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Abstract

An ontology is a knowledge-representation structure, where words,
terms or concepts are defined by their mutual hierarchical relations.
Ontologies are becoming ever more prevalent in the world of natural language
processing, where we currently see a tendency towards using semantics for
solving a variety of tasks, particularly tasks related to information access.
Ontologies, taxonomies and thesauri (all related notions) are also used in
various variants by humans, to standardize business transactions or for
finding conceptual relations between terms in, e.g., the medical domain.

The acquisition of machine-readable, domain-specific semantic knowledge
is time consuming and prone to inconsistencies. The field of ontology learning
therefore provides tools for automating the construction of domain ontologies
(ontologies describing the entities and relations within a particular field of
interest), by analyzing large quantities of domain-specific texts.

This thesis studies three main topics within the field of ontology learning.
First, we examine which sources of information are useful within an ontology
learning system and how the information sources can be combined effectively.
Secondly, we do this with a special focus on cross-language text collections, to
see if we can learn more from studying several languages at once, than we can
from a single-language text collection. Finally, we investigate new approaches
to formal and automatic evaluation of the quality of a learned ontology.

We demonstrate how to combine information sources from different
languages and use them to train automatic classifiers to recognize
lexico-semantic relations. The cross-language data is shown to have a positive
effect on the quality of the learned ontologies. We also give theoretical and
experimental results, showing that our ontology evaluation method is a good
complement to and in some aspects improves on the evaluation measures in
use today.
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Sammanfattning

En ontologi är en struktur som används för kunskapsrepresentation
i maskinläsbart format. Ontologier innehåller koncept, termer eller ord
som definieras genom inbördes hierarkiska relationer. De ges en alltmer
framskjutande roll inom dagens språkteknologi, där vi ser tendenser till att
integrera semantik i ett allt större antal applikationer, främst inom områden
relaterade till informationsåtkomst. Ontologier, taxonomier och tesaurer
(alla starkt förknippade med varandra) används också av människor för att
exempelvis standardisera affärsprocesser eller för att hitta relationer mellan
koncept eller termer inom medicinen.

Att skapa maskinläsbara, domänspecifika, semantiska resurser är en tidsö-
dande och krävande process, där det är svårt för människor att alltid fatta
konsekventa beslut. Därför försöker man inom fältet för ontologiinlärning
utveckla verktyg för att automatisera skapandet av domänspecifika ontologier.
Inlärningen görs huvudsakligen genom automatisk analys av stora samlingar
domänspecifik text.

Denna avhandling studerar tre huvudsakliga frågor inom området för on-
tologiinlärning. För det första undersöker den vilka informationskällor som
är användbara inom ett ontologiinlärningssystem, samt hur dessa källor kan
kombineras på ett effektivt sätt. För det andra gör den detta med fokus på
tvärspråkliga textsamlingar, för att se om det finns fördelar med att studera
flera språk parallellt, jämfört med att bara använda ett språk i taget. För det
tredje utforskar avhandlingen nya ansatser till formell automatisk utvärdering
av kvaliteten hos en automatiskt inlärd ontologi.

Vi visar hur information från olika språk kan kombineras och användas av
automatiska klassificerare för att känna igen lexikala semantiska relationer.
Tvärspråkliga data visas ha en positiv effekt på kvaliteten hos de inlärda on-
tologierna. Vi ger också teoretiska och experimentella resultat där vår metod
för utvärdering av inlärda ontologier visas vara ett gott komplement till, och i
vissa fall förbättra, de utvärderingsmetoder som används idag.
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1. Introduction

. . . a perfect notation would be a substitute for thought. (Russell, 1961, Intro-
duction, p. xix)

Think of the frustrating experience of running into circular definitions when
looking up a word in a dictionary. Yet – how do we convey the meaning of
a word without referring to meanings of other words? This line of reasoning
has been summarized concisely by linguist/computer scientist Yorick Wilks:
“Meaning. . . is best thought of as other words. . . ” (Wilks, 1999, p. 83) In on-
tologies – the object of study in this thesis – this is exactly what we find: words
(or concepts) defined by their position in a hierarchy of other words and the
relations that hold between them.

Dating back to Aristotle, through 18th century botanist Carl Linnaeus and to
present day Internet pioneer Tim Berners-Lee (2005), scientists and philoso-
phers have sought to organize their knowledge of the world in hierarchal struc-
tures (see Fig. 1.1). As can be seen in the success of, e.g., object-oriented pro-
gramming languages and the Unified Modeling Language, where hierarchical
structures play an important part, this way of organizing knowledge also lends
itself for implementation in computer systems. Whereas the object hierarchy
in a computer program models data relevant to the system internally, an on-
tology is typically a way of representing real-world knowledge in a formal
manner (processable by humans and machines alike).

There is a consensus in the world of natural language processing (NLP)
that we have reached a point where we need to incorporate meaning, seman-

tics, in the NLP systems of today, in order to take the next big qualitative step,
but also in order to increase, e.g., usability. But the acquisition of machine-
readable semantic resources is expensive in terms of human effort and there-
fore also expensive financially. This thesis aims at exploring ways to improve
the quality of one type of automated knowledge-acquisition systems, known
as ontology learning systems, in an effort to tackle the task of computerizing
the acquisition of semantic knowledge.
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Figure 1.1: Linnaeus hierarchical categorization of amphibians. Picture (out-take)
from Wikimedia commons, taken from Linnaeus (1939).

1.1 Ontologies

The ontology in ontological semantics is the next best thing to being able to
refer to the outside world directly. (Nirenburg and Raskin, 2004, p. 88)

Ontology as a field of study within philosophy deals with questions about the
basic entities of existence: what the nature of those entities is and how they
can be grouped or subdivided based on their respective traits and qualities
(see Quine, 1969). Though not completely unrelated, ontology within infor-
mation science refers to a way of representing knowledge or structuring the
terminology within a domain. Chandrasekaran et al. (1999) define ontologies
as “content theories about the sorts of objects, properties of objects, and rela-

tions between objects that are possible in a specified domain of knowledge”
(my emphasis).

Sowa (1999) distinguishes between three main types of ontologies: formal

ontologies, prototype-based ontologies and terminological ontologies. Formal
ontologies are widespread within the artificial intelligence and knowledge
representation fields, where they are vehicles for reasoning about concepts
and relations between concepts. An example of such an ontology is shown
in Fig. 1.2. The prototype-based ontology typically appears as the result of
applying a hierarchical clustering technique to distributional data, a process
which we describe in Sect. 2.5.1. Its concepts are defined by enumerating
the (prototypical) concept members (see an example in Fig. 1.3). Finally the
terminological ontologies are structured like the formal ones, but they order
terms, or groups of terms, rather than concepts (see Fig. 1.4). Terminolog-
ical ontologies are often referred to as taxonomies. This thesis deals with
terminological- and prototype-based ontologies; formal ontologies are dealt

14



with implicitly, because terminological ontologies often function as back-
bones when building formal ontologies.

Figure 1.2: Formal ontology. Picture from tutorial Ontology Learning from Text at
ECML/PKDD 2005, Porto, Portugal, by Paul Buitelaar, Philipp Cimiano, Marko Gro-
belnik and Michael Sintek.

Figure 1.3: Prototype-based ontology, adapted from Biemann (2005).

Figure 1.4: Terminological ontology, adapted from Biemann (2005).

Formal ontologies have much in common with schemas used in object-
oriented database systems (see Connolly et al., 1998, for a description of such
systems). Database schemas exist at different levels of abstraction. The con-
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ceptual schemas define the objects important to a particular database appli-
cation, along with the relevant relations that can hold between these objects.
The conceptual schemas allow for inheritance, but this is not supported by
all database management systems. A conceptual schema can, e.g., define a
TRANSACTION object, which involves a PERSON as a seller and buyer,
a PRICE to be paid, and a PRODUCT to switch OWNER. The objects listed
here could be represented by concepts in the ontology, and the actions (broken
down into actions involving pairs of objects) could be represented as relations
in the ontology.

Another way of categorizing ontologies is given in Maedche (2002): top-

level, domain, task and application ontologies. This is a grouping of ontologies
where the focus lies on their degrees of generality. Top-level ontologies are
the most general kind, containing concepts related to, e.g., time (day, hour,
minute) or space (length, volume). A domain ontology refines the concepts
in a top-level ontology by focusing on a particular domain, whereas a task
ontology does the same but focuses on a given task. The application ontology
is viewed as a further specialization of both the domain and the task ontology,
with the aim of customizing the ontology for use in a particular application
– close to the conceptual database schema just discussed. The relations are
schematically displayed in Fig. 1.5. This thesis focuses on the learning of
domain ontologies – top-level ontologies do not need to be learned because of
their general nature, and task- and application ontologies lack the wider range
of use of the domain ontology.

top-level ontology

domain ontology task ontology

application ontology

Figure 1.5: Relations between ontology types, adapted from Maedche (2002).

In formal ontologies, sharp distinctions are made between the ontology and
the lexicon, whereas this is not true in terminological ontologies. The formal
ontology contains concepts and relations encoding world knowledge, but by
itself does not contain lexical knowledge (Nirenburg and Raskin, 2004). If we
want to add lexical knowledge, this is done via a lexicon (more than one lex-
icon is needed if we want to deal with more than one language). The connec-
tions between ontology and lexicon are made via mappings between the two.
In Nirenburg and Raskin (2004), the authors distinguish between ontology,
lexicon, fact repository and onomasticon (a repository of names). Only the
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lexicon and onomasticon are language specific. ‘John Kennedy’ is the name
(stored in the onomasticon) of an instance (in the fact repository) of the con-
cept labeled US-PRESIDENT, which is stored in the ontology and connected
to ‘US-president’ and ‘president of the USA’ in the lexicon. The concepts in
the formal ontology can be said to form the top of the semiotic triangle, con-
necting symbols (words or terms) with referents (real life objects, processes or
phenomena) (Ogden and Richards, 1923).

This thesis limits its scope to studying is-a hierarchies. Other relations, such
as the part-of relation, are also capable of forming hierarchies, but they do not
ensure inheritance to the same degree as is-a relations. Cruse (1986) gives the
example of a hand being a part of an arm and a finger being part of a hand,
but that it is less clear if a finger can be said to be part of an arm. As discussed
in the introductory section, the is-a relation is a widespread and fundamen-
tal relation, prevalent in society in general as well as in scientific contexts,
which together motivates it being our principal relation of study throughout
this thesis (discussed further in Sect. 2.1).

1.2 Ontology Learning

Ontology learning has been defined as “the acquisition of a domain model
from data” (Cimiano, 2006, p. 19). This section describes the basic principles
involved in ontology learning in accordance with this definition and motivates
the automation of the ontology learning process. The ontology learning field
is very heterogeneous, both in terms of the methods used and in terms of the
results sought. An overview of the different approaches is given in Sect. 2.5.

Given a collection of texts, the ontology learning task typically consists of
first recognizing the relevant objects (words or terms) in the text collection
and secondly ordering these into a hierarchical inheritance structure.
In Maedche et al. (2003), this is referred to as “learning the taxonomic
backbone of ontologies”, or “ontology learning part one”. The result of such
a learning process is thus a terminological or prototype-based ontology (see
Sect. 1.1), which could then be used “as is” or be further embellished and
transformed into a formal ontology.

What would make us want to learn an ontology automatically? Can’t we
get by with WordNet (Fellbaum, 1998) or the public domain version of Ro-
get’s Thesaurus?1 There turns out to be two main disadvantages with using
these kinds of handmade, general content resources. The first is their lack
of coverage; when working with text from a particular domain, chances are
that a large part of the vocabulary will not be covered by any handcrafted re-
source. Roark and Charniak (1998) report that when using their semantic class
learner system to add domain-specific information to WordNet, over 60% of

1http://machaut.uchicago.edu/rogets
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the (valid) terms suggested by their system did not occur in WordNet (this is
most likely even more pronounced for the previously mentioned version of
Roget’s Thesaurus, given its being published almost 100 years ago). Related
to this is that we cannot be sure that words in WordNet will have the same
meaning in the specialized domain as they have in general discourse.

The second major problem for handcrafted resources is their lack of adapt-
ability. In everyday language, but also in technical domains, new words and
terms are constantly being added to the existing vocabulary, and others shift
meaning or fall out of use. Language, also when speaking of terminology and
non-fiction texts, exhibits plasticity. This means that, for a handcrafted re-
source, changes need to be monitored and the taxonomical structure has to
be updated on a regular basis – an effort which would be much reduced if
automatic tools for updating or even rebuilding the resource were available.
Learning the ontology from text data also has the added advantage of tackling
the previously mentioned problem of coverage: the terms in the ontology will
coincide with the ones actually appearing in the texts.

The task of an ontology learning system is to automate the process of on-
tology construction. Note that we do not require the process to be completely
automated – a partial automation is better than none, provided that the quality
of the system output is high enough.

A ubiquitous raw material for ontology learning is natural language text: in
the form of web documents, reports, corporate policies, documentation, peri-
odicals etc. If we can tap into this wealth of data and use it in the automation
process, much will be won. This is a major reason why this thesis will place a
large focus on unrestricted text and refrain from using hand-edited resources
such as WordNet; resources where humans have already done part of the job.

One enticing aspect of using nothing but the text itself as input to our system
is that our results can be seen as posts on the road to a much broader goal: the
automated semantic interpretation of language.

1.3 Research Questions

This thesis will try to answer a set of questions regarding the automatic learn-
ing of ontologies and issues related to this topic. The questions deal with dif-
ferent aspects in the field:

1. Sources of information: What types of information are useful for solving
the ontology learning task? How can they be combined in an effective way?
This subject is dealt with mainly in Sects. 6.2 and 6.4.

2. Cross-language aspects: Can cross-language data teach us more than
data from a single language, for the ontology learning task? If so, can
cross-language equivalency relations be extracted automatically, with
high enough accuracy to be of use, or do we need to rely on handcrafted
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resources? We perform a variety of experiments in Chaps. 5–6 to address
these questions.

3. Evaluation: How can we measure the quality of a learned ontology? Can
we improve or complement the evaluation measures used today? We inves-
tigate this in Chap. 4.

We will be returning to the questions again in the concluding chapter, to dis-
cuss our results.

1.4 Thesis Outline

In this chapter we have tried to give an overview of the topic and to motivate
to the reader why we consider ontology learning a problem worth solving.
The rest of this thesis is structured as follows:

Chapter 2

Ontology Learning Perspectives

We take a closer look at the ontology learning problem: what it entails and
how it has been approached in the past. We also look at cross-language
issues as they relate to ontologies and questions regarding equivalence and
translation.

Chapter 3

Resources

A number of language resources are needed in order for us to test the
validity of our theories, from software to corpora and ontologies used as gold
standards. We present the ones used in this thesis in this chapter.

Chapter 4

Theoretical and Experimental Investigations Regarding Evaluation

To be able to measure the effectiveness of our proposed methods, we need
standardized ways of evaluating our results. This chapter reviews existing
measures and also investigates the use of a proposed new evaluation measure.

Chapter 5

Experiments with Identifying Cross-language Term Equivalency

Towards the goal of incorporating cross-language lexical information in
ontologies, we here investigate methods for automatically identifying
equivalents (translations) among terms from different languages.
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Chapter 6

Experiments in Ontology Learning

This chapter contains the bulk of our contribution to the field of ontology
learning, with a focus on exploiting cross-language resources towards solving
problems traditionally involving a single language.

Chapter 7

Conclusions

This chapter looks back to summarize what we have learned and also gives an
outlook on the types of problems that could be tackled next.
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2. Ontology Learning Perspectives

We start this chapter by giving a more in depth view of ontologies and how
they are used by humans and machines. We discuss implications of including
terms from more than one language in a single ontology and also take a closer
look at what what constitutes a term. We introduce distributional similarity, a
key concept for many approaches to ontology learning. These approaches are
the main topic of the chapter; we give an extensive overview of how ontology
learning has been tackled in the past. Finally, we discuss the identification of
translational equivalents among terms, and how cross-language data has been
exploited for solving a variety of NLP problems, in manners inaccessible to
single language data.

The ontology learning task has a lot of closely related subfields in NLP:
learning semantic networks, semantic clustering and automatic thesaurus ex-
traction to name a few. Some of these fields are included in the following
reviews, but we focus on an overview of various approaches to ontology learn-
ing itself in this chapter. Other survey literature for ontology learning can be
found in Biemann (2005) and Cimiano (2006).

2.1 Primary Uses of Ontologies

Why do we need ontologies? There are two ways of motivating this: one is as
a resource in their own right, used by humans, and the other is as a semantics-
providing resource in an information system.

Examples of ontologies used by humans directly include the Common Pro-
curement Vocabulary1 (used for standardizing public procurement in the EU),
Eurovoc (see Sect. 3.3.1) and, on a more general level, a great number of tax-
onomies and thesauri for looking up words in everyday life situations. Many
companies also use taxonomies to structure their product lines, and web-shops
typically group their articles hierarchically to make for easier navigation for
the customers. This wide range of uses indicates that an ontology constitutes a
valuable resource in and of itself. Additionally, as stated, they are commonly
included in computer applications of various sorts in order to enhance the ap-
plication quality; this is what we will look at in the rest of this section.

In NLP, we are often faced with problems involving synonymy or
homonymy/polysemy. Consider the following expressions: ‘heart attack’,

1http://simap.europa.eu/codes-and-nomenclatures/codes-cpv_en.html

21



‘myocardial infarction’ and ‘coronary thrombosis’. These are cases of (near)
synonymy. A person submitting one of these expressions to a search engine
would probably also be interested in documents containing any of the other
expressions. Additionally, a person searching for information on ‘heart
disease’ is likely to be interested in documents containing any of the three
previously listed expressions. It is less clear that a person searching for
‘arrhythmia’ would be interested in documents dealing with ‘heart attack’
– here is where the hierarchical structure of an ontology can be put to use
(see Fig. 2.1), separating hyponyms and synonyms from other notions of
relatedness or similarity (cohyponymy in this case).

medicine

treatment disease

respiratory_disease heart_disease

arrhythmia heart attack, cardiac arrest...

Figure 2.1: Toy medical ontology.

Homonymy and polysemy deal with the opposite problem, where the same
expression can mean different things depending on the context where it is
used. A ‘bug’ in a computer program is different from a bug in nature; this
is an example of homonymy, modeled in Fig. 2.2. Using concepts (or nodes)
in an ontology to refer to an object rather than using an expression like ‘bug’
lets us move away from the ambiguities of natural language and reduce the
potential for misinterpretation.

world

biology computer_science

plant animal virus bug

fox bug

Figure 2.2: Toy general ontology.
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We will now look at some NLP applications where the use of an ontol-
ogy has proven beneficial. The examples all deal with information access, a
subfield of NLP where semantics plays an important part.

Hotho et al. (2001) show positive results for including background knowl-
edge from an ontology in a text clustering application. Apart from the im-
proved results, the ontology can also be used as a means for explaining the
clustering to the end user, via references to the ontology concepts and hierar-
chy.

Bloehdorn and Hotho (2004) demonstrate statistically significant improve-
ments on a text classification task with the use of an ontology. They attribute
the improved performance to the detection of multiword units in the text (a
process also called term spotting) and to the fact that they include supercon-
cepts in the document feature representation (e.g., if the word ‘beef’ occurs in
the text, its hyperonym ‘meat’ is also added to the document representation).
In Bloehdorn et al. (2006), the authors show the same thing but for an auto-
matically learned prototype-based ontology. They also show improvements in
some settings for the learned ontology over a domain-specific handcrafted on-
tology (the MeSH Tree Structures).2 This may seem odd at first, but remember
that the automatically learned ontology has the advantage of dealing with ex-
actly the same terms that occur in the document collection, whereas this is not
true for MeSH.

Makkonen et al. (2004) use a simple geographical ontology to see which
events overlap geographically in a topic detection and tracking application.
The hierarchy in a geographical ontology is typically not based on the is-a
relation, which is our focus in this thesis, but on the part-of relation. Without
the ontology, the application would have had to rely on string-matching to
identify overlap, presumably resulting in higher precision but lower recall,
although no such evaluation is carried out.

In Song et al. (2007), query expansion using WordNet (Fellbaum, 1998) is
shown to have a beneficial effect on an information retrieval task, using TREC
5, 6 and 7 datasets.3 This approach has been tried before without success; one
of the differences here is that a word sense disambiguation technique is used
to find the correct sense to use for expansion, which might explain why this
set of experiments sees an improvement where previous approaches have not.

Liu and Chu (2007) also measure a positive effect from query expansion,
using the OHSUMED testbed.4 They start out by calculating a set of terms
that are statistically related to the terms used in the query, using a distribu-

tional similarity measure (see Sect. 2.4) and pseudo-relevance feedback over
a domain corpus. This term set is then filtered using the UMLS5 ontology,
so that only terms of the desired semantic types (i.e., children of a number

2http://www.nlm.nih.gov/mesh/intro_trees2005.html
3http://trec.nist.gov/
4http://ir.ohsu.edu/ohsumed/ohsumed.html
5http://www.nlm.nih.gov/research/umls/
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of selected superconcepts) are added to the query. They show significant im-
provements on a number of different measures as compared to a system where
no query expansion is performed.

The intention here is not to give a comprehensive list over all applications
ever having profited from the use of an ontology; the mentioned articles are
meant to give an idea of which types of problems can be addressed. For a
complementary list of applications using ontologies, the reader is directed
to Cimiano (2006, p. 281).

2.2 Cross-language Ontologies

Their diversity [languages] is a diversity not of sounds and signs but of ways
of looking at the world. (Kerényi, 1976, p. xxxi)

When we learn an ontology from a text, what is it that the final model cap-
tures? Is it “reality”, a model of the world around us? Or maybe the represen-
tation of the world, as it appears in the writer’s head? Perhaps an amalgama-
tion of several representations, if the text has been written by several writers?
If the text collection we are using as input to the system consists of texts in
different languages, we might also ask if this fact has any further implica-
tions on the resulting model. On a related note, Goodman (1978) argues that
just as we choose to acknowledge some patterns of stars as constellations, so
other decisions are involved when we interpret some things as stars. In other
words, the formation of concepts involves conscious decisions; the concepts
are not given by nature once and for all. These decisions will not always look
the same, for all languages and people (see Fig.2.3 below), which raises the
question of how the differences will affect an ontology learning system. This
section discusses what happens when we bring a cross-language perspective
to ontologies, but we will not be able to answer the questions posed here until
we have seen some experimental results (Chap. 6).

Since, as stated in Sect. 1.1, a formal ontology does not contain lexical
knowledge, it is by nature language independent. We can add mappings be-
tween the ontology and arbitrarily many lexica in any number of languages.
The result would be a cross-language ontology. Looking at terminological
or prototype-based ontologies, the division between ontology and lexicon is
weaker, since terms are used as labels and definitions simultaneously for the
concepts. However, nothing stops us from using mappings from lexica in dif-
ferent languages to the hierarchical structure for these ontologies as well. The
difference between the types of ontologies here lies on a theoretical level and
has no practical consequences.

A cross-language ontology can be a useful resource when performing ma-
chine translation (Nirenburg and Raskin, 2004) or cross-language information
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retrieval (Volk and Buitelaar, 2002). Apart from the usefulness of the result-
ing resource, we are here mainly interested in exploiting the cross-language
information to improve on the results we get when learning an ontology from
resources in a single language.

The field of lexical typology is concerned with the ways in which differ-
ent languages “dissect” semantics, or meaning, and form it into words (see
Koch, 2001). E.g., where English has ‘sibling’ as a unifying word for ‘brother’
and ‘sister’, French only has ‘frère’ and ‘soeur’ but no unifying word; how
kinship relations are expressed varies greatly between the languages of the
world (Koch, 2001). Another example is that English ‘go’ corresponds to both
German ‘gehen’ (go by foot) and ‘fahren’ (go by some means of transporta-
tion) (Goddard, 2001). Fig. 2.3 also depicts how a particular semantic field

is subject to different categorizations in different languages. We wish to in-
vestigate in this thesis whether this type of diversity will prove an asset in an
ontology learning system or whether the different “views” will merely serve
to clutter the meaning expressed through an isolated language. We will return
to describe how such differences influence different features in our machine
learning experiments in later parts of the thesis.

Figure 2.3: Words related to trees/wood in different languages. Ewe is a language in
the Niger-Congo family and is spoken in Ghana, Togo and Benin. Note how English
and French are closer to each other in this example than to Swedish, even though
English and Swedish are both Germanic languages. (Figure from Mikael Parkvall,
Stockholm University, personal communication.)

Other researchers have also considered the potential benefits from using
more than one language when solving tasks traditionally involving a single
language. Resnik (2004) notes that there is a potential for exploiting parallel
texts for improving the accuracy in a number of NLP applications, including
parsing and word sense disambiguation. According to Resnik, coupled with
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each English sentence e, there is a meaning me, which is unobservable. Con-
sider the French sentence f , a translation of e, with meaning m f . Since the
two sentences are translations of each other, we know that me = m f and we
can consider the French sentence a semantic annotation of the English, and
vice versa. This is akin to what we want to achieve in this thesis: exploiting
parallelisms in order to learn a more accurate ontology.

According to Sager (1994), the notion of equivalence is central to the field
of translation. Equivalence relations, in turn, have the properties of being re-
flexive (any word is a translation of itself), symmetrical (if A is a translation of
B, then B is a translation of A) and transitive (if A is a translation of B, and B
of C, then A is also a translation of C) (Boolos and Jeffrey, 1989). In practice,
the notion of equivalence could be modified to a notion of relative equiva-
lence (see Fig. 2.3), just as the synonymy relation is commonly relativized.
Some philosophers have even argued that translation is in fact impossible be-
tween natural languages; see Quine (1960), where Quine gives his famous
demonstration on what he calls the indeterminacy of translation (this applies
to radical translation, where the translator learns a previously unknown lan-
guage strictly from observing its use). It is not clear which, if any, implications
such objections have on our current undertaking – we instead simply assume
that translation is possible and that it works rather well in the vast majority of
cases (especially in technical domains). The soundness of this assumption will
partially be measured by the level of success of our experiments, as presented
in later chapters.

In addition to lexico-typological aspects, there are two other obvious
sources of discrepancy when dealing with translations that deserve to be
mentioned. For a given word in the source language, it is not always possible
to come up with a single translation to that word. This can have different
causes, apart from the typological differences already discussed:

• The source word is polysemic or homonymic and the different senses of
the word give rise to different translations in the target language.

• The target language has more than one word with more or less the same
meaning, used interchangeably as translations of the source words (the tar-
get language words are synonyms).

Again, since we are dealing with terms, we expect situations as the ones men-
tioned to occur less frequently than they would in non-technical texts. Though
problematic at times, we actually expect (in line with, e.g., Resnik mentioned
above) that these discrepancies will be a source for added information when
trying to learn an ontology over a domain, rather than just posing a problem.

Continuing with our example from Fig. 2.1, we could add some
Swedish counterparts to the English synonyms listed for ‘heart attack’:
‘hjärtstillestånd’, ‘hjärtattack’ and ‘hjärtinfarkt’. We would then have taken a
first step towards building a cross-language terminological ontology.
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2.3 Terms – Building Blocks of the Ontology

We saw already in Sect. 2.1 that we sometimes have to look at more than one
word at a time to get at the correct meaning of a textual unit. E.g., ‘arrest’ takes
on a whole new meaning when seen in the context of ‘cardiac arrest’ than it
does in ‘house arrest’. In these cases, it does not make sense to list the mean-
ings of ‘cardiac’ and ‘arrest’ separately and rely on a combinatory process
when the two words appear together; the joint meaning is non-compositional.
This is the reason for us choosing to treat terms as singular units in this thesis,
whether they consist of one word or many;6 otherwise it would be impossible
for us to model this type of non-compositionality directly.

Here is what the Swedish Centre for Terminology has to say about terms:

We cannot tell if a word is a term just by looking at it; terms are basically just
regular words. But for a word to be called a term, it should be well known –
preferably acknowledged – among experts in a specialized field. Further, the
experts should agree on what the term stands for.

A term sometimes consists of more than one word, e.g., the energy term
‘air mass’ and the term ‘interrupting quenching’ in the heat treatment indus-
try.7 (Terminologicentrum TNC, p. 5)

Researchers in NLP have been aware of the necessity of handling textual units
on the sub-word level for a long period of time, as witnessed by the amount
of systems available dealing with morphological analysis and decompounding
(e.g., Karlsson, 1992). Dealing with units on a super-word level, we have sys-
tems for term spotting and term extraction (Jacquemin, 2001). Cowie (1998)
discusses this issue at length, but not from a computational perspective. Re-
search regarding multiword units produces yearly conferences and workshops
(MWE, 2008).8 Danielsson (2003) describes an approach for identifying what
she refers to as units of meaning. These units can consist of one or more words
and are not necessarily continuous, but allow for interspersing words that are
not part of the unit. We ignore this added layer of complexity in this thesis and
only consider continuous strings of words, but we return to the issue again in
Chap. 7.

6Not all terms consisting of more than one word are non-compositional.
7Translation from this Swedish original: “Egentligen går det inte att se på ett ord att det är
en term; termer är ju i grunden vanliga ord. Men för att ett ord ska kallas term bör det vara
allmänt känt – helst erkänt – bland fackmän inom ett fackområde. Dessutom bör fackmännen
vara överens om vad termen står för. En term består ibland av mer än ett ord, till exempel
energitermen relativ luftmassa och termen avbruten kylning inom värmebehandlingstekniken.”
8Terms consisting of more than one word are often referred to as multiword units, but not all
multiword units are terms.
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2.4 Distributional Similarity

Building a model for distributional similarity entails counting co-occurrence
frequencies for the words or terms in the model. We speak of co-occurrences
of the first or second degree (see Manning and Schütze, 1999). Two words co-
occur (first degree) if they both show up in the same document or sentence
(the scope of the context varies between different models). A co-occurrence
of the second degree takes place when two words both co-occur with a third
word. ‘Astronaut’ and ‘cosmonaut’ can be assumed to have a high degree of
second order co-occurrence,9 since they both tend to occur frequently along
with words such as ‘space’, ‘rocket’ or ‘Mars’.

Parallel to this, Sahlgren (2006) draws a major distinction between syntag-

matic and paradigmatic relations. Words that stand in a syntagmatic relation
to each other are words like ‘cradle’ – ‘baby’; there is a thematic connection,
but the two words do not necessarily share many semantic features. These
words have a high first order co-occurrence frequency. Conversely, the words
‘cradle’ – ‘bed’ are paradigmatically related, and many more semantic fea-
tures are shared. Typically such word pairs have a high level of second order
co-occurrence. Lund and Burgess (1996) refer to these relations as associative

(for syntagmatic) and semantic (for paradigmatic). This distinction is interest-
ing from an ontology learning perspective, since words that stand in a cohy-
ponymy relation to each other (sharing the same superordinate word) are also
typically paradigmatically related. We can therefore predict that similarity as
measured by second order co-occurrences will be a particularly useful mea-
sure for ontology learning, where recognizing cohyponyms is an important
subtask.

But how can distributional models catch anything of the semantics of a
particular word? Consider the following passage, taken from Nida (1975, p.
167):

There is some tezgüino. A jar of tezgüino is on the table. You need a lot of
tezgüino to get your land cleared. Everyone likes tezgüino. Tezgüino makes
you drunk. We make tezgüino out of corn.

Although it is at no point in the text explicitly stated what ‘tezgüino’ means,
after reading the passage, we feel pretty certain that it is some sort of alcoholic
beverage. So, given the validity of distributional similarity models, we are no
longer forced to search the text for dictionary-like definitions of tezgüino (e.g.,
“Tezgüino means alcoholic beverage made from corn.”) but can exploit the
implicit information in the text. This is fortunate in the context of ontology
learning, since we are often dealing with technical texts, which are not prone
to express basic facts explicitly – the reader is assumed to be sufficiently fa-
miliar with the topic to get by without them.

9This obviously depends on the text collection used for building the model.
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The most common theoretical motivation for why the distributional models
can be said to capture meaning is given by referring to the work of Zellig
Harris (1954). From this work, the distributional hypothesis has been (more
or less directly) derived: Words that occur in similar contexts tend to have
similar meanings.

Another angle of this idea is found in Alston (1964, p. 38), where it is
defined when two words (W1 and W2) can be said to mean the same thing:

In most sentences in which W2 occurs, W1 can be substituted for it without
changing the illocutionary-act potential of the sentence.

Again we see the context playing a decisive role in determining word mean-
ing. Of course, when we are just scanning a text for co-occurrences, we lose
Alston’s criterion for keeping the illocutionary-act potential constant. This is
why we move away from Alston’s specific synonymy relation to the vaguer
notion of similarity or relatedness in the distributional hypothesis. Grönqvist
(2006) notes this as well, stating that synonymy implies strong similarity, but
that the reverse is often not the case.

We find similar ideas expressed by Sinclair (1996), who is advocating the
empty lexicon. He argues that the definition of a word in a lexicon should be
empty in an initial phase. The definition should then be built up by making
observations of the word in different (textual or spoken) contexts. The only
(lexical) meaning that exists is accordingly the one given to a word by its
co-occurrences with other words.

One matter of discussion when collecting co-occurrences is whether to con-
sider all words within a fixed distance from the focus word10 as co-occurring,
or merely those words that stand in a particular syntactic dependency with the
focus word. Grefenstette (1994) made some comparative experiments with
the two alternative models, but the results were non-conclusive: for high fre-
quency focus words, the “syntactic model” performed better, for lower fre-
quency focus words the reverse was true. Schütze (1998) attributes this to the
fact that a syntactic model is typically sparser – has fewer co-occurrences –
than a strictly word-based model.

More recent experiments by Padó and Lapata (2007) compare a syntactic
model, or a combination of a syntactic and a non-syntactic model (no longer
suffering in the same way from the previously mentioned sparsity) with
a baseline, word-based model, to the advantage of the combined model.
However, their results on the synonym recognition task are not on par with
top-performing word-based models from other experiments, such as, e.g.,
Sahlgren et al. (2008). The word-based model has other advantages, such as
having one less processing step, and not being reliant on the existence of a
high quality syntactic parser for the language in question. It can be said to be

10In corpus linguistics this would be called the node word.
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the more language-neutral approach of the two, since it applies readily to all
languages where tokenization is not a major problem.

When having performed a co-occurrence analysis over a large text
collection, we are left with a sparse co-occurrence matrix with a
dimensionality of typically tens or hundreds of thousands. Much of this
data is noise: spurious co-occurrences between otherwise unrelated words
– data which could safely be disregarded without loss of predicative
power for the model. Also, the large dimensionality can become a
problem in systems where performance is an issue. Such considerations
led researchers to investigate dimensionality reduction techniques,
such as singular value decomposition (SVD) (Deerwester et al., 1990;
Schütze et al., 1995; Landauer and Dumais, 1997; Grönqvist, 2006) – the
mathematics are described in Golub and van Loan (1996) – or random
indexing (Kanerva et al., 2000; Sahlgren, 2006), both of which perform
dimensionality reduction and implicitly abstract away from the noise in
the data. When applied to textual data, the SVD approach is commonly
referred to as latent semantic indexing (LSI), because of its claims of
being able to uncover indirect, or latent, relations between words in the
data (see Landauer and Dumais, 1997, for a theoretical motivation of
these claims). Because of these claims of a potential for discovering latent
information, we also include SVD-reduced data in our experiments presented
in Chap. 6, along with the non-reduced data.

2.4.1 Distributional similarity model parameters

We have already noted that there is a fundamental choice to be made between
using first or second order co-occurrences. In addition to this, there are a
number of other parameters which can be varied to achieve different effects
in the distributional models. We next discuss the parameters that we examine
in our experiments in Chaps. 5 and 6 – these are not the only parameters one
could vary, but they are some of the most important.

Size of context window: When using second order co-occurrences to build
the model, one typically makes use of a fixed-size sliding window, which is
moved over the text, to determine what should be considered to be in the
context of the focus word and what not. Varying the size of this window
affects the type of information captured by the model (Sahlgren, 2006).

Left/right distinction: Keeping track of whether a context word appears
to the left or to the right of a focus word is a simplistic way of adding
word order information to a distributional model. If we want to make this
distinction, we simply introduce separate features for each context word: one
for the left and one for the right context. The disadvantage of doing this is of
course that we have to double the size of the co-occurrence matrix, something
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which could be costly when working with large document collections.

Distance weighting: Intuitively, words appearing closer to the focus word
should be given more weight than context words appearing further away,
when building a co-occurrence model. We consider three different distance
weighting schemes (d stands for distance measured in number of words from
the focus word in the following):

1. Flat: no weighting scheme is applied; all words are given the same weight,
regardless of distance from the focus word.

2. Inverse distance: the context word co-occurrence value is weighted by 1
d

.
3. Logarithmic distance: the context word co-occurrence value is weighted

by 21−d (weights decrease faster than for inverse distance). Has been used
in, e.g., Sahlgren (2006).

Feature weighting: We can hypothesize that a very frequent context
word (appearing as a context word for many different focus words) would
contribute less to defining the “co-occurrence profile” of a focus word, than
a less frequent context word would. We consider three feature weighting
schemes in order to test this hypothesis (the choice of weighting schemes is
inspired by Cimiano, 2006):

1. Flat: no feature weighting is applied; all features are given a weight which
is based directly on frequency.

2. Conditional probability: if the term under consideration is t, the current
feature is f and f req stands for the frequency of a particular term or term-
feature pair, then we get:

weight(t, f ) = p(t| f ) ≈
f req(t, f )

f req( f )

3. Mutual information: measures the mutual dependence between a term and
a feature. We use the following formulation of mutual information:

∑
tx, fy

p(tx, fy)log
p(tx, fy)

p(tx)p( fy)

where x,y ∈ {0,1}, indicating the presence or absence of t and f (again,
probabilities are estimated using relative frequencies).

2.4.2 Is there Structure in Word-space?

Distributional similarity models are used to find words that are related or
somehow similar to each other. When given a geometrical interpretation, these
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models are often referred to as word-spaces (Sahlgren, 2006), because the di-
mensions in such a geometrical space are made up of words. This raises the
question: Is it possible to make more precise judgments of relations between
words in word-space than merely stating that they are similar (or dissimilar)?
Are there structures in word-space which can be exploited in order to make
more precise statements of the nature of the similarities?

The question has been answered in the affirmative in Caraballo and
Charniak (1999), Sanderson and Croft (1999) and Ryu and Choi (2006),
although they do not use this terminology, but rather speak in terms of
probabilities. Most importantly to us, these authors have shown that it is
possible to determine (or at least make a qualified guess at) which of two
words is the more specific – a useful piece of information when it comes
to constructing a hierarchy. We return to discuss their work in more detail
in the following section. Others have identified structures that separate
synonyms (Lindén and Piitulainen, 2004; van der Plas and Tiedemann,
2006) or meronyms (Girju et al., 2006) from other relations, though the
latter authors mainly work with lexico-syntactic patterns rather than strict
word-space models.

2.5 Ontology Learning Approaches

We start with a short overview of four of the most important developments in
the field from the early 90’s through to today. After this, we present different
approaches to ontology learning and also look at attempts to merge various
information sources in integrated systems.

Schütze’s articles on word-space (e.g., Schütze, 1992, 1998) have had a ma-
jor influence on all work in the ontology learning field. Though they do not
explicitly deal with ontology learning as such, the ideas presented regarding
distributional similarity (see Sect. 2.4), or variants thereof, have been incorpo-
rated in most ontology learning systems to this date. This is not to imply that
Schütze was the “inventor” of the distributional similarity models, but rather
that his ideas have been influential on the field.

One of the earlier attempts at something similar to ontology learning was
presented by Grefenstette (1994). His aim was to present a system for learning
a thesaurus from free text and he was able to show some impressive results,
but because no standard ontology learning evaluation measures were available
at that time, it is hard to compare his results with more recent work. His work
is, like Schütze’s, based on distributional similarity.

Spurred on by the accumulating interest in the semantic web, Maedche
(2002) was (one of) the first to start using the term ontology learning for this
line of work. He also was among the first to suggest a measure for evaluat-
ing the results from an ontology learning system (see Sect. 4.3 for more on
evaluating ontology learning).
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Cimiano (2006) presents new approaches for ontology learning, includ-
ing formal concept analysis (see Sect. 2.5.4) and combining several different
knowledge sources in a classification system. He also presents a variation of
Maedche’s evaluation measure (also discussed in Sect. 4.3).

A growing consensus among ontology learning researchers indicates a need
for exploiting many different sources of information simultaneously, where
the weaknesses of one source can be remedied by the strengths of another
(see Sect. 2.5.6). Typically we will have rule-based approaches (intra-term in-

formation and lexico-syntactic patterns in the list below) providing high pre-
cision and low recall, whereas the statistic approaches provide the opposite.
We will refer to such integrated systems as hybrid systems and this is the
main approach followed in this thesis, interpreted in a probabilistic frame-
work. Examples of such systems are given in Sect. 2.5.6 and we present our
own experiments in Sects. 6.4–6.5.

The most prolific approaches to ontology learning are:

• Term clustering based on distributional similarity
• Intra-term information
• Lexico-syntactic pattern analysis
• Formal concept analysis
• Statistical measures of term specificity
• Hybrid systems
• Probabilistic approaches

The following sections present an overview of the ideas behind each approach,
along with references to the most influential articles and pointers to how the
different approaches have been incorporated into the work presented in this
thesis.

2.5.1 Term clustering based on distributional similarity

Ruge and Schwarz (1991) present some of the very first work in this area.
They use a combination of first and second order co-occurrence to find se-
mantically similar terms. They work with dependency-parsed text and re-
strict the syntactic relations for both types of co-occurrence. For first order
co-occurrence, they look at conjunctive relations and for second order they
look at the overlap of heads and modifiers for two terms. As discussed above
in Sect. 2.4, the approach of working with dependency-parsed text is again
receiving more attention.

An early attempt of learning something similar to what we here call a
prototype-based ontology is presented in Pereira et al. (1993). The distribu-
tional similarity of nouns with respect to their appearing as objects of tran-
sitive verbs is used to form a hierarchical clustering. The article deals with
general-purpose words rather than terminology. Another early approach is de-
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scribed in Hearst and Schütze (1993), where distributional similarity is used
to extend clusters derived from WordNet.

Lin (1998) uses parsed text (i.e., triples of <W1, dependency-relation, W2>)
to calculate distributional similarities between words. Instead of using the
standard cosine measure he introduces a measure that uses the amount of
shared information between two words in contrast with the information of the
words by themselves. Information here is defined in terms of the probabilities
of observing the triples associated with a word with their associated frequen-
cies, as opposed to observing randomly generated triples from the corpus. This
measure is shown to perform better than cosine, at least on parsed text, for the
purposes of automatic thesaurus construction (for the type of parsed triples
used in this experiment).

A procedure for word sense discrimination and word sense clustering is de-
scribed in Pantel and Lin (2002). A soft clustering is performed (meaning that
the same word can belong to more than one cluster) using distributional simi-
larity techniques. Each cluster of which a word W is a member is considered a
sense of W. We do not consider word senses in our experiments in Chap. 6, but
assume a one-to-one correspondence between terms and concepts, wherefore
this method is not used.

Li (2002) uses a distributional similarity technique coupled with minimal

description length for clustering nouns and verbs. The results are used and
evaluated in a PP-attachment resolution scenario, where it achieves a higher
precision and lower recall than a WordNet-based approach. This is unexpected
because, as mentioned in Sect. 1.2, the main argument against using hand-
crafted resources such as WordNet is their lack of recall, not their lack of
precision. However, the balance between recall and precision is often a matter
of parameterization in the system, which means that the presumed higher pre-
cision, resulting from using a handcrafted resource, should rather be seen as a
rule-of-thumb rather than an anything else.

Widdows (2003) presents a method that is meant for extending an existing
ontology (he uses WordNet) with new terms/concepts. First, a distributional
similarity model is built over a corpus, where part-of-speech information is
taken into account, as a way of performing low-level word sense disambigua-
tion. When adding a term to the ontology, the first step consists in calculating
the n closest neighbors of the term, according to the distributional similarity
model. For all terms/concepts which subsume at least one of the n neighbors,
an affinity score is calculated with the neighbor set, which trades off coverage
(the concept should subsume as many of the neighbors as possible) with in-
formativity (the concept should be as precise as possible, not subsuming too
many non-neighbors). This method does not lend itself to our purposes, since
we aim at building an ontology from scratch, rather than extending an existing
ontology.

In Weeds et al. (2005), an approach very similar to that of Widdows, men-
tioned above, is used to place new terms under one of the 36 basic subdivision
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classes in the GENIA ontology. Different types of distributional similarity
measures are used to extract the n nearest neighbors of a term and then a
majority vote amongst these neighbors is used to place the term under the
right superconcept. The authors restrict their experiments to dealing strictly
with terms, which is the same restriction we impose, discussed in Sects. 2.3
and 5.2.1.

An interesting recast of distributional similarity in terms of recall and pre-
cision is presented in Weeds and Weir (2005). Given a focus word W1 and a
candidate related word W2, recall is measured by the number of contextual
features (typically words) occurring together with W2 that also occur in the
context of W1, mutatis mutandis for precision. Subsumption measures, dis-
cussed in Sect. 2.5.5, make implicit use of this notion, since they strive for
high recall but low precision, to a certain degree.

Wong and Liu (2007) use co-occurrence as measured by the Google search
engine to cluster terms by semantic similarity. The first clustering, produced
by the Google-similarity measure, is refined in a second step by exploiting
Wikipedia’s hierarchical category information. Note that there has been some
controversy over using Google for research purposes (see Kilgarriff, 2007).

2.5.2 Intra-term information

One basic intuition that is exploited by the methods presented in this section,
is that the head of a complex term (noun phrase) tends to be a hyperonym
to the whole noun phrase. A ‘nuclear power plant’ is a ‘power plant’ which
in turn is a ‘plant’ (in its ‘factory’ sense). This is referred to as the head-

matching heuristic in Cimiano (2006), where it is shown to be an effective
way of detecting hyperonymy.11 We include this information as a feature in
our experiments in Sect. 6.4.

Oster (2006) uses the terms determinatum for the head and determinant for
the modifier, but we will keep the simpler terms. Oster also makes an analysis
of the different kinds of relations that can exist between head and modifier,
such as ‘wine’ (CONTENT) – ‘bottle’ (CONTAINER), but regardless of the
nature of this relation, the is-a relation is implied simultaneously in the vast
majority of cases (a ‘wine bottle’ is-a ‘bottle’).

In Bodenreider et al. (2001), the authors examine the UMLS for how terms
in this type of head-modifier relation are modeled. They find that out of 28,851
such pairs (they require the modifier to be adjectival, which we do not), 43%
stand in a hyperonym-hyponym relation in the UMLS, possibly with other
terms in between in the hierarchy. They see this partly as an idiosyncrasy
of UMLS, which is not strictly hierarchical, but also as an indication that
some of these relations have simply been forgotten by the designers of the

11There are numerous exceptions to this principle, e.g., a ‘seahorse’ is not really a ‘horse’ and a
‘guinea pig’ is not a ‘pig’. When dealing strictly with terminology, exceptions are less frequent
but they still occur.
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UMLS. Their method is accordingly both a quality check and a simple way of
extending an existing ontology.

In Navigli and Velardi (2004), a system based mainly on the head matching
heuristic and the external knowledge sources WordNet and SemCor is pre-
sented. Additionally, word sense disambiguation is performed and an analysis
along the lines of Oster is suggested. For the term ‘bus service’, it is specified
that ‘bus’ is the INSTRUMENT of ‘service’ and also which senses of ‘bus’
and ‘service’ are involved.

SanJuan et al. (2005) use intra-term information when constructing
a prototype-based domain ontology. Their model identifies different
combinations of heads and modifiers and looks for term variation in a manner
inspired by Jacquemin (2001). Combined with a filter based on relations
in WordNet, they perform hierarchical clustering based on the intra-term
information extracted.

2.5.3 Lexico-syntactic patterns

The seminal paper for this approach is Hearst (1992); in fact, the type of
lexico-syntactic patterns she makes use of in her paper have since been re-
ferred to as Hearst-patterns. The basic intuition is that if we find a passage of
text on the following form: “NP1, such as NP2”, this indicates that NP1 is a
hyperonym of NP2. Hearst gives the pattern a more general form, to allow for
lists and co-ordination (e.g., “NP1, such as NP2, NP3 or NP4”). She presents
a total of six different patterns in the paper, all of which (or translations of
which) are made use of in our experiments in Chap. 6. This approach typi-
cally results in high precision and low recall when used for ontology learning,
which is why it is a popular part in many hybrid systems.

For the purpose of “fully automatic knowledge acquisition from large
corpora of unseen text”, Iwanska et al. (2000) also present a list of
lexico-syntactic patterns for the extraction of related term pairs, partly
overlapping with Hearst’s patterns. The patterns presented by Iwanska et al.
are not limited to the is-a relation, but also include definitions and
cohyponymy (referred to as related types).

Rydin (2002) uses this same approach to learn a taxonomy over general
Swedish vocabulary from newspaper text. Since this is general vocabulary,
she takes some preventive steps to avoid problems of homonymy/polysemy.
If word A appears as a hyperonym in a Hearst-pattern for words B and C
and later again for C and D, it is assumed that we are dealing with the same
sense of A, since the intersection of B,C and C,D is non-empty. Had A instead
later appeared with words D and E, the intersection with B and C would have
been empty and we would have assumed that there were two different senses
of A in play. Because we are dealing with terminology rather than general
vocabulary in our experiments in Chap. 6, we do not make use of any word
sense disambiguation techniques.
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Pantel and Ravichandran (2004) present a method for naming automatically
constructed semantic clusters. For a cluster consisting of words like ‘pink’,
‘red’ and ‘turquoise’, they would like to be able to name this cluster ‘color’
(which is the same as looking for a common hyperonym for the cluster). They
first select a number of prototypical instances from each cluster and then cal-
culate a mutual information-based measure for how strong the association is
with different nouns in four different Hearst-patterns. This is different from
the task in this thesis, in that we assume that the hyperonym of a term will be
one of the other terms given by the term extraction process (or the root of the
ontology).

Malaisé et al. (2005) search texts for defining contexts, in essence sentences
where a term is given a definition, implicitly or explicitly. Defining contexts
are triggered by the occurrence of particular words like “define” or “desig-
nate” or they are triggered by more complex, Hearst-like patterns. By collect-
ing all attributes given to a term in a defining context, terms can be clustered
in a hierarchy, reminiscent of formal concept analysis (see Sect. 2.5.4).

Snow et al. (2005) build on Hearst’s insight and construct a system for
learning lexico-syntactic patterns indicative of hyperonymy. Their patterns
consist of paths in dependency-parsed sentences and they use WordNet as
a source of known hyperonym/hyponym pairs for training their system. Their
system drastically outperforms a system based on Hearst’s original patterns
in a classification task, where the goal is to recognize hyperonym/hyponym
pairs.

Rinaldi et al. (2006) start by parsing text with a dependency parser and then
look for word pairs that stand in particular, domain-specific relations to each
other. They then examine the contexts and dependency-relations for each re-
lation type and select sets of lexico-syntactic patterns, meant for extraction,
manually.

2.5.4 Formal concept analysis

According to Cimiano (2006), formal concept analysis (FCA) can be seen as
a clustering technique. Concepts in the hierarchy are clustered on the basis
of formal contexts, a description of objects and their attributes. A hierarchy
is formed by applying set theory to the formal contexts: a concept whose set
of attributes subsumes those of another concept is placed further down in the
taxonomy; it is considered more specific than the concept whose attributes it
subsumes. The attributes used are the set of verbs which have taken the con-
cept under consideration as an argument. FCA results in a structure similar to
the one you get from hierarchical clustering: all terms are leaf nodes, inter-
nal nodes are abstract, or labeled by their corresponding formal contexts. An
example ontology resulting from FCA is shown in Fig. 2.4.

In Cimiano et al. (2004) and Cimiano et al. (2005a), an FCA-based cluster-
ing is compared to traditional clusterings based on distributional similarity.
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bookable

joinable rentable hotel

excursion trip driveable apartment

rideable car

bike

Figure 2.4: FCA example, reproduced from Cimiano (2006). Concepts with labels
written in italics are attributes (formal contexts), used to produce the hierarchical
structure; the others are concepts in the traditional sense.

The FCA clustering is shown to produce a structure more similar to the gold
standard used (a handcrafted ontology from the tourism domain), using the
taxonomic overlap evaluation measure (see Sect. 4.3). The FCA clustering
has a higher taxonomic recall, since some of its formal context-concepts also
occur in the gold standard. This means that we cannot be sure whether we
would see the same improvement in taxonomic overlap in an experiment such
as presented in Sect. 6.1, where we have a fixed set of terms to be clustered.

There is an interesting theoretical discrepancy between FCA and the term
specificity measures discussed in Sect. 2.5.5, directly following this section.
FCA places a term (concept) that occurs in the widest set of formal contexts
at the bottom of the hierarchy, whereas the term specificity theories claim
that more specific terms typically occur in more homogeneous contexts than
do general terms. Some support for the latter is given in an experiment in
Sect. 6.2.5.

We are not using FCA as part of the ontology learning system presented in
Chap. 6, mainly for the reasons just mentioned and for its dependence on a
parser for constructing the formal contexts (which might not be available for
all languages).

2.5.5 Statistical measures of term specificity

In Spärck-Jones (1972), we find an early attempt at giving term specificity
a statistical interpretation. Spärck-Jones there presents a measure for term
specificity, or term weighting, which is meant to boost the importance of low-
frequency terms in an IR setting. Note that this measure is meant to function as
part of an IR system and is not designed to order arbitrary terms according to
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their specificity – the connection between low frequency and high specificity
is strong but does not always hold.

Some researchers have made use of measures from information theory
in the domain of ontology learning. Most notably, Caraballo and Charniak
(1999) introduce a method for ordering a set of nouns according to their
specificity. The intuition behind their measure is that more specific terms
are modified by a fixed set of words, whereas more general terms can be
modified by any number of other words. They build a context vector for the
words occurring in a window around the nouns and calculate the entropy
of this vector. The higher the entropy, the more different words are used to
modify the term, and the less specific the term is, so their reasoning. This is
evaluated on three sets of related terms, with the hierarchical ordering taken
from WordNet. For over 80% of the noun pairs, their measure is able to
identify which of the two nouns is more specific (the baseline accuracy of
taking a random guess is of course 50%). Note that this problem is much
simpler than separating related term pairs from non-related term pairs; here
we already know that the two terms are related, just not which term is more
general and which more specific. We use this measure in our experiments, as
discussed in Sect. 6.2.

Sanderson and Croft (1999) use the concept of subsumption, where one
term is said to subsume another if the first term occurs in all the documents
where the second term occurs, but not vice versa. In their experiments, it
turned out that the requirement that all occurrences of the second term should
be “covered” by the first term was too strong; instead a threshold is intro-
duced, saying that it is enough if 80% of the occurrences are covered. We use
a variant of this measure, explained in Sect. 6.2.1.

Ryu and Choi (2004) introduce a measure called Information Quantity,
which also makes use of entropy and frequency of term distributions
in determining the specificity of a term. In Ryu and Choi (2006), the
authors combine this measure with other well-known methods for ontology
learning and the results are evaluated by comparing with a gold standard.
Their work can be regarded as a continuation of Caraballo’s methods,
discussed previously. The results are somewhat hard to interpret, but the
entropy-based measures give a high recall whereas the other measures give
a higher precision on the ontology learning task. They start with an empty
taxonomy and iteratively add one term at a time, using their measures for
similarity and specificity to place the new term in the hierarchy. We stick
with Caraballo and Charniak’s original measure in our experiments in Sect. 6
because of its simplicity and intuitiveness.

2.5.6 Hybrid ontology learning approaches

In Caraballo (2001), three different sources of information are combined for
learning a hierarchical structuring of words: distributional similarity (using
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selected grammatical contexts from parsed text), Hearst-patterns and the term-
specificity measure described in Sect. 2.5.5. Caraballo first builds a baseline
system using the distributional similarity information and the Hearst-patterns
and then demonstrates that including the specificity information results in a
more accurate hierarchy.

Ogata and Collier (2004) use versions of Hearst-patterns and intra-term in-
formation in combination to build a terminological ontology in the molecular
biology domain. Due to the characteristics of the terms in this domain, the
terms do not lend themselves well to classical morphological analysis. Instead,
terms are searched for common endings, where endings are simply character
strings. These common endings in combination with the information from the
Hearst-pattern analysis are used to build up a hierarchical term structure.

Nenadic et al. (2004) calculate term similarities using a combination of
three different approaches. First they make use of intra-term information,
by counting shared heads and modifiers among term variants. Next they use
Hearst-patterns for identifying co-ordinated terms (cohyponyms). Finally they
calculate something which resembles a distributional similarity model, but
they restrict the contexts to certain lexico-syntactic environments. The results
from these three approaches are combined using a linear combination, where
the weight for each approach is set by comparing results to a small example
ontology constructed by a domain expert.

Mani et al. (2004) use a number of different knowledge sources for con-
structing an ontology. They look at Hearst-patterns, a subsumption measure
reminiscent of Sanderson and Croft (1999), the head matching heuristic men-
tioned above and finally relations from existing ontologies such as the Gene
Ontology or WordNet. We choose to include all these knowledge sources in
the experiments in Chap. 6, except for the external ontologies, which we ex-
clude for reasons given in Sect. 1.2.

A number of different information sources are incorporated
in Cimiano et al. (2005b), in order to train a classifier to recognize term
pairs in the hyponymy relation. They make use of Hearst-patterns, WordNet
relations, the head matching heuristic and versions of Sanderson and Croft’s
subsumption measure to train a one-class support vector machine with good
results. We follow this approach in Sect. 6.4, though we use a dual-class
support vector machine and have a different set of features.

2.5.7 Probabilistic approaches

Some research has been directed towards reinterpreting (or recalculating) the
output of the previously described approaches as probabilities. The main idea
is that a higher score from one of the previously described measures corre-
sponds to a higher probability that the predicted relation holds. Exactly how
this transformation is done differs from case to case and is not always de-
scribed explicitly.
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In an experiment in Caraballo (2001), the assumption is made that there
exists a “true” hierarchy from which the observed co-occurrence data was
generated; the task then is to find the hierarchy which gives the highest proba-
bility to the observed data. Accordingly they assume a process which gen-
erates a noun with probability P(n) and then a context word with proba-
bility P(w|n). Caraballo then suggests a backing-off version of this, where
the superordinate (hyperonym) node c of n is taken into account: P(w|n) =
λP(w|n)+ (1−λ )P(w|c), thus incorporating the hierarchical structure in the
calculations. She recasts the experiment described earlier in Sect. 2.5.6 in this
setting, but does not measure any improvements in accuracy over the non-
probabilistic version.

Snow et al. (2006) describe a probabilistic approach to constructing an
ontology based on two classifiers trained to recognize hyperonym/hyponym
pairs and cohyponym pairs, respectively. The ontology is built up stepwise,
by at each step adding the relation that maximizes the probability of the
ontology as a whole. This is done by calculating all new relations that will
be created by adding a particular relation to the ontology, using the transitive
closures of the hyponymy and cohyponymy relations. This is also the
approach we follow in our experiments in Sect. 6.5.

2.6 Translational Equivalence for Terms

Because we wish to model terms from different languages in our learned on-
tologies (see Sect. 2.2), it becomes important to know which terms mean the
same thing, which terms are translational equivalents of each other. This sec-
tion introduces the main approaches for extracting equivalents automatically,
given a parallel or comparable corpus.

Tiedemann (2003, p. 12) gives the following definition for the task of bilin-
gual lexicon/dictionary extraction: “Bilingual lexicon extraction aims at the

identification of lexical word type links in parallel corpora”.12 The focus lies
on word types, in contrast with the task of word alignment, where the focus is
on word tokens. The bilingual dictionary extraction task is thus not concerned
with which word(s) in a particular source language sentence correspond to
which word(s) in a particular target language sentence; instead, the entire cor-
pus is taken into consideration and a most probable translation of the source
language word is sought in this global perspective. The two contrasting views
give rise to different evaluation schemes and we indicate for all articles below
which of the two tasks is being evaluated.

The cross-language approach to ontology learning advocated in this thesis
depends on the existence of a bilingual dictionary, or a parallel or comparable
corpus from which to extract such a dictionary. Resnik and Smith (2003) pro-

12We choose also to include comparable corpora in the definition.
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pose a way of remedying the absence of these resources, by describing how
the web can be mined for parallel texts. The parallel texts would then have
to be filtered to keep only domain-specific texts, which might make the avail-
ability of large enough text quantities an issue, depending on the language
pair and domain. Somers (1999) presents a general approach for all the steps
from extracting a parallel corpus via sentence alignment to bilingual dictio-
nary extraction techniques. Merkel (1999) likewise gives a thorough overview
of the translation process, discussing term extraction and bilingual dictionary
extraction but also how the results can be incorporated in the workflow for
human professional translators.

2.6.1 Cross-language distributional similarity

For a recapitulation of distributional similarity, see Sect. 2.4. How to exploit
distributional models when working in a cross-language setting is explained
more closely in Sect. 5.2.1. Here we give an overview of previous work using
distributional similarity in a cross-language setting.

Each word or term (row in a co-occurrence matrix) can be compared to each
other word or term, using similarity measures defined for vectors, as discussed
in Sect. 2.4. There is a plethora of such measures, many of which have been
evaluated on the dictionary extraction task, or one similar to it. In Ribeiro et al.
(2000), a total of 28 different similarity measures are evaluated on extracting
equivalents from aligned parallel texts. They use one language pair (Spanish
– Portuguese) for testing on a parallel corpus containing about 18,000 words,
which is rather small. Two of the highest ranking measures in that evaluation,
the cosine measure and the mutual information measure,13 are compared in
our experiments in Sect. 5.2.1.

A few years earlier, Smadja et al. (1996) showed differing results, indi-
cating that the Dice coefficient was in fact more effective than mutual in-
formation for measuring the association between two terms (or collocations
in Smadja et al.’s case). The reasons for this discrepancy are unclear.

To bypass the potential problems connected with the large dimensionality
of the co-occurrence matrices (see Sect. 2.4), Sahlgren and Karlgren (2005)
experiment with random indexing for the dictionary extraction problem. The
results are evaluated in a type-based evaluation and are shown to give higher
accuracy than GIZA++14 (see Sect.2.6.2 below). In Hjelm (2007), we come
to the opposite conclusion: that GIZA++ outperforms the distributional simi-
larity measures, with or without random indexing. The difference in outcome
is most likely due to the different ways of training GIZA++ in the two experi-
ments; Sahlgren and Karlgren use parallel documents whereas we use parallel
sentences. The SVD method for dimensionality reduction has yet to be evalu-
ated on the dictionary extraction task.

13Referred to as average mutual information in Ribeiro’s evaluation.
14http://www-i6.informatik.rwth-aachen.de/web/Software/
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2.6.2 Statistical machine translation

The seminal paper in this area is Brown et al. (1993), where a series of five
models for calculating word-alignments are presented. A word-alignment
links each word in a source language sentence to one or more words in the
corresponding target language sentence. The five models are designed to
be applied in a chain-like fashion, where each later model adds a level of
complexity to the previous one.

GIZA++, a piece of software which implements Brown et al.’s models, pro-
duces a bilingual dictionary file, where each source language word or term
is listed with its possible translations and associated probabilities. The most
probable translation of a particular source term can thus be found by sorting
the possible translations in descending order based on their associated proba-
bilities. We make use of GIZA++ output in our experiments in Sect. 5.2.

Melamed (2000) describes three statistically based approaches, all using co-
occurrence information coupled with, e.g., a noise model or statistical smooth-
ing. Melamed’s models deal with words and he makes a fundamental one-
to-one assumption for the word alignment task: that one word in a particu-
lar source language sentence corresponds to one word in the parallel target
language sentence. Depending on the language pair involved, this assump-
tion will be more or less fortuitous; Melamed performs both a type- and a
token-based evaluation on an English-French corpus, a language pair where
the assumption will work better than for many others. He demonstrates im-
provements over Brown et al.’s previously mentioned first model. Note that
the one-to-one assumption makes more sense in our case, since we are using
texts where term spotting has been performed (see Sect. 2.3), enabling us to
treat multiword terms as single units.

Och and Ney (2003) propose extensions to Brown et al.’s translation mod-
els and show improvements over the non-extended system on a token-based
evaluation scheme. They present a variety of added information sources, in-
cluding part-of-speech information and a bilingual dictionary, all handled in
a probabilistic framework. We chose to work with the non-extended GIZA++
model in our experiments in Sect. 5.2 mainly for its ready availability and
widespread application in the statistical machine translation research commu-
nity.

2.6.3 Hybrid approaches for translation

Tiedemann (2003, 2005) proposes a method for word alignment which uses
both distributional similarity measures15 and the dictionary files produced by
GIZA++ mentioned above. Tiedemann also uses other information, such as
string matching (edit distance) and part of speech, and so is able to boost the
performance of GIZA++ by weighting the scores of the different sources to-

15He refers to these measures as co-occurrence measures.
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gether. The weights in Tiedemann (2005) are learned using a genetic optimiza-
tion algorithm and the system clearly outperforms GIZA++ on a token-based
word alignment evaluation task.

Kraif (2003) combines distributional models with a model for cognateness,
similar to Tiedemann (2003). He examines four different similarity measures
and gets the best result with a measure he calls “P0” or “the log-probability of
the null hypothesis”. The method is evaluated in a token-based word align-
ment setting, but no comparison with, e.g., GIZA++ is performed, which
makes it hard to judge the effectiveness of the approach.

Volk et al. (2002) look at different measures for term association. They get
good results for comparing the lengths of the terms extracted as translations
from a sentence-aligned parallel corpus and filtering out term pairs where the
difference is too large. The length feature could be seen as a subset of the
differences measured by the edit distance, though perhaps applicable to less
related language pairs. The idea would be that a long, complex term in one
language would correspond to a long complex term in the other, even if they,
e.g., use different alphabets, but this last point remains to be investigated.

We present results in Hjelm (2007), showing that combining GIZA++ out-
put with the output of different distributional similarity measures gives in-
creased accuracy, compared with any single system in isolation. The experi-
ments are described more closely in Sect. 5.2.

Including features like string similarity or edit distance gives a slight boost
in performance in the models described in this section. String similarity fea-
tures have the disadvantage of making the process less language independent
and in the experiments presented in Sect. 5.2, no such information has been
used.

2.6.4 Working with comparable corpora

In cases where no appropriate parallel corpus exists, it is usually possible to at
least construct a comparable corpus, i.e., a corpus in two or more languages
composed of L1 texts that have been collected using the same sampling tech-
niques (McEnery et al., 2006). Experiments with such texts are presented in
Sect. 5.3.

In Fung and McKeown (1997) and Rapp (1999), the authors describe a
method for dealing with comparable corpora in the context of the dictionary
extraction task. The main assumption they make is that if word A is a trans-
lation of word B, the words frequently co-occurring with word A also tend
to be translations of words frequently co-occurring with word B. This can
be thought of as the correlating formulation of the distributional hypothesis
(Sect. 2.4) in the cross-language setting. This means that, if we build a distri-
butional similarity model using second order co-occurrences for one language,
we can take a bilingual, general purpose, dictionary and translate the words
co-occurring with the source language word. This gives us a mapping from
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the dimensions of the model of the source language to the dimensions of the
model of the target language. The idea is that general purpose dictionaries
may well contain general words occurring in the context of the term we wish
to translate, but the probability that it will contain the (mostly more specific)
term itself is much lower. In Sect. 1.2, we list reasons for learning domain
ontologies even though handcrafted resources such as WordNet already exist.
Here, we see many of the same reasons coming into play when we consider
learning domain-specific bilingual dictionaries, even though manually con-
structed general dictionaries already exist for many language pairs.

Before this, Rapp (1995) had presented an interesting approach for solv-
ing the same problem, but without the usage of a bilingual dictionary. His
method involves permuting the columns of one of the co-occurrence matrices
and searching for a maximum similarity between the two matrices. Finding
the maximum similarity permutation would also provide a mapping between
the two matrices, specifying which columns correspond to each other. Since
each column corresponds to a word (in a second order co-occurrence matrix),
this would also provide the translation. Unfortunately, Rapp shows that with-
out providing a set of seed translation pairs, similar to the method using the
bilingual dictionary just discussed, this computation is intractable.

Déjean et al. (2002) present a method building on Fung and McKeown
(1997) and Rapp (1999), additionally making use of a multilingual thesaurus.
Even if the word we want to translate is present in the multilingual thesaurus,
we typically have a problem with polysemy/homonymy and therefore have
to perform some type of word sense disambiguation to arrive at the correct
translation. Adding a multilingual thesaurus of course gives better results
than using the purely corpus-based approach, but the decision for this thesis
was not to assume the existence of such a thesaurus, for reasons given in
Sect. 1.2. In the same spirit, Déjean et al. make direct use of a general
bilingual dictionary, assuming that some of the specialized terminology will
also be translated there. The results from these three information sources
are then combined in a supervised manner, where weights are set according
to the results of a manually constructed set of term translation pairs. The
authors also describe how their method could be used to add translations in a
new language to concepts in an ontology. In Déjean et al. (2005), the authors
show how the results from this method can be of use in a cross-language
information retrieval setting.

Holmlund et al. (2005) use similarities of a higher order for performing the
dictionary extraction task. Similar to the approaches discussed above, a set
of reference translations is used to establish a common ground for compar-
ing distributional similarity measures across the language borders. For each
word in a language, a similarity value using second order co-occurrence is
calculated with each of the k reference words. This results in a k-dimensional
similarity matrix for both languages involved, where the dimensions have the
same meaning in the two matrices. Vectors in both matrices can now be com-
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pared with each other, resulting in third order co-occurrence similarities. It
is not demonstrated that this approach gives any improvements in accuracy
over the previous measures, using the more well-established second order co-
occurrences.

In Wu and Fung (2005), an attempt is made to sidestep some of the prob-
lems with comparable corpora, by first mining them for parallel sentence pairs
and then treating the set of mined sentence pairs as a parallel corpus. First,
the documents in one of the languages are glossed into the other language
via a bilingual dictionary, then similar documents are identified via a simi-
larity measure (cosine). Next, sentences within a similar document pair are
parsed and sentence pairs across documents are scored for their likeliness of
being translations, using constraints from inversion transduction grammars.
The method is said to identify parallel sentences at an uninterpolated average
precision of 64.7%, but no results are given for the dictionary extraction task.

2.7 Exploiting Cross-language Data

One of the major hypotheses in this thesis is that adding information from
other languages will improve the results of a task that traditionally is ap-
proached in a single language framework (we discussed this in Sect. 2.2). This
section looks at other attempts of profiting from cross-language information
in a variety of NLP settings.

Aizawa and Kageura (2001) look at co-occurrences of English and
Japanese keywords in scientific articles. The co-occurrences are used to form
a graph where the edges are weighted by the number of co-occurrences.
They perform a clustering by splitting up the graph using the minimum edge

cut, a graph-theoretically motivated approach. They do not compare their
cross-language results with single language results, so we do not know if the
cross-language data gives a better clustering than the single language data.
On the other hand, the resulting resource (cross-language term clusters) has
added value, because it can be used in, e.g., a cross-language information
retrieval setting.

Simard (1999) and Borin (2000) look at the effects of adding a third lan-
guage for solving problems normally involving two languages: sentence and
word alignment in parallel corpora. They both conclude that information from
the third language increases the accuracy of the system, evaluated on cross-
language alignment tasks. Simard also concludes that “the more languages,
the merrier”, implying that adding a fourth language would improve the re-
sults further. Borin also notes that adding a language from the same language
family is more helpful than adding a language from a different language fam-
ily.

Somewhat related is work such as presented in Yarowsky et al. (2001),
where annotations from well established English NLP tools (taggers and

46



parsers) are projected via word alignment to texts in other languages. These
annotations, though noisier than their English counterparts, can in turn be
used to train NLP tools for use in the new language.

In Carpuat et al. (2002), the authors present a method of creating a bilingual
ontology by merging two monolingual ones; they use the English WordNet
and the Chinese HowNet. This means dealing with the idiosyncrasies of the
two ontologies, such as their different scopes and granularities. In the absence
of a bilingual dictionary (or where the coverage of such a dictionary is insuf-
ficient), their method relies on calculating the correspondences between con-
cepts using automatic translation methods such as those described in Sect. 5.3.
Carpuat et al.’s method differs from ours, in that we do not start out with pre-
existing ontologies, but rather create a cross-language structure from scratch.

Dyvik (2005) proposes to use semantic mirrors to perform both word
sense discrimination and a hierarchical ordering of word senses using a
word-aligned parallel corpus. A key concept here is the so called t-image of
a word W, which consist of all the words in the target language which have
been word-aligned with W. The linking process is then reversed by taking the
t-image of all the words in the first t-image, which gives us a set of words in
the source language, called the inversed t-image of W. By going back and
forth between languages (Dyvik also forms what he calls a second t-image by
going back to the target language from the inversed t-image), one is able to
form sets of words in either language that share at least one member (apart
from W). These sets correspond to senses of W. Further, these sets can be
used to produce a hierarchy by using a set inclusion analysis to form an upper
semilattice. A disadvantage is that the semantic mirroring process depends on
high quality (i.e., manually produced) word alignments, something which is
hard to come by on a larger scale. Dyvik also reports that the method works
better for adjectives than for nouns, which also makes it less useful for our
purposes (most terms are nouns or noun phrases).

van der Plas and Tiedemann (2006) use a cross-language distributional
similarity model for targeting the extraction of synonyms rather than
generally similar words. The idea, not unlike Dyvik’s, is that synonyms will
“co-occur” with the same translations in a parallel corpus, whereas this
would be less true for other lexical semantic relations such as antonymy
or hyperonymy. Their system outperforms a traditional, single language,
distributional similarity model on the task of identifying synonyms in the
Dutch EuroWordNet. We are not modeling synonymy in our experiments (we
assume a one-to-one mapping between concepts and terms), so this method
is not applicable in our case.

Lindén and Piitulainen (2004) use distributional similarity (from parsed
text) to learn clusters of synonymous words. To evaluate these synonym
clusters, they use a technique similar to Dyvik’s. They look up a word W
in a bilingual dictionary and get a group of words as possible translations
(Dyvik’s first t-image). These translations are then translated back to the

47



source language, generating a set of source language words (the inversed
t-image). This process is repeated with at least one more bilingual dictionary,
translating into a different target language, and the intersection of the
reversed t-images is used as a set of synonyms for W. More than one other
language is used to avoid incorrect results if one or more words in the t-image
should be homonymous.

2.8 Summary

This chapter has provided an overview of different approaches for solving
problems involved in ontology learning, or, specifically, cross-language on-
tology learning. Not all approaches were developed with this application in
mind, but most of them have proven useful in various types of ontology learn-
ing systems.

A common trait of all the methods discussed in this chapter is that they
all deal with meaning in one way or another, whether they aim at capturing
similarity (e.g., statistical machine translation and distributional similarity)
or at exploiting asymmetries (e.g., subsumption and Hearst-patterns). A large
part of our task during our experiments will be to find strategies for combining
this wealth of information in ways that take advantage of the strengths and
weaknesses of the different approaches. We present experiments to this end in
Chaps. 5–6.
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3. Resources

A few initiatives, some of them ongoing, have been taken in the ontology
learning community to establish a standard document collection along with
a corresponding domain ontology to be used for evaluation. The existence of
such a standard would facilitate automated qualitative comparisons among on-
tology learning systems and approaches – we return to this point in Chap. 4.
To date, the most ambitious initiative was taken for the 2nd Workshop on On-

tology Learning and Population, held in Sydney, Australia, 2006. Participants
were encouraged to perform experiments on the OLP2 dataset,1 a corpus, on-
tology and knowledge base in the soccer domain. This dataset is still freely
available for research purposes, but it has not yet had the needed homoge-
nizing impact on the community. Of course, an exaggerated homogeneity can
also be harmful to a field, such as is arguably the case with the use of the Wall
Street Journal part of the Penn Treebank (Marcus et al., 1993) in the parsing

community. For the ontology learning field, the danger lies rather in slipping
into the opposite ditch, where the lack of standards is preventing competitive
development.

We choose to work with a different setup for this thesis: a corpus and a ter-
minological ontology dealing with European Union (EU) related issues. There
are several reasons for this, the main reason being the massively parallel na-
ture of the corpus (described in Sect. 3.2.1). Another reason is the availability
of the rather large terminological ontology, where all terms have been trans-
lated into most of the EU languages (see Sect. 3.3.1). This combination of
a parallel corpus and a cross-language terminological ontology is crucial to
several of the experiments we describe in Chaps. 5–6.

On a smaller scale, we also work with a corpus and an ontology from the
domain of human anatomy. This corpus is comparable rather than parallel
(meaning that the texts in the different languages are not translations of each
other but still deal with the same topics). This has some disadvantages but
also poses some interesting challenges; experiments on this material are also
described in Chaps. 5–6.

1Available at http://www.dfki.de/sw-lt/olp2_dataset/
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3.1 Pre-processing

We apply certain low-level linguistic pre-processing to all corpora and ontolo-
gies, and we describe the different steps in the following sections.

3.1.1 Morphological analysis

In order to lessen some of the detrimental effects caused by data sparseness,
we lemmatize the corpora to get more occurrences of each base form term. We
use Intrafind’s2 LiSa system for morphological analysis (Hjelm and Schwarz,
2006) for all languages except Swedish, where we use the system described
in Carlberger and Kann (1999). We also lemmatize the terms in the ontologies,
in order to allow for direct matching between the lemmatized corpus texts and
the terms in the ontologies. E.g., the term ‘state trading’ will be turned into
‘state trade’ by the lemmatizer in the running text. So, if we want to be able
to map between terms in the texts and in the ontology, we need to make sure
that we have the term as ‘state trade’ in the ontology as well.

We also analyze each word in all terms with a compound splitter. This
step provides the information that is needed in the experiments described in
Sect. 6.4. For all languages except Swedish we again use the LiSa system and
for Swedish we use a system described in Sjöbergh and Kann (2004).

The increase in recall (i.e., finding more occurrences of each term) we get
from this pre-processing will partly have to be paid for with loss in precision.
In Hjelm and Schwarz (2006) we report a cumulative error rate of 1.3% for
the lemmatization and compound splitting. The majority of the errors are of
the type that no analysis is given. In such cases, the precision is not affected,
because the system then simply leaves the word as it stands in the text.

3.1.2 Term spotting

Since the concepts in the ontologies are associated with terms rather than
words, we need a way of letting the system treat multiword terms in the
corpus as single units, as well as being able to distinguish single word terms
from “mere” words. We therefore use a simple term spotting technique
(see Schwarz, 1990, Jacquemin, 2001, for more on term spotting), marking
the longest consecutive string of words that also appears in the ontology, as a
term.

A complete pre-processing of the data works like this:

The zygomatic bone (malar bone) is a pair bone of the

human skull. ->

the TERM_zygomatic_bone_55158 ( malar TERM_bone_34122

2http://www.intrafind.de
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) be a pair TERM_bone_34122 of the human

TERM_skull_49338 .

This makes the terms recognizable to the system and, as mentioned, also al-
lows the system to treat multiword terms as single textual units. Note that the
terms ‘malar bone’ and ‘pair bone’ are not marked as terms in this example
because they are not listed as terms in the ontology.

3.2 Corpora

As discussed in Sect. 1.2, this thesis aims to investigate different aspects of
learning ontologies from text. In order to do so, we naturally need large text
collections on which to test our theories. This section presents the text collec-
tions (corpora) used in our experiments.

3.2.1 JRC-ACQUIS Multilingual Parallel Corpus

This corpus consists of legal texts concerning matters involving the EU. The
number of words per language varies between 6.5 million (Swedish) and
7.8 million (French) among the languages used in the experiments: German,
French, English and Swedish.3 This choice of languages is to a certain extent
arbitrary; it is based on the existence of readily available, high quality pre-
processing software, such as lemmatizers and compound splitters. The corpus
is parallel and contains over 20 European languages in total (Steinberger et al.,
2006). Note that there is a version 3.0 released of this corpus, which is almost
three times bigger than the one used in this thesis (version 2.2).

The corpus is distributed in a format where it has been aligned automati-
cally on the paragraph level. The paragraphs are very short and usually only
contain one sentence or even one part of a sentence. There are two alignment
versions available for download;4 we have opted for the version produced by
the Vanilla aligner.5 Since the alignment process is automatic, we are of course
introducing an error source here; unfortunately we are unaware of any figures
concerning alignment accuracy for this corpus and the languages involved. To
put it informally, we consider the effects of this error source small but non-
negligible.

Below is a short exemplifying passage from one of the documents from the
corpus (excerpt from document “jrc32005R0123-en.xml”).

Commission Regulation (EC) No 466/2001 [2], sets maximum levels for
certain contaminants in foodstuffs. (2) According to Regulation (EC) No

3The differences are due to the idiosyncratic ways of the different languages of, e.g., forming
compounds.
4http://wt.jrc.it/lt/Acquis/
5http://nl.ijs.si/telri/Vanilla/doc/ljubljana/
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466/2001, the Commission shall review the provisions as regards ochratoxin
A (OTA) in dried vine fruit and with a view to including a maximum level for
OTA in green and roasted coffee and coffee products, wine, beer, grape juice,
cocoa and cocoa products and spices taking into account the investigations
undertaken and the prevention measures applied to reduce the presence of
OTA in these products.

3.2.2 Wikipedia anatomy corpus

We have downloaded the Wikipedia6 pages filed under the ‘Anatomy’ cate-
gory for English, French, German and Spanish.7 This resulted in about 7,300
pages for English, 2,600 for French, 2,400 for German and 1,000 for Span-
ish. The corresponding number of words is about 4.4 million for English, 1.1
million for French, 890,000 for German and 400,000 for Spanish. The choice
of domain and languages is partly influenced by a project, briefly described
in Sect. 3.3.2, which provided a context for some of our experiments, even
though our experiments do not constitute an integral part of that project. We
stripped the texts of HTML and other markup or scripts, as well as Wikipedia-
related text. It should be noted that Wikipedia is constantly changing and
growing and that these numbers reflect the status as of February 2007.

We again display a short passage from one of the texts, to give an idea of
the type of content featured in this corpus (excerpt taken from the document
“Index_finger”).

It [the index finger] is usually the most dextrous and sensitive finger of the
hand, though not the longest. It may be used to point to things, for hunt and
peck typing, to press an elevator button, or to tap on a window. A lone index
finger often is used to represent the number 1, or when held up or moved side
to side (finger-wagging), it can be an admonitory gesture.

We can imagine a continuum, going from parallel corpora on one extreme, to
comparable corpora on the other. Suppose we have a corpus with documents
in two different languages, where we have document pairs with newspaper ar-
ticles by different writers relating the same events in two languages. The doc-
uments are not translations of each other, which they would be in a parallel
corpus. Still we have a distinct sense of which document in the one language
corresponds to which in the other, which we would not have in a typical com-
parable corpus. Our Wikipedia corpus is similar in structure to the corpus in
the example, in that we know for some documents, via the Wikipedia links,
which documents correspond to each other. For other documents, there are no
correspondences, because not all articles exist in all languages. This means

6http://www.wikipedia.org
7For English: http://en.wikipedia.org/wiki/Category:Anatomy. This page links to the corre-
sponding pages in the other languages.
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that there are traits of parallelism in our Wikipedia corpus, though it definitley
is closer to the ‘comparable’ end of the scale.

3.3 Gold standard terminological ontologies

Parallel to the two corpora described above, we are using two terminological
ontologies in our experiments.

3.3.1 Eurovoc

Eurovoc V4.28 is a freely available multilingual thesaurus with entries in more
than 20 languages, and it covers topics where the EU is active, e.g., law, pol-
itics, economics and science. The thesaurus contains 6,645 concepts, each of
which is given a descriptor, or recommended term, in each language. Only
the descriptors are taken into consideration throughout all our experiments,
which means that we make a simplifying assumption that there is a one-to-one
relationship between terms and concepts. The average depth of the Eurovoc
hierarchy is 4.32 and the maximum depth is 8. An example of a small is-a
hierarchy is displayed in Fig. 3.1.

petroleum_product

fuel_oil heavy_oil mineral_oil motor_fuel propane_gas butane paraffin

aviation_fuel diesel_fuel petrol

lead-free_petrol

Figure 3.1: Excerpt from Eurovoc, terms involving petroleum products.

Apart from hierarchical (is-a) relations, also equivalence and associative re-
lations are listed in Eurovoc, but only the hierarchical relations are considered
in our experiments. Eurovoc is divided into 21 fields, each representing a do-
main of interest in the EU. E.g., we have the fields ‘politics’, ‘finance’ and
‘education and communications’ and examples of terms from these respective
fields are ‘composition of parliament’, ‘financial accounting’ and ‘educational
administration’.

A minority of the terms in the hierarchy have more than one super-ordinate
term; this concerns mainly geographical entities, which have both part-of and

8http://europa.eu/eurovoc/
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is-a relations marked (though the marking itself does not discriminate between
the two relation types). E.g., ‘Sweden’ has ‘Northern Europe’ and ‘EU mem-
ber state’ as super-ordinate terms, but only with the latter does it enter into an
is-a relation. In such cases, we have processed the data to remove this type of
polyhierarchy and only keep the is-a information (this is generally discernible
using the ID numbers of the concepts, though this is only a heuristic). Some
concepts have only part-of information listed, e.g., ‘Skåne county’ only has
‘South Sweden’ as parent in the hierarchy. These cases are not marked in the
thesaurus, which means that we are not able to filter them out automatically,
and in turn, that we end up with a small number of part-of relations in our
gold standard. We estimate the number of such cases to make out no more
than 2–3% of the total, which means that they will have a negligible effect on
our evaluations.

One source of controversy, which has also affected other thesauri
or taxonomies such as WordNet, is what to do with instances (see
Miller and Hristea, 2006, for a discussion). An is-a hierarchy imposes
inheritance on the vertical axis, but the inheritance chain is broken when an
instance is encountered. E.g., ‘sea captain’ is a ‘profession’ and ‘Ahab’ is a
‘sea captain’, but ‘Ahab’ is hardly a ‘profession’. In version 2.1 of WordNet,
instances have been marked as such, but this is not the case with the current
version of Eurovoc – this is an imperfection in our gold standard we will have
to live with throughout this thesis.

Eurovoc partitions

For some of our experiments it is necessary to separate the Eurovoc data in
training and test sets. To be able to perform cross-validation in our machine
learning experiments in Sect. 6.4, we split the Eurovoc taxonomy into ten
parts, approximately equal in size. We do this by making use of the fact that
Eurovoc is already segmented into 21 fields, as mentioned. We thus have nine
partitions containing two fields each and a tenth partition containing three
fields and we number the partitions 0–9. The partitions contain the following
fields:

0: Business and Competition and International Organizations

1: Economics and Energy

2: Education and Communications and Transport

3: Environment and Agri-foodstuffs

4: Finance and Industry

5: International Relations and European Communities

6: Law and Employment and Working Conditions

7: Politics, Trade and Production, Technology and Research

8: Science and Agriculture, Forestry and Fisheries

9: Social Questions and Geography
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3.3.2 FMA ontology

As part of the recently started THESEUS MEDICO project,9 funded by the
German government, a system for querying and analyzing medical informa-
tion (medical records, x-rays, etc.) is currently under construction. Certain
parts of such a system would arguably benefit from a domain ontology as a
source of background knowledge during, e.g., information retrieval or image
recognition tasks. In the domain of (human) anatomy, there exists such an on-
tology: the Foundational Model of Anatomy (FMA) ontology. It is developed
by the Structural Informatics Group at the University of Washington, and it
is open source.10 It contains about 100,000 English terms, 8,000 Latin, 4,000
French, 500 Spanish and 300 German terms. There are also a few terms in
other languages such as Italian and Filipino, but we disregard these. The on-
tology models mainly the hierarchical is-a and part-of relations, but we only
consider the is-a structure. Figure 3.2 shows an example excerpt from the
FMA ontology.

nucleated_cell

haploid

nucleated_cell
somatic_cell

diploid

germ_cell
zygote

non-nucleated_cell

non-nucleated

solocyte

non-nucleated

colligocyte

cell

Figure 3.2: Excerpt from the FMA ontology, terms involving cells.

3.4 Bilingual dictionary: Wiktionary

For the experiments described in Sect. 5.3, we also need bilingual dictionar-
ies for English-German, English-French and English-Spanish. We decided to
make use of the open source dictionaries from Wiktionary.11 They are neither
of the highest quality nor do they have the highest coverage of the existing
machine-readable dictionaries, but they are available in a large number of lan-
guage pairs and have no (or very few) restrictions on their use. The status as
of February 2007, when we downloaded the material, was that the dictionaries
contained about 9,200 English words translated into German, 10,600 English
words translated into French and 7,600 English words translated into Span-

9http://theseus-programm.de/scenarios/en/medico
10http://sig.biostr.washington.edu/projects/fm/index.html
11http://www.wiktionary.org
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ish. As a comparison, the German-English dictionary from LEO12 contains
about 460,000 entries, with the disadvantage that it is not freely accessible.
Table 3.1 shows some examples from the English-French part of Wiktionary
that we use.

English French

Aachen Aix-la-Chapelle

aardvark oryctérope

. . . . . .

abacus abaque

abaft en arrière de, sur l’arrière de, sur larrière

abandon abandonner

abandoned abandonné

abandonment abandon

. . . . . .

abhorrent répugnant

abide by se soumettre

Table 3.1: Examples from the English-French part of Wiktionary.

12http://dict.leo.org

56



4. Theoretical and Experimental
Investigations Regarding Evaluation

Dellschaft and Staab (2006) point out that the existence of methodologies and
datasets for evaluation in “batch mode” has played an important role in the
success of fields like information retrieval and speech recognition (and this
also holds for, e.g., text categorization and statistical machine translation).
Also Maedche (2002) expresses the need for standardized datasets, especially
cross-language ones, and evaluation measures to go with these datasets.
Though there is ongoing work towards establishing benchmark datasets
(see Chap. 3) and evaluation metrics in ontology learning, there is still a
great need for further understanding and refinement of the measures used
today. The current chapter, especially Sect. 4.3, is meant to add some of
that sought-after comprehension and clarification to the ontology learning
evaluation problem.

4.1 Evaluation Paradigms

We can divide the evaluation approaches for the ontology learning task into
two major groups: those measuring the quality of the learned ontology by
its conformance to some standard and those measuring the increase in per-
formance of an application which uses the learned ontology as a knowledge
resource. In conformance with the mentioned needs for batch mode evalua-
tion, we focus our attention on the former in this thesis and restrict ourselves
to giving a brief overview of the latter in Sect. 4.1.2.

4.1.1 Gold standards and human judgments

When evaluating the ontology against a formal standard, we are again faced
with a choice between two alternatives. Either we measure the similarity of
the learned ontology to a predefined gold standard, or we let human experts
look at the learned ontology and decide whether the suggested structure is
reasonable or not. The second is typically a much more forgiving task, since
people are generally able to interpret the results in a more flexible manner than
an evaluation script is.

Using a gold standard to evaluate an ontology learning system brings some
inherent problems. A gold standard provides one particular conceptualization
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and structuring of a domain. If the learned ontology differs from the gold stan-
dard, it could still be a valid model for the domain – just not the same model
as suggested in the gold standard. The experiments presented in this thesis
are contrastive in nature; they compare the effects of using different learning
strategies or different feature sets. This means that we are able to measure an
increase in performance as the model improves, even though the absolute cor-
respondence values may be low for all evaluated models. Again, even though
there generally does not exist just one way of modeling the domain, the mod-
els used as gold standards in this thesis should be sufficiently different from
unstructured data, that a more effective learning system will capture more of
the structure in the gold standards than a less effective system will. The great
advantage of the gold standard-based approach is of course that it allows for
evaluation on a massive scale; we can produce countless variants of learned
ontologies and evaluate them all via the push of a button.

Involving humans directly in the evaluation process introduces two main
problems. The first is that we are then moving away from the goal of a batch-
like processing of the results, making the evaluation process costly in terms of
time and resources. The second is the issue of reproducibility; ask any two hu-
man experts to make hundreds of qualitative judgments on a task as complex
as the current, and we are unlikely to find two identical series of decisions
(this also holds for the same person performing the same evaluatory process
at different points in time). These issues become even more problematic when
we have a large number of models that we would like to compare against each
other (as is the case with the experiments performed in this thesis) – it often
is unfeasible to have humans perform evaluations on this scale. The problems
of involving humans in the evaluation process for the ontology learning task
have also been discussed by Faatz and Steinmetz (2004).

4.1.2 Application-based evaluation

Using a learned ontology in an application and measuring the increase in per-
formance of that application has the advantage of demonstrating the practical
benefit of the ontology; a task of some general interest can now be performed
better than it could without the learned ontology (or with a learned ontology
built with another method). The downside is that we cannot make any gen-

eralizing statements of the quality of the ontology; all we can say is which
ontology is better for performing a particular task. In Sect. 2.1 we gave an
overview of the types of applications where ontologies have been put to use;
here we look at the same application types from the perspective of how suit-
able they would be in an evaluation scenario.

Query processing in an information retrieval system

A learned ontology can be used to perform some degree of query modification
and the change in performance of an underlying information retrieval system
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can be used as a quality measurement. This presupposes the existence of texts,
queries and relevance judgments from the relevant domain – something which
severely limits the applicability of this evaluation approach. A further compli-
cation is that this kind of query processing far from always has proven helpful
(see Sect. 2.1), which makes this application less attractive from an evaluation
standpoint.

Text categorization

We reported on the successful application of ontologies to the text categoriza-
tion problem in Sect. 2.1. It has not been shown, however, that the hierarchical

structure of the learned ontology is what brings the advantage, as opposed to
the information available from a simple flat clustering of the terms. This casts
some doubts on this evaluation scenario, along with its being dependent on
the existence of a domain-specific document collection categorized by hand.

Question answering

In Bloehdorn et al. (2007) and Buitelaar et al. (2006), the authors demonstrate
the use of an ontology inside a question answering system. For question an-
swering to be used as an evaluation scheme, we would again need a set of
documents, questions and correct answers from the appropriate domain. The
fact that the mentioned question answering systems make explicit use of the
hierarchical structure of the ontology when answering questions, makes this
one of the more promising approaches for evaluation, given the needed re-
sources.

4.2 Evaluating Term Clustering

Term clustering does not form a necessary part of a generic ontology learn-
ing system. However, if we consider learning a prototype-based ontology (see
Sect. 1.1), using a hierarchical clustering method based on distributional simi-
larity, an approach for evaluating different settings in the clustering environ-
ment would be of great use. Further, it will not always be the case that we
want to form a complete hierarchy when clustering terms. Sometimes the flat
clusters are all that is needed, and for these cases it would be useful to have
an evaluation procedure.

To evaluate the quality of the clusters produced, the question is what con-
stitutes a good cluster? The goal of the clustering is to capture groups of se-
mantically related terms, but what should be considered related and what not?

There are a number of intrinsic cluster evaluation methods; methods which
do not compare the resulting clusters to any outside source, but instead try to
quantify clustering-internal attributes. But do these intrinsic measures agree
with human judgments on what is considered a good clustering of terms? This
is the main question we will examine in this section.
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We propose to compare the results from the intrinsic methods to those of
an extrinsic evaluation method, which compares the results of the automatic
clustering to the implicit clustering provided by an ontology. This allows us
to apply well established evaluation techniques from document clustering to
the term clustering evaluation problem. We perform a series of experiments
on the Wikipedia anatomy corpus (see Sect. 3.2.2), using the FMA ontology
(Sect. 3.3.2) as our reference ontology.

4.2.1 Forming term clusters from ontologies

Our extrinsic evaluation approach is based on work in evaluation of document
clustering; Rosell (2005) provides a detailed description of how the measure is
used in that setting. The method relies on the existence of a gold standard, and
we form our gold standard clusters by placing a divisive cut at some level in
an ontology (see Fig. 4.1). Each node at the level of the cut forms the basis of
a separate cluster. All nodes (with their associated terms) that are dominated
by a particular base node are assigned to the cluster of that base node.
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material

entity
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anatomical

structure
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anatomical

set
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boundary
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taxonomic
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structural
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... ... ... ... ... ... ... ... ...

Figure 4.1: Ontology split into clusters: a small, slightly modified excerpt of the FMA
ontology, where only the first four levels are shown. Concepts marked in bold (second
level from the bottom) constitute the basis of the clusters. Concepts higher up in the
hierarchy than this base level are disregarded.

4.2.2 Evaluation measures

We introduce three different intrinsic evaluation measures and compare their
results on a set of evaluation tasks to the results of the previously mentioned
extrinsic measure.

Cohesion: an intrinsic measure, which gives a value for how “tight” a clus-
ter is, i.e., how closely together the cluster members are in vector space. Each
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cluster is represented by a centroid, a vector with the averaged feature values
from all cluster members. For each cluster, we calculate an average similarity
value (cohesion) of all the cluster members with this centroid – the higher the
value, the “tighter” the cluster. To evaluate the whole clustering, we calculate
the average cohesion value of all clusters:

∑ci∈C ∑t∈ci
sim(t, c̄i)

|t|

C is the set of all clusters, t is a term, c̄i is a cluster centroid and sim is a
similarity function (we use cosine).

Separation: also an intrinsic measure, which gives a value for how far apart
from each other the clusters are in vector space. We calculate the average
distance between all cluster centroids:

2 ·∑1≤i< j≤|C| 1− sim(c̄i, c̄ j)

|C|2 −|C|

Cohesion and separation both give values in the range [0,1]. Both measures
are discussed further in Rosell (2005).

F-measure: in an effort to balance cohesion and separation against each
other, we calculate the harmonic mean between these two measures:

2 · cohesion(C) · separation(C)

cohesion(C)+ separation(C)

We name the measure in analogy with the F-score used to balance recall and
precision in information retrieval.

Mutual information (MI): this is the only extrinsic evaluation measure
we investigate. We use the clustering results from the splitting operation (see
Fig. 4.1) as our gold standard clustering. Obviously, we cannot expect our
cluster ci to correspond to ontology cluster oci (oc for “ontology cluster”)
other than by pure chance, since the numerical ordering of the clusters is ar-
bitrarily made. What we can hope for is that as many terms as possible that
are clustered together in the ontology also will be clustered together in our
automatic clustering. We now form a matrix M, where the rows correspond
to the clusters in our automatic clustering and the columns correspond to the
ontology clusters. We next number the rows 1 . . .γ and the columns 1 . . .κ . We
let ni denote the number of terms in cluster ci and n j the number of terms in
cluster oc j. Finally, we let m

j
i mean the number of terms that are shared by

clusters ci and oc j. We can now calculate:

I(C;OC) = ∑
i, j

m
j
i

n
log

m
j
i n

nin j
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where n stands for the total number of terms clustered. We normalize this
measure by dividing it by log(γκ)

2 . This evaluation method was introduced for
document clustering in Strehl et al. (2000).

4.2.3 Comparing the results

We split the FMA ontology at a level that gives us 63 separate clusters. We
limit the comparison to terms that occur at least 50 times in the corpus, mean-
ing a total of 1,164 English terms – this threshold is set in order to ensure that
the clustering is performed on sufficiently high quality data. We then cluster
the term vectors using k-means clustering, setting k to 63, to match the number
of clusters in the gold standard.

In Sect. 2.4.1 we list five different parameters that can be varied easily when
working with distributional similarity models (the list is non-exhaustive but
representative). We run a series of experiments where each of these param-
eters is varied while the others are kept constant, resulting in a total of 39
experiments. We evaluate the results of each experiment using each of our
four evaluation methods, and we plot the results of the three intrinsic meth-
ods against the extrinsic method in Figs. 4.2–4.4. The correlation coefficient
for each intrinsic method compared with the extrinsic method is given in Ta-
ble 4.1.
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Figure 4.2: The cohesion values plotted against mutual information.

Cohesion Separation F-value

Correlation with MI 0.811 -0.629 0.815

Table 4.1: Correlation coefficients for the three intrinsic measures compared with the

extrinsic MI measure.

We see that there is a strong positive correlation for both the cohesion and
the F-value measures with the MI measure, and a negative correlation for the
separation measure. However, it seems the separation measure is able to can-
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Figure 4.3: The separation values plotted against mutual information.
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Figure 4.4: The F-values plotted against mutual information.

cel out some outliers in the cohesion measure and that the F-value measure is
able to profit from this; hence the slightly higher correlation for the F-value
measure than for the cohesion measure. Overall, though, the difference in cor-
relation between the cohesion and the F-value measures is not big enough for
us to draw any definite conclusions as to which is more strongly correlated
with the extrinsic method, and therefore also in extension with the human-
created clustering.

4.2.4 Interpreting the results

All terms in an ontology cluster are related by a hyperonymy or a hyponymy
relation, or by the repeated application of these two relations (which then also
covers cohyponyms). These lexico-semantic relations show different facets of
what people in general mean when they say that two terms are similar. The
clustering provided by the ontology thus seems to be a sensible reference.
Granted, most of the words in a cluster will be related via a topical connection
rather than directly through one of the previously mentioned lexico-semantic
relations. Still, words in the same ontological cluster will typically have a
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shorter “semantic distance” to the words in its own cluster than to words in
other clusters, and this is what we are after here.

The negative correlation for the separation measure may seem surprising.
Remember though, that one parameter that was kept constant throughout these
experiments was the number of clusters produced by the k-means clustering
algorithm. Should we additionally have been interested in trying to find an
appropriate k for our data, it seems more natural that the separation measure
would prove useful. Consider the extreme case, where each term is its own
cluster – here we would expect a rather low average separation but a very
high cohesion (since the only cluster member would in fact be identical to the
cluster centroid). Gradually decreasing the number of clusters would then give
us an evening out of the two measures against each other. We suspect that the
F-measure would be of most value also when trying to find an appropriate k for
a particular set of terms, since the F-measure does exactly this; it balances the
cohesion and separation values against each other. Though this remains to be
verified experimentally, we use this intuition in our experiments in Sect. 6.1.

Our stated purpose for performing these experiments was to see whether
the readily available intrinsic cluster evaluation measures coincide with hu-
man similarity judgments. The strong correlation demonstrated here between
a human source for relevance judgments, provided via the ontology, and the
clustering-internal, intrinsic, evaluation measures demonstrate that this is the
case, to a large degree. In most cases where we wish to perform term cluster-
ing, the intrinsic measures will in fact be our only option, since the existence of
a domain ontology would reduce the need for performing an automated clus-
tering. Our results thus point towards the intrinsic measures providing good
indications as to which clustering is to be preferred, in a real world scenario.

4.3 Evaluating Ontology Learning

The previos section showed different possibilities of evaluating term cluster-
ings. If we wish to include the hierarchical structure of an ontology in our
evaluation, we need another approach. We are thus interested in finding a
metric for measuring the similarity between two ontologies. A first sugges-
tion towards this goal within the ontology learning community was given
in Maedche (2002). The measures taxonomic precision (TP), taxonomic recall

(TR) and TF (the harmonic mean of TP and TR) were introduced there. These
measures make use of what Maedche calls conceptual cotopy or semantic co-

topy (SC). The SC of a concept in a hierarchy consists of all its superconcepts,
its subconcepts and the concept itself. To separate the evaluation of the over-
lap of the lexica of the two ontologies from the evaluation of the taxonomic
structures, Dellschaft and Staab (2006) and Cimiano (2006) use common se-

mantic cotopy (CSC), which disregards all concepts that are not found in both

ontologies.

64



These measures have been applied in a number of different settings and
are starting to establish themselves as the standard measures for evaluating an
ontology learning system. We argue here that they are not applicable to all
settings where such an evaluation measure is needed and also that they do not
always behave in a predictable manner (see Figs. 4.7–4.9). We also introduce
a new evaluation measure, based on Pearson’s product-moment correlation
coefficient (PMCC).

We follow Dellschaft and Staab (2006) in treating concepts and the terms
used to represent them as one and the same, assuming a one-to-one relation-
ship between the two. This is not crucial to the arguments presented, but is
meant to simplify the discussion.

4.3.1 The PMCC evaluation measure

Oxhammar (2007) uses Spearman’s rank correlation to evaluate how well an
ontology enrichment algorithm manages to add terms to an existing ontology,
when comparing to a gold standard. We propose to use the related PMCC
measure for the problem of calculating a similarity score between two ontolo-
gies. In Sect. 4.3.3, we show why using PMCC is more fitting for the current
task, than using Spearman’s rank correlation.

The idea behind the PMCC measure is that we can characterize an ontology
by listing all pairs of concepts that it contains, along with the distance between
each concept pair, measured in the number of edges between the two concepts.
E.g., for the ontology in Fig. 4.5, we get the following distances:

root

A B

A1 A0 B0 B1

Figure 4.5: Small example ontology.

A0 -> A: 1

A0 -> A1: 2

A0 -> root: 2

A0 -> B: 3

A0 -> B0: 4

A0 -> B1: 4

A1 -> A: 1
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A1 -> root: 2

A1 -> B: 3

A1 -> B0: 4

A1 -> B1: 4

A -> root: 1

...

Note that if we have listed the distance A0 → A1, we do not need to list
the distance A1 → A0, since it will be identical.1 Neither are we interested in
the distance between any concept and itself, and also not in distances between
concepts that do not occur in both the reference ontology and the learned on-
tology (analogous to the CSC measure). This means that if the two ontologies
share n concepts between them, we need to calculate a total number of n2−n

2
distances per ontology. Once we have calculated these series, we can use them
to calculate the PMCC measure:

ρX ,Y =
cov(X ,Y )

σX σY

(4.1)

where X is the series from the learned ontology and Y the series from the
reference ontology, cov stands for covariance and σ is the standard deviation.
The measure is symmetrical, so we could swap X and Y and get the same
result. The measure returns a value between -1 and 1, where 1 means perfect
correlation, 0 means no correlation and -1 means perfect negative correlation,
somewhat simplified. A negative value thus means that long distances in one
ontology correspond to short distances in the other, and vice versa. Note that
a high negative value also would be of interest, since we then would have a
method which consistently makes wrong decisions, and to get a functioning
system we should do the opposite of what the original system suggests.

PMCC assumes that the series being compared are normally distributed.
We plot the distribution of distances in the Eurovoc thesaurus, according to
the method described for Fig. 4.5 above, in Fig. 4.6. The plot fits a normally
distributed curve nicely, and we take this as an indication that assuming a
normal distribution is reasonable, in the general case.

4.3.2 Evaluating the measures

Just from reading the descriptions of these measures, it is not necessarily clear
how the different measures react to different types of input. To remedy this,
we have constructed a number of tests where we aim to make the differences
in behavior evident.

In Dellschaft and Staab (2006), three main criteria are listed for determin-
ing what is a good evaluation measure:

1We treat the ontology as a simple directed acyclic graph.
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Figure 4.6: Distribution of path lengths in Eurovoc.

• Criterion 1 – Independent dimensions of evaluation: The measure
should allow the term extraction part of the ontology learning system
to be evaluated independently from the part that learns the hierarchical
structure.

• Criterion 2 – Severe errors should have a higher impact on the measure
than less severe ones: E.g., an error near the root of the ontology should
have a bigger effect than an error further down in the tree.

• Criterion 3 – A gradual decrease in correctness should result in a grad-
ual decrease in the value of the evaluation measure: This relates to the
previous point, but emphasizes a linear, predictable behavior of the mea-
sure.

To clarify Criterion 1, consider that in a complex, multilayered system like the
ones used in ontology learning, one has to take into account the effects of er-
ror propagation, where errors in a previous module will cause later modules to
function worse than if they had been fed correct input. To eliminate the effects
of error propagation between modules during evaluation, one should consider
each subtask in separation of the others and this is what Criterion 1 stresses.
This criterion is trivial for the PMCC measure: since we only consider con-
cepts shared by both ontologies, the quality of the term extraction (often the
first module in an ontology learning system) does not directly influence the
result. To evaluate the term extraction component, any version of precision
and recall, such as described in, e.g., Maedche (2002), could be used. The
following pages present a series of experiments designed to test how far the
different measures meet the other criteria.

In addition to the criteria from Dellschaft and Staab (2006) listed above, we
would like to add the following:
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• Criterion 4 – Scaling: Often the learned ontology will only contain a sub-
set of the concepts in the gold standard. This can in turn lead to large dif-
ferences in average path lengths between concepts in the two ontologies.
A good measure should be able to abstract away from such differences in
scale.

• Criterion 5 – Vertical and horizontal perspective: The vertical dimen-
sion, typically representing an is-a inheritance structure, is of course a key
characteristic of an ontology. However, much information is also coded in
the horizontal plane, where the sibling information (often representing co-
hyponymy when dealing with terms) can be read. A good measure should
consider both dimensions.

We present experiments for testing these additional criteria, and we finally also
look at the behavior of the measures in a typical machine learning scenario.

Experiments with the Eurovoc thesaurus

For the first series of tests, we are using the Eurovoc thesaurus (see
Sect. 3.3.1) as the reference ontology. We perform randomized distortions on
this structure and see how the different measures respond to the changes.
Counting the root node, domain and micro-thesaurus information, the
Eurovoc taxonomic structure has 6794 concepts. Because our first three
experiments involve a random element, they were all repeated ten times,
using different random initializations.

Experiment 1 – Randomized scrambling: Starting off with two identical on-
tologies as the learned and the reference ontology, we gradually introduce a
randomization factor into the “learned” ontology. We start by randomly select-
ing 10 percent of the concepts in the ontology and have them switch places,
also in a random fashion. We then increase the degree of randomized concepts
stepwise, by 10 percent for each step, up to 100 percent.

Fig. 4.7 shows a linear decrease for the PMCC measure, which is in
accordance with Criterion 3, listed previously. The SC measure starts
flattening out at about 30 percent randomization and the CSC at perhaps 40
percent, although it starts out with a steeper descending curve than the other
two. This flattening out of the curves is unfortunate, especially if you have a
learned ontology which is noisy, since differences may be hard to detect in
this flattened, low accuracy area of the curve.

Experiment 2 – Randomized scrambling, neutral root: In the previous
experiment, the root node was kept the same for both ontologies and excluded
from the randomization. In this experiment, the root node in the learned
ontology was switched to a neutral concept, which does not occur anywhere
in the reference ontology (this new root was kept constant throughout this
set of experiments). Fig. 4.8 shows that the PMCC measure is unaffected
by this change. The SC measure has a sharp drop in accuracy when no
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Figure 4.7: Increasing level of randomization.

randomization has been performed. The curve for the CSC measure drops
even more steeply than in Fig. 4.7, before starting to flatten out at around 60
percent randomization.
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Figure 4.8: Increasing level of randomization, neutral root.

Experiment 3 – Randomized scrambling, switched root: This experiment is
similar to the previous two, but here we let the root and a (randomly picked)
concept occurring somewhere in the reference ontology switch places. (The
same randomly picked concept was kept as root throughout Experiment 3.)
Figure 4.9 shows that the PMCC measure again is unaffected. The SC measure
has a similar behavior as it had in Fig. 4.8, but the CSC measure now has
the same sharp drop in accuracy where no randomization has taken place,
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as the SC measure had in the previous experiment. Experiments 2–3 show an
unwanted sensitivity to changes in the root node for the SC and CSC measures,
which is not shared by the PMCC measure.
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Figure 4.9: Increasing level of randomization, switched root.

Experiments with ontologies designed for evaluation

We have constructed an artificial reference ontology, shown in Fig. 4.10, for
checking the behavior of the different measures in a number of situations,
simulating different types of learning errors and learner behavior.

root

A B

A1 A0 B0 B1

A11 A10 A01 A00 B00 B01 B11 B10

Figure 4.10: Reference ontology.

Experiment 4 – Concept displacement on high or low level in the
ontology: Misplacing concepts that belong high up in the ontology is
intuitively more serious than misplacing concepts belonging further down
in the ontology. We have made two different alterations to the reference
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ontology: the first has two misplaced concepts at the lowest level (Fig. 4.11)
and the second has two misplaced concepts at the top level, below the root
(Fig. 4.12). This experiment corresponds to the previously listed Criterion
2, that is, we would like the misplacement closer to the root to cause a
bigger drop in similarity than the misplacement at the lowest level. Table 4.2
indicates that this is captured by all three measures.

root

A B

A1 A0 B0 B1

A11 A00 A01 A10 B00 B01 B11 B10

Figure 4.11: Ontology with concepts misplaced on the lowest level.

A

B0 B1

B

A1 A0

root

B00 B01 B11 B10 A11 A10 A01 A00

Figure 4.12: Ontology with concepts misplaced at the top.

Experiment 5 – Scaling: This experiment means to test our additional
Criterion 4, which deals with scaling. One can easily imagine a situation
where, in addition to the concepts on which we wish to focus our evaluation,
the reference ontology contains layers of nodes which are abstract in nature
and do not show up in the learned ontology. In these cases, we still want to be
able to use this reference ontology for evaluation and get a high score if the
same basic structures are captured. The elongated reference ontology used for
this evaluation is depicted in Fig. 4.13, while our previous reference ontology
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SC CSC PMCC

Bottom displacement 0.940 0.922 0.942

Top displacement 0.713 0.641 0.826

Table 4.2: Comparing scores for misplacement at the top or at the bottom of the on-

tology.

from Fig. 4.10 serves as the learned ontology for this experiment. The results
are presented in Table 4.3. The SC measure does not handle this situation
well, it gives a low similarity score to the two ontologies, whereas the CSC
measure gives a perfect score, which conforms better with Criterion 4. The
PMCC measure copes well with the additional layers; the score indicates
close to perfect similarity.

rootp

A B

root

Ap Bp

A1 A0

A1p A0p

A11 A10

A11p A10p

A01 A00

A01p A00p

B0 B1

B0p B1p

B00 B01

B00p B01p

B11 B10

B11p B10p

Figure 4.13: Ontology with additional layers of abstract concepts.

SC CSC PMCC

Elongated ontology 0.400 1 0.969

Table 4.3: Similarity score when using a reference ontology with interspersed abstract

concepts.
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Experiment 6 – Horizontal relations: In this case we use the ontology in
Fig. 4.14 as our reference. Figure 4.15 does a good job of grouping siblings
together, but assigns the wrong “top” node to each subtree. The ontology in
Fig. 4.16 preserves some of the hierarchical relations, but this is merely by
chance; the leaf nodes are really just distributed in an alternating pattern.
For a human correcting the output of an ontology learning system, the first
structure would be much preferable to the second, since it involves correcting
just two nodes, whereas six nodes need correction in the second structure.
Cimiano (2006) suggests a measure he calls sibling overlap, designed to
measure this type of correlation between structures. We believe a measure
which considers both the vertical and the horizontal relations in an ontology
would be even more useful. Table 4.4 shows that the PMCC measure prefers
the ontology with a higher degree of preserved horizontal relationships,
whereas the other two measures prefer the ontology with the alternating leaf
nodes.

root

A B

A0 A1 A2 A3 A4 B0 B1 B2 B3 B4

Figure 4.14: Reference ontology for horizontal relations.

A

B0 B1 B2 B3 B4

B

A0 A1 A2 A3 A4

root

Figure 4.15: Ontology with “switched” parent nodes.

root

A B

B0 A1 B2 A3 B4 A0 B1 A2 B3 A4

Figure 4.16: Ontology with alternating leaves.
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SC CSC PMCC

Switched parents 0.634 0.487 0.567

Alternating leaves 0.780 0.692 0.221

Table 4.4: Comparing scores for preserving horizontal relationships.

Experiment 7 – Hierarchical clustering: Fig. 4.17 is typical of the structure
one gets when some kind of hierarchical clustering is used. The non-leaves in
such a structure are abstract; they have no single label, but are usually consid-
ered as a set containing all subnodes. E.g., node ‘3’ in Fig. 4.17 would consist
of the set {B00, B01}.

1
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2

A11 A10

3

B00 B01

4

B11 B10
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7

B0

8

B1

9 10

11

A

12

B

root

Figure 4.17: Ontology resulting from hierarchical clustering.

We see now that when we take the SC of any concept in Fig. 4.17 and
compare it with its corresponding concept in Fig. 4.10, we will always get a
complete mismatch; no two concepts in the SCs of the concepts under eval-
uation will be the same (except for the concept itself and the root, which is
trivial). E.g., the SC of ‘B00’ is {B00, B0, B, root} in the reference ontology
and {B00, 3, 7, 10, 12, root} in the learned ontology.2 If we take the CSC
of the same concept, we get {B00, root} for the learned ontology and again
only the concept itself and the root are shared with the reference, which also
is trivial. In fact, Cimiano (2006) notes that because the concept itself is in-
cluded in the cotopy, a trivial ontology where every concept is placed directly

2Instead of using numbers, we could of course use the set of terms as labels, e.g., instead of ‘3’
we could use {B00, B01}. This does not make any difference to our discussion, since sets do
not occur in the reference ontology any more than do numbers.
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under the root would score very high using the CSC measure (see Cimiano,
2006, p. 105). Cimiano then suggests to exclude the concept itself from the
cotopy. This means that all leaf nodes in Fig. 4.17 will have empty CSCs (ex-
cept for the root); they will not contribute anything to the evaluation. Cimiano
concludes that these concepts should be excluded; only the concepts not oc-
curring in both ontologies should be used in the evaluation (here meaning
{1–12}). For the remaining concepts, an optimistic estimation is made, where
the concept in the reference ontology with the greatest overlap in CSC is cho-
sen for comparison. The new formula for Taxonomic Overlap (TO’) looks like
this:

TO′(O1,O2) =
1

|C1 \C2|
∑

c∈C1\C2

maxc′∈C2TO′(c,c′,O1,O2) (4.2)

TO′(c,c′,O1,O2) =
|SC′(c,O1,O2)∩SC′(c′,O2,O1)|

|SC′(c,O1,O2)∪SC′(c′,O2,O1)|
(4.3)

PTO(O1,O2) = TO′(O1,O2) (4.4)

RTO(O1,O2) = TO′(O2,O1) (4.5)

where SC′ stands for the new version of SC, where the concept itself is ex-
cluded from its cotopy. One intuitive objection to this is that we now force a
comparison between “abstract” nodes in the learned ontology and “concrete”
nodes (represented by a single term) in the reference ontology, even though
we “know” that these are not the nodes corresponding to each other. E.g., we
see that the concept B00 in the reference ontology corresponds to the concept
B00 in the learned ontology, but we are not allowed to make this mapping.

A more serious problem arises when we consider the RTO(O1,O2) measure
above. If we take {Cre f \Clearned}, we get the empty set – we have no concepts
on which to calculate the recall part of the TO′. This is not apparent from
the description in Cimiano (2006), since the author there assumes that the
reference ontology will contain abstract nodes as well. This we consider to be
the most serious problem with the TO′ measure – that it is not applicable in
these cases.

The results for evaluating the hierarchical clustering are displayed in
Table 4.5. This is about as close to the reference ontology as we can get,
using hierarchical clustering (in that concepts that are close in the reference
are also close in the clustering), which is captured by the PMCC measure
but not by the other two. (The CSC measure tested is the one proposed
in Dellschaft and Staab, 2006, not Cimiano’s altered version discussed
above.)
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SC CSC PMCC

Hierarchical clustering 0.308 0.496 0.956

Table 4.5: Similarity scores for hierarchical clustering.

4.3.3 Alternative approaches and implications for ontology

learning evaluation

An alternative to using PMCC would have been to use Spearman’s rank cor-
relation. That would mean that, instead of entering distances between nodes
in the table below Fig. 4.5, one would enter the ranking for each term pair.
All term pairs with distance 1 would get ranking 1 and all pairs with the same
ranking form equivalence groups. Looking again at the example ontology in
Fig. 4.5, we see that there would be six pairs with distance 1, meaning that
pairs with distance 2 will get rank 7 and so forth.3 If we apply this to an
ontology such as the one used in the Eurovoc experiments, we get very big
equivalence groups, containing millions of members, as can be seen in the
distribution in Fig. 4.6. This means that a length difference of 1 could result
in a rank difference of several million and this is not what we want. In statis-
tics literature, the recommendation is to not use Spearman’s rank correlation
when the data contains many ties (Bassett, 2000), which is in line with our
reasoning here.

The PMCC measure we suggest bears some resemblance to the method
proposed in Brank et al. (2006). Their OntoRand index measure calculates av-
erage distances between instances in the ontology rather than considering the
concepts themselves. They require the sets of instances in the gold standard
and in the learned ontology to be identical.

Resnik (1998) and Budanitsky and Hirst (2006) discuss a number of alter-
natives to the absolute path length for measuring the distance between two
concepts in a taxonomy. One intuitive notion these measures aim to capture
is that two concepts at the leaf level sharing the same parent are more similar
than two concepts sharing the same parent higher up in the taxonomy. This
certainly makes sense if we wish to model similarities between concepts in
an ontology. Here we want to do something different, namely measure the
similarity between two ontologies. As shown in Experiment 4, the PMCC
measure reacts stronger to displacements at the top of the ontology, using the
standard path length measure – switching to a depth-sensitive measure there-
fore adds unneeded complexity to the method while introducing a degree of
unpredictability by trying to solve the same problem at two different places at
once.

3Rankings within groups are typically averaged, meaning that the group with distance 1 would
be ranked 3.5. This is not crucial to the discussion here though.
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Wishing to measure the similarity of ontologies/tree structures is not some-
thing indigenous to the ontology learning community. Schilder et al. (2005)
calculate similarities between parse trees and Jin et al. (2005) compare RNA
structures. Common to many of these approaches is their indebtedness to the
tree-to-tree correction problem (Tai, 1979), see Barnard et al. (1995) for a sur-
vey. In tree-to-tree correction, the similarity measure is based on the number
of edit operations necessary to get from one tree to the other. The allowed
operations are insert, delete and sometimes also switch.

One issue with applying this approach to our particular problem is that we
no longer make distinctions between large displacements and small. We would
expect an ontology where a concept has been moved a small distance from
its original place in the gold standard to get a higher similarity score than an
ontology where the same concept has been moved a larger distance. This is not
the case using the principles of the tree-to-tree correction problem. Further,
it seems intuitive to give a mistake in the lower, most specific, levels of an
ontology less importance than a mistake at the top of the ontology (Criterion
2). This is also not captured by the tree-to-tree correction approach, whereas
the three approaches compared in this paper all make this distinction.

Another aspect that sets the PMCC measure apart from the tree-to-tree cor-
rection approach is its ability to handle differences in scale – Criterion 4. The
CSC-based measures share this ability, the SC-measures do not, as can be seen
from the numbers in Table 4.3. Imagine that we are working with an exten-
sive gold standard, containing thousands or tens of thousands of concepts, but
our learning algorithm only handles a fifth of these. If this subset is more or
less evenly spread out over the gold standard, the PMCC measure can abstract
away from this difference of scales, simply by assigning the proper k-value
in the y = kx + m linear transformation. The tree-to-tree correction approach
falls short of detecting this relation. Similarly, our PMCC measure handles
constant length differences between the ontology through the value of m. The
tree-to-tree correction approach would also fall short of detecting the similar-
ities between the gold standard and the learned ontology shown in Fig. 4.17,
where the learned ontology stems from a hierarchical clustering system.

Cimiano (2006) suggests another approach that makes use of graph simi-
larity measures, such as presented in Chartrand et al. (1998). Chartrand et al.’s
formula for calculating a distance between two graphs G1 and G2 looks like
this:

d(G1,G2) = ∑ |dG1(u,v)−dG2(u,v)|

where the sum is taken over all unordered pairs of vertices (u,v). This seems
more promising (and in fact very similar to the approach proposed here) than
using the tree-to-tree correction approach. One problem with this is that calcu-
lating a maximum graph distance can be a computationally very costly proce-
dure. Without a maximum, it is not possible to normalize the measure, which
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in turn would make it hard to use for comparing different ontology learning
approaches in different settings.

It is true that the PMCC measure does not distinguish between distances
going up or down in the ontology. It is even possible to construct different on-
tologies which are indistinguishable to the PMCC measure.4 However, this is
only possible as long as all concepts in the ontology (apart from the root) have
no more than one subconcept, which is a type of ontology one would expect
to see rarely, if ever. In all other cases, even though the distance between any
two concepts that change places in the same “is-a chain” (where one concept
dominates the other) remains the same, their respective distances to other con-
cepts in the ontology do not, meaning that any such alteration still would be
detected in the overall similarity score.

Returning to the criteria for what constitutes a good evaluation
metric presented in Sect. 4.3.2, we now have a better idea of how the
different measures stand up. The independence criterion (Criterion 1)
is handled by the PMCC and the CSC measure, but not by the SC
measure (Dellschaft and Staab, 2006). All three measures show a bigger
reaction to concepts swapped at the top of the hierarchy than to concepts
swapped on leaf level (Criterion 2). Only the PMCC measure displays a
linear decrease in its value for a linear increase in noise, or randomization
(Criterion 3). For the two additional criteria suggested in this paper, we
have seen that the CSC and PMCC measures handle scaling well, whereas
this is not the case for SC. The PMCC measure is the only measure of the
three explicitly taking horizontal relations into account in addition to the
vertical relations. Only the PMCC measure detects the similarity between the
simulated hierarchical clustering result and the gold standard in Figs. 4.17
and 4.10.

The PMCC measure is the only measure tested here that meet all five listed
criteria. We have also shown that it can be used in situations where currently
available measures cannot. It therefore constitutes a valuable alternative and
complement to the already established SC and CSC measures, for the evalua-
tion of ontology learning systems.

4Note that the same is true also for measures based on the SC and CSC measures.
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5. Identifying Cross-language Term
Equivalence

The experiments presented in this chapter deal with the identification of cross-
language term equivalents, a topic interesting for its applicability in a number
of language technology fields. The most obvious application is the automatic
construction of domain-specific bilingual dictionaries. Such dictionaries are
used in many different settings, including rule-based machine translation and
cross-language information retrieval, where some approaches rely on the ex-
istence of bilingual dictionaries for translating queries. The main reason for
looking at this problem in this thesis is, as mentioned in Sect. 2.2, to be able
to automatically create a cross-language terminological ontology.

If we want to automate the ontology learning process completely, we need
to be able to extract the terms relevant to a particular domain in an automatic
manner. Given a collection of domain-specific documents, we want to iden-
tify the textual units that constitute the terms of the domain (document col-
lection). This process is referred to as term extraction (Castellví et al., 2001;
Jacquemin, 2001). Of course, for term extraction to constitute a viable first
step in the ontology learning process, we need the recall and precision of the
term extraction system to be rather high – otherwise all further processing
will be contaminated by error propagation. We therefore start by performing
a term extraction experiment, to see where we stand in this matter.

5.1 Term Extraction

In order not to reinvent the wheel, we use tools already available for
term extraction. For English, we use a publicly available tool named
TermExtractor (Sclano and Velardi, 2007), developed at the University of
Roma “La Sapienza”. For other languages, a comparable, publicly available
tool does not exist. We instead take a simplistic approach for the non-English
languages; we use the mutual information measure for deciding what is to
be considered a term (see Castellví et al., 2001, for a list of term extraction
systems using mutual information). The scores of the mutual information
measure are based on term frequencies in the Wikipedia anatomy corpus
(see Sect. 3.2.2) and a contrasting reference corpus consisting of newspaper
texts. The contrasting corpus consists of excerpts from the Reuters Corpus,
volumes 1 and 2 (Lewis et al., 2004), and is about ten times the size of the
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FMA terms Extracted terms In common Precision Recall

English 6047 4075 506 0.124 0.084

German 88 2657 68 0.026 0.773

French 754 2498 114 0.046 0.151

Spanish 149 2888 77 0.027 0.517

Table 5.1: Term extraction evaluation, Latin terms not included. The first column states

how many of the terms in the FMA ontology occur at least once in the text, the second

column the number of terms extracted by the different tools and the third column how

many terms are in the intersection between the previous two sets. Columns four and

five state the precision and recall for each language.

FMA terms Extracted terms In common Precision Recall

English 7703 4075 537 0.132 0.070

German 1817 2657 126 0.047 0.067

French 1174 2498 136 0.054 0.119

Spanish 298 2888 95 0.039 0.319

Table 5.2: Term extraction evaluation, Latin terms included.

domain corpus for each language. We also specify patterns of parts of speech
for each language and only allow terms that comply with these patterns.
These part-of-speech patterns are slightly different for each language, and are
overgenerating rather than undergenerating in their basic aim to capture noun
phrases.

We carried out an evaluation of recall and precision for the two approaches
and for the four different languages in the FMA ontology (see Sect. 3.3.2). We
calculate precision as how many of the terms suggested by the term extraction
system are actually terms in the FMA ontology. Recall, accordingly, is calcu-
lated as how many of the terms in the FMA ontology, that also occur at least
once in the domain corpus, are identified as terms by the system. Results are
presented in Table 5.1.

Considering the domain of the corpus, we expect a large number of Latin
terms to be identified by the term extraction tools. In a sense, identifying these
as terms in the language in question is not necessarily incorrect, since Latin
functions as a lingua franca in the anatomy domain (see Sect. 5.3). So, what if
we include Latin terms in our evaluation? The results can be seen in Table 5.2.

The biggest difference between the two tables is that the recall drops enor-
mously for German in the second table. A lot of Latin terms occur in the
German part of the corpus and the term extraction system is not able to cap-
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ture these well. Also, only 88 German FMA-terms occur in the corpus, most
of which are rather frequent, which makes it easy to get a high recall on these
terms.

It is possible, at least in our mutual information-based system, to balance
recall and precision against each other by varying the threshold for the mu-
tual information value. We refrain from doing that here, since the purpose
of this experiment is not to create a state-of-the-art term extraction system;
much more we want to perform a feasibility check, to see whether the results
are good enough to form the basis for our further experiments. Unfortunately,
even the more advanced TermExtractor system only reaches 0.124 precision
and 0.084 recall. These numbers are too low for us to be able to use the system
output as input to our ontology learning system. The errors from this prelimi-
nary step would prevent us from performing relevant evaluations of later steps
in the ontology learning chain. We therefore make the following assumption
for all subsequent experiments: we assume that we have access to the output
from an ideal term extraction system, which outputs all the terms that are in
the gold standard ontology and occur in the corpora – and nothing else. This
assumption allows us to focus on evaluating other parts of the ontology learn-
ing process, without contamination from error propagation.

5.2 Term equivalence in parallel corpora

Given that we now have a set of terms in each language (as discussed in the
previous section), the next step towards learning a cross-language terminolog-
ical ontology is to find out which terms in the different languages mean the
same thing.1

Various kinds of distributional similarity measures have been tried on the
task of extracting cross-language term equivalents in past research. Another
approach aims at solving the task by using methods from statistical machine
translation, though the focus there has often been word alignment rather than
extraction of equivalents – a distinction between looking at word types and
word tokens, as discussed in Sect. 2.6.

We perform a systematic comparison of these two main approaches on a
variety of language pairs, using the JRC-ACQUIS multilingual parallel cor-
pus (see Sect. 3.2.1) to train the models, and Eurovoc V4.2 (see Sect. 3.3.1)
to evaluate the results. The methods we investigate rely on sentence or docu-
ment aligned texts, which is why we cannot use the Wikipedia anatomy corpus
(studied in the previous section) for these experiments.

1Part of the research described in Sect. 5.2 has been published as Hjelm (2007).
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5.2.1 Experimental setup and results

We use a group of distributional similarity models in this evaluation. We start
off by comparing them to each other; we look at how they differ and at which
model is the most effective for solving the translation task. The following are
the three main characteristics where our distributional models differ:

1. Whether the co-occurrence matrix is built using first or second order co-
occurrence data.

2. Whether random indexing or no dimensionality reduction is used.
3. Whether cosine or mutual information is used as the similarity measure.

We describe each alternative in the following.
The experiment involves all pairwise combinations of the following lan-

guages: German, English, French and Swedish. This means that six language
pairs have been evaluated and thus twelve directions of translation.

Translating terms

When learning a cross-language ontology from text, we are interested in find-
ing equivalence relations between terms in the source and target languages –
relations between terms and non-terms (“regular words”) or relations purely
between non-terms are only of secondary interest (see Sect. 2.6 for a discus-
sion on term equivalence).

In our experiments, we assume that the term extraction has already been
carried out correctly. This means two things:

1. The task for the systems consists in translating the Eurovoc terms.
2. The translation candidates are limited to the target language terms – no

non-terms are allowed as translation candidates.

These restrictions may seem rigid. However, if we assume that the term ex-
traction process has been carried out correctly and we also assume that a term

in the source language is always translated with a term in the target language,
the restrictions are needed for the sake of consistency.

Data and gold standard

We use the JRC-ACQUIS corpus for building the distributional models and
for training the GIZA++ system. GIZA++ is the word alignment part of a
statistical machine translation system, introduced in Sect. 2.6.2.

The descriptors in Eurovoc constitute our gold standard; when the system
translates the descriptor for a concept in the source language with the descrip-
tor for the same concept in the target language, the translation is counted as
correct, otherwise as incorrect.
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Figure 5.1: Constructing a distributional model for translating from German to English
(the texts have been pre-processed). The entire English alignment unit is used as a
context window when building the second order co-occurrence model for German.

Comparing the distributional models

We start off by comparing the different distributional similarity models,
before continuing to include statistical machine translation in the comparison.

First vs. second order co-occurrence models: When using first order co-
occurrences, rows in the co-occurrence matrix represent terms and columns
represent documents, or in this case paragraphs. One model per language and
language pair is needed, since the paragraph alignment is unique to each lan-
guage pair.

When using second order co-occurrences, one makes use of a fixed-size
sliding window to determine which words are to be considered neighbors of
the focus word. Building a model for the target language, we proceed in the
standard fashion, just as if we were building a single language model. For the
source language, we instead use the target language part of the alignment unit
as the window, as illustrated in Fig. 5.1. However, nothing actually forces us
to use the target language words as features, we might as well use the source

language words as features, or we could use both. We will return to this point
further down. We make no adjustment for the proximity of the words, since
we do not wish to make any assumptions about the similarity of word order
between the languages involved.

Random indexing vs. full matrix: As mentioned previously, we want to
compare the effects of not using dimensionality reduction with that of using
random indexing. Of course, using a reduced matrix can give computational
benefits, especially when working with larger text collections. Here, we are
mainly interested in the effects a reduced matrix might have on the accuracy

of the system.

Cosine vs. mutual information: It would be methodologically pleasing to try
these two different similarity measures for all combinations of first and sec-
ond order co-occurrence models, paired with the dimensionality reduction op-
tion discussed previously. However, applying the mutual information measure
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does not make sense after the dimensionality reduction has been performed,
since most or all vectors will be dense by then, containing few or no zeros. We
use the following formula to calculate mutual information:

∑
x,y

p(x,y)log
p(x,y)

p(x)p(y)

This typically presupposes a binary representation, meaning that if the number
of zero-entries in all vectors is very low or zero, the measure will judge most
or all vectors to be equally similar to each other. We therefore refrain from
evaluating the mutual information measure on models where dimensionality
reduction has been performed. To calculate the cosine measure, we normalize
the vectors to unit length, and then take the dot product of the two vectors.

Given the great number of similarity measures available, it would
have been possible to include many more in the evaluation. The cosine
measure was chosen because of its widespread application in information
retrieval, and the mutual information measure because of its broad use in the
information theory community, along with its giving the best results in the
comparison in Ribeiro et al. (2000), where the task is similar to ours.

Results for the comparison of the distributional models: For each combina-
tion of settings, we evaluate each of the twelve translation directions. Again,
as mentioned previously, we only consider the descriptors of the target lan-
guage as translation candidates. As input to the system, we use all source
language descriptors that occur at least once in the source language text of
the parallel corpus at hand. We also split the descriptors into eleven frequency
classes (counted separately for each of the twelve directions of translation):
1, 2–5, 6–10, 11–50, 51–100, 101–500, 501–1000, 1001–5000, 5001–10000,
10001–50000 and ≥50001. We calculate the average accuracy for all twelve
directions of translation, for each frequency class as well as the overall ac-
curacy, regardless of frequency (displayed later in Table 5.3). Fig. 5.2 shows
a comparison of all applicable combinations of settings when working with
first order co-occurrence models and Fig. 5.3 shows the same comparison for
second order co-occurrence models. Both figures show that we get the best
results when using the cosine measure and the non-reduced matrices.

As mentioned, there is no inherent reason to choose the target language
words as features when building a second order co-occurrence model. In fact,
since four languages are involved in these experiments, we made an exper-
iment where words from all four languages are used as features. As can be
seen in Table 5.3 (where this method is labeled “2ndOrder-Full-Cosine-CL”),
this brought a very moderate increase in performance, but still this is the most
effective second order model.

Throughout all experiments, we use the log2 of the frequencies in the mod-
els rather than the raw frequencies. The intuition behind this is that a fea-
ture (word or document) co-occurring twice with the focus word should be
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Figure 5.2: First order co-occurrence models. “Full” stands for no dimensionality re-
duction, “MI” for mutual information and “RI” for random indexing.
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Figure 5.3: Second order co-occurrence models.

85



 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000  10000

P
e

rc
e

n
t 

c
o

rr
e

c
t

Frequency class

CL-Full Cosine
Doc-Full Cosine
GIZA++

Figure 5.4: Top performing models compared: first order (labeled Doc-Full Cosine),
second order (labeled CL-Full Cosine) and statistical (labeled GIZA++).

weighted higher than a word that co-occurs only once – but probably not twice

as high. In information retrieval, using log frequencies, or the logarithmic term

frequency, is a standard technique. It has also been applied successfully to
the closely related problems of automatic thesaurus discovery (Grefenstette,
1994), latent semantic indexing (Landauer and Dumais, 1997) and text clus-
tering (Hotho et al., 2001).

Statistical machine translation vs. the distributional models

We use the GIZA++ system with the standard settings provided in the publicly
available distribution.2 All terms are treated as single words by the system
after the term spotting has been applied during the pre-processing. Because
of this, we can ignore the fact that GIZA++ lacks the possibility to capture
many-to-many relations. Figure 5.4 displays a comparison between the best
performing first and second order models with the results from GIZA++. “CL”
in the figure stands for cross-language, and refers to the fact that words from
all four languages involved were used as features when training that model.

Ensemble method

We combine the results of the top performing models, shown in Fig. 5.4,
in an ensemble method. The idea is that, even though the statistical model
outperforms the other two, they may still contain useful information
that the statistical model is missing. There are at least two factors one
would like to consider when combining the results of the different
systems: how confident each system is of its decision (modeled in the
S′ function below) and how accurate the system has been in the past
(modeled in the S′′ function below). For each source language term, we

2We used the version of GIZA++ released in 2003.
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look at the top ten translation candidates for each of the three models.
The scores for each model are rescaled, so that the scores for the top ten
translation candidates for a particular source term sum to one, or, equivalently:

S′(x,y) = S(x,y)
∑yi

S(x,yi)

where x is the source term, y a translation candidate, S the scoring function
and S′ the rescaled scoring function. We then weight the scores from each
model according to how accurately it performs on one direction of translation
for one language pair,3 which we set aside for testing during this particular
experiment. The scoring function which is finally used to re-rank the top ten
suggestions from the three models looks like this:

S′′(x,y) = α ·S′a(x,y)+β ·S′b(x,y)+ γ ·S′c(x,y)

where α , β and γ are the accuracies of the respective models, normalized
so that α + β + γ = 1.4 Basically, this amounts to the average combination

rule, which is a standard way of combining multiple classifiers (Tax et al.,
2000). The results, displayed in Fig. 5.5, show a slight improvement when
compared to using the statistical model alone. Finally, Table 5.3 shows the
percent correct for each method, regardless of frequency class.
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Figure 5.5: Comparing GIZA++ to the ensemble method.

3We used German to French, to have one Germanic and one Romance language.
4This resulted in the following parameters, for the first order, second order and statistical mod-
els, respectively: α = 0.334 β = 0.313 γ = 0.353.
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Percent correct

1stOrder-Full-Cosine 61.4

1stOrder-Full-MI 58.7

1stOrder-RI-Cosine 58.1

2ndOrder-Full-Cosine 56.0

2ndOrder-Full-MI 52.4

2ndOrder-RI-Cosine 55.1

2ndOrder-Full-Cosine-CL 56.2

GIZA++ 64.4 (64.0)

Ensemble 65.8 (65.3)

Table 5.3: Percent correct over all frequency classes, totally 37,316 translations evalu-

ated for each model. Numbers in parenthesis show results when German-French is not

included (this direction of translation was used for parameter tuning in the ensemble

method).

5.2.2 Increasing translation precision

As we gather from Table 5.3, the very best method for finding term equivalents
produces exactly correct results in 65.3% of the cases (for the given corpus
and term set). In Sect. 2.2 we were discussing the possibility of using term
equivalents as “bridges” between data from different languages, enabling us to
fully exploit the added information of the cross-language data. If these bridges
are faulty in too many cases, we run the risk of having the cross-language
data confusing our ontology learning system rather than helping it. We would
therefore be willing to trade recall for precision in this case; if we can have a
subset of term equivalents where we can be relatively sure that the translation
is correct, we will simply ignore the (possibly incorrect) information provided
by the other translations.

Since we see from Fig. 5.4 that there is a strong connection between fre-
quency and accuracy of translation, our first intuition may be to only use trans-
lations where the terms lie in a certain frequency range. We could, for exam-
ple, decide not to use translations where the terms occur ten times or less in the
corpus – this would give us an average accuracy of 80.4%, but we then only
give translations in 48.6% of the cases. To try to increase accuracy even fur-
ther, we can disregard all terms occurring 50 times or less. This would bring
us to an accuracy of 83.8% and we would give translations in only 22.6% of
the cases.

We instead decided to test an approach where we use the fact that we are
working with more than two languages in our experiments. When deciding
which translations to include in the final result set, we go through the trans-
lations in all language directions and look for groups of four terms (one from
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sv:arbetslöshet

de:Arbeitslosigkeit

fr:chômage

en:unemployment

Figure 5.6: Example where all four languages form a complete directed graph (every
node is directly connected to every other node), signifying that the translation probably
is correct.

de:Angleicherung der

Rechtsvorschriften

sv:lagstiftning
fr:rapprochement

des législations
en:law

fr:législation en:national law

de:Gesetzgebung en:legislation sv:nationell rätt de:nationales Recht fr:droit national

Figure 5.7: Example where the graph is not complete, indicating a probable error in
the translation.

each language) where all terms are translations of each other. This is the same
as saying that the four terms form a complete directed graph; an example of
this is given in Fig. 5.6. We also show an example (Fig. 5.7) of translations
that do not form a complete graph and that are therefore discarded. Using
this approach, we suggest a translation in 36.5% of the cases (somewhere
between the two frequency groups examined previously) but we reach an ac-
curacy of 98.4%, which is a considerable boost when compared with the fre-
quency threshold strategy. We are now at a level of accuracy where the results
can be used as the previously discussed bridges across the data in different
languages, without the risk of confusing our ontology learning system with
incorrect information. Results of experiments using this data are presented in
Sect. 6.4.
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By allowing an increasing number of missing links in the structure in
Fig. 5.6, one could increase recall at the cost of precision. Another way of
achieving the same effect would be to only require translations from three or
even two languages to form complete graphs during the filtering process. We
return to discuss the effects on an ontology learning system of lowering the
precision threshold in Chap. 7.

The idea of using cross-language data from more than two languages in the
translation process is reminiscent of Borin (2000), where alignments from a
third language are incorporated in the alignment data used for training a sta-
tistical machine translation system. The major difference is that where Borin’s
approach mainly contributes to increasing the recall during the alignment pro-
cess, our approach targets precision.

5.2.3 Statistical machine translation, distributional similarity or

ensembles?

Using the non-reduced matrix gives the highest correctness figures, both for
first and second order co-occurrence models, though the reduced version is
following closely for the second order model, as seen in Fig. 5.3. There are
possible computational benefits of using a reduced representation. However,
since both data structures and algorithms designed for working with sparse
matrices and vectors exist, one would have to investigate just where the break-
ing point lies. For the current experiments, using the non-reduced, sparse ma-
trix proved more efficient both in terms of time and in terms of memory usage,
since the reduced matrices have to work with dense representations.

It should be noted that when using random indexing, the results will vary
with the dimensionality of the matrix and the number of non-zero elements
used in the random vectors. We used a dimensionality of 1800 and an average
of eight non-zero elements (positive and negative), which lies in the range of
what is suggested in Sahlgren (2006). We note a larger gap in accuracy be-
tween the reduced and the full matrix for the first order models than for the
second order models (0.9% absolute vs. 3.3% absolute). From this we can hy-
pothesize that the reduced first order model would have performed better using
a higher dimensionality, considering that the non-reduced first order models
have a higher dimensionality than the non-reduced second order models. This
is left for future experiments to confirm.

The first order models consistently outperform the second order models in
these experiments. Further, the cosine measure outperforms the mutual infor-
mation measure in the cases where a direct comparison can be made. This is
contrary to what Ribeiro et al. (2000) reported, but the experiments described
here have been conducted on a much larger corpus with a larger variability of
languages – perhaps this explains the differences in the results.

The statistical approach clearly outperforms both the first and the second
order models. This is again contrary to what Sahlgren and Karlgren (2005)
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report. However, they claim an accuracy of “something less then 1/3” for the
GIZA++ system, which lies far below the 64.4% measured here. The two
evaluations cannot be directly compared, due to several differences in the
methodology of the experiments. The most important difference, which prob-
ably by itself explains the vast discrepancy when measuring the performance
of GIZA++, is that our study uses texts aligned on a paragraph level, whereas
Sahlgren and Karlgren used texts aligned on a document level. Sahlgren and
Karlgren are also studying words, not terms, which makes their task harder,
since they have to pick the correct word out of 40,000 to 70,000 translation
candidates, whereas our study typically only has about 3,500 terms as trans-
lation candidates. On the other hand, the evaluation applied here is stricter,
since only the descriptor in the target language is counted as correct, where
Sahlgren and Karlgren also count partial matches in the target language part
of a bilingual dictionary as correct.

The correctness for terms occurring only once seems low, at slightly below
40%. Consider, though, that there is no guarantee that the corresponding target
language descriptor co-occurs even once with these terms. Such cases can
arise from, e.g., faulty paragraph alignment or from the (human) translator
choosing to use a different term than the descriptor in the target language
translation. Accuracy also drops for the very frequent terms, which at first may
seem surprising. Melamed (2000) notes, though, that frequent words tend to
be translated with less consistency than less frequent words. We believe this
decrease in consistency is what lies behind the drop in accuracy (also observed
in Sahlgren, 2004) – remember that the evaluation only accepts one correct
translation for each term: its target language descriptor.

Using the ensemble method, the results are boosted by 1.3% absolute.
Though the increase is relatively small, the difference is statistically
significant beyond the 0.001 level according to McNemar’s test (McNemar,
1947). If we use a more lenient evaluation method, counting each result as
correct if the corresponding descriptor occurs among the top three translation
candidates, GIZA++ achieves 66.9% correct translations on average and the
ensemble method reaches 68.6%. Extending this to the top ten candidates, we
get 67.2% for GIZA++ and 70.3% for the ensemble method – a difference of
3.1% absolute. The rather small increases in correctness for GIZA++ using
the lenient evaluation methods can most likely be explained by the internal
thresholds in the system. Due to these thresholds, GIZA++ most often returns
less than ten translation candidates for any given source term, which means
that the system will not profit as much from using these lenient evaluation
schemes.

In an application scenario where the target language translation will be used
for cross-language information retrieval, it is not necessary for the target lan-
guage term to be a precise translation of the source language term. The results
are also of value if the suggested translation belongs to the same semantic
field as the source language term. E.g., one of the suggested translations from
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our experiments of German Wohnungskauf (buying of an apartment) is ‘mort-
gage’, which is likely, if posed as a query, to result in a set of relevant doc-
uments for someone interested in buying an apartment. This is another area
which would be interesting to evaluate formally (such cases were obviously
counted as errors in the evaluations presented here).

5.3 Term equivalence in comparable corpora

The main difference between the experiments presented in this section and
the study in Sect. 5.2 is that the corpus used here, the Wikipedia anatomy
corpus (see Sect. 3.2.2), is comparable (deals with the same topic in different
languages) rather than parallel (the same content in different languages).

We follow the basic procedures developed by Fung and McKeown (1997)
and Rapp (1999), which we outlined in Sect. 2.6.4. To recapitulate, we build
second order co-occurrence models for the languages that we wish to trans-
late between. We then translate the features (words) in the non-English model
into English using general bilingual dictionaries that we download from Wik-
tionary (described in Sect. 3.4). This gives us a cross-language mapping be-
tween the features of the distributional models and we can proceed to calculate
distributional similarity across languages in much the same way as we do for
parallel corpora in Sect. 5.2.1.

Since we do not have a parallel corpus in this case, we do not have access
to correspondences on the paragraph or document level5 and are thus forced
to resort to using second order co-occurrences, even though we showed in
Sect. 5.2.1 that first order co-occurrences are more effective for solving the
translation problem.

We introduce a new heuristic in these experiments. In addition to the map-
pings provided by the dictionary, we also make the assumption that if we find
the exact same string of characters used as a feature in the two distributional
models, these two strings (words) mean the same thing. Although this is far
from certain, we are guessing that it will be correct in the vast majority of
cases, due to a lot of Latin terms being used as a lingua franca and also to
some proper names which keep their form after translation. Note that we are
not using this heuristic as a way of directly translating our terms, we are only
using it to provide us with additional mappings between our feature sets, for
cases that are not covered by the bilingual dictionaries.

At first sight, working with an anatomy corpus might seem to be a spe-
cial case, where our heuristic would work exceptionally well, since Latin is
so closely associated with the anatomy domain in all languages. But almost
any specialized domain makes use of a lingua franca to a greater or lesser de-
gree, e.g., psychology (German), computer science (English) and philosophy

5For certain documents, we know their corresponding documents in the other languages, for
others not. See discussion in Sect. 3.2.2.
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(a mixture of Greek and German, among others). We therefore feel that this
is not a “hack” that happens to work for our particular corpus, but something
which is also applicable within other domains.

5.3.1 Experimental setup and results

When building the distributional models for each language, there are a number
of parameters that can be varied and that have an impact on the quality of the
results of the translations. We explain these parameters in Sect. 2.4.1 and we
will be referring to them at various points throughout the rest of this chapter.

To evaluate the system, we use the terms that have a translation in the FMA
ontology as a gold standard. However, to get more reliable statistics for the
method, we limit the evaluation to English terms occurring more than 50 times
in the corpus. Further, if the translation stipulated by the gold standard does
not occur with some frequency in the target language part of the corpus, we
cannot really expect the system to find this translation. We therefore introduce
a further restriction on our test set: the target language translation must appear
15 times or more in the corpus.6

We evaluate three directions of translation: English-German, English-
French and English-Spanish (English was chosen as source language, since
we envision the scenario of extending the FMA ontology with translations
of English terms). The restrictions on source and target word frequency
unfortunately leave us with a very small test set. The English-German
gold standard consists of 63 word pairs, the English-French of 105 and
the English-Spanish of 71 word pairs. This means that we cannot take the
accuracy figures presented in Table 5.4 at face value. They should be taken as
indications on what to expect from a system such as the one described here
and as pointing towards the increased difficulty of the problem as compared
with working with a parallel corpus.

The results in the following evaluation are measured in percent correct. We
apply the same criteria for correctness here as for the experiment in Sect. 5.2:
a translation is considered correct if it is identical to the one given in the
FMA ontology, otherwise it is considered incorrect. We measure correctness
at three levels:

1. The highest ranking translation candidate is the correct translation.
2. The correct translation appears among the top three translation candidates.
3. The correct translation appears among the top ten translation candidates.

6We use a lower frequency limit for the non-English words, because the non-English document
collections are smaller than the English.
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Language pair Top 1 Top 3 Top 10

English-German 33.3 44.4 65.1

English-French 19.0 33.3 54.3

English-Spanish 26.8 40.8 67.6

Table 5.4: Evaluation of term translations using comparable corpora; results given in

percent correct translations.

The results are displayed in Table 5.4. If we compare these results with the
ones in Table 5.3, we see a drastic drop in accuracy. This is to be expected,
given that we are dealing with a harder problem.7

5.3.2 Parameter optimization and conclusions

We want to point out that the figures given in Table 5.4, low as they may seem,
still in a sense are overly optimistic. Since the size of the gold standard is so
small for this experiment, we could not split it in separate test and training
partitions. The parameter optimization therefore has not been performed on
a separate training set, but on the test set itself. The purpose of presenting
our results here is thus not to try to convince anyone of the superiority of our
system, but rather, again, to indicate the challenging nature of the task.

We give a brief overview of the parameter settings that proved the most
effective when building the distributional models. There is little or no
fluctuation in this matter between the different language pairs. We introduced
the different parameters in Sect. 2.4.1.

• The larger the window size, the better the results. We experimented with
window sizes ranging between 5–500 words. Of course, when the window
size reaches 500 words (in each direction), we are using the entire docu-
ment in many cases. This setting turned out to be the most effective. In a
way, this can be seen as maximizing the amount of information taken into
consideration, something which makes sense if data or other resources are
scarce, which is the case here. For one, the corpus size for all involved
languages is on the lower end of the spectrum (see Sect. 3.2.2). The same
is also true for the size of the bilingual dictionaries (see Sect. 3.4). Go-
ing from a window size of 50 to one of 500 gave an increase in accuracy
of 4% absolute, averaged over the three languages (we will only consider
the accuracy of the highest ranking translation in this discussion). Using

7The two experiments were performed on different datasets, which of course inserts an uncer-
tainty factor as to what is an effect of using the different datasets and what is an effect of using
the different methods.
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a window size below 50 decreases the accuracy further by another 1–2%
absolute.

• The inverse distance weight outperforms the other two distance weighting
schemes, but the difference to the logarithmic weighting scheme is very
small, on the order of 1% absolute. This confirms our intuition that words
close to the focus word should be given more weight, but it is not possible
to say which of the logarithmic and the inverse distance scheme is more
apt, due to the small difference in accuracy and the small test set.

• Some initial experiments using no feature weighting were performed, with
bad results. Using mutual information for the feature weighting is in turn
more effective than using the conditional probability. The difference in ac-
curacy between the two feature weighting schemes is on the order of 8%
absolute, averaged across the languages, making this the parameter with
the largest impact on the system. The difference between the two can be
explained by the fact that mutual information also takes negative evidence
into account, whereas this is not the case for the simpler conditional prob-
ability measure.

• Distinguishing between the left and right contexts consistently gives a bet-
ter result, although only on the order of 2% absolute on average. This is a
cheap way of adding low-level word order information to the model, and
the fact that making this distinction improves the results indicates that word
order is a factor to be considered.

• Using the lingua franca-heuristic gives a moderate increase in accuracy,
on the order of 3% absolute. Our assumption that these terms actually tend
to mean the same thing thus pans out – at least for the current languages
and domain.

Just as in the results of the term extraction experiments in Table 5.1, where
we had far lower recall for French than for English and German, the results in
Table 5.4 also show the lowest accuracy for translating into French. We believe
the reason for this is simply that the German and Spanish words included in
the gold standard are more common, with higher frequencies in the corpus,
which makes them easier for the system to translate.

In Sect. 6.3, we present methods for using output from machine translated
terms to merge information across languages when training an ontology learn-
ing system. The results from Table 5.4 show that the error rate is too high for
the system output to be used for that purpose, using comparable corpora and
the method presented here. There is thus plenty of room left for new ideas and
methods to improve on the results.
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6. Experiments in Ontology Learning

This chapter looks at the ontology learning process, going from a domain-
specific parallel or comparable corpus and language-specific terms to a hier-
archical is-a ordering of cross-language term sets. We first look at learning
a prototype-based ontology and then move on to learning a terminological
ontology, both with a special focus on cross-language aspects. The experi-
ments in this chapter are carried out on the JRC-ACQUIS parallel corpus and
the accompanying Eurovoc thesaurus, except for Sect. 6.1, where we use the
Wikipedia anatomy corpus and the accompanying FMA ontology.

6.1 Learning a Prototype-based Ontology from

Cross-language Data

As our baseline, we follow the work of several previous researchers (see
Sect. 2.5.1) by extracting a prototype-based ontology, using English language
texts, and compare the result to a gold standard ontology.1 We then repeat the
procedure, this time building a prototype-based ontology from resources in
four different languages (adding German, French and Spanish to the English),
using a comparable corpus. We show that the cross-language version gives an
improvement in accuracy and stability over the single language version, when
compared to the gold standard.

We also use a hierarchical k-means clustering technique and show that we
are able to reproduce the original ontology with greater fidelity than when
using a bottom-up agglomerative clustering approach. We use the FMA on-
tology and the Wikipedia-anatomy corpus for this series of experiments (see
Chap. 3).

6.1.1 Hierarchical term clustering

We examine two kinds of hierarchical clustering: bottom-up agglomerative
clustering and hierarchical k-means. Neither method produces a hierarchy in
the traditional sense, but rather a structure like the one depicted in Fig. 6.1,
which we refer to as a prototype-based ontology, when the objects we are

1Part of the research described in Sect. 6.1 has been published as Hjelm and Buitelaar (2008).
The work was done by the author with support and guidance provided by the co-author, Paul
Buitelaar.
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clustering are terms. The bottom-up approach builds this structure starting
with each term in its own cluster, whereas hierarchical k-means starts with all
terms in the same cluster and recursively splits each (sub)cluster.

Figure 6.1: Structure produced by hierarchical clustering methods. Picture taken
from Wikimedia Commons (http://commons.wikimedia.org), file name “Hierarchi-
cal_clustering_diagram.png”.

Bottom-up agglomerative clustering

We start by building a distributional similarity model, using the settings that
gave the best results in the study presented in Sect. 4.2. We use the following
parameter settings (the parameters were introduced in Sect. 2.4.1):

• Window size: 500 (in each direction)
• Distance weighting: flat
• Feature weighting: none
• Left/right distinction: not made
• Minimum feature frequency: 50
• Dimensionality reduction: SVD, 200 dimensions

The distributional similarity model itself is not at the center of this experi-
ment, therefore we will not analyze the settings in any greater detail here. For
clustering, we employ a version of average linking, where we start by calculat-
ing a centroid representation for each cluster, and we measure the similarity
between two clusters by calculating the cosine of their normalized centroid
vectors.

Hierarchical k-means clustering

The agglomerative clustering approach, described above, produces a binary
tree. Because we wish to cluster a relatively large number of terms (1,164 in
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total – all the terms with a minimum frequency of 50 in the English Wikipedia
corpus), the result is a deep tree, especially if contrasted with the much flatter
FMA ontology. Further, there are some hierarchical relations a binary tree
will never be able to capture correctly. E.g., the relations between ‘finger’ and
‘thumb’, ‘index finger’, ‘middle finger’, ‘ring finger’ and ‘little finger’ are not
binary (one-to-one) but n-ary (one-to-many). We would prefer to model the
relationship with ‘finger’ directly dominating all the others. Using hierarchical
k-means clustering, we are no longer forced to produce binary trees; we can
simply tell the system how many times we would like to split the cluster at
each iteration. Though we still do not get a structure where one term directly
dominates other terms, but rather a one-to-many variant of the structure shown
in Fig. 6.1, we at least have a chance of producing a model which is closer in
structure to the FMA ontology.

For each clustering step, we try to find the appropriate k for splitting that
particular cluster. We iterate through different values of k and evaluate each
clustering by calculating the harmonic mean of cohesion and separation be-
tween the clusters (discussed in Sect. 4.2) and choose the best performing k at
each step. In our experiments, we set an upper limit for k to 20, since it would
be very time consuming to evaluate every possible k value.2

6.1.2 Clustering from cross-language evidence

To test the effects of including evidence from more than one language when
performing the clustering, we start by building four separate distributional
models, one for each language. Next, for each term in every non-English
model, we look up if it is listed as a translation in the FMA ontology of any
of the English terms. If it is, we concatenate the vector for this non-English
term to the vector of the English term, resulting in a vector that is twice the
length of the original vector. This process is repeated for every non-English
language, which means that the final vectors we are working with are four
times the length of the original vectors (since we are using four languages,
all with the same vector lengths). Fig. 6.2 illustrates the idea behind such a
cross-language vector.

Figure 6.2: Distributional information from each language is concatenated to form an
elongated version of the co-occurrence vector. The vectors used in the single-language
experiments consist only of the part marked “English”.

2Choosing 20 as upper limit as opposed to any other, higher, number was a practically rather
than theoretically motivated choice.
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6.1.3 Evaluating the hierarchical clustering

We apply the PMCC-measure, described in Sect. 4.3.1, for calculating a simi-
larity measure between the learned ontologies and the gold standard. We are
unable to use the two other evaluation measures discussed in the same chap-
ter, since we are learning a prototype-based ontology (see the discussion for
Experiment 7 in Sect. 4.3.2).

We start by comparing the bottom-up agglomerative clustering to the hi-
erarchical k-means clustering described in Sect. 6.1.1. Table 6.1 shows that
the k-means approach gives a result which is substantially closer to the gold
standard than the bottom-up agglomerative approach does. Since the k-means
clustering uses a random initialization, we repeat the experiments ten times
and report the average correlation and the standard deviation for this approach.
These experiments were carried out using only the English terms and texts.

ρ̄ σ ρmin ρmax

Bottom-up agglomerative 0.109 N/A 0.109 0.109

Hierarchical k-means 0.166 0.043 0.114 0.237

Table 6.1: Comparing bottom-up and k-means single language clustering. ρ is the

correlation, σ the standard deviation.

We see two possible explanations for the improvement we measure when
using the k-means approach. One is that, since we are evaluating different k

for each new split and sticking with the best one, it is possible that we then are
able to cluster the terms in a way that is more conformant to the data. Another
explanation could be that we are mimicking the flatter structure of the FMA
ontology better this way, than we are with the bottom-up approach. As ever, a
combination of these two factors seems most likely.

Turning our attention now to the comparison of the models built from
strictly English and the cross-language data, Table 6.2 shows that the
cross-language data on average gives a considerable increase in correlation.
This increase is paired with a marked decrease in standard deviation, which
indicates that the cross-language method is less sensitive to different random
initializations.

ρ̄ σ ρmin ρmax

Strict English 0.166 0.043 0.114 0.237

Cross-language 0.201 0.027 0.137 0.229

Table 6.2: Comparing strict English and cross-language k-means clustering.

100



Now, one might argue that these improvements are not surprising – more
data is always more data. However, since the additional data comes from
other languages than the original data, it is not self evident that the added
data would help to clarify the ontology learning process, rather than confuse
the models by introducing noise. Our results, however, do support using the
cross-language evidence for this application.

We want to point out that because not all English terms are translated, we
get an effect where the vectors for the translated terms will be more similar
to each other, simply because they are translated (the same reasoning applies
to the vectors for the non-translated terms). We believe this has a detrimental
effect on the cross-language clustering results, because the system will mix
translated and non-translated terms in the same cluster less frequently based
on this largely arbitrary condition. It is however possible that we get a posi-
tive effect in some cases, where clustering translated and non-translated terms
separately happens to conform to the gold standard. Our intuition says that
the system would benefit from removing this difference between translated
and non-translated terms and that the positive effects we measure mainly are
due to the added cross-language information. We already saw a slight benefit
from using cross-language data when extracting term equivalents (results in
Table 5.3) and we will see the effects more clearly again in our experiments
in Sects. 6.4 and 6.5.

The approach for building the cross-language model presented here as-
sumes that we have access to a domain-specific bilingual (or multilingual)
dictionary. One could imagine getting by without such a dictionary and in-
stead use statistical word alignment techniques to identify term equivalents
(see Chap. 5). Because we are dealing with comparable rather than parallel
texts here, we would have to resort to methods designed for such texts, like
the ones described in Sect. 5.3. Methods for comparable texts have the dis-
advantage of being much less accurate than techniques developed for parallel
texts. To avoid evaluating the quality of a term translation system rather than
the effects of cross-language evidence, we decided to use the translation infor-
mation coded in the FMA ontology as our lexicon. This is not too far fetched a
scenario: having access to a domain-specific bilingual dictionary and wishing
to learn an ontology for the terms listed there. We explore the possibility of
using automatically word-aligned data when working with a parallel corpus
in Sect. 6.3.

Summing up, the increase in average correlation and decrease in standard
deviation, when evaluating against a gold standard, supports the use of cross-
language evidence for the task of learning a prototype-based ontology. What
is more, the resulting resource has added value when compared with the single
language approach, since we are now free to switch between languages at will,
while staying within the same hierarchical structure.
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6.2 Features for Recognizing Hyperonymy and

Cohyponymy

When constructing a hierarchy of terms, there are two relations which are
more prominent than others. The first is the hyperonymy relation, that con-
nects two terms in the vertical plane. The second is the cohyponymy rela-
tion, that instead connects two terms in the horizontal plane. Also Snow et al.
(2006) and Ryu and Choi (2006) use these two relations as their basic build-
ing blocks. We have shown in Sect. 6.1 how distributional similarity can be
used to order terms into a (pseudo) hierarchy. Here we will look at all features
which we think will be useful for recognizing either or both of our two basic
relations, which in turn will enable us to learn a terminological ontology. We
will use these features to train a support vector machine classifier in Sect. 6.4,
so the selection of some of these features is made with this type of classifier in
mind. The experiments in this section and the rest of this chapter are carried
out on the JRC-ACQUIS parallel corpus and evaluated against the Eurovoc
thesaurus.

Many of the features described in the following share the fact that they
use the context of the term (or term pair) in focus. When discussing distri-
butional similarity in Sect. 2.4, we mentioned two different ways of looking
at context: using first order co-occurrences (document-based) and using sec-
ond order co-occurrences (context window-based). Further, using second or-
der co-occurrence, we have a choice between using narrow or wide windows,
or something in between. Rather than commit ourselves to one particular con-
text model, we use four different models: one using first order co-occurrence,
one using a narrow context window (three words on each side of the focus
word), one using a wide window (500 words to each side) and one in between
(50 words to each side). We then let the classifiers decide which context model
(or combination of models) is most effective for recognizing a particular type
of relation between two terms.

Note that we do not necessarily expect any single feature by itself to be
able to identify term pairs belonging to either of the two relations – rather we
expect the collected evidence, when several features simultaneously point to
the same result, to be the decisive factor. We use a total of 22 features in our
experiments and we describe them in the remainder of this section.

6.2.1 The subsumption measure

This measure was described in Sect. 2.5.5; it is the main feature in the system
developed by Sanderson and Croft (1999). A similar measure, formulated in a
manner to make it more widely applicable, was also used in Cimiano (2006).
There it was found to confuse the classifier, or, rather, to produce negative
weights, which means that it would be indicative of no hyperonymy relation
being present. Cimiano presents a suggestion for how to alter this measure,
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effectively changing the roles of the subsuming and the subsumed term, but it
is his original measure we employ in our experiments – with positive results.3

We have no clear explanation for this discrepancy, but give a theoretical moti-
vation for our approach in the following.

Figures 6.3 and 6.4 show different situations where the occurrences of a
term t subsume the occurrences of a term u. Three main sets of interest are
formed in the prototypical case: T (occurrences of t), U (occurrences of u)
and T ∩U , shown in Fig. 6.4. First, for us to consider term t to subsume term
u to any degree whatsoever, we introduce a condition that |T \U | > |U \T |. If
this condition is not met, we would rather say that term u subsumes term t, or
that the terms are neutral with regard to subsumption. To determine the degree
of subsumption, when the condition is met, we calculate:

|T ∩U |

|U |

Figure 6.3: Full subsumption – the ideal case, where the occurrences of one term
completely subsume those of another.

The subsumption measure is similar to the overlap coeffi-

cient (Manning and Schütze, 1999), which is written as follows:

|T ∩U |

min(|T |, |U |)

The modifications to the overlap coefficient introduced in the subsumption
measure aim at capturing asymmetry in the relation; for the overlap coeffi-
cient, only the degree of overlap is of interest, not the direction (i.e., which
term subsumes the other).

We compute four versions of the subsumption feature, one for each context
model described at the beginning of Sect. 6.2. The features are meant to

3Cimiano distinguishes between first and second order co-occurrence and keeps the formulation
closest to Sanderson and Croft’s for first order co-occurrence, but uses the new formulation for
second order co-occurrence.
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Figure 6.4: Partial subsumption – the prototypical case, where the occurrences of one
term partly subsume those of another. Also, the condition that set T \U should be
bigger than set U \T is met in this example.

be useful for recognizing the hyperonymy relation; the subsuming term is
the hyperonym and the subsumed term is the hyponym. The rationale is
that the hyperonym, being more general in meaning, is likely to appear
in a number of contexts where the hyponym does not, in addition to a
large number of contexts where both terms appear. That this holds for first
order co-occurrences is uncontroversial; it has already been demonstrated
by Sanderson and Croft (1999). Consider the following set of examples to see
the reasoning behind using the measure also for second order co-occurrences:

• The dog barked.
• ?The dog mooed.
• The animal barked.
• The animal mooed.
• ?The cow barked.
• The cow mooed.

The question marks are used to indicate semantic markedness in the previ-
ous examples. The more generic hyperonym animal has greater flexibility to
be used in different settings than have the more specific hyponyms dog and
cow.

6.2.2 Distributional similarity

We discussed distributional similarity at some length is Sect. 2.4. We said
there that it is a measure of relatedness of some kind, but that we are generally
not able to distinguish between different relations solely based on this mea-
sure. We expect the distributional similarity to be high both for terms related
by hyperonymy and for terms related by cohyponymy. Distributional simi-

104



larity by itself might not be enough for the classifiers to make the distinction
between different relations, but together with the information from the other
features we expect it to provide useful evidence.

We again have four context models for this measure, but we also use two
different representations: one using the unprocessed co-occurrence matrices
and another using matrices where singular value decomposition has been ap-
plied (we use a standard dimensionality of 200 in our experiments). This re-
sults in a total of eight features describing distributional similarity: four dif-
ferent context models for each of the two different representations.

6.2.3 Hearst-patterns

We introduced Hearst-patterns in Sect. 2.5.3, where we also described their
use in a number of different systems. We use a total of twelve English patterns,
which we gather from Hearst (1992), Iwanska et al. (2000) and Cimiano et al.
(2005b) and we translate these into the other languages. Most previous studies
have considered Hearst-patterns a binary feature and set it to true if a term pair
has been observed in one of the patterns in the text. We calculate the number
of times a particular term t occurs as the hyponym of another term u, but also
consider the total number of times t occurs as the hyponym of any other term:

hearst(u, t) =
pattern(u, t)

pattern(_, t)
,

where pattern(u, t) gives the number of times term u has occurred as a hyper-
onym of term t in any of the patterns. The idea, which is also used in Cimiano
(2006), is to model that the more often a term pair occurs in one of the pat-
terns, the more sure we can be that the hyperonymy relation holds, but also
that if term t has occurred as a hyponym for many other terms than u, this
again should make us less sure of our decision.

6.2.4 Head matching heuristic

This feature is described in Sect. 2.5.2, and the idea is simply to say that ‘con-
sumer credit’ is a kind of ‘credit’ or that a ‘direct investment’ is an ‘invest-
ment’ – a simple way of recognizing the hyperonymy relation by using head
matching rules. We also have a feature for the cohyponymy relation, which
is set to true when we have two terms such as ‘indirect tax’ and ‘direct tax’,
where both share the same lexical head, but neither is the lexical head of the
other. Because we do not have a parser as a part of our system, our way of
determining what is the lexical head of a term simply amounts to locating the
rightmost word(s) of the term.4 When we, e.g., compare the two terms ‘power
plant’ and ‘nuclear power plant’, we set the hyperonym feature to “true”, since
‘power plant’ matches the two rightmost words of ‘nuclear power plant’. If a

4For French, we use the leftmost word(s) instead.
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term has a preposition as one of its constituents (we determine this by look-
ing in a list of prepositions for the respective language), the word(s) directly
preceding the preposition is instead considered the lexical head. This enables
us to give the feature the correct value for cases like ‘pollution’ – ‘pollution
from land based source’.

For German and Swedish we often have to perform decompounding to find
the lexical head (we do this for English and French as well, but there the effect
is not as big). We described the decompounding in Sect. 3.1.1.

6.2.5 Difference in distributional entropy

This feature has a lot in common with the subsumption feature described
above. We already mentioned Caraballo and Charniak’s use of this feature
in Sect. 2.5.5; here we look at how it applies to our data.

Basically, entropy measures the average amount of “surprise” you feel at
the outcome of a process described by a random variable (such as rolling a
die). If you have a biased die, which nine times out of ten rolls a six, you will
normally not be very surprised at the outcome of a roll – the entropy is low
(about 0.701). A fair die is of course different; its surprise value is higher and
so is its entropy (about 2.585). The formula for calculating the entropy of a
discrete random variable X is written:

H(X) = − ∑
x∈X

p(x) log p(x)

We have four features for describing the difference in distributional entropy
between two terms – one feature for each context model (see Sect. 6.2).

Corroboration of Caraballo’s method

We performed an experiment to see if we could confirm Caraballo and Char-
niak’s hypothesis that a more general word (term in our case) has a higher
distributional entropy than a more specific term, using the FMA ontology and
the Wikipedia anatomy corpus. Again, the intuition is that the more general
term is freer to occur in different kinds of contexts, whereas the specialized
term tends to occur in more restricted settings.

For this experiment we build a distributional similarity model for English
terms from the FMA ontology, occurring at least 50 times in the Wikipedia
anatomy corpus. We assign each term a number according to the level at which
it appears in the FMA hierarchy (starting with the root as 0). We then calculate
the average entropy of the co-occurrence vectors of all the terms at each level
in the ontology. The results when using a window size of 50 are shown in
Fig. 6.5 and when using a window size 3 in Fig. 6.6.

The curves are not very smooth, but there is a distinct tendency in both
that the entropy decreases as the hierarchy level increases.5 Judging from this,

5The zigzag-like pattern described by the curves we credit to noise.
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Figure 6.5: Window size: ±50 from the focus word. The graph maps the depth of the
hierarchy to the average entropy of the co-occurrence vectors of terms at this hierarchy
level in the FMA ontology.
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Figure 6.6: Window size: ±3 from the focus word.

there is useful information available from this kind of analysis and our exper-
iments have provided additional support for Caraballo and Charniak’s theory.

6.2.6 Difference in frequency

The previous section described Caraballo and Charniak’s (1999)
entropy-based measure of term specificity. In the same paper, the authors
also find that the much simpler approach of assuming that the more frequent
noun is the more general, is equally effective. We therefore add a feature
describing the difference in frequency between the two terms.
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We also have two features that give the absolute frequency of the two terms.
The reasoning behind adding the absolute frequencies as features is that we
believe that the dependability of some of the previously listed features will
be influenced by the term frequencies. E.g., if two terms have a high distri-
butional similarity but one or both terms occur infrequently in the corpus, the
classifier should put less trust in this information. By including this informa-
tion in our feature set, we leave the possibility of discovering such connections
to the classifiers (given that the classifiers are non-linear).

6.2.7 Listing of all features

In order for us to be able to refer to the different features in a convenient way
throughout the rest of the chapter, we list them all in Table 6.3, and give each
feature an index and an identifier.

Table 6.3: Listing of all features used for identifying hyperonymy and cohyponymy.
The indices and identifiers will be used to refer to the features throughout the remain-
der of the chapter.

Index Identifier Description

1 Subsumption-1st The subsumption measure
(Sect. 6.2.1), using first order co-
occurrence

2 Subsumption-2nd-3 The subsumption measure, using sec-
ond order co-occurrence and window
size 3

3 Subsumption-2nd-50 The subsumption measure, using sec-
ond order co-occurrence and window
size 50

4 Subsumption-2nd-500 The subsumption measure, using sec-
ond order co-occurrence and window
size 500

5 Similarity-1st Distributional similarity (Sect. 6.2.2),
using first order co-occurrence and a
non-reduced matrix

6 Similarity-2nd-3 Distributional similarity, using second
order co-occurrence, window size 3
and a non-reduced matrix

7 Similarity-2nd-50 Distributional similarity, using second
order co-occurrence, window size 50
and a non-reduced matrix

Continued on next page
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Table 6.3 – continued from previous page

Index Identifier Description

8 Similarity-2nd-500 Distributional similarity, using second
order co-occurrence, window size 500
and a non-reduced matrix

9 SVD-1st Distributional similarity (Sect. 6.2.2),
using first order co-occurrence and an
SVD matrix

10 SVD-2nd-3 Distributional similarity, using second
order co-occurrence, window size 3
and an SVD matrix

11 SVD-2nd-50 Distributional similarity, using second
order co-occurrence, window size 50
and an SVD matrix

12 SVD-2nd-500 Distributional similarity, using second
order co-occurrence, window size 500
and an SVD matrix

13 Hearst Measure based on Hearst-patterns
(Sect. 6.2.3)

14 Head-hyperonym Head matching heuristic for hyper-
onymy (Sect. 6.2.4)

15 Head-cohyponym Head matching heuristic for cohy-
ponymy

16 Frequency-diff Difference in absolute frequency
(Sect. 6.2.6)

17 Entropy-diff-1st Difference in distributional entropy
(Sect. 6.2.5), using first order co-
occurrence

18 Entropy-diff-2nd-3 Difference in distributional entropy,
using second order co-occurrence and
window size 3

19 Entropy-diff-2nd-50 Difference in distributional entropy,
using second order co-occurrence and
window size 50

20 Entropy-diff-2nd-500 Difference in distributional entropy,
using second order co-occurrence and
window size 500

21 Frequency-1 Absolute frequency of the first term in
the term pair (Sect. 6.2.6)

Continued on next page
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Table 6.3 – continued from previous page

Index Identifier Description

22 Frequency-2 Absolute frequency of the second term
in the term pair

6.3 Merging Evidence across Languages

By using the translational equivalence relation (our subject of study in
Chap. 5) for merging the data across languages, we are hoping to achieve
a positive effect when training support vector machine classifiers, just as
we did when learning a prototype-based ontology in Sect. 6.1. We test
two main approaches for performing the merging: one assumes we have a
domain-specific bilingual dictionary, the other assumes we do not. In the
latter case we instead use the results of the automatic translation techniques
presented in Sect. 5.2.

We were discussing how to view text in different languages previously – is
it simply “more data” or are there special characteristics that should make us
think of it differently? We will continue this discussion below and illustrate
with examples from our corpora and ontologies.

6.3.1 Strategies for merging evidence

We start with the same scenario that we envisioned in Sect. 6.1, i.e., that we
have access to a bilingual (or multilingual) domain-specific dictionary, but that
we this time wish to learn a terminological ontology for the terms listed in it.
We use the translation information that is encoded in the Eurovoc thesaurus
for this purpose.

The English data forms our baseline for the experiments to follow. For
each term pair in Eurovoc, where both terms occur at least once in the JRC-
ACQUIS parallel corpus, we have 22 feature, as described in the previous
section. We next look up the translation of the two English terms in Swedish.
If the two Swedish terms also occur at least once in the Swedish texts, we add
the 22 Swedish features to the English, giving us a total of 44 features for the
term pair. We repeat the same process for German and French, so that we in
the end have 88 features per term pair (not all of which need to be instantiated
in all languages for all term pairs). Term pairs where one or both terms do not
occur at least once in the English texts are excluded from the experiments.

In the second approach, we envision that we have access to the output of
an ideal term extraction system (see Sect. 5.1) but that we do not have access
to a translation dictionary. Instead of relying on the translation information in
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Eurovoc, we this time use the output of the automatic translation system as
the basis for merging the evidence across languages. In order not to confuse
the classifiers, we would like to merge the data only in cases where we are
relatively sure that the translations are correct, so we use the filtering method
described in Sect. 5.2.2. This means that the translations will be correct in
about 98.4% of the cases, but that we are only merging data for about 36.5% of
the terms. The effects of weighing precision against recall here is a parameter
in our system we have yet to explore; we discuss this again in Chap. 7.

We will be working with and contrasting three different datasets in the fol-
lowing experiments. The first uses strictly English data and we will be refer-
ring to this set as “Mono”. The second set uses the results from merging data
across languages (English, Swedish, German and French), where we use Eu-
rovoc for translating the terms – we will refer to this set as “All” (because “all”
languages are included). The third set instead uses the output of the automated
translation system for merging, and this set we refer to as “MT” (for “machine
translation”).6

6.3.2 Idiosyncrasies of cross-language data

There are two extreme standpoints when considering cross language data, es-
pecially data taken from a parallel corpus. One could argue that, by adding
texts translated into another language, we are in fact doubling the amount of
data, basing the argument on crude numbers such as bytes used for storage or
the like. The other extreme would be to say that we have not added anything
at all, but are merely repeating exactly the same information, just using a dif-
ferent “encoding”. Though the last point may be true in a sense, what we are
in fact hoping for is that the use of a different language will reveal certain con-
ditions that were hidden in the initial language. We will continue by looking
at how switching languages can affect the features we are using.

Distribution-based features

A large number of the features we are using to train the classifiers are based
on the distribution of terms or the joint distribution of term pairs. This is the
case for the subsumption measure, for distributional similarity and for the dif-
ference in distributional entropy. Unless we have access to the perfect corpus,
containing all relevant occurrences of our terms and no irrelevant occurrences,
the distributional profile of a term will be fragmentary and contaminated by
noise. However, switching languages, we are unlikely to have the exact same

noise and fragmentation repeated; we can thus see the cross-language data as
a way of abstracting away from such shortcomings, by giving the classifiers
access to distributional data gathered from different languages. At the same

6Note that “machine translation” here does not refer to an entire machine translation system.
Rather, it should be considered shorthand for “the word alignment part of a machine translation
system”.
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time, we are of course introducing a new error source – new noise – by adding
the cross-language data, but our hypothesis is that the overall effect will be
positive.

We also expect differences in the distributional profile for a term in
different languages, caused by the fact that homonymy and polysemy
in a word or term rarely are kept intact when the word is translated.
This is likely to have an effect on features that use second order co-
occurrences. Consider the following sentence from the JRC-ACQUIS corpus,
given in English, German and French, respectively (terms are marked in bold):

• The European Police College shall have its seat in Bramshill.

• Die Europäische Polizeiakademie hat ihren Sitz in Bramshill.

• Le Collège européen de police a son siège à Bramshill.

The term/proper name ‘European Police College’ (or its translations) occurs
in all three sentences, along with a number of context words. We have em-
phasized the word ‘seat’ and its translations in the example; we focus on this
word not because of any remarkable traits that it possesses, but rather because
it’s behavior is quite typical. We illustrate what happens when we translate the
English ‘seat’ and the French ‘siège’ into German in Fig. 6.7.

Figure 6.7: Non-transitivity of homonymy/polysemy.

Both ‘seat’ and ‘siège’ share the translations ‘Sitz’ and ‘Sitzplatz’; English
has an additional four and French an additional five translations that are not
shared.7 This discrepancy will lead to ‘seat’ and ‘siège’ having different dis-

7The translations are taken from http://leo.dict.org.
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tributional patterns even in a parallel corpus, which will affect any feature
making use of second order co-occurrences when measuring the similarity
between terms – even though ‘seat’ itself is not a term. We believe that giving
the classifiers access to cross-language distributional data will allow them to
abstract away from homonymy and polysemy in one language by weighing in
information from the others.

Pattern-based features

Our only pattern-based features are the ones where we use Hearst-patterns
to recognize our lexico-semantic relations of interest. We do not see the
same theoretical motivation for the usefulness of cross-language data for
pattern-based features as we do for distribution-based features. However, the
patterns we employ are rather rigid – if the text in one language happens
to word an expression slightly differently from what we anticipated, our
pattern matching component will miss it. Using more than one language then
becomes a way of covering our bases – we get more chances of getting it
right, working with more than one language. Below is an example from the
JRC-ACQUIS corpus where the hyperonymy relation between ‘vegetable oil’
and ‘olive oil’ is captured in the German but not in the English, due to the use
of ellipsis:

• Für den Sektor Fette muß für die Bereitstellung von Olivenöl <und
anderen> pflanzlichen Ölen eine zweckentsprechende Regelung getroffen

werden.

• Whereas, in the oils and fats sector, appropriate rules and procedures

should be laid down for mobilizing olive <and other> vegetable oils;

Terms are again marked in bold and the triggering Hearst-pattern is delimited
with braces.

Head matching features

We make use of two head matching features when training the classifiers: one
for recognizing hyperonymy and one for cohyponymy. Both depend on the
lexical head of a term explicitly marking the hierarchical semantic relation
it holds to its hyperonym – something which is rather an exception than a
rule. We cannot expect the explicit expression of this relation to always occur
for the same words in different languages. Whether it is expressed or not de-
pends on different factors such as language-specific word formation rules and
word-specific lexicalization factors. Table 6.4 contains a series of words from
Eurovoc where the relation is not expressed in the English but is expressed in
at least one of the other languages.
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English German French Swedish Hyperonym

jurisdiction gerichtliche
Zuständig-
keit

compétence
juridic-
tionelle

domstolars
behörighet

competence

concessionaire Vertrags-
händler

concession-
naire

generalagent trader/agent

cohabitation freie Part-
nerschaft

union libre sambo partnership

incorporation Gesellschafts-
gründung

constitution
de société

bolags-
bildning

formation

conglomerate Misch-
konzern

conglomérat konglomerat concern

cannery Konserven-
fabrik

conserverie konserv-
fabrik

factory

assessment Leistungs-
kontrolle

contrôle
des connais-
sances

kunskaps-
kontroll

inspection

crustacean Krebstier crustacé kräftdjur animal

devolution Dekonzen-
tration

déconcen-
tration

begränsat
självstyre

government

delinquency Straffälligkeit délinquance kriminellt
beteende

behavior

Table 6.4: Explicit expression of hyperonymy relations in different languages. The fifth

column contains an approximate translation of the hyperonym, marked in bold in the

non-English relevant cases.

6.4 Training Classifiers for Recognizing Related Term

Pairs

We train two classifiers: one for recognizing hyperonymy relations and one
for recognizing cohyponymy relations. We use the features listed in Table 6.3
for training the hyperonym classifier; for the cohyponym classifier, we use a
subset of the features, listed further down in this section (Table 6.7). We form
the classifier data by taking all ordered pairs of terms within each partition of
Eurovoc (the partitioning is described in Sect. 3.3.1). When preparing data for
the hyperonym classifier, we mark all term pairs (t,u) as positive examples
where t is the direct parent of u in the Eurovoc thesaurus, and we do the same
for siblings for the cohyponym classifier. All other term pairs are marked as
negative examples, so the positive examples for one classifier are negative for
the other.
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We diverge from Cimiano (2006) and Snow et al. (2006) by not using the
transitive closure of the dominance relation when collecting data for the hy-
peronym classifier. This is a deliberate choice, since we believe that the direct
dominance relation will give more prototypical examples of hyperonyms than
the transitive closure of the relation will. We return to discuss this point in
Chap. 7.

There are many more term pairs within each partition of the ontology that
are unrelated to each other than there are hyperonym or cohyponym pairs. We
have a total of 1,078,480 examples, out of which 2,030 are positive hyperonym
examples and 13,078 are positive cohyponym examples. This means that the
data we use to train the classifiers is skewed (it contains many more negative
examples than positive) and that we must find a strategy for dealing with this
skewness – otherwise the classifiers might rationalize the problem by simply
classifying every term pair as unrelated. We discuss this further in Sect. 6.4.2
below.

When evaluating the classifier results, we also have to take the data skew-
ness into consideration. If we consider the overall accuracy of the classifier,
we would get 99.8% correct for the hyperonym classifier and 98.8% correct
for the cohyponym classifier, simply by classifying all examples as negative.
Instead, the standard way of evaluating such datasets is to consider precision,
recall and F-score of the positive class only and this is the evaluation method
we employ in the following experiments.

6.4.1 Single feature classifiers

Our first step is to look at each single feature in isolation and examine how
effective a classifier based solely on this information could be. Because all
our features are either binary or give a value in the range [0,1],8 we use a
threshold that lies within this range. We initialize the threshold to 0 and then
raise it gradually to 1 by steps of 0.01 at a time. At each step, we classify all
examples at or above the threshold as positive and the rest as negative, and we
report the results for the threshold that gives the highest F-score. We perform
the experiment on the Swedish data, using partition 2 of Eurovoc, described in
Sect. 3.3.1 (this partition was chosen because it is about average in size among
the ten partitions).

Table 6.5 gives the precision, recall and F-score for the hyperonym data and
all our features (the absolute frequency features, 21–22 in Table 6.3, are left
out). We also give scores for a measure which we derive by calculating the
arithmetic mean of the scores of all features, and a further measure, which is
the most effective guessing approach (Table 6.6). It may seem counterintuitive
that our best guessing strategy should consist in guessing that all examples are
positive (hence the recall of 1.0 for this measure). This is so because no matter

8An exception is the feature measuring the difference in frequency, which we therefore normal-
ize first.
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how many examples we guess to be positive, we will always get about 0.25%
of them correct (on this dataset), so we might as well maximize the recall and
guess that all are positive. Because all asymmetrical features (those that do not
give the same result for the pair (t,u) as for the pair (u, t)) are designed for the
hyperonym classifier, we do not report on results for them for the cohyponymy
relation (Table 6.7).

To exemplify: ‘vessel’ is listed as a hyperonym to ‘tanker’ in Eurovoc. The
scores for features 1–4 (the subsumption features) for this term pair are (0.655,
0.640, 0.869, 0.934). At a threshold of 0.86, features 3 and 4 would classify
the pair as hyperonym/hyponym, whereas features 1 and 2 would say they are
unrelated. The “Average” measure adds these four features and the 16 others
(remember that we leave out the absolute frequencies of the terms for this
particular experiment) and calculate the arithmetic mean (0.369 in this case,
thus negative at this threshold).

The results are better than what to expect if we were to apply these classi-
fiers to unseen data – remember that we have chosen the thresholds to pre-
cisely fit this dataset. The single best feature, according to the F-score, is
the “Head-hyperonym” feature (the head matching heuristic for hyperonym
detection). The Hearst-patterns give a higher precision but a lower recall.
The best distribution-based feature is “Subsumption-2nd-50” (the subsump-
tion measure using second order co-occurrences and a context window size of
50 words). Note that the “Average” measure does not perform better than the
“Head-hyperonym” feature alone. All features (except “Head-cohyponym”,
for obvious reasons) are significantly better than guessing.

Table 6.7 contains the results for the cohyponym classifier. For this dataset,
the “Head-cohyponym” feature has the highest precision, but recall is low
and it has the lowest F-score of all features. The “Average” feature (Table 6.8)
performs best here, while “Similarity-2nd-3” (distributional similarity, second
order co-occurrence, context window size 3) is the single best feature. Again,
all features improve on the “Guess” feature, which means that they all contain
information useful for a classifier. We do not claim the results in Tables 6.5–
6.8 will look the same for all languages or partitions, but they will function as
a frame of reference when we look at the performance of the support vector
machine classifiers presented in the following section.

Figure 6.8 gives a different way of looking at how well each feature distin-
guishes between related and unrelated term pairs. Features that have a clear
separation of the blue (unrelated), green (hyperonymy) and red (cohyponymy)
lines should be the most useful for the classifier (note that we are then only tak-
ing linear separation of the data into consideration). We see, as predicted, that
features based on subsumption (1–4) and difference in entropy (17–20) sepa-
rate the hyperonyms rather well. It is interesting to see the behavior of the dis-
tributional similarity measures when it comes to differentiating between hy-
peronyms and cohyponyms (unrelated term pairs are easier to distinguish for
these features – also according to expectation). For first order co-occurrence
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Index Identifier Precision Recall F-score

1 Subsumption-1st 0.0380 0.116 0.0572

2 Subsumption-2nd-3 0.0344 0.159 0.0565

3 Subsumption-2nd-50 0.0851 0.0976 0.0909

4 Subsumption-2nd-500 0.0673 0.0854 0.0753

5 Similarity-1st 0.0279 0.0671 0.0394

6 Similarity-2nd-3 0.0295 0.0915 0.0446

7 Similarity-2nd-50 0.0331 0.0610 0.0429

8 Similarity-2nd-500 0.0392 0.0732 0.0511

9 SVD-1st 0.0215 0.0732 0.0332

10 SVD-2nd-3 0.0095 0.0915 0.0173

11 SVD-2nd-50 0.0171 0.122 0.0300

12 SVD-2nd-500 0.0291 0.0305 0.0298

13 Hearst 0.800 0.0244 0.0473

14 Head-hyperonym 0.458 0.0671 0.117

15 Head-cohyponym 0.0 0.0 0.0

16 Frequency-diff 0.0329 0.0488 0.0393

17 Entropy-diff-1st 0.0140 0.152 0.0256

18 Entropy-diff-2nd-3 0.0146 0.159 0.0267

19 Entropy-diff-2nd-50 0.0157 0.0976 0.0270

20 Entropy-diff-2nd-500 0.0144 0.140 0.0262

Table 6.5: Results using an optimal threshold and single features, partition 2, Swedish

hyperonym data. The best F-score is marked in bold, the second best is written in

italics.

Precision Recall F-score

Average 0.0712 0.152 0.0971

Guess 0.0025 1.0 0.0050

Table 6.6: Results for the best guessing strategy (“Guess”) and a measure which we

calculate by taking the arithmetic mean of the scores of all features in Table 6.5 (“Av-

erage”). Evaluated on partition 2, Swedish hyperonym data.

and second order co-occurrence with a small context window (features 5–6
and 9–10), hyperonyms get a (slightly) higher score, for bigger context win-
dows (features 7–8 and 11–12) the situation is reversed or neutral. We see no
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index Precision Recall F-score

5 Similarity-1st 0.0431 0.223 0.0722

6 Similarity-2nd-3 0.0542 0.121 0.0750

7 Similarity-2nd-50 0.0345 0.128 0.0543

8 Similarity-2nd-500 0.0386 0.149 0.0613

9 SVD-1st 0.0425 0.104 0.0604

10 SVD-2nd-3 0.0734 0.0447 0.0556

11 SVD-2nd-50 0.0444 0.0872 0.0589

12 SVD-2nd-500 0.0417 0.0979 0.0585

15 Head-cohyponym 0.117 0.0340 0.0527

Table 6.7: Results using an optimal threshold and single features, partition 2, Swedish

cohyponym data. The best F-score is marked in bold. All asymmetric features in Ta-

ble 6.5 are left out.

Precision Recall F-score

Average 0.0596 0.123 0.0804

Guess 0.0140 1.0 0.0280

Table 6.8: Results for the best guessing strategy (“Guess”) and the arithmetic mean

measure (“Average”). Evaluated on partition 2, Swedish cohyponym data.

clear differences between the raw distributional similarity data (5–8) and the
data where singular value decomposition has been applied (9–12).

6.4.2 Support vector machines

A short and readable introduction to support vector machines (SVMs) can
be found in Schölkopf (1998). In short, SVMs are a set of machine learning
methods that can be used for classification or regression. They are used to find
the maximum margin hyperplane that separates two datasets, or, rather, the
support vectors that define this hyperplane. An example is shown in Fig. 6.9.

Figure 6.10 shows an example taken from the Swedish data, partition 2,
with 100 datapoints randomly selected from each of the three classes: co-
hyponymy, hyperonymy and unrelated terms. We use only two dimensions
(i.e., features) in this example because it is hard to represent more on a two-
dimensional surface. The task of the SVM thus consists in separating the data-
points by class in all 22 dimensions. For the particular features shown in this
example (features 4 and 8), we can see that the task of separating related from
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Figure 6.8: Separation per feature for Swedish data, partition 2, 100 randomly selected
term pairs per class. Solid lines indicate average values (the data has been normalized),
shadowed areas show the variation. Blue represents unrelated terms, red is for cohy-
ponyms and green for hyperonyms. Feature indices on the x-axis coincide with those
in Table 6.3.

Figure 6.9: Source: “Svm_max_sep_hyperplane_with_margin.png”, taken from Wiki-
media Commons (http://commons.wikimedia.org), showing the maximum margin hy-
perplane.
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unrelated term pairs is much easier than distinguishing between the two dif-
ferent types of relatedness.

-1.00E0 -5.00E-1 0.00E0 5.00E-1 1.00E0 1.50E0 2.00E0 2.50E0 3.00E0

-2.00E0 

-1.00E0 

0.00E0 

1.00E0 

2.00E0 

3.00E0 

4.00E0 

sub−win500p

sim−pla−win500p none hyperonym cohyponyms

Figure 6.10: Scatter plot for SVM problem. Features “Subsumption-2nd-500” is
shown on the x-axis and “Similarity-2nd-500” is shown on the y-axis. The data is
from Swedish, partition 2. Hyperonyms are shown in green, cohyponyms in red and
non-related terms in blue.

We use an SVM implementation called “libsvm” (Chang and Lin, 2001).
As a final preparatory step, for each partition, we scale the training data so
that the values of all features lie in the interval [0,1], and the test data is in
turn scaled on the basis of the training data. Both these steps we perform
using the tool “svm-scale”, which is part of the “libsvm” package. We keep
all other “libsvm” parameters in their original, default settings.

To come to grips with the aforementioned problems with skewed data, we
set aside one data partition (number 9) to use as a development set. This means
we exclude partition 9 from all further experimentation, to avoid mixing test-
ing and training data.9 Cimiano (2006) tries over-sampling (copying positive
examples to increase their number) and under-sampling (removing negative
examples) but achieves the best results with a one-class SVM (where only the
positive examples are considered). We were unable to reproduce Cimiano’s
favorable results for the one-class SVM and instead we use the option of as-
signing more weight to the positive examples, so that each mistake for the
positive class is counted as more serious than mistakes for the negative class.
In libsvm this is done through a parameter w (for “weight”), which we set
to 32 for the positive class, for both classifiers. This value was set through

9Because of this, we are performing 9-fold cross validation in all experiments instead of the
standard 10-fold.
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tests on partition 9, where we increased the weight logarithmically in the in-
terval [1,128]. An appealing aspect of this approach is that we are neither
throwing data away (as with under-sampling), nor reproducing data (as with
over-sampling), just shifting the focus of the classifier towards the cases we
are most interested in.

We also perform an optimization, again on partition 9, for both classifiers
for selecting the kernel, where we compare the linear, polynomial (2nd and
3rd degree) and the RBF (radial basis function) kernels. We achieve the best
results with the RBF kernel for both classifiers – a non-linear kernel, which
effectively increases the dimensionality of the original feature set.

Cross-language SVM classification

We perform a series of tests on the classifier data for partition 2, using the
other partitions (excluding partition 9) for training. We use partition 2 to get
results comparable to those in Sect. 6.4.1. Each training and testing run lasts
for anything between one and three days on a Pentium 4 architecture, so we
are therefore not able to perform a cross validation using all partitions and
languages on this experiment set. Tables 6.9–6.14 give the F-score, precision
and recall for the SVM classifiers, using single language data, as well as all
possible combinations of data combining two languages.

Assume we are looking at the hyperonymy data and that we have a recall of
0.1. This means that, out of all term pairs that are related via the hyperonymy
relation in the gold standard, the classifier has identified 10% correctly. If we
for the same data have a precision of 0.3, this means that 30% of the term pairs
that the classifier has identified as hyperonym/hyponym pairs are also marked
as such in the gold standard. The F-score balances recall and precision against
each other by giving the harmonic mean (0.15 in this case).

Single Swedish German French English

Swedish 0.125 - 0.155 0.144 0.148

German 0.123 0.183 - 0.107 0.164

French 0.0909 0.109 0.0668 - 0.115

English 0.0975 0.120 0.134 0.122 -

Table 6.9: Comparing single language and all combinations of dual-language models,

hyperonym classification task, F-score on the positive class, partition 2. The highest

score overall is marked in bold, the highest score per language is marked in italics.

The rows identify the language used as the basis for the model, and the columns in-

dicate which language is used to extend the base model (“Single” means that just the

base model is used).

For the hyperonym classification task, we see a dramatic increase in pre-
cision for the dual-language data, with little or no decrease in recall (some
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Single Swedish German French English

Swedish 0.174 - 0.500 0.192 0.187

German 0.194 0.415 - 0.152 0.274

French 0.0809 0.110 0.0778 - 0.117

English 0.0975 0.140 0.181 0.132 -

Table 6.10: Single and dual-language models, hyperonym classification task, precision

on the positive class.

Single Swedish German French English

Swedish 0.0976 - 0.0915 0.116 0.122

German 0.0897 0.117 - 0.0828 0.117

French 0.104 0.108 0.0586 - 0.113

English 0.0975 0.106 0.106 0.114 -

Table 6.11: Single and dual-language models, hyperonym classification task, recall on

the positive class.

Single Swedish German French English

Swedish 0.0879 - 0.0768 0.114 0.0997

German 0.105 0.116 - 0.131 0.125

French 0.126 0.125 0.133 - 0.119

English 0.108 0.114 0.123 0.124 -

Table 6.12: Comparing single language and all combinations of dual-language mod-

els, cohyponym classification task, F-score on the positive class.

Single Swedish German French English

Swedish 0.0642 - 0.0714 0.0812 0.0725

German 0.0826 0.0909 - 0.103 0.0987

French 0.0952 0.0953 0.105 - 0.0903

English 0.0808 0.0881 0.0991 0.0949 -

Table 6.13: Single and dual-language models, cohyponym classification task, preci-

sion on the positive class.

language combinations give an increase in both at once). There is also a ten-
dency for combinations of Swedish and German data to give good results, as

122



Single Swedish German French English

Swedish 0.139 - 0.0830 0.189 0.160

German 0.146 0.161 - 0.179 0.170

French 0.185 0.184 0.181 - 0.176

English 0.162 0.161 0.162 0.181 -

Table 6.14: Single and dual-language models, cohyponym classification task, recall

on the positive class.

well as for combinations of English and French. Improvements on the single
language results are less dramatic for combinations across these two groups,
with the exception of English and German.

The dual-language data generally also improves the results for the cohy-
ponym classification task, but to a smaller extent. The language pairs that
gave the biggest improvements for hyperonym classification do not stand out
in the same way for the cohyponym classification. We do not have a theoretical
explanation for the cases of reduced F-score (one for the hyperonym classi-
fier and two for the cohyponym classifier), but since we have not performed
cross-validation on this data, it is possible that the picture would change for
the other partitions (this of course holds for possible further reductions in F-
score as well).

We perform the same experiments, this time with cross validation, on all
the English data, comparing the results using the “Mono”, “All” and “MT”
datasets. We use only the English data as our baseline here, because of the long
running times for these experiments, as discussed previously in this section.
We give the results in Tables 6.15–6.16.

Mono All MT

F-score 0.151 0.179 0.174

precision 0.202 0.234 0.435

recall 0.139 0.154 0.112

Table 6.15: 9-fold cross validation, “Mono”, “All” and “MT” data, hyperonym clas-

sification task, scores on the positive class.

Both the “All” and the “MT” data give increased F-scores for both classi-
fiers. Again, we see that using the “MT” data results in higher precision, while
the “All” data improves on both recall and precision at once. The improvement
in F-score is again bigger for the hyperonym classifier and we also see, con-
trary to what seemed to be the case in Tables 6.9 and 6.12, that the cohyponym
classifier is more accurate than the hyperonym classifier. Remember, as we
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Mono All MT

F-score 0.204 0.213 0.208

precision 0.159 0.160 0.175

recall 0.297 0.344 0.275

Table 6.16: 9-fold cross validation, “Mono”, “All” and “MT” data, cohyponym clas-

sification task, scores on the positive class.

discussed in Sect. 6.4.1, that using this method of evaluation, the cohyponym
classifier has a slightly easier task to solve than the hyperonym classifier.

The most striking figure in Tables 6.15–6.16 is the remarkable increase in
precision for the hyperonym classifier using the “MT” data. The non-linearity
of the classifiers makes it hard to say just what is causing this change, but
one hypothesis is that the classifier switches to looking more exclusively at
the high-precision features, such as the head matching heuristic or the Hearst-
patterns. Since many feature values are simply missing (because many terms
are not translated), the low-precision features become even less reliable, forc-
ing a change of focus towards the high-precision features.

In Sects. 6.4.1–6.4.2, we have shown how it is possible to gradually in-
crease the performance of our two classifiers. Going from our naïve single
feature classifiers, we saw how formulating the problem for an SVM classi-
fier brought performance up a notch. We have now shown that further qual-
itative improvements are possible, by taking a cross-language perspective on
the problem of recognizing hyperonymy and cohyponymy, and that automatic
word alignment techniques can be used to, at least partially, achieve these im-
provements, in the absence of a domain-specific multilingual dictionary.

6.5 Probabilistic Ontology Learning

We discussed previous efforts towards incorporating probability theory in
ontology learning approaches in Sect. 2.5.7. Our approach is based on the
method described by Snow et al. (2006), with some alterations, and we add
a cross-language perspective by using probabilities based on evidence from
different languages. Snow et al. define two base relations that are used to
construct the hierarchy: hyponymy (and its inverse relation hyperonymy) and
cohyponymy. The hierarchy is constructed by iteratively adding instances of
either of the two relations, in such a way as to maximize the probability of
the resulting hierarchy after each step. After a few terms have been added
to the hierarchy, one is no longer free to add new relations at will, but the
hierarchy constructed to that point imposes restrictions on any new relations
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to be added (e.g., term t and term u cannot be cohyponyms if t has already
been specified as the hyperonym of u).

A new relation added to the ontology sometimes implies a further set
of relations, because of the resulting new structure of the hierarchy. The
probability of these implied relations is also taken into account when
considering which instance of which of the two base relations to add next to
the hierarchy. Snow et al. thus introduce a global perspective, considering
the hierarchical structure in its entirety, into their ontology learning process;
something which is absent in the (otherwise similar) approach suggested
by Ryu and Choi (2006). We will study some specifics of Snow et al.’s
approach alongside with that of our own in the rest of this section and also
look at experimental results.

6.5.1 Selecting the best relation to add

The algorithm we describe here is greedy for reasons of tractability; generat-
ing and testing every possible configuration for arranging the terms hierarchi-
cally would be much too expensive. We therefore try to find, in each step, the
relation to add that will maximize the probability of the ontology at that given
point. Assume we have an ontology O, evidence used to learn the ontology E

(in our case the output of the SVM classifiers), two terms t and u and a re-
lation Rtu between the two terms. We then, along with Snow et al., calculate
the multiplicative change in the overall probability of ontology O, caused by
adding Rtu, like this:

∆O(Rtu) = k(
P(Rtu ∈ O|ER

tu)

1−P(Rtu ∈ O|ER
tu)

) (6.1)

In the above formula, k is considered a constant, independent of O, t and u.
Snow et al. use the same k for both base relations in their experiments; we
investigate the effect of using different k values for the different base relations
in our experiments in Sect. 6.5.2.

As mentioned, adding a relation Rtu to the ontology is likely to not only
affect terms t and u, but also to result in other terms in the ontology entering
into new relations with each other or with t or u. When considering whether or
not to add Rtu to the ontology, we also want to consider the probability of the
set of relations implied by Rtu. We denote this implied set I(Rtu) and we cal-
culate the total multiplicative change for adding Rtu to O using the following
formula:

∆O(I(Rtu)) = ∏
R∈I(Rtu)

∆O(R) (6.2)

This is the formula we use in each step of the iterative ontology learning pro-
cess, to determine which relation maximizes the return value and thus which
relation to add to the ontology.
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Snow et al. also introduce a threshold for Equation 6.2 (the threshold is 1
in their case) for determining when to stop adding relations to the ontology.
This threshold allows a trade-off between recall and precision; using a high
threshold means that we only add the most probable relations to the ontology
but also that many terms and relations will not be included. We examine the
effect of altering this threshold in our experiments in Sect. 6.5.2.

For each ordered pair of terms in our term set, we have stronger or weaker
evidence that either of the two base relations holds. The evidence in our case
is based on the scores from the SVM classifiers, described in Sect. 6.4. Clas-
sifiers typically give a score in the range [-1,1], so first of all we normalize the
score so that it instead lies in the range [0,1]. To achieve this, we perform a
sigmoid transformation of the scores, using the following formula:

P(s) =
1

1+ e−s
(6.3)

where s is the classifier score. One can view this as a way of approximating
the probability of an event by fitting the data to a sigmoid (S-shaped) curve.

We can control the average branching factor of the ontology by altering
the constant k in Equation 6.1. Setting a higher k for the cohyponymy rela-
tion makes the algorithm biased towards adding instances of this relation to
the ontology rather than instances of the hyperonymy relation, which in turn
results in a higher average branching factor for the ontology. Which average
branching factor to strive for will differ depending on the domain, available
resources and intended application of the ontology. In Chap. 7, we discuss a
possibility for finding an optimal value for k, based on the classifier scores
and derived probabilities. We investigate the effects of using different k values
experimentally in Sect. 6.5.2.

Implied relations

We consider the hyperonymy relation to be transitive, meaning that if t is a
hyperonym of u in our ontology, and we wish to add that u is a hyperonym
of v, this implies a hyperonymy relation between t and v. So far, we are in
agreement with Snow et al. (2006), but when it comes to cohyponymy, we
only consider relations of the first degree, whereas they take other variants of
the relation into consideration. For this purpose, they introduce the notion of
(m,n)-cousinhood, where a term t is an (m,n)-cousin of term u, if the shortest
path from t to u in the ontology consists in going m steps up and n steps
down. E.g., in Fig. 6.11, ‘hard cheese’ and ‘cream’ are (2,1) cousins, and
‘pasteurised milk’ and ‘soft cheese’ are (2,2) cousins.

Instead of just training a cohyponym classifier, as in our approach,
Snow et al. train separate (m,n)-cousin classifiers, one for each (m,n).10

They can afford this because they use a radically different cohyponym
classifier – using our SVM classifier, this would be far too inefficient.

10(m,n) is considered equal to (n,m)
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milk_product

butter cheese milk cream

hard_cheese soft_cheese pasteurised_milk raw_milk

Figure 6.11: Eurovoc excerpt, terms involving milk products.

Apart from practical issues, we see a conceptual problem with
(m,n)-cousinhood as well, in that it is not intuitively clear what this relation
represents. Adding additional layers of the hyperonymy relation between two
terms keeps the is-a link between them intact, while increasing the level of
abstraction of the connection. Additional layers added between two terms
related by the cohyponymy relation create a new type of relation, the nature
of which is not well defined.

In Sect. 6.4, we discussed not using the transitive closure of the hyper-
onymy relation when assembling the training data for the SVM classifiers.
This decision was taken in order to make sure that only the most prototypi-
cal term pairs are used as positive examples when learning the hyperonymy
relation. The fact that we are now looking at the transitive closure for hyper-
onymy when calculating the multiplicative change stands in contrast but not in
contradiction to our previous decision. It is still possible to learn chains of hy-
peronyms, as long as all subordinate terms in the hyperonym chain look like
typical hyponyms of all terms at higher levels. We return to this discussion
again in Chap. 7.

6.5.2 Experimental results

We report results on the three sets of data for all experiments, as described in
Sect. 6.3: “Mono”, “All” and “MT”. We compare the three resulting models by
using them to build ontologies in our probabilistic ontology learning system.
The learned ontologies are evaluated using our PMCC measure and the CSC
measure, both discussed in Sect. 4.3. We showed in Sect. 4.3.2 that the CSC
measure is sensitive to whether or not the root element is shared between the
reference and the learned ontology. In order not to overestimate the similarities
when testing with the CSC measure, we use a version of Eurovoc where the
root concept has been changed to a neutral one (not occuring in the learned
ontology) – the same setting that we used for the experiment shown in Fig. 4.8.
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Varying the average branching factor

As mentioned, we can influence our ontology learning system towards build-
ing flatter or deeper trees, with higher or lower average branching factors, by
using different values of k in Equation 6.1. We compare the results for differ-
ent k values and all three models to the Eurovoc thesaurus. If we use k for the
cohyponymy relation, we use k′ = 1− (k− 1) for the hyperonymy relation –
in other words, when the constant for one relation goes up, the constant for the
other relation goes down, and vice versa. The results for the PMCC measure
are given in Fig. 6.12 and for the CSC measure in Fig. 6.13.
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Figure 6.12: Increasing values of k for cohyponymy, 9-fold cross validation, single
and cross-language data, evaluated with the PMCC measure.
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Figure 6.13: Increasing values of k for cohyponymy, 9-fold cross validation, single
and cross-language data, evaluated with the CSC measure.
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We set the threshold to 1 for the multiplicative change (same as used in
Snow et al., 2006) for deciding when to stop adding new relations to the on-
tology in these experiments. This means, in our case, that we are on average
adding about 80% of the terms scored by the classifiers to the ontology (same
for all three models); for the rest, the evidence of them entering into any rela-
tion with the other terms is deemed too loose.

We see a sizable increase in the PMCC measure when using the “All” and
the “MT” data, compared with using the “Mono” data. For the “All” data, the
increase lies between 27% – 55%, depending on the k value, and for the “MT”
data it lies between 20% – 70%. The results for the “MT” data lie almost flat
across the different k values, the “All” data results peak at k = 1.1 and the
“Mono” data shows an almost perfect linear increase. We stop investigating
k values at 1.2, because beyond that, no or very few hierarchical relations
are added, which defeats the purpose of our efforts. Using k < 1 would mean
producing a tree with a branching factor less than two, and this is intuitively
the wrong way to go.

Turning to the results for the CSC measure (Fig. 6.13), the picture is differ-
ent. We still see improved results for the “All” and “MT” data, but on a smaller
scale: between 6% – 11% for the “All” data and 2% – 9% for the “MT” data.
The “All” data results peak at k = 1.05, otherwise the tendency is that the CSC
measure decreases as k increases – practically the inverse situation to what we
saw for the PMCC measure. This should not come as a big surprise; as dis-
cussed in Sect. 4.3, the CSC measure is “blind” to horizontal relations. As we
increase the k value for the cohyponymy relation, fewer hyperonymy relations
are added and the CSC score drops.

Choosing the appropriate k value for our purposes thus proves a less
straightforward decision than we had hoped. We settle on using k = 1.05 for
our future experiments strictly as a compromise between the results from the
two evaluation measures. At k = 1.05, the CSC measure has not dropped too
much from its state at k = 1.0, and the PMCC measure has had the chance to
improve slightly. To some degree, setting k = 1.05 is an arbitrary decision,
but the most important issue for the next experiment series is the fixation of
k, rather than the value assigned.

Varying the probability threshold

The experiments described here have the same basic setup as the ones in the
preceding section, and once again we compare results using the three different
datasets. We fix the value of k = 1.05 and instead measure what happens when
we vary the threshold for when to stop adding new relations to the ontology.
Snow et al. use a threshold of t = 1 in their system; here, we vary t in the
range [0,2], starting at 0 and increasing it by steps of 0.5 for each run. We give
the results for our PMCC measure in Fig. 6.14 and for the CSC measure in
Fig. 6.15.
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Figure 6.14: Increasing values of t, 9-fold cross validation, single and cross-language
data, evaluated with the PMCC measure.
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Figure 6.15: Increasing values of t, 9-fold cross validation, single and cross-language
data, evaluated with the CSC measure.

We see an increase in PMCC value using the “All” data over the “Mono”
data of between 19% – 64%; for the “MT” data the same figures are 11% –
54%. The difference between using the “All” data and the “MT” data seems
small here, with the “MT” data even giving slightly better results at t = 0. We
see this as an effect of the hyperonym classifier working with higher precision
when using the “MT” data (see Table 6.15). Using a more conservative strat-
egy, trading recall for precision, is probably a good approach at this threshold
level (t = 0).

For the CSC measure, the picture again is changed. The “All” data boosts
the results with between 1%–15% but the “MT” data makes the result vary
between -6%–4%. It seems that the conservative strategy that was useful for
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the PMCC evaluation here becomes a disadvantage. The high precision of the
added hyperonymy relations cannot fully compensate for the loss in recall,
when evaluating with the CSC measure (remember that cohyponymy relations
are not considered by this measure).

Using a specific threshold, the number of concepts added to the ontology
will vary slightly between our three datasets, depending on the distributions
of the scores from the classifiers. Of course, it is easier to score high in these
evaluations if one only adds relations for which the evidence is clear. In other
words: the more concepts and relations added to the ontology, the harder the
task, given that there is a sliding scale of certainty for the validity of the ev-
idence for relations between term pairs. To verify that the differences in the
evaluations in Tables 6.12–6.15 are not caused by such differences in lexical
coverage, we also plot the percentage of concepts added against the different
values of t for all three datasets in Fig. 6.16.
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Figure 6.16: Increasing values of t, 9-fold cross validation, single and cross-language
data, percent of concepts added.

There is obviously little or no difference between the three models in this
aspect. Where they do differ, it is towards the “All” and “MT” data including
more terms than the “Mono” data. Differences to the advantage of using the
cross-language data shown in Tables 6.12–6.15 are thus not due to the system
solving an easier problem in those cases; if anything, it solves a slightly harder
problem, with a considerable increase in accuracy.

6.5.3 Example system output

To give an idea of how the output of the system might look, we include part
of the ontology for partition 3, learned using the “All” data, in Fig. 6.17 (we
have to exclude parts of the structure due to the restricted size of the page).11

11The Appendix shows two additional examples of ontologies learned with our method.
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We see that at the settings used to learn this ontology (k = 1.0, t = 1.0), a lot
of confidence is placed in the head matching heuristic, both for hyperonymy
and cohyponymy. But that is far from the whole story, especially for the co-
hyponymy relation; see, e.g., nodes 1, dealing with different kinds of cereals
and grains, and 25, dealing with environmental issues. Also the hyperonymy
relation shows some interesting departures from the head matching heuristic,
e.g., between the terms ‘meat’ → ‘beef’, ‘sweetener’ → ‘honey’, and ‘nat-
ural_resource’ → ‘mineral_resource’ (the last example actually goes against
the head matching heuristic for cohyponymy).

The numeric nodes in the learned ontology are produced when the ontology
learning algorithm adds cohyponymy relations between terms not already in
the ontology. By allowing the creation of these abstract nodes, we ensure that
the best relation, according to the definition given in Sect. 6.5.1, gets added
in each iteration of the algorithm (otherwise we would only be allowed to
add cohyponymy relations under an already specified hyperonym). It on the
other hand means that the structure we produce is not a strict terminological
ontology, but rather a structure which has characteristics both of a termino-
logical and of a prototype-based ontology. We thus give precedence to pro-
ducing the structure with the highest probability over producing a structure
which adheres to the rules for terminological ontologies. This behavior could
be changed easily, by disallowing the insertion of the numeric nodes.

Using SVM classifiers, especially with non-linear kernels such as the RBF
kernel used in our experiments, it is not transparent which feature or com-
bination of features lead to an item being classified as a positive or negative
case. For the example with ‘beef’, it seems obvious that cross-language infor-
mation has been useful, since all three other languages involved can use the
head matching heuristic. The translations are: ‘Rindfleisch’ (German), ‘viande
bovine’ (French) and ‘nötkött’ (Swedish), where ‘Fleisch’, ‘viande’ and ‘kött’
all are translations of ‘meat’. For the examples involving ‘honey’ and ‘min-
eral_resource’, the situation is less straight forward – there is no single feature
we can point to for an explanation. We simply have to regard the outcome as
a result of all available information working together to produce the classifi-
cation.

The average branching factor of the ontology in Fig. 6.17 is much higher
than two (two being the average branching factor of a full binary tree). We
saw in Sect. 6.4.2 that the cohyponym classifier is solving a slightly easier
problem, and also that its F-score on average is higher than the F-score for the
hyperonym classifier. We get a greater number of relations with high confi-
dence values from the cohyponym classifier than we get from the hyperonym
classifier, which in turn leads to more cohyponymy relations being added,
even when using identical k values for both relations. If we want to create a
system that is truly unbiased as to which of the two relation types it prefers,
such factors will have to be weighed in when setting the k values for the two
relations.
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6.6 How Good are the Results?

Maedche (2002) presents an experiment for evaluating how closely two on-
tologies built by humans resemble each other. He uses an existing ontology
from the tourist domain, constructed by knowledge engineering experts, as a
gold standard. The ontology contains 310 concepts, in addition to some top
level concepts defining the basic structure. Four undergraduate students in in-
dustrial and business engineering were given 310 terms, corresponding to the
310 concepts, and asked to arrange them in a hierarchy. Each student received
a total of six hours of training in ontology building before starting the task.
The students’ results are compared to the gold standard, but Maedche also
performed a mutual comparison of the results within the student group. The
task set for the students is very similar to the one we have evaluated in this
thesis: given a set of terms, identify their relations when modeled in a hierar-
chical structure.

Maedche uses the measure we refer to as SC in Sect. 4.3 to compare the
ontologies to one another. Because there are five ontologies to compare (four
from the students plus the gold standard), we end up with a total of 20 compar-
isons. The SC values for these 20 comparisons range from 0.47 to 0.87, with
an average value of 0.56 (the measure gives a value in the range [0,1]). Unfor-
tunately we have not been able to perform any experiments with human sub-
jects using our resources, so we are not sure what the corresponding figures
under our conditions would be. It is not unreasonable to ascribe Maedche’s
figures some level of general applicability though; if our system manages to
learn ontologies that give similarity figures that are in proximity of the ones
in Maedche’s study, we should take this as a favorable sign of the quality of
the output of our system.

Here is where we run into problems with the SC measure, as discussed in
Sect. 4.2.2. It is impossible to separate the values for lexical coverage from
the values for precision and recall of the hierarchical relation (hyperonymy).
Because we are using cross-validation in our experiments, we are only learn-
ing a small part of the ontology in each run, which means that all recall values
will be very low using SC (typically below 0.01). Even if we disregard all
other partitions of the ontology than the one we are using at the moment, we
are only including a subset of the concepts (terms) within each partition in the
learned ontology – namely those terms that occur at least once in the English
texts (and the size of this subset will also vary with different values for the
threshold t). Therefore, we cannot use the SC measure and expect meaningful
results, in our case.

The CSC measure, however, provides exactly what we need: it calculates
values of precision and recall taking only those concepts into consideration
that occur in both ontologies. If we consider the CSC values at t = 1.0 (the
standard threshold suggested in Snow et al., 2006) in Fig. 6.15, we get values
in the range 0.38–0.42, depending on the dataset used for the experiment.
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So, the highest result (0.42) at this threshold is still lower than the lowest
result (0.47) in the human–human comparison and another step away from
the average human–human result (0.56). This should not have us too worried,
considering that the size of the gap is relatively modest. We should point out,
though, that comparing evaluation results from the SC and CSC evaluation
measures is not unproblematic, as demonstrated in Chap. 4.

If we look back to Sect. 1.2, where we discussed motivations for using on-
tology learning, we said that we do not expect the ontology learning process
to be fully automated for all applications – a domain expert can always be con-
sulted for post editing the results, if this should be deemed necessary. In this
light, the results measured in the experiments in Sect. 6.5.2 are rather encour-
aging, though there is still plenty of qualitative and methodological improve-
ment that can and should be made, before the system can start performing on
a human level, in terms of accuracy.
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7. Conclusions

We have presented a framework for cross-language ontology learning, focus-
ing on providing a setting in which cross-language evidence (data) can be
integrated and quantified. In this chapter, we will summarize our findings and
contributions to the ontology learning field, discuss some issues raised in the
thesis and also give prospects for future research directions.

7.1 Recapitulation and Contributions

Having established, in Chaps. 1–2, what ontology learning is, why it is use-
ful and what we expect from approaching it from a cross-language perspec-
tive, we next discussed the need for reliable and robust evaluation metrics. In
Chap. 4, we described two of the most commonly used metrics. We showed
that they have certain problem areas, such as their non-applicability in given
settings, as well as a degree of unpredictability and an exaggerated reliance on
agreement for the top concept(s) for the compared ontologies. This, together
with a lack of a standardized set of (cross-language) documents and an ac-
companying gold standard against which to evaluate, has prohibited compar-
isons of methodologies within the field. We therefore suggested a new cross-
language document collection with an accompanying thesaurus for evaluating
learned ontologies, as part of an effort to standardize evaluation (Chap. 3).
Our first major contribution in this thesis is the development of a new eval-
uation measure, which remedies some of the previously mentioned problems
regarding robustness and predictability. We can thus answer one of our initial
questions, formulated in Sect. 1.3: Can we improve or complement the evalua-

tion measures used today? The theoretical and experimental results presented
in Chap. 4 show that the answer is yes.

Our next topic was translational equivalence between terms (Chap. 5). We
investigated this as a matter in its own right, but also because we were inter-
ested in using the output of the translation system for providing equivalence
links in our ontology learning system. Our contributions from these studies
consist of a comparison of distributional similarity models and a statistical
word alignment system on the task of bilingual dictionary extraction, as well
as the introduction of an ensemble method for combining the two approaches.
We also demonstrate a way of increasing the precision of the system by cross-
checking the results, using a total of four languages for a task typically thought
of as involving only two (Sect. 5.2.2).
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The following chapter (Chap. 6) contains the major part of our contributions
to the ontology learning field. We noted in Sect. 2.8, that our task largely con-
sisted in finding a way of combining the various sources of information at our
hands. Another question formulated in the introduction deals with this: What

are the chief sources of information for ontology learning and how can they be

combined effectively? The answer to this question is complex, but we showed
in Sect. 6.4.1 that all features considered (described earlier in Sect. 6.2) in
fact also contributed to solving the problem. We then demonstrated how to go
about merging information across languages in Sect. 6.3. Finally, Sect. 6.4.2
showed how to join all information sources by training a support vector ma-
chine, exploiting knowledge drawn from all languages involved. Having said
that, there are of course features we have left unconsidered, other ways of
merging the cross-language data and alternative machine learning approaches
one could use. We have focused on the state of the art, while striving towards a
resource-lean, language independent approach, in cases where we were forced
to choose between alternative methods.1

Our final question from the introduction has two parts; the first part asks
Can cross-language data teach us more than data from a single language for

solving the ontology learning task? We answer this question in the affirmative,
both through showing increases in F-scores for the support vector machine
classifiers in Sect. 6.4.2 and through the improvements in the ontology learn-
ing evaluation measures for the experiments in Sect. 6.5.2. The improvements
for the latter are substantial. The second part of the question, Can we use au-

tomatically extracted term equivalents to achieve this improvement? is also
answered positively, using the same argumentation. We demonstrated some
interesting effects; perhaps the most striking was how the cross-language data
increased the precision in the learned models.

7.2 Discussion and Outlook

In a sense, we are at the end of the road here; we have answered the questions
we set out to investigate and indicated ways of improving ontology learning
systems through the exploitation of cross-language data. In another sense, as
discussed in Sect. 6.6, we still have a long way to go before our ontology
learning system performs on a human level. We end this thesis by discussing
ideas for further improving our system and we also consider widening the
scope of the problem towards including other kinds of semantic relations.

Throughout the thesis, we are working with two corpora (and accompa-
nying ontologies/thesauri). The JRC-ACQUIS corpus is parallel and meticu-
lously controlled for its quality and content. The Wikipedia anatomy corpus
on the other hand is comparable as opposed to parallel, and was constructed

1The methodology for merging the cross-language data is our own, so this part of the system
does not belong to the state of the art in any established sense.

138



on the fly. Between them, they cover a large space of the type of corpora that
might be available when wishing to learn an ontology from text. By putting
the two corpora to use in different experiments, we have indicated what kinds
of results we can expect from an ontology learning system, depending on the
type of corpus that we feed the training component. We hope further to have
shown that, in the absence of an “ideal”, high-quality corpus such as the JRC-
ACQUIS, useful results can still be produced from employing web-crawling
techniques such as those we used for building the Wikipedia anatomy corpus.

In Sect. 2.3, we mentioned that we have ignored the issue of non-continuous
strings of words, when performing term spotting. This has a possible effect
of worsening the sparse data problem, because some occurrences of certain
terms go unnoticed. If we were to allow non-continuous strings, this would
on the other hand lower the precision for the term spotting task. We need an
experimental investigation of the effects before we can say whether the system
would benefit from allowing non-continuous strings or not. Words occurring
“inside” the term are interesting to consider from a distributional aspect – how
would they contribute to the co-occurrence profile of a term, when dealing
with second order co-occurrences? We leave this as an open question, to be
investigated in future experiments.

When considering the use of automatically generated term equivalence
links, we mentioned in Sect. 6.3.1 that it would be possible to trade precision
for recall when deciding which equivalents to merge and which not. In
our current system, we are focusing on precision, but we cannot exclude
the possibility that increasing the recall (at the cost of precision) would
produce better results overall – again an area which would need further
experimentation to get the needed clarification. Taking this line of reasoning
further, it would be interesting to see the effects of using the results from the
automatic translation based on a comparable corpus, where precision is even
lower, for learning a prototype-based ontology (see Sect. 6.1).

We discussed possible repercussions of not using the transitive closure of
the hyperonymy relation, when creating the training examples for the hyper-
onym classifier (Sects. 6.4 and 6.5.1). To see the rationale behind excluding
the indirect relations, consider the Eurovoc excerpt in Fig. 7.1. The relation
between ‘animal product’ and ‘beef’ is different from the relation between
‘meat’ and ‘beef’. In text, we would expect ‘beef’ to be compared to other
kinds of ‘meat’, but rarely to other kinds of ‘animal products’ like ‘silk’ or
‘wool’. This will affect tendencies of the two term pairs to appear in Hearst-
patterns together, and also their distributional patterns in general. On the other
hand, training separate classifiers for recognizing hyperonymy relations for
each different number of intervening concepts will most likely mean throw-
ing away many commonalities, and instead create a sparse data problem. One
possible compromise would be to build one classifier for direct hyperonyms,
and one for indirect ones, whatever the number of intervening concepts, or, to
allow a number of intervening concepts up to a certain threshold. It is again
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difficult to predict what kind of effect this would have on the overall quality of
the system output; we would need to look at results from contrastive ontology
learning evaluations.

animal_product

animal_skin meat egg honey silk wool

leather hide beef buffalo_meat offal goatmeat

veal

Figure 7.1: Eurovoc excerpt, concepts dealing with animal products. ‘Leather’ and
‘hide’ have been added to the original Eurovoc structure.

In Sect. 6.5.1, we described how we can steer the ontology learning system
towards producing broader or narrower hierarchies (with larger or smaller av-
erage branching factors), by altering the value of a constant k. By setting the k

value higher for either the hyperonymy or the cohyponymy relation, the sys-
tem gets biased towards adding instances of one relation more frequently than
the other. One could imagine finding an optimal k value for a particular dataset
by generating ontologies using different parameterizations, and choosing the
k value which generates the ontology with the highest probability. There is no
guarantee that the most probable ontology (in this sense of ‘probable’) will
also result in the best ontology by human standards, or by the standards of an
ontology learning evaluation measure, but it is a possibility worth investigat-
ing.

We have made the simplifying assumption in this thesis of assuming a one-
to-one correspondence between terms and concepts. Introducing the cross-
language perspective, this assumption still holds, as long as we consider each
language as an isolated system. If we were to add the synonymy relation to our
two base relations hyperonymy and cohyponymy, we would have to abandon
this simplification. Assume we allow the synonymy relation, and that we have
currently learned the ontology in Fig. 7.1. Assume further that we also have
good evidence for the relations in Fig. 7.2 (with an unspecified top node)
and that we would like to add an instance of the synonymy relation between
the terms ‘animal skin’ and ‘skin’. Adding this instance means that a lot of
implied relations will have to be considered, as we discussed in Sect. 6.5.1,
e.g., that ‘animal product’ will be a hyperonym of ‘skin’ and ‘fur’, and that
‘skin’ and ‘fur’ will be cohyponyms of ‘meat’, ‘egg’, ‘honey’, etc. But we
should also consider whether ‘fur’ and ‘rawhide’ can be merged via synonymy
with any of the terms in matching positions in the “main” ontology (‘hide’

140



and ‘rawhide’ would be good candidates for a merge in this example). This
would result in the ontology in Fig. 7.3, where alternative terms (synonyms)
are separated by a ‘|’.

skin fur

rawhide

Figure 7.2: Partially learned ontology dealing with animal products, unspecified top
node.

animal_skin |

skin

leather
hide |

rawhide

animal_product

meat egg honey silk wool fur

beef buffalo_meat offal goatmeat

veal

Figure 7.3: Ontology after merging (near) synonyms.

These further merges are not “implied” in the previous sense, but we would
still like to consider their probabilities when deciding on the addition of a
synonymy instance to the ontology. One approach would be to take positive
evidence for further merges into account (such as for ‘hide’ and ‘rawhide’),
while the rest can be treated as terms in their own right (as for ‘fur’, which has
no real candidates for merging). Adding a cross-language dimension to the
discussion, we would have to consider synonymy relations for all languages
involved, which would add further complexity (e.g., two English terms ap-
pear to be synonyms, but their German translations do not – how should this
be handled?). Making synonymy a third base relation, in addition to hyper-
onymy and cohyponymy, would thus pose some interesting challenges, espe-
cially when wanting to fit all relations into the same framework.

When discussing formal ontologies in the introductory chapter, we noted
that they typically involve a number of other relations in addition to the ones
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we consider in this thesis, e.g., meronymy and related-to (e.g., ‘racket’, ‘ball’
and ‘net’ are related-to each other in the sports domain). Once we have estab-
lished the ontology skeleton via the base relations, we can add arbitrarily many
networks of links on top, without them interfering with the basic hierarchical
structure built up from hyperonymy and cohyponymy. There are no implica-
tions from meronymy or related-to relations that carry over to hyperonymy
or cohyponymy; we can therefore treat the inclusion of additional layers of
relations as independent problems, to be dealt with in a separate framework.
On the other hand, having established the taxonomic backbone of the ontol-
ogy via our base relations will most likely have a positive effect when trying
to learn additional relations, since we then can exploit knowledge encoded in
this hierarchical structure during the learning process.

The most obvious way of improving our system would be to make our 22
features produce more accurate results. 19 of our 22 features are based on dis-
tribution and frequencies, which means that they all most likely would benefit
from using version 3.0 of the JRC-ACQUIS corpus, which is almost three
times bigger than version 2.2, used in this thesis. The Hearst-pattern feature
would probably also benefit from a bigger corpus, because related terms are
more likely to appear in a Hearst-pattern, the more text we analyze. A cheap
way of getting more co-occurrence data would be to use large general purpose
corpora, in addition to our domain-specific ones. But this introduces problems
with ambiguity, since we then can rely less on the “one sense per discourse”
heuristic which we use for our domain-specific corpora.

In Sect. 6.4.2 we perform contrastive experiments to see the effects of merg-
ing data from different language pairs. We see some effects that indicate that
typologically similar languages benefit the most from merging the data, but
the results are not clear-cut. It would be interesting to incorporate languages
that are typologically further removed from the others in future experiments
(e.g., to include Finnish or any of the Slavic languages from the JRC-ACQUIS
corpus and Eurovoc in the experiments). One could argue that merging the
data should be simpler, the more similar the involved languages are. On the
other hand, dissimilar languages could be argued to introduce a higher degree
of “orthogonality” in the data, meaning that they would express new informa-
tion, where similar languages merely would repeat what is already known.

Including part-of-speech information along the lines of Padó and Lapata
(2007) would be another possibility for improving the distribution-based fea-
tures. As discussed in Chap. 2, though, it remains to be proven that the syn-
tactic models outperform the best word-based models.

If we had access to a high quality coreference resolution system, this would
be another factor in dealing with the sparse data problem, allowing us to ex-
change pronouns for the non-pronominal nouns or noun phrases they refer
to, in the running text. Hendrickx et al. (2008) show the reverse side of this;
how distributional similarity can be used for improving coreference resolu-
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tion, which means that there is an opportunity for creating a bootstrapping
effect between the two fields.

Another way of further improving our system such as it stands today, would
be to perform more extensive feature weighting and parameter optimization
for the support vector machine classifiers. Such optimizations are time con-
suming when performed on large enough datasets, which is why we had to
settle for using standard parameterizations for certain parts of our system. It
is also possible that we could improve our system further by a more sophisti-
cated handling of missing feature values in our data, perhaps by reduplicating
or interpolating data from other languages. The latter primarily applies to ex-
periments using the “MT” data in Chap. 6.

Finally, we feel that there is a lot of interesting work to be done in evaluat-
ing the effects of incorporating the semantic knowledge captured in a learned
ontology in other NLP applications. We gave some examples in Sect. 2.1 of
where learned or handcrafted ontologies brought improvements in the accu-
racy of a number of different NLP systems. We see some trends also in com-
mercial settings towards incorporating ontological knowledge in information
access-oriented companies such as Powerset,2 Twine3 and Hakia.4 From a re-
search perspective, it would of course be interesting to quantify the effects of
incorporating ontological knowledge on the large scale (in terms of data and
users) such commercializations allow. On a somewhat smaller scale, Nagypál
(2007) has performed evaluations towards this end, that we feel would be
worthwhile pursuing further.

To sum up, we have indicated many fields in NLP (machine translation
is another such field of interest) where we suspect that ontology learning-
like approaches have yet to demonstrate their full worth. In this we feel to be
fully in line with dominating currents in NLP today, where, as noted in the
introduction, more and more attention is given to handling semantics.

2www.powerset.com
3www.twine.com
4www.hakia.com
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A. Example Output
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Figure A.1: Excerpt of the ontology learned using the “All” data for partition 4, k =
1.0, t = 1.0.
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Figure A.2: Excerpt of the ontology learned using the “All” data for partition 6, k =
1.0, t = 1.0.

146



Bibliography

Towards a Shared Task for Multiword Expressions (MWE 2008), Marrakech,
Morocco, 2008.

Akiko Aizawa and Kyo Kageura. A graph-based approach to the automatic gen-
eration of multilingual keyword clusters. In Didier Bourigault, editor, Recent Ad-

vances in Computational Terminology, chapter 1, pages 1–27. John Benjamins
Publishing Company, Philadelphia, PA, USA, 2001.

William Alston. Philosophy of Language. Foundations of Philosophy. Prentice-
Hall, Englewood Cliffs, NJ, USA, 1964.

David T. Barnard, Gwen Clarke, and Nicholas Duncan. Tree-to-tree correction for
document trees: Technical report 95-372. Technical report, Dept. of Computing and
Information Science, Queen’s University, Kingston, ON, Canada, 1995.

Edward Eryl Bassett, editor. Statistics: Problems and Solutions. World Scientific
Publishing, Singapore, 2000.

Tim Berners-Lee, Dieter Fensel, James A. Hendler, Henry Lieberman, and Wolfgang
Wahlster, editors. Spinning the Semantic Web: Bringing the World Wide Web

to Its Full Potential. The MIT Press, Cambridge, MA, USA, 2005.

Chris Biemann. Ontology learning from text – a survey of methods. LDV-Forum,
20(2):75–93, 2005.

Stephan Bloehdorn and Andreas Hotho. Boosting for text classification with se-
mantic features. In Proceedings of the 10th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, Mining for and from the

Semantic Web Workshop, pages 70–87, 2004.

Stephan Bloehdorn, Philipp Cimiano, and Andreas Hotho. Learning ontologies to
improve text clustering and classification. In Myra Spiliopoulou, Rudolf Kruse, An-
dreas Nürnberger, Christian Borgelt, and Wolfgang Gaul, editors, From Data and

Information Analysis to Knowledge Engineering: Proceedings of the 29th

Annual Conference of the German Classification Society (GfKl 2005), vol-
ume 30 of Studies in Classification, Data Analysis, and Knowledge Organiza-

tion, pages 334–341, Magdeburg, Germany, 2006. Springer-Verlag.

Stephan Bloehdorn, Philipp Cimiano, Alistair Duke, Peter Haase, Jörg Heizmann,
Ian Thurlow, and Johanna Völker. Ontology-based question answering for digital

147



libraries. In Proceedings of the 11th European Conference on Research and

Advanced Technology for Digital Libraries (ECDL), pages 14–25, Budapest,
Hungary, 2007.

Olivier Bodenreider, Anita Burgun, and Thomas Rindfleisch. Lexically-suggested
hyponymic relations among medical terms and their representation in the UMLS. In
Proceedings of Terminology and Artificial Intelligence, TIA’2001, pages 11–
21, Nancy, France, 2001.

George Boolos and Richard Jeffrey. Computability and Logic. Cambridge Uni-
versity Press, Cambridge, UK, 3 edition, 1989.

Lars Borin. You’ll take the high road and I’ll take the low road: Using a third lan-
guage to improve bilingual word alignment. In Proceedings of the 18th Inter-

national Conference on Computational Linguistics, volume 1, pages 97–103.
COLING, 2000.
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