116 research outputs found

    On the Robustness of Democratic Electoral Processes to Computational Propaganda

    Full text link
    There is growing evidence of systematic attempts to influence democratic elections by controlled and digitally organized dissemination of fake news. This raises the question of the intrinsic robustness of democratic electoral processes against external influences. Particularly interesting is to identify the social characteristics of a voter population that renders it more resilient against opinion manipulation. Equally important is to determine which of the existing democratic electoral systems is more robust to external influences. Here we construct a mathematical electoral model to address these two questions. We find that electorates are more resilient against opinion manipulations (i) if they are less polarized and (ii) when voters interact more with each other, regardless of their opinion differences, and that (iii) electoral systems based on proportional representation are generally the most robust. Our model qualitatively captures the volatility of the US House of Representatives elections. We take this as a solid validation of our approach.Comment: Main text: 26 pages, 6 figures. Supplementary information: 14 pages, 9 figure

    Some Aspects of Mathematical Programming in Statictics

    Get PDF
    The Almighty has created the Universe and things present in it with an order and proper positions and the creation looks unique and perfect. No one can even think much better or imagine to optimize these further. People inspired by these optimum results started thinking about usage of optimization techniques for solving their real life problems. The concept of constraint optimization came into being after World War II and its use spread vastly in all fields. However, in this process, still lots of efforts are needed to uncover the mysteries and unanswered questions, one of the questions always remains live that whether there can be a single method that can solve all types of nonlinear programming problems like Simplex Method solves linear programming problems. In the present thesis, we have tried to proceed in this direction and provided some contributions towards this area. The present thesis has been divided into five chapters, chapter wise summary is given below: Chapter-1 is an introductory one and provides genesis of the Mathematical Programming Problems and its use in Statistics. Relationship of mathematical programming with other statistical measures are also reviewed. Definitions and other pre-requisites are also presented in this chapter. The relevant literature on the topic has been surveyed. Chapter-2 deals with the two dimensional non-linear programming problems. We develop a method that can solve approximately all type of two dimensional nonlinear programming problems of certain class. The method has been illustrated with numerical examples. Chapter-3 is devoted to the study of n-dimensional non-linear programming problems of certain types. We provide a new method based on regression analysis and statistical distributions. The method can solve n-dimensional non-linear programming problems making use of regression analysis/co-efficient of determination. In chapter-4 we introduce a filtration method of mathematical programming. This method divides the constraints into active and non active and try to eliminate the less important constraints (non-active constraints) and solve the problem with only active constraints. This helps to find solution in less iterations and less in time while retaining optimality of the solution. The final chapter-5 deals with an interesting relationship between linear and nonlinear programming problems. Using this relationship, we can solve linear programming problems with the help of non-linear programming problems. This relationship also helps to find a better alternate solutions to the linear programming problems. In the end, a complete bibliography is provided

    On interval branch-and-bound for additively separable functions with common variables

    Get PDF
    Interval branch-and-bound (B&B) algorithms are powerful methods which look for guaranteed solutions of global optimisation problems. The computational effort needed to reach this aim, increases exponentially with the problem dimension in the worst case. For separable functions this effort is less, as lower dimensional sub-problems can be solved individually. The question is how to design specific methods for cases where the objective function can be considered separable, but common variables occur in the sub-problems. This paper is devoted to establish the bases of B&B algorithms for separable problems. New B&B rules are presented based on derived properties to compute bounds. A numerical illustration is elaborated with a test-bed of problems mostly generated by combining traditional box constrained global optimisation problems, to show the potential of using the derived theoretical basis

    Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles

    Get PDF
    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Stochastic Control for Cooperative Cyber-Physical Networking

    Get PDF
    Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb von Produktions- und Fertigungslinien, was zu einer stärker werdenden Verzahnung der physikalischen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen führt. Cyber-physische Systeme (CPS) spielen hierbei eine Schlüsselrolle, indem sie sowohl die physikalischen als auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen Umgebungszustände, Messwerte und Steuerbefehle über ein Kommunikationsnetzwerk ausgetauscht werden. Die Verfügbarkeit von kostengünstigen Geräten und die Möglichkeit bereits existierende Infrastruktur zu nutzen sorgen dafür, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der Nutzung von Standard-Netzen sind jedoch auftretende Dienstgüte-Schwankungen, welche aus der gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und für die Endsysteme in Form von sich ändernden Latenzen und Daten- und Paketverlustraten sichtbar werden. Regelkreise sind besonders anfällig für Dienstgüte-Schwankungen, da sie typischerweise isochrone Datenübertragungen mit festen Latenzen benötigen, um die gewünschte Regelgüte zu garantieren. Für die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man daher klassischerweise auf Lösungen, die diese Anforderungen erfüllen. Diese Lösungen sind jedoch relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen benötigen oder über komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren. Die vorliegende Arbeit präsentiert Ergebnisse des interdisziplinären Forschungsprojekts CoCPN:Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um i) die Elastizität von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage zu versetzen, mit den auftretenden Dienstgüte-Schwankungen umzugehen, und ii) das Netzwerk über die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine verteilte Architektur für CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfügbare Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen benötigt CoCPN dafür keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten über den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den typischen Zusammenhang zwischen erreichbarer Regelgüte und Senderate ausnutzt: die erreichbare Regelgüte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden Regelgüte kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden. In dieser Arbeit beschäftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die auf Basis der über den CoCPN-Translator ausgetauschten Meta-Daten die notwendige Elastizität liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-Dienstgüte zu reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur Verfügung gestellt wird, dass die Auswirkungen von Verzögerungen und Paketverlusten auf die Regelgüte erfasst. Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt, dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus, dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte Erweiterung ist in der Lage, Änderungen der Netzwerk-Dienstgüte abzubilden und ist nicht auf eine bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschränkt. Zusätzlich verzichtet unsere Erweiterung auf die in der Literatur übliche Annahme, dass Quittungen für empfangene Datenpakete stets fehlerfrei und mit vernachlässigbarer Latenz übertragen werden. Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften daher eine realistischere Berücksichtigung der Netzwerk-Einflüsse auf die Regelgüte. Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die Regelgüte prädiziert werden. Auf Basis dieser Prädiktion können Stellgrößen dann mit Methoden der stochastischen modellprädiktiven Regelung (stochastic model predictive control) berechnet werden. Unsere realistischere Betrachtung der Netzwerk-Einflüsse auf die Regelgüte führt hierbei zu einer gegenseitigen Abhängigkeit von Regelung und Schätzung. Zur Berechnung der Stellgrößen muss der Regler den Zustand der Strecke aus den empfangenen Messungen schätzen. Die Qualität dieser Schätzungen hängt von den berechneten Stellgrößen und deren Auswirkung auf die Regelstrecke ab. Umgekehrt beeinflusst die Qualität der Schätzungen aber maßgeblich die Qualität der Stellgrößen: Ist der Schätzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige Abhängigkeit macht die Berechnung von optimalen Stellgrößen unmöglich und bedingt daher die Fokussierung auf das Erforschen von approximativen Ansätzen. Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren für die stochastische modellprädiktive Regelung über Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System oft sogenannte multiple model-Algorithmen zur Zustandsschätzung verwendet werden, welche den geschätzten Zustand in Form einer Gaußmischdichte repräsentieren. Auf Basis dieses Zusammenhangs und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer Komplexität zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser unterlagerten Regelgesetze lässt sich dabei als lineare Funktion genau einer der Komponenten der Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensätzliche Eigenschaften. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion, welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Systems, berechnen. Diese Trajektorie wird hierbei durch die Prädiktion einer initialen Zustandsschätzung über den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine signifikant höhere Regelgüte erzielen können als verwandte Ansätze aus der Literatur. Der dritte Teil der vorliegenden Arbeit beschäftigt sich erneut mit dem hybriden System aus dem ersten Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten probabilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen bilden jedoch stets nur Ausschnitte ab und können nie exakt den "Zustand” des Netzwerks repräsentieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den Netzwerk-Modellen auf die zu erwartende Regelgüte. Weiterhin gehen wir der Frage nach der Existenz von Reglern, die robust gegenüber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen wir zunächst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-Unsicherheit im hybriden System aus dem ersten Teil manifestieren. Für solche polytopischen hybride System leiten wir dann eine sowohl notwendige als auch hinreichende Stabilitätsbedingung her, was einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedingung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was die Anwendbarkeit der Stabilitätsbedingung stark limitiert. Daher präsentieren wir eine hinreichende Stabilitätsbedingung, die in polynomieller Zeit überprüft werden kann, da sie auf der Erfüllbarkeit von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers, der die Stabilität des betrachteten polytopischen hybriden Systems garantiert, von der Erfüllbarkeit einer ähnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern erlaubt. Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen Anwendungen geteilt werden müssen. Wir demonstrieren, dass insbesondere das Zusammenspiel unserer modellprädiktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlässigen Betrieb der Regelkreise ohne unerwünschte Einbußen der Regelgüte auch dann ermöglicht, wenn sich die Kommunikationsbedingungen plötzlich und unvorhergesehen ändern. Insgesamt stellt unsere Arbeit somit einen wichtigen Baustein auf dem Weg zu einem flächendeckenden Einsatz von Standard-Netzen als flexible und adaptive Basis für industrielle CPS dar

    Optimal Sensing and Actuation Policies for Networked Mobile Agents in a Class of Cyber-Physical Systems

    Get PDF
    The main purpose of this dissertation is to define and solve problems on optimal sensing and actuating policies in Cyber-Physical Systems (CPSs). Cyber-physical system is a term that was introduced recently to define the increasing complexity of the interactions between computational hardwares and their physical environments. The problem of designing the ``cyber\u27\u27 part may not be trivial but can be solved from scratch. However, the ``physical\u27\u27 part, usually a natural physical process, is inherently given and has to be identified in order to propose an appropriate ``cyber\u27\u27 part to be adopted. Therefore, one of the first steps in designing a CPS is to identify its ``physical\u27\u27 part. The ``physical\u27\u27 part can belong to a large array of system classes. Among the possible candidates, we focus our interest on Distributed Parameter Systems (DPSs) whose dynamics can be modeled by Partial Differential Equations (PDE). DPSs are by nature very challenging to observe as their states are distributed throughout the spatial domain of interest. Therefore, systematic approaches have to be developed to obtain the optimal locations of sensors to optimally estimate the parameters of a given DPS. In this dissertation, we first review the recent methods from the literature as the foundations of our contributions. Then, we define new research problems within the above optimal parameter estimation framework. Two different yet important problems considered are the optimal mobile sensor trajectory planning and the accuracy effects and allocation of heterogeneous sensors. Under the remote sensing setting, we are able to determine the optimal trajectories of remote sensors. The problem of optimal robust estimation is then introduced and solved using an interlaced ``online\u27\u27 or ``real-time\u27\u27 scheme. Actuation policies are introduced into the framework to improve the estimation by providing the best stimulation of the DPS for optimal parameter identification, where trajectories of both sensors and actuators are optimized simultaneously. We also introduce a new methodology to solving fractional-order optimal control problems, with which we demonstrate that we can solve optimal sensing policy problems when sensors move in complex media, displaying fractional dynamics. We consider and solve the problem of optimal scale reconciliation using satellite imagery, ground measurements, and Unmanned Aerial Vehicles (UAV)-based personal remote sensing. Finally, to provide the reader with all the necessary background, the appendices contain important concepts and theorems from the literature as well as the Matlab codes used to numerically solve some of the described problems

    Control of quantum phenomena: Past, present, and future

    Full text link
    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. The current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. The two most critical theoretical insights were (1) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (2) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control, which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in adaptive feedback control experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. Adaptive feedback control of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations, and real-time quantum feedback control. The paper concludes with a prospective of open research directions that are likely to attract significant attention in the future.Comment: Review article, final version (significantly updated), 76 pages, accepted for publication in New J. Phys. (Focus issue: Quantum control

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung

    The Discontinuous Galerkin Method for Maxwell\u27s Equations: Application to Bodies of Revolution and Kerr-Nonlinearities

    Get PDF
    Die unstetige Galerkinmethode (UGM) wird auf die rotationssymmetrischen und Kerr- Maxwell-Gleichungen angewandt. Essentiell ist hierbei der numerische Fluss. Für die rotationssymmetrischen Maxwell-Gleichungen wird ein exakter Fluss vorgestellt und unter Ausnutzung der Symmetrie der Aufwand reduziert. Für die Kerr-Maxwell-Gleichungen führt der exakte numerische Fluss auf eine ineffiziente UGM, weswegen approximative Flüsse miteinander verglichen werden. Wir erhalten optimale Konvergenz
    corecore