A(1)(0, z)2 + E [Tn]A(1,1)(0, z)
}

+ (zn − zc)E [Tn] E [Tc]A
(1)(0, z)2 . (3.17)

Hence, in order to characterize fully the constant and linear terms of U(λ, z),
d0(n) and d1(n), the constant and linear terms of the unknown probabilities
d(n), have to be calculated. Remember that the probabilities d(n) can be found
by solving the set of equations expressing that U(λ, 1) = 1 (the normalisation
condition) and that the numerator of U(λ, z) must vanish for the c − 1 zeroes
zi(λ), i = 1, . . . , c − 1, of zc − Tc(A(λ, z)) that are inside the closed complex
unit disk and different from 1 (equations (3.1) and (3.2)). These zeroes are, in
general, to be calculated numerically.
Consequently, we expand equations (3.1) and (3.2) in a Taylor series about
λ = 0. Let us therefore designate the Taylor series expansion of the zeroes
zi(λ) by

∑∞
k=0 zi,kλk. Expansion of equations (3.1) and (3.2) and thereby

applying Newton’s binomium (so that zn
i = zn

i,0 + λnzi,1z
n−1
i,0 + O(λ2)) and
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taking into account that A(2)(0, z) = 0 (since A(0, z) = 1) and zi(0) = zi,0,
results in















































































β
∑l−1

n=0 d0(n)
(

zn
i,0 − 1

)

+
∑c−1

n=l d0(n)(zn
i,0 − 1)

+λ

[

− A(1)(0, zi,0)
∑l−1

n=0 d0(n)zn
i,0 + β

∑l−1
n=0 d1(n)

(

zn
i,0 − 1

)

+β
∑l−1

n=0 d0(n)
{

A(1)(0, zi,0)zn
i,0 + nzi,1zn−1

i,0 − E [Tn]A(1)(0, zi,0)
}

+
∑c−1

n=l d0(n)
{

nzi,1zn−1
i,0 − E [Tn]A(1)(0, zi,0)

}

+
∑c−1

n=l d1(n)
(

zn
i,0 − 1

)

]

+ O(λ2) = 0 , 1 ≤ i ≤ c − 1 ,

−c
∑l−1

n=0{d0(n) + λd1(n)} + β
∑l−1

n=0{d0(n) + λd1(n)}{c + nE [Tc] − cE [Tn]}

+
∑c−1

n=l{d0(n) + λd1(n)}{nE [Tc] − cE [Tn]} = −c + E [Tc]λ .

(3.18)

Hence, in order to calculate d0(n) and d1(n) from (3.18), we still have to deduce
the constant (zi,0) and linear (zi,1) terms of the Taylor series expansion of the
zeroes zi(λ), i = 1, . . . , c − 1. To this end, we expand both sides of zi(λ)c =
Tc(A(λ, zi(λ))) in a Taylor series about λ = 0. We thereby apply Newton’s
binomium and we take into account that zi(0) = zi,0 and A(2)(0, zi,0) = 0. As
a result, zi(λ)c = Tc(A(λ, zi(λ))) is transformed into

zc
i,0 + λczc−1

i,0 zi,1 + O(λ2) = 1 + λE [Tc] A
(1) (0, zi,0) + O(λ2) .

Equating the constant term at the left-hand-side with the constant term at the
right-hand-side and repeating this for the linear terms produces:

{

zc
i,0 = 1 ,

czc−1
i,0 zi,1 = E [Tc]A(1) (0, zi,0) .

It is directly clear that the first equation has c solutions, the c complex c-th
roots of one: εi , e(ı2πi)/c, with ı the imaginary unit and i = 0, . . . , c − 11.
Hence,

zi,0 = εi , 0 ≤ i ≤ c − 1 . (3.19)

The corresponding zi,1’s can be found by replacing zi,0 by εi (and thus zc
i,0 by

1) in the second equation, leading to

zi,1 =
εiE [Tc]

c
A(1) (0, εi) , 0 ≤ i ≤ c − 1 . (3.20)

This concludes the calculation of zi,0 and zi,1 (i = 0, . . . , c−1). Note that these
are exactly known.

We now rely on this result in the calculation of d0(n) and d1(n). Substituting

1Note that z0,0 = ε0 = 1, which is logical because one of the c zeroes zi of zc − Tc(A(z))
is equal to one. This zero was in chapter 2 denoted by z0.



44 CHAPTER 3. BUFFER CONTENT: APPROXIMATIONS

(3.19) and (3.20) in (3.18) yields






































































β
∑l−1

n=1 d0(n)
(

εn
i − 1

)

+
∑c−1

n=l d0(n)(εn
i − 1)

+λ

[

− A(1)(0, εi)
∑l−1

n=0 d0(n)εn
i + β

∑l−1
n=1 d1(n)

(

εn
i − 1

)

+βA(1)(0, εi)
∑l−1

n=0 d0(n)
{

εn
i + nεn

i E [Tc] /c − E [Tn]
}

+A(1)(0, εi)
∑c−1

n=l d0(n)
{

nεn
i E [Tc] /c − E [Tn]

}

+
∑c−1

n=l d1(n)
(

εn
i − 1

)

]

+ O(λ2) = 0 , 1 ≤ i ≤ c − 1 ,

−c
∑l−1

n=0{d0(n) + λd1(n)} + β
∑l−1

n=0{d0(n) + λd1(n)}{c + nE [Tc] − cE [Tn]}

+
∑c−1

n=l{d0(n) + λd1(n)}{nE [Tc] − cE [Tn]} = −c + E [Tc]λ .

(3.21)

Equating the constant terms at the left-hand-sides with the constant terms at
the right-hand-sides yields:

β

l−1
∑

n=1

d0(n) (εn
i − 1) +

c−1
∑

n=l

d0(n)(εn
i − 1) = 0 , 1 ≤ i ≤ c − 1 , (3.22a)

−c

l−1
∑

n=0

d0(n) + β

l−1
∑

n=0

d0(n){c + nE [Tc] − cE [Tn]} +

c−1
∑

n=l

d0(n){nE [Tc] − cE [Tn]} = −c .

(3.22b)

We now make a distinction between β 6= 0 and β = 0.

case 1: β 6= 0

In this case, (3.22a) forms a set of c − 1 independent linear equations in c − 1
unknowns d0(n), n = 1, . . . c − 1. It is clear that

d0(n) = 0 , 1 ≤ n ≤ c − 1 ,

is a solution of the set of equations. Furthermore, one can prove that this
solution is unique. As a result, (3.22b) produces:

d0(0) =
1

1 − β(1 − E [T0])
. (3.23)

This can be explained intuitively. When the number of arriving customers
goes to zero (λ → 0), no customers will ever be in the system, because the
few customers that arrive are served after a geometrically distributed time
(each slot a service starts with probability β), and this time is negligible as
compared to the nearly infinite interarrival times. Therefore, - recall definition
(2.4) for d(n) (d(n) = limk→∞ Pr [Qk + Ak = n, Rk ≤ 1]) - d0(0) = Pr [R ≤ 1].
On the other hand, the system being virtually always empty implies that the
system alternates between periods whereby the server processes 0 customers
(with mean length E [T0]) and periods whereby the server is not processing
(with mean length (1 − β)/β). Hence, the fraction of slots during which the
server is not processing (i.e. R = 0) or during which the server is in the last
slot of service (R = 1) equals

(1 − β)/β

E [T0] + (1 − β)/β
+

1

E [T0] + (1 − β)/β
,

which is equal to expression (3.23).
Next, we equate the linear terms of (3.21) and on account of d0(n) = 0, n =
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1, . . . , c − 1 and (3.23), we obtain the following set of equations in d1(n), n =
0, . . . , c − 1:

β

l−1
∑

n=1

d1(n) (εn
i − 1) +

c−1
∑

n=l

d1(n) (εn
i − 1) = A(1)(0, εi) , 1 ≤ i ≤ c − 1 ,

− c

l−1
∑

n=0

d1(n) + β

l−1
∑

n=0

d1(n){c + nE [Tc] − cE [Tn]}

+

c−1
∑

n=l

d1(n){nE [Tc] − cE [Tn]} = E [Tc] . (3.24)

Hence, (3.24) provides c equations from which the c unknowns d1(n) (n =
0, . . . , c− 1) can be calculated. It can again be proved that (3.24) has a unique
solution. Finally, the combination of (3.9)-(3.17), d0(n) = 0 for n = 1, . . . , c−1,
and expression (3.23) for d0(0) yields the light-traffic approximation for U(λ, z)
in the case β 6= 0:

U(λ, z) = 1 + λ
1

zc − 1
·

[

zcE [Tc]A
(1)(0, z) +

1

2
β

(zc − 1)T
′′

0 (1)A(1)(0, z)

1 − β(1 − E [T0])

+ (zc − 1)

l−1
∑

n=0

d1(n)zn − β(zc − 1)

l−1
∑

n=0

d1(n)zn

+ β

l−1
∑

n=0

d1(n)fn(z) +

c−1
∑

n=l

d1(n)fn(z)

]

+ O(λ2) , (3.25)

with

fn(z) , zn(zc − 1)E [Tn] − zc(zn − 1)E [Tc] .

Formula (3.25) thus reveals a.o. that

lim
λ→0

Pr [U = n] =

{

1 if n = 0 ,
0 else .

This can be explained as follows: when customers arrive for small λ, they will
be served after some relatively short time (because β 6= 0) and this period is
negligible as compared to the nearly infinite time until new customers arrive.
As a result, the system is virtually always empty (note that this confirms the
results from Fig. 2.2(a)).

Remark 9. We have implicitly assumed that β >> λ in this subsection. Oth-
erwise, the first sum in (3.22a) would be negligible as compared to the second,
so that it cannot be concluded anymore that d0(n) = 0, 1 ≤ n ≤ l − 1. When
β >> λ does not hold, we advise to use the approximation formulas correspond-
ing to the case β = 0.

Remark 10. Although it is implicitly assumed that l ≥ 1 in (3.23), results for
l = 0 can be obtained from light-traffic formulas (3.23) and (3.25) by setting
β = 1. Indeed, a system with β = 1 is, regardless of l, equivalent with a system
whereby l = 0. In both cases, the server always initiates a new service, even
when no customers are available.
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case 2: β = 0

Equation (3.22a) transforms into:

c−1
∑

n=l

d0(n)(εn
i − 1) = 0 , 1 ≤ i ≤ c − 1 . (3.26)

As the first sum of (3.22a) has vanished, this equation provides no information
about d0(n) for n < l anymore. We still can conclude from (3.26), however,
that

d0(n) = 0 , l ≤ n ≤ c − 1 . (3.27)

As a result, and because β = 0, equation (3.22b) becomes

l−1
∑

n=0

d0(n) = 1 . (3.28)

Equating the linear terms from (3.21) and accounting for (3.27) leads to the
following equations:

−A(1)(0, εi)

l−1
∑

n=0

d0(n)εn
i +

c−1
∑

n=l

d1(n) (εn
i − 1) = 0 , 1 ≤ i ≤ c − 1 , (3.29a)

−c

l−1
∑

n=0

d1(n) +

c−1
∑

n=l

d1(n) {nE [Tc] − cE [Tn]} = E [Tc] . (3.29b)

Expressions (3.28), (3.29a) and (3.29b) produce c+1 equations in c+l unknowns
d0(n), n = 0, . . . , l−1, and d1(n), n = 0, . . . , c−1. Hence, when l is larger than
1, extra equations are required. These are provided by equalising the quadratic
terms of (3.1) and taking into account expressions (3.19) and (3.20) for zi,0 and
zi,1:

−
1

2

{

A(1,1)(0, εi) + 2A(1,2)(0, εi)
εi

c
E [Tc] A

(1)(0, εi)
}

l−1
∑

n=0

d0(n)εn
i

− A(1)(0, εi)

{

l−1
∑

n=0

d1(n)εn
i +

l−1
∑

n=0

d0(n)εn
i n

E [Tc]

c
A(1)(0, εi)

}

+

c−1
∑

n=l

d2(n)(εn
i − 1) + A(1)(0, εi)

c−1
∑

n=l

d1(n)
{

nεn
i E [Tc] /c − E [Tn]

}

= 0 , 1 ≤ i ≤ c − 1 .

(3.30)

The unknowns d0(n) and d1(n) can now be found by solving equations (3.28)-
(3.30), which together produce a set of 2c equations in 2c unknowns. As a
bonus, we have also found d2(n) (l ≤ n ≤ c − 1). The combination of (3.9)-
(3.17) and d0(n) = 0, n = l, . . . , c− 1, yields the light-traffic approximation for
U(λ, z) in the case β = 0:

U(λ, z) =

l−1
∑

n=0

d0(n)zn + λ
1

zc − 1
·

[

zcE [Tc]A
(1)(0, z)

l−1
∑

n=0

d0(n)zn

+ (zc − 1)

l−1
∑

n=0

d1(n)zn +

c−1
∑

n=l

d1(n)fn(z)

]

+ O(λ2) , (3.31)
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whence

lim
λ→0

Pr [U = n] =

{

d0(n) if 0 ≤ n ≤ l − 1 ,
0 else .

This result can also be explained intuitively. If customers arrive and after
arrival the system content is smaller than l, the customers remain in the queue.
This implies that the buffer is non-zero for a non-negligible time, thus that
Pr [U > 0] 6= 0 when β = 0 and l > 1 (this can also be observed in Fig. 2.2(a)).
When the system content reaches (or exceeds) l, up to c customers are served.
Since service times are negligible as compared to interarrival times, the time
that l or more customers are in the system tends to zero.

Remark 11. As we have implicitly assumed that l ≥ 1 in (3.27), and since
β = 0, light-traffic approximation (3.31) is not valid for l = 0. As mentioned in
remark 10, the light-traffic formula for l = 0 can be obtained by setting β = 1 in
(3.25). This remark is also valid when considering light-traffic approximations
for other quantities below.

3.2.2 Queue content at random slot boundaries

We now show light-traffic approximations for other random variables calculated
in chapter 2. Let us start with the PGF Q(λ, z) of the queue content at random
slot boundaries.
We denote the Taylor series expansion of the numerator and the denominator
of Q(λ, z) by respectively

∑∞
k=0 NQ,k(z)λk and

∑∞
k=0 DQ,k(z)λk. Analogously

as in subsection 3.2.1, we have that NQ,0(z) = DQ,0(z) = 0, so that

Q(λ, z) =
NQ,1(z)

DQ,1(z)
+ λ

NQ,2(z)DQ,1(z) − NQ,1(z)DQ,2(z)

DQ,1(z)2
+ O(λ2) .

Along the same lines as in the previous subsection for U(λ, z), we obtain the
following light-traffic approximation for Q(λ, z) when β 6= 0:

Q(λ, z) = 1 + λ
1

zc − 1
·

[

A(1)(0, z)E [Tc] +
1

2
β

(zc − 1)T
′′

0 (1)A(1)(0, z)

1 − β(1 − E [T0])

+ (zc − 1)

l−1
∑

n=0

d1(n)zn − β(zc − 1)

l−1
∑

n=0

d1(n)zn

+ β

l−1
∑

n=0

d1(n)f̃n(z) +

c−1
∑

n=l

d1(n)f̃n(z)

]

+ O(λ2) , (3.32)

with

f̃n(z) , (zc − 1)E [Tn] − (zn − 1)E [Tc] ,

whereas

Q(λ, z) =

l−1
∑

n=0

d0(n)zn + λ
1

zc − 1
·

[

A(1)(0, z)E [Tc]

l−1
∑

n=0

d0(n)zn

+ (zc − 1)

l−1
∑

n=0

d1(n)zn +

c−1
∑

n=l

d1(n)f̃n(z)

]

+ O(λ2) , (3.33)
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when β = 0. Formulas (3.32) and (3.33) allow us to easily extract the constant
term of the probabilities Pr [Q = n]:

lim
λ→0

Pr [Q = n] =

{

1 if n = 0 ,
0 else ,

when β 6= 0 and

lim
λ→0

Pr [Q = n] =

{

d0(n) if 0 ≤ n ≤ l − 1 ,
0 else ,

if β = 0. Note that these constant terms are equal to those of Pr [U = n].
Indeed, as we have explained that service times are negligible as compared to
interarrival times, the server is nearly always empty. Hence, the (potential)
customers in the system are all waiting in the queue.

3.2.3 System content at service completion times

In order to calculate the light-traffic approximation for the system content
at service completion times, the light-traffic approximation of F (λ, 1, 1) is re-
quired. Completely analogously as above, we find that the series expansion
about λ = 0 of expression (2.19) for F (λ, 1, 1) reads:

F (λ, 1, 1) =
β

1 − β(1 − E [T0])
+ λ

1

c
·

[

1 + β

l−1
∑

n=0

d1(n)(c − n)

+

c−1
∑

n=l

d1(n)(c − n)

]

+ O(λ2) ,

when β 6= 0, whereas in the case β = 0, we obtain

F (λ, 1, 1) = λ
1 +

∑c−1
n=l d1(n)(c − n)

c
+ λ2

∑c−1
n=l d2(n)(c − n)

c
+ O(λ3) .

Note that we have also computed the quadratic term of F (λ, 1, 1) in the lat-
ter case. The reason is that we need this term in the calculation of the PGF
Ũ(λ, z) of the system content at service completion times.

Let us now continue with Ũ(λ, z). Therefore, we denote the series expan-
sions of its numerator and denominator respectively by

∑∞
k=0 NŨ,k(z)λk and

∑∞
k=0 DŨ,k(z)λk and we designate the constant, linear and quadratic terms

of F (λ, 1, 1) by respectively F0(1, 1), F1(1, 1) and F2(1, 1). When β 6= 0, we
obtain that NŨ,0(z) = DŨ,0(z) 6= 0, and consequently, that

Ũ(λ, z) = 1 + λ
NŨ ,1(z) − DŨ,1(z)

DŨ,0(z)
+ O(λ2) ,
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with

NŨ,1(z) =
A(1)(0, z)

1 − β(1 − E [T0])
+ β

A(1)(0, z)

1 − β(1 − E [T0])
{zcE [T0] − E [Tc] − 1}

+ β

l−1
∑

n=0

d1(n)(zc − zn) +

c−1
∑

n=l

d1(n)(zc − zn) ,

DŨ,0(z) =F0(1, 1)(zc − 1) = β
(zc − 1)

1 − β(1 − E [T0])
,

DŨ,1(z) =F1(1, 1)(zc − 1) − F0(1, 1)E [Tc] A
(1)(0, z)

=
(zc − 1)

c

[

1 + β

l−1
∑

n=0

d1(n)(c − n) +

c−1
∑

n=l

d1(n)(c − n)

]

− E [Tc]A
(1)(0, z)

β

1 − β(1 − E [T0])
.

If, on the other hand, β = 0, it holds that NŨ ,0(z) = DŨ,0(z) = 0, and
consequently, we obtain

Ũ(λ, z) =
NŨ,1(z)

DŨ,1(z)
+ λ

NŨ,2(z)DŨ,1(z) − NŨ,1(z)DŨ ,2(z)

DŨ,1(z)2
+ O(λ2) ,

with

NŨ,1(z) =A(1)(0, z)

l−1
∑

n=0

d0(n)zn +

c−1
∑

n=l

d1(n)(zc − zn) ,

NŨ,2(z) =E [Tc]A
(1)(0, z)2

l−1
∑

n=0

d0(n)zn +
1

2
A(1,1)(0, z)

l−1
∑

n=0

d0(n)zn

+ A(1)(0, z)

l−1
∑

n=0

d1(n)zn +

c−1
∑

n=l

d2(n)(zc − zn)

+

c−1
∑

n=l

d1(n)A(1)(0, z)(zcE [Tn] − znE [Tc]) ,

DŨ,1(z) =F1(1, 1)(zc − 1) =
(zc − 1)

c

[

1 +

c−1
∑

n=l

d1(n)(c − n)

]

,

DŨ,2(z) =F2(1, 1)(zc − 1) − F1(1, 1)E [Tc] A
(1)(0, z)

=
(zc − 1)

c

c−1
∑

n=l

d2(n)(c − n) −
E [Tc]A(1)(0, z)

c

[

1 +

c−1
∑

n=l

d1(n)(c − n)

]

.

3.2.4 Server content at random slot boundaries

We now continue with light-traffic approximation formulas for the server con-
tent S (with PGF S(λ, z)) at random slot marks. As the approach runs along
the same lines as in section 3.2.1, we opt to briefly mention the results.
Let us designate the series expansions of the numerator and denominator of
S(λ, z) by respectively

∑∞
k=0 NS,k(z)λk and

∑∞
k=0 DS,k(z)λk. The Taylor se-

ries of S(λ, z) then reads

S(λ, z) =
NS,0(z)

DS,0(z)
+ λ

NS,1(z)DS,0(z) − NS,0(z)DS,1(z)

DS,0(z)2
+ O(λ2) .
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After some calculations, we find

S(λ, z) = 1 + λ
1

c
·

[

zcE [Tc] + (1 − β)c

l−1
∑

n=0

d1(n)

+ βc

l−1
∑

n=0

d1(n)znE [Tn] + c

c−1
∑

n=l

d1(n)znE [Tn]

− zcE [Tc]β

l−1
∑

n=0

d1(n)n − zcE [Tc]

c−1
∑

n=l

d1(n)n

]

+ O(λ2) , (3.34)

when β 6= 0, whereas in the case β = 0, we obtain

S(λ, z) = 1 + λ
1

c
·

[

c

l−1
∑

n=0

d1(n) + c

c−1
∑

n=l

d1(n)znE [Tn]

+ zcE [Tc] − zcE [Tc]

c−1
∑

n=l

d1(n)n

]

+ O(λ2) . (3.35)

From formulas (3.34) and (3.35), it is straightforward to extract the constant
and linear terms of the corresponding probabilities:

Pr [S = n] =


























1 + λ
[

(1 − β)
∑l−1

m=0 d1(m) + βd1(0)E [T0]
]

+ O
(

λ2
)

if n = 0 ,

λβE [Tn] d1(n) + O
(

λ2
)

if 1 ≤ n ≤ l − 1 ,
λE [Tn] d1(n) + O

(

λ2
)

if l ≤ n ≤ c − 1 ,

λ
E[Tc]

c

[

1 − β
∑l−1

m=0 d1(m)m −
∑c−1

m=l d1(m)m
]

+ O
(

λ2
)

if n = c ,

0 else ,

if β 6= 0 and

Pr [S = n] =



















1 + λ
∑l−1

m=0 d1(m) + O
(

λ2
)

if n = 0 ,
λE [Tn] d1(n) + O

(

λ2
)

if l ≤ n ≤ c − 1 ,

λ
E[Tc]

c

[

1 −
∑c−1

m=l d1(m)m
]

+ O
(

λ2
)

if n = c ,

0 else ,

when β = 0. The constant term being equal to zero for n > 0 is no surprise
because service times are negligible as compared to interarrival times.

3.2.5 Number of customers in a served batch

Along the same lines as above, we establish the following light-traffic approxi-
mation for the PGF S̃(λ, z) of the number of customers in a served batch, when
β 6= 0:

S̃(λ, z) = 1 + λ
NS̃,1(z) − DS̃,1(z)

DS̃,0(z)
+ O(λ2) , (3.36)



3.2. LIGHT-TRAFFIC APPROXIMATIONS 51

with

NS̃,1(z) =zc − β
E [Tc]

1 − β(1 − E [T0])
− βzc

l−1
∑

n=0

d1(n)n

− zc
c−1
∑

n=l

d1(n)n + βc

l−1
∑

n=0

d1(n)zn + c

c−1
∑

n=l

d1(n)zn ,

DS̃,0(z) =F0(1, 1)c = β
c

1 − β(1 − E [T0])
,

DS̃,1(z) =cF1(1, 1) − E [Tc] F0(1, 1)

=1 + β

l−1
∑

n=0

d1(n)(c − n) +

c−1
∑

n=l

d1(n)(c − n) − E [Tc]
β

1 − β(1 − E [T0])
.

If, on the other hand, β = 0, the approximation formula reads:

S̃(λ, z) =
NS̃,1(z)

DS̃,1(z)
+ λ

NS̃,2(z)DS̃,1(z) − NS̃,1(z)DS̃,2(z)

DS̃,1(z)2
+ O(λ2) , (3.37)

with

NS̃,1(z) =zc +

c−1
∑

n=l

d1(n)[czn − nzc] ,

NS̃,2(z) =zc
l−1
∑

n=0

d1(n) − zc
c−1
∑

n=l

d2(n)n + zc
c−1
∑

n=l

d1(n)E [Tn]

+ c

c−1
∑

n=l

d2(n)zn − E [Tc]

c−1
∑

n=l

d1(n)zn ,

DS̃,1(z) =F1(1, 1)c = 1 +

c−1
∑

n=l

d1(n)(c − n) ,

DS̃,2(z) =cF2(1, 1) − E [Tc]F1(1, 1)

=

c−1
∑

n=l

d2(n)(c − n) −
E [Tc]

c

{

1 +

c−1
∑

n=l

d1(n)(c − n)

}

.

As a result, the constant term of the corresponding probabilities Pr
[

S̃ = n
]

reads:

lim
λ→0

Pr
[

S̃ = n
]

=

{

1 if n = 0 ,
0 else ,

if β 6= 0, whereas when β = 0

lim
λ→0

Pr
[

S̃ = n
]

=



















d1(n)c

1+
∑c−1

m=l
d1(m)(c−m)

if l ≤ n ≤ c − 1 ,

1−
∑ c−1

m=l
d1(m)m

1+
∑c−1

m=l
d1(m)(c−m)

if n = c ,

0 else .

In the latter case, it is evident that the server processes batches of minimum
size l and maximum size c, because no service can be initiated before at least
l customers are present. When, on the other hand, β 6= 0, the server regularly
starts a new service anyway. On account of the nearly infinite interarrival
times, the served batches are practically always empty.
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3.2.6 Probability that the server processes

The probability that the server processes a batch during a random slot is found
by invoking that q0(λ, n) = d(λ, n)(1−β) and substituting d(λ, n) by its Taylor
series expansion, resulting in:

Pr [server processes] =
βE [T0]

1 − β + βE [T0]
− λ(1 − β)

l−1
∑

n=0

d1(n) + O
(

λ2
)

,

when β 6= 0 and

Pr [server processes] = −λ

l−1
∑

n=0

d1(n) + O
(

λ2
)

,

if β = 0. The constant term being zero in the latter case is again a consequence
of the negligible service times. When, on the other hand β 6= 0, the system
nearly always alternates between periods whereby the server processes 0 cus-
tomers (with mean length E [T0]) and periods whereby the server is not serving
(mean length (1 − β)/β).

3.2.7 Queue content when the server not processes

Finally, we establish a light-traffic approximation for the PGF Q̃(λ, z) of the
queue content when the server not processes. We find analogously as above
that the light-traffic approximation reads

Q̃(λ, z) = 1 + λ[1 − β(1 − E [T0])]

[

l−1
∑

n=1

d1(n)zn −

l−1
∑

n=1

d1(n)

]

+ O
(

λ2
)

,

when β 6= 0, whence it follows that

Pr
[

Q̃ = n
]

=







1 − λ [1 − β(1 − E [T0])]
∑l−1

m=1 d1(m) + O
(

λ2
)

if n = 0 ,
λ [1 − β(1 − E [T0])] d1(n) + O

(

λ2
)

if 1 ≤ n ≤ l − 1 ,
0 else .

On the other hand, if β = 0, we deduce that

Q̃(λ, z) =

l−1
∑

n=0

d0(n)zn + λ

[

l−1
∑

n=0

d1(n)zn −

{

l−1
∑

n=0

d0(n)zn

}

l−1
∑

m=0

d1(m)

]

+ O
(

λ2
)

,

which yields

Pr
[

Q̃ = n
]

=

{

d0(n) + λ
[

d1(n) − d0(n)
∑l−1

m=0 d1(m)
]

+ O
(

λ2
)

if 0 ≤ n ≤ l − 1 ,

0 else .

The probabilities can be explained intuitively analogously as for Pr [Q = n].

Remark 12. Note that d(λ, n), zi and all quantities U(λ, z), Q(λ, z) et cetera,
can only be expanded in a Taylor series if they are analytic at λ = 0. In
appendix A, we prove that if A(λ, z) is analytic at λ = 0 for all z in the closed
complex unit disk (this assumption is for instance fulfilled for the Bernoulli,
geometric and Poisson distributions), then these functions are also analytic at
λ = 0.
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Remark 13. From the light-traffic approximations of the PGFs U(λ, z), Q(λ, z),
et cetera, moments can be extracted by applying the moment generating prop-
erty of PGFs. Indeed, since U(λ, z), Q(λ, z), et cetera, are analytic at (λ =
0, z = 1), the order of taking derivatives can be changed (first to λ and then to
z or vice versa).

Remark 14. The light-traffic formulas are valid under the assumption that
zc − Tc(A(λ, z)) is aperiodic (assumption 4 from the introduction). Indeed, the
approximation is based on the series expansion of the set of equations (2.14)
and (2.15), which only make sense in case of aperiodicity of zc − Tc(A(λ, z)).

Remark 15. When β = 0, our approach leads to full-analytic expressions for
l = 1 and l = c (the interested reader is referred to our paper [43], where this
is demonstrated for the special case whereby Tn(z) = Tc(z) for all n).

3.2.8 Evaluation of the approximation formulas

In the previous sections, we have deduced light-traffic approximations for a
spectrum of quantities related to the buffer content. The purpose of the current
section is to assess the accuracy of our approach. Let us therefore consider
an example with server capacity 10, a Poisson distribution for the number of
arrivals and the service time of a batch of n customers being geometrically
distributed with mean value 8 + 0.2n.
We have depicted in Fig. 3.1-3.4 the light-traffic approximations as well as
the exact values of the mean system content and the filling degree (defined
as the mean number of customers in a served batch divided by the server
capacity c) versus the load ρ, for various values of l and β. We observe that
the approximations are accurate in case of light traffic (i.e. small values of ρ,
thus small values of λ), and that the larger the service threshold, the longer
the range of values of ρ where the approximations remain accurate.
Next, Fig. 3.1 and 3.3 exhibit that when β > 0, the mean system content as
well as the filling degree tend to zero when λ → 0 (and thus ρ → 0). This
can be explained as follows: when eventually customers arrive for small λ,
they will be served after some relatively short time (because β 6= 0) and this
period is negligible as compared to the nearly infinite time until new customers
arrive. As a result, the system is virtually always empty. In addition, the
nearly infinite interarrival times in combination with β 6= 0 imply that the
system practically always alternates between periods whereby the server is not
serving and periods whereby the server processes 0 customers, meaning that
the served batches are almost always empty. Finally, we perceive that when
β = 0, the mean system content (Fig. 3.2) and the filling degree (Fig. 3.4)
tend to respectively (l−1)/2 and l/c for λ → 0. Actually, this is a consequence
of the Poisson distribution for the amount of arrivals in a slot. Indeed, when
λ → 0, the customers are very likely to arrive alone. As a result, the system
content nearly always increases by one, until the service threshold l is reached.
At that moment, service is initiated with l customers and since the service
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Figure 3.1: Evaluation of light-traffic approximation for E [U ] (via formula
(3.25)); Poisson arrivals, β = 0.1, c = 10, Tn geometrically distributed, E [Tn] =
8 + 0.2n

times are negligible as compared to the interarrival times, the system content
is uniformly distributed between 0 and l − 1, which has mean value (l − 1)/2.

Remark 16. We have also checked the approximations for the queue content,
the server content, et cetera, and we have also considered other sets for A(z)
and Tj(z). The examples confirm the conclusions that are drawn in this section.
We have not depicted all examples in order to keep this dissertation concise.
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Figure 3.2: Evaluation of light-traffic approximation for E [U ] (via formula
(3.31)); Poisson arrivals, β = 0, c = 10, Tn geometrically distributed, E [Tn] =
8 + 0.2n
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Figure 3.3: Evaluation of light-traffic approximation for the filling degree (via
formula (3.36)); Poisson arrivals, β = 0.1, c = 10, Tn geometrically distributed,
E [Tn] = 8 + 0.2n
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Figure 3.4: Evaluation of light-traffic approximation for the filling degree (via
formula (3.37)); Poisson arrivals, β = 0, c = 10, Tn geometrically distributed,
E [Tn] = 8 + 0.2n
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3.3 Heavy-traffic approximations

In this section, we study the heavy-traffic behaviour of the buffer-related quan-
tities that were computed in chapter 2, by letting λ going to c/E [Tc]. We thus
analyse the system close to instability (ρ → 1).

3.3.1 System content at random slot boundaries

We here deduce heavy-traffic approximations for E [U ], Var [U ] and Pr [U = n].

First, let NU (z) and DU (z) represent respectively the numerator and denomi-
nator of U(z), i.e.

NU (z) =(zc − 1)Tc(A(z))[1 − A(z)]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n)gn(z) +

c−1
∑

n=l

d(n)hn(z) , (3.38)

DU (z) =[1 − A(z)] [zc − Tc(A(z))] , (3.39)

with gn(z) and hn(z) defined as

gn(z) ,(zn − zc)Tn(A(z))Tc(A(z)) + zn(zc − 1)Tc(A(z))A(z)

− zc(zn − 1)Tn(A(z)) ,

hn(z) ,Tn(A(z))zc{1 − zn − Tc(A(z))} − Tc(A(z))zn{1 − zc − Tn(A(z))} .

It is clear that NU (1) = N
′

U (1) = DU (1) = D
′

U (1) = 0 and that, owing to the

normalisation condition (U(1) = 1), N
′′

U (1) = D
′′

U (1). As a result, we have,
after applying l’Hôpital’s rule several times:

E [U ] = U
′

(1) =
N

′′′

U (1) − D
′′′

U (1)

3D
′′

U (1)
, (3.40)

and

U
′′

(1) =
3N

′′′′

U (1)D
′′

U (1) − 3D
′′′′

U (1)D
′′

U (1) − 4D
′′′

U (1)N
′′′

U (1) + 4D
′′′

U (1)2

18D
′′

U (1)2
. (3.41)

Second, we let λ go to c/E [Tc]. Then, it is clear that D
′′

U (1) = −2λ[c−E [Tc] λ]
tends to zero. In order to calculate the limit of the numerator and its derivatives
at z = 1, it is required to deduce the limit behaviour of the c unknowns d(n),
n = 0, . . . , c − 1. Recall that these c unknowns can be found by solving the
set of c equations (3.1) and (3.2). When λ goes to c/E [Tc], the left-hand-side
of (3.2) vanishes. As a result, it can be shown that the solution of the set of
equations equals d(n) = 0. Hence,

lim
λ↑ c

E[Tc]

d(n) = 0 , 0 ≤ n ≤ c − 1 . (3.42)

As a consequence, the numerator of U(z) and all its derivatives become zero
at z = 1.
In conclusion, as D

′′

U (z) as well as the numerator of U(z) and all its derivatives
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become zero at z = 1, and on account of (3.40) and (3.41), U
′

(1) and U
′′

(1)
go to infinity according to the following expressions:

U
′

(1) ∼
−D

′′′

U (1)

3D
′′

U (1)
,

U
′′

(1) ∼
2

9

(

D
′′′

U (1)

D
′′

U (1)

)2

.

Relying on expression (3.39) for DU (z) and the moment generating property

of PGFs (E [U ] = U
′

(1) and Var [U ] = U
′′

(1) − U
′

(1)2 + U
′

(1)) yields

E [U ] ∼
λ3T

′′

c (1) + 2λA
′′

(1)E [Tc] − A
′′

(1)c − λc(c − 1)

2λ(c − E [Tc]λ)
, (3.43)

Var [U ] ∼

[

λ3T
′′

c (1) + 2λA
′′

(1)E [Tc] − A
′′

(1)c − λc(c − 1)

2λ(c − E [Tc]λ)

]2

. (3.44)

Finally, on account of (3.42) and expressions (3.38) and (3.39) for respectively
NU (z) and DU (z), it follows that U(z) → 0 for |z| < 1, which, in turn, implies
that Pr [U = n] → 0 for finite n.

3.3.2 Queue content at random slot boundaries

The heavy-traffic approximation for the queue content at random slot bound-
aries can be computed completely analogously as the approximation for the
system content, and is equal to

E [Q] ∼
λ3T

′′

c (1) + 2λA
′′

(1)E [Tc] − A
′′

(1)c − λc(c − 1)

2λ(c − E [Tc] λ)
, (3.45)

Var [Q] ∼

[

λ3T
′′

c (1) + 2λA
′′

(1)E [Tc] − A
′′

(1)c − λc(c − 1)

2λ(c − E [Tc] λ)

]2

, (3.46)

and Pr [Q = n] → 0 for finite n. The formulas are thus exactly equal to those
for the system content. This is because the server content becomes negligible
as compared to the (very large) queue content.

3.3.3 System content at service completion times

Before we can deduce a heavy-traffic approximation for the system content at
service completion times, it is necessary to study the heavy-traffic behaviour
of F (1, 1) (note that F (1, 1) is by definition equal to the probability that the
remaining service time equals one, thus the probability that a random slot is
the last slot of a service period). Taking the limit λ → c/E [Tc] in expression
(2.19) for F (1, 1) would require application of l’Hôpital’s rule and consequently
the calculation of derivatives of d(n) at λ → c/E [Tc]. Alternatively, we can
rely on the rate-in-rate-out principle, which states that when the system is
in steady state, the mean number of customers leaving the system per slot
equals the mean number of arrivals per slot. The mean number of arrivals
equals λ, whereas the mean number of customers leaving the system equals the
probability that the service finishes at a random slot (F (1, 1)) multiplied by
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the number of customers in service in that slot, which goes to c (this will be
proved in the next subsection). Hence, as λ → c/E [Tc], we find

lim
λ↑ c

E[Tc]

F (1, 1) =
1

E [Tc]
.

Next, let NŨ (z) and DŨ (z) represent respectively the numerator and denom-

inator of Ũ(z). It holds that NŨ (1) = DŨ (1) = 0, and the normalisation

condition implies that N
′

Ũ
(1) = D

′

Ũ
(1). As a result, we have, after applying

l’Hôpital’s rule several times

E
[

Ũ
]

=
N

′′

Ũ
(1) − D

′′

Ũ
(1)

2D
′

Ũ
(1)

,

Ũ
′′

(1) =
2N

′′′

Ũ
(1)D

′

Ũ
(1) − 2D

′

Ũ
(1)D

′′′

Ũ
(1) − 3D

′′

Ũ
(1)N

′′

Ũ
(1) + 3D

′′

Ũ
(1)2

6D
′

Ũ
(1)2

.

As D
′

Ũ
(1) (equal to F (1, 1)[c − E [Tc] λ]) as well as all derivatives of NŨ (z) at

z = 1 tend to 0 (because d(n) → 0) when λ → c/E [Tc], we find that E
[

Ũ
]

and

Ũ
′′

(1) tend to infinity according to the following expressions:

E
[

Ũ
]

∼−
D

′′

Ũ
(1)

2D
′

Ũ
(1)

,

Ũ
′′

(1) ∼
1

2





D
′′

Ũ
(1)

D
′

Ũ
(1)





2

.

Hence,

E
[

Ũ
]

∼
T

′′

c (1)λ2 + E [Tc]A
′′

(1) − c(c − 1)

2[c − E [Tc] λ]
, (3.47)

Var
[

Ũ
]

∼

(

c(c − 1) − T
′′

c (1)λ2 − E [Tc] A
′′

(1)

2[c − E [Tc]λ]

)2

. (3.48)

3.3.4 Server content at random slot boundaries

Letting λ → c/E [Tc] in expression (2.20) for S(z), taking into account that
d(n) → 0 and application of l’Hôpital’s rule yields

S(z) →− zc c

E [Tc]

l−1
∑

n=0

d
′

(n) − zcβ

l−1
∑

n=0

d
′

(n)

{

E [Tn]
c

E [Tc]
− n −

c

E [Tc]

}

− zc
c−1
∑

n=l

d
′

(n)

{

E [Tn]
c

E [Tc]
− n

}

, (3.49)

with

d
′

(n) , lim
λ→ c

E[Tc]

∂

∂λ
d(λ, n) .

Next, as the left-hand-side of (3.2) is not zero for λ < c/E [Tc], not all deriva-

tives of d(n) at λ → c/E [Tc] (d
′

(n)) are equal to zero. Although d
′

(n) is
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difficult to calculate, (3.49) reveals that only terms corresponding to zc are
different from zero. Hence,

lim
λ→ c

E[Tc]

S(z) = zc ,

and consequently

lim
λ→ c

E[Tc]

Pr [S = n] →

{

1 if n = c ,
0 else .

(3.50)

Hence, E [S] → c and Var [S] → 0. This result states that the server content is
nearly always equal to c, which is no surprise, as we have previously deduced
that the queue content goes to infinity if the load tends to one.

3.3.5 Number of customers in a served batch

As S(z) = zc, it follows that S̃(z) = zc. This can also be observed from

expression (2.21) for S̃(z). Indeed, letting λ → c/E [Tc] and appyling l’Hôpital’s
rule shows that only the terms corresponding to zc do not vanish. As a result,
the corresponding probabilities become

lim
λ→ c

E[Tc]

Pr
[

S̃ = n
]

=

{

1 if n = c ,
0 else .

(3.51)

3.3.6 Probability that the server processes

The combination of expression (2.22) for Pr [server processes], q0(n) = (1 −
β)d(n) for n = 0, . . . , l − 1, and d(n) → 0 produces

Pr [server processes] → 1 . (3.52)

3.3.7 Queue content when the server not processes

As the server nearly always processes when λ approaches c/E [Tc], this approx-
imation is not useful. In addition, calculating an approximation would require
the calculation of derivatives of d(n) at λ = c/E [Tc], which is very complicated.

Remark 17. Expressions (3.43)-(3.52) highlight that the heavy-traffic behaviour
is independent of l and β. The reason is that almost always c or more cus-
tomers are present, so that, regardless of the service policy, a new service is
initiated immediately.

Remark 18. The appearance of A
′′

(1) and T
′′

c (1) in the numerator of (3.43)-
(3.46) and (3.47)-(3.48) shows that a larger variance in the service times as
well as amount of per-slot arrivals, leads to an increasing system content and
queue content, which is a typical result in queueing theory. However, although
it is also common in queueing theory that A

′′′

(1) and T
′′′

c (1) appear in the ex-
pressions of the variance of the system and queue content, they are not present

in the heavy-traffic approximation of Var [U ], Var [Q] and Var
[

Ũ
]

. The reason

is that we only retain the dominant term. For instance, consider expression
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(3.41) for U
′′

(1). The fourth term in the numerator is dominant and A
′′′

(1)
and T

′′′

c (1) appear in the other terms. Hence, although A
′′′

(1) and T
′′′

c (1) play

a role in Var [U ], Var [Q] and Var
[

Ũ
]

, their influence is negligible in case of

heavy traffic.

3.3.8 Evaluation of the approximation formulas

We evaluate approximation formulas (3.43)-(3.52) by considering the same ex-
ample as in sections 2.5 and 3.2.8 (Poisson arrivals, geometrically distributed
service times with mean value dependent on the number of customers in the
served batch and a server capacity equal to 10). As the system content goes
to infinity (see subsection 3.3.1), we do not plot the approximations and the
exact values of E [U ] as it would lead to a distorted view. Therefore, we study
the relative error of E [U ], defined as follows:

2|E [U ] − E [U ]a |

E [U ] + E [U ]a
,

where E [U ]a represents the approximation for E [U ]. The relative error of the
system content is depicted versus the load ρ in Fig. 3.5, for various values
of l and β. Analogously, the relative error of the filling degree is depicted in
Fig. 3.6. We observe that the approximations are accurate for a large arrival
intensity and that it fits better when l is larger. This is logical, since the
approximations exploit the fact that the server nearly always processes at full
capacity in case of heavy traffic. We also perceive that the value of β has only
a small influence on the relative difference, which can be explained because β
is a mechanism that matters especially for small loads.
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Figure 3.5: Relative error between E [U ] and its heavy-traffic approximation;
Poisson arrivals, Tn geometrically distributed, E [Tn] = 8 + 0.2n



64 CHAPTER 3. BUFFER CONTENT: APPROXIMATIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.95  0.96  0.97  0.98  0.99  1

re
la

ti
v
e

 e
rr

o
r

ρ

l = 1
l = 4
l = 6

l = 10

(a) β = 0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.95  0.96  0.97  0.98  0.99  1

re
la

ti
v
e

 e
rr

o
r

ρ

l = 1
l = 4
l = 6

l = 10

(b) β = 0.1

Figure 3.6: Relative error between the filling degree and its heavy-traffic ap-
proximation; Poisson arrivals, Tn geometrically distributed, E [Tn] = 8 + 0.2n



Chapter 4

Customer delay: PGFs and
moments

4.1 Preface

Whereas we have studied the buffer content in the preceding chapters, we now
turn our focus to the customer delay. As mentioned previously, we define the
delay of a customer as the integral number of slots it sojourns in the queue.
Hence, the remaining time of the slot wherein the customer arrives as well as
the service time is excluded. The structure of this chapter is broadly speak-
ing similar as in chapter 2. We first establish a joint PGF (section 4.2), from
which we deduce then various quantities in section 4.3. Next, in section 4.4,
we show how performance measures can be extracted from these quantities
and finally we demonstrate that these performance measures are useful tools
to evaluate real-life batch-service queueing systems. As opposed to chapter 2,
only moments can be extracted from the obtained quantities. Calculating tail
probabilities, on the other hand, requires another approach, which is the topic
of chapter 5.
In our papers [39] and [40], we have analysed the customer delay in a model
that is included as a special case in the model discussed throughout this dis-
sertation: it adopts the full-batch service-policy and single-slot service times
(β = 0, l = c and Tc(z) = z). In [41], we have studied the customer delay
in a model with immediate-batch service-policy (β = 0, l = 1) and a model
with full-batch service policy (β = 0, l = c). Both models have in common
that geometric service times are considered that are independent of the amount
of served customers (Tn(z) = z/(E [Tc] − (E [Tc] − 1)z)). Finally, in [43], we
have extended [39], [40] and [41] by adopting the threshold-based service pol-
icy (β = 0) and considering general service times that are independent of the
number of customers being processed. In this chapter, we immediately discuss
the versatile model from this dissertation, as it runs along the same lines as in

65
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[39], [40], [41] and [43].

4.2 Joint PGF

The delay of a randomly tagged customer can be subdivided in two parts. The
first component (W1) is the time required to serve batches containing previously
arrived customers and is referred to as queueing delay. The second part (W2)
is the time needed, starting at the end of the queueing delay, to fill the batch
containing the tagged customer with at least l customers or until the server
has permission to initiate service with less than l customers and is therefore
denominated by postponing delay. On account of these definitions it holds
that the delay W of a randomly tagged customer equals

W = W1 + W2 .

It is important to point out that dependence exists between the queueing de-
lay W1 and the postponing delay W2. Indeed, the longer the queueing delay,
the more customers arrive during the queueing delay, thus W1 influences the
amount of customers at the beginning of W2 (this number is denoted by P ). If
P is larger than or equal to the service threshold l, W2 equals zero. Otherwise,
it may take some time until at least l customers have accumulated or until the
server decides to initiate a new service anyway.

In Fig. 4.1, W1, W2 and P together with some other notations are illus-
trated through an example whereby β = 0, l = c = 10 and Tc(z) = z. Here,
J denotes the tagged customer’s arrival slot, QJ is the queue content at the
beginning of this slot and A− and A+ represent the amount of arrivals during
slot J , respectively before and behind the tagged customer. It is assumed that
QJ + A− = 23 and A+ = 2. As at slot mark J + 1 the number of customers
before the tagged customer equals QJ + A− = 23, c = 10 and Tc(z) = z, the
queueing delay equals 2 slots. Next, as 3 customers are still in front of the
tagged customer after the queueing delay, A+ = 2 and 3 customers have ar-
rived during the queueing delay, 9 customers (the tagged customer included)
are in the system after the queueing delay, which is smaller than l = c = 10.
As a customer arrives after two slots, which thus leads to a sufficient number
of present customers, the postponing delay W2 equals two slots. Hence, the
total customer delay W equals W1 + W2 = 2 + 2 = 4 slots.

The purpose of this section is to compute the joint PGF W̃ (z, x) of the queueing
delay W1 and the postponing delay W2, i.e.

W̃ (z, x) , E
[

zW1xW2

]

.

We thereby exploit that W1 only influences W2 through the amount of cus-
tomers at the end of W1 (P ) and thus that W1 and W2 are independent if P
is given:

W̃ (z, x) =
∞
∑

p=1

Pr [P = p] E
[

zW1xW2 |P = p
]

=
∞
∑

p=1

Pr [P = p] E
[

zW1 |P = p
]

E
[

xW2 |P = p
]

. (4.1)

Next, we compute E
[

xW2 |P = p
]

. Therefore, we make use of the following
relation between W2 and P :

Pr[W2 > m|P = p] = Pr[p + Â1 + · · · + Âm < l](1 − β)m+1 , m ≥ 0 , (4.2)



4.2. JOINT PGF 67

Figure 4.1: Illustration of W1, W2 and P and other notations and relations
between them; β = 0, l = c = 10, Tc(z) = z

with Âj the number of arrivals during the j-th slot after the end of the queueing
delay. Indeed, W2 is larger than m if m slots after the queueing delay the
number of present customers, p+ Â1 + . . .+ Âm, is still smaller than the service
threshold l and if the server decides at least during m + 11 slots not to start a
new service with fewer customers. Multiplication of both sides of (4.2) by xm

and summing over all m yields

E
[

xW2 |P = p
]

− 1

x − 1
=

∞
∑

m=0

xmPr
[

p + Â1 + · · · + Âm < l
]

(1 − β)m+1

=

∞
∑

m=0

xm
l−1
∑

n=0

Pr
[

p + Â1 + · · · + Âm = n
]

(1 − β)m+1

=
∞
∑

m=0

xm
l−1
∑

n=0

1

n!

∂n

∂yn
ypA(y)m

∣

∣

∣

∣

y=0

(1 − β)m+1

=

l−1
∑

n=p

(1 − β)

n!

∂n

∂yn

yp

1 − (1 − β)xA(y)

∣

∣

∣

∣

y=0

,

whereby step 3 makes use of the probability generating property of PGFs and
the IID character of the arrival process and step 4 takes into account that the
n-th derivative is equal to zero for n < p. The last equation requires that
|(1 − β)xA(y)| < 1 in the neighbourhood of y = 0. We thus have that:

E
[

xW2 |P = p
]

= 1 + (x − 1)

l−1
∑

n=p

(1 − β)

n!

∂n

∂yn

yp

1 − (1 − β)xA(y)

∣

∣

∣

∣

y=0

. (4.3)

Note that the second term of (4.3) vanishes if p ≥ l. Indeed, when p ≥ l, the
postponing delay is equal to zero. Substituting (4.3) into (4.1) produces:

W̃ (z, x) = P (z, 1) + (x − 1)

l−1
∑

n=0

(1 − β)

n!

∂n

∂yn

P (z, y)

1 − (1 − β)xA(y)

∣

∣

∣

∣

y=0

, (4.4)

1Note the appearance of m+1 instead of m. In case of m, the server would initiate a new
service at the m + 1-th slot after the queueing delay, so that W2 would be equal to m which
is thus not larger than m.
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with

P (z, y) , E
[

zW1yP
]

.

In order to compute P (z, y), we first calculate the joint PGF Ŵ (z, x, y) of W1,
the number of customers ahead (G) and the number of customers behind (H)
the tagged customer at the end of the queueing delay (see Fig. 4.1 for an
illustration of these variables), i.e.

Ŵ (z, x, y) , E
[

zW1xGyH
]

.

Since P is equal to G + H + 1, P (z, y) is then equal to yŴ (z, y, y). As we
consider general service times, we have to bear in mind that a service might
be going on during slot J that can continue during slot J + 1. Therefore, we
consider two situations depending on whether the remaining service time at
the beginning of slot J , RJ , equals 0 or not:

• RJ = 0. In this case, the server is not processing during slot J . As
a consequence, the server can start a new service at slot J + 1 if there
are enough customers or if the server is allowed to initiate a new service
with fewer customers (with probability β). As the number of previously
arrived customers equals QJ +A− and the server can process c customers

simultaneously, the queueing delay W1 equals
⌊

QJ+A−

c

⌋

service periods2,

whereby each service time is distributed according to Tc(z). After the
queueing delay, (QJ + A−) mod c previously arrived customers are still
in front of the tagged customer3. Hence, G = (QJ + A−) mod c. These
customers are served in the same batch as the tagged customer. Finally,
the amount of customers behind the tagged customer at the end of the
queueing delay is the sum of the number of customers that arrive after
the tagged one during slot J and during the queueing delay. Hence,
H = A+ +

∑W1

i=1 AJ+i.

• RJ ≥ 1. In this case, the server first continues RJ − 1 slots with the
current service period. After that, QJ + A− customers are ahead of the

tagged one and another
⌊

QJ+A−

c

⌋

service periods are part of W1 (each

length is distributed according to Tc(z)). Hence, W1 =
⌊

QJ+A−

c

⌋

service

periods +RJ − 1. Analogously as in the first case, G = (QJ + A−)mod c

and H = A+ +
∑W1

i=1 AJ+i.

We split the computation of the joint PGF Ŵ (z, x, y) of W1, G and H in two
parts corresponding to these two situations:

Ŵ (z, x, y) = E
[

zW1xGyH{RJ = 0}
]

+ E
[

zW1xGyH{RJ ≥ 1}
]

. (4.5)

2We adopt the standard convention that ⌊.⌋ denotes the floor function, i.e. ⌊x⌋ , max{n ∈
Z : n ≤ x}.

3“mod” is the common notation for the modulo operator.
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For the first component we have:

E
[

zW1xGyH{RJ = 0}
]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

d(nc + m, k, 0)Tc(zA(y))nxmyk , (4.6)

with

d(n, m, k) , Pr
[

QJ + A− = n, A+ = m, RJ = k
]

.

Due to the IID nature of the customer arrivals, we can write the corresponding
PGF D(z, x, y) as the following product:

D(z, x, y) ,E
[

zQJ+A−

xA+
yRJ

]

=E
[

zA−

xA+
]

V (z, 1, y) , (4.7)

with V (z, x, y) the joint PGF of the queue content, the server content and the
remaining service time that was computed in chapter 2:

V (z, x, y)

[

1 −
A(z)

y

]

=(1 − β)

[

1 −
A(z)

y

] l−1
∑

n=0

d(n)zn

+
( x

z

)c
Tc(y)[A(z) − 1]

l−1
∑

n=0

d(n)zn

+ β

l−1
∑

n=0

d(n)
[

xnTn(y) − zn
( x

z

)c
Tc(y)A(z)

]

+
( x

z

)c
Tc(y)A(z)F (z, 1) − A(z)F (z, x)

+

c−1
∑

n=l

d(n)
[

xnTn(y) − zn
( x

z

)c
Tc(y)

]

, (4.8)

with

zcA(z)F (z, x) [zc − Tc(A(z))]

=zcxcTc(A(z))[A(z) − 1]

l−1
∑

n=0

d(n)zn

+ βxcTc(A(z))

l−1
∑

n=0

d(n) [zcTn(A(z)) − znTc(A(z))A(z)]

+ xcTc(A(z))

c−1
∑

n=l

d(n) [zcTn(A(z)) − znTc(A(z))]

+ β[zc − Tc(A(z))]

l−1
∑

n=0

d(n) [zcxnTn(A(z)) − xcznTc(A(z))A(z)]

+ [zc − Tc(A(z))]

c−1
∑

n=l

d(n) [zcxnTn(A(z)) − xcznTc(A(z))] , (4.9)

and whereby the unknowns d(n) can be calculated by solving the set of equa-
tions (2.14)-(2.15). In [24], it is proved, by taking into account that an arbitrary
customer is more likely to arrive in a slot with more customer arrivals, that

E
[

zA−

xA+
]

is equal to

E
[

zA−

xA+
]

=
A(z) − A(x)

λ(z − x)
. (4.10)
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In order to relate E
[

zW1xGyH{RJ = 0}
]

with D(z, x, y), we first introduce
some notations. The function u(z, y) is defined as the “principal c-th root” of
Tc(zA(y)), i.e.

u(z, y) , |Tc(zA(y))|1/ceıArg(Tc(zA(y)))/c , (4.11)

with ı the imaginary unit and Arg(z) the principal value of the argument of z,
i.e. a mapping in the interval ] − π, π]. Next, δ〈l = j〉 is the Kronecker-Delta
function (i.e. δ〈l = j〉 = 1 if l = j and δ〈l = j〉 = 0 if l 6= j). We now rewrite
expression (4.6) for E

[

zW1xGyH{RJ = 0}
]

as follows:

E
[

zW1xGyH{RJ = 0}
]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

j=0

d(nc + m, k, 0)u(z, y)nc+m−jxjykδ〈m = j〉 . (4.12)

On account of the standard property

δ〈m = j〉 =

c−1
∑

i=0

1

c
εnc+m−j
i ,

with εi the i-th complex c-th root of 1 (εi , eı2πi/c), (4.12) can further be
transformed into

E
[

zW1xGyH{RJ = 0}
]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

j=0

d(nc + m, k, 0)u(z, y)nc+m−jxjyk
c−1
∑

i=0

1

c
εnc+m−j
i

=
1

c

c−1
∑

i=0

D(u(z, y)εi, y, 0)

c−1
∑

j=0

u(z, y)−jxjε−j
i

=
u(z, y)c − xc

cu(z, y)c

c−1
∑

i=0

D(u(z, y)εi, y, 0)
u(z, y)εi

u(z, y)εi − x
. (4.13)

We continue with the second term of (4.5). In a similar way as formula (4.13),
we find

E
[

zW1xGyH{RJ ≥ 1}
]

=
1

czA(y)

u(z, y)c − xc

u(z, y)c

.

c−1
∑

i=0

[D(u(z, y)εi, y, zA(y)) − D(u(z, y)εi, y, 0)]
u(z, y)εi

u(z, y)εi − x
. (4.14)

Substitution of (4.13) and (4.14) in (4.5) produces:

Ŵ (z, x, y) =
u(z, y)c − xc

cu(z, y)czA(y)

.

[

[zA(y) − 1]

c−1
∑

i=0

D(u(z, y)εi, y, 0)
u(z, y)εi

u(z, y)εi − x

+

c−1
∑

i=0

D(u(z, y)εi, y, zA(y))
u(z, y)εi

u(z, y)εi − x

]

. (4.15)
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Making use of formulas (4.7), (4.10), (4.11) and expressions (4.8) and (4.9) for
V (z, x, y) and F (z, x) yields:

Ŵ (z, x, y) =
Tc(zA(y)) − xc

cλTc(zA(y))

c−1
∑

i=0

[A(u(z, y)εi) − A(y)]u(z, y)εi

[u(z, y)εi − y][u(z, y)εi − x][zA(y) − A(u(z, y)εi)]

.

{

[zA(y) − 1] (1 − β)

l−1
∑

n=0

d(n)(u(z, y)εi)
n +

c−1
∑

n=l

d(n) [Tn(zA(y)) − (u(z, y)εi)
n]}

+ β

l−1
∑

n=0

d(n) [Tn(zA(y)) − (u(z, y)εi)
n]

}

.

Hence,

P (z, y) = E
[

zW1yP
]

= yŴ (z, y, y)

= y
Tc(zA(y)) − yc

cλTc(zA(y))

c−1
∑

i=0

A(u(z, y)εi) − A(y)

[u(z, y)εi − y]2
u(z, y)εi

zA(y) − A(u(z, y)εi)

.

{

[zA(y) − 1] (1 − β)

l−1
∑

n=0

d(n)(u(z, y)εi)
n

+β

l−1
∑

n=0

d(n) [Tn(zA(y)) − (u(z, y)εi)
n]

+

c−1
∑

n=l

d(n) [Tn(zA(y)) − (u(z, y)εi)
n]

}

. (4.16)

Substitution of (4.11) and (4.16) in (4.4) produces the final expression for the
joint PGF W̃ (z, x). As was the case in chapter 2, the obtained joint PGF
enables us to extract several quantities. In the next section, we derive the
PGF of the total customer delay and the marginal PGFs of the queueing and
the postponing delay.

Remark 19. In case of single (Bernoulli) arrivals, the analysis is simplified
considerably. Indeed, in that case, we find, by substituting A(y) by 1 − λ + λy
in (4.3) and applying Leibniz’s rule for the derivative of a product that

E
[

xW2 |P = p
]

= 1 + (1 − β)(x − 1)
1 −

[

(1−β)xλ
1−(1−β)x(1−λ)

]l−p

1 − (1 − β)x
, p < l ,

so that no derivatives have to be calculated anymore. When β = 0, W2 given
P = p becomes a sum of l − p geometrically distributed random variables.
Indeed, the time until an arrival is then geometrically distributed with parameter
λ and l − p arrivals are required to initiate service.

Remark 20. Note the appearance of u(z, y)c in the denominator of the right-
hand side of (4.15), which suggests that zeroes of u(z, y)c (among which z =

0, ∀y because Tc(0) = 0) might lead to poles of Ŵ (z, x, y). However (4.15) can
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be transformed into

Ŵ (z, x, y)u(z, y)c =
xc

czA(y)

c−1
∑

i=0

c
∑

j=1

(

u(z, y)εi

x

)j ∞
∑

n=0

∞
∑

m=0

∞
∑

k=0

d(n, m, k)(u(z, y)εi)
nym

[

[zA(y) − 1]δ〈k = 0〉 + [zA(y)]k
]

.

Since

c−1
∑

i=0

εj+n
i =







c if j + n is a multiple of c ,

0 else ,

and j ≥ 1, it is clear that u(z, y)c is also a factor of the numerator of (4.15).
Hence, zeroes of u(z, y)c are no poles of Ŵ (z, x, y).

4.3 Quantities related to the customer delay

4.3.1 Customer delay

Since the customer delay W is the sum of the queueing and the postponing
delay, W (z) is found by substituting x by z in expression (4.4) for the joint
PGF of W1 and W2:

W (z) = W̃ (z, z) = P (z, 1) + (z − 1)

l−1
∑

n=0

(1 − β)

n!

∂n

∂yn

P (z, y)

1 − (1 − β)zA(y)

∣

∣

∣

∣

y=0

. (4.17)

4.3.2 Queueing delay

The PGF W1(z) of the queueing delay is found by summing out W2 in W̃ (z, x).
Hence, substituting x by 1 in (4.4) gives:

W1(z) , E
[

zW1

]

= W̃ (z, 1) = P (z, 1) . (4.18)

4.3.3 Postponing delay

The PGF W2(z) of the postponing delay is established by summing out W1 in

W̃ (z, x). Hence, substituting z by 1 and x by z in (4.4) produces:

W2(z) , E
[

zW2

]

= W̃ (1, z)

= 1 + (z − 1)

l−1
∑

n=0

(1 − β)

n!

∂n

∂yn

P (1, y)

1 − (1 − β)zA(y)

∣

∣

∣

∣

y=0

. (4.19)

4.4 Performance measures

As expression (4.17) for W (z) contains derivatives, it is quite hard to extract
performance measures from it. Especially the calculation of tail probabilities
seems impossible. Therefore, we consider a different approach for obtaining tail
probabilities in chapter 5. Moments, however, can be computed from (4.17).
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As the mean delay can also be obtained from Little’s law [57], [79] (E [W ] =
E [Q] /λ), we demonstrate in this section how the variance of the delay can be
deduced from (4.17). From (4.17), we find that the second derivative of W (z)
evaluated at z = 1 reads

W
′′

(1) = W
′′

1 (1) + 2(1 − β)

l−1
∑

n=0

1

n!





∂n

∂yn

P (1)(1, y)

1 − (1 − β)A(y)

∣

∣

∣

∣

∣

y=0

+
∂n

∂yn

P (1, y)(1 − β)A(y)

[1 − (1 − β)A(y)]2

∣

∣

∣

∣

y=0

]

,

with

P (1)(1, y) ,
∂

∂z
P (z, y)

∣

∣

∣

∣

z=1

.

We can calculate 1
n!

∂n

∂yn

P (1)(1,y)
1−(1−β)A(y)

∣

∣

∣

y=0
and 1

n!
∂n

∂yn

P (1,y)(1−β)A(y)
[1−(1−β)A(y)]2

∣

∣

∣

y=0
by in-

verting respectively P (1)(1,y)
1−(1−β)A(y) and P (1,y)(1−β)A(y)

[1−(1−β)A(y)]2 (for instance with the in-

verse discrete Fast Fourier Transform).
Finally, on account of the moment generating property of PGFs, the variance
of W reads

Var [W ] = W
′′

(1) − E [W ]2 + E [W ] .

In addition, moments of the queueing delay can be obtained by applying the
moment generating property of PGFs to (4.18) and moments for the postponing
delay can be extracted from (4.19) along the same lines as we deduced Var [W ]
from (4.17).

4.5 Numerical examples

In this section, we demonstrate that moments of the customer, queueing and
postponing delay are useful tools to evaluate batch-service queueing systems.
Let us therefore again consider the example with a Poisson distribution for the
number of customer arrivals in a random slot, a server capacity equal to 10
and geometrically distributed service times with mean value dependent on the
number of customers n in the served batch: E [Tn] = 8 + 0.2n.

In Fig. 4.2, E [W ], Var [W ], E [W1] and E [W2] are depicted versus the load
ρ for the case β = 0. We perceive that the customer delay goes to infinity
when the load tends to one and that it is caused by the queueing delay (W1).
Next, we observe that if l = 1, the customer delay tends to zero for ρ → 0.
Indeed, when in this case a customer eventually arrives, the system is almost
certainly empty, so that the customer is served the next slot. On the other
hand, when l > 1, the customer delay goes to infinity if ρ → 0 and this effect
is caused by the postponing delay (W2). Fig. 4.2 further exhibits that a larger
service threshold l has an advantageous impact on the queueing delay and a
negative effect on the postponing delay. Indeed, a larger threshold leads to a
smaller probability that a service just has started when a new customer ar-
rives and implies that the already present customers have to wait longer until
enough customers are present. As the postponing delay dominates in case of
light traffic, it is better to adopt a small threshold in that case and since for
heavy traffic the queueing delay is dominant, larger thresholds become steadily
preferable when the load increases.
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Whereas the influence of l is studied in Fig. 4.2, Fig. 4.3 evaluates the in-
fluence of β. We perceive that when ρ → 0, the customer delay does not go to
infinity anymore if β 6= 0. In the sequel, we intuitively calculate E [W ], E [W1]
and E [W2] in this case. When λ → 0, the interarrival times go to infinity.
As a result, the system nearly always alternates between periods whereby the
server is not processing (“idle period”, with mean length (1 − β)/β) and peri-
ods whereby the server processes zero customers (“active period”, with mean
length E [T0]). If, eventually, a customer arrives in an active period, it will
probably be the only one in system at service completion so that it suffers on
average a postponing delay of (1−β)/β slots. When the customer arrives dur-
ing an idle period, E [W2] is, owing to the memoryless property of the geometric
distribution, also equal to (1 − β)/β. Hence,

E [W2] →
1 − β

β
.

Next, the queueing delay W1 of a customer equals k if it arrives in an active
period that lasts another k slots after the arrival slot. The probability that a
customer arrives in an active period of length n becomes

Pr [arrive in active period of length n] →Pr [arrive in active period]

. Pr [length active period equals n]

=
E [T0]

E [T0] + (1 − β)/β

nPr [T0 = n]

E [T0]

=
nPr [T0 = n]

E [T0] + (1 − β)/β
,

whereby we have taken into account that a customer is more likely to arrive in
a long active period ([24]). Hence, since the position of the customer’s arrival
slot in the active period is uniformly distributed, we have

Pr [W1 = k] →
∞
∑

n=k+1

Pr [T0 = n]

E [T0] + (1 − β)/β
.

As a result,

E [W1] →
∞
∑

k=1

k
∞
∑

n=k+1

Pr [T0 = n]

E [T0] + (1 − β)/β

=
1

2

Var [T0] + E [T0]2 − E [T0]

E [T0] + (1 − β)/β
,

and consequently, as W = W1 + W2,

E [W ] →
1 − β

β
+

1

2

Var [T0] + E [T0]2 − E [T0]

E [T0] + (1 − β)/β
.

Finally, Fig. 4.3 also reveals that β = 0 is the best option for heavy traffic, but
the impact is negligible as then nearly always l or more customers are present
at service completion times.
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Figure 4.2: Influence of service threshold l on the delay; Poisson arrivals, β = 0,
c = 10, Tn geometrically distributed, E [Tn] = 8 + 0.2n
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Figure 4.3: Influence of β on the delay; Poisson arrivals, c = 10, l = 5, Tn

geometrically distributed, E [Tn] = 8 + 0.2n



Chapter 5

Customer delay: tail
probabilities

5.1 Preface

Tail probabilities of the customer delay form an important performance mea-
sure. Consider for instance an edge router where packets with the same QoS
and destination are aggregated into bursts, which are then injected into the
network. On account of the competition for the transmission channel, packets
might suffer a delay. When packets are delay-sensitive (for instance voice pack-
ets), they become worthless if their delay becomes large, so they are dropped.
The quality of the upperlayer application is then typically expressed in terms
of the (order of magnitude of the) probability of this event. Also, in the exam-
ple of blood pooling from chapter 2, tail probabilities of the delay have to be
investigated due to the perishable nature of blood samples.

As formula (4.17) for the customer delay W contains derivatives, it seems im-
possible to extract tail probabilities from it. Therefore, we follow another ap-
proach in this chapter so that tail probabilities can be calculated. In our paper
[40], we have deduced tail probabilities in a batch-service queueing model with
single-slot service times and full-batch service policy (β = 0, l = c, Tc(z) = z).
In [44], we have carried out the analysis in a threshold-based model with general
service times that are independent of the number of served customers (β = 0,
Tn(z) = Tc(z)). Whereas in previous chapters, analysis of a basic model and
the final model runs along the same lines, extending a basic model creates sev-
eral novel difficulties in the context of tail probabilities of the customer delay.
Therefore, we first discuss the models from [40] and [44] before dealing with the
versatile model from this dissertation. More specifically, we study in section 5.2
the “basic model” from [40]. Then, in section 5.3, we analyse the “intermediate
model” from [44] and finally, the “final model” from this dissertation is dealt

77
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with in section 5.4.

5.2 Basic model

In this section, we deduce tail probabilities for the model from [40] with single-
slot service times and full-batch service policy (β = 0, l = c, Tc(z) = z). Recall
that in chapter 4 we have divided the delay of a randomly tagged customer in
two components: the queueing delay W1 and the postponing delay W2, so that

W = W1 + W2 .

The queueing delay is the time to process batches with previously arrived cus-
tomers and the postponing delay is the time period, starting after the queueing
delay, until the batch with the tagged customer constains c customers. The
key idea to calculate tail probabilities is to redefine W2, so that it starts at
the same moment as W1. As a result, the delay then becomes a maximum
of two parts:

W = max(W1, W̃2) , (5.1)

with W̃2 the redefined postponing delay. This is illustrated in Fig. 5.1.

On account of (5.1), we obtain

Figure 5.1: Two examples of the new definition of the postponing delay (c =
10); three numbers are mentioned at every slot mark, which together represent
the system content; they respectively characterise the number of customers
before the tagged customer, the tagged customer itself (1) and the number of
customers after the tagged customer
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Pr [W > w] = Pr
[

W1 > w ∨ W̃2 > w
]

= Pr [W1 > w] + Pr
[

W̃2 > w
]

− Pr
[

W1 > w ∧ W̃2 > w
]

.

Calculation of joint probabilities of W1 and W̃2 is difficult. Therefore, we
propose some lower and upper bounds, that only require calculation of marginal
tail probabilities of W1 and W̃2. The following property paves the path towards
establishment of a lower bound for Pr [W > w]:

Pr
[

W1 > w ∧ W̃2 > w
]

≤ min
(

Pr [W1 > w] ,Pr
[

W̃2 > w
])

. (5.2)

A lower bound is obtained by assuming that the equality in (5.2) holds, leading
to

Pr [W > w] ≥ max
(

Pr [W1 > w] , Pr
[

W̃2 > w
])

. (5.3)

An upper bound is established from the inequality Pr
[

W1 > w ∧ W̃2 > w
]

≥ 0,

leading to:

Pr [W > w] ≤ Pr [W1 > w] + Pr
[

W̃2 > w
]

. (5.4)

These bounds require the calculations of Pr [W1 > w] and Pr
[

W̃2 > w
]

, which

are discussed in the two following subsections respectively.

5.2.1 Calculation of Pr [W1 > w]

The PGF W1(z) of the queueing delay in the versatile model was established
in chapter 4 (formula (4.18)). The PGF for the basic model is found by setting
β = 0, l = c and Tc(z) = z in (4.18), leading to:

W1(z) =
(z − 1)2

cλz

c−1
∑

i=0

A
(

z1/cεi

)

− 1
(

z1/cεi − 1
)2

z1/cεi

z − A
(

z1/cεi

)

c−1
∑

n=0

d(n)
(

z1/cεi

)n
, (5.5)

with z1/c the principal c-th root of z, i.e. z1/c , |z|1/ceıArg(z)/c, whereby
ı characterises the imaginary unit, |z| is the absolute value of z and Arg(z)
represents the principal value of the argument of z (i.e. it is a mapping in
the interval ] − π, π]). In addition, εi, 0 ≤ i ≤ c − 1, is the i-th complex c-th

root of 1, i.e. εi , e(ı2πi)/c and d(n), 0 ≤ n ≤ c − 1 are unknowns that have
to be calculated by solving a set of linear equations (equations (2.14)-(2.15)).
Locating the dominant singularity(ies) (i.e the singularity(ies) with smallest
modulus) in (5.5) is not easy, and therefore we take a look at W1(z

c):

W1(z
c) =

(zc − 1)2z

cλzc

c−1
∑

i=0

A (zεi) − 1

(zεi − 1)2
εi

zc − A (zεi)

c−1
∑

n=0

d(n) (zεi)
n .

In [106], it is proved that, under the assumptions mentioned in the introduction,
zc −A(z) has a unique zero with smallest modulus larger than one and that it
is a real number in ]1,ℜA[ with multiplicity one. Let ẑ represent that zero. It
follows that ẑε−1

i is the unique zero with smallest modulus larger than one of
zc −A(zεi). Indeed, if z∗ would be a zero of this function with modulus larger
than one and smaller than or equal to |ẑε−1

i |, z∗εi would be a zero of zc −A(z)
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and |z∗εi| = |z∗||εi| = |z∗| ≤ |ẑε−1
i | = |ẑ|, which is impossible as ẑ is the only

zero of zc − A(z) with smallest modulus larger than one. In addition, ẑε−1
i is

a zero with multiplicity one, because otherwise
d

dz
(zc − A(zεi))

∣

∣

∣

∣

z=ẑε−1
i

= cẑc−1εi − A
′

(ẑ)εi = 0 ,

which would imply that
d

dz
(zc − A(z))

∣

∣

∣

∣

z=ẑ

= 0 ,

meaning that ẑ would be a zero of multiplicity larger than one of zc − A(z).
Summarized, W1(z

c) has c dominant singularities ẑε−1
i (0 ≤ i ≤ c − 1) and it

are poles with multiplicity one. Hence, W1(z
c) is in a neighborhood of ẑε−1

i
proportional to

W1(z
c) ∼

(

1 −
z

ẑε−1
i

)−1

Gi(z) , (5.6)

with

Gi(z) =

1 − z

ẑε−1
i

zc − A(zεi)

(zc − 1)2z

cλzc

A(zεi) − 1

(zεi − 1)2
εi

c−1
∑

n=0

d(n)(zεi)
n ,

analytic in the neighbourhood of ẑε−1
i . As we have located the singularities

of W1(z
c) instead of W1(z), we have to be careful with the application of

Darboux’s theorem. First, note that
W1(zc) − 1

zc − 1
=

∑∞
n=0 Pr [W1 = n] znc − 1

zc − 1

=
∞
∑

n=0

Pr [W1 = n]
(zc)n − 1

zc − 1

=
∞
∑

n=0

Pr [W1 = n]

n−1
∑

w=0

(zc)w

=
∞
∑

w=0

zwc
∞
∑

n=w+1

Pr [W1 = n]

=
∞
∑

w=0

Pr [W1 > w] zwc .

In other words, Pr [W1 > w] is now the coefficient corresponding to zwc in
[W1(z

c) − 1]/(zc − 1) instead of the coefficient of zw in [W1(z) − 1]/(z − 1).
Next, (5.6) implies that

W1(zc) − 1

zc − 1
∼

(

1 −
z

ẑε−1
i

)−1
Gi(z)

zc − 1
. (5.7)

Application of formula (1.1) of Darboux’s theorem on (5.7) and taking into
account that A(ẑ) = ẑc then yields

Pr [W1 > w] ≈

c−1
∑

i=0

Gi(ẑε−1
i )

(ẑε−1
i )c − 1

(ẑε−1
i )−wc

=
−ẑ−(w+1)c(ẑc − 1)2

∑c−1
n=0 d(n)ẑn

λ(ẑ − 1)2
[

cẑc−1 − A′ (ẑ)
] . (5.8)
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5.2.2 Calculation of Pr
[

W̃2 > w

]

Let us first recall some definitions from chapter 4. The tagged customer’s arrival
slot is designated by J and A− and A+ represent the number of customer
arrivals during slot J respectively before and after the tagged customer has
arrived. As mentioned in chapter 4, (QJ +A−) mod c of the previously arrived
customers are served in the same batch as the tagged customer. If the sum of
this number and the number of arrivals after the tagged customer in slot J as
well as in w consecutive slots following slot J , plus one (to take into account the
presence of the tagged customer itself), is still less than c, then the postponing
delay continues and will thus exceed w. This leads to the following relation:

Pr
[

W̃2 > w
]

= Pr

[

(

[QJ + A−] mod c
)

+ 1 + A+ +
w
∑

i=1

AJ+i < c

]

. (5.9)

In order to compute the right-hand-side of (5.9), we make use of the probability
generating property of PGFs. To this end, we commence with the calculation

of E
[

x([QJ+A−] mod c)xA+
]

:

E
[

x([QJ+A−] mod c)xA+
]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

Pr
[

QJ + A− = nc + m, A+ = k
]

xmxk

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

j=0

Pr
[

QJ + A− = nc + m, A+ = k
]

xjxkδ〈m = j〉

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

j=0

Pr
[

QJ + A− = nc + m, A+ = k
]

xjxk
c−1
∑

i=0

1

c
εnc+m−j
i . (5.10)

Owing to the IID nature of the customer arrivals and since an arbitrary cus-
tomer is more likely to arrive in a slot with more customer arrivals [24], the
joint PGF of QJ + A− and A+ equals

E
[

zQJ+A−

xA+
]

= QJ(z)
A(z) − A(x)

λ(z − x)
.

As a result, (5.10) transforms into:

E
[

x([QJ+A−] mod c)xA+
]

=
1

c

c−1
∑

i=0

c−1
∑

j=0

(

x

εi

)j

QJ(εi)
A(εi) − A(x)

λ(εi − x)

=
1

c

c−1
∑

i=0

QJ(εi)
A(εi) − A(x)

λ(εi − x)
εi

xc − 1

x − εi
.

On account of the IID arrival process, QJ is identically distributed as Q, the
queue content at a random slot boundary, whose PGF is equal to, by substi-
tuting β by 0, l by c and Tc(z) by z in (2.17)

Q(z) =
(zc − 1)

∑c−1
n=0 d(n)zn

zc − A(z)
.

This implies, together with the aperiodicity of zc−Tc(A(z)) (assumption 4 from
section 1.6), that Q(εi) = 0 for i = 1, . . . , c− 1. In addition, the normalization
condition of PGFs produces Q(ε0) = Q(1) = 1. As a consequence, we have

E
[

x(QJ+A−) mod cxA+
]

=
A(x) − 1

λ(x − 1)

xc − 1

c(x − 1)
. (5.11)
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Remark 21. The calculations that lead to formula (5.11) show that (QJ +
A−) mod c has a uniform distribution between 0 and c − 1. Indeed, (QJ +
A−) mod c can be conceived as the serial number of a randomly tagged customer
in its batch (starting to count from 0) and due to the full-batch service policy,
a batch in service always consists of c customers.

Application of (5.11) and the probability generating property of PGFs in (5.9)
yields

Pr
[

W̃2 > w
]

=

c−1
∑

m=0

1

m!

dm

dxm
xA(x)w A(x) − 1

λ(x − 1)

xc − 1

c(x − 1)

∣

∣

∣

∣

x=0

.

After some mathematical manipulations, this can be transformed into

Pr
[

W̃2 > w
]

=

c−2
∑

m=0

1

m!

dm

dxm
A(x)w A(x) − 1

λ(x − 1)

xc − 1

c(x − 1)

∣

∣

∣

∣

x=0

=
1

c

c−2
∑

m=0

m
∑

k=0

1

k!(m − k)!

dk

dxk

xc − 1

x − 1

∣

∣

∣

∣

∣

x=0

dm−k

dxm−k
A(x)w A(x) − 1

λ(x − 1)

∣

∣

∣

∣

∣

x=0

.

Invoking

xc − 1

x − 1
=

c−1
∑

n=0

xn ,

yields

dk

dxk

xc − 1

x − 1

∣

∣

∣

∣

x=0

= k! , k < c .

Hence

Pr
[

W̃2 > w
]

=
1

c

c−2
∑

m=0

m
∑

k=0

1

(m − k)!

dm−k

dxm−k
A(x)w A(x) − 1

λ(x − 1)

∣

∣

∣

∣

∣

x=0

=
1

c

c−2
∑

m=0

c − 1 − m

m!

dm

dxm
A(x)w A(x) − 1

λ(x − 1)

∣

∣

∣

∣

x=0

. (5.12)

Formula (5.12) can be implemented in a mathematical program such as mat-
lab. This procedure suffers from the drawback that high-order derivatives may
have to be computed, which causes a considerable reduction in speed and even
is infeasible if c is quite large. Therefore, we now deduce an approximation for

Pr
[

W̃2 > w
]

, whereby no derivatives have to be computed.

Multiplying both sides of (5.12) by zw , relying on
∑∞

w=0 Pr
[

W̃2 > w
]

zw =

[W̃2(z) − 1]/(z − 1) and taking the sum over all values of w produces:

W̃2(z) =1 +
z − 1

c

c−2
∑

m=0

c − 1 − m

m!

∂m

∂xm

A(x) − 1

λ(x − 1)

1

1 − zA(x)

∣

∣

∣

∣

x=0

. (5.13)

The m-th (m ≥ 0) derivative with respect to x of [A(x) − 1]/[λ(x − 1)](1/[1 −
zA(x)]) can be written as

∂m

∂xm

A(x) − 1

λ(x − 1)

1

1 − zA(x)
=

m
∑

j=0

Cm,j(z, x)

[1 − zA(x)]j+1
, (5.14)
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whereby Cm,j(z, x) are functions of z and x that have no factor 1 − zA(x) in
their denominator. As opposed to Cm,j(z, x) for j 6= m, Cm,m(z, x) is relatively
easy to calculate:

Cm,m(z, x) =
A(x) − 1

λ(x − 1)
m!zmA

′

(x)m .

The substitution of (5.14) in (5.13) yields

W̃2(z) = 1 +
z − 1

c

c−2
∑

m=0

c − 1 − m

m!

m
∑

j=0

Cm,j (z, 0)

[1 − zA(0)]j+1
. (5.15)

From this equation, it is clear that z = 1/A(0) is the dominant pole of W̃2(z)
and that it has multiplicity c − 1. Consequently, if we retain the simple most
dominant term from this expression, which is the one for which 1/A(0) has the

highest multiplicity, we find that W̃2(z) is proportional to

W̃2(z) ∼
z − 1

c

1 − A(0)

λ
(zA

′

(0))c−2

[

1 −
z

1/A(0)

]−(c−1)

,

in a neighborhood of z = 1/A(0). As 1/A(0) is a pole with multiplicity c − 1,

the approximation for Pr
[

W̃2 > w
]

is found by applying formula (1.3) from

Darboux’s theorem, leading to:

Pr
[

W̃2 > w
]

≈ wc−2 1 − A(0)

λ

A(0)w

c(c − 2)!

(

A
′

(0)

A(0)

)c−2

.

However, we notice that the value of the approximation for Pr
[

W̃2 > w
]

in-

creases as w increases, for 0 ≤ w ≤ (2 − c)/ ln(A(0)). When, for instance
c = 10 and A(0) = e−0.5, (2 − c)/ ln(A(0)) equals 16, which indicates that
the approximation is probably inaccurate for w between 0 and 16 (and even

for larger w-values) as Pr
[

W̃2 > w
]

is obviously a monotonically decreasing

function. We therefore propose a more accurate approximation formula. No-
tice that we only retained the term with j = m = c − 2 around z = 1/A(0)
in (5.15), as it produces the largest power of 1 − zA(0) in the denominator.
Instead of only retaining this term, we take all the terms into account for which
j = m. We thus retain for every m the term that produces the largest power of
1− zA(0) in the denominator. We thus take advantage of the fact that we can

easily calculate Cm,m(z, x) for all m. Hence, [W̃2(z)− 1]/(z − 1) transforms in
a neighborhood of z = 1/A(0) into

W̃2(z) − 1

z − 1
∼

1

c

c−2
∑

m=0

(c − 1 − m)zmA
′

(0)m

[1 − zA(0)]m+1

1 − A(0)

λ
. (5.16)

Next, 1/[1 − zA(0)]m+1 can be rewritten as follows:

1

[1 − zA(0)]m+1
=

1

m!A(0)m

dm

dzm

1

1 − A(0)z

=
1

m!A(0)m

dm

dzm

∞
∑

w=0

[A(0)z]w

=
1

m!A(0)m

∞
∑

w=m

A(0)wzw−m w!

(w − m)!
. (5.17)
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The second step requires that |A(0)z| < 1, which is satisfied for z approaching
1/A(0) from the left. The substitution of (5.17) in (5.16) produces:

W̃2(z) − 1

z − 1
∼

1 − A(0)

cλ

c−2
∑

m=0

A
′

(0)m(c − 1 − m)
∞
∑

w=m

zw w!

m!(w − m)!
A(0)w−m

=
1 − A(0)

cλ

∞
∑

w=0

zw
min(c−2,w)

∑

m=0

A
′

(0)m(c − 1 − m)
(w

m

)

A(0)w−m .

Equating powers of zw at both sides of the equation and taking into account

that [W̃2(z) − 1]/(z − 1) =
∑∞

w=0 Pr
[

W̃2 > w
]

zw, yields

Pr
[

W̃2 > w
]

≈
1 − A(0)

cλ

min(c−2,w)
∑

m=0

A
′

(0)m(c − 1 − m)
(w

m

)

A(0)w−m . (5.18)

Note that for large w, formula (5.18) becomes a sum from 0 to c − 2. We fur-
ther point out that the binomial coefficient causes no difficulties, since efficient
routines exist to calculate them, even for large w.

Remark 22. Note that this approach is not suited for cases whereby A
′

(0) = 0,
as only the term corresponding to m = 0 in (5.16) differs from 0. In these cases,
additional terms with j < m must be taken into account in (5.15).

5.2.3 Evaluation of approximation formulas

In this section, we evaluate the accuracy of our approach. First, we study
formula (5.8) for Pr [W1 > w]. Then, we focus on approximation (5.18) for

Pr
[

W̃2 > w
]

and finally the accuracy of the lower and upper bounds (respec-

tively formulas (5.3) and (5.4)) for Pr [W > w] is covered.

In Figures 5.2-5.3, approximation (5.8) as well as simulated values1 for Pr[W1

> w] are depicted versus w for various combinations of server capacities,
loads and following distributions for the number of customer arrivals: Pois-
son (A(z) = eλ(z−1)), Geometric (A(z) = 1/(1 + λ− λz) and C-center (A(z) =
1 − λ/c + λ/(2c)(zc−1 + zc+1)). We observe that approximation formula (5.8)
is accurate, even for relatively small values of w. The figures further exhibit
that higher loads lead to larger tail probabilities of the queueing delay W1 as
expected. In addition, the distribution of the number of per-slot arrivals has an
undeniable impact. We notice that the larger the variance in the arrival process
(c-center 3.15, Poisson 4.5, geometric 24.75), the slower the probabilities decay,
which is a classic result in queueing theory. Finally, we perceive that although
the load remains equal (and thus the mean arrival rate λ increases) a larger

1Only for Pr
[

W̃2 > w
]

we have an exact formula at our disposal. For the other tail

probabilities (Pr [W1 > w] and Pr [W > w]) throughout this section, we have therefore de-
picted the 95% confidence intervals resulting from 10 Monte Carlo simulations whereby each
simulation generates W1 and W for 108 customers.
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server capacity c has a positive influence on the tail probabilities.

In Figures 5.4-5.5, approximation (5.18) as well as exact values (via formula

(5.12)) for Pr
[

W̃2 > w
]

are depicted versus w for various combinations of dis-

tributions for the number of customer arrivals, server capacities and loads. We
observe that the approximation is inaccurate for small values of w and becomes
better for larger values of w. We also perceive that formula (5.18) is not accu-
rate for c-centered arrivals, which is a result of A

′

(0) being zero in that case
(in remark 22, we have mentioned that formula (5.18) cannot be applied when
A

′

(0) = 0). Although formula (5.18) is not always very accurate, it might still
be useful: in practice, one often only requires the knowledge of the order of

magnitude of Pr
[

W̃2 > w
]

, which is approximated well by (5.18). In addition,

formula (5.18) is a lot faster than exact formula (5.12) that requires the cal-
culation of high-order derivatives. Ultimately, for increasing values of c, the
calculation of (5.12) becomes unfeasible, which highlights the necessity of the
approximation formula.
Figures 5.4-5.5 further exhibit that a larger load leads to faster decaying tail
probabilities of the postponing delay W̃2. Indeed, when customers arrive more
frequently, it takes less time to wait until enough customers have arrived to
initiate a new service with c customers.
Next, we observe that a larger variance in the arrivals (Poisson 1.5, geometric

3.75, c-centered 5.55) leads to slower decaying Pr
[

W̃2 > w
]

.

Finally, Fig. 5.5 (c) shows that Pr
[

W̃2 > w
]

decreases faster for a larger value

of the server capacity c, which seems counterintuitive at first sight, because
more customers have to be present before a new service can be initiated. We
however have to bear in mind that a larger c also infers a larger mean arrival
rate λ, in order to keep the load ρ constant. Hence, two opposite effects occur:
a negative from a larger server capacity (more customers have to be present
before a new service can be initiated) and a positive from a larger mean arrival
rate (customers arrive more frequently). From approximation formula (5.18),

it can be seen that the decay rate of log(Pr
[

W̃2 > w
]

) is dominated by A(0),

which decreases when λ increases in case of Poisson arrivals, which explains

why Pr
[

W̃2 > w
]

decreases faster for a larger server capacity c.

In order to evaluate formulas (5.3) and (5.4) for respectively the lower and upper
bound for Pr [W > w], these are depicted in Figures 5.6-5.7 versus w, together
with simulated values. We observe that although the bounds nearly coincide,
the bounds are not accurate for small values of w and become better for larger
values. We illustrate in Figures 5.8-5.9 that this is mainly caused by the ap-

proximation for Pr
[

W̃2 > w
]

: if the exact values of Pr
[

W̃2 > w
]

are used, the
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bounds become extremely accurate. As approximations for Pr
[

W̃2 > w
]

are

accurate for large values of w, it then becomes possible to calculate the bounds

by making use of the approximation for Pr
[

W̃2 > w
]

. Unfortunately, we can-

not show Pr [W > w] for larger values of w in Fig. 5.7 (c) as the simulations
become inaccurate for extremely small values of Pr [W > w]. Nevertheless, as
in practice one only requires the knowledge of Pr [W > w] for large values of
w, we feel that it is justified to state that the bounds provide a good indica-
tion of the order of magnitude of Pr [W > w] even when the approximation for

Pr
[

W̃2 > w
]

is used.

Before closing this section, we take a look at the influence of the load on
the accuracy of the bounds for Pr [W > w]. Therefore, these bounds are de-
picted versus the load in Figures 5.10-5.11. We observe that Pr [W > w] is
the largest when ρ → 0 and ρ → 1 and that the bounds nearly coincide
in these cases. Indeed, when ρ → 0, few packets arrive, leading to a very
long second part and a negligible short first part of the delay, whereas when
ρ → 1, the opposite holds. We also observe that Pr [W > w] decreases until
its minimum, whereafter it increases again. In addition, the largest differ-
ence between the bounds appears in the neighbourhood of the minimum of the
curves. This can be explained as follows: when ρ increases, Pr [W1 > w] in-
creases, whereas Pr [W2 > w] decreases. Consequently, the difference between
the bounds, min(Pr [W1 > w] , Pr [W2 > w]), is the largest when Pr [W1 > w] =
Pr [W2 > w]. In that case, we learn from (5.3) and (5.4) that the upper bound
is (roughly) twice as large as the lower bound. However, the order of magnitude
is thus still accurately assessed, which is exactly what is required in practice.

Remark 23. Fig. 5.9 (c) exhibits an at first sight strange jump from w =
1 to w = 0. Let us explain this. As can be observed from Fig. 5.10 (a),

Pr [W > w] is dominated by Pr
[

W̃2 > w
]

for ρ = 0.5 and Poisson arrivals.

The jump however, stems from the approximation for Pr [W1 > 0], which is
much larger than one. This is a consequence of the approximation method
based on dominant singularities, which works fine, except for very small values
of w.
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Figure 5.2: Evaluation of approximation formula (5.8) for Pr [W1 > w] (1)
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Figure 5.11: Evaluation of bounds (5.3) and (5.4) for Pr [W > w]; approxima-

tion formula (5.18) for Pr
[

W̃2 > w
]

is used; c = 5 (2)
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5.3 Intermediate model

In this section, we study the tail probabilities of the delay in the intermediate
model, i.e. the threshold-based model with general service times that are inde-
pendent of the number of served customers (β = 0, Tn(z) = Tc(z) ∀n). Along
the same lines as for the basic model, we redefine the postponing delay W2 by
shifting the starting point to the same time instant as the queueing delay W1

and we denote it by W̃2. As a result,

W = max(W1, W̃2) ,

so that

Pr [W > w] =Pr
[

W1 > w ∨ W̃2 > w
]

=Pr [W1 > w] + Pr
[

W̃2 > w
]

− Pr
[

W1 > w ∧ W̃2 > w
]

.

Hence, we find the same bounds for Pr [W > w]:

Pr [W > w] ≥ max
(

Pr [W1 > w] , Pr
[

W̃2 > w
])

, (5.19)

and

Pr [W > w] ≤ Pr [W1 > w] + Pr
[

W̃2 > w
]

. (5.20)

These bounds again require the calculations of Pr [W1 > w] and Pr
[

W̃2 > w
]

,

which are discussed in the following subsections.

5.3.1 Calculation of Pr [W1 > w]

The PGF W1(z) is found by replacing β by 0 and Tn(z) by Tc(z) in (4.18):

W1(z) =
Tc(z) − 1

cλTc(z)

c−1
∑

i=0

A
(

Tc(z)1/cεi

)

− 1
(

Tc(z)1/cεi − 1
)2

Tc(z)1/cεi

z − A
(

Tc(z)1/cεi

)

{

(z − 1)

l−1
∑

n=0

d(n)
(

Tc(z)1/cεi

)n

+

c−1
∑

n=l

d(n)
[

Tc(z) −
(

Tc(z)1/cεi

)n]
}

. (5.21)

Unlike for the basic model, considering W1(z
c) does not allow us to easily lo-

cate the dominant singularities anymore. We now search the singularity(ies) of
W1(z). The singularities of W1(z) might consist of zeroes of Tc(z) outside the
closed complex unit disk {z ∈ C : |z| ≤ 1}, zeroes of Tc(z)1/cεi − 1 outside the
closed complex unit disk, zeroes of z −A

(

Tc(z)1/cεi

)

outside the complex unit

disk, (possible) singularities of Tc(z) and possible singularities of A(Tc(z)1/cεi).
The following theorems play a crucial role in locating the dominant singulari-
ties.

Theorem 2. Zeroes of Tc(z) in the denominator of W1(z) produce no poles.

Proof. In remark 20 (page 71), we have noticed that zeroes of u(z, y)c are no
poles of Ŵ (z, x, y), whereby u(z, y)c , Tc(zA(y)) and Ŵ (z, x, y) , E

[

zW1xGyH
]

,

which implies that zeroes of Tc(z) are no poles from W1(z) = Ŵ (z, 1, 1).
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Theorem 3. The factor (Tc(z)1/cεi−1)2 in the denominator produces no poles
for 0 ≤ i ≤ c − 1.

Proof. Suppose xi is a zero of Tc(z)1/cεi − 1 with multiplicity m. Then

dk

dzk
(Tc(z)1/cεi − 1)

∣

∣

∣

∣

∣

z=xi

= 0 , 0 ≤ k ≤ m − 1 ,

and consequently:

• dk

dzk
(Tc(z) − 1)

∣

∣

∣

z=xi

= 0 , 0 ≤ k ≤ m − 1, meaning that xi is also a

zero of Tc(z) − 1 with multiplicity m, which appears in the numerator;

• dk

dzk
(A(Tc(z)1/cεi) − 1)

∣

∣

∣

z=xi

= 0 , 0 ≤ k ≤ m − 1, meaning that xi is

also a zero of A(Tc(z)1/cεi)−1 with multiplicity m, which appears in the
numerator.

Summarized, although xi is a zero of (Tc(z)1/cεi − 1)2 with multiplicity 2m, it
is not a pole of W1(z), since xi is also a zero of the numerator with multiplicity
2m.

Lemma 1. Assumptions 1-5 from section 1.6 imply that zc − Tc(A(z)) has
exactly one zero in the interval ]1,ℜc[, with ℜc the radius of convergence of
Tc(A(z)). In addition, the zero has multiplicity one and zc−Tc(A(z)) contains
no other zeroes with a modulus larger than one and smaller than or equal to
this real zero.

Proof. This lemma has been proved in [106].

Let us denote the only zero of zc − Tc(A(z)) in the interval ]1,ℜc[ by z̃. Since
z̃ < ℜc ≤ ℜA, the following definition makes sense:

ẑ , A(z̃) .

It holds that ẑ ∈ R and ẑ > 1, since A(1) = 1 and the PGF A(z) is a real-
valued and monotonically increasing function within [1,ℜA[. In addition, ẑ <
ℜTc

, with ℜTc
the radius of convergence of Tc(z), as z̃ < ℜc implies that

ẑ = A(z̃) < ℜTc
.

Theorem 4. Assumptions 1-5 imply that

1. Tc(ẑ)1/c < ℜA and ẑ is a zero of z − A(Tc(z)1/c);

2. the equations z − A(Tc(z)1/cεi) , 0 ≤ i ≤ c − 1 contain no other zeroes
with a modulus larger than one and smaller than or equal to ẑ;

3. ẑ is a zero of z − A(Tc(z)1/c) with multiplicity one.
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Proof. 1. On account of lemma 1, we have

z̃c = Tc(A(z̃)) . (5.22)

As z̃ and Tc(A(z̃)) are both real positive numbers, (5.22) can be transformed
into

z̃ = Tc(A(z̃))1/c ,

which is, owing to the definition of ẑ, equivalent to

z̃ = Tc(ẑ)1/c .

Finally, taking into account that Tc(ẑ)1/c = z̃ < ℜc ≤ ℜA and invoking the
definition of ẑ, we find

ẑ = A(Tc(ẑ)1/c) .

In other words, Tc(ẑ)1/c < ℜA and ẑ is a zero of z − A(Tc(z)1/c).

2. This part is a proof by contradiction. Assume that an i (0 ≤ i ≤ c−1) exists,
for which z−A(Tc(z)1/cεi) has a zero, z∗, with z∗ 6= ẑ and 1 < |z∗| ≤ ẑ. Owing

to |z∗| ≤ ẑ < ℜTc
, the following definition makes sense: z̃∗ , Tc(z

∗)1/cεi.
Consequently, we have that

|z̃∗|c = |Tc(z
∗)| ≤

∞
∑

n=1

Pr [Tc = n] |z∗|n ≤
∞
∑

n=1

Pr [Tc = n] ẑn = Tc(ẑ) = z̃c .

Hence, as both |z̃∗| and z̃ are positive real numbers,

|z̃∗| ≤ z̃ . (5.23)

This implies that |z̃∗| < ℜA and taking into account that z∗ = A(Tc(z
∗)1/cεi),

we find that z∗ = A(z̃∗). As a consequence, |A(z̃∗)| < ℜTc
and Tc(A(z̃∗)) =

Tc(z
∗) = (z̃∗)c, meaning that z̃∗ is a zero of zc − Tc(A(z)). On account of

lemma 1 however, we have that z̃ is the zero with the smallest modulus larger
than one of this equation and z̃ is the only zero with that modulus, so that
|z̃∗| > z̃, which is a contradiction with (5.23).

3. The property of ẑ having multiplicity one is also a proof by contradic-
tion. If ẑ would have a multiplicity larger than one, then (we use primes to
indicate derivatives)

d

dz
[z − A(Tc(z)1/c)]

∣

∣

∣

∣

z=ẑ

= 0

⇔ 1 − A
′

(Tc(ẑ)1/c)
1

c
Tc(ẑ)1/c−1T

′

c(ẑ) = 0 .

Writing this in terms of z̃ instead of in ẑ and relying on z̃c = Tc(A(z̃)), we
further transform this to

c − A
′

(z̃)z̃1−cT
′

c (A(z̃)) = 0

⇔ cz̃c−1 − T
′

c (A(z̃))A
′

(z̃) = 0

⇔
d

dz
[zc − Tc(A(z))]

∣

∣

∣

∣

z=z̃

= 0 ,

meaning that z̃ is a zero of zc − Tc(A(z)) with multiplicity larger than one,
which is impossible according to lemma 1.
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Summarized, W1(z) has one dominant singularity, being the pole ẑ. This dom-
inant pole is a zero of z − A(Tc(z)1/c), it has multiplicity one and is equal to
A(z̃), with z̃ the only zero in ]1,ℜc[ of zc −Tc(A(z)). As z̃ ∈ R, it can be easily
determined numerically, for instance with the bisection or the Newton-Raphson
method.
Taking these findings into account, we find that W1(z) is in the neighborhood
of ẑ proportional to

W1(z) ∼
Tc(z) − 1

cλTc(z)

[

A
(

Tc(z)1/c
)

− 1
]

Tc(z)1/c

[

z − A
(

Tc(z)1/c
)] [

Tc(z)1/c − 1
]2

{

(z − 1)

l−1
∑

n=0

d(n)Tc(z)n/c +

c−1
∑

n=l

d(n)
[

Tc(z) − Tc(z)n/c
]

}

.

Consequently, application of formula (1.4) of Darboux’s theorem yields

Pr [W1 > w]

≈
ẑ−(w+1)

1 − ẑ

Tc(ẑ) − 1

λ

A
(

Tc(ẑ)1/c
)

− 1
(

Tc(ẑ)1/c − 1
)2

Tc(ẑ)
1
c
−1

·

(ẑ − 1)

l−1
∑

n=0

d(n)Tc(ẑ)n/c +

c−1
∑

n=l

d(n)
(

Tc(ẑ) − Tc(ẑ)n/c
)

c − A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1
c
−1T ′

c(ẑ)
. (5.24)

5.3.2 Calculation of Pr
[

W̃2 > w

]

In order to calculate Pr
[

W̃2 > w
]

, we start from the following relation:

Pr
[

W̃2 > w
]

= Pr

[

(

[QJ + A−] mod c

)

+ 1 + A+ +
w
∑

i=1

AJ+i < l

]

. (5.25)

This relation is the same as for the basic model, except that the number of
customers has to reach the service threshold l instead of the server capacity c.
Analogously as in the previous section, we find that

E
[

x([QJ+A−] mod c) xA+
]

=
xc − 1

c(x − 1)

c−1
∑

i=0

Q(εi)
A(εi) − A(x)

λ(εi − x)

εi(x − 1)

x − εi
, (5.26)

with Q(z) the PGF of the queue content at a random slot mark, which is found
by setting β = 0 and Tn(z) = Tc(z) in (2.17):

Q(z) =
1

zc − Tc(A(z))

{

(zc − 1)

l−1
∑

n=0

d(n)zn +
Tc(A(z)) − 1

A(z) − 1

c−1
∑

n=l

d(n)(zc − zn)

}

,

implying that Q(ε0) = 1 (since ε0 = 1) and

Q(εi) =

∑c−1
n=l d(n)(εn

i − 1)

A(εi) − 1
, 1 ≤ i ≤ c − 1 .

Relying on this result, we find:

E
[

x([QJ+A−] mod c) xA+
]

=
xc − 1

c(x − 1)
f(x) , (5.27)
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with

f(x) =
1 − A(x)

λ(1 − x)
+

c−1
∑

i=1

A(εi) − A(x)

λ(εi − x)

εi(x − 1)

x − εi

∑c−1
n=l d(n)(εn

i − 1)

A(εi) − 1
,

with the first term in the right-hand-side the one for i = 0. The combination
of (5.25), (5.27) and the probability generating property of PGFs produces

Pr
[

W̃2 > w
]

=

l−1
∑

m=0

1

m!

dm

dxm
E
[

x([QJ+A−] mod c)+1+A++
∑w

i=1 AJ+i

]

∣

∣

∣

∣

x=0

=

l−1
∑

m=1

1

m!

dm

dxm
xA(x)w xc − 1

c(x − 1)
f(x)

∣

∣

∣

∣

x=0

.

After some mathematical manipulations, this can be transformed into

Pr
[

W̃2 > w
]

=

l−2
∑

m=0

1

m!

dm

dxm
A(x)w xc − 1

c(x − 1)
f(x)

∣

∣

∣

∣

x=0

=
1

c

l−2
∑

m=0

m
∑

k=0

1

k!(m − k)!

dk

dxk

xc − 1

x − 1

∣

∣

∣

∣

∣

x=0

dm−k

dxm−k
A(x)wf(x)

∣

∣

∣

∣

∣

x=0

.

As

dk

dxk

xc − 1

x − 1

∣

∣

∣

∣

x=0

= k! , k < c ,

we find

Pr
[

W̃2 > w
]

=
1

c

l−2
∑

m=0

m
∑

k=0

1

(m − k)!

dm−k

dxm−k
A(x)wf(x)

∣

∣

∣

∣

∣

x=0

=
1

c

l−2
∑

m=0

l − 1 − m

m!

dm

dxm
A(x)wf(x)

∣

∣

∣

∣

x=0

. (5.28)

Formula (5.28) can be implemented in a mathematical program such as matlab.
This procedure suffers from the drawback that high-order derivatives may have
to be computed, which causes a considerable reduction in speed and even is
infeasible if l and c are quite large. Therefore, we now deduce an approximation

for Pr
[

W̃2 > w
]

, whereby no derivatives have to be taken.

Multiplying both sides of (5.28) by zw and taking the sum over all values
of w produces

∞
∑

w=0

Pr
[

W̃2 > w
]

zw =
W̃2(z) − 1

z − 1
=

1

c

l−2
∑

m=0

l − 1 − m

m!

∂m

∂xm

f(x)

1 − zA(x)

∣

∣

∣

∣

x=0

. (5.29)

The m-th (m ≥ 0) derivative of f(x)/(1 − zA(x)) can be written as

∂m

∂xm

f(x)

1 − zA(x)
=

m
∑

j=0

Cm,j(z, x)

[1 − zA(x)]j+1
, (5.30)

whereby Cm,j(z, x) are functions of z and x that have no factor 1 − zA(x) in
the denominator. As opposed to Cm,j(z, x) for j 6= m, Cm,m(z, x) is relatively
easy to calculate:

Cm,m(z, x) = m!f(x)zmA
′

(x)m .



102 CHAPTER 5. CUSTOMER DELAY: TAIL PROBABILITIES

The substitution of (5.30) in (5.29) yields

W̃2(z) − 1

z − 1
=

1

c

l−2
∑

m=0

l − 1 − m

m!

m
∑

j=0

Cm,j(z, 0)

[1 − zA(0)]j+1
. (5.31)

From this equation, it is clear that z = 1/A(0) is the dominant pole of [W̃2(z)−
1]/(z − 1) and that it has multiplicity l − 1. Analogously as in the previous
section, we retain for every m the term that produces the largest power of
1− zA(0) in the denominator. We thus take advantage of the fact that we can
easily calculate Cm,m(z, x) for all m. Hence, in the neighborhood of z = 1/A(0),

[W̃2(z) − 1]/(z − 1) is proportional to

W̃2(z) − 1

z − 1
∼

1

c

l−2
∑

m=0

(l − 1 − m)f(0)zmA
′

(0)m

[1 − zA(0)]m+1
. (5.32)

Finally, recall that we have deduced in section 5.2 that

1

[1 − zA(0)]m+1
=

1

m!A(0)m

∞
∑

w=m

A(0)wzw−m w!

(w − m)!
. (5.33)

As a result, the substitution of (5.33) in (5.32) produces:

W̃2(z) − 1

z − 1
∼

f(0)

c

l−2
∑

m=0

A
′

(0)m(l − 1 − m)
∞
∑

w=m

zw w!

m!(w − m)!
A(0)w−m

=
f(0)

c

∞
∑

w=0

zw
min(l−2,w)
∑

m=0

A
′

(0)m(l − 1 − m)
(w

m

)

A(0)w−m .

Equating powers of zw at both sides of the equation and taking into account

that [W̃2(z) − 1]/(z − 1) =
∑∞

w=0 Pr
[

W̃2 > w
]

zw finally yields

Pr
[

W̃2 > w
]

≈
f(0)

c

min(l−2,w)
∑

m=0

A
′

(0)m(l − 1 − m)
(w

m

)

A(0)w−m . (5.34)

Note that for large w, formula (5.34) becomes a sum from 0 to l − 2. We fur-
ther point out that the binomial coefficient causes no difficulties, since efficient
routines exist to calculate them, even for large w.

Remark 24. Note again that this approach is not suited for cases whereby
A

′

(0) = 0, as only the term corresponding to m = 0 in (5.32) differs from 0.
In these cases, additional terms with j < m must be taken into account from
(5.31).

Remark 25. When l = c, f(0) = (1 − A(0))/λ and (5.34) reduces to formula

(5.18) for Pr
[

W̃2 > w
]

in case of the basic model. Note also that when l = c,

Pr
[

W̃2 > w
]

is independent of Tc(z). The reason is that the postponing delay

of a customer depends on the position of the customer in its served batch (as
it determines how many customers still have to arrive) and the future arrivals.
When l = c, the server always serves full batches so that the position is uni-
formly distributed between 1 and c and the future arrivals are of course also
independent of the service times.
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5.3.3 Evaluation of approximation formulas

In this section, we evaluate the accuracy of our approach. First, we study
formula (5.24) for Pr [W1 > w]. Then, we focus on approximation (5.34) for

Pr
[

W̃2 > w
]

and finally the accuracy of the bounds for Pr [W > w] is covered.

In Figures 5.12-5.14, we have depicted approximation (5.24) as well as sim-
ulated values2 for Pr [W1 > w] versus w for various combinations of distribu-
tions for the number of customer arrivals (Poisson A(z) = eλ(z−1); Geomet-
ric A(z) = 1/(1 + λ − λz); C-center A(z) = 1 − λ/c + λ/(2c)(zc−1 + zc+1))
and service times (Geometric Tc(z) = z/[E [Tc] + (1 − E [Tc])z]; 25 Tc(z) =
(25−E [Tc])z/24 + (E [Tc]− 1)z25/24 with E [Tc] = 5 or 10) and several server
capacities, service thresholds and loads. We can draw the same conclusions
as for the basic model: the approximation is accurate, even for smaller values
of w, a higher load leads to larger tail probabilities whereas a larger server
capacity has a beneficial effect even when the load remains equal (and thus the
mean arrival rate λ is larger). In addition, we perceive that a larger variance
in the arrival and service process causes slower decaying probabilities and from
Fig. 5.14 we deduce that the service threshold has nearly no impact.

Next, approximation (5.34) and exact formula (5.28) for Pr
[

W̃2 > w
]

are de-

picted versus w in Figures 5.15-5.17 for various settings of the system pa-
rameters. Along the same lines as for the basic model, we observe that the
approximation is accurate for larger values of w and thus that it is extremely

suited for quickly assessing the order of magnitude of Pr
[

W̃2 > w
]

. Further-

more, an increasing load as well as an increasing server capacity c (even when
ρ remains equal) has a positive influence on the probabilities. Figure 5.17 also

exhibits that Pr
[

W̃2 > w
]

decays slower in case of a larger service threshold l.

Finally, when l = 1, Pr
[

W̃2 > w
]

equals zero as the server then immediately

starts a new service when being available and finding a customer.
As a closer, we evaluate the lower and upper bounds (5.19) and (5.20) in Fig-
ures 5.18-5.22. We again observe that the approximations are accurate for large
w. Furthermore, we perceive that a small range in the load exists where the
bounds differ somewhat. This is, as explained for the basic model, the area

where Pr [W1 > w] ≈ Pr
[

W̃2 > w
]

. Examination of the bounds shows that in

that case the upper bound is more or less twice the lower bound. Anyway, based
on these results we feel that it is justified to conclude that the approximations
are extremely suited for assessing the order of magnitude of Pr [W > w] for
large values of w.

2Only for Pr
[

W̃2 > w
]

we have an exact formula at our disposal. For the other tail

probabilities (Pr [W1 > w] and Pr [W > w]) throughout this section, we have therefore de-
picted the 95% confidence intervals resulting from 10 Monte Carlo simulations whereby each
simulation generates W1 and W for 108 customers.
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Figure 5.12: Evaluation of approximation formula (5.24) for Pr [W1 > w] (1)
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Figure 5.13: Evaluation of approximation formula (5.24) for Pr [W1 > w] (2)
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Figure 5.14: Evaluation of approximation formula (5.24) for Pr [W1 > w] (3)
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Figure 5.15: Evaluation of approximation formula (5.34) for Pr
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by

comparing it with exact formula (5.28) (1)
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Figure 5.16: Evaluation of approximation formula (5.34) for Pr
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by

comparing it with exact formula (5.28) (2)
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Figure 5.17: Evaluation of approximation formula (5.34) for Pr
[
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by

comparing it with exact formula (5.28) (3)
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Figure 5.18: Evaluation of bounds for Pr [W > w]; approximation formula
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is used (1)
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Figure 5.19: Evaluation of bounds for Pr [W > w]; approximation formula

(5.34) for Pr
[

W̃2 > w
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is used (2)
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Figure 5.20: Evaluation of bounds for Pr [W > w]; approximation formula
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is used (3)
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Figure 5.21: Evaluation of bounds for Pr [W > w]; approximation formula

(5.34) for Pr
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is used; c = 5, E [Tc] = 5 (1)
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Figure 5.22: Evaluation of bounds for Pr [W > w]; approximation formula

(5.34) for Pr
[
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]

is used; c = 5, E [Tc] = 5 (2)



5.4. FINAL MODEL 115

5.4 Final model

In this section, we study the tail probabilities of the customer delay for the final
model, whereby service times are dependent on the number of served customers
and with the timer mechanism controlled by β. When the server becomes avail-
able and finds less than l customers, a new service might nevertheless be started
with probability β. At first sight, it seems evident to deduce approximations
for Pr [W > w] completely analogously as for the previous models. Doing so,
we would find that

W = max
(

W1, W̃2

)

,

whereby W̃2 represents the redefined postponing delay, so that the same ap-

proximations would be obtained. In order to compute Pr
[

W̃2 > w
]

, we could

start from the following relation:

Pr
[

W̃2 > w
]

= Pr

[

(

[QJ + A−] mod c
)

+ 1 + A+ +
w
∑

i=1

AJ+i < l

]

(1 − β)w+1 , (5.35)

with J the tagged customer’s arrival slot and A− and A+ the number of arrivals
during slot J respectively before and after the tagged customer has arrived.
This approach, however, is incorrect. The reason is that the timer mechanism
only matters after the queueing delay. Indeed, the timer is started only when
the server becomes available and finds less than l customers. Shifting the post-
poning delay to the same instant as the start of the queueing delay and making
use of relation (5.35) would assume that the timer is already counting during
the queueing delay. Therefore, we have to resort to another approach.

Let Ŵ2 represent the postponing delay that starts at the same instant as the
queueing delay. We however disconnect the postponing delay Ŵ2 from the timer
mechanism β: Ŵ2 represents the number of slots until the batch containing the
tagged customer can be filled with at least l customers. Next, define Θ as the
time period after the queueing delay W1 until the server decides to start a new
service anyway, assuming that always less than l customers are present. The
random variable Θ is by definition geometrically distributed, with probability
distribution

Pr [Θ = n] = β(1 − β)n , n ≥ 0 ,

or, equivalently,
Pr [Θ > n] = (1 − β)n+1 , n ≥ 0 .

On account of these definitions, we have the following relation between W , W1,
Ŵ2 and Θ (see also Fig. 5.23):

W =























W1 if W1 ≥ Ŵ2 ,

Ŵ2 if W1 < Ŵ2 and Ŵ2 ≤ W1 + Θ ,

W1 + Θ if Ŵ2 > W1 + Θ .

This relation can be rewritten as:

W = max
(

W1,min
(

Ŵ2, W1 + Θ
))

.
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As a result, we find that

Pr [W > w] =Pr
[

max
(

W1,min
(

Ŵ2, W1 + Θ
))

> w
]

=Pr
[

W1 > w ∨ min
(

Ŵ2, W1 + Θ
)

> w
]

=Pr [W1 > w] + Pr
[

min
(

Ŵ2, W1 + Θ
)

> w
]

− Pr
[

W1 > w ∧ min
(

Ŵ2, W1 + Θ
)

> w
]

=Pr [W1 > w] + Pr
[

Ŵ2 > w ∧ W1 + Θ > w
]

− Pr
[

W1 > w ∧ Ŵ2 > w ∧ W1 + Θ > w
]

=Pr [W1 > w] + Pr
[

W1 + Θ > w ∧ Ŵ2 > w
]

− Pr
[

W1 > w ∧ Ŵ2 > w
]

.

As was the case in the previous sections, calculation of joint probabilities is
difficult. Therefore, we resort to an approximation: we assume that Ŵ2 is
independent of W1 and thus of W1 + Θ (because W1 and Ŵ2 are independent
of Θ), leading to the following expression:

Pr [W > w] ≈ Pr [W1 > w] + Pr
[

Ŵ2 > w
]

{

Pr [W1 + Θ > w] − Pr [W1 > w]

}

. (5.36)

We now calculate Pr [W1 > w], Pr [W1 + Θ > w] and Pr
[

Ŵ2 > w
]

.



5.4. FINAL MODEL 117

(a) W1 ≥ Ŵ2

(b) W1 < Ŵ2 and Ŵ2 ≤ W1 + Θ

(c) Ŵ2 > W1 + Θ

Figure 5.23: Illustration of relations between W , W1, Ŵ2 and Θ
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5.4.1 Calculation of Pr [W1 > w]

It was established in section 4.3 formula (4.18) that the PGF W1(z) of W1
reads

W1(z) = P (z, 1) =
Tc(z) − 1

cλTc(z)

c−1
∑

i=0

A
(

Tc(z)1/cεi

)

− 1
(

Tc(z)1/cεi − 1
)2

Tc(z)1/cεi

z − A
(

Tc(z)1/cεi

)

{

(z − 1)(1 − β)

l−1
∑

n=0

d(n)
(

Tc(z)1/cεi

)n

+ β

l−1
∑

n=0

d(n)
[

Tn(z) −
(

Tc(z)1/cεi

)n]

+

c−1
∑

n=l

d(n)
[

Tn(z) −
(

Tc(z)1/cεi

)n]
}

. (5.37)

In the sequel, we compute Pr [W1 > w] by applying Darboux’s theorem on
(5.37). Therefore, it is required that the dominant singularities of W1(z) are
known. Analogously as for the intermediate model, the dominant singularities
are difficult to locate as compared to the basic model with single-slot service
times, β = 0 and l = c. Indeed, the singularities of W1(z) might consist of
zeroes of Tc(z) outside the closed complex unit disk, zeroes of Tc(z)1/cεi − 1
outside the closed complex unit disk, zeroes of z − A

(

Tc(z)1/cεi

)

outside the
complex unit disk, possible singularities of Tn(z), for 0 ≤ n ≤ c, and possible
singularities of A(Tc(z)1/cεi). Along the same lines as for the intermediate
model we establish several theorems that play a crucial role in locating the
dominant singularities.

Theorem 5. Zeroes of Tc(z) in the denominator of W1(z) produce no poles.

The proof of this theorem is completely analogous as for theorem 2 (page 97).

Theorem 6. The factor (Tc(z)1/cεi−1)2 in the denominator produces no poles
for 0 ≤ i ≤ c − 1.

The proof of this theorem is completely analogous as for theorem 3 (page 98).

Lemma 2. Assumptions 1-5 imply that zc − Tc(A(z)) has exactly one zero in
the interval ]1,ℜ[, where ℜ was defined in section 1.6 as min{ℜn : 0 ≤ n ≤
c}, with ℜn the radius of convergence of Tn(A(z)). In addition, the zero has
multiplicity one and zc − Tc(A(z)) contains no other zeroes with a modulus
larger than one and smaller than or equal to this real zero.

Proof. This lemma has been proved in [106].

Let us denote the only zero of zc − Tc(A(z)) in the interval ]1,ℜ[ by z̃. Since
z̃ < ℜ ≤ ℜA, the following definition makes sense:

ẑ , A(z̃) .

It holds that ẑ ∈ R and ẑ > 1, since A(1) = 1, z̃ > 1 and the PGF A(z)
being a real-valued and monotonically increasing function within [1,ℜA[. In
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addition, as z̃ < ℜ ≤ ℜc, it follows that ẑ = A(z̃) < ℜT ≤ ℜTc
, whereby

ℜT was previously defined as min{ℜTn
: 0 ≤ n ≤ c}, with ℜTn

the radius of
convergence of Tn(z).

Theorem 7. Assumptions 1-5 imply that

1. Tc(ẑ)1/c < ℜA and ẑ is a zero of z − A(Tc(z)1/c);

2. the equations z − A(Tc(z)1/cεi) , 0 ≤ i ≤ c − 1 contain no other zeroes
with a modulus larger than one and smaller than or equal to ẑ;

3. ẑ is a zero of multiplicity one.

The proof of this theorem is completely analogous as for theorem 4 (page 98).

Summarizing the theorems and taking into account that ẑ < ℜT , W1(z) has
one dominant singularity, being a pole ẑ. This dominant pole is a real number
larger than one, is a zero of z − A(Tc(z)1/c), has multiplicity one and is equal
to A(z̃), with z̃ the only zero in ]1,ℜ[ of zc − Tc(A(z)). As z̃ ∈ R, it can be
easily determined numerically, for instance with the bisection or the Newton-
Raphson method.
Taking these findings into account, we obtain that W1(z) is in the neighborhood
of ẑ proportional to

W1(z) ∼
G(z)

z − A
(

Tc(z)1/c
) ,

with

G(z) =
Tc(z) − 1

cλTc(z)

A
(

Tc(z)1/c
)

− 1
(

Tc(z)1/c − 1
)2

Tc(z)1/c

{

(z − 1)(1 − β)

l−1
∑

n=0

d(n)Tc(z)n/c

+β

l−1
∑

n=0

d(n)
[

Tn(z) − Tc(z)n/c
]

+

c−1
∑

n=l

d(n)
[

Tn(z) − Tc(z)n/c
]

}

.

Hence, application of formula (1.4) of Darboux’s theorem yields

Pr [W1 > w] ≈
ẑ−(w+1)

1 − ẑ

cG(ẑ)

c − A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1
c
−1T ′

c(ẑ)
. (5.38)

5.4.2 Calculation of Pr [W1 + Θ > w]

It seems evident to calculate this probability by relating it with Pr [W1 > w]:

Pr [W1 + Θ > w] =
w
∑

t=0

Pr [Θ = t] Pr [W1 > w − t] +
∞
∑

t=w+1

Pr [Θ = t] .

In this expression we could then use approximation (5.38) for Pr [W1 > w].
This approach however, might lead to inaccurate results as for t approaching
w, formula (5.38) for Pr [W1 > w − t] can be inaccurate because w − t is very
small. Let us therefore consider the PGF corresponding to W1 + Θ, which is,
because Θ is independent of W1, equal to W1(z)Θ(z), with

Θ(z) , E
[

zΘ
]

=
∞
∑

n=0

(1 − β)nβzn =
β

1 − (1 − β)z
.
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Note that the dominant singularity of Θ(z), say z∗, is equal to 1/(1− β). The
dominant singularity of W1(z)Θ(z) is thus either equal to z∗ or ẑ, depending
on which is the smallest. We thus have to consider three scenarios.

z∗ < ẑ
The dominant pole thus equals z∗ and it has multiplicity one. Hence, applica-
tion of formula (1.4) of Darboux’s theorem yields

Pr [W1 + Θ > w] ≈
(z∗)−(w+1)

1 − z∗
−β

1 − β
W1(z

∗) = (1 − β)w+1W1

(

1

1 − β

)

.

z∗ > ẑ
In this case, ẑ is the dominant pole. As it has multiplicity one, the approx-
imation is obtained by applying formula (1.4) of Darboux’s theorem, leading
to

Pr [W1 + Θ > w] ≈
ẑ−(w+1)

1 − ẑ

β

1 − (1 − β)ẑ

cG(ẑ)

c − A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1
c
−1T ′

c(ẑ)
.

z∗ = ẑ
In this case, ẑ = z∗ is the dominant pole and it has multiplicity two. We thus
find that W1(z)Θ(z) is proportional to

W1(z)Θ(z) ∼ G(z)β
1 − (1 − β)z

z − A
(

Tc(z)1/c
)

[

1 −
z

1/(1 − β)

]−2

. (5.39)

As a result, Pr [W1 + Θ > w] can be deduced by application of formula (1.3)
of Darboux’s theorem on (5.39), resulting in

Pr [W1 + Θ > w] ≈
(z∗)−w

z∗ − 1
G(z∗)β

−(1 − β)c

c − A
′

(Tc(z∗)1/c)Tc(z∗)1/c−1T ′

c(z∗)
w . (5.40)

Remark 26. When z∗ 6= ẑ but z∗ ≈ ẑ, it is better to take into account both
contributions of z∗ and ẑ in Pr [W1 > w] (see e.g. [107]), leading to:

Pr [W1 + Θ > w] ≈(1 − β)w+1W1

(

1

1 − β

)

+
ẑ−(w+1)

1 − ẑ

β

1 − (1 − β)ẑ

cG(ẑ)

c − A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1
c
−1T ′

c(ẑ)
. (5.41)

We adopt this approach in the numerical examples in section 5.4.4.

5.4.3 Calculation of Pr
[

Ŵ2 > w

]

In order to calculate Pr
[

Ŵ2 > w
]

, we start from the following relation:

Pr
[

Ŵ2 > w
]

= Pr

[

(

[QJ + A−] mod c

)

+ 1 + A+ +
w
∑

i=1

AJ+i < l

]

. (5.42)

Indeed, Ŵ2 is larger than w if the sum of (a) the number of previously ar-
rived customers that are served in the same batch as the tagged customer
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([QJ + A−] mod c), (b) the tagged customer, (c) the number of customer ar-
rivals during slot J after the tagged customer (A+) and (d) the number of
arrivals during the sequence of w slots following slot J (

∑w
i=1 AJ+i), is smaller

than the threshold l.
As a next step, we transform expression (5.42) by means of the probability gen-
erating property of PGFs. Since A+ and A− are correlated, but independent
of the other discrete random variables that appear in (5.42) (due to the IID na-

ture of the arrivals), we first compute E
[

x([QJ+A−] mod c) xA+
]

. Analogously

as in sections 5.2 (formula (5.10)) and 5.3 (formula (5.26)), we find that

E
[

x([QJ+A−] mod c) xA+
]

=
xc − 1

c(x − 1)

c−1
∑

i=0

Q(εi)
A(εi) − A(x)

λ(εi − x)

εi(x − 1)

x − εi
. (5.43)

As Q(ε0) = Q(1) = 1 and on account of expression (2.17) for Q(z), we obtain

Q(εi) =
β
∑l−1

n=0 d(n)(εn
i − 1) +

∑c−1
n=l d(n)(εn

i − 1)

A(εi) − 1
, 1 ≤ i ≤ c − 1 . (5.44)

The combination of (5.43) and (5.44) produces

E
[

x([QJ+A−] mod c) xA+
]

=
xc − 1

c(x − 1)
g(x) , (5.45)

with

g(x) =
1 − A(x)

λ(1 − x)

+

c−1
∑

i=1

A(εi) − A(x)

λ(εi − x)

εi(x − 1)

x − εi

β
∑l−1

n=0 d(n)(εn
i − 1) +

∑c−1
n=l d(n)(εn

i − 1)

A(εi) − 1
,

whereby the first term in the right-hand-side represents i = 0. The combination
of (5.42), (5.45) and the probability generating property of PGFs yields

Pr
[

Ŵ2 > w
]

=

l−1
∑

m=0

1

m!

dm

dxm
E
[

x([QJ+A−] mod c)+1+A++
∑w

i=1 AJ+i

]

∣

∣

∣

∣

x=0

=

l−1
∑

m=1

1

m!

dm

dxm
xA(x)w xc − 1

c(x − 1)
g(x)

∣

∣

∣

∣

x=0

.

On account of Leibniz’s rule for the derivative of a product, this can, analo-
gously as for the intermediate model in section 5.3 (formula (5.28)), be trans-
formed into

Pr
[

Ŵ2 > w
]

=
1

c

l−2
∑

m=0

l − 1 − m

m!

dm

dxm
A(x)wg(x)

∣

∣

∣

∣

x=0

. (5.46)

Formula (5.46) can be implemented in a mathematical program such as matlab.
This procedure suffers from the drawback that high-order derivatives may have
to be computed, which causes a considerable reduction in speed and even is
infeasible if l and c are quite large. Therefore, we deduce an approximation for

Pr
[

Ŵ2 > w
]

, whereby no derivatives have to be calculated.

As the methodology runs completely along the same lines as in section 5.3, we
immediately mention the approximation formula that we eventually obtain:

Pr
[

Ŵ2 > w
]

≈
g(0)

c

min(l−2,w)
∑

m=0

A
′

(0)m(l − 1 − m)
(w

m

)

A(0)w−m . (5.47)
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Note that for large w, formula (5.47) becomes a sum from 0 to l − 2. We fur-
ther point out that the binomial coefficient causes no difficulties, since efficient
routines exist to calculate them, even for large w.

Remark 27. When l = 1, Pr
[

Ŵ2 > w
]

equals 0. Of course, when the service

threshold equals 1, a present customer cannot suffer a delay due to postponing
service until more customers have arrived.

Remark 28. Note again that this approach is not suited for cases whereby
A

′

(0) = 0, as only the term corresponding to m = 0 in (5.47) differs from 0
and this term is the one with the smallest power of 1−zA(0) in the denominator
of Ŵ2(z).

Remark 29. When Tn(z) = Tc(z) ∀n and β = 0, (5.47) reduces to the corre-
sponding expression (5.34) for the intermediate model.

5.4.4 Evaluation of approximation formulas

In this section, we evaluate the accuracy of our approach. First, we study for-
mula (5.38) for Pr [W1 > w]. Then, we focus on expressions (5.40)-(5.41) for

Pr [W1 + Θ > w], next on approximation (5.47) for Pr
[

Ŵ2 > w
]

and finally

expression (5.36) for Pr [W > w] is covered.

In Figures 5.24-5.26, we have depicted approximation (5.38) as well as sim-
ulated values3 for Pr [W1 > w] versus w for various combinations of distribu-
tions for the number of customer arrivals (Poisson A(z) = eλ(z−1); Geometric
A(z) = 1/(1+λ−λz); C-center A(z) = 1−λ/c+λ/(2c)(zc−1+zc+1)) and service
times (Geometric Tn(z) = z/[E [Tn] + (1 − E [Tn])z] with E [Tn] = 8 + 0.2n or
E [Tn] = 6+0.4n; 25 Tc(z) = (25−E [Tc])z/24+(E [Tc]−1)z25/24 with E [Tn] =
5 or 10) and several server capacities c, service thresholds l, timer parameters β
and loads ρ. We observe that the approximation is, as in the previous sections,
accurate. However, in the case ρ = 0.3 in Fig. 5.24 (a) it is less effective. In
order to understand why, we have reported in Table 5.1 the dominant pole ẑ of
W1(z) versus the load and the singularities of Tn(z) (in case of geometrically
distributed service times, γn , E [Tn] /[E [Tn] − 1] is the singularity of Tn(z))
and we have depicted in Fig. 5.27 the approximation and the simulated values
of Pr [W1 > 75] versus the load for several expressions of A(z) and Tn(z). We
notice in Table 5.1 that, in case of Poisson and geometric arrivals, the smaller
the load (and thus the smaller the mean arrival rate λ), the more ẑ approaches
to the singularity γc, which is the reason why the approximation becomes inac-
curate for small load in these cases. This anomaly is not specific for our model

3Only for Pr
[

Ŵ2 > w
]

we have an exact formula at our disposal. For the other tail prob-

abilities (Pr [W1 > w], Pr [W1 + Θ > w] and Pr [W > w]) throughout this section, we have
therefore depicted the 95% confidence intervals resulting from 10 Monte Carlo simulations
whereby each simulation generates W1, W1 + Θ and W for 108 customers.
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but is inherent to approximations based on dominant singularities in general.
In case of c-centered arrivals, ẑ approaches γn a lot slower, which entails a
much better accuracy of the approximation. Fig. 5.27 also exhibits that the
approximation is precise in case of Poisson arrivals and services of either 1 or
25 slots with mean value 5 (regardless of the number of customers in the served
batch). The reason is that Tn(z) has no singularities in this case. In general,
we can conclude that the approximation is accurate except when the load is
small in combination with Tn(z) (and/or A(z)) having singularities. In such
situations, it is possible to enhance the approximation by adopting an ad hoc
approach whereby the contributions of the other singularity(ies) nearby ẑ is
(are) also incorporated (see e.g. [107]).

Remark 30. In section 5.3.3, we have also considered an example with Poisson
arrivals and geometric service times. There however, the approximation for
Pr [W1 > w] did not suffer as much as here from the singularity of the PGF of
the service times. The reason for this is that we here deal with several PGFs of
the service times depending on the number of customers in the served batch and
that the dominant pole ẑ of W1(z) also approaches the singularities of Tc−1(z),
Tc−2(z), et cetera when the load becomes very small. It has been shown that
approximations based on dominant singularities become less accurate the more
other singularities approach the dominant singularity(ies) (see e.g. [107]).

Next, we evaluate approximations (5.40)-(5.41) for Pr [W1 + Θ > w] in Figures
5.28-5.30. We observe that these are accurate. Indeed, for larger loads, W1 is
dominant in W1+Θ and the approximation for Pr [W1 > w] is precise for larger
loads, whereas for smaller loads, W1 becomes small, so that Θ determines the
behaviour of W1 + Θ and the formula for Pr [Θ > w] is exact (due to its geo-
metric distribution). In some special cases however, the approximation might
become inaccurate for smaller loads. Consider for instance the system with
Poisson arrivals, geometric service times with E [Tn] = 8 + 0.2n, c = 10, l = 5
and β = 0.2. In this situation, the singularity of Θ(z) equals 1/(1 − β) = 1.25
and the singularity γc of Tc(z) equals 1.11 . . . (see Table 5.1). We thus have that
1/(1−β) is, regardless of the load, larger than ẑ (because ẑ < γc), which means
that ẑ is always the dominant pole of W1(z)Θ(z), thus that W1 even dominates
W1 + Θ for smaller loads, which results in an inaccurate approximation (see
Fig. 5.31). When E [Tn] is equal to 3 + 0.1n, γc is equal to 1.333 . . ., so that Θ
will again dominate for smaller loads, which thus leads to a good approxima-
tion (see Fig. 5.32). Hence, approximations (5.40)-(5.41) for Pr [W1 + Θ > w]
are accurate, except for special cases whereby 1/(1 − β) is always larger than
ẑ, which leads to bad results for small loads. Again, this can be resolved by
following an ad hoc approach in such situations.

Next, approximation (5.47) and exact formula (5.46) for Pr
[

Ŵ2 > w
]

are de-

picted versus w in Figures 5.33-5.35 for various settings of the system pa-
rameters. Along the same lines as for the basic model, we observe that the
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approximation is accurate for larger values of w, except when A
′

(0) = 0, and
thus that it is extremely suited for quickly assessing the order of magnitude of

Pr
[

Ŵ2 > w
]

.

Finally, we investigate approximation (5.36) for Pr [W > w] in Figures 5.36-
5.40. We observe, in general, that the approximation is accurate, except
for values of the load between, roughly speaking, 0.15 and 0.35, where it
is less precise but still acceptable for the purpose of assessing the order of
magnitude of Pr [W > w]. In order to explain this issue, all probabilities
(queueing, postponing and total) are depicted versus the load in Figures 5.41-
5.42. The approximation being extremely accurate for larger loads follows
from Pr [W1 > w] then clearly dominating in (5.36) and the approximation of
Pr [W1 > w] being outstanding in this area. For “medium” values of the load,

Pr [W1 > w] ≈ Pr
[

Ŵ2 > w
]

, so that both play a role in (5.36). In this area

however, the approximation for Pr [W1 > w] is for geometric service times com-
bined with Poisson arrivals or geometric arrivals not excellent but still adequate.

When the load is small, Pr [W1 > w] << Pr
[

Ŵ2 > w
]

, so that Pr
[

Ŵ2 > w
]

and Pr [W1 + Θ > w] dominate in (5.36). In addition, as the load is small,
it generally holds that Pr [W1 + Θ > w] ≈ Pr [Θ > w] (except in some special

cases, of which we discuss one below). As the approximation for Pr
[

Ŵ2 > w
]

is precise and the formula for Pr [Θ > w] is exact (it has a geometric distribu-
tion), the approximation is very accurate.
The c-centered arrivals, however, is an outsider: although the approximation
for Pr [W1 > w] is accurate in this case, the approximation for Pr [W > w] is
inaccurate for smaller values of the load. This can be explained intuitively.

Approximation (5.36) is mainly based on the assumption that Pr
[

Ŵ2 > w
]

is

independent of Pr [W1 > w], which is not a good assumption in this special
case of c-centered arrivals and low load. Indeed, when W1 is not equal to 0,
this probably means, owing to the low load, that at slot mark J + 1 service
is initiated of a batch consisting of some customers that arrived in slot J , but
not containing the tagged customer itself. As a consequence, the probability
is larger that there are at slot mark J + 1 not yet enough customers to fill the
batch with the tagged customer sufficiently, which implies that Ŵ2 is likely to
be large. When, on the other hand, W1 = 0, Ŵ2 can only differ from zero
when c − 1 customers arrive during slot J and if the system was empty at the
beginning of that slot and if l = c. In other words, W1 and Ŵ2 are strongly
correlated.
Before closing this section, we again study our previously considered example
where β = 0.2. When E [Tn] = 8 + 0.2n (Fig. 5.43), the approximation for
Pr [W > w] is inaccurate for small loads, which is a direct result of W1 domi-
nating over Θ in this case, whereas when E [Tn] = 3+0.1n (Fig. 5.44), Θ again
dominates over W1 for small loads, which results in a good approximation.
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Summarized, we feel that our approximation is very useful for the purpose
of assessing the order of magnitude of the customer delay, except in
some special cases.
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Figure 5.24: Evaluation of approximation formula (5.38) for Pr [W1 > w] (1)
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Figure 5.26: Evaluation of approximation formula (5.38) for Pr [W1 > w] (3)
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Table 5.1: Singularities γn of Tn(z) when Tn(z) = z/[E [Tn] + (1 − E [Tn])z],
with E [Tn] = 8 + 0.2n, and dominant pole ẑ of W1(z) for several distributions
of A(z) and various values of the load ρ; c = 10

n γn ρ ẑ Poisson ẑ geometric ẑ c-centered
0 1.142857142857 0.9 1.019517053853 1.017984717482 1.011049828292
2 1.135135135135 0.7 1.055046820392 1.052088641246 1.033151838444
4 1.128205128205 0.5 1.084194576530 1.081656490042 1.055263630655
6 1.121951219512 0.3 1.104020768326 1.102948002054 1.077404642357
8 1.116279069767 0.1 1.111018197772 1.110989967865 1.099654929738
9 1.113636363636 0.05 1.111109639324 1.111109020127 1.105282554417
10 1.111111111111 0.01 1.111111111100 1.111111111106 1.109878832698
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Figure 5.27: Pr [W1 > 75] versus the load ρ for several combinations of A(z) and
Tn(z) (PG Poisson arrivals geometric services E [Tn] = 8+0.2n; GG geometric
arrivals geometric services E [Tn] = 8 + 0.2n; CG c-centered arrivals geometric
services E [Tn] = 8+0.2n; P25 Poisson arrivals 1 or 25 slots service E [Tn] = 5);
c = 10, l = 5, β = 0.05
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Figure 5.32: Evaluation of Pr [W1 + Θ > 75] versus the load ρ; Poisson arrivals,
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Chapter 6

Correlated arrivals

6.1 Preface

In the previous chapters, we have studied the buffer content and the customer
delay in a versatile batch-service queueing model. However, we have assumed
that the number of customer arrivals during consecutive slots was independent
and identically distributed (IID), with common PGF A(z), whereas in many
real-life circumstances, customer arrivals do not occur independently from each
other. For instance, in modern telecommunication systems, a traffic source
which is inactive in a given time slot is very likely to remain inactive for a long
time (or during a large number of time slots) (see e.g. [60]). The purpose of
this chapter is to study the buffer content in the same model as before, except
that we also include correlation in the arrival process.
In order to cope with the correlated nature of arrivals, the Markovian arrival
process (MAP) can be adopted. In case of a MAP, the probability of having an
arrival depends on a background state which is governed by a Markov chain.
Several variants of MAP exist: in case of a BMAP, customers arrive in batches
instead of individually, whereas D-MAP and D-BMAP represent the discrete-
time analogues of MAP and BMAP. Queueing models with MAP (or variants)
have been studied extensively in the past, for instance the MAP is considered
in [4], [6], [10], [21], [71], [78] and [81], the D-MAP is covered in [31], [35], [67],
[111], [112], the BMAP is studied in [1], [11], [56], [85]–[87], [92], [93], [100] and
[22], [31], [48], [59], [68], [76], [77], [99], [116] deal with D-BMAP.
Although batch-service queueing models and models with MAP (or variants)
have been analyzed separately to a great extent, the combination has attracted
much less attention. Exceptions are [12], [34], [64], [66], [104]. Gupta and
Laxmu [64] studied the queue content at various epochs in the MAP/G(a,b)/1/N
queue. Chaudhry and Gupta [34] translated the analysis from [64] to discrete
time, resulting in the analysis of the D-MAP/G(a,b)/1/N queue. Gupta and
Sikdar [66] extended [64] so that single vacations are included and Sikdar and
Gupta [104] further extended this research to multiple vacations. Finally, Banik
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[12] analyzed the queue content at various epochs in the BMAP/G(a,b)/1/N and
BMAP/MSP (a,b)/1/N systems. Our work differs from these papers in several
aspects. First, we consider the D-BMAP, which is more applicable in a telecom-
munications context due to the discrete nature of the information units that
are typically used. Second, we include a dependency between the service time
of a batch and the number of items within it. This is closer to reality, since the
transmission time of a batch of information packets is typically longer when the
batch contains more packets. Also in other application areas, this might be the
case. Thirdly, we incorporate a timing mechanism, that avoids excessive delays
due to postponing service until the service threshold is reached. This mech-
anism is of importance when the customers represent for instance real-time
data packets. Further, we deduce an additional set of performance quantities
compared to [12], [34], [64], [66], [104], where the queue content is established
at service completion, pre-arrival and random times. We compute the system
content (i.e. the number of customers in the entire system, thus those in service
included) at random slot boundaries, the queue content at random slot bound-
aries, the server content at random slot marks, the system content at service
completion times, the number of customers in a served batch, the probability
that the server processes a batch during a random slot and the queue content
when the server is not processing. The number of customers in a served batch,
for instance, is of major concern for practitioners, as it gives a clear indication
of the efficiency of the server. Finally, we evaluate more thoroughly the in-
fluence of correlation on the behaviour of batch-service queueing systems and
more specifically, we investigate the influence on the optimal service threshold.

The work in this chapter is mainly based on our paper [46]. The model con-
sidered in [46] is a small extension of the model in this dissertation, in the
sense that the probability that service is initiated anyway when not enough
customers are present, is dependent on the number of available customers. We
omit this dependency in this chapter, in order to be uniform with previous chap-
ters. Paper [46], in turn, is based on our conference paper [45], where we have
studied the system content in a batch-service queueing model with a service
threshold, with geometrically distributed service times that are independent of
the number of served customers, and with a customer arrival process modelled
by a D-BMAP. Paper [46] is an extension of [45], in the sense that a more
versatile model is considered with service times that are generally distributed
and dependent on the number of items in a served batch. In addition, a tim-
ing mechanism is included, to avoid excessive delays due to postponing service
until the service threshold is reached. Furthermore, a fundamental formula is
established from which various quantities related to the number of customers
in the queue and server at specific time instants can be deduced, instead of
only the system content at random slot boundaries as in [45].

This chapter is structured as follows. The D-BMAP is discussed in section
6.2. Next, in section 6.3, the fundamental formula is established, from which
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various quantities related to the buffer content are extracted in section 6.4.
Further, we discuss how performance measures can be calculated from these
quantities in section 6.5 and finally we investigate in section 6.6 the effect of
correlation in the arrival process on the behaviour of the system through some
numerical examples.

6.2 D-BMAP

Let Ak again represent the number of customer arrivals during slot k. Whereas
in previous chapters, we have assumed that the sequence {Ak}k≥1 consists of
independent and identically distributed random variables, with common PGF
A(z), we now consider correlated (dependent) arrivals. We therefore adopt
a D-BMAP (discrete-batch Markovian arrival process), whereby the arrival
process is governed by an underlying homogeneous first-order Markov chain, in
the sense that the number of customer arrivals during a slot depends
on the transition of the underlying first-order Markov chain. Let us
denote the state of the Markov chain during slot k by τk and assume that the
Markov chain has a finite number of states N . The arrival process is completely
defined by the values a(n, j|i):

a(n, j|i) , lim
k→∞

Pr [Ak = n, τk+1 = j|τk = i] , n ≥ 0; i, j ∈ {1, . . . , N} ,

denoting the probability that if the background state is i during a slot, there
are n arrivals during this slot and the background state during the next slot
is j. We put these probabilities in an N × N matrix generating function
A(z) , whose entries are defined as follows:

[A(z)]ij ,

∞
∑

n=0

a(n, j|i)zn , i, j ∈ {1, . . . , N} . (6.1)

The advantage of working with probability generating matrix (6.1) is twofold:
it completely describes the arrival process and it is convenient throughout the
analysis. The following information can be extracted from A(z):

• Transition probabilities pij of the underlying Markov chain:

pij , lim
k→∞

Pr [τk+1 = j|τk = i] = [A(1)]ij .

• Stationary distribution 1 × N vector π of the state:

[π]i , lim
k→∞

Pr [τk = i] , 1 ≤ i ≤ N ,

is the solution of π = πA(1) and the normalization condition π1 = 1,
with 1 the N × 1 column vector whose N entries are equal to 1.

• Conditional PGF of the number of arrivals given that the background
state during that slot equals i:

Ai(z) , lim
k→∞

∞
∑

n=0

Pr [Ak = n|τk = i] zn = [A(z)1]i .
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• Mean arrival rate λ:

λ = πA
′

(1)1 ,

whereby

[A
′

(1)]ij =
∞
∑

n=0

a(n, j|i)n =
d

dz
[A(z)]ij

∣

∣

∣

∣

z=1

.

The matrix generating function A(z) is convenient to deal with as the matrix
generating function of the number of arrivals during two consecutive slots, say
A2(z), is easily extracted from A(z) by summing over the “intermediate state”
(τk+1) and taking into account that the number of arrivals during a slot is only
dependent on the state of the current and next slot:

[A2(z)]ij , lim
k→∞

∞
∑

n=0

Pr [Ak + Ak+1 = n, τk+2 = j|τk = i] zn

= lim
k→∞

∞
∑

n=0

n
∑

m=0

N
∑

i
′
=1

Pr
[

Ak = m, τk+1 = i
′

|τk = i
]

zm

Pr
[

Ak+1 = n − m, τk+2 = j|τk+1 = i
′
]

zn−m

= lim
k→∞

N
∑

i
′
=1

∞
∑

m=0

Pr
[

Ak = m, τk+1 = i
′

|τk = i
]

zm

∞
∑

n=m

Pr
[

Ak+1 = n − m, τk+2 = j|τk+1 = i
′
]

zn−m

=
N
∑

i
′
=1

[A(z)]
ii

′ [A(z)]
i
′
j

,

which is the entry at the i-th row and j-th column of the matrix product A(z)2.
Consequently, as

[A2(z)]ij =[A(z)2]ij ,

for all i, j ∈ {1, . . . , N}, it holds that A2(z) = A(z)2. Analogously, one
can prove by mathematical induction that the matrix generating function of
the number of arrivals during n consecutive slots equals A(z)n and conse-
quently, that the number of arrivals during the service of n customers equals
Tn(A(z)) ,

∑∞
k=0 Pr [Tn = k]A(z)k.

The radius of convergence of A(z) is designated by ℜA and is equal to

ℜA , min
i,j

ℜAij
,

with ℜAij
the radius of convergence of [A(z)]ij . Hence, each of the entries of

A(z) is an analytic function in the open disk {z ∈ C : |z| < ℜA}.

During the analysis in the subsequent sections, we will make use of spec-
tral decomposition1. We thereby assume that A(z) is diagonalizable, i.e.

1For a good introduction on matrix algebra and more specifically spectral decomposition
we strongly recommend the book [89].
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A(z) can be factorized as

A(z) = R(z)Λ(z)R−1(z) , (6.2)

with Λ(z) a diagonal matrix. It can be proved (see e.g. [89]) that A(z) is
diagonalizable if and only if it possesses a complete set of eigenvectors, that
the columns rj(z) of R(z) then constitute a complete set of right eigenvectors
and that the diagonal entries λi(z) of Λ(z) are the eigenvalues of A(z), so that
each (λj(z), rj(z)) is an eigenpair for A(z):

A(z)rj(z) = λj(z)rj(z) , 1 ≤ j ≤ N .

Note that the eigenvectors are unique upon some factor, which we can, without
loss of generality, fix by making the convention that the row sums of either R(z)
or R−1(z) are equal to one (the former implies the latter and vice versa):

R(z)1 = 1 ⇔ R−1(z)1 = 1 .

This convention will turn out to be convenient throughout the calculation of
performance measures. Next, relation (6.2) implies that

A(z)n = R(z)Λ(z)nR−1(z) ,

Tc(A(z)) = R(z)Tc(Λ(z))R−1(z) ,

which means that
A(z)nrj(z) = λj(z)nrj(z) , 1 ≤ j ≤ N ,

and
Tc(A(z))rj (z) = Tc(λj (z))rj(z) , 1 ≤ j ≤ N .

In other words, each rj(z) is a right eigenvector of A(z)n and Tc(A(z)) as well,
with corresponding eigenvalues λj(z)n and Tc(λj(z)) respectively.

Next, since A(z) is a matrix with positive entries for all z ∈]0,ℜA[, it has one
real and positive eigenvalue that exceeds the moduli of all other eigenvalues for
these values of z ([89]). This eigenvalue is called the Perron-Frobenius (PF)
eigenvalue and we let λ1(z) represent that eigenvalue. The PF eigenvalue and
its corresponding right eigenvector satisfy λ1(1) = 1, r1(1) = 1. In addition, it

can be proved that λ
′

1(1) = λ. Indeed, it holds that A(z)r1(z) = λ1(z)r1(z).
Taking the first derivative at z = 1 and invoking λ1(1) = 1 and r1(1) = 1 yields

A
′

(1)1 + A(1)r
′

1(1) = λ
′

1(1)1 + r
′

1(1) . (6.3)

Multiplying (6.3) to the left with π, the steady-state vector of the state of the

underlying Markov chain, relying on πA(1) = π, πA
′

(1)1 = λ and π1 = 1,
produces

λ
′

1(1) = λ .

Before closing this section, we define the vector generating function X(z)
of a random variable X that depends on the background state (Xk represents
the value of X at slot mark k) as the 1 × N vector whose entries are defined
as follows:

[X(z)]j , lim
k→∞

E
[

zXk{τk = j}
]

= lim
k→∞

E
[

zXk |τk = j
]

Pr [τk = j] .

Note that the PGF X(z) of X can easily be extracted from the vector generating
function X(z): X(z) = X(z)1, and that X(1) is equal to the steady-state vector
π of the background state.
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6.3 Joint vector generating function

In this section, we compute the 1 × N steady state joint vector generating
function V(z, x, y) of the queue content, the server content and the remaining
service time:

[V(z, x, y)]j , lim
k→∞

E
[

zQk xSkyRk{τk = j}
]

,

with Qk (Sk) the queue (server) content and Rk the remaining service time at
slot boundary k. We commence by writing down the system equations, which
express the relation between (Qk+1, Sk+1, Rk+1) and (Qk, Sk, Rk):

(Qk+1, Sk+1, Rk+1) =






























































(Qk + Ak, Sk, Rk − 1) if Rk > 1

(0, Qk + Ak, TQk+Ak
) if Rk ≤ 1 and l ≤ Qk + Ak < c

(Qk + Ak − c, c, Tc) if Rk ≤ 1 and Qk + Ak ≥ c

(0, Qk + Ak, TQk+Ak
)

if Rk ≤ 1, Qk + Ak < l and service starts
(with probability β)

(Qk + Ak, 0, 0)
if Rk ≤ 1, Qk + Ak < l and service does
not start (with probability 1 − β)

Indeed, in the first case, the service continues during slot k+1, so that customers
that have arrived during slot k are stored in the queue. In the other cases, the
server is available at slot mark k +1. Whether a new service is initiated or not
is described by the service policy, which is described in section 1.5, and is thus
dependent on the number of available customers.
The system equations can be translated into vector generating functions as
follows:

[Vk+1(z, x, y)]j ,E
[

zQk+1xSk+1yRk+1{τk+1 = j}
]

=
1

y
E
[

zQk+AkxSkyRk{Rk > 1, τk+1 = j}
]

+ E
[

xQk+AkyTQk+Ak {Rk ≤ 1, l ≤ Qk + Ak < c, τk+1 = j}
]

+
( x

z

)c
Tc(y)E

[

zQk+Ak{Rk ≤ 1, Qk + Ak ≥ c, τk+1 = j}
]

+ βE
[

xQk+AkyTQk+Ak {Rk ≤ 1, Qk + Ak < l, τk+1 = j}
]

+ (1 − β)E
[

zQk+Ak{Rk ≤ 1, Qk + Ak < l, τk+1 = j}
]

. (6.4)

We now calculate each term from the right-hand-side of (6.4) separately. We
therefore introduce the 1 × N row vectors q0k(n), dk(n) and Fk(z, x) as

[q0k(n)]j , Pr [Qk = n, Rk = 0, τk = j] , (6.5)

[dk(n)]j , Pr [Qk + Ak = n, Rk ≤ 1, τk+1 = j] , (6.6)

[Fk(z, x))]j , E
[

zQk xSk{Rk = 1, τk = j}
]

. (6.7)

Let us start with the first term from (6.4). We take the sum over all possible
states τk during slot k:

E
[

zQk+AkxSkyRk{Rk > 1, τk+1 = j}
]

=
N
∑

i=1

E
[

zQk+AkxSkyRk{Rk > 1, τk+1 = j, τk = i}
]

.
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As Ak is independent of Qk, Sk and Rk when τk and τk+1 are given, this
expresssion transforms into

E
[

zQk+Ak xSkyRk{Rk > 1, τk+1 = j}
]

=

N
∑

i=1

E
[

zQkxSkyRk{Rk > 1}|τk+1 = j, τk = i
]

. Pr [τk = i] E
[

zAk |τk+1 = j, τk = i
]

. Pr [τk+1 = j|τk = i] .

Note that Qk, Sk and Rk are independent of τk+1 if τk is given. Indeed, Qk,
Sk and Rk are influenced by Ak−1, which is not dependent of τk+1 if τk is
known. As a result, we find, by invoking the definitions of A(z), Vk(z, x, y)
and (6.5)-(6.7) and by taking into account that the underlying Markov chain
is time homogeneous:

E
[

zQk+AkxSkyRk{Rk > 1, τk+1 = j}
]

=

N
∑

i=1

[

Vk(z, x, y)−

l−1
∑

n=0

q0k(n)zn − yFk(z, x)

]

i

[A(z)]ij ,

which is nothing else than a matrix multiplication. Hence,

E
[

zQk+AkxSkyRk{Rk > 1, τk+1 = j}
]

=

[{

Vk(z, x, y) −

l−1
∑

n=0

q0k(n)zn − yFk(z, x)

}

A(z)

]

j

. (6.8)

The third term can be established analogously as the first, which yields:

E
[

zQk+Ak{Rk ≤ 1, Qk + Ak ≥ c, τk+1 = j}
]

=

[

Fk(z, 1)A(z) +

l−1
∑

n=0

q0k(n)znA(z)−

c−1
∑

n=0

dk(n)zn

]

j

. (6.9)

The other terms are easier to calculate, because we just have to rely on defini-
tion (6.6) of dk(n). As a result, we find for respectively the second, fourth and
fifth term:

E
[

xQk+AkyTQk+Ak {Rk ≤ 1, l ≤ Qk + Ak < c, τk+1 = j}
]

=

[

c−1
∑

n=l

dk(n)xnTn(y)

]

j

,

(6.10)

E
[

xQk+AkyTQk+Ak {Rk ≤ 1, Qk + Ak < l, τk+1 = j}
]

=

[

l−1
∑

n=0

dk(n)xnTn(y)

]

j

, (6.11)

E
[

zQk+Ak{Rk ≤ 1, Qk + Ak < l, τk+1 = j}
]

=

[

l−1
∑

n=0

dk(n)zn

]

j

. (6.12)

The substitution of (6.8)-(6.12) in (6.4) produces in the steady state
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V(z, x, y) =
1

y

{

V(z, x, y) −

l−1
∑

n=0

q0(n)zn − yF(z, x)

}

A(z)

+

c−1
∑

n=l

d(n)xnTn(y)

+
( x

z

)c
Tc(y)

[

F(z, 1)A(z) +

l−1
∑

n=0

q0(n)znA(z) −

c−1
∑

n=0

d(n)zn

]

+ β

l−1
∑

n=0

d(n)xnTn(y) + (1 − β)

l−1
∑

n=0

d(n)zn , (6.13)

whereby the 1 × N row vectors q0(n), d(n) and F(z, x) represent the steady-
state equivalents of q0k(n), dk(n) and Fk(z, x):

[q0(n)]j , lim
k→∞

Pr [Qk = n, Rk = 0, τk = j] , (6.14)

[d(n)]j , lim
k→∞

Pr [Qk + Ak = n, Rk ≤ 1, τk+1 = j] , (6.15)

[F(z, x))]j , lim
k→∞

E
[

zQkxSk{Rk = 1, τk = j}
]

.

Note that equation (6.13) is similar to expression (2.6) in the independent case,
except that PGFs are substituted by matrix or vector generating functions.
However, it is important to note that one has to be careful with multiplication
now, as matrix and vector multiplications are not commutative. Next, notice
that definitions (6.14) and (6.15) imply that

q0(n) = d(n)(1 − β) , 0 ≤ n ≤ l − 1 . (6.16)

Substitution of (6.16) in (6.13) produces

V(z, x, y)

[

I −
1

y
A(z)

]

=(1 − β)

l−1
∑

n=0

d(n)zn

[

I −
A(z)

y

]

+
( x

z

)c
Tc(y)

l−1
∑

n=0

d(n)zn[A(z) − I]

+ β

l−1
∑

n=0

d(n)
[

xnTn(y)I − zn
( x

z

)c
Tc(y)A(z)

]

+
( x

z

)c
Tc(y)F(z, 1)A(z) − F(z, x)A(z)

+

c−1
∑

n=l

d(n)
[

xnTn(y) − zn
( x

z

)c
Tc(y)

]

, (6.17)

with I the N × N identity matrix. For the purpose of extracting performance
measures in the next sections, it turns out to be more convenient to multiply
expression (6.17) to the right with ri(z), the i-th right eigenvector of A(z). We
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obtain
[

1 −
λi(z)

y

]

V(z, x, y)ri(z) =(1 − β)

[

1 −
λi(z)

y

] l−1
∑

n=0

d(n)ri(z)zn

+
( x

z

)c
Tc(y)[λi(z) − 1]

l−1
∑

n=0

d(n)ri(z)zn

+ β

l−1
∑

n=0

d(n)ri(z)
[

xnTn(y) − zn
( x

z

)c
Tc(y)λi(z)

]

+
( x

z

)c
Tc(y)λi(z)F(z, 1)ri(z) − λi(z)F(z, x)ri(z)

+

c−1
∑

n=l

d(n)ri(z)
[

xnTn(y) − zn
( x

z

)c
Tc(y)

]

. (6.18)

Substituting y by λi(z) and letting x → 1 leads to

λi(z) [zc − Tc(λi(z))] F(z, 1)ri(z) =Tc(λi(z))[λi(z) − 1]

l−1
∑

n=0

d(n)ri(z)zn

+ β

l−1
∑

n=0

d(n)ri(z) [zcTn(λi(z)) − znTc(λi(z))λi(z)]

+

c−1
∑

n=l

d(n)ri(z) [zcTn(λi(z)) − znTc(λi(z))] . (6.19)

Substituting y by λi(z) in (6.18) and appealing to (6.19) yields
zcλi(z) [zc − Tc(λi(z))]F(z, x)ri(z)

=zcxcTc(λi(z))[λi(z) − 1]

l−1
∑

n=0

d(n)ri(z)zn

+ βxcTc(λi(z))

l−1
∑

n=0

d(n)ri(z) [zcTn(λi(z)) − znTc(λi(z))λi(z)]

+ xcTc(λi(z))

c−1
∑

n=l

d(n)ri(z) [zcTn(λi(z)) − znTc(λi(z))]

+ β[zc − Tc(λi(z))]

l−1
∑

n=0

d(n)ri(z) [zcxnTn(λi(z)) − xcznTc(λi(z))λi(z)]

+ [zc − Tc(λi(z))]

c−1
∑

n=l

d(n)ri(z) [zcxnTn(λi(z)) − xcznTc(λi(z))] . (6.20)

Expressions (6.18)-(6.20) provide enough information to deduce a spectrum of
quantities related to the buffer content, which constitutes the subject of the
next section. However, formulas (6.18)-(6.20) still contain the unknown vectors
d(n). In order to explain how these can be calculated, set y = 1 and x = z in
(6.18) and rely on (6.19)-(6.20), leading to

[1 − λi(z)] [zc − Tc(λi(z))]V(z, z, 1)ri(z) =(zc − 1)Tc(λi(z))[1 − λi(z)]

l−1
∑

n=0

d(n)ri(z)zn

+ β

l−1
∑

n=0

d(n)gn,i(z) +

c−1
∑

n=l

d(n)hn,i(z) , (6.21)
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with

gn,i(z) , [(zn − zc)Tn(λi(z))Tc(λi(z)) + zn(zc − 1)Tc(λi(z))λi(z)

−zc(zn − 1)Tn(λi(z))] ri(z) , (6.22)

hn,i(z) , [Tn(λi(z))zc{(1 − zn) − Tc(λi(z))}

−Tc(λi(z))zn{(1 − zc) − Tn(λi(z))}] ri(z) . (6.23)

Unlike the case of independent arrivals, it is impossible to construct an ir-
refutable mathematical proof, based on Rouché’s theorem, to show that each
of the equations zc − Tc(λi(z)) = 0 , i = 1, . . . , N, necessarily has c solutions
inside the closed complex unit disk. Nevertheless, an example where this is
not the case has not been encountered up to now, and, to the best of our
knowledge, such an example, if it exists, has yet to be constructed. Hence, for
practical purposes, we can venture to state that the above equation has indeed
c solutions inside the closed complex unit disk for each value of i, provided that
the equilibrium condition ρ < 1 holds.
Let us characterise the k-th solution of the i-th equation by zi,k. As λ1(1) = 1,
one of the zeros of zc −Tc(λ1(z)) equals one. Without loss of generality, we let
z1,1 be that zero. As V(z, z, 1) is analytic inside the closed complex unit disk,
the right-hand-side of (6.21) must also vanish at these zeroes. This observation
leads to Nc − 1 linear equations in the 1 × N vectors d(n), n = 0, . . . , c − 1.
The zero z1,1 cannot be used as it produces the trivial equation 0 = 0. For-
tunately, we can resort to the normalization condition to obtain another equa-
tion. Derivating (6.21) twice at z = 1 for i = 1 and taking into account that
r1(1) = 1, V(z, z, 1)1 = 1 and λ′

1(1) = λ, produces the normalization condition

d2

dz2
f1(z)

∣

∣

∣

∣

z=1

= −2λc(1 − ρ) ,

with fi(z) the right-hand-side of (6.21).

6.4 Quantities related to the buffer content

6.4.1 System content at random slot boundaries

As the system content U equals the sum of the queue and the server content,
its vector generating function U(z) is equal to V(z, z, 1). Hence, substituting
V(z, z, 1) by U(z) in expression (6.21) yields

[1 − λi(z)] [zc − Tc(λi(z))]U(z)ri(z) =(zc − 1)Tc(λi(z))[1 − λi(z)]

l−1
∑

n=0

d(n)ri(z)zn

+ β

l−1
∑

n=0

d(n)gn,i(z) +

c−1
∑

n=l

d(n)hn,i(z) , (6.24)

whereby gn,i(z) and hn,i(z) are defined by respectively (6.22) and (6.23).

6.4.2 Queue content at random slot boundaries

The vector generating function Q(z) of the queue content at random slot
boundaries is found by summing out both the server content and the remaining
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service time. Hence, letting y → 1 and x → 1 in (6.18) and applying (6.19),
we find

[1 − λi(z)] [zc − Tc(λi(z))]Q(z)ri(z)

=(zc − 1)[1 − λi(z)]

l−1
∑

n=0

d(n)ri(z)zn

+ β

l−1
∑

n=0

d(n)ri(z) [(1 − zn){zc − Tc(λi(z))} + (zc − 1){znλi(z) − Tn(λi(z))}]

+

c−1
∑

n=l

d(n)ri(z) [zc − zn + (zn − 1)Tc(λi(z)) + (1 − zc)Tn(λi(z))] . (6.25)

6.4.3 System content at service completion times

The system content Ũ at service completion times equals the sum of the queue
content at the beginning of the last slot of the service and the customers that
have arrived during that slot. Hence, by definition, we get

Ũ(z)ri(z) = λi(z)
F(z, 1)ri(z)

F(1, 1)1
. (6.26)

Note that the following formula is also valid:

Ũ(z) =
F(z, 1)A(z)1

F(1, 1)1
.

We however prefer formula (6.26) as we have deduced an expression for F(z, x)
ri(z) and not for F(z, x) separately.

6.4.4 Server content at random slot boundaries

The probability generating function S(z) of the server content at random slot
boundaries is found by first substituting i by 1 and y by 1 in (6.18), then
invoking (6.20) and finally letting z → 1 and thereby applying l’Hôpital’s rule
twice, eventually resulting in:

S(z) [c − E [Tc]λ]

=(1 − β) [c − E [Tc]λ]

l−1
∑

n=0

d(n)1 + β [c − E [Tc] λ]

l−1
∑

n=0

d(n)1znE [Tn]

+ [c − E [Tc]λ]

c−1
∑

n=l

d(n)1znE [Tn] + zcλE [Tc]

l−1
∑

n=0

d(n)1

+ zcE [Tc] β

l−1
∑

n=0

d(n)1{E [Tn] λ − n − λ} + zcE [Tc]

c−1
∑

n=l

d(n)1{E [Tn]λ − n} . (6.27)

6.4.5 Number of customers in a served batch

The number of customers in a random served batch, S̃, is equally distributed
as the server content at the last slot of a random service period, which yields

S̃(z)ri(z) =
F(1, z)ri(z)

F(1, 1)1
. (6.28)
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6.4.6 Probability that the server processes

The probability that the server processes during a random slot ensues almost
immediately from the definition of q0(n):

Pr [server processes] = 1 −

l−1
∑

n=0

q0(n)1 . (6.29)

6.4.7 Queue content when the server not processes

The vector generating function Q̃(z) of the queue content when the server not
processes (because none or not enough customers are present to start a new
service), is found by taking into account that the server is not processing if and
only if the remaining service time equals 0. Hence

Q̃(z) =

∑l−1
n=0 q0(n)1zn

V(1, 0, 0)1
=

∑l−1
n=0 q0(n)1zn

V(1, 0, 0)r1(1)
. (6.30)

6.5 Performance measures

In section 6.4, we have deduced various quantities related to the buffer content
((6.24)-(6.30)). These formulas allow us to calculate performance measures
such as moments and tail probabilities. As compared to the case of indepen-
dent arrivals, this matter is more complicated now and we therefore briefly
explain how the mean value of the system content and the tail probabilities of
the queue content can be calculated.

The mean value of the system content is found by differentiating (6.24) three

times at z = 1 for i = 1 and taking into account that r1(1) = 1, λ
′

1(1) = λ and

U
′

(1)1 = E [U ], leading to

E [U ] =
1

6λc(ρ − 1)

[

d3

dz3
f1(z)

∣

∣

∣

∣

z=1

+ 6λc(1 − ρ)U(1)r′1(1)

− 3λ3T ′′
c (1) − 6λ′′

1 (1)T ′
c(1)λ + 3λ′′

1 (1)c + 3λc2 − 3λc

]

,

with fi(z) the right-hand-side of (6.24).

Throughout this dissertation, we assume an infinite buffer capacity. Never-
theless, buffers have a finite capacity, which causes customers to get rejected if
they arrive when the buffer is full. As a result, the loss ratio - defined as the
fraction of customers that are rejected - is an important performance measure.
In addition, the buffer capacity, say b, is typically large, and the tail prob-
ability Pr [Q > b] in the corresponding infinite capacity model then provides
a good approximation for the loss ratio [26]. Therefore, we calculate the tail
probabilities and we achieve this by applying Darboux’s theorem on Q(z). To
this end, we transform formula (6.25) for Q(z) into an expression for Q(z) that
is convenient to locate the dominant singularities. First, we rewrite (6.25) as
follows:

Q(z)ri(z) =
gi(z)

[1 − λi(z)][zc − Tc(λi(z))]
,
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with gi(z) the right-hand-side of (6.25). As a next step, we sum both sides of
this equation over i from 1 to N . On account of the distributive property of
matrices, R(z)1 = 1 and Q(z)1 = Q(z), we find

Q(z) =
N
∑

i=1

gi(z)

[1 − λi(z)][zc − Tc(λi(z))]
.

In the sequel, we seek for the dominant singularities of Q(z). First, recall that
|λ1(z)| > |λi(z)| for all i = 2, . . . , N and for all z ∈]1,ℜA[ (λ1(z) is the PF
eigenvalue). Second, note that when z̃ ∈]1,ℜA[ is a zero of [1−λj(z)], gj(z) also
vanishes at z = z̃. Next, using similar arguments as in [1], where a continuous
Markovian arrival process is considered, one can prove that λ1(z) is a strictly
increasing and convex function for z ∈]1,ℜA[. Hence, zc − Tc(λ1(z)) will have
a unique solution in this region if limz↑ℜA

Tc(λ1(z))/zc > 1, a requirement that
we assume to be satisfied from now on. As a result, the dominant singularity
of Q(z), ẑ, is the zero from zc−Tc(λ1(z)) in ]1,ℜA[. Taking these findings into
account, we find that Q(z) is in the neigbourhood of ẑ proportional to

Q(z) ∼
g1(z)

[1 − λ1(z)][zc − Tc(λ1(z))]
.

We thus find, by application of formula (1.4) of Darboux’s theorem, the follow-
ing approximation for Pr [Q > b]:

Pr [Q > b] ≈
ẑ−(b+1)

1 − ẑ

g1(ẑ)

[1 − λ1(ẑ)][cẑc−1 − T ′

c (λ1(ẑ))λ
′

1(ẑ)]
. (6.31)

In practice, buffer dimensioning is an important assignment. For instance, one
has to dimension the buffer so that the loss ratio is smaller than 10−6. We can
translate this problem to our setting: determine b such that Pr [Q > b] ≤ 10−6.
Taking the Neperian logarithm of this equation and on account of (6.31), we
obtain:

b ≥
6 ln 10 + lnK

ln ẑ
− 1 ,

with

K =
1

1 − ẑ

g1(ẑ)

[1 − λ1(ẑ)][cẑc−1 − T ′

c(λ1(ẑ))λ
′

1(ẑ)]
.

Hence, the smallest buffer capacity b ∈ N that ensures a loss ratio not larger
than 10−6 is equal to

b =

⌈

6 ln 10 + lnK

ln ẑ

⌉

− 1 .

6.6 Numerical examples

In this section, we evaluate the influence of combining correlation in the arrival
process and batch service on the behaviour of the system. To this end, we
consider a numerical example whereby the number of background states N
equals 2, and we assume that p11 = p22. In view of the above assumptions,
we define the coefficient of correlation γ between the states of two consecutive
slots as

γ , lim
k→∞

E [τkτk+1] − E [τk] E [τk+1]

(Var [τk] Var [τk+1])1/2
= 2p11 − 1 .
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We also assume that no customers arrive when the background state equals 1
and that the number of arrivals in the other case is geometrically distributed,
i.e. A1(z) = 1 and A2(z) = 1/(1 + 2λ − 2λz). We further consider a server of
capacity 10 (c = 10). The service times are geometrically distributed with the
mean length being dependent on the number of customers in the served batch.
More specifically, the average time to serve a batch of n customers is equal to
8+0.2n. Finally, the probability β that the server initiates a service even when
less than l customers are present equals 0.05.

In Fig. 6.1, the mean system content E [U ] is depicted versus the load ρ for
several values of the correlation coefficient γ. It is assumed that the service
threshold l equals 5. Fig. 6.1 demonstrates that positive correlation (γ > 0)
leads to a significant larger E [U ] as compared to the independent case (γ = 0).
Hence, disregarding positive correlation can lead to a severe underrating of the
mean system content. Fig. 6.1 also exhibits that ignoring negative correlation
leads to some overestimation of E [U ]. We further perceive that these observa-
tions manifest themselves more as ρ increases. These conclusions are similar
to those in multiserver systems with correlated arrivals (see e.g. [25], [60]).

Fig. 6.2 shows the tail probabilities Pr [Q > b] versus b in the case that the
load ρ equals 0.6 and the service threshold l being 5. We perceive that posi-
tive correlation leads to much larger probabilities whereas negative correlation
causes some smaller probabilities.

When we take a look at the buffer capacity required to ensure that the loss
ratio is smaller than 10−6 (Fig. 6.3), we come to similar conclusions. Hence, we
can state that correlation potentially has a huge impact on the buffer content.

Next, we investigate the server efficiency. Therefore, the filling degree - de-

fined as E
[

S̃
]

/c, the mean number of customers in a served batch divided

by the server capacity - and the probability that the server processes a batch
during a random slot are depicted versus the load in Fig. 6.4. We observe that
positive correlation leads to a larger filling degree and a smaller serving prob-
ability, whereas the opposite holds (in a lesser degree) for negative correlation.
Hence, positive correlation leads to a more efficient usage of the server. Indeed,
in case of positive correlation, long periods exist during which the server is idle
because no customers arrive. On the other hand, when customers arrive, this
is likely to happen during many contiguous slots, so that the server then serves
more customers.

As determining the optimal service threshold (we define it as the one that min-
imizes E [U ]) is of the utmost importance in batch-service systems, we study
whether correlation affects this optimum. For this purpose, the optimal thresh-
old is shown versus ρ in Fig. 6.5, for several values of γ. We perceive that the
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larger the correlation coefficient, the faster the optimum of l increases. Indeed,
when, in the independent case, it becomes advantageous to postpone service
until more customers have arrived, it can be beneficial in the positive correlated
case to wait until even more customers have arrived, because when customers
arrive it is very likely that other customers arrive in the subsequent slots.
We now investigate the impact of adopting the optimal threshold of the inde-
pendent case in the correlated system. Therefore, we define the relative error
as

E [U ]l̃opt
− E [U ]lopt

(

E [U ]lopt
+ E [U ]l̃opt

)

/2

,

with E [U ]lopt
the mean system content in the correlated case when the optimal

service threshold is adopted and E [U ]l̃opt
the mean system content in the cor-

related system when the optimal threshold of the corresponding independent
system is adopted. In Fig. 6.6, the relative errors are depicted for the example
from Fig. 6.5. We observe that even when the optimal service threshold is
different, the relative error is rather small. In view of this, the existing results
of the corresponding independent system can be relied upon to determine a
near-optimal service threshold. Adopting this near-optimal threshold has only
a marginal impact on the mean system content.

Remark 31. We have considered just one set of examples in this section. We
have also examined additional examples (which we do not add to this disserta-
tion), and the same conclusions could be drawn.

Remark 32. In the example, we have noticed that positive correlation has
a larger effect on the behaviour of the system than negative correlation. We
can explain this intuitively. Therefore, let us call state 1 the “inactive” (no
arrivals) and state 2 the “active” state. When being in the inactive state, the
temporary load (the load during several consecutive slots of the same state)
becomes very small. This effect causes a temporarily smaller system content.
When being in the active state, the temporary load becomes very large, which
causes a temporarily larger system content. Due to the queueing effect (i.e.
the system content increases exponentially for large load), the effect of being in
active state is larger than the effect of being in inactive state. Of course, the
longer active periods last (i.e. the larger the correlation), the more this effect
plays a role.
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E [Tn] = 8 + 0.2n



6.6. NUMERICAL EXAMPLES 163

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

o
p
ti
m

a
l 
l

ρ

γ = -0.9
γ = -0.5

γ = 0
γ = 0.5
γ = 0.9

Figure 6.5: Optimal service threshold l versus the load ρ for several values of
the correlation coefficient γ; c = 10, β = 0.05, Tn geometrically distributed,
E [Tn] = 8 + 0.2n

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
la

ti
v
e
 e

rr
o
r

ρ

γ = -0.9
γ = -0.5
γ = 0.5
γ = 0.9

Figure 6.6: Relative error versus the load ρ for several values of the correlation
coefficient γ; c = 10, β = 0.05, Tn geometrically distributed, E [Tn] = 8 + 0.2n



164 CHAPTER 6. CORRELATED ARRIVALS



Chapter 7

Conclusions

Throughout this dissertation, we have investigated various aspects of a versatile
discrete-time queueing model with batch service. The model includes batch
arrivals, meaning that several customers can arrive during a time slot, and a
service threshold for the minimum number of customers that have to be present
before a new service can be initiated in combination with a timer mechanism
to avoid that this threshold strategy leads to excessive delays. In addition,
the service time of a batch has a general distribution and is dependent on the
number of customers within it. We now summarize the main contributions for
every chapter separately.

Chapter 2

In chapter 2, we have deduced a fundamental formula from which a spectrum
of known as well as novel quantities related to the buffer content have been ex-
tracted. We have thereby adopted an approach based on probability generating
functions (PGFs) and supplementary variables. We have also demonstrated
that our results can be applied to select an efficient service threshold and timer
in real-life batch-service systems. We have also demonstrated this in detail for
the group-screening application.

Chapter 3

Obtaining performance measures for batch-service queueing systems often re-
quires additional numerical work, namely the calculation of c zeroes (c is the
server capacity) and the solution of a set of c equations. These numerical cal-
culations can become unfeasible when the server capacity c becomes large. For
this reason and also for interpretational motives, we have developed, in chapter
3, light- and heavy-traffic approximations for the quantities from chapter 2. In
order to deduce light-traffic approximations, we have expanded all quantities
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as a Taylor series about λ = 0 (λ is the mean arrival rate), whereas we have
taken the limit λ → c/E [Tc] (thus letting the load going to one) for the heavy-
traffic approximations, where E [Tc] represents the mean service time of a batch
containing c customers. The resulting light-traffic approximations reduce the
amount of numerical work considerably, in the sense that no zeroes have to be
calculated anymore, and the heavy-traffic approximations require no numerical
work at all.
To the best of our knowledge, light- and heavy-traffic approximations have not
been studied before for batch-service queueing models.

Chapter 4

Whereas the buffer content has been covered in chapters 2 and 3, we have
turned our focus in chapters 4 and 5 to the customer delay. One of the main
contributions of this dissertation is that we combine the study of the customer
delay in a batch-service queueing model with batch arrivals, while in existing
literature the customer delay is only investigated in the case where customers
arrive individually. In chapter 4, we have deduced moments, and in chapter 5,
we have developed tail probabilities of the customer delay. In order to calculate
moments, we have adopted an approach based on PGFs and supplementary
variables, and we have subdivided the delay of a random customer as the sum
of two components: the time to serve previously arrived batches (the queueing
delay) and the time, starting at the end of the queueing delay, required to fill
the batch with enough customers or until the service timer expires (postponing
delay).

Chapter 5

The approach from chapter 4 fits well for obtaining moments, but not for
calculating tail probabilities of the customer delay. We have therefore adopted
a different method in chapter 5. We have redefined the postponing delay, so
that the customer delay becomes the maximum of both components instead
of the sum. This approach has eventually led us to approximations for the
tail probabilities. These formulas can for instance be applied to evaluate the
performance of real-time applications, where the quality of service (QoS) is
typically expressed in terms of the order of magnitude of the probability that
a real-time packet experiences an excessive delay.

Chapter 6

In nearly all batch-service queueing systems covered in literature, customer
arrivals occur independently. In many real-life circumstances however, this
is unrealistic. For instance, in modern telecommunication systems, a traffic
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source which is inactive in a given time slot is very likely to remain inactive
for a long time. We have therefore studied in chapter 6 the buffer content in
a batch-service model that includes dependent arrivals. We have modeled the
customer arrivals by a discrete-batch Markovian arrival process (D-BMAP).
Our work differs in terms of the model under investigation as well as the calcu-
lated quantities from the few papers that also consider this topic. In addition,
we have evaluated more thoroughly the influence of correlation on the behaviour
of batch-service queueing systems and more specifically, we have investigated
the influence on the optimal service threshold. We have shown that correla-
tion merely has a small impact on the service threshold that minimizes the
buffer content, and consequently, that the existing results of the correspond-
ing independent system can be applied to determine a near-optimal service
threshold, which is an important finding for practitioners. On the other hand,
we have demonstrated that for other purposes, such as performance evaluation
and buffer management, correlation in the arrival process cannot be ignored, a
conclusion that runs along the same lines as in queueing models without batch
service.

Summarized, we believe that we have deduced a large spectrum of performance
measures for a rather versatile discrete-time queueing model with batch service.
These performance measures are useful tools to evaluate real-life batch-service
queueing systems, such as group-screening facilities, various production and
transport processes, telecommunication systems where packets are transmitted
in bursts, et cetera.

Finally, we would like to close by mentioning some interesting challenges, which
naturally ensue from our dissertation:

• In chapter 6, we have included a correlated arrival process in our model
and we have studied the buffer content. The customer delay in this case
has not been covered up to now and deserves further investigation.

• Analogously, in chapter 3, light-traffic approximations have been estab-
lished for the buffer content. Obtaining such approximations for the
customer delay would be an interesting research topic.

• Also, deducing approximations in case of intermediate values of the load
is a tempting direction for future research. A possible approach would be
to interpolate based on the obtained light- and heavy-traffic formulas.

• The light-traffic formulas from chapter 3 eliminate the calculation of ze-
roes of zc − Tc(A(z)), but it is still required to solve sets of equations.
In the future, we intend to elaborate on the obtained formulas in order
to obtain closed-form formulas. First research in that direction suggests
that the set of equations for d1(n), 1 ≤ n ≤ c−1 in (3.24) can, with some
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manipulations, be transformed into a set of equations whose coefficient
matrix is a Vandermonde matrix. As a result, these equations can then
be solved explicitly. Of course, this is only the case for β 6= 0. For β = 0,
we are investigating whether a similar approach would work.

• In chapters 4 and 5, we have studied the time that a customer spends in
the queue. In a classical queueing system, the time a customer spends
in the queue is independent of its service time, so that the PGF of the
time the customer spends in the entire system (queue and server) is the
product of both individual PGFs. As in our model the service time of a
tagged customer depends on the number of customers served in the batch
containing the tagged customer, the service time is dependent on the time
the tagged customer spends in the queue. This issue leads to considerable
complications. For instance, we do not only have to calculate the time
until the server is allowed to initiate a new service, but we also have to
compute the number of customers at that moment. As this asks for a
distinct approach, we leave this issue for future research.

• Although, in theory, the number of background states of the underlying
Markov chain of the D-BMAP considered in chapter 6, can be large,
spectral decomposition becomes unfeasible in that case. Therefore, a
refinement of the results that have been reported would be welcomed.

• The probability β to start a new service when less customers than the
service threshold are present is independent of the number of available
customers. Inclusion of a dependency could be interesting from practical
point of view and would especially be challenging when studying the
customer delay. The reason is that relation (4.2) does not hold anymore,
exactly due to the dependency of the number of present customers on the
timer parameter.

• Throughout this dissertation, we have considered various numerical ex-
amples, wherein we have studied the influence of the system parameters
on the overall performance. We have always depicted various perfor-
mance measures as a function of one parameter, while keeping the other
parameters constant. However, when an optimal service strategy has to
be determined in practice, one has to select the best “combination” of
decision parameters l (service threshold) and β (timer parameter). In
order to find the optimal combination, we can combine techniques from
optimization theory with the performance measures deduced throughout
this dissertation. This topic might be a direction for future research.

• We intend to investigate queueing systems with multiple batch servers.
As multi-service queueing models with generally distributed service times
are extremely hard to analyze, we will consider simple service-time distri-
butions (deterministic, geometric) as the combination with batch service
is even more difficult.



Appendix A

Analyticity at λ = 0

In this appendix, we show that, if A(λ, z) is analytic in

D = {(λ, z) : |λ| < δ, |z| < 1 + γ} , δ > 0, γ > 0 ,

then (i) the zeroes zi(λ), i = 0, . . . , c − 1 of zc − Tc(A(λ, z)) are analytic at
λ = 0, (ii) the unknown probabilities d(λ, n) are analytic at λ = 0 and (iii) all
quantities related to the buffer content (for instance U(λ, z)) are analytic at
λ = 0 for |z| ≤ 1.

From A(λ, z) being analytic in D, it follows that f(λ, z) , zc − Tc(A(λ, z))
is analytic in D (mark that we have previously assumed that the radius of
convergence of Tc(z) is larger than 1). Hence, f(λ, z) is analytic in a neigh-
bourhood of the points (0, εi), i = 0, . . . , c − 1 (a). Further, f(0, εi) = 0 and

∂

∂z
f(λ, z)

∣

∣

∣

∣

λ=0,z=εi

=
c

εi
6= 0 (b) .

From (a) and (b) and the implicit function theorem, it follows that there exists
a unique function zi(λ), that satisfies

f(λ, zi(λ)) = 0 ,

zi(0) = εi ,

and that is analytic at λ = 0 for i = 0, . . . , c − 1. Next, it is possible to prove
that (i) implies (ii) by virtue of the implicit function theorem (see e.g. [69]).
Finally, from the calculus of analytic functions, it follows that (iii) also holds.
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