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ABSTRACT 

 
The Almighty has created the Universe and things present in it with an 

order and proper positions and the creation looks unique and perfect. No one 

can even think much better or imagine to optimize these further. People 

inspired by these optimum results started thinking about usage of 

optimization techniques for solving their real life problems.  The concept of 

constraint optimization came into being after World War II and its use 

spread  vastly in all fields. However, in this process, still lots of efforts are 

needed to uncover the mysteries and unanswered questions, one of the 

questions always remains live that whether there can be a single method that 

can solve all types of nonlinear programming problems  like Simplex 

Method solves linear programming problems. In the present thesis,  we have 

tried to proceed in this direction and provided some contributions towards 

this area. 

The present thesis has been divided into five chapters, chapter wise 

summary is given below: 

Chapter-1 is an introductory one and provides genesis of the 

Mathematical Programming Problems and its use in Statistics. 

Relationship of mathematical programming with other statistical 

measures are also reviewed. Definitions and other pre-requisites are 

also presented  in this chapter. The relevant literature on the topic has 

been surveyed. 

 



 

Chapter-2 deals with the two dimensional non-linear programming 

problems. We develop a method that can solve approximately all type 

of two dimensional nonlinear programming problems of certain class. 

The method has been illustrated with  numerical examples. 

 

Chapter-3 is devoted to the study of n-dimensional non-linear 

programming problems of certain types. We provide a new method 

based on regression analysis and statistical distributions. The method 

can solve n-dimensional non-linear programming problems making 

use of regression analysis/co-efficient of determination.  

 

In chapter-4 we introduce a filtration method of mathematical 

programming. This method divides the constraints into active and non 

active and try to eliminate the less important constraints (non-active 

constraints) and solve the problem with only active constraints. This 

helps to find  solution in less iterations and less in time while retaining 

optimality of the solution. 

 

The final chapter-5 deals with  an interesting relationship between  

linear and nonlinear programming problems. Using  this relationship, 

we can solve linear programming problems with the help of non-linear 

programming problems. This relationship also helps to find a  better 

alternate solutions to the linear programming problems. 

 In the end, a complete bibliography is provided. 
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Basic concepts and 

preliminaries 

 

 



 
 "The tremendous power of the Simplex Method is a constant surprise to me."  

G. B. Dantzig 

 

1.1   Introduction 

he first problem in linear programming was formulated in 1940 by 

a Russian mathematician Kantorovich, L. V. [86,87] and an 

American economist Hitchcock, F. L. [80]  in 1941. They dealt 

with a well known transportation problem  which forms a branch of linear 

programming. Even though the French mathematician Jean- Baptiste -Joseph 

Fourier seemed to be aware of the subject potential as early as 1823, 

Kantorovich, L. V. published an extensive monograph [85] in 1939 and is 

credited with being the first to recognize that certain important broad classes 

of scheduling problems had well defined mathematical structures. In 1941, 

an English economist, Stigler, G.[139] described yet another linear 

programming problem that of determining an optimal diet, not only at the 

minimum cost but also to satisfy minimum requirements. 

Intensive work began in 1947 in US Air Force, when under the 

compulsions of World War II, a United Stated Air Force project called 

SCOOP (Scientific Computation of Optimum Programs) was setup  under 

the leadership of Dantzig, G. B. The Simplex Algorithm and much of the 

related theory was developed by Dantzig, G. B. [37] and his team. Further 

work on special problems and methods continued throughout the next decade 

by Dantzig group in  U. S. A. and by others in Europe. 

Before 1947 all practical planning was characterized by a series of 

authoritatively imposed rules of procedure and priorities. General objectives 

were  never stated, probably because of the impossibility of performing the 

calculations necessary to minimize an objective function under constraints.  

T



In 1947 a method composed of successive tests for optimality at extreme 

points and intervening linear movements along polygon edges called the 

Simplex Computational Method  was introduced by Dantzig, G. B. [37] 

which turned out to be an efficient method. Interest in linear programming 

grew rapidly and by 1951 its use spread to industry, Dantzing, G. B. [38], 

Koopmans, T. C. [ 94,95] etc.  Afterwards, significant contribution in Linear 

Programming were made by Dantzig, G. B. [41]. Hadley, G. [75], Gale, D. 

[62], Gass, S. I. [64], Simmonard, M. [137], Llewelly, R. W. [107], 

Luenberger, D. G. [108], Barrodale, I. [13] and Murty,  K. G. [116] etc.  

Other forms of  Linear Programming problems further studied includes:   

 Integer programming problems were introduced by  Gomory, R. E. 

[71,72] in 1960. Unlike the earlier work on the traveling salesman problem 

by Dantzig, G. B.,  Fulkerson, D. R. et al. [40] showed how to systematically 

generate the ‘cutting’ planes. Cuts are extra necessary conditions which 

when added to an existing system of inequalities guarantee that the 

optimization solution will result  in integers. Subsequently several 

techniques of generating cutting planes and Branch and Bound approach to 

solve integer programming were developed by different authors, Benders, J. 

R.[22], Balinski, M. L.[11], Balas, E.[8,9,10], Bellmore, M.[21], Glover, F. 

[69], Bradley, G. H. and  Wahi, P. N. [24], Davis, R. E. [42], Bradley, G. H. 

[23], Glover, F. [70], Koopmans, T. C. [96] and Trotter, L. E. [143], etc.  

Ideas of Gomory, R. E. [71,72],  Balas, E.  [8,9,10] and that of others were 

extended by IBM, to  develop  clever elimination schemes for solving 

covering problems. Branch-and-Bound method has turned out to be one of 

the most successful ways to solve practical integer programs.  



 
Linear Fractional Programming problems were  introduced by 

Charnes, A.,  Cooper, W. W. [30] in 1962. These types of problems consist 

of linear type fractional objective function  and linear constraints. Other 

authors who contributed this field were Dorn, W. S., [44], Schaible, S. 

[133,134] etc. 

For a long time it was not known whether or not, linear programs 

belonged to a non-polynomial class called “hard” (such as the one, the 

traveling salesman problem belongs to) or to an “easy” polynomial class 

(like the one that the shortest path problem belongs to). Klee, V. and Minty, 

G. J.  [92] created an example that showed that the classical Simplex 

Algorithm would require an exponential number of steps to solve a worst-

case linear program. In 1979, the Russian mathematician Khachian, L. G. 

[91] developed a polynomial-time algorithm for solving linear programs. It 

is an interior method using ellipsoids inscribed in the feasible region. He 

proved that the computing time is guaranteed to be less that a polynomial 

expression in the dimensions of the problem and the number of digits of 

input data. Although polynomial, the bound he established turned out to be 

too high for his algorithm to be used to solve practical problems. 

Karmarkar’s  algorithm [88,89] was an important improvement on the 

theoretical results of  Khachian, L. G. [91] that a linear program can be 

solved in polynomial time. Moreover, his algorithm turned out to be one 

which could be used to solve practical linear programs. In  1990, interior 

algorithms were in open competition with variants of the Simplex Method. It 

appears likely that commercial software for solving linear programs would  

eventually combine pivot type moves used in the Simplex Methods with 

interior type moves. 



 
In their pioneer work, Kuhn, H. W. and Tuckr, A.W. [100] contributed 

the famous Karush-Kuhn-Tucker Conditions for Non-Linear Programming 

in 1951, which are related to the Firtz-John Conditions [83], Later on 

Zoutendijk, G. [162], Rockafellar, R. T. [129], Wolfe, P. [157,158], Cottle, 

R. W. and Dantzing, G. B. [35], Fiacco, A. V. and McCormick, G. P. [52], 

McCormick, G. P. [111], Kelly, J. E., [90], Mangasarian, O. L. [109], 

Martos, B. [110] and others developed the theory of nonlinear programming 

extensively using the notions of duality. 

The various forms of  Nonlinear Programming further studied during the 

next decades are:  

a) Stochastic Programming  Stochastic Programming were developed 

in  1955 which has been greatly extended by Walkup, D. W. and 

Wets, R. J. B. [150]. Important contributions to this field have been 

made by Charnes, A. and Cooper, W. W. [29,31] in the late 1950’s 

using chance constraints, i.e., constraints which hold with a stated 

probability. The other authors who contributed in this field are  Bawa, 

V. S. [17], Cocks, K. D. [33], Evers, W. H. [51], Garstka, S. J. [63] 

and Williams, A. C. [154] etc. 

b) Quadratic Programming  Quadratic programming  was introduced 

by Wolfe, P. [61,157], who provided algorithm for positive definite 

and positive semi definite cases.  Other authors who have contributed 

to this field are Beale, E. M. L. [19], Eaves, B. C. [48], Lemke, C. E. 

[105] and  Van de Panne, C. [145,146]  etc.  

c) Dynamic Programming  Discrete Dynamic Programming  was   

developed in 1950’s through the work of Bellman, R. E. [20] and the 

continuous Dynamic Programming by White, L. S. [153]. Other 



authors, contributing in this field are Howard, R. A. [81], Greenberg, 

H. J. [74] and Nemhauser, G. L. [117] etc. 

d) Geometric Programming  Geometric Programming had its beginning 

in 1967 at the hands of Duffin, R. J., Peterson, E. L., and Zener, C.  

[47]. Duffin developed the theory while Zener worked mostly on 

applications. The method  initially was restricted to posynomials and 

less than or equal to one constraints because it was linked to the 

algebraic inequality of arithmetic and geometric  mean. The extension 

of the method to negative terms and arbitrary inequalities was 

achieved by Passy, U. and  Wild, D. J. [120] on the basis of lagrangian 

function and Kuhn-Tucker conditions.  

 

1.1.1 Mathematical Programming in Statistics 

In the development of statistical methods, one is often faced with an 

optimization problems. The techniques for solving  such problems can be 

broadly classified  as classical, numerical, variational methods and 

mathematical programming. The fundamental paper by Charnes,  A., 

Cooper, W. W. et al. [28]  introduced the application of mathematical 

programming to statistics. As an alternative to the least-squares approach to 

linear regression, they chose to minimize the sum of the absolute deviations 

(MINMAD) and showed the equivalence between the MINMAD problem 

and a linear programming  problem. MINMAD estimator was studied as 

early as 1757 by Boscovich, R. G. (later discussed by Eisenhart, C. [50]).  

Edgeworth, F. Y. [49] presented a method for the simple regression, with 

MINMAD estimator. However, Turner, H. H. [144] questioned Edgeworth’s 

claim of his method’s computational superiority over the least-squares 

method and also pointed out the non-uniqueness of the MINMAD estimator. 

It was only after the work of  Charnes, A.,  Cooper, W. W. et al. [28], that a 



renewed interest in using the MINMAD estimator for regression problems 

was created. They showed the equivalence between a MINMAD problem 

and a linear programming problem. Wagner, H. M. [148] suggested solving 

the problem through the dual approach. Afterwards, by the introduction of  

the efficient modification of the Simplex Method for solving the MINMAD 

problem by Barrodale, I. and Roberts, F. D. K. [13], the possibility has 

further increased of using MINMAD as an alternative to least squares. 

The MINMAD problem with additional linear restrictions is 

considered along the same lines in Barrodale, I. and Robert, F. D. K. [14]. 

Special purpose algorithms for the MINMAD problem have also been given 

by Armstrong, R. D. and Hultz, J. W. [4], Bartels, R. H. and Conn, A. R. 

[15]. Computer comparisons have established the Barrodale, I.  and Roberts, 

F. D. K. algorithms as an efficient method for solving the MINMAD 

problem. Revised Simplex version of this algorithm by Armstrong, R. D.  et 

al. [5] is claimed to be even more efficient than the Barrodale, I. and Robert, 

F. D. K. algorithm. 

Taylor, L. D.  [142] suggested the combination of MINMAD and least 

square in which MINMAD should be applied first as a means of identifying 

outliers to be terminated and then the least squares applied after the trimming 

has been done. He also gives excellent arguments for the use of MINMAD  

in econometric analysis, Wilson, H. G. [155] via Monte Carlo sampling 

investigated the cases in which the disturbances are normally distributed 

with constant variance except for one or more outliers whose disturbance are 

generated from normal distribution with large variance. Among other results, 

it was found that MINMAD estimation retains its advantage over least 

squares under different conditions such as variations in outlier variance, 

number of independent variables, number of observations, and number of 

outliers. 



Wagner, H. M.  [148] gives a linear programming formulation of the  

MINMAXAD problem. He also suggests the dual approach for solving this 

problem.  Steifel, E. [138]  considers this problem and also brings out the 

connections between linear programming and Jordan elimination. 

Additionally, he gives examples to bring out the geometrical aspects of the 

problem.  Collatz, L. and Wetterling, W.  [34] also discuss this problem in 

the context  of Chebyshev approximation theory. 

Combining least squares in MINMAD regression in various ways has 

been suggested by Gentle, J. E.  Kennedy, W. J. et al. [67,68], McCormick, 

G. F. and Sposito, V. A. [112]. Waterman, M. S. [151] gives a complete 

search procedure  for the problem with non-negativity  restrictions on β that 

uses least squares regression. This approach  requires solving 2p unrestricted 

least squares problems. Armstrong, R. D. and Frome, E. L. [3]  give a 

Branch and Bound scheme for the same problem. Numerical stability of 

restricted least squares problem is studied by Stoer, J.  [141].  Judge, G. G. 

and  Takayama, T. S. [84] also consider the restricted least squares problem  

and suggest a quadratic programming formulation of the problem. 

The historical development of the theory of testing statistical 

hypotheses Lehmann, E. L.  [104], and the fundamental work by Neyman, J. 

and Pearson, E. S. [119].  Barankin, E. W. [12] was the first to observe  that 

linear programming might be used in testing of hypothesis. A good treatment 

of  knapsack problems with exhaustive references can be found in  Salkin, H. 

[131]. Schaafsma, W. [132] considers maximum tests and suggest the use of 

linear programming. 

The mathematical programming approach to the generalized Neyman-

Pearson problem has been considered by Francis, R. L. and Wright, G. [60], 

Meeks, H. D. and Francis, R. L. [113], Pukelsheim, F. [124] and Krafft, O. 

[97]. The result on the duality relationship between the Lagrangian problem 

and the primal problem is due to Francis, R. L. and Wright, G. [60]. Wagner, 



D. H. [149] considered nonlinear functional variations of the Neyman-

Pearson lemma, and discussed a number of applications of Neyman-Pearson 

problem. 

Related problems in decision theory have also received the mathematical 

programming treatment. Weiss, L. [152] shows the use of a Simplex Method 

for solving minmax decision function. Similar duality results appear in 

Witting, H. [156], Krafft, O. and Witting, H. [98], Schaafsma, W. [132], 

Baumann, V [16] and Krafft, O. and Schmitz, N. [99].  

Optimal allocation in stratified sampling has been considered by 

Dalenius, T. [36], Folks, J. L. and Antle, C. E. [55], Stock, J. S. and Frankel, 

L. R. [140], Ghosh, S. P. [73], Kokan, A. R. and Khan, S. [93] etc.  

Allocation of total sample size among different strata, when the sample 

means are required to have the sampling variance as much as possible in a 

given ratio so as reflect different degrees of importance in the various data, is 

considered by Chaddha, R. L. et al. [26]. Approximating nonlinear separable 

objective function by piecewise linear function and formulating the problem 

as a restricted linear programming problem are given by Hadley, G [76] also 

discussed the sufficiency of solving the problem as a linear programming 

problem when the objective function is convex. 

Other areas of applications of mathematical programming in statistics 

were  developed by Lee, T. C. et al.[102] in maximum likelihood; Bayes 

estimation of transition probabilities in Markov chain ; Raj, D. [125], Folks, 

J. L. and Antle, C. E. [55],  Pfaffenberger, R. C. and Dinkel, J. J.[122], 

Rosenberg,  B. and Carlson,  D. [130],  Planzagl, J. [123],  Bruvold, N. T. 

and Murphy, R. A. [25] in sampling; Jensen, R. E. [82], Vinod, H. D. [147], 

Rao, M. R. [127] and Liittschwager, J. M. and Wang, C.  [106] in cluster 

analysis; Sedransk, J. [136]  in designing some multifactor of survey data 

and  Neuhardt, J. B. and Bradley, H. E. et al. [118] in selection of multifactor 



experiments with resource constraints; Foody, W.  and Hedayat, A. [56]  in 

the construction of BIB design with repeated blocks. 

Regression analysis includes  techniques for modeling and analyzing 

several variables, when the focus is on the relationship between a dependent 

variable  and one or more  independent variables. 

The earliest form of regression ever known was the method of least 

squares introduced by Legendre, A. M. [103] in 1805 and by Gauss, C. 

F.[65] in 1809. The term "regression" was coined by Francis, G. [58] in the 

nineteenth century to describe a biological phenomenon. The phenomenon 

dealt with  the heights of descendants of tall ancestors that tend to regress 

down towards a normal average (a phenomenon also known as regression 

towards the mean) Mogull, R. G. [115], Francis, G.[59]. For Francis, 

regression had only this biological meaning [57, 58], but his work was later 

extended by Pearson, K., Yule, G. U. et al. [121] and to a more general 

statistical context, Yule, G. Udny. [160]. In the work of Pearson, K., Yule, 

G. U. the joint distribution of the response and explanatory variables is 

assumed to be Gaussian. This assumption was weakened by Fisher, R. A. in 

his works of 1922 and 1925, Fisher, R.A. [53, 54] and Aldrich,  J. [ 2]. 

Fisher assumed that the conditional distribution of the response variable is 

Gaussian, but the joint distribution need not be Gaussian. In this respect, 

Fisher's assumption is closer to Gauss's formulation [66]. 

Regression analysis is widely used for prediction and forecasting, 

where its use has substantial overlap with the field of machine learning. 

Regression analysis is also used to understand which among the independent 

variables are related to the dependent variable, and to explore the forms of 

these relationships. In restricted circumstances, regression analysis can be 



used to infer causal relationship between the independent and dependent 

variables. 

A large number of techniques for carrying out regression analysis has 

been developed. Familiar methods such as linear regression and ordinary 

least squares regression are parametric, in that the regression function is 

defined in terms of a finite number of unknown parameters that are estimated 

from the data. Nonparametric regression refers to techniques that allow the 

regression function to lie in a specified set of functions, which may be finite-

dimensional. 

Mathematical optimization is used as an aid to a human decision 

maker, system designer, or system operator, who supervises the process, 

checks the results, and modifies the problem (or the solution approach) when 

necessary. This human decision maker also carries out any actions suggested 

by the optimization problem, e.g., buying or selling assets to achieve the 

optimal portfolio. 

In data fitting, the task is to find a model, from a family of potential 

models, that best fits some observed data and prior information. Here the 

variables are the parameters in the model, and the constraints can represent 

prior information or required limits on the parameters (such as non 

negativity). 

Mathematical Programming plays a vital role in engineering 

application like, Design of aircraft, optimal trajectory of space vehicles, 

Optimum design of electric network, Planning the best strategy to obtain 

maximum profit, etc.  

The commercial applications  of non linear Programming were made 

in 1952 by Charnes, A.,  Cooper, W. W. et al. [27] with their optimal 

blending of petroleum products to make gasoline. Applications quickly 



spread to other commercial areas and soon eclipsed the military applications 

which started the field. 

Applications of mathematical programming are everywhere, many real 

life problems can be converted into mathematical form, Arnold, N. [6]  and 

optimized by using the techniques of mathematical programming.  

In our economy, we always try to maximize profit and sales, and costs 

should be as low as possible. Therefore, optimization is one of the oldest of 

sciences which even extends into daily life, Arnold, N. [6]. 

Mathematical programming also plays a vital role in statistics, many 

problems in regression analysis, sample  surveys, cluster analysis, 

construction of designs, estimation, decision theory and so on can be viewed 

as mathematical programming problems. 

1.1.1.1 Estimation Problem 

The general problem of estimation is one of choosing a density 

function belonging to a specified family of density functions. on the basis of 

observed data. For this purpose a function of observations called “estimator” 

is defined so that the value of the estimator for a given   observed datum is 

the estimate of the unknown density function. When interested only in 

estimating certain parameters of the density function. We might not estimate 

the entire density function. Such problems are indeed optimization problems, 

Rao, C. R. [127]. 

The problem of testing statistical hypotheses was considered originally 

by Neyman, J. and Pearson, E. S. [119]. Connections between the well-

known Neyman-Pearson Lemma for constructing the uniformly most 

powerful test of a sample hypothesis having a singly alternative, and 

optimization with linear models can be seen from the following passage 

from Dantzing’s Linear Programming and Extensions [41]. 



 
1.1.1.2 Sample Survey Methodology 

Since there is a need for reliable data to understand the world, 

statisticians  have to devise methods of collecting such data. Information on 

a populations may be collected either by complete enumerations or by 

sample enumeration. The cost of conducting sample enumeration is in 

general less than that of complete enumerations. On the other hand, precision 

suffers when too small a sample is considered. Thus the fundamental 

problem in sample survey is to choose a sampling design that either assures 

the maximum precision for a given cost of the survey or assumes the 

minimum cost for a given level of precision. Thus  at the root of sample-

survey methodology lies an optimization problem of considerable 

importance. Similarly, the consideration behind the statistical design versus 

efficiency of the design chosen. 

Mathematical programming problems have received the attention of 

researchers in mathematics, economics and operations research for over 

three decades. Since the development of Simplex Method for efficiently 

solving the linear programming problem, both the theory and the methods of 

mathematical programming have seen unprecedented growth. Also the 

emphasis has turned for solving certain problems, towards finding efficient 

methods suitable for computers. 

1.2  Preliminaries and Definitions 

Mathematical Programming may be described in terms of its 

mathematical structures  and computational procedures or in terms of the 

broad class of important decision problems, problems having certain 

aim/goal which needs to be optimized under certain conditions that can be 

formulated/converted into mathematical functions of several variables 



(defined decision variables). The  word – programming used in mathematical 

programming is not to be confused with programming as used for the task of 

preparing a sequence  of instructions for a computer but its origin lies in 

planning/scheduling the quantity and timing of the various activities of an 

organization such as a factory, national economy or world trade etc.  

A mathematical programming  problem can be stated as: 

 

(MPP): Maximize Z = f0(x) 

subject to 

 fi(x) ≤ bi,  i = 1, . . . ,m.                 

 xj  ≥ 0   j = 1, . . . ,n. 

Here the vector  x=(x1, . . . ,xn) contains the unknown decision 

variables of the problem, the function f0 : Rn → R is the objective function, 

the functions fi : Rn → R, i = 1, . . . ,m, are the  constraint functions, and the 

constants b1, . . . , bm  are the limits or bounds for the constraints. The values 

of the decision variables that satisfy the set of all constraints and non-

negative conditions will form the set of basic feasible solutions  known as 

the feasible region of mathematical programming problem. A vector x is 

called optimal, or a solution of the problem (MPP), if it has the greatest 

objective value among all vectors that satisfy the constraints; for any z with 

f1(z) ≤ b1, . . . , fm(z) ≤ bm, we have  f0(z) ≥ f0(x) with non-negativity 

condition included. 

Since a maximization problem can be expressed in a minimization 

problem, so we will consider only maximization problem throughout the 

work.  



 
1.2.1   Linear Programming  

The mathematical programming (MPP) is called linear programming 

problem if the objective function and the constraints both are linear:  

(MPL): Maximize Z = c1x1 + c2x2  +, · · · , +cnxn,   

Subject  to 

a11x1 + a12x2  +,· · · ,+ a1nxn ≤ b1, 

a21x1 + a22x2 +, · · · , +a2nxn ≤ b2, 

am1x1 + am2x2 +, · · · ,+ amnxn ≤ bm, 

x1 ≥ 0, x2 ≥ 0, . . . ,xn ≥ 0,      

where cj , aij  and bi are given constants. (i = 1, . . . ,m,  j = 1, . . . ,n.) 

 

The values of the decision variables x1, x2, . . . ,xn that satisfy all the 

constraints of (MPL) and non negativity conditions  simultaneously are said 

to form a feasible solution to the linear programming problem. Any solution 

belonging to feasible region is called a basic feasible solution to (MPL). A 

feasible solution which in addition optimizes the objective function of 

(MPL) is called an optimal solution of the problem. There are three possible 

situations which may emerge. 

 

i) The linear program could be infeasible, meaning that there are no 

values of the decision variables, x1, x2, . . . , xn that simultaneously 

satisfy all the constraints. 

ii) It could have an unbounded solution, meaning that, if we are 

maximizing the value of the objective function, then the value of 



the objective function can be increased indefinitely without 

violating any of the constraints or if we are minimizing, the value 

of the objective function may be decreased indefinitely. Such 

problems usually are in fact poorly formulated. 

iii) In most cases, it will have at least one finite optimal solution, in case it 

has many optimal solutions then we call these solutions as alternate 

optimal solutions or multiple optimal solutions. 

 

1.2.2 Multiobjective Linear Programming 

The mathematical programming problem (MPP) is called 

Multiobjective Linear  Programming problem if the problem has more than 

one linear objective function that are to be optimized simultaneously  and 

constraints are  also linear functions with non negativity conditions included.  

(MOLP):  Maximize Z   = {f0(x1), f0(x2), . . . , f0(xn)} 

subject to  

f1(x1, x2, . . . ,xn) ≤ b1, 

f2(x1, x2, . . . ,xn) ≤ b2, 

. . . . 

. . . . 

. . . . 

fm(x1, x2, . . . , xn) ≤ bm,  

 

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.  

If the maximum values of all f0(x) are achieved at the same point X*, 

then X*  is called an ideal solution of the problem. An ideal solution is the 

solution with all the objective functions simultaneously maximize. However, 

in real life problems such a situation would  be very rare. 



In the absence of an ideal solution, we may prefer a solution regarded 

best by some other suitable criterion. One such criterion is to look for a point 

from where the value of any of the objective functions cannot be decreased 

without increasing the value of at least one of the other objective functions.  

In other words, to find a feasible point X* such that there is no other feasible 

point in moving to which one of the objective functions decreases and none 

of the other objective functions increase. Such a point is called an efficient 

point , and the corresponding solution an efficient solution. 

1.2.3    Non-linear Programming 

Another fundamental extension of the   problem (MPP) is to allow the 

objective function or the constraints or both to be nonlinear functions.  

 

(MPNLP): Maximize   Z = f0(x1, x2, . . . ,xn) 

subject to  

f1(x1, x2, . . . ,xn) ≤b1, 

f2(x1, x2, . . . ,xn) ≤ b2, 

. . . 

. . . 

. . . 

fm(x1, x2, . . . , xn) ≤bm,  

 

x1≥ 0, x2≥ 0, . . . , xn≥ 0.  

 

Often in nonlinear programming the right hand-side values are 

included in the definition of the function fi (x1, x2, . . . ,xn), leaving the right 

hand side to be zeroes. In order to solve a nonlinear programming problem, 

some assumptions must be made about the shape and behavior of the 

functions involved the nonlinear functions must be rather well-behaved in 



order to have computationally efficient means of finding a solution. The 

nonlinear programming with one objective function as above is called single 

objective nonlinear programming. 

 

1.2.4   Multiobjective Nonlinear Programming 

The mathematical programming (MPP) is called Multiobjective 

Nonlinear Programming problem if the set of objective functions f0(x) or the 

constraints or both are nonlinear functions which are to be  optimized. Multi-

objective optimization (or programming), also known as multi-criteria or 

multi-attribute optimization, is the process of simultaneously optimizing two 

or more conflicting objectives subject to certain constraints and non 

negativity conditions. 

(MONLP): Maximize Z   = {f0(x1), f0(x2), . . . , f0(xn)} 

subject to  

f1(x1, x2, . . . ,xn) ≤ b1, 

f2(x1, x2, . . . ,xn) ≤ b2, 

. . . 

. . . 

. . . 

fm(x1, x2, . . . , xn) ≤ bm,  

 

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.  

Application of multiobjective optimization can be found in various 

fields  like, product and process design, finance, aircraft design, the oil and 

gas industry, automobile design, or wherever optimal decisions need to be 

taken in the presence of trade-offs between two or more conflicting 

objectives. Maximizing profit and minimizing the cost of a product; 



maximizing performance and minimizing fuel consumption of a vehicle; and 

minimizing weight while maximizing the strength of a particular component 

are examples of multi-objective optimization problems. 

1.3     Regression Approach 

In linear regression, the model specification is that the dependent 

variable, yi is a linear combination of the parameters (but need not be linear 

in the independent variables). For example, in simple linear regression for 

modeling ‘n’ data points there is one independent variable xi, and two 

parameters, β0 and β1: 

Yi = β0 + β1xi + ei   i = 1, 2, …, n. 

In the more general multiple regression model, there are ‘p’ independent 

variables: 

Yi = β1xi1+ β2xi2 + … + βpxip  + ei , 

where xij is the ith observation on the jth independent variable, and the first 

independent variable takes the value 1 for all i (so β1 is the regression 

intercept). 

The least squares parameter estimates are obtained from p- normal 

equations. The residual can be written as 

ei =    Yi - β1xi1 - β2xi2 - … - βpxip ,  

The normal equations are 

ij Xikβk=  ij Yi ,                 j= 1, …, p.  

In matrix notation, the normal equations are written as 



(XTX)  = XTY, 

where the ‘ij’th  element of X is xij, the i element of the column vector Y is yi, 

and the j element of    is j. Thus X is (n × p),  Y is (n×1), and    is (p×1).  

and    = (XTX)-1 XTY. 

1.3.1      Coefficient of Determination 

Coefficient of determination (R2) is a statistical measure that will give 

some information about the goodness of fit of a model. In regression, the R2, 

coefficient of determination is a statistical measure of how well the 

regression line approximates the real data points. The coefficient of 

determination R2 is a measure of the global fit of the model. Specifically, R2 

is an element of [0, 1] and represents the proportion of variability in Yi that 

may be attributed to some linear combination of the regressors (explanatory 

variables) in X. 

In case of the linear model of the form 

Yi = β0 + jXij  + i, 

where, for the ith case, Yi is the response variable, Xi1, . . . , Xip  are p 

regressors, and i  is a mean zero error term. The quantities  β0, . . . , βp    are 

unknown coefficients, whose values are determined by least squares.  

R2 is often interpreted as the proportion of response variation 

"explained" by the regressors in the model. Thus, R2 = 1 indicates that the 

fitted model explains all variability in y, while R2 = 0 indicates no 'linear' 



relationship (for straight line regression, this means that the straight line 

model is a constant line (slope=0, intercept= ) between the response variable 

and regressors. 

A caution that applies to R2, as to other statistical descriptions of 

correlation and association is that " correlation does not imply causation." In 

other words, while correlations may provide valuable clues regarding causal 

relationships among variables, a high correlation between two variables does 

not represent adequate evidence that changing one variable has resulted, or 

may result, from changes of other variables. 

In case of a single regressor, fitted by least squares, R2 is the square of 

the pearson product –moment coefficient relating the regressor and the 

response variable. More generally, R2 is the square of the correlation 

between the constructed predictor and the response variable. 

A data set has values yi, each of which has an associated modeled 

value ‘fi’ (also sometimes referred to as ŷi). Here, the values yi are called the 

observed values and the modeled values ‘fi’ are sometimes called the 

predicted values. 

The "variability" of the data set is measured through different sums of 

squares: 

SStot  = i - )2, 

This is the total sum of squares (proportional to the 

sample variance); 

 SSreg  = i - )2, 



This is the regression sum of squares, also called the 

explained sum of squares. 

SSerr  = i - i)2, 

This is the sum of squares of residuals, also called the 
residual sum of squares. 

In the above   is the mean of the observed data: 

     =  i 

where n is the number of observations. 

The most general definition of the coefficient of determination is 

  R2    1 - (SSerr / SStot) 

1.4    Algorithms for Solving Mathematical Programming Problems 

Generally, optimization algorithms can be divided into two basic 

classes: deterministic and probabilistic algorithms. Deterministic algorithms 

are most oftenly used if a clear relation between the characteristics of the 

possible solutions and their utility for a given problem exists. Then, the 

search space can efficiently  be explored using, for example, a divide and 

conquer scheme. If the relation between a solution candidate and its “fitness” 

are not so obvious or too complicated, or the dimensionality of the search 

space is very high, it becomes harder to solve a problem deterministically. 

Trying it would possibly result in exhaustive enumeration of the search 

space, which is not feasible even for relatively small problems. Thus, 

probabilistic algorithms come into play their role. The initial work in this 

area which now has become one of most important research  field in 

optimization was started in 1958 by Richard, M. F. [128], Woodrow, W. et 



al. [159],  Hans, J. Bremermann and others [79,77]. An especially relevant 

family of probabilistic algorithms  are the Monte Carlo-based approaches. 

They trade in  guaranteed correctness of the solution for a shorter runtime. 

This does not mean that the results obtained using them are incorrect- they 

may just not be the global optima. 

Various Techniques are used to solve  mathematical programming 

problems, the techniques used depends upon the various factors like whether 

the problem has constraints or not, whether the problem is linear or 

nonlinear, whether the objective function and constraints are differentiable or 

not and so on. Some of the techniques mostly used are :  

1.4.1     Classical Techniques  

The classical optimization techniques are useful in finding the 

optimum solution of unconstrained maxima or minima of continuous and 

differentiable functions. These are analytical methods and make use of 

differential calculus in locating the optimum solution. The classical methods 

have limited scope in practical applications as some of them involve 

objective functions which are not continuous and/or differentiable. Yet, the 

study of these classical techniques of optimization form a basis for 

developing most of the numerical techniques that have evolved into 

advanced techniques more suitable to today’s practical problems. These 

methods assume that the function is differentiable twice with respect to the 

decision variables and the derivatives are continuous.  

Three main types of problems can be handled by the classical 

optimization techniques:  

i) single variable functions  

ii) multivariable functions with no constraints 

iii) multivariable functions with both equality and inequality 

constraints 



In problems with equality constraints, the Lagrange multiplier method 

can be used. A necessary condition for a function f(x) subject to constraints 

gi(x) = 0 , i= 1, 2, . . . ,m to have a relative minimum at a point X* is that the 

first partial derivative of the Lagrange function defined by L= L( x1, x2, . . . 

,xn,  λ1, λ1, . . . ,λm) with respect to each of its argument must be zero. 



 
A sufficient condition for f(x) to have a relative minimum at x* is that 

the quadratic form ‘Q’ defined by  

 

Q = 2L/dxidxj)dxidxj    (1.1)  

 

evaluated at x= x* must be positive definite for all values of x  for which the 

constraints are satisfied. If Q = 2L/dxidxj)(x*,λ)dxidxj is negative  

for all choices of the admissible variations xi, x* will be a constrained 

maximum of f(x). 

The necessary condition for the quadratic form Q, defined by (1.1), to 

be positive (negative) definite for all admissible variations x  is that each 

root of the polynomial, zi, defined by the following determinantal equation 

be positive (negative):   



 
 

 
 (L11 – z) L12  L13 … L1n  g11 g21 … gm1 
 
 L21  (L22 – z) L23 … L2n  g12 g22 … gm2 
 .         .         .      .    
 .         .         .    .   
 .         .         .    .  
 Ln1  Ln2  Ln3 … (Lnn – z) g1n g2n … gmn 
 
 g11  g12  g13 … g1n  0 0  … 0            = 0   
   
 g21  g22  g23 … g2n  0 0  … 0 
 .    .        .    .  
 .    .        .    .  
 .    .        .    .  
 gm1  gm2  gm3 … gmn  0 0  … 0 
 

 

Lij  = (d2L/dxidxj)(x*,λ)     (1.2) 

 

gij  = (dgi /dxj     (1.3) 

 

The expansion,  leads to a (n-m)th  order polynomial in z. if some of 

the roots of this polynomial are positive while the others are negative, the 

point x* is not an extreme point. 

 If the problem has inequality constraints, the Kuhn-Tucker conditions 

[100] can be used to identify the optimum solution, the inequality is 

converted into equations by using nonnegative slack variables, Si
2 ( ≥ 0) be 

the slack quantity added to the ith constraints gi(x) ≤ 0 and  S2 = (s1
2, s2

2,. . . 

,sm
2)T. 



where ‘m’ is the total number of inequality constraints. The Lagrangean 

function is thus given by  

L( X,S,  )  = f(x) –  [g(x) +S2] 

given the constraints {g(x)} are  ≤ 0 

a necessary condition for optimality is that  be nonnegative (nonpositive) 

for maximization (minimization) problems. The justification about this is 

that the  measures the rate of variation of f(x)  with respect to g(x) that is 

    =  

as the right hand side of the constraint g(x) ≤ 0 (maximization case) 

increases above zero, the solution space becomes less constrained and hence 

f(x) cannot decrease. This means that  ≥ 0. Similarly for minimization case, 

as a resource increase, f(x) cannot increase, which implies that ≤ 0. If the 

constraints are equalities, that is g(x) = 0 then   becomes unrestricted in 

sign. 

The restrictions on λ must hold as part of the Kuhn-Tucker necessary 

conditions.  Also 

  

     =      

 

  = -2λiSi = 0,         i = 1, 2, …….,m 

 

 =    - (g(x) + S2)   = 0 



 

It means that 

I.  If λi is not zero, then Si
2 = 0. This means that the corresponding 

resource is scarce, and consequently it is consumed completely 

(equality constraints). 

II. If Si
2 > 0, λi = 0. This means the ith resource is not scarce and, 

consequently, it does not affect the value of f(x) (i.e., λi  =  

The Kuhn- Tucker necessary conditions are also sufficient if the objective 

function and the solution space satisfy certain conditions regarding 

convexity and concavity. These conditions are in Table 1.3 

Table 1.3 

 

 

Sense of optimality 

 

Required conditions 

Objective function Solution space 

Maximization Concave Convex set 

Minimization Convex 

 

Convex set 

 

 

 



 

1.4.2    Methods for  Linear Programming  

Various methods are available that are used to solve linear 

programming problems like graphical methods especially for two 

dimensional cases. Simplex Method for n-dimensional cases and Karmarker 

Method [88,89] etc. are some of the well known methods for linear cases. 

The method proposed by Karmarkar, N. [88,89] is an interior point 

algorithm. The Simplex Method [41] is an iterative procedure for solving a 

linear program and provides all the information about the program. Also, it 

indicates whether or not the program is feasible and if the program is 

feasible, it either provides  an optimal solution or indicates that an 

unbounded solution exists. 

The Ellipsoid Method established by Khachian, L. G. [91], on the 

other hand, investigates the interior points of a feasible region until it reaches 

an optimal point on the boundary, and is essentially an interior point 

algorithm. The basic idea for Karmarker Alogorithm is to use the steepest 

descent method. When the objective is to find the minimum of the problem: 

 

I) It is advisable to move in the direction of steepest descent if the 

current (approximate) interior point is near the centre of the 

polytope describing the feasible region. 

II) It is possible to transform the feasible region so as to place the 

current point near the centre of the polytope, without changing 

the problem in any essential way.  

Optimization models can be the subject of various classifications 

depending on the point of view, we adopt according to the number of time 

periods considered in the model, optimization models can be classified as 

astatic (single time period) or multistage (multiple time periods). Even when 



all relationships are linear and several time periods are incorporated in the 

model, the resulting linear program could become prohibitively large for 

solution by standard computational methods. Fortunately, in most of these 

cases, the problem exhibits some form of special structure that can be 

adequately exploited by the application of special types of mathematical 

programming methods. Dynamic programming   is one approach for solving 

multistage problems. Further, there is a considerable research effort 

underway today, in the field of large-scale linear programming, to develop 

special algorithms to deal with multistage problems. 

1.4.3    Methods for Non-linear Programming 

Like linear programming problems it is difficult to solve nonlinear 

programming problems. Our main aim is to search for the optimal points 

(local or global). Lagrange multipliers method is a special case of the more 

general optimality conditions of the so called Kuhn-Tucker (K-T) conditions 

[100]. 

The K-T conditions from the basis of many algorithms for nonlinear 

programming problems. The necessary K-T conditions [100] are primarily 

useful in the negative sense. In other words, if a point does not satisfy them, 

it cannot then be a optimal solution.   

Several factors have to be considered in deciding a particular method to 

solve a given nonlinear programming problem. Some of them are:  

i) The type of problem to be solved (general nonlinear programming 

problem, geometric programming , etc). 

ii) The availability of a readymade computer programme. 

iii) The calendar time necessary for the development of a programme. 

iv) The necessity of derivatives of the functions f and g. 



v) The available knowledge about the efficiency of the method. 

vi) The accuracy of the solution desired. 

vii) The programming language and quality of coding desired. 

viii) The dependability of the method in finding the true optimum 

solution. 

ix) The generality of the programme for solving other problems. 

x) The ease with  which the programme can be used and its output 

interpreted. 

For problems involving explicit (nonlinear) expressions for ‘f’ and ‘g’, 

and small or moderate number of variables, the use of penalty function 

algorithms are expected to work most efficiently. Out of these, the 

interior penalty function algorithms  is more efficient.  The exterior 

penalty function algorithms will be less efficient since even a feasible 

starting point (X1) leads to an infeasible point  (X1
*) at the  end of the 

minimization of function. As the sequence of the points X1
*

  , X2
*, . . . , 

Xn
*  lies in the infeasible region, and approaches the optimum point and 

feasibility simultaneously, this algorithm is useful only when a starting 

feasible point  (X1
*)  cannot be found. If all the constraints of the 

optimization problem are linear, the gradient projection method will be 

the best one. If the problem involves f and g that are implicitly dependent 

on the design vector X (i.e. an analysis is needed to evaluate ‘f’ and ‘g’ ), 

the derivatives of the functions ‘f’ and ‘g’ cannot be obtained in closed 

form. If these derivatives can be obtained by finite difference formulas, 

the Zoutendijk’s algorithm [161] of feasible directions will be more 

efficient than the penalty function algorithm. However, if one intends to 

use approximations in evaluating ‘f’ and ‘g’, the evaluation of ‘f’ and ‘g’ 



is extremely difficult and if one is interested in finding only a near 

optimal solution, the interior penalty function algorithm is the obvious 

choice.   

1.4.4     Methods for Quadratic Programming 

When the objective function of mathematical programming problem 

(MPP) is quadratic and the constraints are linear the mathematical 

programming is called quadratic programming problem. i.e.  

(QP1) : f0(x)  = CtX + ½ XtGX 

subject to  

fi(x) ≤ bi,  

i = 1, . . . ,m  and  G is (n x n) matrix. 

The matrix G can be taken as non-null since otherwise (QP) is a linear 

program. Also without loss of any generality, G can be taken as a symmetric 

matrix since XtGX = Xt ½ (G + Gt)X and ½ (G + Gt) is symmetric.  The 

form XtGX is convex if and if G is a positive semi-definite matrix and it is 

strictly convex if and if G is positive definite. Thus, a quadratic program is 

convex when G is a positive semidefinite matrix. Some of the important 

Algorithms for quadratic programming are: 

1.4.4.1    Beale’s Algorithm 

Beale’s algorithm [19] uses the classical calculus results rather than 

Kuhn-Tucker conditions, it is applicable to any quadratic program of the 

form: 

(QP2) : f0(x)  = CtX + ½ XtGX 

subject to  

Ax = b 



x ≥ 0 

where  ‘A’  is  (m x n),  ‘b’ is  (m x 1), ‘C’ is  ( n x 1) and  ‘G’ is symmetric 

(n x n) matrix. 

The Beale method requires partitioning of the variables into basic and 

nonbasic variables at each iteration and expressing the objective function in 

terms of only the nonbasic variables.  

1.4.4.2     Fletcher’s Algorithm 

The Fletcher algorithm can be viewed as belonging to the general 

class of methods known as feasible direction methods derived by 

Zountendijk. G., [161] it can also be regarded as a special case of the 

projected gradient method for solving linearly constrained problems. 

Fletcher’s algorithm is an iterative method that uses an active set 

strategy. An active set is a list of those constraints that are satisfied as 

equalities during an iteration. The algorithm generates a sequence of equality 

constrained quadratic programs which differ only in active constraints, 

usually in that a constraint is either added to or removed from the set of 

active constraints. 

1.4.5    Methods for Separable Programming 

Mathematical programming problem (MPP) is called separable 

programming  if the objective function f0(x) of the mathematical 

programming problem can be expressed as the sum of ‘n’ single variable 

functions.  

f0(x) = f0(x1) + f0(x2) + f0(x3) + , . . . ,+ f0(xn) 

Separable programming deals with nonlinear problems in which the 

objective function and the constraints are separable,  i.e.  we have to divide 



the nonlinear functions into individual parts. The idea is to construct a 

constrained optimization model that linearly approximates the original 

problem. The approximations enlarge the size of the technique, the method 

has considerable practical significance  Miller, C.E. [114] as the approach can 

be used equally well to approximate a nonlinear objective function and non 

linear constraints. 

1.5      Software’s for Mathematical Programming 

A large number of software’s are available to solve the different types 

of mathematical programming. Some of important software used for solving 

the mathematical programming problems are: 

LP-Optimizer is a simplex-based code for linear and integer programs, 

written by Markus Weidenauer. 

SoPlex is an object-oriented implementation of the primal and dual Simplex 

Algorithms, developed by Roland Wunderling. 

EXLP solves linear programs of moderate size in exact rational arithmetic, 

using the GNU Multiple Precision Arithmetic Library. 

PCX The Optimization Technology Center at Argonne National 

Laboratory and Northwestern University has developed PCX, an interior-

point code. 

GIPALS Denis Smirnov has developed GIPALS, an environment that 

incorporates an interior-point solver and simple graphical user interface. 

LINGO, LINDO API The methods used for these softwares are 

Generalized Reduce Gradient, Successive (sequential) linear Programming 

and  global search. 
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2.1     Introduction 

n this chapter, we present a basic  concept for finding a solution of a 

class of nonlinear programming problems having linear objective 

function and nonlinear constraints by using regression analysis [7,45]. 

There are many algorithms that can be used to solve mathematical 

programming problems both linear and non-linear cases. In linear case, 

methods like Simplex which  move along the vertices and edges defined by 

the constraints, this method  is classified as an exterior-point method while 

as methods like Karmarkar’s  [88,89] is classified as an interior-point 

method. An interior-point method outperforms the Simplex Method for large 

problems and the most important and surprising characteristics of the 

interior-point method is that the number of iterations depends very little on 

the problem size [32].   

   We introduce an approach to find an optimal solution for nonlinear 

programming problems having linear objective function and nonlinear or 

mixed (linear and non-linear) constraints using regression analysis. We first 

present  the relation between mathematical programming and regression 

analysis, by presenting some  simple  cases and  discuss the mathematical 

programming problems having linear objective function and nonlinear 

constraints. To solve these problems by Simplex Method, we have to 

transform nonlinear constraints into linear ones reducing the original 

nonlinear programming problem to linear programming problem. The main 

steps that are used to transform the non-linear programming problem into the 

linear programming problems  are as under: 

I



 
We consider the following  Nonlinear Programming Problem 
 

(NLP1): Optimize f(x) = C1 X1 + C2 X2      (2.1)   

  

Subject to  

 

    X1
n  +  X2

n   ≤ b1    

X1
n  +  X2

n   ≤ b2 

...     … …    (2.2) 

… … … 

X1
n  +  X2

n   ≤ bn 

 

X1, X2   ≥  0           (2.3) 

 

We  have to determine values of X1 and X2  satisfying (2.2) and (2.3)  that  

optimizes  (2.1).  

 
2.2     METHOD 

 

1. Check whether the objective function of the given non-linear 

programming problem is linear and the constraints are non-linear or 

mixed (linear and non-linear). 

2. Transform the nonlinear constraints by using the following 

transformation  

 

X1 = ( bi – X2
n )1/n             (2.4 ) 

or 

  



X2 = ( bi – X1
n  ) 1/n    (2.5 ) 

 

3. Check the minimum and maximum value of X2 in (2.4) {or values of 

X1 in (2.5)}, satisfying condition (3) presented in Table 2.1.  

4. Substituting the values of X2 in (2.4) {or X1 in (2.5)} as per  Table 2.1 

such that the values remains very close to each other, and it does not 

affect the feasible region formed by the constraint. 

5. The values of X1 and X2 are tabulated and regression analysis  is used 

to fit the straight lines X1 on X2 (or X2 on X1), least number of points 

are taken for  consideration so that the coefficient of determination 

remains close to 1. 

6. Large number of straight lines are formed so that non-linear 

constraints are converted  into linear constraints. 

Table 2.1 

 

 

Constraints 

Variables 
X1  X2 

Minimum  Maximum Minimum  Maximum 

I 0 b1
(1/n) 0 b1

(1/n) 

II 0 b2
(1/n) 0 b2

(1/n) 

. . . . . 

. . . . . 

nth 0 bn
(1/n) 0 bn

(1/n) 

Maximum Value 

taken in to 

consideration 

 

Min { b1
(1/n), b2

(1/n), . . . ,bn
(1/n)} 

 

Min { b1
(1/n), b2

(1/n), . . . ,bn
(1/n)} 

 



This technique is used to convert nonlinear constraints into linear 

constraints, hence this way, nonlinear programming problem is converted in 

to linear programming problem and the well known Simplex Method is used 

to solve the linear programming problem for the optimal solution. The above 

concept is illustrated with the help of the following examples.  

 

2.3 Numerical Illustrations   

  

We now provide the numerical illustrations of the method discussed 

above: 

 

Example 2.3.1 

 

 Max   Z = X1 - X2 

Subject to  

3X1
4  + X2    ≤ 243   (2.6) 

X1 +  2 X2
2   ≤ 32    (2.7) 

      X1, X2  ≥  0.   

 

We use transformation taking  constraint (2.6) first 

 

X2   ≤   (243 -  3X1
4  )  (2.8) 

and then we transform Constraint (2.7) 

X1   ≤   32 -  2 X2
2      (2.9) 

 

Using the above technique we find the maximum and minimum values of the 

variables presented in Table 2.2 



 
 

 

Table 2.2 

 

 

Constraints 

Variables 
X1  X2 

Minimum  Maximum Minimum  Maximum 

I 0 3 0 243 

II 0 32 0 4 

Maximum Value 

taken into 

consideration 

 

3 

 

4 

 

Substituting values  of  X1  ( 0 to 3) in  (2.8) and X2  ( 0 to 4) in (2.9), 

the values of X2 and  X1  are given in  Table 2.3  and Table 2.4 respectively. 
 



 

TABLE  2.3 

 

X1 X2 X1 X2 X1 X2 

0 243 0.63 242.5274 1.26 235.4386 

0.03 243 0.66 242.4308 1.29 234.6923 

0.06 243 0.69 242.32 1.35 233.0355 

0.09 242.9998 0.72 242.1938 1.38 232.1198 

0.12 242.9994 0.75 242.0508 1.41 231.1424 

0.15 242.9985 0.78 241.8895 1.44 230.1005 

0.18 242.9969 0.81 241.7086 1.47 228.9915 

0.21 242.9942 0.84 241.5064 1.5 227.8125 

0.24 242.99 0.87 241.2813 1.53 226.5606 

0.27 242.9841 0.9 241.0317 1.56 225.2328 

0.3 242.9757 0.93 240.7558 1.59 223.8261 

0.33 242.9644 0.96 240.452 1.62 222.3376 

0.36 242.9496 0.99 240.1182 1.65 220.764 

0.39 242.9306 1.02 239.7527 1.68 219.1022 

0.42 242.9066 1.05 239.3535 1.71 217.3489 

0.45 242.877 1.08 238.9185 1.74 215.5009 

0.48 242.8407 1.11 238.4458 1.77 213.5548 

0.51 242.797 1.14 237.9331 1.8 211.5072 

0.54 242.7449 1.17 237.3783 1.83 209.3546 

0.57 242.6833 1.2 236.7792 1.86 207.0935 

0.6 242.6112 1.23 236.1334 1.89 204.7203 

 



 

 

X1 X2 X1 X2 

1.92 202.2314 2.55 116.1525 

1.95 199.623 2.58 110.077 

1.98 196.8914 2.61 103.7859 

2.01 194.0328 2.64 97.27403 

2.04 191.0433 2.67 90.53635 

2.07 187.9189 2.7 83.5677 

2.1 184.6557 2.73 76.36284 

2.13 181.2496 2.76 68.91651 

2.16 177.6965 2.79 61.22336 

2.19 173.9923 2.82 53.278 

2.22 170.1326 2.85 45.07498 

2.25 166.1132 2.88 36.60879 

2.28 161.9299 2.91 27.87385 

2.31 157.5781 2.94 18.86454 

2.34 153.0534 2.97 9.57517 

2.37 148.3513 3 0 

2.4 143.4672 

2.43 138.3965 

2.46 133.1344 

2.49 127.6763 

2.52 122.0173 



 

TABLE  2.4 

 

X1 X2 X1 X2 X1 X2 

0 32 0.84 30.5888 1.68 26.3552 

0.04 31.9968 0.88 30.4512 1.72 26.0832 

0.08 31.9872 0.92 30.3072 1.76 25.8048 

0.12 31.9712 0.96 30.1568 1.8 25.52 

0.16 31.9488 1 30 1.84 25.2288 

0.2 31.92 1.04 29.8368 1.88 24.9312 

0.24 31.8848 1.08 29.6672 1.92 24.6272 

0.28 31.8432 1.12 29.4912 1.96 24.3168 

0.32 31.7952 1.16 29.3088 2 24 

0.36 31.7408 1.2 29.12 2.04 23.6768 

0.4 31.68 1.24 28.9248 2.08 23.3472 

0.44 31.6128 1.28 28.7232 2.12 23.0112 

0.48 31.5392 1.32 28.5152 2.16 22.6688 

0.52 31.4592 1.36 28.3008 2.2 22.32 

0.56 31.3728 1.4 28.08 2.24 21.9648 

0.6 31.28 1.44 27.8528 2.28 21.6032 

0.64 31.1808 1.48 27.6192 2.32 21.2352 

0.68 31.0752 1.52 27.3792 2.36 20.8608 

0.72 30.9632 1.56 27.1328 2.4 20.48 

0.76 30.8448 1.6 26.88 2.44 20.0928 

0.8 30.72 1.64 26.6208 2.48 19.6992 

 



 

 

 

X1 X2 X1 X2 

2.52 19.2992 3.36 9.4208 

2.56 18.8928 3.4 8.88 

2.6 18.48 3.44 8.3328 

2.64 18.0608 3.48 7.7792 

2.68 17.6352 3.52 7.2192 

2.72 17.2032 3.56 6.6528 

2.76 16.7648 3.6 6.08 

2.8 16.32 3.64 5.5008 

2.84 15.8688 3.68 4.9152 

2.88 15.4112 3.72 4.3232 

2.92 14.9472 3.76 3.7248 

2.96 14.4768 3.8 3.12 

3 14 3.84 2.5088 

3.04 13.5168 3.88 1.8912 

3.08 13.0272 3.92 1.2672 

3.12 12.5312 3.96 0.6368 

3.16 12.0288 4 0 

3.2 11.52 

3.24 11.0048 

3.28 10.4832 

3.32 9.9552 

 

 



 
 

From the above data  (Table 2.3  and Table 2.4.), we fit regression 

lines keeping X1(X2) as dependent variable and  X2 (X1) as independent 

variable. We get  following straight lines.  

TABLE 2.5 
 

Constraint I Constraint II 

Regression Lines R2 Regression Lines R2 

0.0996 X1 +  X2  ≤ 243.013 0.90 X1 +  0.720 X2   ≤ 32.055 0.97 

0.512  X1 +  X2   ≤ 243.128 0.96 X1 +  1.680 X2   ≤ 32.336 0.99 

1.482  X1 +  X2   ≤ 243.542 0.98 X1 +  3.040 X2   ≤ 33.123 0.99 

3.758  X1 +  X2   ≤ 244.875 0.98 X1 +  4.640 X2   ≤ 34.659 0.99 

8.863  X1 +  X2   ≤ 248.920 0.98 X1 +  6.640 X2   ≤ 37.443 0.99 

19.444 X1 +  X2  ≤ 259.906 0.99 X1 +  9.840 X2   ≤ 43.923 0.99 

38.401 X1 +  X2   ≤ 285.09 0.99 X1 +  13.040 X2  ≤ 53.187 0.99 

66.883 X1 +  X2   ≤ 331.430 0.99 X1 +  15.120 X2   ≤ 60.539 1.00 

106.835 X1 +  X2 ≤ 259.906 0.99   

176.400 X1 +  X2  ≤ 565.028 0.99   

248.353 X1 +  X2  ≤ 754.044 0.99   

295.926 X1 +  X2  ≤ 888.470 0.99   

 

Thus the  nonlinear programming problem (2.3.1) is transformed into  

following   pure linear programming problem. 

 

Example  2.3.2 

 

 Max   Z = X1 - X2 

                           Subject to 

    Constraints as given in Table 2.5 



      X1, X2  ≥  0. 

 Using Simplex Method,  the optimal solution of the above problem is  

X1 = 3.0  and  X2 = 0.0,  and this gives optimal value of   Z  as 3 

We see that the optimal solution of original nonlinear programming problem 

(2.3.1) using the well known methods is the same i.e. Z = 3.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter three 
 

Solution of  non-Linear 

Programming Using regression 

AnAlysis -- II 

 

 

 



 
 

        

3.1     Introduction 

n this chapter, we develop a new method to solve n-dimensional 

mathematical programming problems based on a probability 

distribution and regression analysis. 

Basically, mathematical programming problems are the mathematical 

models of some real life situations and the variables used in these models are 

the decision variables. One of the important conditions of mathematical 

programming is that the decisions variables have to be non-negative so  the 

minimum values of all decision variables remains always zero and the 

maximum value of the variables can be found by the technique used in  

chapter II given in Table 2.1. Here we use the concept of Uniform 

distribution U(a, b) where  ‘a’ and ‘b’ being the  lower and upper limit, we 

generate the values from uniform distribution U(a,b)  and this data is used to 

fit linear regression lines keeping coefficient of determination very close to 

1.  By this technique, we can convert all nonlinear constraints into linear 

constraints and non-linear programming problem is converted into pure 

linear programming problem. Thus the linear programming techniques can 

be used to find the solution of the problem. From this solution  we can find 

the solution of the original nonlinear programming problem. 

I



 
 

3.2     Method 

We consider the following  Non-Linear Programming Problem:  

Max.    Z = f(X)  

Subject to  

g(X) ≤ b               (3.1) 

Xj    0      (3.2) 

where f(x) is linear and g(x)  is nonlinear (or mixed)  

we proceed as follows: 

1.   Take  any  non-linear constraint from the above problem.  

2.   Choose  one variable as dependent variable and rest as independent 

variables   and use the following transformation: 

Xj =  ( bi - ∑Xj
n )1/n 

3.  Check  the  minimum  and  maximum  values  of  all  independent  

variables  satisfying  conditions (3.1) and (3.2).  

4.  Using the uniform distribution U(a, b),  we generate the values  

independently for  each independent variable.  

5. Using values of all independent variables,  we can find the values of 

dependent variable ignoring the values that violate  constraints condition. 

6. Now using regression analysis, we fit the straight lines (same variable as 

dependent and  others independent) taking least number of points into 



consideration so that  the co-efficient of determination remains very close to 

1. 

7. This way large number of straight lines are formed by splitting nonlinear 

constraint   into linear parts. 

8. The same procedure is followed for the remaining constraints to split  into 

linear ones. 

This makes the original non-linear programming problem as a  linear 

programming problem  which can be solved by the regular Simplex Method. 

3.3  Numerical Illustration 

We present the numerical illustrations to support the above method: 

Example  3.3.1 

Max   Z = 4X1 + 3X2 + 4X3 + 6X4 

Subject to  

X1
2  + 2X2 

2  + 2X3
2  + 4X4 

2  ≤ 80  (3.3) 

       2X1 +  2X3 + X4   ≤ 18     (3.4) 

3X1
  + 3X2 

2  + X3
3  + X4

2
   ≤ 80   (3.5) 

Xj   ≥  0.        (3.6) 

j = 1,2,3,4 

The above problem consists of two non-linear constraints (3.3) and (3.5) and 

one linear constraint (3.4)  so we take only  nonlinear constraints and using 

the transformation as under:  



 
 

X1   ≤  (80 -  2X2
2  - 2X3

2  - 4X4 
2)1/2                        (3.7) 

and  

   X1   ≤  (80 -  3X2
2  - X3

3  - X4 
2)    (3.8) 

                     3 

The minimum and maximum values of Xj (j = 1, 2, 3, 4) in (3.3) and (3.5) 

are given in Table 3.1 

Table 3.1 

 

Constraints 

 

Variables 

X1 X2 X3 X4 

 Min Max Min Max Min Max Min Max 

(3.3) 0 8.94 0 6.32 0 6.32 0 4.47 

(3.5) 0 26.66 0 5.16 0 4.30 0 8.94 

 

Using the uniform distribution, we generate random values  for all 

independent variables (here X2,  X3,  X4  ) from these values, we choose  the 

values of dependent variable (here X1) , keeping conditions (3.3), (3.4) and 

(3.5) in view, while ignoring the other values that violate the given 

conditions,  Table 3.2 consists of  all such values of the variables.  



 

Table 3.2 

X2 X3 X4 X1 X2 X3 X4 X1 

0.00089 0.00335 0.00685 8.94426 0.07985 0.09421 0.05885 8.941792 

0.00165 0.00409 0.01359 8.944228 0.07995 0.09469 0.06022 8.941744 

0.02128 0.00638 0.01516 8.944165 0.08686 0.09615 0.06302 8.941506 

0.02216 0.01584 0.01867 8.944111 0.10043 0.09817 0.06641 8.94108 

0.02288 0.01828 0.02403 8.944047 0.10805 0.11251 0.07005 8.940453 

0.03333 0.02785 0.0241 8.943931 0.12353 0.11491 0.07875 8.939702 

0.04047 0.02856 0.02596 8.943847 0.14252 0.11771 0.08001 8.939019 

0.04868 0.03456 0.02893 8.943686 0.14659 0.12636 0.08793 8.938353 

0.06241 0.03903 0.03165 8.943442 0.14672 0.1324 0.09345 8.93795 

0.06323 0.05396 0.04024 8.943137 0.14924 0.13578 0.09544 8.937681 

0.06786 0.05751 0.04159 8.943 0.14959 0.13924 0.09965 8.937379 

0.06819 0.06581 0.05302 8.942639 0.1658 0.14904 0.10491 8.93625 

0.07072 0.08184 0.0554 8.942277 0.17125 0.16338 0.10852 8.935371 

0.07075 0.09388 0.05541 8.94204 0.17331 0.16707 0.10986 8.93509 

 



 
 

X2 X3 X4 X1 X2 X3 X4 X1 

0.18024 0.17475 0.1104 8.934495 0.27005 0.28709 0.18097 8.919546 

0.19527 0.17706 0.11233 8.933676 0.27042 0.28711 0.18788 8.918951 

0.19624 0.17723 0.11438 8.933523 0.27051 0.30647 0.20099 8.916514 

0.20662 0.18115 0.12372 8.932399 0.27188 0.31185 0.20558 8.915638 

0.20714 0.19195 0.13837 8.931064 0.27366 0.31847 0.20611 8.915013 

0.21062 0.20126 0.15318 8.929525 0.27525 0.32403 0.20764 8.914372 

0.21205 0.20592 0.15509 8.929113 0.27583 0.34549 0.2194 8.911597 

0.21744 0.21807 0.15785 8.928083 0.2836 0.3472 0.22121 8.910797 

0.21813 0.23176 0.1656 8.926798 0.29494 0.34871 0.23362 8.908676 

0.22028 0.24031 0.16859 8.926016 0.30852 0.34912 0.23632 8.907439 

0.22669 0.24536 0.16898 8.925391 0.31263 0.36313 0.24374 8.905232 

0.23213 0.26254 0.16925 8.924113 0.31542 0.37221 0.24661 8.90397 

0.24651 0.27765 0.17625 8.921885 0.31599 0.39526 0.24816 8.90177 

0.26369 0.27894 0.17877 8.920621 0.32749 0.3957 0.26024 8.899519 

 



 
 

 

X2 X3 X4 X1 X2 X3 X4 X1 

0.33047 0.39814 0.26276 8.898785 0.3862 0.46437 0.32102 8.880214 

0.33915 0.40045 0.26894 8.897186 0.39246 0.46462 0.33015 8.8783 

0.34181 0.40399 0.27113 8.896396 0.40036 0.46614 0.33213 8.87714 

0.34427 0.40679 0.27495 8.895483 0.41141 0.48706 0.33251 8.873825 

0.34645 0.40713 0.27783 8.894924 0.42306 0.48862 0.33497 8.872188 

0.35054 0.4101 0.28115 8.893914 0.4264 0.49004 0.34633 8.869967 

0.35265 0.41031 0.28353 8.893425 0.43081 0.49174 0.35004 8.86877 

0.35757 0.41814 0.29373 8.890978 0.43629 0.49937 0.35036 8.867331 

0.35989 0.43811 0.29762 8.88835 0.44111 0.50917 0.3568 8.864712 

0.36007 0.44368 0.29848 8.887668 0.44416 0.51499 0.36876 8.861776 

0.36182 0.45513 0.31296 8.884374 0.44469 0.5378 0.37331 8.858251 

0.36243 0.45646 0.31456 8.883962 0.445 0.54017 0.37445 8.857739 

0.37369 0.46088 0.31933 8.881892 0.45477 0.55241 0.37771 8.854682 

0.37831 0.4628 0.32042 8.881144 0.47334 0.57448 0.37912 8.849685 

 



 
 

 

X2 X3 X4 X1 X2 X3 X4 X1 

0.4738 0.58768 0.38086 8.847603 0.55 0.67482 0.45566 8.812135 

0.47819 0.60039 0.3862 8.844497 0.553 0.67902 0.4566 8.81092 

0.48932 0.60221 0.39184 8.84204 0.55953 0.6858 0.45805 8.808744 

0.4907 0.60864 0.39446 8.84054 0.56267 0.69375 0.46708 8.805201 

0.49079 0.61082 0.3963 8.8399 0.5697 0.69729 0.46961 8.8032 

0.49902 0.61926 0.40996 8.835311 0.58291 0.70884 0.47052 8.79943 

0.50666 0.62413 0.4102 8.833711 0.58879 0.71017 0.47204 8.798107 

0.53872 0.63359 0.41504 8.827664 0.59065 0.71078 0.47753 8.796574 

0.53946 0.64757 0.42163 8.824295 0.59675 0.71462 0.48033 8.794518 

0.54026 0.64872 0.43046 8.822323 0.60224 0.71823 0.4835 8.792486 

0.54047 0.6491 0.43149 8.82204 0.60342 0.72017 0.4842 8.791853 

0.5445 0.65715 0.43216 8.820221 0.61467 0.73518 0.49021 8.786476 

0.54738 0.66133 0.43343 8.81899 0.62109 0.73661 0.49343 8.784612 

0.54981 0.67458 0.44708 8.813954 0.62288 0.73897 0.49919 8.78266 

 



 
 

X2 X3 X4 X1 X2 X3 X4 X1 

0.63313 0.73952 0.51656 8.777082 0.70235 0.83045 0.56041 8.739444 

0.63414 0.74212 0.52179 8.77526 0.70615 0.836 0.56245 8.737249 

0.63565 0.75639 0.5245 8.771958 0.71493 0.84012 0.56737 8.733757 

0.63578 0.76285 0.52632 8.770384 0.724 0.8427 0.57607 8.729487 

0.65221 0.77373 0.53094 8.764949 0.727 0.84551 0.58097 8.727145 

0.65372 0.77551 0.53522 8.763368 0.73226 0.84733 0.58384 8.725146 

0.65987 0.79523 0.53537 8.758874 0.73227 0.85165 0.58923 8.722854 

0.66277 0.79948 0.53551 8.757628 0.75181 0.85867 0.59488 8.716617 

0.67713 0.80088 0.54435 8.752994 0.75848 0.86518 0.5957 8.713949 

0.67768 0.81176 0.54642 8.750388 0.76223 0.86594 0.59665 8.712884 

0.68046 0.81545 0.55137 8.748028 0.76627 0.87836 0.59876 8.709109 

0.69086 0.82174 0.55214 8.745026 0.77639 0.8796 0.60834 8.704409 

0.69796 0.82307 0.55397 8.743185 0.78126 0.8829 0.61135 8.702025 

0.70089 0.82595 0.55747 8.741283 0.78709 0.88308 0.61954 8.698621 

 



 
 

X2 X3 X4 X1 X2 X3 X4 X1 

0.78947 0.9143 0.62653 8.689731 0.84224 1.00651 0.69324 8.639028 

0.79623 0.92113 0.62689 8.686951 0.84554 1.03672 0.69352 8.631145 

0.7981 0.92463 0.62837 8.685436 0.84785 1.04719 0.69516 8.627636 

0.79998 0.93332 0.64017 8.679782 0.84816 1.04845 0.70043 8.625563 

0.80215 0.93606 0.64036 8.678736 0.85079 1.09185 0.70323 8.613356 

0.80783 0.94808 0.6471 8.673071 0.85256 1.10998 0.70445 8.607971 

0.81743 0.94871 0.65089 8.669999 0.85882 1.11476 0.70764 8.604444 

0.8186 0.95716 0.65815 8.665727 0.86287 1.11739 0.70805 8.602816 

0.8238 0.97661 0.66248 8.659079 0.86603 1.1202 0.71186 8.600192 

0.82563 0.97854 0.66802 8.656592 0.87781 1.12607 0.72314 8.592503 

0.83383 0.99654 0.66871 8.650698 0.8816 1.1261 0.72985 8.589449 

0.83795 1.00054 0.66936 8.648777 0.88433 1.13424 0.73237 8.585887 

0.83907 1.00124 0.66988 8.648237 0.88535 1.13837 0.73856 8.582462 

0.84089 1.00209 0.6907 8.641133 0.89407 1.13884 0.74045 8.579878 

 



 
 

X2 X3 X4 X1 

0.90545 1.14916 0.74416 8.573452 

0.90734 1.16495 0.74667 8.567916 

0.91051 1.1682 0.74717 8.566184 

0.91395 1.16969 0.75101 8.563701 

0.91471 1.17044 0.75361 8.56242 

. . . . 

. . . . 

. . . . 

3.4391 3.64504 2.6518 1.282332 

3.44653 3.65932 2.66588 1.016834 

3.45564 3.66355 2.66933 0.878986 

3.46475 3.67663 2.67359 0.60288 

 

We use the regression analysis keeping X1 as dependent variable and 

X2,  X3,  X4  as independent variables and fit the regression lines taking least 

number of points into consideration and keeping in view the fact  that the co-

efficient of determination remains very close to 1 .  Table 3.3 presents the 

regression lines formed for the data in Table 3.2. 



 
 

Table 3.3 

S. 

No. 

Equations formed R2 

1 X1 + 0.00216 X2  + 0.0014 X3 + 0.011 X4   ≤  8.944 1.00 

2 X1 + 0.0108  X2  + 0.00108 X3 + 0.0248 X4  ≤  8.945 0.97 

3 X1 + 0.0134 X2  + 0.0162 X3 + 0.0159 X4  ≤  8.945 0.97 

4 X1 + 0.0118 X2  + 0.0208 X3 + 0.0547 X4  ≤  8.948 0.99 

5  X1 + 0.0288 X2  + 0.0516 X3 + 0.0169 X4  ≤  8.951 0.99 

6 X1 + 0.0357 X2  + 0.0433 X3 + 0.0633 X4  ≤  8.955 1.00 

7 X1 + 0.0623 X2  + 0.0412 X3 + 0.105 X4  ≤  8.967 0.99 

8 X1 + 0.0928 X2  + 0.0798 X3 + 0.0831 X4  ≤  8.983 0.99 

9  X1 +0.11 X2  + 0.087 X3 + 0.136 X4  ≤  9.007 0.99 

10 X1 + 0.136 X2  + 0.0832 X3 + 0.264 X4  ≤  9.062 0.99 

11 X1 + 0.0366 X2  + 0.262 X3 + 0.352 X4  ≤  9.178 0.99 

12 X1 + 0.202 X2  + 0.298 X3 + 0.312 X4  ≤  9.331 1.00 

13  X1 + 0.253 X2  + 0.360 X3 + 0.297 X4  ≤  9.443 1.00 

14 X1 + 0.143 X2  + 0.618 X3 + 0.465 X4  ≤  9.827 0.99 

15 X1 + 0.368 X2  + 0.930 X3 + 0.460 X4  ≤  10.727 0.99 

16 X1 + 0.891 X2  + 0.477 X3 + 0.980 X4  ≤  11.659 1.00 



17  X1 + 1.055 X2  + 0.669 X3 + 1.177 X4  ≤  12.895 1.00 

18 X1 + 0.336 X2  + 1.228 X3 + 2.339 X4  ≤  14.873 0.99 

19 X1 + 0.812 X2  + 1.435 X3 + 3.717 X4  ≤  20.134 0.99 

20 X1 + 3.422 X2  + 2.643 X3 + 2.593 X4  ≤  29.904 0.99 

21 X1 + 1.045 X2  + 1.742 X3 + 17.579 X4  ≤  57.813 0.97 

 

Similarly, constraint (3.5) is also  split  into the linear parts (regression lines) 

and the corresponding lines are given in Table 3.4.  

 

Table 3.4 

S. No. Equations formed R2 

1 X1 + 0.00841 X2  + 0.0157 X3 + 0.033 X4  ≤  26.668 1.00 

2 X1 + 0.117  X2  + 0.00070 X3 + 0.0518 X4  ≤  26.671 1.00 

3 X1 + 0.182 X2  + 0.0091 X3 + 0.0976 X4  ≤  26.680 0.99 

4 X1 + 0.201 X2  + 0.0466 X3 + 0.106 X4  ≤  26.691 0.99 

5  X1 + 0.220 X2  + 0.102 X3 + 0.1890 X4  ≤  26.722 0.99 

6 X1 + 0.5610 X2  + 0.0197 X3 + 0.229 X4  ≤  26.770 0.99 

7 X1 + 0.0364 X2  + 0.268 X3 + 0.510 X4  ≤  26.868 0.99 

8 X1 + 0.692 X2  + 0.294 X3 + 0.571 X4  ≤  27.116 0.99 

9  X1 +1.084X2  + 0.872 X3 + 0.385 X4  ≤  27.550 0.99 



10 X1 + 2.221 X2  + 1.159 X3 + 0.439 X4  ≤  28.495 0.99 

11 X1 + 1.796 X2  + 1.501 X3 + 1.209 X4  ≤  29.702 1.00 

12 X1 + 0.179 X2  + 2.714 X3 + 1.762 X4  ≤  31.078 1.00 

13  X1 + 0.445 X2  + 4.390 X3 + 2.141 X4  ≤  35.215 0.99 

14 X1 + 4.471 X2  + 5.830 X3 + 1.001 X4  ≤  40.328 0.99 

15 X1 + 4.027 X2  + 8.664 X3 + 0.844 X4  ≤  46.648 1.00 

16 X1 + 7.751 X2  + 8.891 X3 + 1.148 X4  ≤  54.883 1.00 

17  X1 + 2.329 X2  + 11.469 X3 + 3.255 X4  ≤  60.822 1.00 

18 X1 + 4.139 X2  + 12.802 X3 + 2.446 X4  ≤  65.900 1.00 

19 X1 + 4.320 X2  + 13.061 X3 + 2.796 X4  ≤  68.661 1.00 

 

Now, the original problem (3.1) can be written as given in Example (3.3.1.1) 

Example  3.3.1.1  

Max   Z = 4X1 + 3X2 + 4X3 + 6X4 

Subject to  

 Constraints in Table 3.3  

   Constraints in Table 3.4 

       2X1 +  2X3 + X4   ≤ 18     

      Xj  ≥  0.  j = 1, 2, 3, 4  

The optimal solution of problem given in Example (3.1.1) using Simplex 

Method  is as follows 



X1  =  5.20, X2  =  3.0,  X3 =  2.6 and X4  = 2.31 with optimum value of  

Z  as  54.06. 

The optimal solution of Example  3.3.2 is the  same as optimal 

solution of Example 3.3.1, it means that we can find the solution of nonlinear 

programming problem in Example (3.3.1) by means of Simplex Method 

using the transformation technique. 

 

Example  3.3.2 

Min   Z =  - X1 + X2  

Subject to  

- X1
2  - X2 

2  + 4X1  - 3  ≥ 0 (3.9) 

         X1 +  X2   ≤ 5    (3.10) 

  Xj   ≥  0.      (3.11) 

The transformation is   

X2   ≤  Sqrt  (4X1  - X1
2   - 3)  (3.12) 

 

  We use similar technique as used in Example (3.3.1), that is, the  

values are generated by using the uniform distribution for  X1 (independent 

variable) then regression lines are formed keeping as X1 as independent 

variable and X2   as dependent variable, the lines formed by regression 

analysis is plotted in X-Y plane  (Fig. I )  



 

 

3.4 Graphical Solution   

Graphical solution of the Non-Linear Programming Problem given in 

Example (3.3.2) is given below:  

 

 

 
Fig. I 

 

The optimal solution of  Example 3.3.2 is   

X1 = 3.0 and  X2  =  0  which gives  value of Z  as  -3 



 

 
 
 
 
 

Chapter four 
 

Filtration For MatheMatical 

Programming Problems 

 
 

 

 



 
 
     

4.1     Introduction 

n this chapter, we  introduce a Filtration technique that divides the 

constraints of a mathematical programming problem into two types,  

active and non-active constraints. If we have ‘n’ number of 

constraints, we divide these ‘n’ constraints into ‘m’ active constraints and 

‘n-m’ non-active constraints. This division is based on the technique to be 

called as filtration technique. In fact, the active constraints are the main 

sources that play a vital role for obtaining the optimum solution of the 

objective function and non-active constraints are dominated and are not 

taken into consideration. This way, we can eliminate the non-active 

constraints from any mathematical programming problem and solve the 

resulting problem by available methods taking only active constraints into 

account and find the solution which is the optimum solution of the 

problem. 

 Reducing the number of constraints in any problem is to be 

appreciated and this will help to obtain solution for a problem with less 

calculations, less time, efficient solution and of course more economical. 

I



 

 

 

4.2     METHOD: 

We take any mathematical programming problem into consideration, 

it may be a linear case (4.2.1)  or a nonlinear case (4.2.2). The technique is as 

follows: 

4.2.1     Linear Case: 

 

Max Z =  C1X1 +  C2X2  +  C3X3  +, . . . , + CnXn 

Subject to 

    a11X1 + a12X2  +, . . . , + a1nXn ≤  b1 

    a21X1 + a22X2+, . . . , + a2nXn  ≤  b2 

    ….  …  .. .. 

    ….  …  .. .. 

    am1X1 + am2X2+, . . . , + amnXn ≤  bm 

       aij  ≥ 0 , bi  ≥ 0 and Xj  ≥ 0 

i = 1, . . . ,m ,  j = 1, . . . ,n. 



 
 

4.2.2     Non-Linear Case 

Max.  Z = f(x)  

Subject to   

a11X1
 p  +  a12X2

 p  +, . . . , + a1nXn
 p  ≤ b1 

    a21X1
 p  +   a22X2

 p  +, . . . , + a2nXn
 p  ≤ b2 

    ….  …  .. .. 

    ….  …  .. .. 

am1X1
 p  +   am2X2

 p  +, . . . , + amnXn
 p  ≤ bm 

         aij ≥ 0,  bj ≥ 0 and Xj ≥ 0 

i = 1, . . . ,m ,  j = 1, . . . ,n. 

 where f(x) may be linear or non-linear objective function 

1. Analyze all the constraints and check their minimum and maximum 

values of Xj ‘s (  controlling variables) so that constraints are satisfied.  

2. All values of Xj’s should be finite (ranges from 0 to finite value) , we 

choose the common interval of Xj’s and identify them. 

3. Corresponding constraints of these identified common intervals are 

selected, these selected constraints are named as active constraints. 

These constraints play the most important role for finding the solution 

of the problem. 

4.  We solve the mathematical programming problem with selected 

constraints only with usual methods and ignoring the rest of the 

constraints, thus the solution so found is optimal. 



 

This technique is called filtration technique, as it filters the 

mathematical programming problems and removes the redundant 

constraints (non active) like the filter removes the dirt from the liquid to 

make it more pure. 

4.3 Numerical Illustrations: 

The method is illustrated with the help of the following examples 

Example 4.3.1  (Nooh’s Boat Problem) 

Max Z = 4000 X1 + 2000 X2  + 5000 X3 

Subject to  

   12 X1 + 7 X2  + 9 X3  ≤ 12600   

   22 X1 + 18 X2 + 16 X3  ≤ 19800  

   2 X1 + 4 X2 + 3 X3  ≤ 396 

Xj  ≥  0 j = 1,2,3 

 

The above Standard  problem can be solved by  using Simplex Method 

and the optimal solution to the above problem is   

X1 = 198,  X2 = 0,   X3 = 0 which gives maximum value of Z as 792000

   

Now we use the filtration technique. Firstly we find the minimum and 

maximum values of Xj’s which are given Table 4.1 

 

 



 

 
Table 4.1 

Constraints Variables 

X1 X2 X3 

 Min Max Min Max Min Max 

I 0 1050 0 1800 0 1400 

II 0 900 0 1100 0 1237.5 

III 0 198 0 99 0 132 

 

In Table 4.1 the value of X1 cannot exceed the value 198, otherwise it 

violates the 3rd constraint so the range of X1 is  0  to 198. similarly the range 

of X2 is 0 to 99 and range of X3 is 0 to 132.  Constraints  III satisfying all 

ranges, so we select only one constraint, the original mathematical 

programming problem given in Example 4.3.1  reduces to the problem given 

in Example 4.3.1.1. 

Example  4.3.1.1 

Max Z = 4000 X1 + 2000 X2 + 5000 X3 

Subject to  

   2 X1 + 4 X2 + 3 X3 ≤ 396 

Xj  ≥  0 j = 1,2,3 

 

 



The above problem can be solved by any linear programming techniques  

with only one constraint  instead of three, the solution to the reduced 

problem still remains optimal. The optimal solution is given as 

X1 =198, X2= 0, X3 = 0 which gives maximum value of Z = 792000 

 

Example 4.3.2 (Product Mix Selection Problem) 

  

Max Z = 4X1 + 5 X2 + 9X3  + 11 X4 

Subject to  

    X1 + X2 + X3 + X4  ≤ 15 

   7 X1 + 5 X2 + 3 X3 + 2X4 ≤ 120 

   3 X1 + 5 X2 + 10 X3 + 15X4  ≤ 100 

Xj  ≥ 0  j = 1,2,3,4 

optimal solution to the above problem is  

X1 =7.14, X2= 0, X3 = 7.86 and maximum value of  Z = 99.29 

The minimum and maximum values of Xj’s are in Table 4.2 



 

 

Table 4.2 

Constraints Variables 

X1 X2 X3 X4 

 Min Max Min Max Min Max Min Max 

I 0 15 0 15 0 15 0 15.00 

II 0 17.14 0 24 0 40 0 60.00 

III 0 33.33 0 20 0 10 0 6.66 

 

We again use the same method, the number of constraints are reduced from 3 

to 2 and the original problem becomes as:  

Example 4.3.2.1 

Max Z = 4X1 + 5 X2 + 9X3  + 11 X4 

Subject to  

   X1 + X2 + X3 + X4  ≤  15 

   3 X1 + 5 X2 + 10 X3 + 15X4  ≤ 100 

Xj  ≥ 0  j = 1,2,3,4 

The optimal solution of the problem is  X1 =7.14,  X2= 0,  X3=7.86 and 

maximum   Z as 99.29 

which is the same optimal solution as for Example 4.3.2 

 



 
 

 Example 4.3.3 (Fractional Programming Problem) 

Maximize Z =  (2 X1 +3 X2 ) / ( 5X1 +7 X2 + 4) 

Subject to  

3 X1 +  X2   ≤ 4 ,  

X1 + X2   ≤ 1 

Xj  ≥ 0  j = 1,2  

Solving by Charnes and Cooper’s method [30], the above problem is written 

as: 

Example 4.3.3.1    

 Maximize Z =  2 Y1 +3 Y2  

Subject to  

3 Y1 +  Y2 + Y3   - 4t  =  4 ,  

Y1 + Y2  + Y4  –  t = 0 

5Y1 + 7Y2   + 4t = 1 

Yj  ≥ 0    

The optimal solution to the problem given in Example 4.3.1 using Simplex 

Method (Two Phase Method) is given by 

Y1  = 0, Y2= 0.09, Y3 = 4.27,  Y4 = 0.00, t    = 0.09 and maximum  Z 

is  0.27 

 



Using this result, the solution to the original problem given in Example 4.3  

is obtained  as 

 X1 = Y1/t , X2 = Y2/t 

X1 = 0,  X2= 1.0 and  maximum value of Z = 0.27  

The minimum and maximum values of controlling variables are in Table 4.3 
Table 4.3 

Constraints Variables 

X1 X2 

 Min Max Min Max 

I 0 1.33 0 4.00 

II 0 1.00 0 1.00 

 

It shows that the constraint II is an active constraint and  constraint I is non- 

active constraint, then problem given in Example  4.3.1  reduces to following 

problem given in Example 4.3.3.2.  

 Example 4.3.3.2  

Maximize Z =  2 U1 +3 U2  

Subject to  

U1 + U2  + U4  –  t = 0 

5U1 + 7U2   + 4t = 1 

Uj  ≥ 0 

Solution of the above problem is  



U1  = 0,  U2 =  0.09, U3 = 0.00,  U4 = 0.00,  t    = 0.09 and Z =0.27 

and using this result, the optimal solution of the above example is 

 X1 = U1 /t , X2 = U2/t 

X1 = 0,   X2= 1.0,  maximum Value of Z  as 0.27 

 

This is the same optimal solution of the original problem, Example  4.3.3 

 It is preferable to solve mathematical programming problem with less 

number of constraints while obtaining optimal solution of the problem. 

Example 4.3.4    (Quadratic Programming Problem)  

   Maximize Z =   2 X1 +  X2  - X1
2  

Subject to  

2 X1 + 3 X2 ≤  6 

      X1 +  X2 ≤  4 

We solve the above quadratic problem by Wolfe’s Method [157]  and get 

X1 = 2/3, X2   = 14/9 with  maximum value of Z as 22/9 

The minimum and maximum values of controlling variables are in Table 4.4 



 
Table 4.4 

 

Constraints Variables 

X1 X2 

 Min Max Min Max 

I 0 3.00 0 2.00 

II 0 4.00 0 4.00 

 

Example  4.3.4.1  

Maximize Z =   2 X1 +  X2  - X1
2  

Subject to  

2 X1 + 3 X2   ≤  6 

By solving this problem, we get the optimal solution as 

X1 = 2/3,  X2   = 14/9 and maximum Z is 22/9 

which is an optimal solution of the original problem given in Example 4.3.4. 

Example  4.3.5    (Typical  Non-linear Programming Problem) 

Maximize Z =   2 X1 +  3 X2  + 2 X3 

Subject to 

    5 X1
2  +  4 X2

2 +  10 X3
2   ≤  120 

        10 X1
2  + 8 X2

2 +  15 X3
2   ≤  300 

         9 X1
2  +  5 X2

2  + 12 X3
2    ≤  180 



Xj  ≥ 0 

Solving this problem by using  (LINGO software) we get the following 

solution 

X1 = 2.3590, X2   = 4.423, X3 = 1.179 and maximum value of Z is 20.347 

Now using the filtration  method:  

The minimum and maximum values of controlling variables are in Table 4.5 

Table 4.5 

Constraints Variables 

X1 X2 X3 

 Min Max Min Max Min Max 

I 0 4.89 0 5.47 0 3.46 

II 0 5.47 0 6.12 0 4.47 

III 0 4.47 0 6.00 0 3.87 

 

Second constraint is dominated  and the problem reduces to  

Example 4.3.5.1 

Maximize Z =   2 X1 +  3 X2  + 2 X3 

Subject to 

5 X1
2 +    4 X2

2+    10 X3
2   ≤  120 

9 X1
2 +    5 X2

2+    12 X3
2  ≤  180 

Xj  ≥ 0 



Solving this problem by using (LINGO software) the solution is  

 

X1 = 2.3590,  X2   = 4.423, X3 = 1.179 and maximum Z = 20.347 

which is the optimum solution of the problem given in Example 4.3.5.1 and 

same solution is the optimal solution of the original problem given in 

Example 4.3.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

Chapter five 
 

Relation Between lineaR and 

NoNliNear ProgrammiNg 

 



 
 

 

 

5.1    Introduction 
inear Programming is a technique of expressing real life problems 

into mathematical models and solving the models. It is one of the 

most powerful and widespread business optimization tools. An 

optimization technique capable of solving an amazingly large variety of 

business problems, a business objective (e.g. minimize costs of a distribution 

system), business restrictions (storage capabilities, transportation volume 

restrictions), and costs/revenue (storage costs, transportation costs) are 

formulated into a mathematical model. 

The controlling variables in mathematical models are the real factors 

which we have to be tackled to get the best solution. These factors may be 

machine hours, labour components and number of items  etc. Quite often, we 

face problems in which maximum number of controlling variables are equal 

to zero in optimal solution. In real life situation, zero value variables means 

no use of that particular variable and it loses its presence. For linear 

programming problems having ‘n’ variables and “m” constraints, Simplex 

Method provides the solution  of ‘m’  basic variables and  rest “n-m” non-

basic variables are considered as zero.  

There are relationships between mathematical programming and 

regression analysis, experimental design and testing of hypothesis [7,43].  

But here, we present the relationship which is totally internal, i.e., the 

relationship within mathematical programming. This relationship that helps 

to find the better alternate solution of mathematical programming problems, 

the method is supported by many examples, some examples are also 

L



discussed in chapter 4 [1].  It also provides ‘n’ variable solution of 

mathematical programming problems having ‘m’ constraints and ‘n’ 

variables (m < n). where Simplex Method fails to provide such ‘n’ variable 

solution having ‘m’ constraints only. 

5.2     METHOD 

Let us consider the Linear Programming Problem 

LPPCV:  Linear Programming  

  Max.    Z = f(X)  

Subject to  

aijxj ≤ bi               (1) 

Xj   0       (2) 

i=1,2, . . . ,m ,  j= 1,2, . . . ,n 

As the problem  (LPPCV ) can easily be solved by Simplex Method 

and ‘m’ variable solution can be obtained.  

We convert this linear programming problem into non-linear 

programming problem by following way: 

NLPPCN:  Non-Linear Programming  

   Max.    Z = f(X)  

Subject to  

aijxj
p ≤ bi               (1) 

Xj    0       (2) 

i =1,2, . . . ,m, j = 1,2, . . . ,n, p > 1 



the problem (NLPPCN) is nonlinear programming problem for different 

values  of p (p > 1). The solution of non-linear programming problems can 

be found by any known methods/softwares, [18,78], Using the solution of 

(NLPPCN), we can find the solution of problem (LPPCN).  

Following are the few examples that support the method: 

5.3     Numerical illustrations 

We illustrate the concept with the help of the following examples 

Example 5.3.1    

   Max Z =  X1 +  X2  +  X4 

Subject to  

      X1 + X2 + X3 + X4   ≤  4  

      X1 +  2X2 +  X3 + X5   ≤  4 

     X1 + 2 X2 +  X3  ≤ 4 

Xj  ≥  0  

By  using Simplex Method, the  optimal solution is: 

X1 = 4,  X2 = 0, X3 = 0,  X4  = 0 and X5  = 0, giving maximum value 

of Z as 4. 

The problem has five (5) controlling variables and the Simplex Method 

provides the solution (4,0,0,0,0) it means that only one controlling variable 

plays active part while others not contributing anything.  Now, we change 

the linear programming problem into nonlinear programming by taking any 

power of p > 1 (say p=2). 



 
  

Example  5.3.1.1   Non-Linear Programming  

   Max Z =  X1 +  X2 +  X4 

Subject to  

     X1
2 + X2

2 + X3
2 + X4

2   ≤  4  

      X1
2 +  2X2

2+  X3
2 + X5

2   ≤  4 

     X1
2 + 2 X2

2 +  X3
2  ≤ 4 

Xj  ≥  0  

The solution of this problem by using LINGO software is obtained as 

X1 = 1.154700,   X2 = 1.154700, X3  = 0,  X4 = 1.154700 and X5  = 0 with 

maximum value of Z as 3.461 

Now using this solution, we can find the solution to original linear 

programming problem given in Example 5.3.1 which is the squares of the 

solutions of the Example 5.3.1.1.   

X1 = 1.333,  X2 = 1.333,  X3  = 0, X4 = 1.333,  X5  = 0 and value of  

Z  is 3.999 

This is better alternate solution of problem given in Example  5.3.1 

consisting of atleast three (3) variables solution instead of one variable 

solution as found by Simplex Method. 

We can use some higher powers of decision variables  to determine 

the alternate solutions of mathematical programming problems.  



 
Example   5.3.2 

 

Max Z =  X1 +  X2 + X3  +  X4 

Subject to  

     X1 + X2 + X3 + X4  ≤ 15 

    7 X1 + 5 X2 + 3 X3 + 2X4  ≤ 120 

    3 X1 + 5 X2 + 10 X3 + 15X4  ≤ 100 

      Xj  ≥  0  

  By  using Simplex Method optimal solution is: 

X1 = 15, X2 = 0, X3 = 0,  X4  = 0 with maximum Z= 15 

Now, we change the linear programming into nonlinear programming taking 

p=3 

Example  5.3.2.1  

Max Z =  X1 +  X2 + X3  +  X4 

Subject to  

     X1
3 + X2

3 + X3
3+ X4

3 ≤ 15 

    7 X1
3 + 5 X2

3 + 3 X3
3 + 2X4

3 ≤ 120 

    3 X1
3 + 5 X2

3 + 10 X3
3 + 15X4

3  ≤ 100 

Xj  ≥  0  

The optimal solution of problem in Example 5.3.2.1 by using LINGO 

software is: 



X1 = 1.762508, X2 = 1.645959,  X3 = 1.432785, X4  = 1.285512 and 

maximum Z = 6.1267 

Proceeding in the similar way, we can find the solution of original 

linear programming problem in Example 5.3.2 which is the cube of the 

solution of Example 5.3.2.1   

X1 = 5.5,  X2 = 4.5, X3 = 2.9, X4  = 2.1 and maximum value of Z as 15 

Example 5.3.3 

Max Z =  X1 +  2X2 + 3X3  -  X4 

Subject to  

     X1 + 2X2 + 3X3   ≤  15  

     2X1 +  X2 +  5X3   ≤  20 

    X1 + 2 X2 +  X3  + X4  ≤ 10 

Xj  ≥  0  

Optimal solution to the above problem is 

X1 = 2.14, X2 =0,  X3 = 3.57, X4  = 0 with maximum value  of     

Z as 15 

We  change linear programming problem Example 5.3.3 into nonlinear 

programming problem Example 5.3.3.1. 



 
Example  5.3.3.1  

 Max Z =  X1 +  2X2 + 3X3  -  X4 

Subject to  

     X1
4 + 2X2

4 + 3X3
4   ≤  15  

     2X1
4 +  X2

4 +  5X3
4   ≤  20 

    X1
4 + 2 X2

4 +  X3
4  + X4

4  ≤ 10 

Xj  ≥  0  

The optimal solution of this problem by using LINGO software is: 

X1 = 1.257433,  X2 = 1.257433, X3 = 1.257433, X4=0 and maximum 

value of Z as 7.54   

Now by similar way, we can find the solution of original linear 

programming problem Example 5.3.3 which is the forth power of the 

solution of Example 5.3.3.1.   

X1 = 2.5, X2 = 2.5, X3 = 2.5, X4  = 0 with maximum value Z as 15  

 This is a better alternate solution of problem given in Example 5.3.3 

consisting of three  (3) variables solution instead of two. 
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