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Abstract Interval branch-and-bound (B&B) algorithms are powerful methods which look
for guaranteed solutions of global optimisation problems. The computational effort needed
to reach this aim, increases exponentially with the problem dimension in the worst case.
For separable functions this effort is less, as lower dimensional sub-problems can be solved
individually. The question is how to design specific methods for cases where the objective
function can be considered separable, but common variables occur in the sub-problems.
This paper is devoted to establish the bases of B&B algorithms for separable problems.
New B&B rules are presented based on derived properties to compute bounds. A numerical
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illustration is elaborated with a test-bed of problems mostly generated by combining tra-
ditional box constrained global optimisation problems, to show the potential of using the
derived theoretical basis.

Keywords Branch-and-bound · Interval arithmetic · Separable functions

1 Introduction

Interval branch-and-bound methods look for guaranteed solutions of global optimisation
problems [4,6,7,12,15]. Although these methods have the ability to handle constraints, we
focus here on the generic box constrained global optimisation problem, which is to find

f ∗ = min
x∈S

f (x), (1)

where S ∈ I
n is the search region and I stands for the set of all closed real intervals. With

increasing dimension n, the computational effort increases drastically. In design problems,
it is not unusual that the objective function f is the composition of several sub-functions,
as for example to design electrical devices [9]. If this is the case in an additive way and the
variables can be split into subgroups that do not overlap, we call the function completely
additively separable.

To be precise, we introduce the following notation. The complete search space is S =
(S1, . . . , Sn) ∈ I

n and the index set of variables is I = {1, . . . , n}. Index sets I [ j] =
{i1, . . . , in[ j] } ⊆ I with n[ j] = |I [ j]| elements are used to denote subgroups of variables

and their corresponding search region S[ j] ∈ I
n[ j]

. In this context, we use the following
definitions.

Definition 1 Function f : S ⊂ R
n → R is additively separable, if ∃p > 1 such that f can

be written as

f (x) =
p∑

j=1

f [ j](x [ j]), x [ j] ∈ S[ j]. (2)

The index sets facilitate the definition of a completely separable function.

Definition 2 Function f : S ⊂ R
n → R is called completely separable, if it can be written

as (2) and I [ j] ∩ I [k] = ∅, ∀k, j ∈ {1, . . . , p}, j �= k.

We summarise the notation used in the mathematical description:

– Box, or n-dimensional interval: X = (X1, . . . , Xi = [xi , xi ], . . . , Xn).
– m(X) is the midpoint of the box X .
– w(X) is the width of X , i.e., the width of the largest component of X .
– n-dimensional point: x = (x1, . . . , xn)T .

– Sub-function: f [ j], j ∈ {1, . . . , p}.
– Subbox: X [ j] ⊆ S[ j].
– Subpoint: x [ j] ∈ S[ j] ⊆ R

n[ j]
.

Problem (1) can be solved by considering the addition of subproblems, for completely
separable functions:

min
x∈S

f (x) =
p∑

j=1

min
x [ j]∈S[ j]

f [ j](x [ j]). (3)
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In general, problem (3) is easier to solve than (1), as the subproblems have a lower dimen-
sion. However, in engineering design, cases may have an additive structure in the objective
function, but common variables are shared by the underlying functions, see [9]. Nocedal and
Wright [13] mention in their book the concept of so-called partially separable problems to
derive numerical advantages in Quasi-Newton methods if the Hessian is sparse.

We focus on the case where one group of variables appears in each sub-function. The
developed theory is valid for more than one common variable, but in order to keep notation
comprehensible, we present it for one common variable. This theory presents the basis for
future studies on more complicated relations in the model. Without loss of generality, the
common variable is denoted by the last one, xn . So, common variable xn appears in all sub-
functions, n ∈ I [1] ∩ . . . ∩ I [p]. Moreover, in the numerical examples we restrict ourselves
to p = 2.

To separate the common variable xn from the non-common variables, the latter will be
denoted by z[ j] ∈ T [ j] such that S[ j] = (T [ j], Sn). The generic problem under investigation
can be written as

min
z[ j]∈T [ j],xn∈Sn

{
f (x) =

p∑

j=1

f [ j](z[ j], xn)

}
, (4)

where each vector x [ j] = (z[ j], xn) ∈ R
n[ j]

should fulfil individual box constraints x [ j] ∈
S[ j] ∈ I

n[ j]
and the common variable xn ∈ Sn ∈ I. There are several ways to denote the

common variable, depending on its context. The common variable are denoted by xn when
x ∈ S and xn[ j] when x ∈ S[ j].

Example 1 Consider the function f (x) = x2
1 + x1x3 − 2x2x3 + x2

2 + 1
2 x2

3 + x3. We can set
z[1] = x1 and z[2] = x2, such that x [1] = (z[1], x3) and x [2] = (z[2], x3). In this way function
f can be rewritten as

f (x) = f [1](x [1]) + f [2](x [2]),

where

f [1](z[1], x3) = x2
1 + x1x3 + 1

2
x2

3 + x3 = (z[1]
1 )2 + z[1]

1 x3 + 1

2
x2

3 + x3

and

f [2](z[2], x3) = x2
2 − 2x2x3 = (z[2]

1 )2 − 2z[2]
1 x3.

Section 2 summarizes interval arithmetic properties relevant for this study. Section 3 shows
a standard interval branch-and-bound algorithm which is used for comparison. Section 4
presents the so-called decomposed sub-function perspective (DSP). Section 5 studies DSP
properties. This leads to a specific branch-and-bound algorithm described in Sect. 6. Finally,
a numerical illustration and conclusions are presented in Sects. 7 and 8, respectively.

2 Properties of interval inclusion functions

Algorithms based on interval arithmetic have several ingredients. We start with the generic
ideas and then focus on how they can be adapted to separable functions with a common
variable. Interval arithmetic has been widely studied in the last 40 years [10,11]. We mention
some relevant interval arithmetic properties and definitions.
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Definition 3 Let f (X) be the range of f on X . An interval function F : I
n → I is an

inclusion function if and only if f (X) ⊆ F(X) = [F(X), F(X)].
Definition 4 Inclusion isotonicity. Inclusion function F : I

n → I of f is inclusion isotone,
if and only if ∀(X, Y ) ∈ I

n , X ⊆ Y ⇒ F(X) ⊆ F(Y ).

In the following, we assume that F is an isotone inclusion function.

Property 1 Refinement of F over X . If
⋃d

k=1 Xk is a partitioning of X then F(X) ⊇⋃d
k=1 F(Xk), according to Definition 4.

Property 2 Refinement of F over X . If
⋃d

k=1 Xk is a partitioning of X then mink{F(Xk)} ≥
F(X) is a valid lower bound of f over X . This follows directly from Property 1 and is of
interest for minimisation problems.

In interval analysis [10], isotone inclusion functions can be constructed as follows:

Property 3 Fundamental Theorem of Interval Analysis. Given a real function f : R
n → R,

a natural interval extension of f , denoted by FNIE , is an isotone inclusion function [10].

In this work, we also use the Baumann inclusion function FB based on the first order
Taylor expansion [1,16]:

FB(X) = FNIE (c) + F ′
NIE (X) · (X − c) = FNIE (c) +

n∑

i=1

(F ′
NIE )i (X)(Xi − ci ),

where c ∈ X and F ′
NIE (X) is the component-wise enclosure of the gradient. In [1], Baumann

proved that the best lower bound using this formulation is generated choosing

– If (F ′
NIE )i (X) < 0, ci = xi .

– If (F ′
NIE )i (X) > 0, ci = xi .

– If 0 ∈ (F ′
NIE )i (X), ci = xi (F ′

NIE )i (X)−xi (F ′
NIE )i (X)

(F
′
NIE )i (X)−(F ′

NIE )i (X)
.

The intersection of an isotone inclusion function with another inclusion function also provides
an isotone inclusion function:

F∩(X) := FNIE (X) ∩ FB(X), (5)

Other isotone inclusion functions are described in [5,8,14,16,17].

Property 4 Monotonicity. Let (F ′
NIE )i be an interval inclusion of the partial derivative of f

with respect to xi . If ∃i 0 /∈ (F ′
NIE )i (X), then the interval X does not contain a stationary

point.

Property 4 is useful to check whether a differentiable function may have an optimum point
in the interior of a box X .

3 Standard interval branch-and-bound algorithm (IBB)

The properties above are used in standard interval global optimisation algorithms (see Algo-
rithm 1), e.g. [16]. Several branch-and-bound rules are described here. In Sect. 5 we deal
with extending them for separable functions with common variables.
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Algorithm 1 : General interval B&B algorithm
Funct IBB(S, f )

1. Set the working list L := {S} and the final list Q := ∅
2. Set f U = F(m(S))

3. while ( L �= ∅ )
4. Select an interval X from L Selection rule
5. Compute F(m(X))

6. if F(m(X)) < f U

7. f U = F(m(X))

8. Remove all X ∈ L ∪ Q with F(X) > f U Cut-off test
9. Divide X into subintervals X j , j = 1, . . . , k Division rule

10. for j = 1 to k
11. Compute a lower bound F(X j ) of f (X j ) Bounding rule
12. if X j cannot be eliminated Elimination rule
13. if X j satisfies the termination criterion Termination rule
14. Store X j in Q
15. else
16. Store X j in L
17. return Q

– Bounding: F(X) is a lower bound of f on X . Upper bound f U of f ∗ is the lowest
function value found in the midpoint m(X) of the evaluated boxes X , F(m(X)).

– Selection: box X with the lowest value for bound F(X) is selected (best first search) in
order to find improvements of upper bound f U of f ∗ in an early stage.

– Elimination:

– RangeUp test: X is rejected if F(X) > f U .
– Monotonicity test: box X interior to S is rejected if 0 /∈ F ′(X).

– Division: Selected and not eliminated interval X is bisected by the midpoint of the widest
component. This avoids slicing off small parts assuring convergence of the algorithm.

– Termination: If one intends to find all minimum points, a common termination rule is
to finish when the size of all boxes is sufficiently small. Algorithm 1 stores boxes with
w(X) ≤ ε in the final list Q.

As a result of the algorithm, the set of minimum points x∗ is enclosed by ∪X∈Q X , and f ∗ is
enclosed by the interval [minX∈Q F(X), f U ].

4 Decomposed sub-function perspective (DSP)

The basic question is how to make use of the fact that the function is separable with common
variables when constructing a specific B&B algorithm. One would like to make use of the
fact that the subproblems have a dimension n[ j] smaller than n.

One way is to consider copies X [ j]
n of subboxes Xn ⊆ Sn for each sub-function. In a

branch-and-bound environment, this implies keeping lists L [ j] and Q[ j] for each sub-func-
tion f [ j] in an n[ j]-dimensional space.

Example 2 Consider Example 1 from the decomposed sub-function perspective. We have
copies x [1]

3 , x [2]
3 of the variable x3. Relaxing the constraint x [1]

3 = x [2]
3 gives a lower bound

of f over [−10, 10]3. Minimising f [1](z[1], x [1]
3 ) gives a unique minimum point (z[1], x [1]

3 )
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= (1,−2) with function value f [1](z[1], x [1]
3 ) = −1. Similarly f [2](z[2], x [2]

3 ) has a mini-
mum of −100 attained at the vertices (−10,−10) and (10, 10), such that the resulting global
lower bound is −101.

Instead of only one list L in Algorithm 1, we have a set of p lists L [ j] to store the n[ j]-dimen-
sional (generated and not eliminated) subproblems for each f [ j] sub-function; L [ j] = {X =
(Z [ j], Xn[ j])} with lower bounds F [ j](X). The algorithm finishes when all L [ j] are empty.
Final boxes are stored in Q[ j]. For each sub-function j , the lower bound on the sub-function
is given by

lb[ j] = min
X∈L[ j]∪Q[ j]

F [ j](X). (6)

Notice that after running the algorithm, these lists have to be combined again into a final list
Q in n-dimensional space. This requires a last phase to combine those subboxes that have
the same range of the common variable.

For higher dimension, we expect to have two effects of using a decomposed approach
compared to the standard (full dimensional) Algorithm 1. First of all, the number of boxes
generated by Algorithm 1 in the worst case has an exponential behaviour in the dimension.
Moreover, in higher dimension the overestimation of interval arithmetic can be larger than
in lower dimension when there exist multiple occurrences of variables. If the ratio between
non-common and common variables is large, using a decomposition may provide more
advantage.

In the following section, we introduce properties of a separable function with a com-
mon variable that can be used for the decomposed sub-function perspective (DSP). These
properties are the basis for a specific branch-and-bound algorithm.

5 Properties of a separable function with a common variable

We focus on properties that are of interest in the DSP approach in order to avoid searching in
areas not containing a global solution. For this purpose, one should obtain bounds of function
values as sharp as possible.

5.1 Bounding

We have to distinguish bounds of f [ j] from bounds of f . A lower bound of f [ j] is relatively
easy to calculate using inclusion functions F [ j](X ⊆ S[ j]), see Property 3.

Property 5 By Property 2, lb[ j] is a lower bound of f [ j] over S[ j].

An upper bound of the minimum of f [ j] on X ⊆ S[ j] can now be defined as depending on
the value of the common variable xn at the midpoint xn = m(Xn[ j]). Let g[ j](xn) be the best

value found so far of F
[ j]

(m(X)) for an X ∈ L [ j] ∪ Q[ j] with the common variable having
a value of m(Xn[ j]) = xn . Extension of the general bounding concept to the sub-functions is
then straightforward as formalised in the following theorem.

Theorem 1 Let interval X ∈ S[ j]. If F [ j](X) > g[ j](xn) with xn ∈ Xn[ j] , then X cannot
contain a n[ j]-dimensional part of an optimum point x∗.

There are several ways to obtain a lower bound of f . A straightforward observation is the
following.
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Property 6 By Definition 1,
∑p

j=1 lb[ j] is a lower bound of f over S.

Function f is defined in the n-dimensional space, so a bound of f on X ⊆ S[ j] is not defined.
Alternatively, one can look for the lowest values that f can reach when box X marks the
solution in the n[ j]-dimensional subspace. For this, it is convenient to define for each interval
Y ⊂ Sn in the common variable space and for each sub-function j

Ψ [ j](Y ) = arg min{F [ j](X) |X ∈ L [ j] ∪ Q[ j], Xn[ j] ∩ Y �= ∅} (7)

as the subbox in the set of non-rejected subboxes in lists L [ j] ∪ Q[ j] with the smallest lower
bound of f [ j] and where the range of the common variable overlaps with Y . The following
proposition will facilitate the reasoning.

Proposition 1 Given an interval Y of Sn obtained by an iterative uniform division,
F [ j](Ψ [ j](Y ) = (Z , Xn[ j])) is a lower bound of f [ j] over (T [ j], Y ).

Proof To obtain a lower bound of f [ j] over (T [ j], Y ), we focus on Ψ [ j](Y ) which has the
smallest F [ j](Z , Xn[ j]) with Xn[ j] ∩ Y �= ∅. Consider all cases:

– Y ⊆ Xn[ j] , the result follows from the definition of Ψ [ j](Y ) and inclusion isotonicity of
interval arithmetic (see Definition 4).

– Xn[ j] ⊂ Y . Because Y and Xn[ j] are generated from the same division scheme, Xn[ j]
belongs to a uniform subdivision of Y . According to Property 2, F(Z , Xn[ j]) is a correct
lower bound of f [ j] over (T [ j], Y ).

– Xn[ j] ∩Y �= ∅, Y � Xn[ j] and Xn[ j] �⊂ Y cannot happen because all intervals are generated
using the same division scheme.

��
Given a subbox X ∈ S[ j], a corresponding lower bound of f can be obtained as follows.

Consider f to be evaluated over a (extended) box with the components of I [ j] limited to the
subbox X and the other I \ I [ j] components are free in S.

Definition 5 Given a subbox X ∈ S[ j], its extension to S is defined as E X [ j] = {E ∈
I
n | E ⊆ S, E [ j] = X} or in another way E X [ j] = {x ∈ S | xm ∈ Xm, m ∈ I [ j]; xl ∈

Sl , l /∈ I [ j]}.
Proposition 2 Consider sub-function j and a corresponding box X ∈ L [ j] ∪ Q[ j]. A lower
bound of f over E X [ j] is given by

F [ j](X) +
p∑

k=1,k �= j

lb[k]. (8)

Proof Based on (6), Property 5 and inclusion isotonicity (Definition 4),

lb[k] = min
X∈L[k]∪Q[k]

F [k](X) ≤ f [k](T [k], Xn[ j]). (9)

So,

F [ j](X) +
p∑

k=1,k �= j

lb[k] ≤ f [ j](X) +
p∑

k=1,k �= j

f [k](T [k], Xn[ j]) = f (E X [ j]). (10)

��
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A sharper lower bound of f over (E X [ j]) is given by the following theorem.

Theorem 2 Consider a subbox X ∈ L [ j] ∪ Q[ j].

F DSP (E X [ j]) := F [ j](X) +
p∑

k=1,k �= j

F [k](Ψ [k](Xn[ j])) (11)

is a valid lower bound of f over E X [ j].

Proof This theorem is a direct consequence of Propositions 1 and 2. ��
Property 7 Subbox X ∈ L [ j] ∪ Q[ j] can be removed if ∃k �= j, ∀Y ∈ L [k] ∪ Q[k], Xn[ j] ∩
Yn[k] = ∅.

Upper bound f U of f ∗ is usually updated by evaluating f at a point x . The question is
how to select x for an interval X = (Z , Xn[ j]) ⊂ S[ j] �= S. The components of the non-
common variables can be taken as the midpoint of Z and the non-common part of the other
sub-functions from the corresponding Ψ [k](Xn[ j]), k �= j . For the value of the common
variable xn , we should look in the overlapping (intersection) part of X and Ψ [k](Xn[ j]).

5.2 Monotonicity

The monotonicity property for non-common variables is straightforward and is valid for each
list separately.

Property 8 Non-common variables monotonicity. Property 4 applies to non-common vari-
ables.

Property 9 Common variables monotonicity. From Property 4, focusing on the common
variable xn , we know that for an interior optimum

∂ f

∂xn
=

∑

j

∂ f [ j]

∂xn
= 0. (12)

Similar to the bounding rule, one has to keep track of what happens in the other lists when
checking monotonicity in the common variable. We introduce the following notation for the
bound on the derivative:

�[ j](Y ) = min
{

F ′[ j]
n[ j](X) |X ∈ L [ j] ∪ Q[ j], Xn[ j] ∩ Y �= ∅

}
(13)

and

�
[ j]

(Y ) = max
{

F
′[ j]
n[ j](X) |X ∈ L [ j] ∪ Q[ j], Xn[ j] ∩ Y �= ∅

}
. (14)

Now we can formulate the monotonicity property for the common variable using the follow-
ing theorem.

Theorem 3 Consider subbox X ⊂ S[ j]. X cannot contain an n[ j]-dimensional part of an
interior optimum point x∗ if

F [′ j]
n[ j](X) +

p∑

k=1,k �= j

�[k](Xn[ j]) > 0 (15)
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or

F
[′ j]
n[ j](X) +

p∑

k=1,k �= j

�
[k]

(Xn[ j]) < 0. (16)

Proof This theorem follows from considering (12) taking into account that either
∑

j
∂ f [ j]
∂xn

< 0, or
∑

j
∂ f [ j]
∂xn

> 0. ��

6 DSP based interval branch-and-bound algorithm (IBB–DSP)

The ingredients of the sketched IBB algorithm are extended towards the DSP approach.

6.1 Bounding rule

A lower bound of f [i](X) is obtained by Eq. (6) and a lower bound of f (X) is obtained
by Eq. (11). A list of upper bounds g[ j](xn) is maintained for those values xn such that
∃Y ∈ L [ j] ∪ Q[ j] with m(Yn[ j]) = xn .

6.2 Selection rule

This rule determines the subproblems to be visited in the search tree, searching for the most
promising regions. First it should be decided which list L [ j] to process next. A round robin
scheme can be applied in the set of non-empty lists, but other schemes can also be consid-
ered. For the selection of the subbox X from a list L [ j] to be processed next we evaluated the
following criteria.

1. subbox X with the lowest value for bound F [ j](X).
2. subbox X with the largest width w(X).
3. subbox X with lowest saved bound of extension F DSP (E X [ j]).
4. subbox X with the widest range for Xn[ j] and as second rule having the lowest extended

bound F DSP (E X [ j]).
5. Take X according to 3. If ∃k �= j with w(Ψ [k](Xn[ j])) > w(X), select Ψ [k](Xn[ j])

instead.
6. Take X according to 3. Evaluate F DSP (E X [ j]). If its value is higher than the saved value,

restore X and repeat 3.

Criterion 1 does usually not improve the upper bound of f ∗ due to its focus on subproblem
bounds instead of the full objective function.

Criterion 2 is a Breadth-First selection rule which attempts to improve values of
F DSP (E X [ j]) (see (11)) by diminishing the width of boxes in the search tree, avoiding
large differences in the size of the boxes in both lists.

Criterion 3 seems a good choice because it uses Best-First and global information, similar
to the IBB algorithm. However, each subproblem usually has a different search behaviour.
They differ in the total number of evaluated subproblems and in the number of evaluated sub-
problems per search tree level. So, it is difficult to select the box that improves F DSP (E X [ j])
in the future, because F DSP (E X [ j]) depends not only on X , but also on Ψ [k](Xn[ j]) (see (7)
and (11)) which are updated during the algorithm run.

Criterion 4 combines 2 and 3 with their advantages and drawbacks.

123
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Criterion 5 attempts to improve the value of F DSP (E X [ j]) by dividing the widest box

among X [ j] and Ψ [k](X [ j]
n ).

Criterion 6 tries to maintain the values of F DSP (E X [ j]) updated. According to our pre-
liminary experiments, this is the best of the presented selection rules and it is used in the
illustration in Section 7.

6.3 Elimination rules

The following rules can be used to eliminate subboxes X = (Z , Xn[ j]) ∈ L [ j] ∪ Q[ j] that
are shown not to contain components of the optimal solution.
RangeUp test (RUpT): X is rejected if F DSP (E X [ j]) > f U .
Sub-function RangeUp Test (SubRUpT): Remove X if F [ j](X) > g[ j](xn) with xn ∈ Xn[ j]
(Theorem 1).
Unshared Value of Common Variable (UVCV): Box X is rejected if ∃k �= j Ψ [k](Xn[ j]) = ∅
(Property 7).
Non-Common Variables Monotonicity Test (NCVMT): X is rejected, if 0 /∈ F [′ j]

i (X), i �=
n[ j] and Z is interior with respect to T [ j] (Property 8).

6.4 Division rule

Similar to the IBB algorithm, the selected and not eliminated subbox X ∈ S[ j] is bisected by
the midpoint of the widest component.

6.5 Termination rule

All subboxes X ∈ S[ j] with w(X) ≤ ε are stored in the final list Q[ j]. The algorithm com-
bines in the end Q[i], i = 1, . . . , p, lists into a final list Q of boxes in n-dimensional space.
Due to the division rule, the algorithm has a finite number of steps. As subboxes that are
guaranteed not to contain components of the optimal solution are thrown out, the algorithm
converges to a finite set of combinations that contains the optimal solutions.

6.6 Implementation aspects

One of the most time consuming parts of the algorithm is the search of Ψ [k](Xn[ j]) to get
F DSP (E X [ j]) in Eq. (11). To avoid the search in the L [ j] and Q[ j] data structures, that
usually contain many elements, an auxiliary data structure M [ j] is created. M [ j] is a list of
Ψ [ j](Xn[ j]) for all existing intervals Xn[ j] .
The IBB–DSP algorithm has three phases:

– Phase 1: Running a B&B algorithm based on the described rules resulting in lists of final
boxes Q[ j].

– Phase 2: The value of F DSP (E X [ j]) is updated for all X ∈ Q[ j]. The current value of
F DSP (E X [ j]) can be based on a stored Ψ [k](Xn[ j]). The aim is the elimination of boxes
using the RUpT and UVCV tests.

– Phase 3: Combine boxes of Q[ j], j = 1, . . . , p having the same common variable val-
ues to get the list Q of full dimensional final boxes. The full dimensional RUpT and
monotonicity tests are applied.
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Fig. 1 GP3 boxes in phase 1 (upper row) and phase 2 (bottom row) of the IBB–DSP algorithm with ε = 10−1.
f [1](x1, x3) is at left hand side and f [2](x2, x3) is at right hand side. Colors of boxes for the successful dele-
tion: RUpT [RangeUp-test (gray) and Cutoff-test (green)], SubRUpT (yellow), NCVMT (orange), UVCV
(blue), phase 1 final boxes (red), phase 2 RangeUp-test (violet), phase 2 final boxes (salmon). (Color figure
online)

7 Numerical illustration

A set of 13 test functions with a common variable has been composed. The Appendix
describes the characteristics of these functions. The first five test problems are three-dimen-
sional. This facilitates obtaining a graphical output like Fig. 1. Example 1 is a simple test
function created specifically for this work. Most of the problems have been constructed
combining two well known global optimisation test functions by sharing one variable.
For instance, problem Nr. 3 (L5P) is the combination of Levy-5 and Price functions, and
problem Nr. 6 (G5G5) is the sum of two Griewank-5 functions. The algorithm was run
using two different values for accuracy ε in the termination criterion, ε = 10−3 and
ε = 10−6.

The algorithms were run using version 2.4.0 of C-XSC for interval arithmetic and interval
automatic differentiation [2]. In order to limit the negative effects of the clustering problems
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Table 1 Results of IBB and IBB–DSP algorithms for the Nr. 2 (GP3) test function

ε = 10−3 ε = 10−6

IBB algorithm
RUpT 40,777 44,615

Monot. Test 5,398 6,997

|Q| 141 140

[lb, f U ] [64.994799, 65.000023] [64.999999, 65.000001]
CPU 6.80 7.61

Effort 416,836 465,760

IBB–DSP algorithm phase 1

RUpT 2,628 3,683

SubRUpT 886 1,334

UVCV 232 1,013

NCVMT 962 2,703

|Q[1]| 162 147

|Q[2]| 121 129

[lb[1], f U ] [57.864553, 65.000023] [62.408512, 65.000001]
IBB–DSP algorithm phase 2

RUpT 18 20

UVCV 102 100

|Q[1]| 79 75

|Q[2]| 84 81

[lb[1], f U ] [64.996493, 65.000023] [64.999999, 65.000001]
IBB–DSP algorithm phase 3

RUpT 42 35

Monot.Test 0 0

|Q| 137 133

[lb, f U ] [64.996493, 65.000002] [64.999999, 65.000001]
CPU 2.08 3.67

Effort 35,823 63,894

[3], the isotone inclusion function F∩ is applied for the computation of bounds, see (5). We
used an Intel Core Duo T2300 1.66 GHz processor with 1.5 Gb of RAM.

We first analyse one instance to get hold of advantages and disadvantages of running the
complete dimensional IBB compared to the DSP–IBB algorithm. Table 1 shows the behav-
iour of the IBB and IBB–DSP algorithms on test function GP3. It shows the performance of
the IBB algorithm above and IBB–DSP algorithm below divided into phases 1, 2 and 3. The
following performance indicators are measured:

– |Q|: the number of final n-dimensional boxes.
– [lb, f U ]: final interval including f ∗.
– CPU: execution time in seconds.
– The effort value was measured as follows:
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– For IBB = #F∩ + n · #F ′
NIE , where # stands for number of evaluations.

– For IBB–DSP= #F∩ + n · #F ′
NIE + ∑p

i=1 #F [i]
∩ + n[ j] · #F [i]′

NIE .

Notice that the cost to evaluate F∩ is different to evaluate F [i]
∩ .

Additional information in Table 1 shows the number of boxes rejected by the tests pre-
sented in Sects. 3 and 6.3. Notice that phase 3 of the IBB–DSP uses rejection tests of the IBB
algorithm. The number of final boxes |Q[i]| and the interval including f ∗ are also shown
for phases 1 and 2. Any sub-function lower bound lb[i] (see (6)) can be used to obtain the
interval including f ∗ in phases 1 and 2.

The performance of the IBB–DSP algorithm, in terms of effort and CPU time, is better
than the IBB algorithm for the GP3 test function. Besides, the IBB–DSP algorithm obtains
a better final inclusion of f ∗ for ε = 10−3. We first focus on possible advantages of the
decomposed perspective:

1. Decomposition leads to lower dimensional problems.
2. Separation of terms may lead to less occurrences of the same variable. This helps to

diminish overestimations of the real function range.
3. The new rejection tests for sub-functions (SubRUpT, NCVMT and UVCV), perform

well due to point 2.
4. In IBB–DSP, the evaluated point trying to update f U is restricted in the common com-

ponent, to X [ j] ∩ Ψ [k](Xn[ j]), j �= k.
5. RUpT in phase 1 of the IBB–DSP algorithm is not as effective as RUpT of the IBB

algorithm, but it still rejects a large number of boxes.

Possible disadvantages that can be derived from the observations:

1. In phase 1, the interval enclosing f ∗ is larger than the final enclosing interval in phase 3.
The lower bound of f (E X [ j]) obtained by F DF E (E X [ j]) in (11) does not only depend
on F [ j](X [ j]) but also in how many subboxes in L [k] ∪ Q[k], k �= j have points in
common with X [ j]

n[ j] . These subboxes determine Ψ [k](X [ j]
n[ j]), see (7). Fewer subboxes

in L [k] ∪ Q[k] give better values of F DF E (E X [ j]). Therefore, in phase 3 the RUpT is
effective in removing more boxes (Table 1).

2. Testing monotonicity in the common variable is left for phase 3.
3. Better values of F DF E (E X [ j]) are obtained when Ψ [k](X [ j]

n[ j]) ∈ Q[k] (final set) as com-

pared to Ψ [k](X [ j]
n[ j]) ∈ L [k]. Phase 2 improves some F DF E (E X [ j]) values, because

Ψ [k](X [ j]
n[ j]) ∈ Q[k]. RUpT is most effective at the end of the run in phase 2.

4. In phase 2 working with final boxes, the UVCV test is effective due to the following
reasons:

– In phase 1, one sub-function number j may result in final subboxes in Q[ j], whereas
subboxes of another sub-function number k that shares common variable values are
stored in L [k]. Not all of these subboxes have offspring that reach Q[k].

– Rejection of boxes of one sub-function by RUpT in phase 2 (see point 2) allows the
UVCV test to remove boxes for other sub-functions.

Figure 1 shows rejected and final subboxes in phases 1 and 2 for the IBB–DSP algorithm
on the GP3 problem with ε = 10−1. It illustrates the points mentioned above.

In Tables 2 and 3, the effectiveness of the IBB and IBB–DSP algorithms is measured in
terms of the interval containing f ∗ and the number of boxes in the final list |Q| for two values
of the accuracy. For both values of accuracy ε, the IBB–DSP algorithm obtains a smaller
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Table 2 Effectiveness of the algorithms for ε = 10−3

Nr. n1 n2 IBB IBB–DSP

[lb, f U ] |Q| [lb, f U ] |Q|
1 2 2 [−85.000001,−84.990234] 4 [−85.000001,−84.995117] 4

2 2 2 [64.994799, 65.000023] 141 [64.996493, 65.000002] 137

3 2 2 [−172.2774,−172.2768] 3 [−172.2774,−172.2768] 3

4 2 2 [−123.743285,−123.743157] 2 [−123.743285,−123.743159] 2

5 2 2 [−168.6570,−168.6566] 24 [−168.6570,−168.6566] 24

6 5 5 [−0.00001, 1.199041 · 10−14] 512 [−0.00001, 1.332268 · 10−14] 512

7 6 3 [−9.652299,−9.629085] 4 [−9.652299,−9.629121] 4

8 5 3 [−35.954858,−35.954755] 9 [−35.954858,−35.954780] 9

9 5 2 [0.153744, 0.154892] 1,366 [0.153744, 0.154892] 1,258

10 4 4 [−20.939446,−20.939333] 1 [−20.939446,−20.939340] 1

11a 3 2 [−0.000171, 7.578985 · 10−6] 1,101 [−0.000129, 8.643538 · 10−7] 569

11b 2 3 [−0.000171, 7.578985 · 10−6] 1,101 [−6.879867 · 10−5, 8.643538 · 10−7] 67

12 3 3 [−118.021834,−118.020600] 2 [−118.021834,−118.020827] 2

13 3 3 [−29.000001,−28.996337] 16 [−29.000001,−28.998168] 16

Table 3 Effectiveness of the algorithms for ε = 10−6

Nr. n1 n2 IBB IBB–DSP

[lb, f U ] |Q| [lb, f U ] |Q|
1 2 2 [−85.000001,−84.999990] 4 [−85.000001,−84.999995] 4

2 2 2 [64.999999, 65.000001] 137 [64.999999, 65.000001] 133

3 2 2 [−172.2770,−172.2769] 3 [−172.2770,−172.2769] 3

4 2 2 [−123.743164,−123.743163] 2 [−123.743164,−123.743163] 2

5 2 2 [−168.6567,−168.6566] 24 [−168.6567,−168.6566] 24

6 5 5 [−0.0000001, 512 [−0.0000001, 512

1.199041 · 10−14] 1.332268 · 10−14]
7 6 3 [−9.652141,−9.652111] 16 [−9.652141,−9.652118] 16

8 3 3 [−35.954789,−35.954788] 9 [−35.954789,−35.954788] 9

9 5 2 [0.154870, 0.154871] 1,628 [0.154870, 0.154871] 1,628

10 4 4 [−20.939350,−20.939349] 2 [−20.939350,−20.939349] 2

11a 3 2 [−1.630625 · 10−10, 1,107 [−1.223355 · 10−10, 581

7.227997 · 10−12] 8.242295 · 10−13]
11b 2 3 [−1.630625 · 10−10, 1,107 [−6.561152 · 10−11, 67

7.227997 · 10−12] 8.242295 · 10−13]
12 3 3 [−118.020864,−118.020863] 2 [−118.020864,−118.020863] 2

13 3 3 [−29.000001,−28.999996] 1 [−29.000001,−28.999998] 1
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or equal number of final boxes. Moreover, the IBB–DSP algorithm results into a smaller or
equal range for f ∗.

In Tables 4 and 5, the efficiency is measured in terms of effort, CPU time (in seconds)
and maximum number of elements in the lists reached during algorithm execution. For an
accuracy of ε = 10−3, the IBB–DSP algorithm requires less effort than the IBB algorithm
for all problems and spends similar or less time for all problems apart from case Nr. 9. For
an accuracy of ε = 10−6, IBB–DSP requires less effort than IBB for 6 out of 13 problems
and consumes less time for 4 problems. For most of the problems, using higher accuracy ε

results into an increase in the size of L [ j] and Q[ j]. This makes it harder for the tests in the
decomposed algorithm IBB–DSP to be effective, as was mentioned before.

The maximum number of the elements in the working and final lists affects directly the
IBB–DSP efficiency with respect to CPU time. This can be observed from the case of applying
an higher accuracies. As mentioned in disadvantage number 1 in page 1113, a larger number
of elements in the working and final lists leads to a worse estimation of the lower bound.
Additionally, far more computational effort is needed to find the Ψ [ j](Y ) value defined in
(7). One has to go through the complete list of the other subproblem to do so. For an accuracy
of ε = 10−3, the maximum number of elements in the working and final lists is in general
smaller when using IBB–DSP compared to IBB.

What can be observed is that for the high dimensional case Nr. 6 (with 9 variables),
the advantage of using a decomposed approach is larger than for lower dimensional cases.
Having 3 variables means here to have two subproblems in two dimensions, whereas the
9-dimensional case has two subproblems in 5-dimensional space. On the other hand, also the
worst advantage of using decomposition is found in a higher dimension with function Nr. 7.
This case is characterised by an imbalance in number of variables for the sub-functions. This
causes an imbalance in the length of the lists for the sub-functions. Better branch-and-bound
selection strategies should be developed to overcome the imbalance.

We remark from Tables 2, 3, 4, and 5 that two different decompositions of the same
problem (case Nr. 11) yield different numerical results (case Nr. 11b gives better efficiency).
This shows that the way the problem is decomposed affects the efficiency, depending on the
resulting maximum working and final lists size.

8 Conclusions and future work

Interval B&B algorithms aim at guaranteed solutions for global optimisation problems. Such
methods suffer from the curse of dimensionality. We had a look here at functions that are
separable, but where the resulting sub-functions have variables in common. Can one use
the underlying structure to obtain more efficient algorithms based on interval Branch-and-
Bound? To answer this question, we derived properties that can be used in interval branch-
and-bound algorithms. Good bookkeeping of (sorted) underlying lists gives the opportunity
to derive as well local lower bounds (for each sub-function) as global lower bounds. It has
been shown, that the monotonicity test for the individual (non-common) variables can easily
be extended to this framework. To apply also a monotonicity test for the common variable
over all sub-functions, requires further investigation in possible implementations.

The developed properties have been included in a new branch-and-bound algorithm as
part of the selection, bounding and elimination rules.

Experimental results show a potential improvement in effort and CPU time that depends
mainly on the number of stored subproblems during the algorithm execution. This shows
possible advantages using a decomposed strategy over a full-dimensional strategy.
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Experiments have been designed in a controlled way, varying test instances that can be
composed in an artificial way from existing test cases. As a future work, it is interesting to
apply the derived theory to real problems where more than one common variable can appear.
Additionally, this paper facilitates the development of new variants and strategies to increase
efficiency and their application to solve design problems such as in [9].

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

Appendix : Description of the problems

The following functions are combined as components:

G2(x1, x2) = x2
1 + x2

2

200
− cos(x1) · cos

(
x2√

2

)
+ 1

G5(x1, x2, x3, x4, x5) =
5∑

i=1

x2
i

4000
−

5∏

i=1

cos

(
xi√

2

)
+ 1

G P(x1, x2) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )]
×[30 + (2x1 − 3x2)

2(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )]

H M3(x1, x2) = −
2∑

i=1

5∑

j=1

j sin(( j + 1)xi + j)

H M4(x1, x2, x3) = −
3∑

i=1

5∑

j=1

j sin(( j + 1)xi + j)

H P(x1, x2, x3, x4, x5, x6) = (((x1 − x4)
2 + (x2 − x5)

2 + (x3 − x6)
2)−3 − 0.5)2

Levy3(x1, x2) =
5∑

i=1

i cos((i + 1)x1 + i)
5∑

j=1

j cos(( j + 1)x2 + j)

Levy5(x1, x2) =
5∑

i=1

i cos((i + 1)x1 + i)
5∑

j=1

j cos(( j + 1)x2 + j)

+ (x1 + 1.42513)2 + (x2 + 0.80032)2

Price(x1, x2) = (2x3
1 x2 − x3

2 )2 + (6x1 − x2
2 + x2)

2

R B(x1.x2) = 100(x2
1 − x2)

2 + (x1 − 1)2

SHC B(x1, x2) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2
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Sk(x1, x2, x3, x4) = −
k∑

i=1

1

(x − ai )(x − ai )T + ci
, k = 5, 7, 10

with coefficients:

i ai ci

1 (4.0,4.0,4.0,4.0) 0.1
2 (1.0,1.0,1.0,1.0) 0.2
3 (8.0,8.0,8.0,8.0) 0.2
4 (6.0,6.0,6.0,6.0) 0.4
5 (3.0,7.0,3.0,7.0) 0.4
6 (2.0,9.0,2.0,9.0) 0.6
7 (5.0,5.0,3.0,3.0) 0.3
8 (8.0,1.0,8.0,1.0) 0.7
9 (6.0,2.0,6.0,2.0) 0.5

10 (7.0,3.6,7.0,3.6) 0.5

The generated test cases are:

1. Example1. Dimension: 3. Search space: [−10, 10]3.
f [1] = x2

1 + x1x3 + 1
2 x2

3 + x3, f [2] = x2
2 − 2x2x3

x∗ = (5.0, −10.0, −10.0)
f ∗ =−85.0

2. GP3. Dimension: 3. Search space: [−2, 2]3.
f [1] = GP(x1, x3), f [2] = GP(x2, x3)

x∗ ∈ {(−0.6,−0.6,−0.4), (−0.4,−0.4,−0.6)}
f ∗ = 65.0

3. L5P. Dimension: 3. Search space: [−10, 10]3.
f [1] = Levy5(x1, x3), f [2] = Price(x2, x3)

x∗ = (−1.306853, 0.793737, −1.423764)
f ∗ =−172.276922

4. L5Pr. Dimension: 3. Search space: [−10, 10]3.
f [1] = Levy5(x1, x3), f [2] = Price(x3, x2)

x∗ = (−0.352130, 0.419827, −0.784273)
f ∗ =−123.743163

5. SHCBL3. Dimension: 3. Search space: [−10, 10]3.
f [1] = SHCB(x1, x3), f [2] = Levy3(x3, x2)

x∗ ∈ {(1.733479, −7.589893, −1.417771),(1.733479, −1.306707, −1.417771),
(1.733479, 4.976477, −1.417771)}
f ∗ =−168.656637

6. G5G5. Dimension: 9. Search space: [−600, 600]9.
f [1] = G5(x1, . . . , x4, x9), f [2] = G5(x5, . . . , x9)

x∗ = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
f ∗ = 0.0

7. HPHM4. Dimension: 8. Search space: [0.8, 1.2] × [0.4, 0.8]2 × [0.4, 0.6]5.
f [1] = HP(x1, . . . , x5, x8), f [2] = HM4(x6, x7, x8)

x∗ = (1.2, 0.8, 0.8, 0.4, 0.57, 0.57, 0.54)
f ∗ =−9.652140

8. L8HM4. Dimension: 5. Search space: [−10, 10]5.
f [1] = Levy8(x1, x2, x5), f [2] = HM4(x3, x4, x5)

x∗ ∈ { (1, 1, 5.79, 5.79, −0.49), (1, 1, 5.79, −6.77, −0.49), (1, 1, −6.77, 5.79, −0.49),

123



1120 J Glob Optim (2013) 56:1101–1121

(1, 1, −6.77, −6.77, −0.49), (1, 1, 5.79, −0.49, −0.49), (1, 1, −0.49, 5.79, −0.49), (1,
1, −0.49, −6.77, −0.49), (1, 1, −6.77, −0.49, −0.49), (1, 1, −0.49, −0.49, −0.49)}
f ∗ =−35.95478

9. RB5G2. Dimension: 6. Search space: [−2, 2]6.
f [1] = RBx5(x1, . . . , x4, x6), f [2] = G2(x5, x6)

x∗ = (0.97, 0.95, 0.9, 0.81, 0.0, 0.66)
f ∗ = 0.15487

10. S10S7. Dimension: 7. Search space: [0, 10]7.
f [1] = S10(x1, x2, x3, x7), f [2] = S7(x4, x5, x6, x7)

x∗ = (4,4,4,4,4,4,4)
f ∗ =−20.939349

11. Colville. Dimension: 4. Search space:[−10, 10]4.
f a[1] = 100(x2

1 −x2)
2 +(x1 −1)2 +19.8(x2 −1)(x4 −1)+10.1((x2 −1)2 +(x4 −1)2)

f a[2] = (x3 − 1)2 + 90(x2
3 − x4)

2

f b[1] = 100(x2
1 − x2)

2 + (x1 − 1)2 + 10.1(x2 − 1)2

f b[2] = (x3 − 1)2 + 90(x2
3 − x4)

2 + 10.1(x4 − 1)2 + 19.8(x2 − 1)(x4 − 1)

x∗ = (1,1,1,1)
f ∗ = 0.0

12. Example 2. Dimension: 5. Search space: [−5, 5]5.
f [1] = x5

∑2
i=1 xi sin x2

i

f [2] = x5
∑5

i=3 xi sin x2
i

x∗ ∈ {(−4.8562, −4.8562, −4.8562, −4.8562, −4.8570), (4.8562, 4.8562, 4.8562,
4.8562, 4.8570)}
f ∗ =−118.02086

13. Example3. Dimension: 5. Search space: [−5, 5]5.
f [1] = ∑2

i=1(xi − 1)2 − ∑2
i=1 x5xi

f [2] = ∑5
i=3(xi − 1)2 − ∑2

i=1 x5xi

x∗ = (3.5, 3.5, 3.5, 3.5, 5.0)
f ∗ = 0.0
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