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Abstract

Optimal Sensing and Actuation Policies for Networked Mobile Agents in a Class of

Cyber-Physical Systems

by

Christophe Tricaud, Doctor of Philosophy

Utah State University, 2010

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

The main purpose of this dissertation is to define and solve problems on optimal sensing

and actuating policies in Cyber-Physical Systems (CPSs). Cyber-physical system is a term

that was introduced recently to define the increasing complexity of the interactions between

computational hardwares and their physical environments. The problem of designing the

“cyber” part may not be trivial but can be solved from scratch. However, the “physical”

part, usually a natural physical process, is inherently given and has to be identified in

order to propose an appropriate “cyber” part to be adopted. Therefore, one of the first

steps in designing a CPS is to identify its “physical” part. The “physical” part can belong

to a large array of system classes. Among the possible candidates, we focus our interest

on Distributed Parameter Systems (DPSs) whose dynamics can be modeled by Partial

Differential Equations (PDE). DPSs are by nature very challenging to observe as their

states are distributed throughout the spatial domain of interest. Therefore, systematic

approaches have to be developed to obtain the optimal locations of sensors to optimally

estimate the parameters of a given DPS.

In this dissertation, we first review the recent methods from the literature as the

foundations of our contributions. Then, we define new research problems within the above
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optimal parameter estimation framework. Two different yet important problems considered

are the optimal mobile sensor trajectory planning and the accuracy effects and allocation

of heterogeneous sensors. Under the remote sensing setting, we are able to determine

the optimal trajectories of remote sensors. The problem of optimal robust estimation is

then introduced and solved using an interlaced “online” or “real-time” scheme. Actuation

policies are introduced into the framework to improve the estimation by providing the best

stimulation of the DPS for optimal parameter identification, where trajectories of both

sensors and actuators are optimized simultaneously. We also introduce a new methodology

to solving fractional-order optimal control problems, with which we demonstrate that we

can solve optimal sensing policy problems when sensors move in complex media, displaying

fractional dynamics. We consider and solve the problem of optimal scale reconciliation

using satellite imagery, ground measurements, and Unmanned Aerial Vehicles (UAV)–based

personal remote sensing.

Finally, to provide the reader with all the necessary background, the appendices contain

important concepts and theorems from the literature as well as the Matlab codes used to

numerically solve some of the described problems.

(229 pages)
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Chapter 1

Introduction

1.1 Background on Cyber-Physical Systems and Distributed Parameter Sys-

tems

1.1.1 Cyber-Physical Systems

What Is a Cyber-Physical System?

The term cyber-physical systems (CPSs) is one of the new buzzwords in the engineering

community. It originates from the need to have a denomination for a new category of

embedded systems where the emphasis was made on the increased interactions between the

physical part and the computational part of the system [1]. It was loosely defined by the

National Science Foundation (NSF) as “the tight conjoining of and coordination between

computational and physical resources” [2]. Since its emergence, the term CPS has been

given many definitions and most of these definitions depend on the field of research of the

people giving them. For example CPSs are defined in the following way [3]: “Cyber-Physical

Systems are a next-generation network-connected collection of loosely coupled distributed

cyber systems and physical systems monitored/controlled by user defined semantic laws.”

This definition reflects the point of view of the computer engineering community. The

emphasis is made on the software and hardware and not equally on the physical part in

itself. The system considered is mostly “cyber” and does not take into full account the “tight

conjoining” mentioned by the NSF. This vision of a CPS is illustrated in fig. 1.1 [3]. Similar

definitions can be found in the literature [4, 5]. The definition of CPS for the computer

science community has a larger scale than the original definition from NSF [6].

“The Internet has made the world flat by transcending space. We can now interact with
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Fig. 1.1: A prototype architecture of a CPS.
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people and get useful information around the globe in a fraction of a second. The Internet

has transformed how we conduct research, studies, business, services, and entertainment.

However, there is still a serious gap between the cyber world, where information is exchanged

and transformed, and the physical world in which we live. The emerging cyber-physical

systems shall enable a modern grand vision for new societal-level services that transcend

space and time at scales never possible before.”

CPS is defined by the control systems community in the following way [7]: “Computa-

tional thinking and integration of computation around the physical dynamic systems form

CPS where sensing, decision, actuation, computation, networking, and physical processes

are mixed”. This vision of a CPS is illustrated in fig. 1.2.

Evidence of the misunderstanding of the term CPS is the emergence of terms such

as “networked” CPS [8], or “distributed” CPS [9], or “wireless” CPS [10], or “complex”

CPS [11].

CPS is foreseen to become a highly researched area in the years to come with its own

conferences [12,13], books [14], and journals [15].

CPS Applications

The “Applications of CPS arguably have the potential to dwarf the 20th century IT

revolution” [16]. CPS applications can be found in:

• tele-physical services [17,18],

• medical devices and systems [19],

• aerospace [20],

• automotive and air traffic control [21],

• advanced automotive systems [22–24],

• infrastructure management [25,26],

• environmental monitoring [27,28],
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Fig. 1.2: Measurement and control architecture of a CPS.

• water usage control,

• cooperative robotics,

• smart buildings,

• etc.

Because of the vastness of applications for embedded systems, the area of applications

for CPS is even larger. Here, we describe some of those envisioned by CPS pioneers.

Automotive Transportation: Communication between vehicles will make possible the co-

operation of nearby vehicles. Many functions of the vehicles will be able to be executed in

a distributed manner enhancing its performance, emission reduction, and safety [29]. For

example, the braking system will not only ensure the car stops but will also avoid incoming

obstacles. If a collision is unavoidable, the system will choose the best trajectory to mini-

mize the impact on the passengers. By having information about the neighboring vehicles,

it will be possible to have a consensus while changing lanes, or by maintaining platooning

with small spaces between vehicles, reduced traffic congestion, and improved commute time.
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We can envision increased communication with the road itself and traffic signs to tell cars

about the location of traffic signs and vice-versa, tell traffic signs a vehicle with priority is

incoming.

Buildings: CPS-enhanced buildings are usually called “smart buildings.” Many building

functions (such as heating, ventilating, and air conditioning (HVAC) and lighting) could

significantly improve energy efficiency and lower the overall energy consumption, and con-

sequently, our greenhouse gas emissions. A network of sensors (temperature, humidity,

presence detectors) and actuators (HVAC, fans, water-heater) embedded into the building

could make sense of all the information and operate the building in an optimal way (with

respect to energy consumption and uniformity of comfort for example).

Communication Systems: A lot of people see cognitive radios as the CPS of communica-

tions [1]. “Cognitive radio signifies a radio that employs model-based reasoning to achieve

a specified level of competence in radio related domains” [30], but most of the time, a

cognitive radio has to fulfil three main functions. It should sense the spectral environment

over a wide bandwidth, detect the presence/absence of primary users, adapt the parameters

of their communication scheme only if the communication does not interfere with primary

users. Using a CPS infrastructure between radios and cooperative control techniques would

allow cognitive radios to use distributed consensus about available bandwidth, improving

their overall performance.

Medical Systems: There is a growing need for communication between medical devices

in modern healthcare systems [31]. In recent years, the quantity of devices for health

monitoring and diagnostic has drastically increased, and because they lack communication

capabilities healthcare employees have to gather data and make sense of it. One of the

main specification in medical systems is the need for failsafe systems as the malfunction

of one system could result in harmful consequences to patients. The main justification for

the need for improvement can be seen in safety statistical reports [32] in which numbers



6

say that, of the 284,798 deaths that occurred among patients who developed one or more

patient safety incidents between 2003 - 2005, 247,662 could have been avoided (89%).

Water Distribution Systems: When assuming the enhancement of current infrastructure

of water distribution systems with networked flow-meter, water quality sensors and gates,

one can foresee improvements in water conservation and efficient power management [33].

Sensor data can be assimilated into a global hydraulic model which can predict the hydraulic

state of the system or optimize pumping operations. Potential leaks will also be easier to

detect and locate, allowing quick repair of the infrastructure. Chemical attacks to the

network could also be detected early and allow a quick response of the authorities.

Research Challenges

There are two main directions for research in CPS, the first one consists of dealing

with the increased complexity of embedded systems [34], and the other is to build CPS

from scratch [9]. Because of the relatively young age of CPS, many research challenges have

been identified, each of them related to one of the engineering fields CPS belong to.

Security: The emergence and growth of CPS will lead CPS to be used in critical infras-

tructure and industry. It is therefore necessary to develop hardware and software solutions

to protect them from attacks. Among the potential attackers, several profiles have been

identified [35]. Cybercriminals attack blindly any networked system as long as they can en-

ter its operating system. Even though the attacks mean no harm, they can leave the system

infected with malware and may modify its functionalities. Disgruntled employees constitute

the largest threat in CPS, the reason being their authorized access to the system’s network.

Terrorists, activists, and organized criminal groups can be identified as a threat to CPS as

attacks on CPS are cheaper, less risky, and not constrained by distance. A CPS usually

communicates on a simple network: there is usually a single server, the number of nodes is

known, the communications are poorly encrypted, and the number of protocols is limited.

The amount of work required to prepare an intrusion on such a network may be small but
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so would be the implementation of security measures. The identified research directions for

security in CPS are: low-cost security, intrusion detection, redundancy, and recovery. Many

research directions in CPS security can be found in the literature [35–37].

Communication and Data Fusion: In general, control loops are designed so that all the

measurements from the sensors within the network (usually vast in space) are transmitted

to the actuators and the actuator node does the computation of the control law. Such a

method is very cumbersome for the network and usually results in long communications

from sensor node to sensor node up to the actuator. However, not all the sensor data is

necessary for the control purpose and most of the sensor data could be fused to reduce the

quantity of information flowing through the network. By performing small computation at

each node, only the valuable part of the measurement data should be transmitted to the

actuator node [38].

Software: The software of CPS will be very challenging to design. There are many reasons

for these challenges and here is a list of the most important ones [39,40].

• CPS will be constituted of a large variety of hardware platforms, and hence they

will require the implementation of distributed and embedded applications. These

applications themselves will have to be diverse in order to work with all the platforms.

• There will be a need for a unified component model. CPSs are globally virtual and

locally physical. It will be required for the component to reflect this characteristic

and provides a unified view from local components to global systems.

• The gaps in semantics of programming languages will have to be reduced or closed.

In current embedded systems, semantics of physical, hardware, and software compo-

nents are significantly different. To combine all these components in a system setting,

researchers will have to bridge those semantic gaps and come up with a unified pro-

gramming language.
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Scalability: Scalability will also be a big research challenge in CPS. Software and hardware

should be developed in such manner that the design of a CPS with 1000 nodes should be

as simple as one with 10 nodes.

Resilience: Because of the potentially large scale of CPS, their maintenance could be costly

(especially for nature monitoring CPS). Resilient CPS would be of interest to reduce those

costs but also to avoid absence of data in critical infrastructures. Three main research

directions for resilience in CPS have been identified [41].

• Network self-organization to preserve/increase resilience. If the network is designed

with self-healing and reconfiguration methodologies, its resilience would be increased.

The information could be routed in an organic manner to naturally avoid problems.

• Risk mitigation via eNetworks. The network could be given the capability of quickly

evaluating the system vulnerability with respect to new threats and react accordingly

to remedy the vulnerability.

• Study of the impact of interdependencies. By identifying the critical parts of the

system (the ones whose failure leads to the system’s failure), a strategy reorganizing

or shutting down major hubs could improve the robustness of the overall system.

Quality of Service (QoS): Since the array of applications of CPS is extremely large, it is

not hard to envision that CPS will be omnipresent in our daily lives. Therefore, it will be

necessary for them to provide QoS support because they will have to fulfil requirements from

various sources (specifications, users, etc.) [42]. In CPS, QoS can be achieved in several ways,

communication protocols need to be aware to the QoS requirements and need to be designed

with constraints on the platform heterogeneity to optimize the flow of information. The

CPS will have to manage its resources (computation time, memory, bandwidth, energy) in

a dynamic way and will probably need a resource managing application taking into account

QoS specifications.
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Modeling: Most of the research directions in CPS have been introduced by embedded

systems engineering and computer science scholars. Therefore, most of the literature eludes

the problems of modeling for CPS. We believe that most of the literature on CPS in the

near future will be limited to single-input single-output (SISO) and multiple-input multiple-

output (MIMO) finite-dimensional physical systems. In this dissertation, we believe that the

“physical” part of a CPS should be as complex as its “cyber” part. Therefore, we concentrate

our efforts in modeling the physical part using a PDE which is infinite dimensional in nature.

Before creating a CPS, a mandatory step will be to understand its “physical” part, and

therefore develop a model for its dynamics. Next, we describe the system structure we

consider in this dissertation.

1.1.2 Distributed Parameter Systems

Definition of a Distributed Parameter System

Distributed parameter systems (DPSs) are dynamical systems in which the states de-

pend on not only time but also space or spatial variables which makes the system infinite

dimensional. In the literature, DPSs are also called spatio-temporal dynamic systems. They

are usually used in opposition to lumped-parameter systems. The usual model of a DPS

involves partial differential equations (PDEs). In many cases the “physical” part of a CPS

cannot be modeled with a lumped parameter approach and a DPS would be the best fit.

There are several, well-identified research directions [43] in the study of DPS including

optimal control, measurement, model reduction, numerical methods.

Mathematical definitions as well as general results about DPS are given in Chapter 2.

Applications of Distributed Parameter System

Numerous fields of engineering make use of DPS for modeling. The following is a short

collection of them.

• Fluid dynamics [44]
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• Signal transmission lines dynamics [45]

• Soil dynamics [46]

• Electromagnetic dynamics [47]

• Heat dynamics [48]

A more complete review of DPS applications can be found in the literature [45]. With the

technology advances, many new aspects in DPS research involving CPS contexts are iden-

tified and addressed in this dissertation while these aspects were not discussed in previous

DPS research.

1.2 Motivations for Dissertation Research and Application Scenarios

When dealing with lumped parameter systems (SISO or MIMO), the decision on where

to implement the sensors and the actuators is a rather straightforward process that is sel-

domly discussed. However, if the system is of distributed nature, their properties, location,

and communication topologies have a big impact on the way the system is operated. For

example, a mobile sensor will be able to ambulate in the domain of interest and the de-

sign of its optimal sensing trajectory becomes a research problem. Similarly, the global

performance of a control strategy will be improved if the sensors can communicate with

the actuators. Now, we will present motivations for this dissertation research and list some

motivating application scenarios in this section.

1.2.1 Optimal Measurements in Distributed Parameter System

States in DPS vary both spatially and temporally, but it is generally impossible to

measure them over the whole spatial domain. Consequently, we are faced with the design

problem on how to locate a limited number of measurement sensors so as to obtain as much

information as possible about the process at hand. The location for the available sensors

is not necessarily dictated by physical considerations or by intuition and, therefore, some
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systematic approaches must be developed in order to reduce the cost of instrumentation

and to increase the efficiency of measurement.

There are several lines of research linked with optimal location of sensors in DPS:

observability, state estimation, parameter estimation, detection of unknown sources, and

model discrimination; and each of them is linked to some specific application scenarios.

Observability

In DPS, the notion of observability is linked to the possibility to reconstruct the state of

the system in a finite duration using sensor measurements. It is obvious that the location and

coverage of the sensors are going to affect the observability of a given DPS. Therefore, using

the observability as a performance criteria, it is possible to optimize the location/trajectories

of the sensors to maximize the observability of the system [49].

State Estimation

Similar to the optimal measurement for best observability, the problem of optimal

sensor location for state estimation consists of finding the best location so as to reconstruct

the state of the system with minimum estimation error variance. However, it may not be

necessary to seek the reconstruction of the state over the whole domain but, instead, to

look at the reconstruction on the boundary [50].

Parameter Estimation

The parameter estimation problem is usually linked with a forecast problem. When

faced with a DPS, the general form of its dynamics usually may be known (diffusion, ad-

vection, hyperbolic), but the parameters may not be. It is therefore necessary to look into

systematic methodologies to determine the optimal locations/trajectories of stationary/mo-

bile sensors for parameter estimation.

A relevant example is the design of optimal sensor location for air quality monitor-

ing. The purpose of sensor networks in air quality monitoring is to measure pollutant

concentration, but more importantly and practically to produce information regarding the
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expected finite levels of those pollutants. Such a forecast can only be obtained by using

a fog diffusion model. In general, fog can be modeled by an advection-diffusion partial

differential equation. For the forecast to be accurate, a calibration is required by estimating

the spatially-varying turbulent diffusivity tensor of the model based on the data collection

obtained by sensors. Because of limited resources, the problem arises on where to install

those sensors to obtain the most precise model [51].

1.2.2 Scenarios for Optimal Operations of a Mobile Actuator/Sensor Network

The main motivation and application scenario driving the research effort in this dis-

sertation comes from our research center’s own project called MAS-net [52]. That project

envisions the use of networked mobile sensors and mobile actuators to identify, estimate,

forecast, and control a DPS with the following scenario. More details about the MAS-net

project exist [53–55]. An illustration of the scenario is given in fig. 1.3 [14].

1. A plume of harmful chemical or biological agent is released into an urban environment.

The dynamics of the plume in the air can be modeled by a diffusion process with the

addition of transport because of the wind and specific boundaries because of the

surrounding buildings.

2. A fraction of the harmful plume is detected by one sensor within a widespread array

of networked static sensors.

3. The detection of a harmful agent triggers the deployment of a team of Unmanned

Aerial Vehicles (UAVs) equipped with chemical concentration sensors and communi-

cation capabilities that flies into the plume to estimate its parameters and the evolving

boundary.

4. The group of UAVs send back to the ground station all the data they gather as well

as their current locations.

5. Based on the original assumptions on the dynamics of the plumes, the data received by

the main station helps the estimation of the parameters of the diffusion plus transport
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process. Reciprocally, new destinations are assigned to the UAVs to gather more

sensible data with respect to parameter estimation and/or state estimation.

6. Once the estimation of the parameters has converged and the base station is confident

with its identification, the UAVs are sent into the optimal locations within the plume

to release anti-agent to mitigate or neutralize the harmful effects.

7. Once the plume has been eliminated, the UAVs return to the base station.

From our experience in the framework of optimal operations of a mobile actuator/sensor

network, many potential applications exist in the field of environmental science. Here, we

describe a few we have identified so far.

Algal Blooms Monitoring and Control Using Mobile Actuator/Sensor Networks

Harmful Algal Blooms (HAB) are a menace to water wildlife as the release of toxins

into habitats can generate large population death count. However, the lack of systematic

approach to detect, forecast, and control HAB means that most scientists study their after-

maths rather than their prevention. So far, scientists used poorly calibrated tools for their

problems. They either used satellite images which are too low in resolution, both spatially

and temporally, to accurately observe the dynamics of algaes or used data collected by mon-

itoring stations which lack enough spatial information. We believe the solution to monitor

algae effectively lies in the emergence of new remote sensing platforms that are UAV multi-

spectral imaging [56] which improve the resolution of the measurements while still covering

an area large enough for dynamic modeling. In addition, there is an increasing number of

techniques for mitigation of HABs. Using information from sensors, the actuators could

be sent where the release of mitigating agents would have the most impact on either the

population of algae or harmful chemical. An illustration for this scenarios is depicted in

fig. 1.4.
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Fig. 1.3: Application scenario for the MAS-net project.
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Fig. 1.4: Application scenario for algal blooms monitoring and control.

Wildfire Control Scenario

Another scenario where the consideration of optimal sensor and actuator location could

be very beneficial resides in wildfire control, see fig. 1.5. Imagine the following scenario.

1. During the dry season, the monitoring of forests is increased to detect potential wild-

fires.

2. Thanks to the acute monitoring, a wildfire is detected in its early stage.

3. A group of UAVs is sent to detect the boundary of the fire and firemen are dispatched

in the area surrounding the fire, waiting for instructions.

4. Using a mathematical model combined with information such as wind speed and direc-

tion, humidity, forest density, and current location of the fire, an algorithm provides

information to the fire marshal on where he should send the different resources avail-

able. For example firemen should fight the fire at its boundary while water bombers

could release fire retardant or water inside the blaze.
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5. The wildfire is quickly under control and the resources can be sent to another location

if necessary.

6. During the wet season, the data gathered during the wildfire season is analyzed to

improve the models and their calibration.

Dr. YangQuan Chen has indentified more scenarios on CPS [57].

1.2.3 Fractional Order Cyber-Physical Systems

A large number of real-world physical systems can be more properly described by

fractional order dynamics, meaning that their behavior is governed by fractional-order dif-

ferential equations [58]. As an example, it has been illustrated that materials with memory

and hereditary effects, and dynamical processes, including gas diffusion and heat conduc-

tion, in fractal porous media can be more adequately modeled by fractional-order models

than integer-order models [59].

During the past decade, a new category of systems has developed interest in fractional

dynamics: scale-free networks. The concept of scale-free network was introduced because

it allows merging of the theories of complex systems in biology and in physical and social

studies. The most peculiar property of a scale-free network is its invariance to changes in

scale. The term scale-free refers to a system defined by a functional form f(x) that remains

unchanged within a multiplicative factor under a rescaling of the independent variable x.

Effectively, this means power-law forms, since these are the only solutions to f(ax) = bf(x)

for all x ∈ R. The scale-invariance property is often interpreted as the self-similarity. Any

part of the scale-free network is stochastically similar to the whole network, and parameters

are assumed to be independent of the system size. Other mathematical laws that might fit

to describe similar qualitative properties of the network degree distribution will not satisfy

an important condition of the scale invariance. Therefore, a network is defined as scale-free

if a randomly picked node has k connections with other nodes with a probability that follows

a power-law p(k) ∼ kγ , where γ is the power-law exponent.
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Fig. 1.5: Application scenario for wildfire control.

The scale-free framework has been introduced because of the need to find a new type

of model that can match the self-similarity properties of biological and social networks.

In case of an epidemic, gathering information about the infected people is crucial. The

traditional source of information comes from healthcare practitioners (hospitals, emergency

rooms, physicians) and helps the determination of the stage of the epidemic. Nowadays,

with the emergence of online social networks [60], information about people’s health is

also available by other means. Monitoring those network could allow authorities to obtain

increased information from people who do not have health insurance and do not go to the

hospital. With such an elaborate picture of the state of the network, we can consider the

problem of vaccination to fight the epidemic in the most efficient way. For example, by

prioritizing the most important nodes of the network to limit the propagation of the virus.

As mentioned earlier, because of the self-similarity of the social network, the decision of

who to give the vaccine in priority becomes a fractional optimal control problem (FOCP).

An FOCP is an optimal control problem in which the criterion and/or the differential

equations governing the dynamics of the system contain at least one fractional derivative
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operator. Integer order optimal controls (IOOCs) have been discussed for a long time and

a large collection of numerical techniques have been developed to solve IOOC problems.

The collection of optimal control solver is rather large [61–63]. It is therefore of interest

to make us of such solver to solve FOCPs. To achieve to goal, we need to use rational

approximations of the fractional differentiation operator and reformulate the FOCP into an

IOOC problem accordingly [64].

1.3 Summary of Dissertation Contributions

This dissertation provides the following contributions to the state of the art of CPS

research.

• An approach is proposed to joint optimization of trajectories and measurement accura-

cies of mobile nodes in a mobile sensor network collecting measurements for parameter

estimation of a distributed parameter system.

• We propose a method to obtain the optimal trajectories of a team of mobile robots

remotely monitoring a distributed parameter system for its parameter estimation.

• Given a DPS with unknown parameters, a numerical solution method for generating

and refining a mobile sensor motion trajectory for the estimation of the parameters

of DPS in the “closed-loop” sense is provided.

• We discuss the influence of the communication topology of mobile sensors on the

estimation of the parameters of a distributed parameter system.

• We discuss the problem of determining optimal sensors’ trajectories so as to estimate

a set of unknown parameters for a system of distributed nature where the bounds on

the parameters values are known.

• We introduce a numerical procedure to optimize the trajectory of mobile actuators to

find parameter estimates of a distributed parameter system given a sensor configura-

tion.
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• We introduce a framework to solve the problem of determining optimal sensors and ac-

tuators trajectories so as to estimate a set of unknown parameters in what constitutes

a CPS.

• We discuss fractional order optimal control problems (FOCPs) and their solution by

means of rational approximation. The original problem is then reformulated to fit the

definition used in general-purpose optimal control problem solvers.

• A different direction to approximately solving FOCPs is introduced. The method

uses a rational approximation of the fractional derivative operator obtained from the

singular value decomposition of the Hankel data matrix of the impulse response and

can potentially solve any type of FOCPs.

• We propose a methodology to optimize the trajectories of mobile sensors whose dy-

namics contains fractional derivatives to find parameter estimates of a distributed

parameter system.

• We introduce a methodology to obtain the optimal trajectories of a group of mobile

remote sensors for scale reconciliation for surface soil moisture.

1.4 Organization of the Dissertation

The outline of this dissertation follows a direction from introductory notions and defi-

nitions to the development of methodologies for optimal sensing and actuation under par-

ticular conditions. This work is divided into nine chapters described as follows.

Chapter 1

The important terms motivating this work are defined and extensive literature review

is conducted. Motivation and applications scenarios are provided for various research areas.

The contributions of the dissertation are summarized.
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Chapter 2

We provide important definitions from the field of DPS. We introduce the dynamic

equations of the system, the mathematical descriptions of a sensor, and an actuator. The

concepts of regional controllability and observability for DPS are derived from those defini-

tions. Definitions of the parameter estimation and optimal sensor location framework are

given. We discuss two issues linked to the framework: the sensor clusterization phenomenon

and the dependence of the solution on initial parameter estimates.

Chapter 3

We show that some methods from the optimum experimental design (OED) framework

for linear regression models can be applied to the formulation of the mobile sensor trajectory

design problem for DPS parameter estimation when it is desirable to simultaneously opti-

mize the number of sensors, their trajectories, and their accuracies (noise characteristics).

Chapter 4

We extend the existing optimal sensor location to encompass the case of remote sensors.

We introduce a remote sensing function linking the mobility domain and the sensing domain.

We provide an example that can be linked with the optimal trajectories of UAVs carrying

imaging payloads.

Chapter 5

To circumvent the issue of the dependence of the optimal location on the parameter

estimates, we introduce the design of moving sensor optimal trajectories which does not rely

on initial estimates of the parameters, but instead is based on knowledge of upper and lower

bounds of the parameter values, an offline computation type of solution. We also introduce

an “online” scheme where the parameter estimates are evaluated iteratively which allows

us to introduce the concept of communication topology into the framework.
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Chapter 6

The “stimulation” of the system being an implicit variable to the parameter estimation

problem, we introduce the optimization of the trajectories of a group of mobile actuators.

We solve the problem of optimal actuation for parameter estimation with given sensor

location/trajectories. We combine this new framework with the optimal sensor location

framework to optimize both the trajectories of sensors and actuators together.

Chapter 7

We introduce a new formulation towards solving a wide class of fractional optimal

control problems. The formulation made use of an approximation to model the fractional

dynamics of the system in terms of a state space realization. This approximation creates a

bridge with fractional optimal control problem and a readily-available optimal control solver.

The methodology allows us to reproduce results from the literature as well as solving the

more complex problem of optimal trajectories of sensors with fractional dynamics.

Chapter 8

We focus on the downscaling problem in the framework of surface soil moisture measure-

ment. Our purpose is to introduce a new methodology to transform or fuse low-resolution

remote sensing data, ground measurements, and low-altitude remote sensing (typically im-

ages obtained from a UAV) into a high resolution data set.

Chapter 9

The contributions of this dissertation are summarized. Discussion of potential future

research directions is presented.

Appendix

We provide a list of general notations used in this dissertation as well as specific no-

tations for several chapters (see Appendix A). We give a short tutorial about the optimal
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control problem solver (RIOTS 95) used in the illustrative examples. We provide the Matlab

code for some of the illustrative examples used in this dissertation.
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Chapter 2

Distributed Parameter Systems: Controllability,

Observability, and Identification

We introduce the class of systems to be considered in the framework of this dissertation

as well as definitions on configurations of sensors and actuators. Important concepts are

defined for parameter identification and optimal experiment design.

2.1 Mathematical Description

2.1.1 System Definition

Let us consider a class of linear DPSs that can be described by the state equation [65]

 ẏ(t) = Ay(t) +Bu(t); 0 < t < T

y(0) = y0

, (2.1)

where Y = L2(Ω) is the state space, and Ω is a bounded and open subset of Rn with a

sufficiently regular boundary Γ = ∂Ω. The domain Ω is the geometrical support of the

considered system (2.1). A is a linear operator describing the dynamics of the system (2.1)

and generates a strongly continuous semi-group (Φ(t))t≥0 on Y . The operator B ∈ L(U, Y )

(the set of linear maps from U to Y ) is the input operator; u ∈ L2(0, T ;U) (space of

integrable functions f :]0, T [7→ U such that the function t 7→ ‖f(t)‖p is integrable on ]0, T [);

U is a Hilbert control space. Additionally, the considered system possesses the following

output equation

z(t) = Cy(t), (2.2)

where C ∈ L(L2(Ω), Z) and Z is a Hilbert observation space. In this chapter, the considered



24

systems are formulated in the state equation form (2.1) which is adapted for the definitions

of actuators, sensors, controllability, and observability.

The traditional approach of analysis in DPSs is fairly abstract in its purely mathemat-

ical form. In this section, all the characteristics of the system related to its spatial variables

and geometrical aspects of the inputs and outputs of the system are considered. To intro-

duce a more practical approach from an engineering point of view, we introduce the concepts

of actuators and sensors in DPS. With these concepts, we can describe more practically the

relationships between a system and its environment. The study can then be extended be-

yond the operators A, B, and C, with the consideration of the spatial distribution, location,

and number of sensors and actuators.

The sensors always have the passive role of providing observations called measurements

on the system and the time and spatial evolution of its state. On the other hand, actuators

provide a forcing input on the system. Sensors and actuators can be of different natures:

zone or pointwise or domain distributed, internal or boundary, stationary or mobile, com-

municating or non-communicating, collocated or non-collocated.

An additional important notion is the concept of region of a domain. It is generally

defined as a subdomain of Ω on which we focus our interest. Instead of considering a

problem on the totality of Ω, we can concentrate only on a subregion ω of Ω (while we can

still extend the results to ω = Ω). Such consideration allows the generalization of different

definitions and methodologies developed in previous works on DPS analysis and control.

We introduce the mathematical definitions and results on actuators and sensors.

2.1.2 Actuator Definition

Let Ω be an open and bounded subset of Rn with a sufficiently smooth boundary

Γ = ∂Ω [66].

Definition 1 i) An actuator is a couple (D, g) where D represents the geometrical support

of the actuator, D = supp(g) ⊂ Ω, and g is its spatial distribution.

ii) An actuator (D, g) is said to be:
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• A zone actuator if D is a nonempty subregion of Ω.

• A pointwise actuator if D is reduced to a point b ∈ Ω. In this case, we have g = δb

where δb is the Dirac function concentrated at b. The actuator is denoted (b, δb).

iii) An actuator (zone or pointwise) is said to be a boundary actuator if its support D ⊂ Γ.

An illustration of actuators supports is given in fig. 2.1. In the previous definition, we

assume that g ∈ L2(D). For a collection of p actuators (Di, gi)1≤i≤p, we have U = Rp and

B : Rp → L2(Ω)

u(t) → Bu(t) =
∑p

i=1 giui(t)
, (2.3)

where u = (u1, u2, ..., up)
T ∈ L2(0, T ;Rp) and gi ∈ L2(Di) with Di = supp(gi) ⊂ Ω for

i = 1, ..., p and Di
⋂
Dj = ∅ for i 6= j; and we have

B?y = (< g1, y >, · · · , < gp, y >)T for z ∈ L2(Ω), (2.4)

where MT is the transpose matrix of M and < ., . >=< ., . >Y is the inner product in Y

and for v ∈ Y , if supp(v) = D, we have

< v, . >=< v, . >L2(D) . (2.5)

When D does not depend on time, the actuator (D, g) is said to be fixed or stationary.

Otherwise, it is a moving or mobile actuator denoted by (Dt, gt) where D(t) and g(t) are,

respectively, the geometrical support and the spatial distribution of the actuator at time t

(see fig. 2.2 for illustration).

2.1.3 Sensor Definition

We provide a definition of sensors for DPS [66].

Definition 2 A sensor is a couple (D,h) where D is the support of the sensor, D =

supp(h) ⊂ Ω, and h its spatial distribution.
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Fig. 2.1: Illustration of actuators supports.

Fig. 2.2: Illustration of the geometrical support and spatial distribution of an actuator.
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An illustration of actuators supports is given in fig. 2.3. It is usually assumed that h ∈

L2(D). Similarly, we can define zone or pointwise, internal or boundary, fixed or moving

sensors. If the output of the system is given by means of q zone sensors (Di, hi)1≤i≤q with

hi ∈ L2(Di), Di = supp(hi) ⊂ Ω for i = 1, · · · , q and Di
⋂
Dj = ∅ if i 6= j; then in the zone

case, the DPS’s output operator C is defined by

C : L2(Ω) → Rp

y → Cy = (< h1, y >, · · · , < hq, y >)T
, (2.6)

and the output is given by

z(t) =


< h1, y >L2(D1)

...

< hq, y >L2(Dq)

 . (2.7)

A sensor (D,h) is a zone sensor if D is a nonempty subregion of Ω. The sensor (D,h) is

a pointwise sensor if D is limited to a point c ∈ Ω, and in this case h = δc is the Dirac

function concentrated at c. The sensor is denoted as (c, δc). If D ⊂ Γ = ∂Ω, the sensor

(D,h) is called a boundary sensor. If D is not dependent on time, the sensor (D,h) is said

to be fixed or stationary; otherwise it is said to be moving (or a scanning sensor) and is

denoted as (D(t), h(t)). In the case of q pointwise fixed sensors located in (ci)1≤i≤q, the

output function is a q-vector given by

z(t) =


y(t, c1)

...

y(t, cq)

 , (2.8)

where ci is the position of the i-th sensor and y(t, ci) is the state of the system in ci at a

given time t.
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Fig. 2.3: Illustration of sensors supports.

2.2 Regional Controllability

Let Ω be an open regular bounded subset of Rn and Y = L2(Ω) be the state space.

Q = Ω×]0, T [, Σ = ∂Ω×]0, T [, and we consider the system described by the state equation

 ẏ(t) = Ay(t) +Bu(t); 0 < t < T

y(0) = y0 ∈ D(A)
, (2.9)

where D(A) stands for the domain of the operator A. The operator A generates a strongly

continuous semi-group (Φ(t))t≥0 on Z. B ∈ L(Rp, Y ) and u ∈ L2(0, T ;Rp). The value of

the state y, solution of (2.9), denoted y(., u), is given by

y(t, u) = Φ(t)y0 +

∫ t

0
Φ(t− s)Bu(s)ds, (2.10)

and we have y(., u) ∈ C[0, T ;Y ].

We consider the given region ω ⊂ Ω of positive Lebesgue measure and a given desired

state yd ∈ L2(ω) [67].
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Definition 3 1. The system (2.9) is said to be exactly regionally controllable (or exactly

ω-controllable) if there exists a control u ∈ L2(0, T ;Rp) such that

pωy(T, u) = yd. (2.11)

2. The system (2.9) is said to be weakly regionally controllable (or weakly ω-controllable)

if, given ε > 0, there exists a control u ∈ L2(0, T ;Rp) such that

‖pωy(T, u)− yd‖L2
ω
≤ ε, (2.12)

where y(., u) is given by (2.10) and pωy is the restriction of y to ω.

In the case of pointwise or boundary controls, B /∈ L(Rp, Z). We consider the operator

H : L2(0, T ;Rp)→ Y,

defined by

Hu =

∫ T

0
Φ(T − τ)Bu(τ)dτ, (2.13)

and

pω : L2(Ω)→ L2(ω), (2.14)

defined by

pωy = y|ω. (2.15)

Then, from definition 3, the system (2.9) is exactly (respectively weakly) regionally control-

lable if

Im(pωH) = L2(ω)(respectively ImpωH = L2(ω)). (2.16)

We have equivalently

Im(pωH) = L2(ω)⇔ Ker(H?iω) = {0}, (2.17)
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where iω holds for the adjoint of pω. Characterizations (2.16) and (2.17) are often used in

applications. We also have the following result [65].

Lemma 4 1. The system (2.9) is exactly regionally controllable if and only if

Ker(pω) + Im(H) = L2(Ω). (2.18)

2. The system (2.9) is weakly regionally controllable if and only if

ker(pω) + Im(H) = L2(Ω). (2.19)

It is easy to show that (2.19) is equivalent to

Ker(H?)
⋂
Im(iω) = {0}, (2.20)

where iω = p?ω : L2(ω)→ L2(Ω) is given by

iωz =

 y(x), x ∈ ω

0, x ∈ Ω\ω
.

2.3 Regional Observability

Let y be the state of a linear system with a state space Y = L2(Ω), and suppose that

the initial state y0 is unknown. Measurements are given by means of an output z depending

on the number and the structure of the sensors. The problem to be studied here concerns

the reconstruction of the initial state y0 on the subregion ω. Let Ω be a regular bounded

open set of Rn, with boundary Γ = ∂Ω, ω be a nonempty subset of Ω, and [0, T ] with

T > 0 a time interval. We denote Q = Ω×]0, T [ and σ = ∂Ω×]0, T [, and we consider the

autonomous system described by the state equation

 ẏ(t) = Ay(t) ; 0 < t < T

y(0) = y0 supposed to be unknown
, (2.21)
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where A generates a strongly continuous semi-group (Φ(t))t≥0 on the state space Y . An

output function gives measurements of the state y by

z(t) = Cy(t), (2.22)

where

C : y ∈ L2(0, T ;Y )→ z ∈ L2(0, T ;Rq), (2.23)

depends on the sensors structure. In the case where the considered sensor is pointwise and

located in b ∈ Ω, we have, with (2.22),

z(t) =

∫
Ω
y(x, t)δ(x− b)dx = y(b, t). (2.24)

The problem consists in the reconstruction of the initial state, assumed to be unknown, in

the subregion ω. We consider the following decomposition

y0 =

 ye x ∈ ω

yu x ∈ Ω\ω
, (2.25)

where ye is the state to be estimated and yu is the undesired part of the state. Then

the problem consists in reconstructing ye with the knowledge of (2.21) and (2.22). As the

system (2.21) is autonomous, (2.22) gives

z(t) = CΦ(t)y0 = K(t)y0, (2.26)

where K is an operator Y → L2(0, T ;Rq). The adjoint K? is given by

K?y =

∫ T

0
Φ?(s)C?z(s)ds. (2.27)

We recall that the system (2.21) with the output (2.22) is said to be weakly observable if

Ker(K) = {0}. The associated sensor is then said to be strategic [65]. Consider now the
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restriction mapping

χω : L2(Ω)→ L2(ω), (2.28)

defined by

χωz = z|ω, (2.29)

where z|ω is the restriction of z to ω. For simplification, we denote along this section γ = χω.

Then we introduce the following definition [68].

Definition 5 The system (2.21)-(2.22) is said to be regionally observable on ω (or ω-

observable) if

Im(γK?) = L2(ω). (2.30)

The system (2.21)-(2.22) is said to be weakly regionally observable on ω (or weakly ω-

observable) if

Im(γK?) = L2(ω). (2.31)

From the above definition we deduce the following characterization [65].

Lemma 6 The system (2.21)-(2.22) is exactly ω-observable if there exits ω > 0 such that,

for all z0 ∈ L2(ω),

‖γy0‖L2(ω) ≤ ν‖Kγ?y0‖L2(0,T ;Rq). (2.32)

2.4 Parameter Identification and Optimal Experiment Design

2.4.1 System Definition

Due to the nature of the considered parameter identification problem, the abstract

operator-theoretic formalism used in (2.1) to define the dynamics of a DPS is not convenient.

In this section, the following PDE-based general definitions are given. Consider a DPS

described by n partial differential equations of the following form

F1(x, t)
∂y(x, t)

∂t
= F2

(
x, t, y(x, t),∇y(x, t),∇2y(x, t), θ

)
, (x, t) ∈ Ω× T ⊂ Rd+1, (2.33)
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with initial and boundary conditions

B(x, t, y) = 0, (x, t) ∈ ∂Ω× T, (2.34)

N(x, t, y) = 0 (x, t) ∈ Ω× {0}, (2.35)

where:

• Ω ⊂ Rn is a bounded spatial domain with sufficiently smooth boundary Γ = ∂Ω,

• t is the time instant,

• T = [0, tf ] is a bounded time interval called observation interval,

• x = (x1, x2, ·, xd) is a spatial point belonging to Ω = Ω
⋃

Γ,

• y = (y1(x, t), y2(x, t), ·, yn(x, t)) stands for the state vector,

• F1, F2, B, and N are some known functions.

We assume that the system of equations (2.33)-(2.35) has a unique solution that is suffi-

ciently regular. We can see that (2.33)-(2.35) contains an unknown set of parameters θ

whose values belong to an admissible parameter space Θad. Even though Θad can have

different forms, we make an assumption that the parameters are constant (θ ∈ Rm). The

set of unknown parameters θ has to be determined based on observations made by N mobile

pointwise sensors over the observation horizon T . We define xj : T → Ωad as the trajectory

of the j-th mobile sensor, with Ωad ⊂ Ω being the region where measurements can be made.

The observations are assumed to be of the form

zj(t) = y(xj(t), t) + ε(xj(t), t), t ∈ T, j = 1, . . . , N. (2.36)
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The collection of measurements z(t) = [z1(t), z2(t), ·, zN (t)]T is the N -dimensional obser-

vation vector and ε represents the measurement noise assumed to be white, zero-mean,

Gaussian and spatial uncorrelated with the following statistics

E
{
ε(xj(t), t)ε(xi(t′), t′)

}
= σ2δjiδ(t− τ), (2.37)

where σ2 stands for the standard deviation of the measurement noise, δij and δ( · ) are the

Kronecker and Dirac delta functions, respectively.

2.4.2 Parameter Identification

According to this setup, the parameter identification problem is defined as follows.

Given the model (2.33)–(2.35) and the measurements z(t) along the trajectories (xj), j =

1, ..., N ; obtain an estimation θ̂ ∈ Θad minimizing the following weighted least-squares

criterion [69,70].

J(θ) =
1

2

∫ T

0
‖z(t)− ŷ(x, t; θ)‖2dt, (2.38)

where ŷ(x, t; θ) stands for the solution to (2.33)-(2.35) corresponding to a given set of

parameters θ. ‖ · ‖ stands for the Euclidean norm.

The estimated values of the parameters θ̂ are influenced by the sensors trajectories

xj(t) and our objective is to obtain the best estimates of the system parameters. Therefore,

deciding on the trajectory based on a quantitative measure related to the expected accuracy

of the parameter estimates to be obtained from the data collected seems to be practically

logical.

2.4.3 Sensor Location Problem

The Fisher Information Matrix (FIM) [71, 72] is a well-known performance measure

when looking for best measurements and is widely used in optimum experimental design

theory for lumped systems. Its inverse constitutes an approximation of the covariance
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matrix for the estimate of θ [73–75]. Let us give the following definition of the experiment

s(t) = (x1(t), ..., xN (t)), ∀t ∈ T, (2.39)

and let n = dim(s(t)). Under such conditions, the FIM can be written as [76]

M(s) =

N∑
j=1

∫ T

0
g(xj(t), t)gT (xj(t), t)dt, (2.40)

where g(x, t) = ∇θy(x, t; θ)|θ=θ0 is the vector made of the sensitivity coefficients, θ0 being

the previous estimate of the unknown parameter vector θ [77, 78].

By choosing s such that it minimizes a scalar function Ψ(·) of the FIM, one can de-

termine the optimal mobile sensor trajectories. There are many candidates for such a

function [73–75].

• The A-optimality criterion suppresses the variance of the estimates

Ψ(M) = trace(M−1). (2.41)

• The D-optimality criterion minimizes the volume of the confidence ellipsoid for the

parameters

Ψ(M) = − log det(M). (2.42)

• The E-optimality criterion minimizes the largest width of the confidence ellipsoid

Ψ(M) = λmax(M−1). (2.43)

• The sensitivity criterion whose minimization increases the sensitivity of the outputs

with respect to parameter changes

Ψ(M) = − trace(M). (2.44)
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2.4.4 Sensor Clustering Phenomenon

The assumption on the spatial uncorrelation of the measurement noise can create a

clustering of the sensors, which can be problematic in practice. We use an example from

the literature [77] to illustrate the sensor clustering problem.

Example 1 Consider the following parabolic partial differential equation:

∂y(x, t)

∂t
= θ1

∂2y(x, t)

∂x2
, x ∈ (0, π), t ∈ (0, 1),

with boundary and initial conditions

y(0, t) = y(π, t) = 0, ; t ∈ (0, 1),

y(x, 0) = θ2 sin(x), x ∈ (0, π).

The two parameters θ1 and θ2 are assumed to be constant but unknown. In addition, we

assume that the measurements are taken by two static sensors whose locations are decided

by maximizing the determinant of the FIM. The analytical solution of the PDE can be

easily obtained as

y(x, t) = θ2 exp(−θ1t) sin(x).

Making the assumption that the signal noise statistic σ = 1 does not change the optimal

location of the sensors. The determinant of the matrix is given by

det(M(x1, x2)) =
θ2

2

16θ4
1

(−4θ2
1 exp(−2θ1)

−2 exp(−2θ1) + exp(−4θ1) + 1)(2− cos2(x1)− cos2(x2))2.

The results are shown in fig. 2.4 and one quick observation allows to determine that the

best location for both sensors is at the center of the interval (0, π). �
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Fig. 2.4: Contour plot of det(M(x1, x2)) versus the sensors’ locations (θ1 = 0.1 and θ2 = 1).

2.4.5 Dependence of the Solution on Initial Parameter Estimates

Another serious issue in the FIM framework of optimal measurements for parameter

estimation of DPS is the dependence of the solution on the initial guess on parameters. We

illustrate the problem using an example from the literature [79].

Example 2 Consider the following hyperbolic partial differential equation:

∂2y(x, t)

∂t2
= θ

∂2y(x, t)

∂x2
, x ∈ (0, π), t ∈ (0, π),

with boundary and initial conditions

y(0, t) =
1

4
cos(t), y(π, t) = sin(πθ) sin(t) +

1

4
cos(πθ) cos(t), t ∈ (0, π),

y(x, 0) =
1

4
cos θx,

∂y(x, t)

∂t
|t=0 = sin(θx), x ∈ (0, π).

The parameter θ is assumed to be constant and unknown. In addition, we assume that the

measurements are taken by one static sensor located at x1 ∈ (0, π). The analytical solution
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of the PDE can be easily obtained and is given as

M(x1) =
∫ π

0

(
∂y(x1, t; θ)

∂θ

)2

dt

= 1
2x

2π cos2(θx) + 1
32x

2π sin(θx).

The results are shown in fig. 2.5 (the optimal location of the sensor is represented by a

dashed line) and it is easy to observe that the optimal sensor location depends on the value

of θ. �

The dependence of the optimal location on θ is very problematic, however some techniques

called “robust designs” have been developed to minimize or elude the influence [72,80]. We

propose similar methodologies in Chapter 5.

2.5 Chapter Summary

In this chapter, we gave very important definitions in the framework of DPS. We

defined the dynamic equations of the system, the mathematical descriptions of a sensor and

an actuator. From those definitions, we introduced the concepts of regional controllability

and observability. Then, we described the dynamics of the system in an appropriate way

for the FIM framework of optimal sensor location for parameter estimation. We gave the

definitions of the parameter estimation and optimal sensor location. Finally, we discussed

two of the important issues of the FIM framework: the sensor clustering phenomenon and

the dependence of the solution of initial parameter estimates.
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Fig. 2.5: Contour plot of M(x1; θ).
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Chapter 3

Optimal Heterogeneous Mobile Sensing for Parameter

Estimation of Distributed Parameter Systems

3.1 Introduction

States in distributed parameter systems (DPS’s), i.e., systems described by partial

differential equations (PDEs), vary both spatially and temporally, but it is generally im-

possible to measure them over the whole spatial domain. Consequently, we are faced with

the design problem of how to locate a limited number of measurement sensors so as to

obtain as much information as possible about the process at hand. The location of sensors

is not necessarily dictated by physical considerations or by intuition and, therefore, some

systematic approaches should be developed in order to reduce the cost of instrumentation

and to increase the efficiency of parameter estimation.

Although it is well-known that the estimation accuracy of DPS parameters depends

significantly on the choice of sensor locations, there have been relatively few contributions

to the optimal experimental design for those systems. The importance of sensor planning

has been recognized in many application domains, e.g., regarding air quality monitoring sys-

tems, groundwater-resources management, recovery of valuable minerals and hydrocarbon,

model calibration in meteorology and oceanography, chemical engineering, hazardous envi-

ronments, and smart materials [72, 77, 81–88]. Over the past years, increasingly thorough

research on the development of strategies for efficient sensor placement has been observed

(for reviews, see papers [89,90] and comprehensive monographs [77,91]). Nevertheless, much

still has to be done in this respect, particularly in light of recent advances in wireless sensor

networks [92–97].

Nowadays, mobile platforms for sensors are available (mobile robots or unmanned air
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vehicles) which offer an appealing alternative to common stationary sensors with fixed

positions in space [93–96, 98]. The complexity of the resulting design problem is expected

to be compensated by a number of benefits. Specifically, sensors are not assigned to fixed

positions which are optimal only on the average, but are capable of tracking points which

provide at a given time instant the best information about the parameters to be identified.

Consequently, by actively reconfiguring a sensor system we can expect the minimal value

of an adopted design criterion to be lower than the one for the stationary case. Areas of

direct application of such mobile sensing techniques include air pollutant measurements in

the environment obtained from monitoring cars moving in an urban area, or atmospheric

variables acquired using instruments carried in a satellite or aircraft [99]. Low-cost mobile

platforms with wireless communications capabilities for sensor networks are now available.

They get cheaper and cheaper, and more advanced ones are under development. With a

group of such autonomous vehicles equipped with sensors, we can enhance the performance

of the measurements.

The number of publications on optimized mobile observations for parameter estimation

is limited. In the seminal article [71], Rafaj lowicz considers the D-optimality criterion and

seeks an optimal time-dependent measure, rather than the trajectories themselves. On the

other hand, Uciński [77,78,100], apart from generalizations of Rafaj lowicz’s results, develops

some computational algorithms based on the Fisher information matrix. He reduces the

problem to a state-constrained optimal-control one for which solutions are obtained via

the methods of successive linearizations which is capable of handling various constraints

imposed on sensor motions. In turn, Uciński and Chen attempted to properly formulate

and solve the time-optimal problem for moving sensors which observe the state of a DPS

so as to estimate some of its parameters [101].

In the literature on mobile sensors, it is most often assumed that the optimal measure-

ment problem consists in the design of trajectories of a given number of identical sensors.

In this chapter, we formulate it in a quite different manner. First of all, apart from sensor

controls and initial positions, the number of sensors constitutes an additional design vari-
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able. Additionally, we can allow for different levels of measurement accuracies for individual

sensors, which are quantified by weights steering the corresponding measurement variances.

This leads to a much more general formulation which most often produces an uneven allo-

cation of experimental efforts between different sensors. The corresponding solutions could

then be implemented on a sensor network with heterogeneous mobile nodes. It turns out

that these solutions can be determined using convex optimization tools commonly used

in optimum experimental design [80, 102, 103]. As a result, much better accuracies of the

parameter estimates can be achieved.

3.2 Optimal Sensor Location Problem

Let Ω ⊂ Rn be a bounded spatial domain with sufficiently smooth boundary Γ, and

let T = (0, tf ] be a bounded time interval. Consider a distributed parameter system (DPS)

whose scalar state at a spatial point x ∈ Ω̄ ⊂ Rn and time instant t ∈ T̄ is denoted by

y(x, t). Mathematically, the system state is governed by the partial differential equation

(PDE)

∂y

∂t
= F

(
x, t, y,θ

)
in Ω× T , (3.1)

where F is a well-posed, possibly nonlinear, differential operator which involves first- and

second-order spatial derivatives, and may include terms accounting for forcing inputs spec-

ified a priori. The PDE (3.1) has the following appropriate boundary and initial conditions

B(x, t, y,θ) = 0 on Γ× T, (3.2)

y = y0 in Ω× {t = 0}, (3.3)

respectively, where B is an operator acting on the boundary Γ and y0 = y0(x) a given func-

tion. Conditions (3.2) and (3.3) complement (3.1) such that the existence of a sufficiently

smooth and unique solution is guaranteed. We assume that the forms of F and B are given

explicitly up to an m-dimensional vector of unknown constant parameters θ which must be

estimated using observations of the system. The implicit dependence of the state y on the
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parameter vector θ will be be reflected by the notation y(x, t;θ).

We assume that the vector θ ∈ Rm is to be estimated from measurements made by N

moving sensors over the observation horizon T . We call xjs : T → Ωad the trajectory of the

j-th sensor, where Ωad ⊂ Ω ∪ Γ is a compact set representing the area where the mobile

sensing measurements can be made. The observations are of the form

zj(t) = y(xjs(t), t) + ε(xjs(t), t), t ∈ T, j = 1, . . . , N, (3.4)

where ε constitutes the measurement noise which is assumed to be is zero-mean, Gaussian,

spatial uncorrelated and white [104–106], i.e.,

E
{
ε(xjs(t), t)ε(x

i
s(τ), τ)

}
= δjiδ(t− τ)

σ2

pj
, (3.5)

where σ2/pj defines the intensity of the noise; σ2 is a constant; pj stands for a positive

scaling factor, and δij and δ( · ) stand for the Kronecker and Dirac delta functions, respec-

tively. Although white noise is a physically impossible process, it constitutes a reasonable

approximation to a disturbance whose adjacent samples are uncorrelated at all time instants

for which the time increment exceeds some value which is small compared with the time

constants of the DPS. The white-noise assumption is consistent with most of the literature

on the subject.

Note that instead of several mobile sensors whose accuracies are characterized by the

equal variance σ2, we use sensors for which the variance of measurement errors is σ2/pj .

This means that a large weight pj indicates that the j-th sensor guarantees more precise

measurements than sensors with lower weight values. With no loss of generality, we assume

that the weights pj satisfy the following normalization condition:

N∑
j=1

pj = 1, pj ≥ 0, j = 1, . . . , N, (3.6)

i.e., they belong to the probability simplex.
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In the presented framework, the parameter identification problem is usually formulated

as follows: Given the model (3.1)–(3.3) and the outcomes of the measurements zj along

the trajectories xjs, j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being the set of

admissible parameters) which minimizes the generalized output least-squares fit-to-data

functional given by [105,107]

θ̂ = arg min
ϑ∈Θad

N∑
j=1

pj

∫
T

[
zj(t)− y(xjs(t), t;ϑ)

]2
dt, (3.7)

where y now solves (3.1)–(3.3) for θ replaced by ϑ.

We feel, intuitively, that the parameter estimate θ̂ depends on the number of sensors

N , the trajectories xjs, and the associated weights pj since the right-hand side of (3.7) does

it. This fact suggests that we may attempt to select these design variables so as to produce

best estimates of the system parameters after performing the actual experiment. Note that

the weights pj can be interpreted here as sensor costs, which are inversely proportional to

the variances of the corresponding measurement errors introduced by them. The weights

must sum up to unity, which means that our budget on the experiment is fixed. Then the

problem is how to spend it, i.e., how many and how accurate sensors to buy so as to get the

most accurate parameter estimates while assuming that their trajectories are also going to

be optimized.

To form a basis for the comparison of different design settings, a quantitative measure of

the “goodness” of particular settings is required. A logical approach is to choose a measure

related to the expected accuracy of the parameter estimates to be obtained from the data

collected (note that the design is to be performed off-line, before taking any measurements).

Such a measure is usually based on the concept of the Fisher Information Matrix (FIM) [71,

72] which is widely used in optimum experimental design theory for lumped systems [80,

102, 103]. When the time horizon is large, the nonlinearity of the model with respect to

its parameters is mild and the measurement errors are independently distributed and have

small magnitudes, the inverse of the FIM constitutes a good approximation of the covariance

matrix for the estimate of θ [80, 102,103].
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The FIM has the following representation [77,104]:

M =

N∑
j=1

pj

∫
T
g(xjs(t), t)g

T(xjs(t), t) dt, (3.8)

where

g(x, t) = ∇ϑy(x, t;ϑ)
∣∣
ϑ=θ0

, (3.9)

denotes the vector of the so-called sensitivity coefficients, θ0 being a prior estimate to the

unknown parameter vector θ [77, 78].

The sought optimal design settings can be found by maximizing some scalar function

Ψ of the information matrix. The introduction of the design criterion permits to cast the

sensor location problem as an optimization problem, and the criterion itself can be treated

as a measure of the information content of the observations. Several choices exist for such

a function [80,102,103] and the most popular one is the D-optimality criterion

Ψ[M ] = − log det(M). (3.10)

Its use yields the minimal volume of the confidence ellipsoid for the estimates. In what

follows, we shall restrict our attention to this optimality criterion.

3.3 Mobile Sensor Model

3.3.1 Node Dynamics

Although measurement accuracies may vary from sensor to sensor, we assume that all

sensors are conveyed by identical vehicles whose motions are described by

ẋjs(t) = f(xjs(t),u
j
s(t)) a.e. on T , xjs(0) = xjs0, (3.11)

where a given function f : Rn × Rr → Rn is required to be continuously differentiable,

xjs0 ∈ Rn defines an initial sensor configuration, and ujs : T → Rr is a measurable control
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function which satisfies

usl ≤ ujs(t) ≤ usu a.e. on T , (3.12)

for some constant bound vectors usl and usu, j = 1, . . . , N .

For each j = 1, . . . , N , given any initial position xjs0 and any control function, there is

a unique absolutely continuous function xjs : T → Rn which satisfies (3.11) a.e. on T . In

what follows, we will call it the state trajectory corresponding to xjs0 and ujs.

3.3.2 Pathwise State Constraints

In reality, some restrictions on the motions are inevitably imposed. First of all, all

sensors should stay within the admissible region Ωad where measurements are allowed. We

assume that it is a compact set defined as follows:

Ωad = {x ∈ Ω ∪ Γ | bi(x) ≤ 0, i = 1, . . . , I} , (3.13)

where bi’s are given continuously differentiable functions. Accordingly, the conditions

bi(x
j
s(t)) ≤ 0, ∀ t ∈ T, (3.14)

must be fulfilled, where 1 ≤ i ≤ I and 1 ≤ j ≤ N .

3.3.3 Parameterization of Vehicle Controls

From now on we make the assumption that the controls of the available vehicles can

be represented in parametric form

ujs(t) = η(t,aj), t ∈ T, (3.15)

where η denotes a given function such that η( · ,aj) is continuous for each fixed aj and

η(t, · ) is continuous for each fixed t, the constant parameter vector aj ranging over a

compact set A ⊂ Rq. An exemplary parameterization is using B-splines as employed in
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numerous optimal control solvers, e.g., RIOTS 95 [61] to be described in Appendix B.

Based on a specific parameterization, we can define the mapping χ which assigns every

cj = (xjs0,a
j) ∈ Ωad × A a trajectory xjs = χ(cj) through solving (3.11) for the initial

position xjs0 and control defined by (3.15).

Since only the controls and trajectories satisfying the imposed constraints are of our

interest, we introduce the set

C =
{
c = (xs0,a) ∈ A × Ωad : η( · ,a) satisfies (3.12),χ(c) satisfies (3.14)

}
, (3.16)

and assume that it is nonempty. A trivial verification shows that C is also compact.

Given N sensors, we thus obtain trajectories xjs corresponding to vectors cj ∈ Rn+q,

j = 1, . . . , N . The FIM can then be rewritten as

M(ξN ) =
N∑
j=1

pj

∫
T
g(x(t), t)gT(x(t), t)

∣∣∣
x=χ(cj)

dt, (3.17)

where, for simplicity of notation, we represent the decision variables as the following table

ξN =

c
1, c2, . . . , cN

p1, p2, . . . , pN

 . (3.18)

Applying the terminology of optimum experimental design, we call this table a discrete

design, while c1, . . . , cN are termed the support points and p1, . . . , pN are referred to as the

corresponding weights.

Observe that a design ξN can be interpreted as a discrete probability distribution on

a finite subset of C, cf. (3.6). As is standard in optimum experimental design theory [108],

we can extend this idea and regard a design as a probability measure ξ for all Borel sets of

C including single points. With such a modification, we can define the FIM analogous to

(3.17) for the design ξ:

M(ξ) =

∫
C

Υ(c) ξ(dc), (3.19)
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where

Υ(c) =

∫
T
g(x(t), t)gT(x(t), t)

∣∣∣
x=χ(c)

dt. (3.20)

The integration in (3.19) is to be understood in the Lebesgue-Stieltjes sense. This leads to

the so-called continuous designs which constitute the basis of the modern theory of optimal

experiments and originate in seminal works by Kiefer and Wolfowitz [109]. It turns out

that such an approach drastically simplifies the design and the remainder of the chapter is

devoted to this design issue.

3.4 Characterization of Optimal Solutions

For clarity, we adopt the following notational conventions. Here and subsequently, we

will use the symbol Ξ(C) to denote the set of all probability measures on C. Let us also

introduce the notation M(C) for the set of all admissible information matrices, i.e.,

M(C) =
{
M(ξ) : ξ ∈ Ξ(C)

}
. (3.21)

Then we may redefine an optimal design as a solution to the following optimization problem:

ξ? = arg max
ξ∈Ξ(C)

Ψ[M(ξ)]. (3.22)

The theoretical results presented in this section constitute straightforward adaptations

of their counterparts in the recent literature [77]. We begin with certain convexity and

representation properties of M(ξ).

Lemma 7 For any ξ ∈ Ξ(C) the information matrix M(ξ) is symmetric and non-negative

definite.

Lemma 8 M(C) is compact and convex.
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Lemma 9 For any M0 ∈M(C) there always exists a purely discrete design ξ of the form

(3.18) with no more than m(m + 1)/2 + 1 support points such that M(ξ) = M0. If M0

lies on the boundary of M(C), then the number of support points is less than or equal to

m(m+ 1)/2.

The above lemma justifies that we can restrict our attention only to discrete designs

with a limited number of supporting points, so the introduction of continuous designs being

probability measures for all Borel sets of C, is feasible technically. In this way, it greatly

simplifies solution process.

The next result provides a characterization of the optimal designs.

Theorem 10 We have the following properties:

(i) An optimal design exists which is discrete and comprises no more than m(m + 1)/2

support points (i.e., one less than predicted by Lemma 9).

(ii) The set of optimal designs is convex.

(iii) A design ξ? is optimal if and only if

max
c∈C

ϕ(c, ξ?) = m, (3.23)

where

ϕ(c, ξ) = trace[M−1(ξ)Υ(c)]. (3.24)

(iv) For any purely discrete optimal design ξ?, the function ϕ( · , ξ?) has value zero at all

support points.

It is now clear that the function ϕ is of paramount importance in our considerations,

as it determines the location of the support points in the optimal design ξ? (they are among

its points of global maximum). Moreover, given any design ξ, it indicates points at which
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a new observation contributes to the greatest extent. Indeed, adding a new observation at

a single point c+ amounts to constructing a new design

ξ+ = (1− λ)ξ + λξc+ , (3.25)

for some λ ∈ (0, 1). If λ is sufficiently small, then it may be concluded that

Ψ[M(ξ+)]−Ψ[M(ξ)] ≈ λϕ(c+, ξ), (3.26)

i.e., the resulting increase in the criterion value is approximately equal to λϕ(c+, ξ).

Analytical determination of optimal designs is possible only in simple situations and for

general systems it is usually the case that some iterative design procedure will be required.

The next theorem, called the equivalence theorem, is useful in the checking for optimality

of designs [110].

Theorem 11 The following characterizations of an optimal design ξ? are equivalent in the

sense that each implies the other two:

(i) the design ξ? maximizes Ψ[M(ξ)],

(ii) the design ξ? minimizes max
c∈C

ϕ(c, ξ), and

(iii) max
c∈C

ϕ(c, ξ?) = m.

All the designs satisfying (i)–(iii) and their convex combinations have the same information

matrix M(ξ?).

The above results provide us with tests for the optimality of designs. In particular,

1. If the sensitivity function ϕ(c, ξ) is less than or equal to m for all c ∈ C, then ξ is

optimal;

2. If the sensitivity function ϕ(c, ξ) exceeds m, then ξ is not optimal.
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An interesting aspect of these results is that in addition to revealing striking minimax

properties of optimal designs, they also provide sequential numerical design algorithms.

That is, suppose that we have an arbitrary (non-optimal) design ξk obtained after k iteration

steps and let ϕ( · , ξk) attain its maximum (necessarily > m) at c = c0
k, then, the design

ξk+1 = (1− λk)ξk + λkξc0k
, (3.27)

(here ξc0k
stands for the unit-weight design concentrated at c0

k) leads to an increase in the

value of Ψ[M(ξk+1)] for a suitably small λk. This follows since the derivative with respect

to λk is positive, i.e.,

∂

∂λk
Ψ[M(ξk+1)]

∣∣∣
λk=0+

= m− ϕ(c0
k, ξk) > 0. (3.28)

Therefore, the procedure in using the above outlined gradient method can be briefly

summarized as follows [80,102,111,112]:

Step 1. Guess a discrete non-degenerate starting design measure ξ0 (we must have

det(M(ξ0)) 6= 0). Choose some positive tolerance ε� 1. Set k = 0.

Step 2. Determine c0
k = arg max

c∈C
ϕ(c, ξk). If ϕ(c0

k, ξk) < m+ ε, then STOP.

Step 3. For an appropriate value of 0 < λk < 1, set

ξk+1 = (1− λk)ξk + λkξc0k

and increase k by one and go to Step 2.

In the same way as for the classical first-order algorithms commonly used in optimum

experimental designs for many years, it can be shown that the above algorithm converges

to an optimal design provided that the sequence
{
λk
}

is suitably chosen. For example, the

choices which satisfy one of the conditions below will ensure the convergence:

(i) lim
k→∞

λk = 0,
∞∑
k=0

λk =∞ (Wynn’s algorithm),
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(ii) λk = arg min
λ

Ψ[(1− λ)M(ξk) + λM(ξc0k
)] (Fedorov’s algorithm).

Computationally, Step 2 is of crucial significance but at the same time it is the most

time-consuming step in the algorithm. Complications arise, among other things, due to the

necessity of calculating a global maximum of ϕ( · , ξk) which is usually multimodal (getting

stuck in one of local maxima leads to premature termination of the algorithm). Therefore,

while implementing this part of the computational procedure, an effective global optimizer

seems to be essential.

3.5 Optimal Control Formulation of the Search for the Candidate Support

Point

Step 2 of the Wynn-Fedorov algorithm in the previous section is necessary is deter-

mination of arg max
c∈C

ϕ(c, ξk). This formulation can be interpreted as a finite-dimensional

approximation to the following optimization problem:

Find the pair (xs0,us) which maximizes

J(xs0,us) = trace
[
M−1(ξk)

∫
T
g(x(t), t)gT(x(t), t) dt.

]
=

∫
T
gT(x(t), t)M−1(ξk)g(x(t), t) dt,

(3.29)

over the set of feasible pairs

P =
{

(xs0,us) | us : T → Rr is measurable,usl ≤ us(t) ≤ usu a.e. on T , xs0 ∈ Ωad

}
,

(3.30)

subject to the pathwise state inequality constraints (3.14).

Evidently, its high nonlinearity excludes any possibility of finding closed-form formulas

for its solution. Accordingly, we must resort to numerical techniques. A number of possibil-

ities exist in this respect [113,114], but since this problem is already in canonical form, we

can solve it using one of the existing packages for numerically solving dynamic optimization

problems, such as RIOTS 95 [61], DIRCOL [62] or MISER [63]. In our implementation, we
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employed the first of them, i.e., RIOTS 95, which is designed as a Matlab toolbox written

mostly in C and running under Windows 98/2000/XP and Linux. It provides an interactive

environment for solving a very broad class of optimal control problems. The users’ problems

can be prepared purely as M-files and no compiler is required to solve them. To speed up

the solution process, the functions defining the problem can be coded in C and then com-

piled and linked with some pre-built linking libraries. The implemented numerical methods

are supported by the theory of approximation in optimization algorithms [113], which uses

the approach of consistent approximations. Systems dynamics can be integrated with fixed

step-size Runge-Kutta integration, a discrete-time solver or a variable step-size method.

The software automatically computes gradients for all functions with respect to the con-

trols and any free initial conditions. The controls are represented as splines, which allows

for a high-degree of function approximation accuracy without requiring a large number of

control parameters. There are three main optimization routines, each suited for different

levels of generality, and the most general is based on sequential quadratic programming

methods [115] (it was also used in our computations reported in the next section).

Note that in RIOTS 95 the controls are internally approximated by linear, quadratic

or cubic splines, and this immediately defines the parameterization (3.15).

3.6 Illustrative Example

In this section, we use a demonstrative example to illustrate our method. We consider

the following two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) + F, (3.31)

for x ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial and Dirichlet boundary

conditions, where F (x, t) = 20 exp(−50(x1 − t)2). The spatial distribution of the diffusion

coefficient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (3.32)
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In our example, we select the initial estimates of the parameter values as θ0
1 = 0.1, θ0

2 =

−0.05, and θ0
3 = 0.2, which are assumed to be nominal and known prior to the experiment.

The excitation function F in (3.31) simulates a source with a vertical line support along

the x2-axis, which moves like a plane wave with constant speed from the left to the right

boundary of Ω within the observation interval [0, 1].

The determination of the Fisher information matrix for a given experiment requires

the knowledge of the vector of the sensitivity coefficients g = col[g1, g2, g3] along sensor

trajectories. The FIM can be obtained using the direct differentiation method [77] by

solving the following system of PDEs:

∂y

∂t
= ∇ · (κ∇y) + F, (3.33)

∂g1

∂t
= ∇ · ∇y +∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) +∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) +∇ · (κ∇g3),

in which the first equation represents the original state equation and the next three equations

are obtained from the differentiation of the first equation with respect to the three unknown

parameters θ1, θ2, and θ3, respectively. The initial and Dirichlet boundary conditions for

all the four equations are homogeneous.

The system (3.33) has been solved numerically using the routines from Matlab PDE

toolbox and stored g1, g2, and g3 interpolated at the nodes of a rectangular grid in a

four-dimensional array (we applied uniform partitions using 21 grid points per each spatial

dimension and 31 points in time [77]). Since values of g1, g2, and g3 may have been required

at points which were not necessarily nodes of that grid, the relevant interpolation was thus

performed using cubic splines in space (for this purpose Matlabs procedure interp2 has

been applied) and linear splines in time. Since, additionally, the derivatives of g with respect

to spatial variables and time were required during the trajectory optimization process, these

derivatives were approximated numerically using the central difference formula.
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Next, we used RIOTS 95 to determine D-optimal sensor trajectories in accordance

with the Wynn-Fedorov algorithm. The dynamics of the sensor mobility platform follow

the following single integrator kinematic model

ẋjs(t) = ujs(t), xjs(0) = xjs0, (3.34)

and additional constraints

|ujsi(t)| ≤ 0.7, ∀t ∈ T, i = 1, . . . , 6, (3.35)

restricting the maximum mobile sensor velocity components are imposed on the controls.

Our goal is to design their trajectories so as to obtain the best possible estimates of θ1, θ2,

and θ3.

A program was implemented using a low-end PC (AMD Athlon 3800+, 2GB RAM)

running on Windows XP and Matlab 701 (R2006a). We run the program twice with

four iterations and 200 randomly chosen initial positions for each iteration. Each run took

between 10 and 45 seconds for each initial position. This is necessary if we wish to get an

approximation to a global maximum in Step 2 of the Wynn-Fedorov algorithm. This is a

trade-off between the computation time and the number of possible initial positions.

Figures 3.1 and 3.3 present the results obtained for these two simulations. The initial

sensor positions are marked with open circles, and the sensors positions at the consecutive

points of the time grid are marked with dots. When available, weights are inserted inside

the figures, each weight being positioned by its respective trajectory.

The first run gives two different trajectories with weights of 0.54807 and 0.45193. Based

on the generalized weighted LS criterion each weight can be interpreted in terms of an

experimental cost, which is inversely proportional to the variance of the observation error

along a given trajectory. Thus we may think of the weights as the cost related, e.g., to

the sensitivity of the measurement devices. Following this interpretation, we should spent

approximately 55% of total experimental costs to assure more accurate sensor for the first
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trajectory, and approximately 45% to the second trajectory, which requires less sensitive

sensor. In contrary, the second run results in three distinct trajectories with weights of

0.44464, 0.34726, and 0.2081 (cf. fig. 3.3). However, combining second and third trajectories

together with the total weight 0.55536, we can observe that this solution is quite similar to

the previous one with only two distinct sensor paths. The differences can be explained in

terms of the suboptimality of the solutions for the internal problem in Step 2 of the Wynn-

Fedorov algorithm (in order to assure the compromise between the computational burden

and the quality of solution, in practice we are satisfied with fairly good approximation to

the global optimum). Thus, in both simulations we come up with only different suboptimal

solutions to our problem, but with acceptable quality in the practical sense. The obtained

Fisher information matrices are

M(1) =


124.3815 68.0614 25.7666

68.0614 41.5653 13.4240

25.7666 13.4240 8.7691

 , (3.36)

M(2) =


130.0149 72.3503 26.6154

72.3503 44.2181 14.1798

26.6154 14.1798 8.6267

 , (3.37)

with the criterion values Ψ equal to 7.4888 and 7.3672, respectively.

For comparison, we also present the results obtained using the technique for D-optimum

trajectories of homogeneous moving sensors [77] (figs. 3.2 and 3.4). This strategy is similar

to ours but does not use weights in the computation of the FIM (or more precisely, the

weights are fixed and assumed to be equal for each trajectory). Results for heterogeneous

sensors are shown in fig. 3.1 (two mobile sensors) and fig. 3.3 (three mobile sensors).
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Fig. 3.1: Optimal trajectory of two mobile sensors using weighted D-optimality criterion
(Ψ = 7.4888).
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Fig. 3.2: Optimal trajectory of two mobile sensors using standard D-optimality criterion
(Ψ = 7.4017).
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Fig. 3.3: Optimal trajectory of three mobile sensors using weighted D-optimality criterion
(Ψ = 7.3672).
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Fig. 3.4: Optimal trajectory of three mobile sensors using standard D-optimality criterion
(Ψ = 7.4959).
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3.7 Optimal Measurement Problem in the Average Sense

3.7.1 A Limitation of the Design of Optimal Sensing Policies for Parameter

Estimation

As mentioned in sec. 2.4, one of the main practical issues in optimal sensing policies is

the dependence of the policy on the assumed values of the parameters estimates. In most of

the literature, the traditional approach is to consider a prior estimate θ0 of the true value of

the parameters. But in practice, θ0 can be very far from the true value θtrue and a sensing

policy designed for θ0 can be a poor fit for θtrue.

One of the solutions described in the literature [77, 79] consists of creating an optimal

sensing policy in the average sense. Such sensing policy is based on the fact that the

true value of the parameters θtrue belongs to the known compact set Θad. An average

sensing policy can be obtained such that its performance is good enough for any θ ∈ Θad.

Another solution that will be presented in Chapter 5 is to create a finite-horizon control

(FHC)-related method, where the sensing policy is divided into sub-policies. During each

sub-experiment, an optimal sensing policy is determined based on the available parameter

estimate and the measurements taken are used to refine the value of the parameter estimates.

3.7.2 Problem Definition

When considering bounded parameter values, the optimal sensing policy problem can

be defined by reformulating the FIM in the following way:

M =
N∑
j=1

∫
T
g(xjs(t), t)g

T(xjs(t), t) dt, (3.38)

where

g(x, t) =

∫
Θad

∇y(x, t;θ)dθ, (3.39)

denotes the vector of the so-called sensitivity coefficients in the average sense. We can

observe that contrarily to the previous definition (3.8), this one does not depend one a
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specific set of parameters θ0 but on the whole set of possible parameter values.

The purpose of the optimal measurement problem is to determine the forces (controls)

applied to each vehicle, which minimize the design criterion Ψ(·) defined on the FIMs of the

form (3.38), which are determined unequivocally by the corresponding trajectories, subject

to constraints on the magnitude of the controls and induced state constraints. To increase

the degree of optimality, our approach considers s0 as a control parameter vector to be

optimized in addition to the control function us.

Given the above formulation we can cast the optimal measurement policy problem as

the following optimization problem: Find the pair (s0,us) which minimizes

J (s0,us) = Φ [M(s)] , (3.40)

over the set of feasible pairs

P = {(s0,us) |us : T → Rr is measurable, (3.41)

usl ≤ us(t) ≤ usu a.e. on T , s0 ∈ Ωad} ,

subject to the constraint (3.14).

3.7.3 An Illustrative Example

In this section, we consider the following two-dimensional diffusion equation similar to

(3.31)

∂y

∂t
= ∇ · (κ∇y) + 20exp(−50(x1 − t)2), (3.42)

for x = [x1 x2]T ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial and Dirich-

let boundary conditions. The spatial distribution of the diffusion coefficient is assumed to

have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (3.43)

In this example, we chosen value intervals for the parameter are θ1 ∈ [0.1; 0.7], θ2 ∈ [0.2, 0.6],
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and θ3 ∈ [0.5; 1.0], which are assumed to be known prior to the experiment. The dynamics

of the mobile sensors follow the single integrator kinematic model

ẋjs(t) = ujs(t), xjs(0) = xjs0, (3.44)

and additional constraints

|ujsi(t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , N, i = 1, . . . , 2. (3.45)

Our goal is to design their trajectories so as to obtain possibly the best estimates of θ1, θ2,

and θ3 in the average sense.

In order to avoid getting stuck in a local minimum, computations were repeated several

times from different initial solutions. Figure 3.5 present the resulting trajectories for the

best run. Steering signals for both sensor and actuator are displayed in fig. 3.6.

For illustration purpose, the problem is solved for several particular values of the param-

eters. The resulting trajectories for the median values (θ1 = 0.4, θ2 = 0.4, and θ3 = 0.75)

can be observed in fig. 3.7, lower values (θ1 = 0.1, θ2 = 0.2, and θ3 = 0.5) in fig. 3.8, and

upper values θ1 = 0.7, θ2 = 0.6, and θ3 = 1.0) in fig. 3.9. It is important to notice that

the obtained results include cases where two sensors have the same trajectories. It is due

to the uncorrelated nature of the measurement noise. From its definition, two collocated

sensors could potentially provide more information than sensors with different trajectories.

3.8 Chapter Summary

The results in this chapter show that some well-known methods of optimum experi-

mental design for linear regression models can be applied to the setting of the mobile sensor

trajectory design problem for optimal parameter estimation of DPSs in case we wish to si-

multaneously optimize the number of sensors and their trajectories, as well as to optimally

allocate the experimental effort. The latter is understood here as allowing for different

measurement accuracies of individual sensors, which are quantified by weights steering the
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Fig. 3.5: Average D-optimal trajectories of a team of three sensors (two of them are col-
located). The initial positions are marked with open circles, and the final positions are
designated by triangles.

corresponding measurement variances. This leads to a much more general setting which

most frequently produces an uneven allocation of experimental effort between different sen-

sors. This remains in contrast with the existing approaches. The corresponding solutions

proposed in this chapter could obviously be implemented on a sensor network with het-

erogeneous mobile nodes. We demonstrate that these solutions can be determined using

convex optimization tools commonly employed in optimum experimental design and show

how to apply numerical tools of optimal control to determine the optimal solutions.

We also introduced the design of moving sensor optimal trajectories which does not

rely on initial estimates of the parameters but instead is based on knowledge of upper and

lower bounds of the parameter values. In most research, the issue of initial estimates has

been widely disregarded. Here, instead of using stochastic approximation algorithms for

the search, we chose to rely on using the sensitivity coefficients in the average sense.
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(b) Control inputs of the second sensor
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(c) Control inputs of the third sensor

Fig. 3.6: Control inputs of the mobile sensors.
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Fig. 3.7: D-optimal trajectories of a team of three sensors for intermediate parameter values.
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Fig. 3.8: D-optimal trajectories of a team of three sensors for parameter values at the
lower-bound.
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Fig. 3.9: D-optimal trajectories of a team of three sensors for parameter values at the
upper-bound.
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Chapter 4

Optimal Mobile Remote Sensing Policies

We consider the case of an application where the use of mobile ground sensors is

not practical or even feasible. For example when the domain of interest is not smooth.

Under those conditions, we are required to use mobile remote sensors, and therefore it is

important to extend the framework of optimal mobile sensing policies to take into account

the eventuality of remote sensing.

4.1 Introduction

4.1.1 Literature Review

The juxtaposition of “real-life” physical systems and communication networks has

brought to light a new generation of engineered systems: Cyber-Physical Systems (CPS) [2].

A definition of CPS was given in the following way [7]: “Computational thinking and in-

tegration of computation around the physical dynamic systems form CPS where sensing,

decision, actuation, computation, networking, and physical processes are mixed.” Given its

recent emergence and wide array of applications, the topic and study of CPS is believed

to become a highly researched area in the years to come including its conferences [12, 13]

and journals [116]. “Applications of CPS arguably have the potential to dwarf the 20th

century IT revolution” [16]. The application of CPS are numerous and include medical de-

vices and systems, patient monitoring devices, automotive and air traffic control, advanced

automotive systems, process control, environmental monitoring, avionics, instrumentation,

oil refineries, water usage control, cooperative robotics, manufacturing control, smart build-

ings, etc.
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Within these potential applications, the one we are interested in falls into the environ-

mental monitoring category. It is believed that applying remote sensing can help determine

the evapotranspiration of a given agricultural field, and hence give improved information on

crop condition and yield to perform better irrigation control. In the same vein of research,

remote sensing can offer information correlated to the water stress level of the crops [117].

Remote sensing could provide important information to the farmers or even be use as feed-

back for a more real-time large scale irrigation control algorithm. Our on-going project

consists of developing unmanned air vehicles (UAVs) equipped with multispectral aerial

imagers to develop such control algorithm [56].

In the considered framework, the system is a distributed parameter system (DPS), that

is to say the states are evolving along both time and space. Consequently, the traditional

finite-dimensional input-output relationships have to be put aside and partial differential

equations (PDEs) have to be used to model the system. This increased complexity of he

system leads to challenging problems. Whereas the location of sensors is rather straightfor-

ward when considering a finite dimensional system, determining where measurement should

be done is not a straightforward task in a DPS. One needs to consider the location of the

sensors so that the gathered information best helps the parameter estimation. Therefore,

it is a necessity to develop systematic approaches in order to increase the efficiency of PDE

parameter estimation techniques.

The problem of sensor location in DPS has been studied before as one can find in review

papers [77, 118]. So far, the literature has limited the movements of the sensors within

the domain of the distributed parameter system. However, with the emergence of remote

sensing, we should extend the framework to mirror this new way of taking measurements.

Our main motivation comes from our own projects [119]. With the help of small UAVs, we

are capable of taking pictures and obtain information on the amount of soil-moisture on

a specific plot of land. Such UAVs could also be used to gather information on soil water

dynamics and help for better prediction of soil-moisture. This approach is reflected in the

illustrative example used later in this chapter.
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4.1.2 Problem Formulation for PDE Parameter Estimation

Consider a distributed parameter system (DPS) described by the partial differential

equation

∂y

∂t
= F

(
x, t, y,θ

)
in Ωsys × T , (4.1)

with initial and boundary conditions

B(x, t, y,θ) = 0 on Γsys × T, (4.2)

y = y0 in Ωsys × {t = 0}, (4.3)

where y(x, t) stands for the scalar state at a spatial point x ∈ Ω̄sys ⊂ Rn and the time instant

t ∈ T̄ . Ωsys ⊂ Rn is a bounded spatial domain with sufficiently smooth boundary Γ, and

T = (0, tf ] is a bounded time interval. F is assumed to be a known, well-posed, possibly

nonlinear, differential operator which includes first- and second-order spatial derivatives,

and includes terms for forcing inputs. B is a known operator acting on the boundary Γ and

y0 = y0(x) is a given function.

We assume that the state y depends on the parameter vector θ ∈ Rm of unknown

parameters to be determined from measurements made by N moving sensors. Those mobile

sensors are assumed to ambulate in a spatial domain Ωsens 6= Ωsys. The sensors are able

to remotely take measurements in Ωmeas ⊂ Ωsys over the observation horizon T . We call

xjs : T → Ωsens the position/trajectory of the j-th sensor, where Ωsens is a compact set

representing the domain where the sensors can move. We call zjs : T → Ω the collection

of measurements in Ωmeas where the j-th sensor is observing. We assume that a function

fmeas : Ωsens → Ωmeas linking the position of the sensor and measurements exists. The

observations for the j-th sensor are assumed to be of the form

zjs(t) = y(fmeas(x
j
s(t)), t) + ε(fmeas(x

j
s(t)), t), t ∈ T, j = 1, . . . , N, (4.4)
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where ε represents the measurement noise assumed to be white, zero-mean, Gaussian, and

spatial uncorrelated with the following statistics

E
{
ε(fmeas(x

j
s(t)), t)ε(fmeas(x

i
s(t
′)), t′)

}
= σ2δjiδ(t− t′), (4.5)

where σ2 stands for the standard deviation of the measurement noise, δij and δ( · ) are the

Kronecker and Dirac delta functions, respectively.

With the above settings, the optimal parameter estimation problem is formulated as

follows: Given the model (4.1)–(4.3) and the measurements zjs from the sensors xjs, j =

1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being the set of admissible parameters)

of the parameter vector which minimizes the generalized output least-squares fit-to-data

functional given by

θ̂ = arg min
ϑ∈Θad

N∑
j=1

∫
T

[
zjs(t)− ŷ(fmeas(x

j
s(t)), t;ϑ)

]2
dt, (4.6)

where ŷ is the solution of (4.1)–(4.3) with θ replaced by ϑ.

By observing (4.6), it is possible to foresee that the parameter estimate θ̂ depends on

the number of sensors N and the mobile sensor trajectories xjs. This fact triggered the

research on the topic and explains why the literature so far focused on optimizing both the

number of sensors and their trajectories. The intent was to select these design variables so as

to produce best estimates of the system parameters after performing the actual experiment.

Since our approach is based on the methodology developed for optimal sensor location

[77, 120], we display it here as a theoretical introduction. In order to achieve optimal

sensor location, some quality measure of sensor configurations based on the accuracy of the

parameter estimates obtained from the observations is required. Such a measure is usually

related to the concept of the Fisher Information Matrix (FIM), which is frequently referred

to in the theory of optimal experimental design for lumped parameter systems [102]. Its

inverse constitutes an approximation of the covariance matrix for the estimate of θ. Given

the assumed statistics of the measurement noise, the FIM has the following representation



70

[77,104]:

M =
N∑
j=1

∫
T
g(fmeas(x

j
s(t)), t)g

T(fmeas(x
j
s(t)), t) dt, (4.7)

where

g(x, t) = ∇ϑy(x, t;ϑ)
∣∣
ϑ=θ0

, (4.8)

denotes the vector of the so-called sensitivity coefficients, θ0 being a prior estimate to the

unknown parameter vector θ [77, 78].

As mentioned earlier, the FIM in its matrix format cannot be used directly in an

optimization. Therefore, we have to rely on some scalar function Ψ of the FIM to perform

the optimization. As described in sec. 2.4 there are several candidates and we choose the

D-optimality criterion defined as

Ψ[M ] = − log det(M). (4.9)

4.2 Optimal Measurement Problem

4.2.1 Mobile Sensor Model

Sensor Dynamics

We assume that the sensing devices are equipped on vehicles whose dynamics can be

described by the following differential equation

ẋjs(t) = f(xjs(t),u
j
s(t)) a.e. on T , xjs(0) = xjs0. (4.10)

With this nomenclature, the function f : RN × Rrs → RN has to be continuously

differentiable, the vector xjs0 ∈ RN represents the initial disposition of the j-th sensor, and

us : T → Rrs is a measurable control function satisfying the following inequality

usl ≤ us(t) ≤ usu a.e. on T, (4.11)
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for some known constant vectors usl and usu. Let us introduce,

s(t) =
(
x1
s(t),x

2
s(t), . . . ,x

N
s (t)

)T
, (4.12)

where xjs : T → Ωsens is the trajectory of the j-th sensor.

Mobility Constrains

We assume that all the mobile nodes equipped with sensors are confined within an

admissible region ΩsensAD (a given compact set) where the sensors are allowed to travel.

ΩsensAD can be conveniently defined as

ΩsensAD = {x ∈ Ωsens : bsi(x) = 0, i = 1, ..., I}, (4.13)

where the bsi functions are known continuously differentiable. That is to say that the

following constraints have to be satisfied:

hij(s(t)) = bsi(x
j
s(t)) ≤ 0,∀t ∈ T, (4.14)

where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we reformulate the conditions

described in (4.14) in the following way:

γsl(s(t)) ≤ 0, ∀t ∈ T, (4.15)

where γsl, l = 1, ..., ν tally with (4.14), ν = I × N . It would be possible to consider addi-

tional constraints on the path of the vehicles such as specific dynamics, collision avoidance,

communication range maintenance, and any other conceivable constrains.

Remote Sensing Constraints

As mentioned earlier, we assume that the sensors are capable of taking measurements

in Ωsys, while being physically in Ωsens. For that purpose, we introduce a remote sensing
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function f giving the location of the measurement based on the location of the sensor.

Similarly to path constraints, we assume that the remote sensing is only allowed within an

admissible region ΩmeasAD where the measurements are possible. The constraints on remote

sensing can be defined as constraints on measurement location and then transformed into

mobility ones. We can define ΩmeasAD as

ΩmeasAD = {x ∈ Ωsens : bmi(fmeas(x)) = 0, i = 1, ..., I}, (4.16)

where the bmi functions have the same properties as bsi. Similarly, we can regroup the

remote sensing constraints into an inequality

γml(s(t)) ≤ 0,∀t ∈ T. (4.17)

Remark: For our project [56], UAVs equipped with multispectral imagers are used for

collecting aerial images of agricultural fields. The purpose of remote sensing is to gather

data about the ground surface while avoiding to come in contact with it. Multispectral

imagers can generate an image for each different wavelength bands ranging from visible

spectra to infra-red or thermal band for various applications. Having such a diverse and

wide range of wavelengths allow for a better analysis of the ground surface properties. Under

such circumstances, the domain where the sensors ambulate (space), is different from the

domain where measurements are taken (ground). The constraints on mobility (such as

collision avoidance between UAVs and/or environment) are different from the constraints

on remote sensing (such as maintaining the images within the domain of interest that is the

crop field).

4.2.2 Problem Definition

The purpose of the optimal measurement problem is to determine the forces (controls)

applied to each vehicle, which minimize the design criterion Ψ(·) defined on the FIMs of the

form (4.7), which are determined unequivocally by the corresponding trajectories, subject
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to constraints on the magnitude of the controls and the imposed state constraints. To

increase the degree of optimality, our approach considers s(0) = s0 as a control parameter

vector to be optimized in addition to the control function us.

Given the above formulation we can cast the optimal measurement policy problem as

the following optimization problem: Find the pair (s0,us) which minimizes

J (s0,us) = Φ [M(s)] , (4.18)

over the set of feasible pairs

P = {(s0, us) |u : T → Rr is measurable, (4.19)

usl ≤ us(t) ≤ usu a.e. on T , s0 ∈ Ωsens} ,

subject to the constrains (4.15) and (4.17).

The solution to this problem can hardly have an analytical solution. It is therefore

necessary to rely on numerical techniques to solve the problem. A wide variety of tech-

niques are available [113]. However, the problem can be reformulated as the classical Mayer

problem where the performance index is defined only via terminal values of state variables.

4.3 Optimal Control Formulation

In this section, the problem is converted into a canonical optimal control one making

possible the use of existing optimal control problems solvers such as RIOTS 95.

To simplify our presentation, we define the function svec : Sm → Rm(m+1)/2, where Sm

denotes the subspace of all symmetric matrices in Rm×m that takes the lower triangular

part (the elements only on the main diagonal and below) of a symmetric matrix A and
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stacks them into a vector a:

a = svec(A) (4.20)

= col[A11, A21, . . . , Am1, A22, ...

A32, . . . , Am2, . . . , Amm]. (4.21)

Reciprocally, let A = Smat(a) be a symmetric matrix such that svec(Smat(a)) = a for any

a ∈ Rm(m+1)/2.

Consider the matrix-valued function

Π(s(t), t) =

N∑
j=1

g(fmeas(x
j
s(t)), t)g

T (fmeas(x
j
s(t)), t). (4.22)

Setting r : T → Rm(m+1)/2 as the solution of the differential equations

ṙ(t) = svec(Π(s(t), t)), r(0) = 0, (4.23)

we obtain

M(s) = Smat(r(tf )), (4.24)

i.e., minimization of Φ[M(s)] thus reduces to minimization of a function of the terminal

value of the solution to (4.23). We introduce an augmented state vector

q(t) =

 s(t)
r(t)

 , (4.25)

with

q0 = q(0) =

 s0

0

 . (4.26)
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Then the equivalent canonical optimal control problem consists in finding a pair (q0,us) ∈ P̄

which minimizes the performance index

J̄(q0,us) = φ(q(tf )), (4.27)

subject to 

q̇(t) = φ(q(t),us(t), t)

q(0) = q0

γ̄sl(q(t)) ≤ 0

γ̄ml(q(t)) ≤ 0

, (4.28)

where

P̄ = {(q0,u) |u : T → Rr is measurable, (4.29)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩM
sens

}
,

and

φ(q,u, t) =

 f(s(t),u(t))

svec(Π(s(t), t))

 , (4.30)

γ̄sl(q(t)) = γsl(s(t)), (4.31)

γ̄ml(q(t)) = γml(s(t)). (4.32)

The problem formulated above is clearly in normal form which can be solved with

readily available software packages for solving dynamic optimization problems numerically.

A non-exhaustive list of such packages includes RIOTS 95 [61], DIRCOL [62], and MISER

[63]. Like in most of our work, we use RIOTS 95 [121], which is designed as a MATLAB

toolbox written mostly in C and runs under Windows 98/2000/XP/vista and Linux.

4.4 An Illustrative Example

In this section, we use a simple example to illustrate the method developed earlier
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in this chapter. The system we consider here consists of the following two-dimensional

diffusion equation

∂y(x, t)

∂t
= ∇ · (κ∇y(x, t)) + 20exp(−50(x1 − t)2), (4.33)

for x = [x1 x2]T ∈ Ωsys = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial

and Dirichlet boundary conditions. The spatial distribution of the diffusion coefficient is

assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (4.34)

In this example, the guessed values of the diffusion coefficient parameters (which we want

to estimate) are θ0
1 = 0.1, θ0

2 = −0.05, and θ0
3 = 0.2. They are assumed to be known prior

to the experiment. The dynamics of the mobile sensors follow the given dynamical model

ẋs
j(t) = ujs(t), xjs(0) = xjs0, (4.35)

for xjs = [xjs1 x
j
s2 x

j
s3]T ∈ Ωsens = (0, 1)3, with additional constraints

|uji (t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , N, i = 1, 2, (4.36)

|uji (t)| ≤ 0.2, ∀t ∈ T, j = 1, . . . , N, i = 3. (4.37)

We can notice that Ωsens is of dimension 3 and Ωsys is of dimension 2, and that Ωsys lies in

the boundary of Ωsens. The remote sensing function fmeas is defined in a way that is very

similar to a downward looking camera mounted on an unmanned air vehicle. We assume

that the mobile node’s attitude is determined by an orthogonal basis directed by the control

input ujs. u
j
s gives us the direction the robot is facing, the second axis is taken parallel to

the x3 = 0 plane and the third axis is obtained by completing the orthogonal basis in a

direct way. The obtained basis is {ej1, ej2, ej3}, with ej1 = ujs. The view vector of the j-th

sensor is taken as −ej3 which can be seen as a camera facing downward. The vertical field

of view is chosen as π
3 and the horizontal field of view is taken as π

2 . Since we decided to
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model our remote sensor as a camera, we choose a resolution of 3 × 3. Measurements are

taken at the intersection of the field of view and Ωsys. To give the reader a better insight

of the remote sensing function, we provide a visual description in fig. 4.1. The orthogonal

basis is in black, the view vector is represented by a red line and the visual footprint is

represented by a blue trapezoid.

The purpose of our optimization is to obtain the trajectories of a team of three sensors

so as to determine the best possible estimates of the parameters θ1, θ2, and θ3.

Since the sensing function is not pointwise, we reformulate (4.8) for our illustrative

example.

g(x, t) =

res∑
i=1

res∑
j=1

∇ϑy(xij , t;ϑ)
∣∣
ϑ=θ0

/res2, (4.38)

where res stands for the resolution of the sensor (three in our case). In addition, to pre-

vent the mobile nodes from intersecting with the systems’s domain Ωsys, which would be

equivalent to a crash, the optimality criteria is reformulated as

J (s0,u) = Φ [M(s)] +
1

|x3|
. (4.39)

The implementation of the methodology in RIOTS 95 for this example is given in

Appendix C.1. The resulting optimal trajectory of one mobile sensor can be observed in

fig. 4.2. The results for a team of two sensors is displayed in fig. 4.3, and the case for three

sensors is given in fig. 4.4.

4.5 Chapter Summary

We have extended the existing framework of the design of mobile sensor trajectories

which minimizes the volume of the confidence ellipsoid for the estimates to the emerging

field of remote sensing. For that purpose, we introduced a remote sensing function linking

the mobility domain and the sensing domain. It is important to notice that the introduced

formulation can still be transformed into a canonical optimal control problem. This refor-

mulation allows the problem to be solved by the MATLAB toolbox RIOTS 95, a collection
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Fig. 4.1: Illustration of the remote sensing function.
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Fig. 4.2: D-optimal trajectory of one mobile remote sensor. The initial positions are marked
with open circles and the final positions are designated by triangles. The measured area is
delineated by a blue trapezoid.
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Fig. 4.3: D-optimal trajectories of two mobile remote sensors. The initial positions are
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Fig. 4.4: D-optimal trajectories of three mobile remote sensors. The initial positions are
marked with open circles and the final positions are designated by triangles. The measured
area is delineated by a blue trapezoid.
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of routines capable of solving a large class of finite-time optimal control problems, with the

help of the MATLAB Partial Differential Equation Toolbox. The method was then applied

to an illustrative example to demonstrate its applicability.

This remote sensing policy framework is becoming more important by the day, because

of the growing interest of the scientific community (especially in earth sciences) of using

unmanned aerial platforms for collecting ground data. The remote sensing framework will

be considered again in Chapter 8 but to solve the problem of downscaling surface soil

moisture data.



81

Chapter 5

Online Optimal Mobile Sensing Policies - Finite Horizon

Control Framework

This chapter is dedicated to the “online” solution to the problem of the sensitivity of

optimal sensing policies to initial parameter estimates.

5.1 Introduction

The work we present here enters the category of what is called “robust designs” [77].

The major problem with optimization of sensors locations is the dependence of the solution

on the real values of the parameters to be estimated as illustrated in sec. 2.4. In general, this

problem is solved by using a prior estimate of the parameter instead of the real value. In

some cases, it may occur that this initial guess is very far from the real value and therefore

the “optimal” solution obtained is far from the real optimum. Different approaches were

introduced to remove this initial guess from the equation. The envisioned designs fall in

four categories: sequential designs, optimal designs in the average sense, optimal designs

in the minimax sense, and the use of randomized algorithms [77]. Most work on the topic

was based on stochastic approximation algorithms [122–125] to limit the computational

burden. With the rapid growth of computer power available, computationally intensive

approaches are more and more viable. In addition, since those methods are based on offline

computations, as long as the duration is reasonable they do not present a major burden.

For the first time, we solved this problem by a proposed optimal interlaced mobile sensor

motion planning and parameter estimation [126]. The problem formulation is given in detail

with a numerical solution for generating and refining the mobile sensor motion trajectories

for parameter estimation of the distributed parameter system. The basic idea is to use the

finite horizon control type of scheme. First, the optimal trajectories are computed in a finite
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time horizon based on the assumed parameter values. For the following time horizon, the

parameters of the distributed parameter system are estimated using the measured data in

the previous time horizon, and the optimal trajectories are updated accordingly based on

these estimated parameters obtained. Simulations are offered to illustrate the advantages

of the proposed interlaced method over the non-interlaced techniques. We call the proposed

scheme “online” or “real-time” which offers practical solutions to optimal measurement and

estimation of a distributed parameter system when mobile sensors are used. It should be

mentioned that this “online” problem has been recognized as an “extremely important”

research effort [120].

We continue the type of research problem involving optimal interlaced mobile sensor

motion planning and parameter estimation [126]. We introduce communication topologies

into the framework and study their influence on the behavior of the team of mobile sensors.

5.2 Optimal Mobile Sensing Policy for Parameter Estimation of Distributed

Parameter Systems: Finite Horizon Closed-Loop Solution

5.2.1 A DPS and Its Mobile Sensors

To get ready for simulation demonstration, let us start with a generic DPS model

describing a diffusion process with unknown parameters. Then, we define the mobile sensors

used for taking measurements of this system. Our ultimate goal is to best identify the

unknown DPS parameters using these mobile sensors.

The model used for a specific diffusion process is the same as in other research papers

[127] except that the parameters are now assumed unknown. This allows us to compare the

results between different estimation techniques.
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The dynamics of the system under consideration are defined by

∂y(x1, x2, t)

∂t
=

∂

∂x1
(κ(x1, x2)

∂y(x1, x2, t)

∂x1
)

+
∂

∂x2
(κ(x1, x2)

∂y(x1, x2, t)

∂x2
)

+ 20exp(−50(x1 − t)2),

(x1, x2) ∈ Ω = (0, 1)× (0, 1), t ∈ T,

y(x1, x2, 0) = 0,

y(x1, x2, t) = 0,

T = {t|t ∈ (0, 1)},

κ = θ1 + θ2x1 + θ3x2,

θ1 = 0.1, θ2 = 0.6, θ3 = 0.8,

where y(x1, x2, t) is the concentration of the considered diffusing substance, κ(x1, x2) is the

diffusion coefficient for the spatial coordinate (x1, x2); t is the time and θ1, θ2, and θ3 are

the unknown values of the parameters to be estimated. The assigned values for θ1, θ2, and

θ3 are just for simulation comparison purpose.

5.2.2 Interlaced Optimal Trajectory Planning

Optimal Trajectory Planning

In order to solve the problem, we need to reformulate the problem in the optimal

control framework. The solver used for this optimal control problem is called RIOTS [61].

RIOTS stands for “recursive integration optimal trajectory solver.” It is a Matlab toolbox

programmed to solve a very broad class of optimal control problems. Our optimal trajectory

planning problem can be solved using the RIOTS toolbox if rephrased as follows [61]:

min
(u,ξ)∈L2N∞[t0,tf ]×RK

J(u, ξ), (5.1)
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where

J(u, ξ) = g0(ξ,x(tf )) +

∫ tf

t0

l0(x, t, u)dt, (5.2)

and is subject to the following conditions and constraints

ẋ = h(x, t, τ),

x(t0) = ξ, t ∈ [t0, tf ],

u
(j)
min(t) ≤ u(j)(t) ≤ u(j)

max(t), j = 1, ..., N, t ∈ [t0, tf ],

ξ
(j)
min(t) ≤ ξ(j)(t) ≤ ξ(j)

max(t), j = 1, ...,K, t ∈ [t0, tf ],

lti(x(t), t, τ(t)) ≤ 0, t ∈ [t0, tf ],

gei(ξ,x(tf )) ≤ 0, gee(ξ,x(tf )) = 0.

In the case of our optimal trajectory planning problem, ẋ = h(t,x, u) = Ax+Bu. Instead

of defining l0(ξ,x(tf )) = Ψ(M), we choose to define g0(ξ,x(tf)) =
∫ tf
t0

Ψ(M)dt, in order

to lower the amount of calculations. The reformulation is achieved by using the “Mayer

equivalent problem” technique described in sec. 4.3.

Measurements and Parameters Estimation

Once the optimal trajectories have been computed, the measurements are done as

described in sec. 3.2. However, the observations are completed until the end of the finite

horizon for which the trajectory was computed. Instead, after a fraction of the horizon, the

data gathered so far are used to refine the estimation of the parameters values.

In order to determine refined values of the parameters, we use the Matlab command

“lsqnonlin,” a routine for solving nonlinear least squares problems and especially for our

case, the least squares fitting problems. “lsqnonlin” allows the user to incorporate own

function to compute. In our problem, the input of the function is a set of parameters as

well as the measurements and the output is the error between the measurement and the
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simulated value of the measurement for the set of parameters.

min
θ

=
1

2

N∑
i=1

fi(θ)2, (5.3)

with

fi(θ) = zi(t0, ..., tk) (5.4)

−H(y(xis(t0, ..., tk), t0, ..., tk;θ),xis(t0, ..., tk), t0, ..., tk).

Prior to the experiment, we determine the value of the state y(x, t,θ) for a set of parameter

value θ ∈ Θad in an offline manner. We assume that the state variations between two

values of a parameter are linear enough to allow interpolation. Using this database ob-

tained “offline” allows faster computation of the function to be called by the optimization

algorithm.

Summary of The Interlaced Scheme

Let us summarize the interlaced strategy step by step.

1. Given a set of parameters θ̂ for the DPS (its initial value being given prior to the first

iteration), we design an optimal experiment, i.e., optimal trajectories for the mobile

sensors to follow.

2. The sensors takes measurements along their individually assigned trajectories. Measure-

ments are simulated taking the real value of the state along the trajectory and adding

zero-mean white noise.

3. Measurement data are used to refine the estimate of the parameters using an optimization

routine such as “lsqnonlin.” The optimization routine computes the parameters such

that the difference between the measurements and the simulated values of the state along

the trajectory is minimized. Go back to Step 1.

The above algorithm is illustrated in fig. 5.1.
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Fig. 5.1: The interlaced scheme illustrated.

5.2.3 Illustrative Simulations

We focus our attention on the performance of the methodology. The experiment is

ran for different noise statistics and for each case results are given in the form of sensor

trajectories and parameter estimates. For case 1, σ = 0.0001; for case 2, σ = 0.001;

and for case 3, σ = 0.01. In all cases, we consider three mobile sensors. The control of

the mobile sensors u is limited between −0.7 and 0.7. All three sensors have fixed initial

positions(x1(0) = (0.1, 0.1), x2(0) = (0.1, 0.5), and x3(0) = (0.1, 0.9)). The results for the

previously defined case are respectively given in fig. 5.2 for Case 1, in fig. 5.3 for Case 2,

and in fig. 5.4 for Case 3. For each figure, subfigure (a) gives the sensor trajectories, the

evolution of the estimates is shown in (b), and the measurements are given in (c).

From these figures, we have the following observations.

• In all the cases, the sensors have similar trajectories as they try to follow the excitation

wave along the x1 axis 20 exp(−50(x1 − t)2).

• For low noise amplitude (Cases 1 and 2), the experiment is long enough to obtain

good estimates of the parameters. In Case 3, the experiment is not long enough to

reach convergence.

• In all cases, we can clearly observe that the trajectories of the mobile sensors change

as the estimated values of the parameters are getting closer to the real values.
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Fig. 5.2: Closed-loop D-optimum experiment for σ = 0.0001.
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Fig. 5.3: Closed-loop D-optimum experiment for σ = 0.001.
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Fig. 5.4: Closed-loop D-optimum experiment for σ = 0.01.
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5.2.4 A Second Illustrative Example

We use the same DPS as earlier, but we consider the mobile remote sensing problem

from Chapter 4. The dynamics of the mobile sensors follow the same dynamical model

ẋs
j(t) = ujs(t), xjs(0) = xjs0, (5.5)

for x = [x1 x2 x3]T ∈ Ωsens = (0, 1)3 and additional constraints

|uji (t)| ≤ 0.6, ∀t ∈ T, j = 1, . . . , 2, i = 1, 2, (5.6)

|uji (t)| ≤ 0.2, ∀t ∈ T, j = 1, . . . .N, i = 3. (5.7)

The remote sensor has a fixed initial position (x1(0) = (0.1, 0.5, 0.1)). The initial estimates

for the parameter values are θ1 = 0.3, θ2 = 0.5, and θ3 = 0.5.

The implementation of the methodology in RIOTS 95 for this example is given in

Appendix C.2. The resulting optimal trajectory of one mobile sensor can be observed in

fig. 5.5 and the evolution of the parameter estimates are given in fig. 5.6.

5.3 Communication Topology in Online Optimal Sensing Policy for Parameter

Estimation of Distributed Parameter Systems

5.3.1 The Interlaced Scheme with Communication Topology

The interlaced strategy when considering communication topology can be described as

follows

1. Given a set of parameters θ̂ for the DPS, and the other sensors current location, each

sensor computes its optimal trajectory.

2. The sensors takes measurements along the path of the obtained trajectory. The data

gathered is then exchanged with other sensors according to a given communication topol-

ogy.
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Fig. 5.5: Closed-loop D-optimal trajectory of one mobile remote sensor. The initial position
is marked with an open circle and the final position is designated by a triangle. The
measured area is delineated by blue trapezoids.
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Fig. 5.6: Evolution of the “online” parameter estimates during the mobile remote sensing.
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3. Measurement data are used to refine the estimate of the parameters using an optimization

routine, and a new set of system’s parameters is obtained.

5.3.2 An Illustrative Example

Here, we use a demonstrative example to illustrate our method. We consider the two-

dimensional diffusion equation:

∂y

∂t
= ∇ · (κ∇y) + F (x, t), (5.8)

for x = [x1 x2]T ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial and

Dirichlet boundary conditions. The actuation function is given by F (x, t) = 20 exp(−50(2 ·

x1 − t)2). We can see that the excitation function F in (5.8) can be described as a source

with a vertical line shape along the x2-axis and moves like a wave with constant speed

from the left to the right boundary of Ω between time [0, 2]. The spatial distribution of the

diffusion coefficient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (5.9)

In this example, the chosen values for the parameter are θ1 = 0.1, θ2 = 0.6, and θ3 = 0.8.

Next, we are using RIOTS 95 to determine time-optimal sensor trajectories. The dynamics

follow the simple model

ẋs(t) = us(t),x(0) = xs0, (5.10)

and the constraints

|usi(t)| ≤ 0.7, ∀t ∈ T, i = 1, ..., 6, (5.11)

imposed on the controls, we are interested in designing their trajectories so as to obtain

estimates of θ1, θ2, and θ3. All three sensors have fixed initial positions(x1
s(0) = (0.1, 0.1),

x2
s(0) = (0.1, 0.5), and x3

s(0) = (0.1, 0.9)). The initial estimates for the parameter values

are θ1 = 0.5, θ2 = 0.5, and θ3 = 0.5.
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We consider five different cases with different communication topologies. These topolo-

gies are detailed in fig. 5.7.

The resulting experiments can be observed in fig. 5.8 to 5.12. In each case, the initial

positions are marked with open circles, and the final positions are designated by triangles.

Sensors communicating with each other have the same color. Each figure contains both the

resulting trajectories and the evolution of the parameters estimates.

We can observe that for all cases, the sensors trajectories follow the trend of the actu-

ation function F . As expected, the communication topology has a great influence on the

experiment outcome. In Case 1, where all three sensors communicate with each other, the

estimates become accurate starting from iteration 5. In Cases 2, 3, and 4, the two sensors

communicating obtain a good estimate from iteration 7 (6 for Case 3), whereas the isolated

sensor is not able to obtain accurate parameter values. In Case 5, the second sensor is

surprisingly able to estimate the system’s parameters accurately from iteration 6. However,

the two other sensors do not converge to the real parameter values.

5.4 Convergence of the Interlaced Scheme

The proof of the convergence of the parameter estimation in the interlaced scheme is

still under investigation. We have identified two directions to follow in the literature that

could provide leads to demonstrate the proof. The first one is linked with the stability in the

model predictive control (MPC) framework [128]. The second comes from the framework

of sequential designs for parameter estimation for linear systems [129]. The first step in the

proof will consist of finding the proper assumptions. The first assumption that has been
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Fig. 5.7: Communication topologies considered for the illustrative example.
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Fig. 5.8: Closed-loop D-optimum experiment for case 1.
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Fig. 5.9: Closed-loop D-optimum experiment for case 2.



95

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

(a) Sensor trajectories

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

iteration
θ

 

 

θ
1

θ
2

θ
3

(b) Parameter estimates

Fig. 5.10: Closed-loop D-optimum experiment for case 3.
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Fig. 5.11: Closed-loop D-optimum experiment for case 4.
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Fig. 5.12: Closed-loop D-optimum experiment for case 5.

identified is the weak persistent excitation condition.

Once the proof of convergence is obtained we will focus on determining the convergence

speed of the interlaced scheme based on the system’s parameters. Then, we will study the

effects of communication topologies on the convergence and its speed. Finally, we will be

able to consider directed communication topologies. The directed communication topologies

are fascinating in the “online” optimal sensing policy framework because the sensors not

only can share their location, but they can also share their measurements, their parameter

estimates, and their trajectories.

5.5 Chapter Summary

We introduced a numerical procedure for optimal sensor-motion scheduling of diffusion

systems for parameter estimation. With the knowledge of the PDE governing a given

DPS, mobile sensors find an initial trajectory to follow and refine the trajectory as their

measurements allows to find a better estimate of the system’s parameters. Using the Matlab

PDE toolbox for the system’s simulations, RIOTS Matlab toolbox for solving the optimal

path-planning problem and Matlab Optimization toolbox for the estimation of the system’s

parameters, we were able to solve this parameter identification problem in an interlaced

manner successfully. Simulation results are presented to show both the advantages of the
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strategy and the convergence of the estimation.

We were able to introduce the concept of communication topology into the framework

of optimal sensor-motion scheduling of diffusion systems for parameter estimation. The

method was successfully applied to an example. Our results show that when the sensors

are not communicating, the lack of information greatly decreases the performance of the

strategy.
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Chapter 6

Optimal Mobile Actuation/Sensing Policies for Parameter

Estimation of Distributed Parameter Systems

So far in this dissertation, our interest has been focused on optimal sensing policies.

But as with any system, the actuation can also provide useful information for the estimation

of parameters when combined with sensors. The main contribution of this chapter is the

introduction of the actuation policy as a design variable in the framework, rather than a

given input.

6.1 Introduction

Determining a rich excitation to increase the relevance of observations and measure-

ments of the states of a distributed parameter system is not a straightforward task. One

needs to consider the actuation capabilities as well as location of the sensors so that the

gathered information best helps the parameter estimation. Therefore, it is a necessity to

develop systematic approaches in order to increase the efficiency of PDE parameter estima-

tors. The problem of sensor location is not new as in, for example, reviews papers [77,118]).

However, the investigation on how to best excite the PDE system for optimal parameter es-

timation has not been attempted so far. This chapter presents a framework for such optimal

mobile actuation policy aiming at optimal parameter estimation of a class of distributed

parameter systems.

In the field of mobile sensor trajectory planning, few approaches have been devel-

oped so far but numerous scenarios have been considered. Rafajówicz [71] investigates the

problem using the determinant of the Fisher Information Matrix (FIM) associated with

the parameters he wants to estimate. However, his results are more of an optimal time-

dependent measure than a trajectory. Uciński reformulates the problem of time-optimal
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path planning into a state-constrained optimal-control one which allows the addition of

different constraints on the dynamics of the mobile sensor [77,78]. Uciński tries to properly

formulate and solve the time-optimal problem for moving sensors which observe the state

of a DPS in order to estimate its parameters [101]. The Turing’s Measure of Conditioning

is used to obtain optimal sensor trajectories [130]. The problem is solved for heteroge-

neous sensors (i.e., with different measurement accuracies) [131]. Limited power resource

is considered [132]. Song adds realistic constraints to the dynamics of the mobile sensor by

considering a differential-drive mobile robot in the framework of the MAS-net Project [127].

The system is considered to have a known sensor setup and mobile actuators are used

to stimulate the system so that measurements from the sensors, possibly mobile, provide

best information for parameter estimation.

Consider a distributed parameter system (DPS) described by the partial differential

equation

∂y

∂t
= F

(
x, t, y,θ

)
in Ω× T , (6.1)

with initial and boundary conditions

B(x, t, y,θ) = 0 on Γ× T, (6.2)

y = y0 in Ω× {t = 0}, (6.3)

where y(x, t) stands for the scalar state at a spatial point x ∈ Ω̄ ⊂ Rn and time instant

t ∈ T̄ . Ω ⊂ Rn is a bounded spatial domain with sufficiently smooth boundary Γ, and

T = (0, tf ] is a bounded time interval. F is assumed to be a known well-posed, possibly

nonlinear, differential operator which includes first- and second-order spatial derivatives

and include terms for forcing inputs. B is an known operator acting on the boundary Γ and

y0 = y0(x) is a given function.

We assume that the state y depends on the unknown parameter vector θ ∈ Rm to

be determined from measurements made by N static or moving pointwise sensors over the

observation horizon T . We call xjs : T → Ωad the position/trajectory of the j-th sensor,
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where Ωad ⊂ Ω ∪ Γ is a compact set representing the domain where measurements are

possible. The observations for the j-th sensor are assumed to be of the form

zj(t) = y(xjs(t), t) + ε(xjs(t), t), t ∈ T, j = 1, . . . , N, (6.4)

where ε represents the measurement noise assumed to be white, zero-mean, Gaussian, and

spatial uncorrelated with the following statistics

E
{
ε(xjs(t), t)ε(x

i
s(t
′), t′)

}
= σ2δjiδ(t− t′), (6.5)

where σ2 stands for the standard deviation of the measurement noise, δij and δ( · ) are the

Kronecker and Dirac delta functions, respectively.

With the above settings [77], the optimal parameter estimation problem is formulated

as follows. Given the model (6.1)–(6.3) and the measurements zj from the sensors xjs,

j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being the set of admissible parameters)

of the parameter vector which minimizes the generalized output least-squares fit-to-data

functional given by

θ̂ = arg min
ϑ∈Θad

N∑
j=1

∫
T

[
zj(t)− y(xjs(t), t;ϑ)

]2
dt, (6.6)

where y is the solution of (6.1)–(6.3) with θ replaced by ϑ.

By observing (6.6), it is possible to foresee that the parameter estimate θ̂ depends on

the number of sensors N and the mobile sensor trajectories xjs. This fact triggered the

research on the topic and explains why the literature so far focused on optimizing both the

number of sensors and their trajectories. The intent was to select these design variables so as

to produce best estimates of the system parameters after performing the actual experiment.

Note that, besides these explicit design variables there exists an implicit one that is

the forcing input in (6.1). Therefore, for given sensor trajectories, our interest here focuses

on designing the optimal forcing input so as to get the most accurate parameter estimates.
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6.2 Optimal Actuation Problem

The optimal actuation problem is very close to the optimal measurement problem in the

sense that both use the sensitivity coefficients as a measure of the quality of the parameter

estimation. However, both problem differ in the following ways.

• The optimal measurement problem assumes that the forcing input in (6.1) is known

whereas the optimal actuation problem attempts to optimize trajectories of mobile

actuators constituting part of the entirety of the forcing input.

• In the optimal actuation problem, the sensors positions/trajectories are known be-

forehand and are not optimized.

6.2.1 Mobile Actuator Model

We assume that the actuators are mounted on vehicles whose dynamics are described

by the following equation:

ẋja(t) = f(xja(t),u
j(t)) a.e. on T , xja(0) = xja0, (6.7)

where the function f : RM × Rr → RM has to be continuously differentiable, xja0 ∈ RM

represents the initial disposition of the actuators, and u : T → Rr is a measurable control

function satisfying the following inequality:

ual ≤ ua(t) ≤ uau a.e. on T, (6.8)

for some constant vectors ual and uau. Let us introduce,

s(t) =
(
x1
a(t),x

2
a(t), . . . ,x

M
a (t)

)
, (6.9)

where xka : T → Ωad is the trajectory of the k-th actuator. We assume that all the vehicles

are confined within an admissible region Ωad (a given compact set) where the actuation is
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possible. Ωad can be conveniently defined as

Ωad = {x ∈ Ω : bi(x) = 0, i = 1, ..., I}, (6.10)

where the bi functions are known continuously differentiable functions. That is to say that

the following constraints have to be satisfied:

hij(s(t)) = bi(x
j
a(t)) ≤ 0,∀t ∈ T, (6.11)

where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we reformulate the conditions

described in (6.11) in the following way

γl(s(t)) ≤ 0, ∀t ∈ T, (6.12)

where γl, l = 1, ..., ν tally with (6.11), ν = I ×N .

The actuation function for the i-th mobile actuator is assumed to have the following

form:

Fi(x, t) = Gi(x,x
i
a, t). (6.13)

6.2.2 Problem Definition

To define the considered problem, we reformulate (6.1)

∂y

∂t
= F

(
x, t, y,θ

)
+

M∑
k=1

Fk
(
x, t
)

in Ω× T , (6.14)

initial and boundary conditions remain unchanged. F may still include forcing inputs terms.

For the framework of optimal actuation, the FIM is given by the following new repre-

sentation:

M(s) =
M∑
k=1

∫
T
h(xka(t), t)dt, (6.15)
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where for the k-th actuator

h(xka(t), t) =
N∑
j=1

g(xka(t),x
j
s(t), t)g

T(xka(t),x
j
s(t), t), (6.16)

and

g(xka(t),x(t), t) =

∫
T
∇ϑy(x(τ), τ ;ϑ)

∣∣
ϑ=θ0

dτ. (6.17)

In (6.17), y is the solution of (6.14) for Fk
(
x, τ

)
= Gi(x,x

i
a, τ)δ(t− τ) for all k ∈ [1, M ].

The purpose of the optimal actuation problem is to determine the forces (controls)

applied to each vehicle conveying an actuator, which minimize the design criterion Ψ(.)

defined on the FIMs of the form (6.15), which are determined by the corresponding trajec-

tories. Our approach considers s0 as a control parameter vector to be optimized in addition

to the control function ua.

Given the above formulation we can cast the optimal actuation policy problem as the

following optimization problem. Find the pair (s0,ua) which minimizes

J (s0,ua) = Φ [M(s)] , (6.18)

over the set of feasible pairs

P =
{

(s0,ua) |ua : T → Rr is measureable, ual ≤ ua(t) ≤ uau a.e. on T , s0 ∈ ΩM
ad

}
,

(6.19)

subject to the constraint (6.12).

The solution to this problem does not have an analytical solution. It is therefore

necessary to rely on numerical techniques to solve the problem. However, the problem

can be reformulated as a classical Mayer problem where the performance index is defined

only via terminal values of state variables. The reformulation is achieved by using the

reformulation described in sec. 4.3.



104

6.2.3 An Illustrative Example

In this section, we use a demonstrative example to illustrate our method. We consider

the two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) +

M∑
i=1

Fi, (6.20)

for x = [x1 x2]T ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial and Dirich-

let boundary conditions. The spatial distribution of the diffusion coefficient is assumed to

have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (6.21)

In our example, we select the initial estimates of the parameter values as θ0
1 = 0.1, θ0

2 =

−0.05, and θ0
3 = 0.2, which are assumed to be nominal and known prior to the experiment.

The actuation function is

Fi
(
x,xia, t

)
= 1000 exp

(
−50

((
xia1 − x1

)2
+
(
xia2 − x2

)2))
, (6.22)

where xia = [xia1 x
i
a2]T . The dynamics of the mobile actuators follow the simple model

ẋja(t) = uja(t), xja(0) = xja0, (6.23)

and additional constraints

|ujai(t)| ≤ 0.7, ∀t ∈ T, i = 1, . . . ,M. (6.24)

Our goal is to design their trajectories so as to obtain possibly the best estimates of θ1, θ2,

and θ3.

The determination of the Fisher information matrix for a given experiment requires

the knowledge of the vector of the sensitivity coefficients g = [g1, g2, g3]T along sensor

trajectories. The FIM can be obtained using the direct differentiation method [77] by
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solving the following set of PDEs:

∂y

∂t
= ∇ · (κ∇y) +

∑
Fk, (6.25)

∂g1

∂t
= ∇ · ∇y +∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) +∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) +∇ · (κ∇g3),

in which the first equation represents the original state equation and the next three equations

are obtained from the differentiation of the first equation with respect to the parameters

θ1, θ2, and θ3, respectively. The initial and Dirichlet boundary conditions for all the four

equations are homogeneous.

Five different given sensor setups are considered, and for each setup optimal actuation

trajectories of different number of actuators (1, 2, and 3) are compared:

• One static sensor located in the center of the domain (0.5, 0.5);

• One static sensor located near one of the corners of the domain (0.2, 0.8);

• Three static sensors located throughout the domain ((0.1, 0.7), (0.5, 0.2), (0.6, 0.4));

• One moving sensor with a linear motion (0.1, 0.2)→ (0.6, 0.7);

• Two moving sensors, one moving sensor with a linear motion (0.1, 0.2) → (0.6, 0.7)

and the other one moves along an arc.

Results for the different cases are summarized in tbl. 6.1, and the resulting trajectories

can be observed in figs. 6.1–6.5. In the figures, static sensors locations are represented by a

red ×, mobile sensors trajectories are in red and actuator trajectories are in blue (© locates

the starting point and 5 the ending point).

As expected, for all cases, the performance criterion value decreases as the number of

actuator increases. We can also notice that both the mobility, population, and location of

the sensors have a direct impact on the performance of the strategy. Therefore, we can

suppose the existence of an optimal combination of sensor and actuator trajectories.
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Table 6.1: Values of the D-optimality criterion Ψ(M) for different test cases.
Case 1 Case 2 Case 3 Case 4 Case 15

1 actuator 15.991 18.051 10.904 14.465 12.547

2 actuators 12.582 14.273 7.36 11.095 7.4806

3 actuators 11.28 13.022 5.8136 9.8976 6.4512
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Fig. 6.1: D-optimum trajectories of mobile actuators for one centered stationary sensor.



107

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

(a) One actuator

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

(b) Two actuators

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

(c) Three actuators

Fig. 6.2: D-optimum trajectories of mobile actuators for one peripheral stationary sensor.
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Fig. 6.3: D-optimum trajectories of mobile actuators for three stationary sensors.
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Fig. 6.4: D-optimum trajectories of mobile actuators for one mobile sensor.
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Fig. 6.5: D-optimum trajectories of mobile actuators for two mobile sensors.
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6.3 Optimal Measurement/Actuation Problem

6.3.1 Mobile Sensor/Actuator Model

We assume that both sensors and actuators are equipped on vehicles whose dynamics

can be described by the following differential equation:

ẋjx(t) = fx(xjx(t),ujx(t)) a.e. on T , xjx(0) = xjx0, (6.26)

where x can stand for two different categories. The first being s for sensors and the second

being a for actuators.

With this nomenclature, the function fx (f s : RN × Rrs → RN for sensors, fa :

RM × Rra → RM for actuators) has to be continuously differentiable, the vector xjx0

(xjs0 ∈ RN for sensors, xja0 ∈ RM for actuators) represents the initial disposition of the

j-th sensor/actuator, and ux (us : T → Rrs for sensors, ua : T → Rra for actuators) is a

measurable control function satisfying the following inequality:

uxl ≤ ux(t) ≤ uxu a.e. on T, (6.27)

for some known constant vectors uxl and uxu. Let us introduce,

s(t) =
(
x1
s(t),x

2
s(t), . . . ,x

N
s (t),x1

a(t), . . . ,x
M
a (t)

)T
, (6.28)

where xjs : T → Ωsad is the trajectory of the j-th sensor and xka : T → Ωaad is the trajectory

of the k-th actuator. We assume that all the mobile nodes equipped with sensors are

confined within an admissible region Ωsad (a given compact set) where the measurements

are possible and reciprocally that all mobile nodes equipped with actuators are restrained

in a domain Ωaad where actuation can be achieved. Considering the general index x defined

earlier, Ωxad can be conveniently defined as

Ωxad = {xx ∈ Ω : bxi(xx) = 0, i = 1, ..., I}, (6.29)
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where the bxi functions are known continuously differentiable functions. That is to say that

the following constraints have to be satisfied:

hij(s(t)) = bxi(x
j
x(t)) ≤ 0,∀t ∈ T, (6.30)

where 1 ≤ i ≤ I and 1 ≤ j ≤ (N +M). For simpler notation, we reformulate the conditions

described in (6.30) in the following way:

γl(s(t)) ≤ 0, ∀t ∈ T, (6.31)

where γl, l = 1, ..., ν tally with (6.30), ν = I × (N + M). It would be possible to con-

sider additional constraints on the path of the vehicles such as specific dynamics, collision

avoidance, communication range maintenance, and any other conceivable constrains.

The actuation function for the k-th mobile actuator is assumed to depend on the

actuator’s position as reflected by the following definition:

Fk(x, t) = Gk(x,x
k
a, t). (6.32)

.

6.3.2 Problem Definition

The purpose of the optimal measurement/actuation problem is to determine the forces

(controls) applied to each vehicle (conveying either a sensor or an actuator), which minimize

the design criterion Ψ(·) defined on the FIMs of the form (6.15), which are determined by

the corresponding sensor and actuator trajectories, subject to constraints on the magnitude

of the controls and state constraints. To increase the degree of optimality, our approach

considers s0 as a control parameter vector to be optimized in addition to the control function

u = [us,ua]
T .
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Given the above formulation we can cast the optimal measurement/actuation policy

problem as the following optimization problem: Find the pair (s0,u) which minimizes

J (s0,u) = Φ [M(s)] , (6.33)

over the set of feasible pairs

P =
{

(s0,u) |u : T → Rrs+ra is measureable, (6.34)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωsad × Ωaad} ,

subject to the constraint (6.31).

6.3.3 An Illustrative Example

In this section, we use a demonstrative example to illustrate our method. We consider

the two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) +

M∑
k=1

Fk, (6.35)

for x = [x1 x2]T ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial and Dirich-

let boundary conditions. The spatial distribution of the diffusion coefficient is assumed to

have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (6.36)

In our example, we select the initial estimates of the parameter values as θ0
1 = 0.1, θ0

2 =

−0.05, and θ0
3 = 0.2, which are assumed to be nominal and known prior to the experiment.

The actuation function is

Fk
(
x,xka, t

)
= 10e

−50
(
(xka1−x1)

2
+(xka2−x2)

2
)
, (6.37)
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where xia = [xia1 x
i
a2]T . The dynamics of the mobile actuators follow the simple model

ẋka(t) = uka(t), xka(0) = xka0, (6.38)

and additional constraints

|ukai(t)| ≤ 0.7, ∀t ∈ T, k = 1, . . . ,M, i = 1, . . . , 2. (6.39)

The dynamics of the mobile sensors follow the same model

ẋjs(t) = ujs(t), xjs(0) = xjs0, (6.40)

and additional constraints

|ujsi(t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , N, i = 1, . . . , 2. (6.41)

Our goal is to design their trajectories so as to obtain possibly the best estimates of θ1, θ2,

and θ3.

The strategy is tested on a simple team of one sensor and one actuator. In order to avoid

getting stuck in a local minimum, computations were repeated several times from different

initial solutions. Figure 6.6 present the resulting trajectories for the run where the initial

solutions lead to the best results (minimal value of the D-optimality criteria). Steering

signals for both sensor and actuator are displayed in figs. 6.7–6.8. Resulting trajectories for

two sensors and one actuator are given in fig. 6.9, and three sensors and one actuator in

fig. 6.10. Sensor trajectories are displayed in blue while actuator trajectories are red.

6.4 Chapter Summary

We introduced the optimal actuation framework for parameter identification in dis-

tributed parameter systems. The problem was formulated as an optimization problem

using the concept of the Fisher information matrix. The problem was then reformulated
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Fig. 6.6: D-optimal trajectories of a team of one mobile sensor and one mobile actuator.
The initial positions are marked with open circles and the final positions are designated by
triangles.
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Fig. 6.7: Optimal steering control signal of the mobile sensor.
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Fig. 6.8: Optimal steering control signal of the mobile actuator.
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Fig. 6.9: D-optimal trajectories of a team of two mobile sensors and one mobile actuator.
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Fig. 6.10: D-optimal trajectories of a team of three mobile sensors and one mobile actuator.
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into an optimal control one. With the help of the Matlab PDE toolbox for the system

simulations and RIOTS 95 Matlab toolbox for solving the optimal control problem, we

successfully obtained the optimal solutions for an illustrative example.

We introduced the optimal measurement/actuation framework for parameter identifi-

cation in a cyber-physical system constituted of mobile sensors and actuators behaving in

a distributed parameter systems. The problem was formulated as an optimization problem

using the concept of the Fisher information matrix. The problem was then reformulated

into an optimal control one. We successfully obtained the optimal solutions for an illus-

trative example. Combined with the online scheme introduced in Chapter 5, this research

represents a realistic example of CPS. Mobile sensors and actuators are communicating to

achieve the parameter estimation of the physical system they are monitoring/stimulating.

An exciting application consists in center-pivot operations, where our research center has

a project of using camera-equipped unmanned air vehicles for soil-moisture measurement

combined with irrigators to stimulate the farming field. Thanks to this framework, an ac-

curate model of the soil dynamics can be derived and water savings can be obtained via

optimal operations of the center-pivot.
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Chapter 7

Optimal Mobile Sensing with Fractional Sensor Dynamics

7.1 Introduction

The idea of fractional derivative dates back to a conversation between two mathemati-

cians: Leibniz and L’Hopital. In 1695, they exchanged about the meaning of a derivative of

order 1/2. Their correspondence has been well documented and is stated as the foundation

of fractional calculus [133].

Many real-world physical systems display fractional order dynamics, that is their be-

havior is governed by fractional-order differential equations [58]. For example, it has been

illustrated that materials with memory and hereditary effects, and dynamical processes, in-

cluding gas diffusion and heat conduction, in fractal porous media can be more adequately

modeled by fractional-order models than integer-order models [59].

The general definition of an optimal control problems requires minimization of a crite-

rion function of the states and control inputs of the system over a set of admissible control

functions. The system is subject to constrained dynamics and control variables. Additional

constraints such as final time constraints can be considered. We introduce an original formu-

lation and a general numerical scheme for a potentially almost unlimited class of FOCPs. A

FOCP is an optimal control problem in which the criterion and/or the differential equations

governing the dynamics of the system contain at least one fractional derivative operator.

Integer order optimal controls (IOOCs) have been discussed for a long time and a large

collection of numerical techniques have been developed to solve IOOC problems. However,

the number of publications on FOCPs is limited. The framework was first introduced with

a general formulation and a solution scheme for FOCPs [134], where fractional derivatives

were defined in the Riemann-Liouville sense, and FOCP formulation was expressed using
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the fractional variational principle and the Lagrange multiplier technique. The state and

the control variables were given as a linear combination of test functions, and a virtual

work type approach was used to obtain solutions. The FOCPs were then formulated using

the definition of fractional derivatives in the sense of Caputo [135,136], the finite difference

equations were substituted into Volterra-type integral equations, and a direct linear solver

helped calculating the solution of the obtained algebraic equations. Later, the fractional

dynamics of the FOCPs were again defined in terms of the RiemannLiouville fractional

derivatives [137], but the Grunwald and Letnikov formula was used as an approximation and

the resulting equations were solved using a direct scheme. Frederico and Torres [138–140],

using similar definitions of the FOCPs, formulated a Noether-type theorem in the general

context of the fractional optimal control in the sense of Caputo and studied fractional

conservation laws in FOCPs. However, none of this work has taken advantage of the colossal

research achieved in the numerical solutions of IOOCs.

In this chapter, we present a formulation and a numerical scheme for FOCP based on

IOOC problem formulation [141]. Therefore, the class of FOCP solvable by the proposed

methodology is closely related to the considered IOOC solver RIOTS 95 [61, 142]. The

fractional derivative operator is approximated in frequency-domain by using Oustaloup’s

Recursive Approximation which results in a state space realization. The fractional dif-

ferential equation governing the dynamics of the system is expressed as an integer order

state-space realization. The FOCP can then be reformulated into an IOOC problem, solv-

able by a wide variety of algorithms from the literature. Three examples are solved to

demonstrate the performance of the method.

7.2 Fractional Optimal Control Problem Formulation

In this section, we briefly give some definitions regarding fractional derivatives allowing

us to formulate a general definition of an FOCP.
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There are different definitions of the fractional derivative operator. The Left Riemann-

Liouville Fractional Derivative (LRLFD) of a function f(t) is defined as

aD
α
t f(t) =

1

Γ(n− α)
(

d

dt
)n
∫ t

a
(t− τ)n−α−1f(τ)dτ, (7.1)

where the order of the derivative α satisfies n − 1 ≤ α < n. The Right Riemann-Liouville

Fractional Derivative (RRLFD) is defined as

tD
α
b f(t) =

1

Γ(n− α)
(− d

dt
)n
∫ b

t
(t− τ)n−α−1f(τ)dτ. (7.2)

Another fractional derivative is the left Caputo fractional derivative LCFD defined as

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a
(t− τ)n−α−1(

d

dt
)nf(τ)dτ. (7.3)

The right Caputo fractional derivative RCFD defined as

C
t D

α
b f(t) =

1

Γ(n− α)

∫ b

t
(t− τ)n−α−1(

d

dt
)nf(τ)dτ. (7.4)

From any of these definitions, we can specify a general FOCP: Find the optimal control

u(t) for a fractional dynamical system that minimizes the following performance criterion

J(u) = G(x(a), x(b)) +

∫ b

a
L(x, u, t)dt, (7.5)

subject to the following system dynamics

aD
α
t x(t) = H(x, u, t), (7.6)

with initial condition

x(a) = xa, (7.7)
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and with the following constraints

umin(t) ≤ u(t) ≤ umax(t), (7.8)

xmin(a) ≤ x(a) ≤ xmax(a), (7.9)

Lνti(t, x(t), u(t)) ≤ 0, (7.10)

Gνei(x(a), x(b)) ≤ 0, (7.11)

Gνee(x(a), x(b)) = 0, (7.12)

where x is the state variable, t ∈ [a, b] stands for the time; and F , G, and H are arbitrary

given nonlinear functions. The subscripts o, ti, ei, and ee on the functions G(., .) and

L(., ., .) stand for, respectively, objective function, trajectory constraint, endpoint inequality

constraint, and endpoint equality constraint.

7.3 Oustaloup Recursive Approximation of the Fractional Derivative Operator

Oustaloup Recursive Approximation (ORA) was introduced and is now utilized to

approximate fractional order transfer functions using a rational transfer function [143,144].

The approximation is given by

sα =
N∏
n=1

1 + s/ωz,n
1 + s/ωp,n

. (7.13)

The resulting approximation is only valid within a frequency range [ωl ωh]. The number of

poles and zeros N has to be decided beforehand, and the performance of the approximation

are strongly dependent on its approximation parameter choice: small values of N cause

low-order, simpler approximations. Consequently, the Bode diagram exhibits undulations

in both phase and gain responses around the real response. Such undulations can easily be

removed by increasing the value of N , at the cost of higher order and increased amount of

calculations. Frequencies of poles and zeros in (7.13) are obtained given α, N , ωl, and ωh
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by [59]:

ωz,1 = ωl
√
η, (7.14)

ωp,n = ωz,nε;n ∈ [1 N ], (7.15)

ωz,n+1 = ωp,nη;n ∈ [1 N − 1], (7.16)

ε = (ωh/ωl)
α/N , (7.17)

η = (ωl/ωh)(1−α)/N . (7.18)

When α < 0, inverting (7.13) helps obtaining the approximation. For |α| > 1, our definition

does not hold anymore. A practical solution is to separate the fractional orders of s in the

following way:

sα = snsδ; v = n+ δ; n ∈ Z; δ ∈ [0, 1]. (7.19)

Under such condition, only sδ needs to be approximated. Discrete approximation for the

fractional differentiation operator can be found in the literature [145].

For FOCP, such a definition of ORA as a zero-pole transfer function is not helpful.

Instead, a state-space realization of the approximation is required. The first step towards

a state-space realization is to expand the transfer function given in (7.13).

sα =

∑N
i=0 ais

i∑N
j=0 bjs

j
, (7.20)

where

ai =

N∑
k=i

k∏
l=0

1

ω(z, l)
, (7.21)

and

bj =
N∑
k=j

k∏
l=0

1

ω(p, l)
. (7.22)

Equation (7.20) can further be modified to match the following definition:

sα =

∑N−1
i=0 cis

i∑N
j=0 bjs

j
+ d, (7.23)
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with bN = 1. It is finally possible to approximate the operator sα using a state space

definition

aD
α
t x(t) ≈

 ż = Az +Bu

x = Cz +Du

 , (7.24)

with

A =



−bN−1 −bN−2 · · · −b1 −b0

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
...

0 0 · · · 1 0


, (7.25)

B =



1

0

0

...

0


, (7.26)

C =

[
cN−1 cN−2 · · · c1 c0

]
, (7.27)

D = d. (7.28)

7.4 Fractional Optimal Control Problem Reformulation-I

With our state-space approximation of the fractional derivative operator, it is now

possible to reformulate the FOCP described in (7.5)–(7.12). Find the optimal control u(t)

for a dynamical system that minimizes the performance criterion

J(u) = G(Cz(a) +Du(a), Cz(b) +Du(b)) +

∫ b

a
L(Cz +Du, u, t)dt, (7.29)

subject to the following dynamics

ż(t) = Az +B(H(Cz +Du, u, t)), (7.30)
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with initial condition

z(a) = xaw/(Cw), (7.31)

and with the following constraints

umin(t) ≤ u(t) ≤ umax(t), (7.32)

xmin(a) ≤ Cz(a) +Du(a) ≤ xmax(a), (7.33)

Lνti(t, Cz(t) +Du(t), u(t)) ≤ 0, (7.34)

Gνei(Cz(a) +Du(a), Cz(b) +Du(b)) ≤ 0, (7.35)

Gνee(Cz(a) +Du(a), Cz(b) +Du(b)) = 0, (7.36)

where z is the state vector, w is a vector of size N , t ∈ [a, b] stands for again the time, and F ,

G, and H are arbitrary nonlinear functions. The subscripts o, ti, ei, and ee on the functions

G(., .) and L(., ., .) stand for, respectively, objective function, trajectory constraint, endpoint

inequality constraint, and endpoint equality constraint.

The choice for the vector w is indeed important as it can improve the convergence of

the optimization. Since B has the form given in (7.26), our method here is to choose w as

w =

[
1 0 · · · 0

]T
. (7.37)

The state x(t) of the initial FOCP can be retrieved from

x(t) = Cz(t) +Du(t). (7.38)

The choice of [ωl ωh] needs to be carefully taken into consideration as a narrow band-

width may lead to inaccurate results because of possible missing dynamics, and a large

bandwidth would create a large computational burden as N would increase. The choice of

N is not considered here as we use the rule of thumb N = log(ωh)− log(ωl).
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This framework allows us to approximately solve a large variety of FOCPs thanks to

the link we created with the traditional optimal control problems. In fact, the proposed

conversion allows us to apply any readily available IOOC solver to find an approximate

solution of almost any given FOCP problem. We decide to use the RIOTS 95 Matlab

Toolbox.

7.5 Impulse Response-Based Linear Approximation of Fractional Transfer Func-

tions

7.5.1 Approximation Method

Consider the analytical impulse response h(t) of a given fractional system [146]. The

approximation problem consists in obtaining a linear system of order n whose impulse

response ha(t) coincides with h(t) well. The linear system is modeled by the following

state-space realization:

ẋ(t) = Ax(t) + bu(t), (7.39)

y(t) = cx(t), (7.40)

where the state x(t) is of size n and the system matrix A is n by n. The impulse response

ha(t) can be expressed in terms of A, b, and c by [147]

h(t) = ceAtb, (7.41)

where the state-transition matrix eAt denotes the exponential of the matrix At. Let us

describe the methodology for solving the approximation problem. We consider a set of

sampled data h(kT ) from the analytical impulse response h(t), with T standing for the

sampling period. An approximate linear system would have the following property

h(kT ) ≈ ceAkT b = c(eAT )kb, (7.42)
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which can be reformulating in the following way

h(kT ) ≈ c(eAd)kb, (7.43)

with

Ad = eAT . (7.44)

We then take 2p data points from the sampled impulse response to form a Hankel data

matrix H defined as

H =



h(0) h(1) . . . h(p− 1)

h(1) h(2) . . . h(p)

...
... . . .

...

h(p) h(p− 1) . . . h(2p− 1)


p+1,p

, (7.45)

that is

H =



cb cAdb . . . cAp−1
d b

cAdb cA2
db . . . cApdb

...
... . . .

...

cApdb cAp+1
d b . . . cA2p−1

d b


. (7.46)

H is further reformulated by the factorization

H =



c

cAd
...

cAp−1
d


p+1,n

(
b Adb . . . Ap−1

d b

)
= OC, (7.47)

where n is the approximated numerical rank of the Hankel data matrix H and is determined

by its singular values (square roots of eigenvalues of HHT ). By examining singular values

of H, we are able to choose a proper integer n to be the dimension of the approximating

linear system. In other words, n is the number of state variables of the linear system which
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are “adequate” in describing the distributed system specified by h(t). Since the matrix H is

given, factorization of H into a product of two matrices is always possible using the singular

value decomposition. After O and C are generated from the Hankel data matrix, matrices

A, b, and c can be obtained as follows:

c = 1st row of O, (7.48)

b = 1st column of C. (7.49)

Define

O1 = O without the last row, (7.50)

O2 = O without the first row, (7.51)

then

O2 = O1Ad. (7.52)

Solving the above equation yields

Ad = (OT1 O1)−1OT1 O2. (7.53)

Finally, we recall the relationship A = eAT and obtain A from Ad by

A = ln(Ad)/T, (7.54)

where ln denotes the natural log of a matrix.

7.5.2 Sub-Optimal Approximation of the Fractional Integrator

We try to approximate the following fractional transfer function

H(s) =
1

sα
, (7.55)



128

with α ∈ [0, 1]. The analytical impulse response of such a system is given by

h(t) =
t−α−1

Γ(−α)
, (7.56)

where Γ(·) represents the Gamma function. For a given transfer function, an infinite number

of approximation can be performed. Therefore, for a given order n of the state-space

realization of the approximation, we wish to find the values of T and p that give the

best approximation. In addition, the impulse response of a fractional integrator displays

a singularity at the origin (t = 0) as observed in (7.56). Therefore, to avoid this infinite

term, h(0) has to be approximated by a finite value. This finite initial value giving the best

approximation is also sought. The best approximation is obtained via an exhaustive search.

The performance criteria used to assess the quality of an approximation is the integral of

time squared error (ITSE) of the step response because of the absence of singularity and

improved results. The analytical step response of the system described by (7.55) is

s(t) =
t−α

Γ(−α+ 1)
. (7.57)

The search is performed for approximation orders n ranging from 1 to 10. Table 7.1 sum-

marizes the different values used in the search for the best parameters set. These values

were upper-bounded by the computer’s memory. The performance of the approximation is

summarized in table 7.2.

7.6 Fractional Optimal Control Problem Reformulation-II

With our state-space approximation of the fractional derivative operator, it is now

possible to reformulate the FOCP described in (7.5)–(7.12). Find the optimal control u(t)

Table 7.1: Parameter values used for the exhaustive search of the best approximation.
T 10−3 5 · 10−4 10−4 5 · 10−5 10−5

5 · 10−6 10−6 5 · 10−7 10−7

p 25 50 75 100 250

500 750 1000

h(0) 10 · h(1) 102 · h(1) 103 · h(1) 104 · h(1)
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for a dynamical system that minimizes the performance criterion

J(u) = G(cz(a), cz(b)) +

∫ b

a
L(cz, u, t)dt, (7.58)

subject to the following dynamics

ż(t) = Az + b(H(cz, u, t)), (7.59)

with initial condition

z(a) = xaw/(cw). (7.60)

Equation (7.60) ensures the the initial condition cz(a) = xa is maintained, and with the

following constraints

umin(t) ≤ u(t) ≤ umax(t), (7.61)

xmin(a) ≤ Ccz(a) ≤ xmax(a), (7.62)

Lνti(t, cz(t), u(t)) ≤ 0, (7.63)

Gνei(cz(a), cz(b)) ≤ 0, (7.64)

Gνee(cz(a)), cz(b)) = 0, (7.65)

where z is the state vector, w is a vector of size N , t ∈ [a, b] stands for again the time, and F ,

G, and H are arbitrary nonlinear functions. The subscripts o, ti, ei, and ee on the functions

G(., .) and L(., ., .) stand for, respectively, objective function, trajectory constraint, endpoint

inequality constraint, and endpoint equality constraint.

The choice for the vector w is indeed important as it can improve the convergence of

the optimization. To make computation faster, our experiments have shown that choosing

w as

w =

[
1 0 · · · 0

]T
, (7.66)
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represents the best choice. The state x(t) of the initial FOCP can be retrieved from

x(t) = cz(t). (7.67)

7.7 Illustrative Examples

In this section, we demonstrate the capability of the introduced approach. First we

solve two widely used examples from the literature and then we introduce a new problem

that none of the previously introduced methodologies attempted to solve. For each problem,

we examine the solution for different values of α. For this purpose, α was taken between 0.1

and 1. Problems are first stated in the traditional FOCP framework and then reformulated

via our introduced methodology. Results of these studies are given at the end of each

subsection.

7.7.1 A Linear Time-Invariant Problem

Our first example is one of the test cases from the literature on FOCPs [134, 135, 137,

141]. It is a linear time invariant (LTI) fractional order optimal control problem stated as

follows. Find the control u(t), which minimizes the quadratic performance index

J(u) =
1

2

∫ 1

0

[
x2(t) + u2(t)

]
dt, (7.68)

subject to the following dynamics

0D
α
t x = −x+ u, (7.69)

with free terminal condition and the initial condition

x(0) = 1. (7.70)
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The analytical solution of the problem defined above for α = 1 is [148]

x(t) = cosh(
√

2t) + β sinh(
√

2t), (7.71)

u(t) = (1 +
√

2β) cosh(
√

2t) + (
√

2 + β) sinh(
√

2t), (7.72)

where

β = −cosh(
√

2) +
√

2 sinh(
√

2t)√
2 cosh(

√
2) + sinh(

√
2t)
≈ −0.98.

Using the proposed methodology, we reformulate the problem defined by (7.68)–(7.70).

Find the control u(t), which minimizes the quadratic performance index

J(u) =
1

2

∫ 1

0
(cz(t))2 + u2(t)dt, (7.73)

subject to the following dynamics:

ż = Az +B(−(cz) + u), (7.74)

and the initial condition

z(0) =

[
1 0 · · · 0

]T
. (7.75)

Figures 7.1 and 7.2 show the state x(t) and the control input u(t) as functions of time

t for different values of α. For α = 1, the results match those of the analytical solution.

Results are comparable to those obtained in other research papers on FOCPs [134,137,141].

7.7.2 A Linear Time-Variant Problem

Our second example is also one of the test cases from the literature on FOCPs [134,

135,137,141]. It is a linear time variant (LTV) problem stated as follows. Find the control

u(t), which minimizes the quadratic performance index

J(u) =
1

2

∫ 1

0

[
x2(t) + u2(t)

]
dt, (7.76)
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Fig. 7.1: State x(t) as a function of t for the LTI problem for different α (dashed-blue:
α = 0.1, dashed-green: α = 0.2, dashed-red: α = 0.3, dashed-magenta: α = 0.4, dashed-
black: α = 0.5,solid-blue: α = 0.6, solid-green: α = 0.7, solid-red: α = 0.8, solid-magenta:
α = 0.9, solid-black: α = 1).
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Fig. 7.2: Control u(t) as a function of t for the LTI problem for different α (dashed-blue:
α = 0.1, dashed-green: α = 0.2, dashed-red: α = 0.3, dashed-magenta: α = 0.4, dashed-
black: α = 0.5,solid-blue: α = 0.6, solid-green: α = 0.7, solid-red: α = 0.8, solid-magenta:
α = 0.9, solid-black: α = 1).
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subject to the following dynamics:

0D
α
t x = tx+ u, (7.77)

with free terminal condition and the initial condition

x(0) = 1. (7.78)

Using the proposed methodology, we reformulate the problem defined by (7.76)–(7.78). Find

the control u(t), which minimizes the quadratic performance index

J(u) =
1

2

∫ 1

0
(cz(t))2 + u2(t)dt, (7.79)

subjected to the following dynamics:

ż = Az + b((cz)t+ u), (7.80)

and the initial condition

z(0) =

[
1 0 · · · 0

]T
. (7.81)

Figures 7.3 and 7.4 show the state x(t) and the control u(t) as functions of t for different

values of α (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). For α = 1, the solution of the optimal

control problem has been solved in the literature [148]. In that paper, the author uses a

scheme specific to integer order optimal control problems. The numerical solution obtained

with the proposed methodology for α = 1 is accurate and results for fractional orders of α

matches those found in the literature [134,137,141].
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Fig. 7.3: State x(t) as a function of t for the LTV problem for different α ((dashed-blue:
α = 0.1, dashed-green: α = 0.2, dashed-red: α = 0.3, dashed-magenta: α = 0.4, dashed-
black: α = 0.5,solid-blue: α = 0.6, solid-green: α = 0.7, solid-red: α = 0.8, solid-magenta:
α = 0.9, solid-black: α = 1).
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Fig. 7.4: Control u(t) as a function of t for the LTV problem for different α (dashed-blue:
α = 0.1, dashed-green: α = 0.2, dashed-red: α = 0.3, dashed-magenta: α = 0.4, dashed-
black: α = 0.5,solid-blue: α = 0.6, solid-green: α = 0.7, solid-red: α = 0.8, solid-magenta:
α = 0.9, solid-black: α = 1).
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7.8 Optimal Mobile Sensing Policies with Fractional Sensor Dynamics

7.8.1 Sensor Dynamics

We assume that both sensors and actuators are equipped on vehicles whose dynamics

can be described by the following differential equation

aD
α
t x

j(t) = f(xj(t),uj(t)) a.e. on T , xj(0) = xj0. (7.82)

With this nomenclature, the function f has to be continuously differentiable, the vector

xj0 represents the initial disposition of the j-th sensor, and u is a measurable control function

satisfying the following inequality

ul ≤ u(t) ≤ uu a.e. on T, (7.83)

for some known constant vectors ul and uu. Let us introduce,

s(t) =
(
x1(t),x2(t), . . . ,xN (t)

)T
, (7.84)

where xj : T → Ωad is the trajectory of the j-th sensor. We define s0 = s(0) the initial

location of the mobile sensors. We assume that all the mobile nodes equipped with sensors

are confined within an admissible region Ωad (a given compact set) where the measurements

are possible. Considering the general index defined earlier, Ωad can be conveniently defined

as

Ωad = {x ∈ Ω : bi(x) = 0, i = 1, ..., I}, (7.85)

where the bi functions are known continuously differentiable functions. That is to say that

the following constraints have to be satisfied:

hij(s(t)) = bi(x
j(t)) ≤ 0,∀t ∈ T, (7.86)
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where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we reformulate the conditions

described in (7.86) in the following way:

γl(s(t)) ≤ 0, ∀t ∈ T, (7.87)

where γl, l = 1, ..., ν tally with (7.86), ν = I × N . It would be possible to consider addi-

tional constraints on the path of the vehicles such as specific dynamics, collision avoidance,

communication range maintenance, and any other conceivable constrains.

7.8.2 Optimal Measurement Problem

The measurement problem for bounded parameter values can be defined by reformu-

lating the FIM associated with the problem in the following way:

M =

N∑
j=1

∫
T
g(xjs(t), t)g

T(xjs(t), t) dt, (7.88)

where

g(x, t) = ∇θy(x, t;θ)|θ=θ0 , (7.89)

denotes the vector of the so-called sensitivity coefficients, θ0 being a prior estimate to the

unknown parameter vector θ.

The purpose of the optimal measurement problem is to determine the forces (controls)

applied to each vehicle, which minimize the design criterion Ψ(·) defined on the FIMs of the

form (7.88), which are determined unequivocally by the corresponding trajectories, subject

to constraints on the magnitude of the controls and induced state constraints. To increase

the degree of optimality, our approach considers s0 as a control parameter vector to be

optimized in addition to the control function u.

Given the above formulation we can cast the optimal measurement policy problem as

the following optimization problem: Find the pair (s0,u) which minimizes

J (s0,u) = Φ [M(s)] , (7.90)
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over the set of feasible pairs

P = {(s0,u) |u : T → Rr is measurable, (7.91)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωad} ,

subject to the constraint (7.87).

7.8.3 Optimal Control Problem Reformulation

The problem is converted into a canonical optimal control one making possible the

use of existing optimal control problems solvers. The first step consists of approximating

the fractional operator using a rational approximation. It is possible to approximate the

operator aD
α
t using a state space definition

aD
α
t x = f(x, u, t)⇔

 ż = Az + bf(cz, u, t)

x = cz

 . (7.92)

The dynamics of the mobile sensors can hence be written as

 żj(t) = Azj(t) + bf(czj(t),uj(t))

xj(t) = czj(t)
. (7.93)

Accordingly, a new experiment sz(t) can be defined as

sz(t) =
(
z1(t), z2(t), . . . ,zN (t)

)T
, (7.94)

and s(t) can be recovered by

s(t) =
(
cz1(t), cz2(t), . . . , czN (t)

)T
, (7.95)

and

s0 = csz(0). (7.96)
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We also define the function f z given as

ṡz(t) = f z(sz(t),u(t), t), (7.97)

such that the experiment sz(t) can be recovered from the control input u(t).

Consider the matrix-valued function

Π(sz(t), t) =

N∑
j=1

g(czj(t), t)gT (czj(t), t). (7.98)

Setting r : T → Rm(m+1)/2 as the solution of the differential equations

ṙ(t) = svec(Π(sz(t), t)), r(0) = 0, (7.99)

we obtain

M(sz) = Smat(r(tf )), (7.100)

i.e., minimization of Φ[M(s)] thus reduces to minimization of a function of the terminal

value of the solution to (7.99). Introducing an augmented state vector

q(t) =

 sz(t)
r(t)

 , (7.101)

we obtain

q0 = q(0) =

 sz0
0

 . (7.102)

Then the equivalent canonical optimal control problem consists in finding a pair (q0,u) ∈ P̄

which minimizes the performance index

J̄(q0,u) = φ(q(tf )), (7.103)
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subject to 
q̇(t) = φ(q(t),u(t), t)

q(0) = q0

γ̄l(q(t)) ≤ 0

, (7.104)

where

P̄ = {(q0,u) |u : T → Rr is measurable, (7.105)

ul ≤ u(t) ≤ uu a.e. on T , csz0 ∈ ΩN
ad

}
,

and

φ(q,u, t) =

 f z(sz(t),u(t), t)

svec(Π(sz(t), t))

 , (7.106)

γ̄l(q(t)) = γl(csz(t)). (7.107)

7.8.4 An Illustrative Example

We consider again the following two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) + 20 exp(−50(x1 − t)2), (7.108)

for x = [x1 x2]T ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous zero initial and Dirich-

let boundary conditions. The spatial distribution of the diffusion coefficient is assumed to

have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (7.109)

In this example, we chosen values for the parameter are θ1 = 0.1, θ2 = −0.05, and θ0
3 = 0.2,

which are assumed to be known prior to the experiment. The dynamics of the mobile

sensors follow the following model:

aD
α
t x

j(t) = uj(t), xj(0) = xj0, (7.110)
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and additional constraints

|uji (t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , N, i = 1, . . . , 2. (7.111)

Our goal is to design their trajectories so as to obtain possibly the best estimates of θ1, θ2,

and θ3. In order to avoid getting stuck in a local minimum, computations were repeated

several times from different initial solutions. The implementation of the methodology in

RIOTS 95 for this example is given in Appendix C.3. Figure 7.5 presents the resulting

trajectories for the best run for one sensors with fractional dynamics of order α = 0.8. The

trajectory for α = 0.9 is given in fig. 7.6. The trajectories for two sensors are displayed in

fig. 7.7 (α = 0.8) and fig. 7.8 (α = 0.9). Finally, the trajectories of a team of three sensors

are given in fig. 7.9 (α = 0.9).

7.9 Chapter Summary

A new formulation towards solving a wide class of fractional optimal control problems

has been introduced. The formulation made use of an analytical impulse response based-

approximation to model the fractional dynamics of the system in terms of a state space

realization. This approximation created a bridge with classical optimal control problem and

a readily-available optimal control solver was used to solve the fractional optimal control

problem. The methodology allowed to reproduce results from the literature as well as

solving a more complex problem of a fractional free final time problem. Numerical results

show that the methodology, though simple, achieves good results. For all examples, the

solution for the integer order case of the problem is also obtained for comparison purpose.

For the first time, fractional dynamics of the mobile sensors were considered. It is

important to notice that the introduced formulation has proved to be transcribable into

an optimal control problem that can be then solved by readily available optimal control

softwares, in our case the MATLAB toolbox RIOTS 95. We successfully obtained the

optimal trajectories of a team of sensors with fractional dynamics for the example of a

diffusion system using the approximation for several differentiation orders.
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Fig. 7.5: D-optimal trajectory of one mobile sensor for α = 0.8.
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Fig. 7.6: D-optimal trajectory of one sensor mobile for α = 0.9.
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Fig. 7.7: D-optimal trajectories of two mobile sensors for α = 0.8.
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Fig. 7.8: D-optimal trajectories of two mobile sensors for α = 0.9.
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Fig. 7.9: D-optimal trajectories of three mobile sensors for α = 0.9.
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Chapter 8

Optimal Mobile Remote Sensing Policy for Downscaling and

Assimilation Problems

In this chapter, our efforts focus on the downscaling problem in the framework of

surface soil moisture. Our purpose is to introduce a new methodology to transform low-

resolution remote sensing data (for example from a satellite) about soil moisture to higher

resolution information that contains better information for use in hydrologic studies or water

management decision making. Our goal is to obtain a high resolution data set with the help

of a combination of ground measurements and low-altitude remote sensing (typically images

obtained from a UAV). In the following, we first describe the methodology developed using

only low-resolution information and ground truth. Then we introduce in two different ways

the optimal trajectories of remote sensors, first to solve the problem of maximum coverage

knowing the location of ground measurements, then to solve the problem of optimal data

assimilation to optimally improve the assimilation problem using remote sensors.

8.1 Background on Downscaling and Data Assimilation

Because the reader most likely has an electrical engineering background, we give a short

introduction of the principles used as a base for the piece of work. These principles come

from geoscience and require some definitions and motivation.

8.1.1 Downscaling

The earliest piece of literature that can be linked to downscaling was written by Klein

in 1948 [149]. At the beginning, statistical downscaling was used in the field of weather

forecasting where global models were not able to provide local information of climate. At

that time, downscaling was referred to as “specification.” Later, in the 1980s, similar
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methodologies were called “Statistical Problem of Climate Inversion” [150, 151]. Another

term used is “Model Output Statistics” [152].

The interest and emergence of downscaling are linked to the tools it is based upon,

namely global climate models (GCM). Such models only appeared in the 1980s which ex-

plains the young age of this topic.

Readers interested in comprehensive reviews on downscaling can find numerous refer-

ences in the literature [153–155].

Definition of Downscaling

Even if it is a popular topic in geoscience, as an electrical engineer, the first question

one might ask is what is downscaling? One basic definition of downscaling is: “the process

of making the link between the state of some variable representing a large space (henceforth

referred to as the “large scale”) and the state of some variable representing a much smaller

space (henceforth referred to as the “small scale”)” [153].

Let’s take this definition as a starting point and give insight about what is meant by

link, large-scale, and small-scale. As an example, in the downscaling framework for weather

modeling, the large-scale variable may for instance represent the circulation pattern over a

large region whereas the small scale may be the local temperature as measured at one given

point (station measurement).

One of the critical conditions generally assumed for the large-scale variable is the fact

that its variations should be slow and smooth in space. The small-scale variable may be a

reading from a thermometer, barometer, or measurement from a soil moisture probe. It is

also important that the large-scale and the small-scale are physically linked, and not just

related by a statistical fluctuation or a coincidence. The theory of downscaling requires

an implicit and fundamental link between both scales. It is important to distinguish the

two concepts large-scale and large volume/area. The two are not necessarily the same,

as a large volume may contain many noisy and incoherent small-scale processes. The term

“small-scale” could be a little misleading, but what is meant is that the “small-scale” should

be local to the domain of interest instead of defined using a small scale. In fact, the local
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process must be associated with large-spatial scales for downscaling to be possible. The

main purpose of downscaling is to identify synchronized time behavior on large and small

scales. Therefore, practical downscaling focuses on the time dimension.

Motivation

The second question we need to ask ourselves is “Why downscaling?” The answer to

this question is usually linked to a specific purpose, for example using global climate models

to make an inference about the local climate in a specific area. The global mean value of the

temperature is usually not directly relevant for practical use and more details are required

to perform a study.

Global circulation models (GCMs) are a very important tool when studying the Earth’s

climate. However, using them for the study of local climate would provide very poor re-

sults. It is therefore common to downscale the results from the GCMs either through a

local, high-resolution regional climate model (RCM) [156–158] or through empirical/statis-

tical downscaling (ESD) [159]. The GCMs usually do not provide an exact depiction of the

real climate system. They frequently involve simple statistical models giving an approx-

imate representation of sub-grid processes. It is important to mention the limitations of

downscaling, being that the statistical models are based on historical data. It means that

there is no guarantee that the past identified statistical relationships between the different

data fields will still be true in the future.

The Future of Downscaling

It is of importance to notice that the use of downscaling may dim in the future. There

are two trends in technology that would let us believe so. The first one is the increase in

resolution in remote sensors. Nowadays, the resolution of cameras usually doubles every

few years. We can imagine that in the near future, even satellite images will be provided

at a “small-scale” resolution. And the frequency of observation can be increased by using

unmanned aerial imagery (see fig. 8.1). The second trend is the increase in computing

power. Every year, several supercomputers are built which run more and more detailed
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Fig. 8.1: Unmanned aerial image.

GCMs. We provide an illustration (see fig. 8.2) about the increase in detail of the GCMs

over the recent years. During the 1990s, high-resolution GCMs were simulated on the T42

resolution scheme (upper left). For the T42 resolution, the variables (temperature, moisture)

were given a single average value over an area of about 200 by 300 kilometers. In 2007,

increased computing power allowed scientists to run GCMs at T85 resolution (upper right),

variables were averaged over an area of 100 by 150 km. In the future, better resolution will

give an enhanced depiction of atmospheric processes as well as allow for a more realistic

topography increasing the accuracy on regional climate.

8.1.2 Data Assimilation

In geophysics, the process of approximating the true state of a physical system at

a given time is called analysis. The information on which the analysis is based includes

observational data and a model of the physical system, together with some background

information on initial and boundary conditions, and possibly additional constraints on the

analysis. The analysis is useful in itself as a description of the physical system, but it can

also be used for example as an initial state for studying the further time evolution of the
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Fig. 8.2: Illustrations of several resolution models for global circulation models ( c© UCAR,
illustration courtesy Warren Washington, NCAR.).

system.

An analysis can be very simple, for example a spatial interpolation of observations.

However, much better results can be obtained by including the dynamic evolution of the

physical system in the analysis. An analysis which combines time distributed observations

and a dynamic model is called assimilation or data assimilation.

Data assimilation methods are designed to combine any type of measurements with

estimates from geophysical models. Here are some general reasons to use data assimilation

[160].

1. When comparing the quantity of in situ measurements in the environment and the quan-

tity of satellite remote sensing observations, the latter is much larger. However, their

spatial and temporal coverage is still not sufficient for many applications. Data assimi-

lation methods are required to interpolate and extrapolate the remote sensing data.

2. Remote sensing instruments typically observe electromagnetic properties of the Earth

system. This implies that most satellite observations are limited to the parts of the
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Earth system that can be penetrated by electromagnetic radiation at microwave, in-

frared, or visible frequencies. Data assimilation systems can spread information from

remote sensing observations to all model variables that are in some way connected to the

observations.

3. The temporal or spatial resolution of remote sensing data is often too coarse or too

fine for a given application. By merging the satellite data with models that resolve the

scale of interest, data assimilation methods are capable of aggregating or downscaling

the remote sensing data.

4. Some types of remote sensing data are plentiful to the point of overwhelming processing

capabilities. Typically, data assimilation systems for numerical weather prediction in-

clude sophisticated thinning algorithms for satellite observations, with the consequence

that only a small fraction of the available satellite data is actually used in the prepa-

ration of a weather forecast. Moreover, there is a great deal of redundancy in satellite

observations from different platforms. Data assimilation systems can organize and merge

potentially redundant or conflicting satellite data and conventional observations into a

single best estimate.

5. In an assimilation system, the physical constraints imposed by models offer additional

valuable information. Moreover, models are often forced with boundary conditions that

are based on observations. Such boundary conditions may offer indirect and independent

observational information about the remotely sensed fields; information that can be

captured through data assimilation.

The basic tenet of data assimilation is to combine the complementary information from

measurements and models of the Earth system into an optimal estimate of the geophys-

ical fields of interest. In doing so, data assimilation systems interpolate and extrapolate

the remote sensing observations and provide complete estimates at the scales required by

the application both in time and in the spatial dimensions. Data assimilation systems
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thereby organize the useful and redundant observational information into physically con-

sistent estimates of the variables of relevance to data users. The optimal combination of

the measurements with the model information rests on the consideration of the respective

uncertainties (or error bars) that come with the observations and the model estimates.

Whenever and wherever highly accurate remote sensing data are available, the assimilation

estimates will be close to these observations. At times and locations that are not observed

by any instrument, the assimilation estimates will draw close to the model solution, but will

nonetheless be subject to the influence of satellite data in spatial or temporal proximity of

the location of interest.

The basic concept of data assimilation is easily understood by considering a scalar

model variable m with uncertainty (or error variance) σ2
m, and a corresponding scalar ob-

servation o with uncertainty σ2
o . The model estimate m represents prior or background

information and may, for example, come from an earlier model forecast that is valid at the

time of the newly arrived observation o. The goal is to find the least-squares estimate x̂ of

the true state x based on the available information. To this end, an objective function J

(also known as cost function, penalty function, or misfit) is defined to quantify the misfit

between the true state x and the model estimate, and the observation, respectively. In our

simple case, the objective function J is

J =
(x−m)2

σ2
m

+
(x− o)2

σ2
o

. (8.1)

Minimization of J with respect to x (by solving dJ/dx = 0) yields

x̂ =
mσ2

m + oσ2
o

σ2
m + σ2

o

, (8.2)

which is typically rewritten as

x̂ = (1−K)m+Ko, where K =
σ2
m

σ2
m + σ2

o

. (8.3)

This best estimate (or analysis) x̂ is a weighted sum of the model background m and the
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observation o. The weights are determined by the relative uncertainties of the model and

the observation, and are expressed in the (Kalman) gain K (note that 0 ≤ K ≤ 1). If the

measurement error variance σ2
o is small compared to the model uncertainty σ2

m, the gain

will be large, and the resulting estimate will draw closely to the observation, and vice versa.

Equal model and measurement error variances σ2
o = σ2

m produce equal weights (K = 0.5),

reflecting our equal trust in the model and the observation. Rewriting (8.3) as

x̂−m = K(o−m), (8.4)

shows that the assimilation increment (difference between the assimilation estimate x̂ and

the model estimate m) is proportional to the innovation or background departure (difference

between the observation o and the model estimate m). The Kalman gain serves as the

constant of proportionality. Equation (8.4) is sometimes called the update equation, because

the prior model estimate m is updated with information from the observation o. If the

errors in the model forecast and the observation are uncorrelated, the error variance of the

assimilation estimate is

σ2
x̂ = (1−K)σ2

m = Kσ2
o , (8.5)

and is smaller than the error variances of either the model estimate or the observation alone

(recall that 0 ≤ K ≤ 1), reflecting the increased knowledge about the true state x after

data assimilation.

The assimilation problem can be discussed from many angles, depending on the back-

ground and preferences (control theory, estimation theory, probability theory, variational

analysis, etc.). A few excellent introductions to data assimilation from different points of

view can be found in the literature [161–169].

There are numerous data assimilation techniques, we restrict our discussion to advanced

data assimilation methods that are based on some measure of model and observation error

characteristics.
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Variational Data Assimilation

In a realistic application, the first right-hand-side term of (8.1) consists of a large sum

of model states. The error variance σ2
m then becomes the error covariance matrix of these

model states. Similarly, the second right-hand-side term of (8.1) becomes a large sum over

the individual conventional and satellite observations weighted by the inverse measurement

error covariance. Because of the immense size of the vectors and matrices, and because

of nonlinearities, analytic solutions such as (8.3) are impossible. Instead, variational data

assimilation algorithms employ advanced numerical methods to minimize J directly. The

two terms of the simple objective function (8.1) are representative of the main ingredients of

most current, large-scale atmospheric data assimilation systems. If both terms correspond

to a single instant in time, the resulting static data assimilation methods include com-

mon techniques such as Optimal Interpolation, Physical-Space Statistical Analysis System

(PSAS), 1DVAR, and 3DVAR (where 1D and 3D refer to one or three spatial dimensions,

respectively). If the objective function J contains measurements at several different times

within an assimilation interval, and if the minimum of J is sought for this interval (by

varying the model initial condition), the assimilation method is known as 4DVAR (where

4D refers to three spatial dimensions plus the time dimension). In 4DVAR, the error co-

variance evolution is sometimes referred to as implicit because the assimilation estimates

can be obtained without ever explicitly computing their full error covariance matrix. The

4DVAR data assimilation step is thus more flow-dependent than in 3DVAR and the quality

of the estimates improves.

The Kalman Filter

Data assimilation algorithms such as Kalman filters share the static update (8.2) with

some of the variational techniques, but Kalman filter algorithms also explicitly compute the

error covariances through an additional matrix equation (not shown) that propagates error

information from one update time to the next, subject to possibly uncertain model dynam-

ics. The error covariance propagation in the traditional Kalman filter and its nonlinear vari-

ant, the Extended Kalman filter (EKF), however, is prohibitively expensive for large-scale
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applications. Like variational methods, the Kalman filter can be derived from an objective

function, given a number of additional assumptions about the error structure, including

model and observation errors that are uncorrelated in time, and mutually uncorrelated.

The EKF has been demonstrated successfully for soil moisture data assimilation [170,171].

Reduced-rank approximations such as the Ensemble Kalman filter (EnKF) [172–174] are

designed to reduce the number of degrees of freedom to a manageable level. The idea behind

the EnKF, a Monte-Carlo variant of the Kalman filter, is that a comparably small ensemble

of model trajectories captures the relevant parts of the error structure. The EnKF is flexible

in its treatment of errors in model dynamics and parameters. It is also very suitable for

modestly nonlinear problems.

8.2 Downscaling and Assimilation Problems for Surface Soil Moisture

This work described in this section is based on previous work [175], we would like to

orient the reader looking for more details to this article.

8.2.1 Introduction

In hydrology, when trying to simulate a system using a PDE or trying to identify the

dynamics, it is important that the data used as initial conditions or used to know the state

of the system have a similar scale as the model. Because most of the time this is not the

case, we need to be able to modify the scale of a given measurement and fit it to match

our model scale. Among the potential candidates of scale modification techniques, the one

we discuss here uses data assimilation such that the best use of the collected information

at different scales can be achieved. Such a problem is also called “scale reconciliation” and

is given the definition as the process of data assimilation done to merge data at different

scales.

Most of the time, collecting information is not an issue as data can be gathered in

many different ways, from satellites, UAV imagery, or ground measurements. However,

combining the data from all those different sources in the most efficient way for a given

application becomes a research problem. Indeed, each different platform provides data at
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different temporal and spatial resolutions, most of the time not matching the model scale.

Therefore, the problem consists in extracting the information of interest within all this

heterogeneous sensor data, both in temporal and spatial scales.

In the work under consideration, the purpose of the introduced methodology is to com-

bine information from a coarse-resolution image and point measurements. More precisely,

we are only interested in the mergence of spatial scale. Under such consideration we need

to assume the continuity of soil moisture and the correlation distance of soil moisture has

to be larger than the spacing between ground measurements.

The sources for soil moisture measurement are generally twofold. First, the traditional

soil moisture measurement methods provide point-wise data and are based on gravimetric,

nuclear and electromagnetic, and tensiometric and hygrometric methods. On the other

hand, remote sensing measurements in the microwave region can give useful information

about soil moisture due to the strong contrast between the dielectric constant of dry soil

and water and its effect on microwave emission. They provide coarse resolution images of

the distribution of surface soil moisture.

8.2.2 Kaheil-McKee Algorithm

We consider the downscaling of an image G0 at resolution 0 down to a fine image Gn

at resolution n. The structure considered for downscaling is described in fig. 8.3. As we can

observe, for the lowest resolution 0, a given pixel only possesses one value, and at the next

resolution, there are four values. At the final nth resolution, the original area containing

the pixel will contain 4n values.

The purpose of the introduced algorithm is to create an image at a high resolution

satisfying two conditions. The first condition to be met is that the generated image should

be close to the original image when upscaled back to the lower resolution. The second

condition requires the final image to incorporate the point measurement information. The

proposed approach can be portrayed as the repetition (n times) of two steps (initialization

and spatial pattern search) and a final assimilation using point-wise ground measurements.

The initialization and the spatial pattern search are here to generate an image at resolution
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Fig. 8.3: Description of the downscaling structure.

n based solely on the underlying dynamics of the system and the original satellite coarse

image. The assimilation step is here to combine the new generated image and the ground

measurements to produce the final image. To illustrate each steps, we provide in fig. 8.4 [175]

a graphical illustration of the inner workings of the method.

Initialization

The initialization step is composed of three tasks. The first task is a maximum-

likelihood parameter estimation (MLE) analysis executed on the low resolution image G0,

assumed to be the true image at resolution 0. The end result of the MLE is a list of pa-

rameters linked with the variogram of the coarse image G0. The parameters estimated are

then used to create an image at the next finer resolution called G′ui+1. In G′ui+1, i stands

for the current iteration number, u refers to the “unsorted” nature of the image, and the

apostrophe stands for an unassimilated image. The “unsorted” nature of the generated

image comes from a given variogram, not the image itself. Therefore, the spatial properties

of the two images are the same, but the spatial patterns are different. The second part of

the initialization consists of upscaling image G′ui+1 back to the former resolution (resolution

i) to obtain an image G′ui. Because of the “unsorted” nature of the image generated by the
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(a) True coarse image (b) Generated image G′ui+1 (c) Upscaled generated image G′ui

(d) Rearranged upscaled gener-
ated image G′i

(e) Generated image with trans-
ferred pixel blocks mapped from
G′i+1

(f) Interpolated image GT
i+1

(g) Rearranged pixels within
blocks G′i+1

Fig. 8.4: Hierarchical algorithm Step 1.
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MLE, its upscaled version will be different from the original image both in value and spatial

pattern. The third task of the initialization consists of rearranging the pixels within image

G′ui so that the order of these pixels (minimum to maximum) will follow the same order

as those of the true image. The resulting image is called G′i. In this task, only the pixels

at a coarse resolution are rearranged, which means that the arrangement of pixels within

a coarse pixel is untouched. The resulting image is called G′i+1. The spatial pattern issue

being solved, the value deviation issue is addressed using a ratio bias remover to correct for

the values. The values in each of image G′i+1 are multiplied by a ratio R =
∑

(Gi)/
∑

(G′i)

to correct for the value bias. After this third task, the resulting image G′i+1 is similar to its

coarse image when upscaled. However, there is still a discontinuity coming from the trans-

fer of pixel blocks, since pixels within the coarse pixel have not been rearranged. These

discontinuities are polished in the next step using a spatial pattern search technique.

Spatial Pattern Search

The image resulting from the initialization step is at a finer resolution and is very close

to the coarse image when upscaled. However, there are still some discontinuities between two

coarse neighboring pixels. To address this problem, the pixels within the “initialized” image

are rearranged and sorted. The reference for this rearrangement of pixels is an interpolated

version Gi at resolution i + 1 called GTi+1. There are several interpolation techniques that

can be used to generate GTi+1 such a linear interpolation or cubic splines. Let’s consider

the four pixels from G′i+1 belonging to the same original pixel in Gi. These four pixels are

rearranged according to the distribution of pixels within the reference interpolated image.

This task still guarantees that the resulting image provides little error when upscaled to

the true coarser image but improved the smoothness between two neighboring pixel blocks.

The resulting image is still called G′i+1. The initialization and the spatial pattern search are

repeated, increasing the value of the subscript with each iteration until the final resolution

n is reached. The final image G′n is generated after n iterations. However, G′n still does not

account for the ground measurements. Therefore, another bias remover is required and is

described next.
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Assimilation

The third step called “assimilation” consists of fine-tuning the final image based on the

original image and point measurements. The method introduced here makes use of support

vector machines (SVMs). SVM is a machine learning paradigm based on statistical learning

theory. The theory and algorithms for SVM can be found in the literature [176]. The main

idea behind using SVMs for the assimilation step is to approximate a one-to-one function

between the approximated coarse image and the true coarse image. The resulting function

at the coarse resolution is applied at the fine resolution to obtain a new approximation

of the fine image. Therefore, the relation at the coarsest resolution between the observed

image and model-generated image is learned through the application of the SVM algorithm.

The advantage of using SVM for our application is the fact that the point measurement

data can be added to the training set. The training data set of the SVM consists of random

pixels of image G′n at resolution 0 as input, and corresponding pixels of G0 as output, as

well as readings of fine pixels from G′n at point measurement locations versus corresponding

point measurement values Pz. Once the SVM has finished the training process, it is applied

to G′n to get the final fine-scaled image Gn.

8.3 Introduction of UAV-Based Remote Sensors

The framework introduced in sec. 8.2 only considers a single coarse image (either from

a satellite or aerial vehicle) and ground measurements. However, it would be possible to

extend the framework for multiscale downscaling and assimilation where the observations

could come from both satellite, UAV(s), and ground measurements. The introduction of

UAVs into the framework can be challenging as it was developed from static measurements.

UAVs are by nature mobile platforms which means that their locations can be variable.

Based on this observation, we can see that there is an infinite number of possible trajectories

for these UAVs and we need to decide on one based on some criterion. This criterion could

be used in a optimization to generate the trajectory of the UAVs.

There are several potential candidates for the optimality criterion of the UAV trajec-

tories. For example, we could optimize the trajectory of the UAVs so that they maximize
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the coverage of the area defined by G0 but avoid the location of ground sensors to reduce

redundancy.

When comparing the original image G0 and the final image upscaled back to its initial

coarse resolution Gn→0, an error may still exist at certain locations. We call such an image

Ge0 = |G0 − Gn→0| (see fig. 8.5). The image Ge0 can be seen as the residual error from

the downscaling and assimilation procedure. In the following, we develop a methodology

that optimizes the trajectory of UAVs so as to maximize the coverage of Ge0, providing

the best information for another downscaling and assimilation procedure, enhanced with

remote aerial measurements.

8.4 Optimal Trajectories for Data Assimilation

8.4.1 Description of the Problem

The purpose of the optimal measurement problem is to determine the steering of the

UAV, which minimizes a design criterion J(·) defined by the area covered by the UAV

and Ge0. The value of the design criterion is determined by the trajectories resulting from

that steering, subject to constraints on the magnitude of the controls and induced state

constraints.

The mobile remote sensors are assumed to ambulate in a spatial domain Ωsens ∈ R3.

The sensors are able to remotely take measurements in Ωmeas ∈ R2 over a given observation

Fig. 8.5: Illustration of the downscaling residual error.
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horizon T = [t0, tf ]. We call xj = [xj1(t), xj2(t), xj3(t)]T : T → Ωsens the trajectory of the

j-th remote sensor. We call zj : T → Ω the collection of measurements in Ωmeas where the

j-th sensor is observing. We assume that a function f : Ωsens → Ωmeas linking the position

of the sensor and measurements exists. The observations for the j-th sensor are assumed

to be of the form

zj(t) = y(f(xj(t)), t) + ε(f(xj(t)), t), (8.6)

where ε stands for the measurement noise. We assume that the UAVs dynamics can be

described by the following differential equation:

ẋj(t) = g(xj(t),uj(t)) a.e. on T , xj(0) = xj0, (8.7)

where the vector xj0 ∈ R3 represents the initial location of the j-th sensor, and u : T → Rrs

is a measurable control function satisfying the following inequality:

ul ≤ u(t) ≤ uu a.e. on T, (8.8)

for some known constant vectors ul and uu. We define the remote sensing function as

follows:

yi(x,u, t) = Ge0(f(xi(t))), (8.9)

where f is the geographical remote sensing function, giving the location of the measurements

on the ground. We define the weighting function linked with the altitude of a sensor as

follows:

G(x) =


0 if x3 > z0

i/n if zi+1 > x3 > zi

1 if zn > x3

. (8.10)

Let us introduce

s(t) =
(
x1(t),x2(t), . . . ,xN (t)

)T
, (8.11)
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where xj : T → Ωsens is the trajectory of the j-th sensor. We define the set s0 of initial

locations as

s0 =
(
x1(0),x2(0), . . . ,xN (0)

)T
. (8.12)

8.4.2 Problem Formulation

Given the above formulation we can cast the optimal measurement policy problem as

the following optimization problem: Find the pair (s0,u) which minimizes

J (s0,u) =
N∑
i=1

(∫
Ω

(Ge0 (x)) dx (8.13)

−
∫

Ω

(∫ tf

t0

yi(x
i,u, t)G(xi)dt

)
dx

)2

,

over the set of feasible pairs

P = {(s0,u) |u : T → Rr is measurable, (8.14)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωsens} ,

subject to constraints on the control input.

8.4.3 Numerical Method to Find the Solution

This problem can hardly be solved using analytical methods, it is therefore necessary

to use a numerical method to solve the problem. In this paper, we use the Matlab toolbox

called RIOTS 95 [61]. The considered problem can be described with M-files. The theory

behind the toolbox uses the approach of consistent approximations [113].

The performance criterion J(·) is calculated using the following steps. First, the left-

hand side of the criterion
∫

Ω (Ge0 (x)) dx is calculated based on the given Ge0. Then, based

on the trajectories of the UAVs and the defined remote sensing function, the resulting

measurement footprint is evaluated. The convex hull of the measurement footprint is then

calculated in order to discard the redundancies of measurements on the ground. Each point
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of the convex hull is then assigned a weight based on the distance of the UAV from the

ground. Then the convex hull is transformed into a Delaunay triangulation and the integral

of Ge0(x) of each triangle is computed. The sum of the integrals of all triangles is then

added to compute the right-hand side of the criterion
∫

Ω

(∫ tf
t0
yi(x

i,u, t)G(xi)dt
)

dx.

8.5 An Illustrative Example

8.5.1 System’s Description

We use a demonstrative example to illustrate the method developed earlier. We con-

sider the mapping Ge0 of the residual error of a downscaling problem as

Ge0(x) = θ1 + θ2x1 + θ3x2 + ε(x), (8.15)

for x = [x1 x2]T ∈ Ωsys = (0, 1)2 and t ∈ [0, 1]. ε(x) refers to a random field of amplitude

σ2. The dynamics of the mobile sensors follow the given dynamical model

ẋj(t) = uj(t), xj(0) = xj0, (8.16)

for x = [x1 x2 x3]T ∈ Ωsens = (0, 1)3 and additional constraints

|uji (t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , 2, i = 1, 2, (8.17)

|uji (t)| ≤ 0.2, ∀t ∈ T, j = 1, . . . , N, i = 3. (8.18)

We consider three different set of values for θ1, θ2, θ3, and σ.

8.5.2 Results

θ1 = 1, θ2 = 0.1, θ3 = 0.2, and σ = 0

These parameter values are considered to test the methodology when Ge0 is linear in
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space. This allows to test the numerical method under smooth conditions and make sure

that the implementation allows convergence of the optimization. The resulting trajectory

for one UAV is given in fig. 8.6, where both the initial location of the UAV and the trajectory

are optimized. The optimal trajectories of two UAVs are given in fig. 8.7, the initial locations

are set as x1
0 = [0.9, 0.9, 0.4]T , x2

0 = [0.9, 0.8, 0.4]T , and only the trajectory is optimized.

We can observe that the covering of Ge0 is mostly located in the higher values. This can

be expected as we are trying to maximize the coverage of Ge0.

θ1 = 0, θ2 = 0, θ3 = 0, and σ = 1

We consider this example to see how the methodology would perform under a realistic

scenario. Ge0 is a pseudo-random field which would be likely to happen from the outcome

of a downscaling and assimilation procedure as described in sec. 8.2. The optimization can

hardly converge because of the randomness of the field. We provide the resulting trajectories

for the best attempt in fig. 8.8.

θ1 = 1, θ2 = 0, θ3 = 0, and σ = 0.1

Because of the poor results obtained when the field is random, we introduce an offset

to encourage the optimization to increase the coverage. The result is given in fig. 8.9. In

most cases, the optimization is able to converge. Several attempts are necessary to obtain

a good trajectory.

8.6 Chapter Summary

In this chapter, we were able to address the problem of downscaling soil moisture data.

Based on an existing methodology to downscale, we introduced the problem of optimal

remote sensor trajectory so as to maximize the coverage of the areas where the downscaling

was inaccurate. The problem was formulated as an optimal control one which allowed to

use optimal control solvers. A numerical method to solve the problem was introduced and

successfully applied to a numerical example.



165

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

x 3

Fig. 8.6: Optimal trajectory of 1 sensor for θ1 = 1, θ2 = 0.1, θ3 = 0.2, and σ = 0.
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Fig. 8.7: Optimal trajectory of 2 sensors for θ1 = 1, θ2 = 0.1, θ3 = 0.2, and σ = 0.
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Fig. 8.8: Optimal trajectory of 1 sensor for θ1 = 0, θ2 = 0, θ3 = 0, and σ = 1.
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Fig. 8.9: Optimal trajectory of 1 sensor for θ1 = 1, θ2 = 0, θ3 = 0, and σ = 0.1.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

CPSs constitute one of the next big challenges of the engineering community. They

will require advances from a lot of different domains of engineering in order to be successful.

Among the challenges of CPS, system identification has to be one of the first to be

addressed, especially when the system under consideration is a DPS. Because of the com-

plexity of DPS, the identification procedure will itself be a CPS with actuators to ensure

a good enough excitation and sensors to gather measurements about the dynamics of the

system. However, the distributed nature of the DPS makes the location of such actuators

and sensors a question to be addressed. The solution will not only depend on the dynam-

ics of the system but also on the nature of those actuators and sensors. The “nature” of

sensors and actuators can be their dynamics, their geometrical support (pointwise, zonal,

whole domain, boundary), their communication topology, their autonomy, their precision.

Most of this dissertation focuses on providing methodologies to obtain the optimal sensing

and actuation policies in CPS of distributed nature.

In this dissertation, we provide the following list of contributions to the state of the

art.

• We propose an approach to optimize both the trajectories of mobile sensors and their

measurement accuracy for parameter estimation of a distributed parameter system.

Using sensors with different accuracies can lead to better parameter estimates than

homogeneous sensors. This approach has the advantage of providing the maximum

number of sensors necessary (A sensor with an accuracy of 0 can be discarded).
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• We consider the case of remote sensing where the sensor is not located inside the

considered DPS but in a different domain. We introduce a method to obtain the opti-

mal trajectories of those mobile robots remotely monitoring a distributed parameter

system with respect to parameter estimation.

• We provide a numerical solution for generating and refining a mobile sensor motion

trajectory for the estimation of the parameters of DPS in the “closed-loop”sense.

The basic idea is to use the finite horizon control type of scheme. First, the optimal

trajectories are computed in a finite time horizon based on the assumed parameter

values. For the following time horizon, the parameters of the distributed parameter

system are estimated using the measured data in the previous time horizon, and the

optimal trajectories are updated accordingly based on these estimated parameters

obtained.

• Under such a closed-loop scheme, we discuss the influence of the communication topol-

ogy between the mobile sensors on the estimation of the parameters of a distributed

parameter system. Of course more communication leads to faster estimates but ac-

ceptable results can be obtained with limited communication.

• We introduce the problem of determining the optimal sensors trajectories so as to

estimate a set of unknown parameters for a system of distributed nature where the

bounds on the parameters values are known. The leads to average trajectories that

can be fairly close to those obtained with the real parameter values.

• Besides the explicit design variables that are the sensor trajectories, there exists an

implicit one that is the excitation of the system, that is to say the actuation. Given

a sensor configuration (static and/or mobile), we propose a numerical procedure to

optimize the trajectory of mobile actuators to find parameter estimates of a distributed

parameter system.
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• Based on the newly introduced optimal actuation policy, we develop a framework to

solve the problem of determining optimal sensors and actuators trajectories so as to

estimate a set of unknown parameters in what constitutes a CPS.

• We discuss fractional order optimal control problems (FOCPs) and their solution by

mean of rational approximation. The original problem is then reformulated to fit the

definition used in general-purpose optimal control problem (OCP) solvers.

• A different direction to approximately solving FOCPs is introduced. The method

uses a rational approximation of the fractional derivative operator obtained from the

singular value decomposition of the Hankel data matrix of the impulse response and

can potentially solve any type of FOCPs.

• We propose a methodology to optimize the trajectory of mobile sensors whose dy-

namics contains fractional derivatives to find parameter estimates of a distributed

parameter system.

• We introduce a methodology to obtain the optimal trajectories of a group of mobile

remote sensors for scale reconciliation for surface soil moisture.

9.2 Future Research Directions

Even though the framework has been greatly extended by the work described in this

dissertation, there are still plenty of research opportunities.

9.2.1 Communication Topology Influence on Regional Controllability and Ob-

servability for DPS

The framework of regional controllability and observability of DPS was introduced a

long time ago, before applications even existed. Since then, little progress has been achieved

to bring the framework further. The reason is that sensors and actuators in DPS were first

introduced as mathematical concepts rather than based on real application. Therefore,
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concepts such as communication topologies have never been considered. Nowadays, com-

munication topology is a highly competitive research direction because of its direct impact

on mobile robots algorithm. A natural evolution of the framework is to introduce commu-

nication topology in regional controllability and observation.

9.2.2 Directed Communication Topologies

A good way to improve the estimation would the use of directed communication topol-

ogy where at least one sensor would be able to receive information from all other sensors

and therefore have great information regarding the system. The use of such topologies will

be part of our future research efforts.

9.2.3 Regional Identifiability of a DPS

Identifiability is a term mostly used in statistics. The concept of identifiability has

proved useful when attempting to answer questions like: is it theoretically possible to learn

the true value of this model’s underlying parameter after obtaining an infinite number of

observations from it? The problem of identifiability of a DPS has been studied in the past.

However, the problem of regional identifiability has not yet been investigated.
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[77] D. Uciński, Optimal Measurement Methods for Distributed-Parameter System Identi-
fication. Boca Raton, FL: CRC Press, 2005.
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Systems. Zielona Góra, Poland: University of Zielona Góra Press, 2004.
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tems. Zielona Góra: Technical University Press, 1999.

[92] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information Processing
Approach. Amsterdam: Morgan Kaufmann Publishers, 2004.

[93] C. G. Cassandras and W. Li, “Sensor networks and cooperative control,” European
Journal of Control, vol. 11, no. 4–5, pp. 436–463, 2005.

[94] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. Sastry, “Distributed control
applications within sensor networks,” in IEEE Proceedings Special Issue on Distributed
Sensor Networks, pp. 1235–1246, 2003.



178

[95] C. Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and chal-
lenges,” in Proceedings of the IEEE, pp. 1247–1256, 2003.

[96] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” IEEE Com-
puter, vol. 37, no. 8, pp. 41–49, 2004.

[97] N. Jain and D. P. Agrawal, “Current trends in wireless sensor network design,” In-
ternational Journal of Distributed Sensor Networks, vol. 1, pp. 101–122, 2005.
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Appendix A

Notations

A.1 General Notations

R Set of real numbers

N Set of natural numbers

Z Set of integer numbers

y State variable

u Control Variable

(z) Measurements

t Time

tf Final time of the experiment

T (0, tf )

Ω Space domain, an open bounded regular subset of Rn

Γ or ∂Ω Boundary of Ω

Ω Ω
⋃
∂Ω

Q Ω×]0, T [

Σ ∂Ω×]0, T [
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L(X,Y ) Space of linear maps from X to Y

L(X) L(X,X)

Lp(0, T ;X) Integrable functions f :]0, T [7→ X

such that t 7→ ‖f(t)‖p is integrable on ]0, T [

L2(Ω) Space of functions square integrable on Ω

D(H) Domain of the operator H

θ Parameter vector

θ̂ Estimate of the parameter vector

det(A) Determinant of the matrix A

trace(A) Trace of the matrix A

λmax(A) Largest eigenvalue of the matrix A

A.2 Special Notations in Chapter 2

A,B,C Dynamics, control and observation operators

Z Observation space (Hilbert space)

U Control space (Hilbert space)

Y State Space (Hilbert Space)

(Φ(t))t≥0 Semi-group generated by A

ω subregion of Ω

Im(H) Image of H
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Ker(H) Kernel of the operator H

H? Adjoint operator of H

PAx Projection of x on A

<,>H Inner product in H

pω or χω Restriction to the region ω

p?ω or iω Adjoint of pω

Ā Closure of A

supp(g) Support of the function g

A.3 Special Notations in Chapter 3

pi Measurement precision weight of the i-th sensor

ξN Design of an experiment

ξ? Optimal design

M Set of admissible information matrices

A.4 Special Notations in Chapter 4

Ωsys Space domain where the system is defined

Ωsens Space domain where sensors can ambulate

Ωmeas Space domain where sensors can take measurements

res Resolution of the remote sensors
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A.5 Special Notations in Chapter 6

Gi(x,x
i
a, t) Actuation function for the k-th actuator

xka Trajectory of the k-th actuator

A.6 Special Notations in Chapter 7

α Order of derivation

aD
α
t f(.) Left Riemann-Liouville Fractional Derivative of a function f(.)

tD
α
b f(.) Right Riemann-Liouville Fractional Derivative of a function f(.)

C
aD

α
t f(.) Left Caputo Fractional Derivative of a function f(.)

C
t D

α
b f(.) Right Caputo Fractional Derivative of a function f(.)

A State matrix

B Input matrix

C Output matrix

D Feedthrough matrix

Γ Gamma function Γ(x) =
∫ 0
∞ t

x−1e−tdt
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Appendix B

RIOTS Tutorial

B.1 Introduction

RIOTS 95 is designed as a MATLAB toolbox written mostly in C, Fortran, and M-file

scripts. It provides an interactive environment for solving a very broad class of optimal

control problems. RIOTS 95 comes pre-compiled for use with the Windows 95/98/2000 or

Windows NT operating systems. The user-OCPs can be prepared purely in M-files and no

compiler is needed to solve the OCPs. To speed up the OCP solving process, there are two

ways go: by using the MATLAB Compiler or by providing the user-OCP in C which is to be

compiled by a C-compiler and then linked with some pre-built linking libraries (currently,

only WATCOM C compiler is supported). This chapter describes the use and operation of

RIOTS 95 together with two demonstrative examples in solving optimal control problems,

one of which is an application in chemical engineering.

The numerical methods used by RIOTS 95 are supported by the theory in the Ph.D.

dissertations of Dr. Adam L. Schwartz [121], which uses the approach of consistent approx-

imations as defined by Polak. In this approach, a solution is obtained as an accumulation

point of the solutions to a sequence of discrete-time optimal control problems that are, in

a specific sense, consistent approximations to the original continuous-time, optimal control

problem. The discrete-time optimal control problems are constructed by discretizing the

system dynamics with one of four fixed step-size Runge-Kutta integration methods and by

representing the controls as finite-dimensional B-splines. Note that RIOTS 95 also includes

a variable step-size integration routine and a discrete-time solver. The integration proceeds

on a (possibly non-uniform) mesh that specifies the spline breakpoints. The solution ob-
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tained for one such discretized problem can be used to select a new integration mesh upon

which the optimal control problem can be re-discretized to produce a new discrete-time

problem that more accurately approximates the original problem. In practice, only a few

such re-discretizations need to be performed to achieve an acceptable solution.

RIOTS 95 provides three different programs that perform the discretization and solve

the finite-dimensional discrete-time problem. The appropriate choice of optimization pro-

gram depends on the type of problem being solved as well as the number of points in the

integration mesh. In addition to these optimization programs, RIOTS 95 also includes other

utility programs that are used to refine the discretization mesh, to compute estimates of

integration errors, to compute estimates for the error between the numerically obtained

solution and the optimal control, and to deal with oscillations that arise in the numerical

solution of singular optimal control problems.

B.2 Features of RIOTS 95

RIOTS 95 is a collection of programs that are callable from the mathematical simulation

program Matlab for Windows. Most of these programs are written in either C, Fortran (and

linked into Matlab using Matlab’s MEX/DLL facility), or Matlab’s M-script language. All of

Matlab’s functionality, including command line execution and data entry and data plotting,

are available to the user. The following is a list of some of the main features of RIOTS 95.

• Solves a very large class of finite-time optimal controls problems that includes: tra-

jectory and endpoint constraints, control bounds, variable initial conditions (free final

time problems), and problems with integral and/or endpoint cost functions.

• System functions can be supplied by the user as either object code or M-files.

• System dynamics can be integrated with fixed step-size Runge-Kutta integration,

a discrete-time solver or a variable step-size method. The software automatically

computes gradients for all functions with respect to the controls and any free initial

conditions. These gradients are computed exactly for the fixed step-size routines.
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• The controls are represented as splines. This allows for a high degree of function

approximation accuracy without requiring a large number of control parameters.

• The optimization routines use a coordinate transformation that creates an orthonor-

mal basis for the spline subspace of controls. The use of an orthogonal basis can results

in a significant reduction in the number of iterations required to solve a problem and

an increase in the solution accuracy. It also makes the termination tests independent

of the discretization level.

• There are three main optimization routines, each suited for different levels of generality

of the optimal control problem. The most general is based on sequential quadratic

programming methods. The most restrictive, but most efficient for large discretization

levels, is based on the projected descent method. A third algorithm uses the projected

descent method in conjunction with an augmented Lagrangian formulation.

• There are programs that provide estimates of the integration error for the fixed step-

size Runge-Kutta methods and estimates of the error of the numerically obtained

optimal control.

• The main optimization routine includes a special feature for dealing with singular

optimal control problems.

• The algorithms are all founded on rigorous convergence theory.

In addition to being able to accurately and efficiently solve a broad class of optimal

control problems, RIOTS 95 is designed in a modular, toolbox fashion that allows the user

to experiment with the optimal control algorithms and construct new algorithms. The

programs outer and aug lagrng, described in detail in the user’s manual [61], are examples

of this toolbox approach to constructing algorithms.
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B.3 Class of Optimal Control Problems Solvable by RIOTS 95

RIOTS 95 is designed to solve optimal control problem of the form:

OCP : min
(u,ξ)∈Lm

∞[a,b]×Rn
{f(u, ξ)

.
= go(ξ, x(b))

+

∫ b

a
lo(t, x, u)dt

}
,

subject to:

ẋ = h(t, x, u), x(a) = ξ, t ∈ [a, b],

ujmin(t) ≤ uj(t) ≤ ujmax(t), j = 1, · · · ,m,

ξjmin ≤ ξ
j ≤ ξjmax, j = 1, · · · , n,

lνti(t, x(t), u(t)) ≤ 0, ν ∈ qti, t ∈ [a, b],

gνei(ξ, x(b)) ≤ 0, ν ∈ qei,

gνee(ξ, x(b)) = 0, ν ∈ qee,

where x(t) ∈ Rn, u(t) ∈ Rm, g : Rn×Rn → R, l : R×Rn×Rm → R, h : R×Rn×Rm → Rn

and we have used the notation q
.
= 1, · · · , q and Lm∞[a, b] is the space of Lebesgue measurable,

essentially bounded functions [a, b] → Rm. The functions in OCP can also depend upon

parameters which are passed from Matlab at execution time using get flags.

The subscripts o, ti, ei, and ee on the functions g(·, ·) and l(·, ·, ·) stand for, respec-

tively, “objective function,” “trajectory constraint,” “endpoint inequality constraint,” and

“endpoint equality constraint.” The subscripts for g(·, ·) and l(·, ·, ·) are omitted when all

functions are being considered without regard to the subscript. The functions in the de-

scription of problem OCP, and the derivatives of these functions1, must be supplied by the

user as either object code or as M-files. The bounds on the components of xi and u are

specified on the Matlab command line at run-time.

1If the user does not supply derivatives, the problem can still be solved using riots with finite-difference
computation of the gradients.
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The optimal control problem OCP allows optimization over both the control u and

one or more of the initial states ξ. To be concise, we will define the variable

η = (u, ξ) ∈ H2
.
= Lm∞[a, b]×Rn.

With this notation, we can write, for example, f(η) instead of f(ξ, u). We define the

inner product on H2 as

< η1, η2 >H2

.
=< u1, u2 >L2 + < ξ1, ξ2 > .

The norm corresponding to this inner product is given by ‖ η ‖H2=< η, η >
1/2
H2

. Note that

H2 is a pre-Hilbert space.
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Appendix C

Implementations

C.1 Remote Sensors Trajectory Optimization

In this section, we provide the file required to simulate the example given in Chapter 4.

Table C.1 gives the main Matlab program used to define the initial conditions of the problem

and call the riots function. Table C.2 gives the function sys_init.m which provides

information about the dimensions of the optimization problem. Table C.3 gives the function

sys_h.m in which the dynamic model is defined. Table C.4 gives the function sys_g.m which

is used to compute the endpoint cost function. Table C.5 gives the function sys_l.m which

is used to compute values for the integrands of cost functions. Table C.6 gives the function

interp_sensitivities.m which is used to estimate the value of the sensitivity coefficients

at a given location.
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Table C.1: Main function to call RIOTS used in Chapter 4.

load sensitivities

global WGHT_CTRL

n_sensors = 3; % number of sensors

n_ctrls = 3 * n_sensors; % number of control input

WGHT_CTRL = 2.0 / n_ctrls;

n_sensor_dynamics = n_ctrls; % number of sensor dynamics

s0 = [0.1; 0.1; 0.2 ; ...

0.1; 0.5; 0.2 ; ...

0.1; 0.9 ; 0.2]; % initial conditions for 3 sensors

s_lower = zeros(n_sensor_dynamics, 1);

s_upper = ones(n_sensor_dynamics, 1);

n_df_ctrl = length(TGRID) + 1;

u0 = [0.4*ones(1, n_df_ctrl); % 1 sensor

0.0*ones(1, n_df_ctrl);

0.0*ones(1, n_df_ctrl)];

u0= [u0 ; 0.4*ones(1, n_df_ctrl); % 2 sensors

0.0*ones(1, n_df_ctrl);

0.0*ones(1, n_df_ctrl)];

u0= [u0 ; 0.4*ones(1, n_df_ctrl); % 3 sensors

0.0*ones(1, n_df_ctrl);

0.0*ones(1, n_df_ctrl)];

u_min = [-0.7 ; -0.7 ; -0.2 ; ...

-0.7 ; -0.7 ; -0.2; ...

-0.7 ; -0.7 ; -0.2]; % minimum control input

u_max = [0.7 ; 0.7 ; 0.2 ; ...

0.7 ; 0.7 ; 0.2; ...

0.7 ; 0.7 ; 0.2]; % maximum control input

n_params = size(SENSVS, 4); % number of parameters

n_additional_state_vars = n_params * (n_params + 1) / 2;

x0 = [s0; zeros(n_additional_state_vars, 1)];

x0_lower = [s_lower; zeros(n_additional_state_vars, 1)];

x0_upper = [s_upper; zeros(n_additional_state_vars, 1)];

fixed = [zeros(n_sensor_dynamics, 1); ones(n_additional_state_vars, 1)];

X0 = [x0, fixed, x0_lower, x0_upper];

[u, x, crit_val] = riots(X0, u0, TGRID, u_min, u_max, [], [300, 0, 1], 4);
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Table C.2: sys init.m file for RIOTS used in Chapter 4.

function neq = sys_init(params)

global SENSVS

if isempty(params)

n_sensors = 3;

n_controls = 3 * n_sensors;

n_parameters = size(SENSVS, 4);

n_states = 3 * n_sensors + n_parameters * (n_parameters + 1) / 2;

neq = [1 n_states; 2 n_controls];

else

global sys_params

sys_params = params;

end

Table C.3: sys h.m file for RIOTS used in Chapter 4.

function xdot = sys_h(neq, t, x, u)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);

n_sensors = round(neq(2) / 3);

n_parameters = round(sqrt(IND_TRIANGLE(end)));

x1 = x(1: 3: n_sensor_dynamics - 2);

x2 = x(2: 3: n_sensor_dynamics - 1);

x3 = x(3: 3: n_sensor_dynamics);

u1 = u(1: 3: n_sensor_dynamics - 2);

u2 = u(2: 3: n_sensor_dynamics - 1);

u3 = u(3: 3: n_sensor_dynamics);

g = interp_sensitivities(x1, x2, x3, u1, u2, u3, t, neq(4));

a = zeros(n_parameters, n_parameters);

for loop = 1: n_sensors

a = a + g(loop, :)’ * g(loop, :);

end

xdot = [u; a(IND_TRIANGLE)];
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Table C.4: sys g.m file for RIOTS used in Chapter 4.

function J = sys_g(neq, t, x0, xf)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);

n_parameters = round(sqrt(IND_TRIANGLE(end)));

F_NUM = neq(5);

if F_NUM == 1

fim = zeros(n_parameters, n_parameters);

fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);

fim = fim’;

fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);

J = -log(det(fim));

else

error(’Reference to a non-existing constraint on initial/final state’)

end

Table C.5: sys l.m file for RIOTS used in Chapter 4.

function z = sys_l(neq,t,x,u)

global sys_params WGHT_CTRL

F_NUM = neq(5);

n_sensor_dynamics = neq(2);

n_sensors = round(neq(2) / 3);

x3 = x(3: 3: n_sensor_dynamics);

if F_NUM == 1

z = 0.1 / sqrt(x3’ * x3);

else

error(’Reference to a non-existing state constraint’)

end
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Table C.6: interp sensitivities.m file for RIOTS used in Chapter 4.

function g = interp_sensitivities(x, y, z, xdot, ydot, zdot, t, k)

global TGRID XGRID YGRID SENSVS

wr = (t - TGRID(k)) / (TGRID(k + 1) - TGRID(k));

wl = 1.0 - wr;

g = zeros(length(x), size(SENSVS, 4));

[thetadot,phidot,rdot] = cart2sph(xdot,ydot,zdot);

phidot = phidot - pi/2;

rTR = rdot;

thetaTR = thetadot - pi/4 ;

phiTR = phidot + pi/6;

[xTR,yTR,zTR] = sph2cart(thetaTR,phiTR,rTR);

xTR = x + xTR;

yTR = y + yTR;

zTR = z + zTR;

xGTR = x + z.*(xTR-x)./(z-zTR);

yGTR = y + z.*(yTR-y)./(z-zTR);

rTL = rdot;

thetaTL = thetadot + pi/4 ;

phiTL = phidot + pi/6;

[xTL,yTL,zTL] = sph2cart(thetaTL,phiTL,rTL);

xTL = x + xTL;

yTL = y + yTL;

zTL = z + zTL;

xGTL = x + z.*(xTL-x)./(z-zTL);

yGTL = y + z.*(yTL-y)./(z-zTL);

rBR = rdot;

thetaBR = thetadot + pi/4 ;

phiBR = phidot - pi/6;

[xBR,yBR,zBR] = sph2cart(thetaBR,phiBR,rBR);

xBR = x + xBR;

yBR = y + yBR;

zBR = z + zBR;

xGBR = x + z.*(xBR-x)./(z-zBR);

yGBR = y + z.*(yBR-y)./(z-zBR);

rBL = rdot;

thetaBL = thetadot - pi/4 ;

phiBL = phidot - pi/6;

[xBL,yBL,zBL] = sph2cart(thetaBL,phiBL,rBL);

xBL = x + xBL;

yBL = y + yBL;

zBL = z + zBL;

xGBL = x + z.*(xBL-x)./(z-zBL);

yGBL = y + z.*(yBL-y)./(z-zBL);
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for j = 1 : length(x)

res = 3;

XI = zeros(res,res);

YI = zeros(res,res);

T = [linspace(xGTL(j),xGTR(j),res);linspace(yGTL(j),yGTR(j),res)];

B = [linspace(xGBL(j),xGBR(j),res);linspace(yGBL(j),yGBR(j),res)];

% L = [linspace(xGTL,xGBL,res);linspace(yGTL,yGBL,res)];

% R = [linspace(xGTR,xGBR,res);linspace(yGTR,yGBR,res)];

for i = 1:res

XI(i,:) = linspace(T(1,i),B(1,i),res);

YI(i,:) = linspace(T(2,i),B(2,i),res);

end

for loop = 1: size(SENSVS, 4)

g(j, loop) = wl * sum(sum(interp2(XGRID, YGRID, SENSVS(:, :, k, loop), ...

XI, YI, ’*cubic’, 0))) / res^2 ...

+ wr * sum(sum(interp2(XGRID, YGRID, SENSVS(:, :, k + 1, loop), ...

XI, YI, ’*cubic’, 0))) / res^2;

end

end

end

C.2 Online Scheme for Trajectory Optimization

In this section, we provide the file required to simulate the example given in Chapter 5.

Table C.7 gives the main Matlab program used to define the initial conditions of the problem

and call the riots function. Table C.8 gives the function sys_init.m which provides

information about the dimensions of the optimization problem. Table C.9 gives the function

sys_h.m in which the dynamic model is defined. Table C.10 gives the function sys_g.m

which is used to compute the endpoint cost function. Table C.11 gives the function sys_l.m

which is used to compute values for the integrands of cost functions. Table C.12 gives the

function interp_sensitivities.m which is used to estimate the value of the sensitivity

coefficients at a given location. Table C.13 gives the function paramestimatenonlin.m

which is used to estimate the parameters of the system based in a set of measurements.
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Table C.7: Main function to call RIOTS used in Chapter 5.

global WGHT_CTRL

load sensitivities

load simulations

startup;

a = 0.1;

b = 0.6;

c = 0.8;

reala = 0.1;

realb = 0.6;

realc = 0.8;

n_sensors = 3; %to change also in sys_init

n_params = size(SENSVS, 4);

n_ctrls = 2 * n_sensors;

WGHT_CTRL = 2.0 / n_ctrls;

n_sensor_dynamics = n_ctrls;

u_min = -0.6;

u_max = 0.6;

s0 = [0.1; 0.1; 0.1; 0.5; 0.1; 0.9];

s_lower = zeros(n_sensor_dynamics, 1);

s_upper = ones(n_sensor_dynamics, 1);

ob_int = 10;

ob_num = 10;

n_df_ctrl = ob_num + 1 ;

u0 = [0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);

0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);

0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl)];

n_additional_state_vars = n_params * (n_params + 1) / 2;

x0 = [s0; zeros(n_additional_state_vars, 1)];

x0_lower = [s_lower; zeros(n_additional_state_vars, 1)];

x0_upper = [s_upper; zeros(n_additional_state_vars, 1)];

fixed = [ones(n_sensor_dynamics, 1); ones(n_additional_state_vars, 1)];

X0 = [x0, fixed, x0_lower, x0_upper];

% Definition of the initial conditions for the first iteration of the sensitivity

n_xgrid_divs = 20;

n_ygrid_divs = n_xgrid_divs;

pdesize = (n_xgrid_divs + 1)*(n_ygrid_divs + 1);

w0 = [repmat(0, pdesize, 1); zeros(n_sensors * pdesize, 1)];

param=[]; traj=[]; timeest=[]; measest=[]; xest=[];
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for i=1:ob_int

timehor = linspace((i-1)/ob_int,(i-1)/ob_int+1,ob_num+1);

timeopt = linspace((i-1)/ob_int,i/ob_int,ob_num+1);

[SENSVS,unusued] = sensitivity(a,b,c,timehor,w0);

[unusued,w] = sensitivity(a,b,c,timehor,w0);

unused = [];

w0 = [w(1:pdesize,end);zeros(n_sensors * pdesize, 1)];

n_additional_state_vars = n_params * (n_params + 1) / 2;

X0 = [x0, fixed, x0_lower, x0_upper];

[u, x, crit_val] = riots(X0, u0, timehor, u_min * ones(n_ctrls, 1), ...

u_max * ones(n_ctrls, 1), [], 200, 4, [], 10, 2);

x = interp1(timehor’,x’,timeopt’,’cubic’)’;

x0 = x(:,end);

u0 = [u(1,end)*ones(1, n_df_ctrl);

u(2,end)*ones(1, n_df_ctrl);

u(3,end)*ones(1, n_df_ctrl);

u(4,end)*ones(1, n_df_ctrl);

u(5,end)*ones(1, n_df_ctrl);

u(6,end)*ones(1, n_df_ctrl)];

traj=[traj,x];

SENSVS = [];

for j=1:n_sensors

meas(j,:) = interpn(XGRID,YGRID,TGRID,PGRID1,PGRID2,PGRID3,SIMS,x(2*j-1,:),x(2*j,:), ...

timeopt, reala*ones(length(timeopt),1)’, ...

realb*ones(length(timeopt),1)’, ...

realc*ones(length(timeopt),1)’,’cubic’);

end

meas = meas + 0.0001*randn(n_sensors,length(meas));

timeest=[timeest timeopt(:,2:end)];

measest=[measest meas(:,2:end)];

xest=[xest x(:,2:end)];

a = paramestimatenonlin(measest, xest, timeest, XGRID, YGRID, TGRID, ...

PGRID1, PGRID2, PGRID3, SIMS, n_sensors, [a,b,c]);

b = a(2);

c = a(3);

a = a(1);

param=[param,[a;b;c]];

end
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Table C.8: sys init.m file for RIOTS used in Chapter 5.

function neq = sys_init(params)

global SENSVS

if isempty(params)

n_sensors = 3;

n_controls = 2 * n_sensors;

n_parameters = size(SENSVS, 4);

n_states = 2 * n_sensors + n_parameters * (n_parameters + 1) / 2;

neq = [1 n_states; 2 n_controls ];

else

global sys_params

sys_params = params;

end

end

Table C.9: sys h.m file for RIOTS used in Chapter 5.

function xdot = sys_h(neq, t, x, u)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);

n_sensors = round(neq(2) / 2);

n_parameters = round(sqrt(IND_TRIANGLE(end)));

x1 = x(1: 2: n_sensor_dynamics - 1);

x2 = x(2: 2: n_sensor_dynamics);

g = interp_sensitivities(x1, x2, t, neq(4));

a = zeros(n_parameters, n_parameters);

for loop = 1: n_sensors

a = a + g(loop, :)’ * g(loop, :);

end

xdot = [u; a(IND_TRIANGLE)];
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Table C.10: sys g.m file for RIOTS used in Chapter 5.

function J = sys_g(neq, t, x0, xf)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);

n_parameters = round(sqrt(IND_TRIANGLE(end)));

F_NUM = neq(5);

if F_NUM == 1

fim = zeros(n_parameters, n_parameters);

fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);

fim = fim’;

fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);

J = -log(det(fim));

else

error(’Reference to a non-existing constraint on initial/final state’)

end

Table C.11: sys l.m file for RIOTS used in Chapter 5.

function z = l(neq,t,x,u)

global sys_params WGHT_CTRL

F_NUM = neq(5);

if F_NUM == 1

z = 0;

else

error(’Reference to a non-existing state constraint’)

end

Table C.12: interp sensitivities.m file for RIOTS used in Chapter 5.

function g = interp_sensitivities(x, y, t, k)

global TGRID XGRID YGRID SENSVS

wr = (t - TGRID(k)) / (TGRID(k + 1) - TGRID(k));

wl = 1.0 - wr;

g = zeros(length(x), size(SENSVS, 4));

for loop = 1: size(SENSVS, 4)

g(:, loop) = wl * interp2(XGRID, YGRID, SENSVS(:, :, k, loop), x, y, ’*cubic’) ...

+ wr * interp2(XGRID, YGRID, SENSVS(:, :, k + 1, loop), x, y, ’*cubic’);

end
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Table C.13: paramestimatenonlin.m file for RIOTS used in Chapter 5.

function a = paramestimatenonlin(meas, x, time, XGRID, YGRID, TGRID, ...

PGRID1, PGRID2, PGRID3, SIMS, n_sensors, a)

options = optimset(’TolFun’,1e-4,’MaxTime’,500);

a = lsqnonlin(@myfun ,a ,0 ,1 ,options);

function F = myfun(a)

for j = 1:n_sensors

est = interpn(XGRID,YGRID,TGRID,PGRID1,PGRID2,PGRID3,SIMS,x(2*j-1,:),x(2*j,:), ...

time, a(1)*ones(length(time),1)’,a(2)*ones(length(time),1)’, ...

a(3)*ones(length(time),1)’,’cubic’);

F(j) = sum(meas(j,:)-est);

end

end

end

C.3 Fractional Order Trajectory Optimization

In this section, we provide the file required to simulate the example given in Chapter 7.

Table C.14 gives the main Matlab program used to define the initial conditions of the

problem and call the riots function. Table C.15 gives the function sys_init.m which

provides information about the dimensions of the optimization problem. Table C.16 gives

the function sys_h.m in which the dynamic model is defined. Table C.17 gives the function

sys_g.m which is used to compute the endpoint cost function. Table C.18 gives the function

sys_l.m which is used to compute values for the integrands of cost functions. Table C.19

gives the function interp_sensitivities.m which is used to estimate the value of the

sensitivity coefficients at a given location.
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Table C.14: Main function to call RIOTS used in Chapter 7.

clear all

load sensitivities

load res09.mat

global WGHT_CTRL A b c

n=5;

A = res{n}.A;

b = res{n}.b;

c = res{n}.c;

sys=ss(A,b,c,0);

n_sensors = 3;

n_ctrls = 2 * n_sensors * length(c’);

WGHT_CTRL = 2.0 / (2 * n_sensors);

n_sensor_dynamics = n_ctrls;

u_min = -0.7;

u_max = 0.7;

s0 = 0.1*[1;zeros(length(c’)-1,1)]/(c*[1;zeros(length(c’)-1,1)]);

s0 = [s0 ; 0.2*c’/(c*c’)];

s0 = [s0 ; 0.1*c’/(c*c’)];

s0 = [s0 ; 0.5*c’/(c*c’)];

s0 = [s0 ; 0.1*c’/(c*c’)];

s0 = [s0 ; 0.8*c’/(c*c’)];

s_lower = zeros(n_sensor_dynamics, 1);

s_upper = ones(n_sensor_dynamics, 1);

n_df_ctrl = length(TGRID) + 1;

u0 = [0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);

0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);

0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl)];

n_params = size(SENSVS, 4);

n_additional_state_vars = n_params * (n_params + 1) / 2;

x0 = [s0; zeros(n_additional_state_vars, 1)];

x0_lower = [s_lower; zeros(n_additional_state_vars, 1)];

x0_upper = [s_upper; zeros(n_additional_state_vars, 1)];

fixed = [zeros(n_sensor_dynamics, 1); ones(n_additional_state_vars, 1)];

X0 = [x0, fixed, x0_lower, x0_upper];

[u, x, crit_val] = riots(X0, u0, TGRID, u_min * ones(2 * n_sensors, 1), ...

u_max * ones(2 * n_sensors, 1), [], [100, 0, 1], 4);
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Table C.15: sys init.m file for RIOTS used in Chapter 7.

function neq = sys_init(params)

global SENSVS c

if isempty(params)

n_sensors = 3;

n_controls = 2 * n_sensors;

n_parameters = size(SENSVS, 4);

n_states = 2 * n_sensors * length(c’) + n_parameters * (n_parameters + 1) / 2;

neq = [1 n_states; 2 n_controls ];

else

global sys_params

sys_params = params;

end

Table C.16: sys h.m file for RIOTS used in Chapter 7.

function xdot = sys_h(neq, t, x, u)

global sys_params IND_TRIANGLE A b c

n_sensor_dynamics = neq(2);

n_sensors = round(neq(2) / 2);

n_parameters = round(sqrt(IND_TRIANGLE(end)));

x1 = x(1: length(c’));

x2 = x(length(c’) + 1 : 2 * length(c’));

x3 = x(2 * length(c’) + 1 : 3 * length(c’));

x4 = x(3 * length(c’) + 1 : 4 * length(c’));

x5 = x(4 * length(c’) + 1 : 5 * length(c’));

x6 = x(5 * length(c’) + 1 : 6 * length(c’));

a = zeros(n_parameters, n_parameters);

g = interp_sensitivities(c*x1, c*x2, t, neq(4));

a = a + g’ * g;

g = interp_sensitivities(c*x3, c*x4, t, neq(4));

a = a + g’ * g;

g = interp_sensitivities(c*x5, c*x6, t, neq(4));

a = a + g’ * g;

state1 = A*x1 + b*u(1);

state2 = A*x2 + b*u(2);

state3 = A*x3 + b*u(3);

state4 = A*x4 + b*u(4);

state5 = A*x5 + b*u(5);

state6 = A*x6 + b*u(6);

xdot = [state1 ; state2 ; state3 ; state4 ; state5 ; state6 ; a(IND_TRIANGLE)];
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Table C.17: sys g.m file for RIOTS used in Chapter 7.

function J = sys_g(neq, t, x0, xf)

global sys_params IND_TRIANGLE c

n_sensor_dynamics = neq(2);

n_parameters = round(sqrt(IND_TRIANGLE(end)));

F_NUM = neq(5);

if F_NUM == 1

fim = zeros(n_parameters, n_parameters);

fim(IND_TRIANGLE) = xf(n_sensor_dynamics * length(c’) + 1: end);

fim = fim’;

fim(IND_TRIANGLE) = xf(n_sensor_dynamics * length(c’) + 1: end);

J = -log(det(fim))

else

error(’Reference to a non-existing constraint on initial/final state’)

end

Table C.18: sys l.m file for RIOTS used in Chapter 7.

function z = l(neq,t,x,u)

global sys_params WGHT_CTRL

F_NUM = neq(5);

if F_NUM == 1

z = 0;

else

error(’Reference to a non-existing state constraint’)

end

Table C.19: interp sensitivities.m file for RIOTS used in Chapter 7.

function g = interp_sensitivities(x, y, t, k)

global TGRID XGRID YGRID SENSVS

wr = (t - TGRID(k)) / (TGRID(k + 1) - TGRID(k));

wl = 1.0 - wr;

g = zeros(length(x), size(SENSVS, 4));

for loop = 1: size(SENSVS, 4)

g(:, loop) = wl * interp2(XGRID, YGRID, SENSVS(:, :, k, loop), x, y, ’*cubic’) ...

+ wr * interp2(XGRID, YGRID, SENSVS(:, :, k + 1, loop), x, y, ’*cubic’);

end
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