497 research outputs found

    Mesures sémantiques à base de connaissance : de la théorie aux applicatifs

    Get PDF
    The notions of semantic proximity, distance, and similarity have long been considered essential for the elaboration of numerous cognitive processes, and are therefore of major importance for the communities involved in the development of artificial intelligence. This thesis studies the diversity of semantic measures which can be used to compare lexical entities, concepts and instances by analysing corpora of texts and ontologies. Strengthened by the development of Knowledge Representation and Semantic Web technologies, these measures are arousing increasing interest in both academic and industrial fields.This manuscript begins with an extensive state-of-the-art which presents numerous contributions proposed by several communities, and underlines the diversity and interdisciplinary nature of this domain. Thanks to this work, despite the apparent heterogeneity of semantic measures, we were able to distinguish common properties and therefore propose a general classification of existing approaches. Our work goes on to look more specifically at measures which take advantage of ontologies expressed by means of semantic graphs, e.g. RDF(S) graphs. We show that these measures rely on a reduced set of abstract primitives and that, even if they have generally been defined independently in the literature, most of them are only specific expressions of generic parametrised measures. This result leads us to the definition of a unifying theoretical framework for semantic measures, which can be used to: (i) design new measures, (ii) study theoretical properties of measures, (iii) guide end-users in the selection of measures adapted to their usage context. The relevance of this framework is demonstrated in its first practical applications which show, for instance, how it can be used to perform theoretical and empirical analyses of measures with a previously unattained level of detail. Interestingly, this framework provides a new insight into semantic measures and opens interesting perspectives for their analysis.Having uncovered a flagrant lack of generic and efficient software solutions dedicated to (knowledge-based) semantic measures, a lack which clearly hampers both the use and analysis of semantic measures, we consequently developed the Semantic Measures Library (SML): a generic software library dedicated to the computation and analysis of semantic measures. The SML can be used to take advantage of hundreds of measures defined in the literature or those derived from the parametrised functions introduced by the proposed unifying framework. These measures can be analysed and compared using the functionalities provided by the library. The SML is accompanied by extensive documentation, community support and software solutions which enable non-developers to take full advantage of the library. In broader terms, this project proposes to federate the several communities involved in this domain in order to create an interdisciplinary synergy around the notion of semantic measures: http://www.semantic-measures-library.org This thesis also presents several algorithmic and theoretical contributions related to semantic measures: (i) an innovative method for the comparison of instances defined in a semantic graph - we underline in particular its benefits in the definition of content-based recommendation systems, (ii) a new approach to compare concepts defined in overlapping taxonomies, (iii) algorithmic optimisation for the computation of a specific type of semantic measure, and (iv) a semi-supervised learning-technique which can be used to identify semantic measures adapted to a specific usage context, while simultaneously taking into account the uncertainty associated to the benchmark in use. These contributions have been validated by several international and national publications.Les notions de proximité, de distance et de similarité sémantiques sont depuis longtemps jugées essentielles dans l’élaboration de nombreux processus cognitifs et revêtent donc un intérêt majeur pour les communautés intéressées au développement d'intelligences artificielles. Cette thèse s'intéresse aux différentes mesures sémantiques permettant de comparer des unités lexicales, des concepts ou des instances par l'analyse de corpus de textes ou de représentations de connaissance (i.e. ontologies). Encouragées par l'essor des technologies liées à l'Ingénierie des Connaissances et au Web sémantique, ces mesures suscitent de plus en plus d'intérêt à la fois dans le monde académique et industriel.Ce manuscrit débute par un vaste état de l'art qui met en regard des travaux publiés dans différentes communautés et souligne l'aspect interdisciplinaire et la diversité des recherches actuelles dans ce domaine. Cela nous a permis, sous l'apparente hétérogénéité des mesures existantes, de distinguer certaines propriétés communes et de présenter une classification générale des approches proposées. Par la suite, ces travaux se concentrent sur les mesures qui s'appuient sur une structuration de la connaissance sous forme de graphes sémantiques, e.g. graphes RDF(S). Nous montrons que ces mesures reposent sur un ensemble réduit de primitives abstraites, et que la plupart d'entre elles, bien que définies indépendamment dans la littérature, ne sont que des expressions particulières de mesures paramétriques génériques. Ce résultat nous a conduits à définir un cadre théorique unificateur pour les mesures sémantiques. Il permet notamment : (i) d'exprimer de nouvelles mesures, (ii) d'étudier les propriétés théoriques des mesures et (iii) d'orienter l'utilisateur dans le choix d'une mesure adaptée à sa problématique. Les premiers cas concrets d'utilisation de ce cadre démontrent son intérêt en soulignant notamment qu'il permet l'analyse théorique et empirique des mesures avec un degré de détail particulièrement fin, jamais atteint jusque-là. Plus généralement, ce cadre théorique permet de poser un regard neuf sur ce domaine et ouvre de nombreuses perspectives prometteuses pour l'analyse des mesures sémantiques.Le domaine des mesures sémantiques souffre d'un réel manque d'outils logiciels génériques et performants ce qui complique à la fois l'étude et l'utilisation de ces mesures. En réponse à ce manque, nous avons développé la Semantic Measures Library (SML), une librairie logicielle dédiée au calcul et à l'analyse des mesures sémantiques. Elle permet d'utiliser des centaines de mesures issues à la fois de la littérature et des fonctions paramétriques étudiées dans le cadre unificateur introduit. Celles-ci peuvent être analysées et comparées à l'aide des différentes fonctionnalités proposées par la librairie. La SML s'accompagne d'une large documentation, d'outils logiciels permettant son utilisation par des non informaticiens, d'une liste de diffusion, et de façon plus large, se propose de fédérer les différentes communautés du domaine afin de créer une synergie interdisciplinaire autour la notion de mesures sémantiques : http://www.semantic-measures-library.orgCette étude a également conduit à différentes contributions algorithmiques et théoriques, dont (i) la définition d'une méthode innovante pour la comparaison d'instances définies dans un graphe sémantique - nous montrons son intérêt pour la mise en place de système de recommandation à base de contenu, (ii) une nouvelle approche pour comparer des concepts représentés dans des taxonomies chevauchantes, (iii) des optimisations algorithmiques pour le calcul de certaines mesures sémantiques, et (iv) une technique d'apprentissage semi-supervisée permettant de cibler les mesures sémantiques adaptées à un contexte applicatif particulier en prenant en compte l'incertitude associée au jeu de test utilisé. Ces travaux ont été validés par plusieurs publications et communications nationales et internationales

    Temporal Feature Integration for Music Organisation

    Get PDF

    Visualization of dynamic multidimensional and hierarchical datasets

    Get PDF
    When it comes to tools and techniques designed to help understanding complex abstract data, visualization methods play a prominent role. They enable human operators to lever age their pattern finding, outlier detection, and questioning abilities to visually reason about a given dataset. Many methods exist that create suitable and useful visual represen tations of static abstract, non-spatial, data. However, for temporal abstract, non-spatial, datasets, in which the data changes and evolves through time, far fewer visualization tech niques exist. This thesis focuses on the particular cases of temporal hierarchical data representation via dynamic treemaps, and temporal high-dimensional data visualization via dynamic projec tions. We tackle the joint question of how to extend projections and treemaps to stably, accurately, and scalably handle temporal multivariate and hierarchical data. The literature for static visualization techniques is rich and the state-of-the-art methods have proven to be valuable tools in data analysis. Their temporal/dynamic counterparts, however, are not as well studied, and, until recently, there were few hierarchical and high-dimensional methods that explicitly took into consideration the temporal aspect of the data. In addi tion, there are few or no metrics to assess the quality of these temporal mappings, and even fewer comprehensive benchmarks to compare these methods. This thesis addresses the abovementioned shortcomings. For both dynamic treemaps and dynamic projections, we propose ways to accurately measure temporal stability; we eval uate existing methods considering the tradeoff between stability and visual quality; and we propose new methods that strike a better balance between stability and visual quality than existing state-of-the-art techniques. We demonstrate our methods with a wide range of real-world data, including an application of our new dynamic projection methods to support the analysis and classification of hyperkinetic movement disorder data.Quando se trata de ferramentas e técnicas projetadas para ajudar na compreensão dados abstratos complexos, métodos de visualização desempenham um papel proeminente. Eles permitem que os operadores humanos alavanquem suas habilidades de descoberta de padrões, detecção de valores discrepantes, e questionamento visual para a raciocinar sobre um determinado conjunto de dados. Existem muitos métodos que criam representações visuais adequadas e úteis de para dados estáticos, abstratos, e não-espaciais. No entanto, para dados temporais, abstratos, e não-espaciais, isto é, dados que mudam e evoluem no tempo, existem poucas técnicas apropriadas. Esta tese concentra-se nos casos específicos de representação temporal de dados hierárquicos por meio de treemaps dinâmicos, e visualização temporal de dados de alta dimen sionalidade via projeções dinâmicas. Nós abordar a questão conjunta de como estender projeções e treemaps de forma estável, precisa e escalável para lidar com conjuntos de dados hierárquico-temporais e multivariado-temporais. Em ambos os casos, a literatura para técnicas estáticas é rica e os métodos estado da arte provam ser ferramentas valiosas em análise de dados. Suas contrapartes temporais/dinâmicas, no entanto, não são tão bem estudadas e, até recentemente, existiam poucos métodos hierárquicos e de alta dimensão que explicitamente levavam em consideração o aspecto temporal dos dados. Além disso, existiam poucas métricas para avaliar a qualidade desses mapeamentos visuais temporais, e ainda menos benchmarks abrangentes para comparação esses métodos. Esta tese aborda as deficiências acima mencionadas para treemaps dinâmicos e projeções dinâmicas. Propomos maneiras de medir com precisão a estabilidade temporal; avalia mos os métodos existentes, considerando o compromisso entre estabilidade e qualidade visual; e propomos novos métodos que atingem um melhor equilíbrio entre estabilidade e a qualidade visual do que as técnicas estado da arte atuais. Demonstramos nossos mé todos com uma ampla gama de dados do mundo real, incluindo uma aplicação de nossos novos métodos de projeção dinâmica para apoiar a análise e classificação dos dados de transtorno de movimentos

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    AXMEDIS 2007 Conference Proceedings

    Get PDF
    The AXMEDIS International Conference series has been established since 2005 and is focused on the research, developments and applications in the cross-media domain, exploring innovative technologies to meet the challenges of the sector. AXMEDIS2007 deals with all subjects and topics related to cross-media and digital-media content production, processing, management, standards, representation, sharing, interoperability, protection and rights management. It addresses the latest developments and future trends of the technologies and their applications, their impact and exploitation within academic, business and industrial communities

    Cross-language Ontology Learning: Incorporating and Exploiting Cross-language Data in the Ontology Learning Process

    Get PDF
    Hans Hjelm. Cross-language Ontology Learning: Incorporating and Exploiting Cross-language Data in the Ontology Learning Process. NEALT Monograph Series, Vol. 1 (2009), 159 pages. © 2009 Hans Hjelm. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/10126

    Scalable Methodologies and Analyses for Modality Bias and Feature Exploitation in Language-Vision Multimodal Deep Learning

    Get PDF
    Multimodal machine learning benchmarks have exponentially grown in both capability and popularity over the last decade. Language-vision question-answering tasks such as Visual Question Answering (VQA) and Video Question Answering (video-QA) have ---thanks to their high difficulty--- become a particularly popular means through which to develop and test new modelling designs and methodology for multimodal deep learning. The challenging nature of VQA and video-QA tasks leaves plenty of room for innovation at every component of the deep learning pipeline: from dataset to modelling methodology. Such circumstances are ideal for innovating in the space of language-vision multimodality. Furthermore, the wider field is currently undergoing an incredible period of growth and increasing interest. I therefore aim to contribute to multiple key components of the VQA and video-QA pipeline, but specifically in a manner such that my contributions remain relevant, ‘scaling’ with the revolutionary new benchmark models and datasets of the near future instead of being rendered obsolete by them. The work in this thesis: highlights and explores the disruptive and problematic presence of language bias in the popular TVQA video-QA dataset, and proposes a dataset-invariant method to identify subsets that respond to different modalities; thoroughly explores the suitability of bilinear pooling as a language-vision fusion technique in video-QA, offering experimental and theoretical insight, and highlighting the parallels in multimodal processing with neurological theories; explores the nascent visual equivalent of languague modelling (`visual modelling') in order to boost the power of visual features; and proposes a dataset-invariant neurolinguistically-inspired labelling scheme for use in multimodal question-answering. I explore the positive and negative results that my experiments across this thesis yield. I conclude by discussing the limitations of my contributions, and conclude with proposals for future directions of study in the areas I contribute to

    Genre-based literacy pedagogy: the nature and value of genre knowledge in teaching and learning writing on a university first year media studies course

    Get PDF
    A thesis submitted to the Faculty of Humanities, Uniiversity of Luton, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyIn the teaching and learning of literacy, descriptions of text have a problematic status as a result of the growing understanding of literacy as both a cognitive process and a social practice. In the teaching of academic subjects at university, student text is not usually an object of study. The research in this thesis draws on a language based theory oflearning to place textual description at the centre of the teaching and learning of both literacy and academic subjects at university. Participant observation and practice-based research methods were used to implement a form of text-oriented literacy teaching and to explore its compatibility with processes and practices orientations to literacy. Over an eighteen month period, systemic functional grammar was used to investigate and describe the texts of a film studies classroom and the descriptions were used in genre based literacy pedagogy. The effects of the pedagogy are measured in terms of students' performance in an end of course assignment, students' accounts of their writing processes, and student and subject-tutor perception of the text description and the pedagogy. In the thesis, a linguistic description of a key curriculum genre -a Taxonomic Film Analysis -is presented. An account is given of the pedagogy by means of which this essay genre was represented in the film studies classroom as a realisation of choices from linguistic, conceptual and activity systems. Systemic functional grammar-based text description is seen to have provided a means whereby a literacy tutor could collaborate with a subject tutor to provide a subject-specific form of literacy teaching which was evaluated as relevant by students and tutors. The account and the evaluation help to clarify the role that description of text can play in relation to processes and practices ofliteracy use in the teaching and learning of literacy in a film studies classroom and have implications for the teaching and learning of literacy at university more generally

    Embodied geosensification-models, taxonomies and applications for engaging the body in immersive analytics of geospatial data

    Get PDF
    This thesis examines how we can use immersive multisensory displays and body-focused interaction technologies to analyze geospatial data. It merges relevant aspects from an array of interdisciplinary research areas, from cartography to the cognitive sciences, to form three taxonomies that describe the senses, data representations, and interactions made possible by these technologies. These taxonomies are then integrated into an overarching design model for such "Embodied Geosensifications". This model provides guidance for system specification and is validated with practical examples

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy
    corecore