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Abstract

Multimodal machine learning benchmarks have exponentially grown in both capa-
bility and popularity over the last decade. Language-vision question-answering tasks
such as Visual Question Answering (VQA) and Video Question Answering (video-
QA) have —thanks to their high difficulty— become a particularly popular means
through which to develop and test new modelling designs and methodology for mul-
timodal deep learning. The challenging nature of VQA and video-QA tasks leaves
plenty of room for innovation at every component of the deep learning pipeline: from
dataset to modelling methodology. Such circumstances are ideal for innovating in
the space of language-vision multimodality. Furthermore, the wider field is currently
undergoing an incredible period of growth and increasing interest. I therefore aim
to contribute to multiple key components of the VQA and video-QA pipeline, but
specifically in a manner such that my contributions remain relevant, scaling with
the revolutionary new benchmark models and datasets of the near future instead of
being rendered obsolete by them. The work in this thesis: highlights and explores
the disruptive and problematic presence of language bias in the popular TVQA
video-QA dataset, and proposes a dataset-invariant method to identify subsets that
respond to different modalities; thoroughly explores the suitability of bilinear pool-
ing as a language-vision fusion technique in video-QA, offering experimental and
theoretical insight, and highlighting the parallels in multimodal processing with
neurological theories; explores the nascent visual equivalent of languague modelling
(‘visual modelling’) in order to boost the power of visual features; and proposes a
dataset-invariant neurolinguistically-inspired labelling scheme for use in multimodal
question-answering. I explore the positive and negative results that my experiments
across this thesis yield. I conclude by discussing the limitations of my contributions,
and conclude with proposals for future directions of study in the areas I contribute
to.
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CHAPTER 1

Introduction

As unimodal language and vision machine learning benchmarks rapidly approach

and exceed human reasoning capabilities, there is growing interest in pushing ma-

chine learning to its limits through more complex tasks that require reasoning across

multiple different input data modalities. Though the definition of such ‘multimodal’

machine learning covers any combination of 2 or more modalities, the overlap of

language and vision remains by far the most explored and heavily resourced area of

multimodal deep learning research. Language-vision multimodal tasks —of which

visual question answering tasks are most prominent— have therefore become a popu-

lar testing ground for exploring multimodal processing methodology. Unfortunately,

such language-vision benchmarks are plagued with a myriad of problems that di-

minish their ability to enable multimodal methodologies: datasets contain biases

and shortcuts that can be exploited to achieve high performance without using both

language and vision input as intended ; visual contributions are often both under-

represented in datasets and under-exploited by models compared to the historically

more dominant textual input modalities; techniques used in the models themselves

for harmoniously combining the visual and textual features (i.e. ‘multimodal fu-

sion techniques’ ) are often overstated and only empirically justified, lacking strong
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theoretical grounding for their claimed properties; and perhaps most esoterically,

existing models of human cognition remain relatively unexplored as motivation for

multimodal processing ( e.g. compared to the inspiration of convolutional neural

networks or ‘CNNs’ in the field of vision). This thesis represents my contributions

in addressing these similar yet separate problems problems through four different

areas united by the theme of improving multimodal machine learning.

1.1 Definitions

In this section, I explicitly define key terms and acronyms I use throughout this

thesis. A familiarity with these definitions and their use in the field of machine

learning (in the era of ∼2015-2023) serves as a strong starting point to engage with

the work in this thesis.

• ‘Scalable’: Has the capacity to itself be changed in size and scale, or applied

to a model/dataset of increased scale. In this way a scalable methodology may

be invariant or ‘agnostic’ to any specific dataset or model. Used descriptively

to refer to my motivation behind the methodology I present.

• Modality: A mode or form in which information is experienced or expressed:

e.g. the English language.

• Medium: The means by which information is stored and delivered. e.g. text

is the medium through which the English Language modality is expressed.

• Multimodal: An adjective for a task, dataset, model, or other methodology

that uses or requires information from more than one modality. Note that

machine learning research generally does not yet distinguish between ‘multi-

medium’ and ‘multi-modality’ scenarios.

• Modality Bias: Reviewed thoroughly in Section 2.3.2. The terms ‘bias’,

‘modality bias’, and ‘language bias’ are often used interchangeably in the field

of deep learning. We say that predictions made by machine learning models

suffer from ‘bias’ when we believe said predictions are caused by:
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– A propagation of ‘spurious’ correlations in the data.

– An over-reliance on some inputs while ignoring other inputs.

– A propagation of human assumptions or stereotypes present in the train-

ing text.

• ‘Strengthening’ Vision / Visual Contributions: A methodology that in-

creases the harmonious exploitation or ‘power’ of visual features by improving

them directly e.g. projecting vision feature vectors into a vector space that

improves their empirical performance on some task. In contrast to improving

visual contributions indirectly e.g. increasing the contributions of visual fea-

tures by altering other problematic non-vision representations. Elaborated on

in Section 2.3.2.7.

• VQA: Visual Question Answering. A popular multimodal machine learning

task that consists of question-answer pairs about an accompanying image or

visual input.

• Video-QA: VQA with video/GIFs as the visual inputs.

• Computer Vision: A broad field of research that considers how comput-

ers represent and exploit understanding of the visual world. This thesis is

concerned with the machine learning subfield of Computer Vision.

• CNN: Convolutional Neural Networks. A type of neural network that uses

‘convolution’ layers, which are inspired by undertanding of the human visual

system. A popular model for computer vision tasks.

• NLP: Natural Language Processing. A broad field of research that considers

the computational representation and exploitation of language. This thesis is

concered with the machine learning subfield of NLP.

• Language Modelling: The practice or task of determining the probability of

a given sequence of words occuring in a given sentence or context. Language

modelling in deep learning often refers to:
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– Generative language modelling tasks: Popular and powerful training

methodologies that predict words from sentences from a very large corpus

of text.

– Language Models: The machine learning models, pretrained or otherwise,

that perform the task of language modelling.

• Attention Mechanism: A popular and widely used methodology often found

in large and generatively trained neural networks. Attention mechanisms are

intended to mediate the flow and sharing of information in a visualisable ways,

and have been a backbone of state-of-the-art NLP and computer vision models

since their widespread adoption in ∼2018.

• Multimodal Fusion: How information from multiple modalities is combined

(here in the context of neural networks for multimodal machine learning tasks).

I use this term in contexts where I compare different techniques to do this i.e.

‘is concatenating features from two modalities sufficient?’; ‘are there instead

specific designs for neural network layers that would lead to better results?’

• Pretraining and Finetuning: Pretraining is the act of training a given

machine learning model on a preliminary dataset (often very large and gener-

ally applicable). Such ‘pretrained’ models are often used as starting points for

further training i.e. ‘finetuning’ on another often more specific task. Fine-

tuning intuitively seeks to slightly adjust (rather than overwrite) the more

general understanding induced by pretraining.

• ‘Downstream’ Test-Task: A more specific and targeted task used in fine-

tuning. As such tasks come after pretraining, they are considered and deployed

‘further down’ the metaphorical ‘stream’ that is the life-cycle of a given ma-

chine learning application.

• SL1: Smooth L1 loss function.

• SSIM: The Structural SIMiliarity measure of comparison between images.
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• Labelling Scheme: The manner in which ground truth labels are created for

machine learning datasets e.g. one-hot labelling vs. multiclass labelling.

• Answer Vocabulary: The total collection of unique answers for a given

machine learning task or dataset.

• A Promising idea: An idea: where the reasons that it might work are clear;

that is realistically achievable with the resources available; and bluntly speak-

ing, that I believe would be of interest to the researchers of the field. I state

in my thesis that I aim for ‘promising’ ideas that are overlooked.

1.2 Motivation

Every individual that has ever considered machine learning has their own unique

opinion on its exact nature and purpose: from business application, to experimen-

tal curiosity, to perhaps a desire to witness non-human entities display or surpass

our own capacity for sentience and sapience. I posit that one of the most substan-

tial principal components running through our collective desires and interpretations

for machine learning is: a useful —and ideally understandable— exploitation of

potentially-informative stimuli. Put in a deliberately informal way, we want ma-

chine learning agents to do stuff that is worth doing through the perspective of

our own humanity. I therefore find it unsurprising that we prioritise tasks and data

in two of the forms that humans have such affinity for: goal/object oriented visual

reasoning, and the processing of natural language. We visually perceive meaning

in the world around us, and are unprecedented1 in our capacity to use language to

nuance and enrich our visual beliefs, yielding valuable information which we freeze

in time through the medium of our memories, and conveniently proliferate through

the invention of text. As impressive as unimodal language models or computer

vision benchmarks currently are, can we humans really be satisfied with our ma-

chine learning capacities so disconnected from our own multimodal reality? This

question sufficiently approximates the ‘gist’ of why I chose to contribute to multi-

1so far as we have yet discovered.
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modal machine learning, and why I am motivated to play my part in harmonising

our impressive unimodal text and vision machine learning benchmarks together: to

unlock the symbiotic multimodal understanding we humans exhibit for our use, our

curiosity, and our wonder.

The language-vision overlap remains the most advanced and heavily resourced

field in multimodal machine learning. I therefore focus my experiments on some

of the most complex, challenging, and flourishing language-vision state-of-the-art

benchmarks: visual question answering (VQA) and video question answering (video-

QA). As multimodal machine learning is currently experiencing an era of extreme

growth —with new datasets and models released yearly that rapidly outgrow their

predecessors— the methodology and analysis in this thesis is specifically motivated

to remain relevant and applicable to future datasets and model designs i.e. to be

‘scalable’ or model/dataset-agnostic/invariant. I aim to avoid contributing to ar-

eas that are saturated with many similar approaches differentiated through minor

changes. Such a series of targeted works can be beneficial to the wider field by

exploring, in parallel, incremental changes and improvements to a new promising

methodology. Such efforts can rapidly yield an optimised approach for wider use

e.g. adversarial regularisation approaches for tackling language shortcuts in VQA

(see Figure 2.1). While I recognise the genuine benefits of such contributions to

the field, to be blunt, I am simply more interested in testing hypotheses that I

consider intuitive and promising, but ‘overlooked’. Nevertheless, though I have

identified overlooked research gaps, my earlier chapters contribute to topics that are

well established in multimodal deep learning: Chapter 3 focuses on the problem of

language bias in the TVQA dataset, an established research area of VQA that is

relatively underexplored in video-QA. Chapter 4 analyses the use of the multimodal

fusion technique ‘bilinear pooling’ (BLP), experimentally and critically assessing its

use as a multimodal fusion technique. I have allowed the scope of my later and

larger chapters to grow progressively more ambitious, learning from the findings

in my earlier work: Chapter 5 takes a more abstracted approach in harmonising

visual and textual features; by exploring the nascent visual equivalent of language

modelling —‘visual modelling’— in the hopes of unlocking an improvement to visual
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understanding not-unlike that which generative pretraining has brought to language

modelling. My most recent work in Chapter 6 —taking advantage of the new im-

provements to modelling and bias-mitigation in VQA datasets— explores the use

of neurolinguistic measures of similarity in order to instill a more ‘human-like’ logic

to labelling for multimodal classification scenarios. Across the hypotheses tested in

my thesis, I have found a mix of positive results (Chapters 3 and 5) and negative

results (Chapters 4 and 6 ). I have aimed to thoroughly evidence my positive results

and carefully explain their relevance. In turn, I have aimed to thoroughly explore

potential causes for my negative results: qualitatively, quantifiably, experimentally,

and with respect to the surrounding literature as appropriate.

There are limits to what any single PhD student can achieve alone. In ma-

chine learning however, there is currently an abundance of publicly available large

datasets and an established culture of open-source code and libraries on GitHub and

Python (from most of us) for which I am extremely grateful. Such conditions mean

that those of us in the field of machine learning can afford to be more ambitious

than might otherwise have been the case, even when armed with relatively modest

computational resources (compared to the likes of Google and OpenAI).

1.3 Problems and Research Hypotheses

In this section, I outline the problems and research questions that guide my work

in this thesis. I have organised my research questions into the chapters that explore

them.

• Chapter 3

– Problem: The presence of modality bias in our datasets allows models to

shortcut learning multimodal interactions by using unintended unimodal

priors as shortcuts. Learning to rely on such shortcuts causes models to

generalise poorly to other multimodal scenarios.

– Question: “Can modality bias be mitigated in a ‘scalable’ manner, ap-

plicable to future dataset and model designs?”
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• Chapter 4

– Problem: Multimodal fusion techniques used in VQA have led to em-

pirical increases in task performance, with these improvements often at-

tributed to an induction of ‘richer multimodal features’. However, if

these performance increases are not sustained when moving from VQA

to video-QA, then we must reassess how we use and discuss these fusion

techniques.

– Question: “How do multimodal fusion techniques from VQA apply to

video-QA?”

– Question: “What are the problems with our analysis, and what do we

overlook when we prioritise the empirical performance of our methodol-

ogy?”

• Chapter 5

– Problem: Generative pretraining in language modelling has revolu-

tionised the field of natural language processing. Such generative pre-

training could yield similar improvements for computer vision, but has

not yet been explored near as thoroughly as language modelling.

– Question: “What are the similarities, differences, and challenges of po-

tential visual parallels to language modelling?”

– Question: “What are the barriers to applying this methodology to mul-

timodality now and in the future?”

• Chapter 6

– Problem: The default one-hot labelling schemes typical of VQA datasets

appear to enforce a problematic and oversimplified understanding of re-

ality: that all ‘incorrect’ answers are equally incorrect. Though some

datasets may attempt to alleviate this somewhat by gathering multiple

potential answers to a given question, these auxiliary answers are limited

in number and not necessarily applicable to other datasets. Similarity

8



scores of word pairs gathered through neurolinguistic study could be in-

strumental in augmenting this simplistic ‘one-correct-answer’ scenario in

a way that is applicable to all VQA datasets, but as of yet remains un-

explored.

– Question: “Can measures and metrics from human neurolinguistic the-

ory induce desirable behaviour to modern multimodal deep learning bench-

marks?”

– Question: “What must be achieved/overcome for neurolinguistic mea-

sures to be successfully applied to modern multimodal deep learning

benchmarks?”

I return to my research questions in Section 7.3 to discuss how I have addressed

them.

1.4 Thesis Contributions

The significant contributions of this thesis are:

• Chapter 3 (On Modality Bias in the TVQA Dataset): A scalable, model-and-

dataset-invariant methodological framework for detecting ‘modality reliant’

subsets with a proposed ‘inclusion-exclusion’ metric (IEM). This framework

is applied to the popular large scale TVQA video-QA dataset, demonstrating

the presence of harmful text biases therein.

• Chapter 4 (Bilinear Pooling in Video-QA: Empirical Challenges and Moti-

vational Drift from Neurological Parallels): An empirical, taxonomical, and

theoretical analysis of the performance drop of bilinear pooling when applied

to a video-QA context. I leverage my novel insights of the parallels between

multimodal fusion and neurological theories (i.e. Dual Coding Theory and the

Two-Stream Model of Vision) to propose several alternative neurologically-

guided multimodal fusion techniques.

• Chapter 5 (Visual Modelling: The Visual Parallel to Language Modelling

Evaluated on Dynamic Simulations): 6 synthetic dynamic simulation datasets,
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each of which come with physical-constant-regression tasks that together are

designed to test the hypothesis: “does generative visual pretraining produce

more powerful vision features”. My results demonstrate the promising po-

tential of my hypothesis, with generative visual pretraining increasing ‘down-

stream’ task performance for 7 of the 8 test tasks, yielding improvements as

high as 80%.

• Chapter 6 (Neurolinguistic Multiclass Labelling: Are Human Measures of

Similarity Suitable for VQA?): A scalable and dataset/model-agnostic neu-

rolinguistic multiclass labelling scheme leveraging human scores of semantic

similarity. My extensive experiments allude to an incongruency bewteen the

human measures of similarity and the VQA dataset.

1.5 Publications

The work in this thesis is published in, under-review by, or planned for imminent

submission to peer-reviewed publications detailed below with myself —Tom Win-

terbottom, the author of this thesis— as the only first author. These publications

correspond to the chapters indicated below:

• On Modality Bias in the TVQA Dataset

– Thomas Winterbottom, Sarah Xiao, Alistair McLean, and Noura Al Moubayed

– Proceedings of the British Machine Vision Conference (BMVC) 2020 :-

18/12/2022

– Contributes to Chapter 3

• Bilinear Pooling in Video-QA: Empirical Challenges and Motiva-

tional Drift from Neurological Parallels

– Thomas Winterbottom, Sarah Xiao, Alistair McLean, and Noura Al Moubayed

– PeerJ Computer Science, 8 :- 18/4/2022

– Contributes to Chapter 4

10



• Visual Modelling: The Visual Parallel to Language Modelling Eval-

uated on Dynamic Simulations

– Thomas Winterbottom, G Thomas Hudson, Daniel Kluvanec, Zheming

Zuo, and Noura Al Moubayed

– Under review since December 2021 at Journal of Machine Learning Re-

search (JMLR)

– Contributes to Chapter 5

• Neurolinguistic Multiclass Labelling: Are Human Measures of Sim-

ilarity Suitable for VQA?

– Thomas Winterbottom and Noura Al Moubayed

– Submission Imminent

– Contributes to Chapter 6

1.6 Thesis Scope and Structure

The related works for each of my chapters in terms of methodological aim are rel-

atively distinct from eachother. Each chapter therefore begins by reviewing the

related works singularly relevant to itself. However, in Chapter 2, I review areas

that are shared across the chapters of this thesis:

• Video-QA and VQA datasets (Chapters 3, and 4, and 6).

• Modality bias in both video-QA and VQA.

Each of my chapters aim to a contribute to one of the primary components of mul-

timodal machine learning, but crucially, in a way that is ‘scalable’ i.e. applicable to

the datasets and models of the future: Chapter 3 focuses on the problems in mul-

timodal datasets through mitigating language bias in the TVQA video-QA dataset.

Chapter 4 shifts focus to the problems with the application of multimodal modelling

techniques through the use of bilinear pooling in video-QA benchmarks. Chapter

5 aims to take a step back and improve the power of often-under-exploited visual
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features in a more general sense by bringing the paradigm of language modelling

to video datasets. Chapter 6 seeks to improve labelling practices for multimodal

tasks by exploring a neurolinguistically-guided labelling scheme for language-vision

machine learning, which I evaluate on VQA.

1.7 Typographical Choices

I explicitly choose to liberally use colour and font options to highlight my intended

meaning and help readers efficiently keep track of concepts I discuss. My intention

is that these typographical choices help break up the walls of homogeneous text

typical of academic writing, and help reduce the reader’s frustration, boredom, and

time spent reading on ‘autopilot’ (or shallow processing). I use these typographical

choices to convey the following meaning:

• Bold face is used to grab attention, format headings, and quickly enumerating

a series of key concepts in the text.

• Italics are used to emphasise the intended subject of the sentence, the intended
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Contribution Type

Modality Bias Subtitle+QA Subtitle+QA Static Frame Bias Not Main Focus
Feature Exploitation 7 X X X
Scalable Methodology Dataset Enrichment Verifying BLP Improving Vision Improving Labelling

Task

VQA 7 7 7 X
Video-QA X X 7 7

Visual Dynamics 7 7 X 7

Findings

Positive Experimental Results X - X 7

Critique X X - -

Peer Review

Pulblication Status Published Published Under Review Submission soon
Journal/Conference BMVC 2020 PeerJ JMLR -

Table 1.1: The scope of this thesis’ chapters.
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key insights, or to highlight specific contrast e.g. Work A concludes B, however

I argue C.

• Colour Coding: Within each individual chapter, colours are used across tables,

figures, and text consistently, and aim to convey semantic meaning e.g. in

Chapter 5 green, blue, and pink follow 3 different models and their results

across figures and tables of that chapter.

• Orange and Blue text is used to help the reader follow points where two con-

trasting concepts or entities must be followed beyond a single sentence. Most

notably, it is heavily used in Chapter 6 to keep track of concrete and abstract

subjects and concepts.

• Magenta text is heavily used in my literature review (Chapter 2) to draw

attetntion to where literature in the field directly links to or inspires my own

work.

• There are times in my thesis where I must discuss and compare several dif-

ferent results. Some of these sections make for particularly dense reading,

and must sometimes feature precise but ‘wordy’ language, most notably using

‘double negatives’: e.g. ‘performance is degraded less substantially’. For such

secnarios, I use green and red to highlight what I consider to be contrastively

good and contrastively bad results respectively to help readers quickly digest

the finer details of my results without getting lost in them.

• I aggressively partition my work into verbosely titled subsections —most no-

table in my discussion sections— to help readers locate the finer points of my

arguments and findings.
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CHAPTER 2

Literature Review

In this chapter, I review the literature relevant to the broader scope of my 4 contri-

bution chapters. Though there are themes and elements shared between each of my

contribution chapters, each individual chapter also demands a substantial amount

of background material that is not required by other chapters. The elements that

are shared across my contributions chapters cluster into 3 main areas: modality

bias, VQA, and video-QA. These shared topics of using VQA datasets, modality

bias mitigation, and evaluating methodology on video-QA datasets require a full

literature review. However, the unique background to my work in each chapter is

only relevant to it’s respective chapter. In order to not separate such specific de-

tails from the experiments they contextualise, I therefore elect to split introducing

the background to the respective chapters in which they’re relevant. A familiarity

with the concepts in Section 1.1 serves as a strong starting point to build on in the

background of each contribution chapter. I instead elect in this section to conduct a

literature review across that shared themes in my contribution chapters, with further

literature reviews in each chapter as appropriate.
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2.1 Video-QA

The term visual question answering or ‘VQA’ is ambiguous in multimodal deep

learning and often refers to QA tasks with visual inputs, be they video, or single ‘still

images’. In thesis, I refer to image-QA tasks and datasets as ‘VQA’ because this was

the term originally used for them before video-QA benchmarks were popularised.

I instead choose to distinctly describe QA tasks with video inputs as video-QA.

Though interest in video-QA benchmarks grew substantially after the success of

VQA, I choose to review video-QA first in this chapter to reflect the chronological

order of my research.

2.1.1 Relevance

There is a wealth of recent research in the field of video-QA focused on improving

model designs and evaluation metrics. However, my work on video-QA in this thesis

is instead focused on both the video-QA datasets themselves, and exploiting their

properties to address 2 specific research gaps:

1. Chapter 3 analyses textual bias in the TVQA video-QA dataset, and I use this

biased dataset to propose model/dataset-invariant dataset refinement method-

ologies.

2. Chapter 4 uses the known properties of 4 diverse video-QA datasets (TVQA

[116], MSVD-QA [210], TGIF-QA [93], and Ego-VQA [53]) to explore the

experimental shortcomings of the bilinear pooling modality fusion technique

when it is extended to video-QA.

I review modality bias in both VQA and video-QA in the upcoming Section 2.3,

and the specifics of the relevant modelling details in their respective chapters. As

such, this section specifically focuses on video-QA datasets and the various design

philosophies that aimed to endow them with properties I find useful for the mul-

timodal research in this thesis. A full exploration of the many modelling designs

and evaluation metrics used for the many variations of video-QA benchmarks are
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beyond the scope of this thesis. A thorough review of the many aspects of video-QA

can instead be found here [105, 156].

2.1.2 Review

Dataset Year # QA # Videos Domain Answer Scheme

MovieQA [184] 2016 14,944 1075 Movies Multiple Choice (5)
PororoQA [108] 2016 8,193 171 Cartoon Multiple Choice (5)

TGIF-QA Count 2017 30,397 - Varied Multiple Choice (11)
TGIF-QA Action 2017 22,749 - Varied Multiple Choice (5)
TGIF-QA Trans 2017 58,936 - Varied Multiple Choice (5)

TGIF-QA Frame-QA 2017 53,083 - Varied Open Ended (1746)
TGIF-QA Total [93] 2017 165,165 71,741 Varied -

TGIF Open [213] 2017 287,763 101,983 Varied Open Ended
MovieFIB [136] 2017 348,998 128,085 Movie Fill in the Blank
MarioQA [146] 2017 187,757 - Game Footage Open Ended (Compositional) †

MSVD-QA [210] 2017 50,505 1,970 Varied Open Ended
MSRVTT-QA [210] 2017 243,680 10,000 Varied Open Ended

YouTube2Text-QA [220] 2017 99,421 1,970 YouTube Videos Multiple Choice (4)
TVQA [116] 2018 152,545 21,793 TV Shows Multiple Choice (5)

Ego-VQA [53] 2019 610 16 Egocentric (1st Person) Multiple Choice (5)
Social-IQ [230] 2019 7,500 1,250 ‘Social Intelligence’ Open Ended (52,500)

AVSD [6] 2019 118,160 11,816 Multiple QA Rounds Open Ended
LifeQA [23] 2020 2,326 275 ‘Day-to-day’ life Multiple Choice (4)

CLEVRER [222] 2020 305,280 20,000 Objects Varied
VQuAD [80] 2022 1,359,999 7,000 Diagnostic Objects Open Ended (Compositional)

Table 2.1: Breakdown of video-QA datasets. † = dataset is generated by user.
Green rows indicate datasets used in the experiments in this thesis.

Video-QA datasets are relatively new, having gained substantial research intrigue

over the past 6 years. One of the earliest practical video-QA datasets is MovieQA

[184], which provided long video clips from movies but has a relatively low number of

video clips (1075) and QA pairs (14,944). The questions in MovieQA are on topics

such as movie events, actions, and plot developments. Questions are of ‘5w’ style

(i.e. who, what when, where, why, how), with a much larger number of ‘what’, and

relatively fewer ‘when’ question. Though MovieQA represents an ambitious starting

point for the size and scope of video-QA datasets, research has since demonstrated

a QA language prior problem such that at least half the questions can be answered

when ignoring the visual inputs [94, 217]. Such size and modality bias limitations

encouraged me to use the newer video-QA datasets for my experiments. Successive

video-QA datasets (see Table 2.1) distinguish themselves from the initial Movie-QA

benchmark in 2 main ways:
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1. By being larger with more rich/careful annotation.

2. By focusing on a new specialised ‘domain’ of video (e.g. cartoons, TV series,

YouTube videos).

2.1.2.1 Increasing Size and Annotation Complexity

Movie-QA uses a relatively small number of longer video clips (1,075) for its ∼15,000

questions. TGIF-QA [93] instead uses a much larger number of shorter GIFs

(∼71,000) as visual content for over 160,000 QA pairs, yielding a much larger and

more diverse dataset. TGIF-QA is split into 4 subsets that each focus on a specific

scenario of visual understanding: Counting the number of times some process is

repeated; classifying an Action; querying after a state Transition; and a general

open-ended question-answering setup (‘Frame-QA’). For these reasons, TGIF-QA

is a widely used benchmark for video-QA, and as such I include it in my Chapter 4

experiments.

Like TGIF-QA, the TGIF Open dataset [213] is built from images in the TGIF

dataset [123]. TGIF Open is an even larger scale question-answering dataset that

focuses on an open-ended answer vocabulary scheme as opposed to multiple choice

used in previous datasets.

MovieFIB [136] takes a different approach to achieve more complex answering

behaviour through a ‘fill-in-the-blank’ annotation scheme. Though MovieFIB con-

tains nearly 350,000 QA pairs on ∼128,000 video clips, its domain of ‘movies’ is

thematically similar to the TV-shows used in the newer TVQA dataset.

The MSVD-QA and MSRVTT-QA datasets introduced by Xu et al. [210] were

originally motivated by the lack of publicly available video-QA datasets at the time.

MSVD-QA is built on the Microsoft Research Video Description corpus [26] used in

video captioning, and functions as a smaller and ‘less complex’ benchmark for my

experiments. Likewise, the MSR-VTT [211] dataset is used in the larger and more

“complex” MSRVTT-QA dataset.

The TVQA dataset [116] aimed to address the major limitations of its predeces-

sors: it is much larger than MovieQA, with ∼152,000 QA pairs on ∼22,000 video

clips from popular TV shows; the visual content uses real humans interactions often
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missing in the smaller domain-specific datasets; each video clip comes paired with

time-stamped subtitles for use as a novel auxiliary input; and the questions and

answers are annotated by humans using Amazon Mechanical Turk (AMT) to specif-

ically require both text and vision inputs to answer i.e. ‘multimodal reasoning’.

Though such properties made TVQA an attractive starting-point for my research, I

found through my work in Chapter 3 ([204]) that the multimodal reasoning criteria

has not been realised due to subtitle and QA language priors allowing the major-

ity of TVQA’s questions to be answered with only the textual inputs. Yang et al.

[217] have also since highlighted the QA priors (not subtitles) plaguing TVQA in

their wider analysis of other video-QA datasets. Nevertheless, TVQA remains an

important and widely used video-QA benchmark.

After my work in Chapters 3 and 4, I chose to move to VQA benchmarks for the

methodology I propose in Chapter 6 thanks to research identifying and mitigating

debilitating language priors being much more thoroughly developed for VQA than

in video-QA. More ambitious video-QA datasets have since been released.

AlAmri et al. [6] introduce the audio visual scene-aware dialog (AVSD) task

and dataset to push further beyond the basic video-QA framework. AVSD boasts

118,160 human annotated (AMT) QA pairs on 11,816 videos augmented with textual

descriptions, video, and audio, and as such represents a substantial increase in the

potential for multimodal processing. AVSD is unique in video-QA as each example

features multiple successive rounds of question-answering which function to create

a ‘dialog’.

More recently, Yi et al. [222] design the CLEVRER video-QA dataset specifi-

cally to minimise bias —inspired by already-proven success from VQA (i.e. CLEVR

[98])— by balancing question-answer distributions and using counterfactual exam-

ples to limit spurious correlations. The visual content in CLEVRER consists of

clear and distinct objects of various sizes and shapes performing relatively simple

visual dynamics. The Video Question Answering Diagnostic Dataset (VQuAD) [80]

features a similar controlled visual dynamic environment with more complex move-

ments, visual diversity, and over 1.3M QA pairs. Though the stated purpose of

CLEVRER and VQuAD is to discourage video-QA bias, their careful and ‘diagnos-
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tic’ design philosophy i.e. creating synthetic datasets of controlled environments is

also important. In particular, my work on visual modelling in Chapter 5 features

a synthetic visual-dynamics dataset carefully designed to test the visual reasoning

capacity of models.

2.1.2.2 Domain-Specific Datasets

Though larger and more richly annotated datasets are instrumental for progress

in video-QA, such datasets often neglect alternative domains of video content,

and therefore motivates the creation of domain-specific datasets. The high cost

of dataset collection and relative lack of domain-appropriate visual content often

means such domain-specific datasets are relatively small. However, these domain-

specific datasets fill a crucial research gap, often indicating how well benchmarks

generalise to different video content.

Early ‘specialised’ datasets include: Pororo-QA [108], with 8,193 questions on

the 171 episodes of the ‘Pororo’ cartoon; and MarioQA [146], designed with 187,757

questions about actions in the game Super Mario (relatively large for a specialised

dataset, though much smaller than MovieFIB, CLEVRER, and VQuAD).

My experiments in Chapter 4 include YouTube2Text-QA [220] and Ego-VQA

[53]. YouTube2Text-QA aims to capture “in-the-wild” action semantics through

YouTube videos and enrich descriptions with ‘web-scale’ NLP databases and lan-

guage models. Ego-VQA addresses the lack of 1st-person video data with a very

small ‘egocentric’ video-QA corpus of 16 video clips with 610 QA pairs. I use the

small and specialised Ego-VQA dataset for my experiments in Chapter 4 by first

pretraining on YouTube2Text-QA as recommended in Fan [53].

More recently, smaller specialised datasets focus on human socialising and in-

teractions. The 7,500 questions and 1,250 videos in Social-IQ [230] aim to capture

‘social intelligence’ such as ‘who is to blame for a situation’ and ‘what is the mood

of the conversation’. Questions are annotated with 3 difficulty levels by ‘hired and

trained’ undergraduate students. However, the design of Social-IQ does not explic-

itly outline any steps to mitigate the various question biases that have recently come

into focus in video-QA. In contrast, Castro et al. [23] introduce the ‘real-life’ LifeQA
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video-qa dataset (2,326 questions, 275 videos) and actively and transparently report

accuracy for various benchmark models (including human performance) using com-

binations of their datasets inputs (video, questions, answers, and transcripts) similar

to my breakdown of TVQA in Chapter 3. Their analysis indicates that an accuracy

of 44% and 63.4% is achievable through machine learning or by humans respectively

on LifeQA without using the visual input. I believe this honest admission of dataset

bias should be encouraged, even celebrated, for the long term benefit of the field of

multimodal machine learning.

2.2 VQA

The first 2 chapters of this thesis use video-QA benchmarks. However, as previously

outlined, I return to the ‘simpler’ task of VQA for Chapter 6 because the VQA

benchmark datasets have at this time gone further to mitigate language bias than

their video-QA counterparts. Such datasets enable hypotheses for new multimodal

methodology to be evaluated more reliably.

2.2.1 Relevance

Chapter 6 directly uses VQA datasets (VQA v1, VQA v2, VQA-CP v1/v2, and

GQA) as experimental benchmarks to test my neurolinguistic multi-class labelling

hypothesis. Though Chapter 4 uses a video-QA dataset instead of VQA for exper-

iments, it analyses the nuances and consequences of extending the bilinear pooling

techniques popularised in VQA to video-QA. I use VQA datasets as a ‘means-to-

an-end’ in evaluating specific multimodal methodology. As both Chapters 4 and 6

review work similar in methodology, this section is therefore limited to VQA bench-

mark datasets and the properties that make them useful. A survey of VQA method-

ologies is beyond the scope of this thesis, but can be found here [207, 79, 241].

2.2.2 Review

See Table 2.2 for a breakdown of benchmark VQA datasets.
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Dataset Year # Qs # Imgs Source Research Gap

Flickr30k
[225]

2014 158,915 31,783 Flickr Early VQA benchmark dataset.

DAQUAR
[137]

2014 12,468 1,449
NYU

Dataset
Aims to have ‘high complexity’ questions.

COCO-VQA
[166]

2015 ∼122,000 ∼120,000 MS-COCO
Aims to be larger than DAQUAR. Makes QA pairs

from descriptions.

FM-IQA [59] 2015 316,193 158,392 MS-COCO
Chinese question-answer pairs with English

translations.
Visual

Madlibs [227]
2015 360,001 10,738 MS-COCO

A ‘fill-in-the-blank’ or ‘finish-the-sentence’ style VQA
dataset.

VQA v1 [9] 2015 ∼0.76M 204,721 MS-COCO
New task pushing a better benchmark for ‘open-ended’

and multimodal reasoning.

Visual7W
[240]

2016 327,939 47,300
MS-

COCO/AMT

Push past ‘loose global’ text-image associations using
‘semantic links’ between objects in the images and

descriptions.
Visual

Genome [110]
2016 1,773,258 108,000 MS-COCO

Very large dataset richly annotated with
object-attribute relationships.

Binary VQA
on A.S. [234]

2016 22,055 - AMT Focuses on balancing binary ‘yes’-‘no’ questions.

TDIUC [99] 2017 1,654,167 167,437
COCO-

VQA/Visual
Genome

Actively balances questions by ‘category’ (e.g. colour
questions) for more nuanced analysis.

C-VQA [3] 2017 369,861 205,363 VQA v1
Enforce ‘compositional’ questions i.e. inferring an

attribute about an object in testing when the attribute
and object did not coincide during training.

VQA v2 [70] 2017 ∼1.1M 265,016 AMT
Improve VQA v1 by balancing QA priors with

counterfactual images.
KB-VQA

[199]
2017 2402 700

MS-
COCO/AMT

Exploits object-attribute relations from external
databases to augment questions.

CLEVR [98] 2017 999,968 100,000 Synthetic
Mitigates language bias with very precise compositional

design and question balancing.
FigureQA

[101]
2018 ∼1.55M ∼120,000 Synthetic

Images are synthetically made graphs and plots
displaying dataset.

VQA-CP v1
[4]

2018 ∼0.76M 204,721 VQA v1
Reshuffle VQA datasets such that QA priors are

further minimised.
VQA-CP v2

[4]
2018 ∼1.1M 265,016 VQA v2 ↑

DVQA [100] 2018 3,487,194 300,000 Synthetic
Similar to FigureQA. Large VQA dataset for
understanding information in bar charters.

GQA (Full)
[91]

2019 ∼22M ∼113,000
AMT/Visual

Genome

Much larger than VQA. Emphasises reducing
statistical biases with question balancing and

‘grounded’ visual question design.
GQA

(Balanced)
[91]

2019 ∼1.7M 85,361 ↑ ↑

MUTANT
[67]

2020 ∼679,000 ∼679,000
VQA

v2/CP v2
Small ‘mutations’ of VQA (Q,I,A) triplets to mitigate

statistical biases.

Table 2.2: Breakdown of VQA datasets. AMT = Amazon Mechanical Turk. Green
rows indicate datasets used in the experiments in this thesis.

2.2.2.1 Early Datasets

The VQA task was itself was first explicitly formalised in Antol et al. [9]. There

are however several functionally similar early benchmark datasets. The earliest

datasets focus mainly on increasing the complexity of questions (DAQUAR [137])

and contributing a large dataset size (Flickr30k [225]).
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Subsequent early datasets would use the large Microsoft Common Objects in

Context dataset (MS-COCO) [128] for their images: COCO-VQA [166] aims specif-

ically to be larger than DAQUAR while maintaining complex question design; FM-

IQA uses 316,193 Chinese question-answer pairs (with English translations); Visual

Madlibs contains a similarly large question-answer count (316,193) with a ‘fill-in-

the-blank’/‘finish-the-sentence’ answer style.

The largest early VQA dataset is the widely-used VQA v1 introduced in Antol

et al. [9]. VQA v1 uses 204,721 images from MS-COCO with ∼760,000 questions

which use a new diverse ‘open-ended’ answer scheme. I include VQA v1 in my exper-

iments alongside its subsequent improved versions as it still remains an important

and widely reported benchmark.

2.2.2.2 No Active Language Prior Mitigation: Additional Annotation

Though VQA benchmarks are specifically designed to be multimodal (i.e. require

both vision and textual inputs to answer), datasets are often plagued by strong

correlations between questions and answers that allow questions to be answered

correctly while ignoring the visual information. Some few datasets however do not

actively mitigate this in their design, instead focusing augmenting questions with

additional annotations.

Visual7w [240] uses AMT workers to annotate bounding boxes for ∼327,000

questions on 47,300 MS-COCO images. Such bounding boxes function as auxiliary

annotations that can be used to help models ‘resolve the co-reference ambiguity

problem between QA sentences and images’. Zhu et al. [240] do demonstrate that

their LSTM model learns from from answers in the training set, but do not actively

mitigate this in their design process.

KB-VQA [199] is a relatively small dataset of 700 images and 2,402 questions.

AMT workers create object-attribute relations from templates as additional inputs

to questions.

The Visual Genome dataset [110] stands out from its predecessors through very

rich annotation. Images feature multiple bounding boxes indicating entities in rela-

tion to eachother paired with textual descriptions. Such descriptions form semantic
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graphs representing the relationships between object. The authors outline many

‘biases’ found in their dataset e.g.: an over-representation of images of people, or

skiing and surfing for images of sports. Though the authors try to encourage ques-

tion diversity by asking annotators to make different question types (‘what’, ‘when’,

‘where’), Visual Genome is not designed to be limited to the task of VQA and as

such does not undergo QA-prior balancing.

2.2.2.3 Active Language Prior Mitigation

Over the past 6 years, actively mitigating such ‘biases’ during dataset design has

been a top priority for new VQA datasets.

2.2.2.3.1 QA Balancing

Zhang et al. [234] create a VQA dataset using a clip-art library to generate images,

and actively balance their binary (‘yes/no’) questions with ‘counterfactual’ examples

i.e. minor changes to an image such that the answer changes. Though this design

prevents models from gaining unintended boosts from over-represented ‘yes’ answers

previously common in VQA datasets, it only addresses binary questions.

Kafle and Kanan [99] introduce the Task Driven Image Understanding Chal-

lenge (TDIUC) dataset with questions grouped into 12 categories that work along-

side Mean-Per-(question)-Type metrics to demonstrate when models are failing to

overcome statistical biases for certain question types. TDIUC functions as an ana-

lytic tool for detecting and subsequently preventing spurious correlations common

in various question types, but is not itself ambitiously balanced to prevent language

priors.

The VQA v2 dataset [70] builds on top of the VQA v1 dataset with extra coun-

terfactual questions. The ‘balanced’ split features not one but 2 counterfactual

examples for questions, yielding a much larger dataset (∼1.1M questions) that has

a much better question-answer balance than VQA v1. As VQA v2 serves as a larger

and improved contrast to the original VQA v1, I include it in my experiments in

this thesis. Though the counterfactual design in VQA v2 is effective, correlations

still exist in the training set that can be exploited as shortcuts to misleadingly high
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testing accuracy.

2.2.2.3.2 Train-Test Split Reorganisation

Compositional VQA (C-VQA) [3] is a split of VQA v1 that aims to actively ensure

that unseen scenarios for testing are genuinely unseen. This is achieved by rear-

ranging the training and validation splits such that questions are ‘compositionally

novel’. For example, question-answer pairs such as [“What colour is the plate?”,

“Red”] and [“What is the colour of the plate?”, “Red”] would not be allowed in both

training and testing splits as the questions have been detected as compositionally

similar and have the same answer despite the different phrasing. Instead [“What

colour is the plate?”, “Green”] would be a suitable counterpart to appear in the

opposite split. I believe that this represents a more general case of the previously

discussed ‘counterfactuals’.

VQA under Changing Priors (VQA-CP) v1/v2 datasets introduce in Agrawal

et al. [4] represent a more global decoupling of training and testing question-answer

distributions. Specifically, the training and testing splits of the VQA v1/v2 datasets

are reshuffled such that each question type (e.g. ‘how many’, ‘what colour is’) has

a different answer distribution. No questions, answers, or images are altered in

any way, simply redistributed between the training and testing splits. The authors

demonstrate a very significant significant drop in performance for all benchmarks

in their experiments (all models approximately achieving roughly half their original

accuracy). Such unprecedented performance drops indicates that the design philos-

ophy of VQA-CP is perhaps the most successful approach to mitigating question-

answer priors. I use VQA-CP in my experiments as it acts as a natural comparison

to both the VQA v1/v2 datasets I experiment on, and represents a more thorough

decoupling of training and testing correlations than C-VQA.

2.2.2.3.3 Synthetic and Controlled Image Content

Preceding VQA datasets struggle to formulate questions that require the image to

answer, motivating the creation of synthetic datasets with more ‘controlled’ and

specific image content to ensure that crucial visual information is undiluted and

clear.
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FigureQA [101] is a large dataset of∼1.55M questions on∼120,000 images of pro-

gramatically generated graphs and plots of data. Questions focus on specific detail

in the plots graphs i.e. ‘Does the Light Gold plot have the lowest value?/area-under-

curve?’, and ‘Yes-no’ answers for each question type and each figure are balanced.

The DVQA dataset [100] focuses entirely on synthetic bar charts, and is over twice

the size of the already-large FigureQA. DVQA’s ‘data retrieval’ and ‘reasoning’

questions are similar to those in FigureQA, and they also similarly balanced their

‘yes-no’ answers.

CLEVR [98] uses a controlled environment where images feature several visually-

distinct shapes with varying colours, and compositional questions focus on counting,

comparing, or identifying objects and their relations to eachother. CLEVR creates

actively balanced ‘question families’ to minimise an question-answer shortcuts.

I do not use any synthetic VQA datasets for the experiments in my thesis. I do

however recognise that such datasets are powerful tools for targeting very specific

research gaps thanks to the careful control designers have with the image content

and that relatively large datasets can be programmatically generated at a fraction

of the cost of full annotation for more open-domain datasets. Indeed, in Chapter

5, I generate several synthetic video datasets with specific properties to test the

hypothesis: ‘Does pretraining on generative tasks improve downstream performance

for vision as it does in NLP?’.

2.2.2.3.4 Large Scale and General Purpose

More recently introduced VQA datasets distinguish themselves by combining the

language-prior mitigation insights of their predecessors with a much larger scale of

question design, complexity, and annotation.

The GQA dataset [91] combines and refines pivotal features of previous bench-

marks: Images are associated with richly annotated ‘scene graphs’ that represent

objects, attributes, and their relations from the Visual Genome dataset; Questions

are associated with ‘functional programs’ i.e. a series of ‘reasoning steps’ that lead

to the correct answer, with each answer augmented with textual and visual justifi-

cations (a multi-step and multimodal extension of the approach in KB-VQA, with
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Visual Genome bounding boxes); Questions are ‘compositionally’ designed to dis-

entangle coinciding attributes and objects to emphasise novel combinations (similar

to C-VQA and CLEVR); Dataset annotation is done by humans through Amazon

Mechnical Turk (in a more complex and thorough manner than other AMT anno-

tated datasets i.e. VQA v2, Visual7w, etc); The full dataset reaches an unprece-

dented ∼22M questions on ∼113,000 images; A respectably sized (∼1.7M questions,

85,361 images) ‘balanced’ split of the dataset is made by balancing the answer dis-

tribution of question types; Such question type boundaries are derived from ‘global’

and ‘local’ labels in GQA (more extensive than the simpler ‘what/when/where’

question types categories balanced in previous datasets). I use the GQA dataset in

my experiments as the combination of the substantial improvements in each of the

discussed components sets GQA apart as a new benchmark in VQA.

The MUTANT training approach introduced in Gokhale et al. [67] augments

image-question-answer triplets from the VQA v2 and VQA-CP v2 datasets, effec-

tively generating a new VQA dataset. Small ‘mutations’ are made to either the

question or the image in the VQA sample which results in a new changed answer,

helping to balance question-answer distributions by yielding a total of ∼679,000

subtly unique questions and images (not unlike counterfactuals). The MUTANT

training paradigm leads to noticably increased performance for the harder VQA-CP

datasets, implying that the training paradigm successfully discourages the question-

answer priors that VQA-CP punishes.

2.3 Modality Bias in Multimodal Question An-

swering Datasets

2.3.1 Relevance

Mulitmodal question-answering datasets have been used as a convenient platform to

develop multimodal processing methodology over the past decade. As discussed in

the previous sections of this review, these datasets no longer facilitate multimodal

processing methodology if they contain shortcuts that can be answered without one
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of the principal modalities, rather than requiring multiple modalities as intended.

This motivates a guiding principal for this thesis: Research into developing

dataset and model-agnostic multimodal processing methodology there-

fore first requires addressing the modality bias in multimodal question-

answering datasets before any hypothesis for improving multimodal pro-

cessing can be properly tested. This principal is reflected in the journey through

my contributions: Chapter 3 highlights the presence of language bias in the large

scale video-QA dataset TVQA. This study was predominantly carried out in 2019,

and notably co-incides with expanding interest in languague-priors in the field of

VQA. Chapter 4 discusses the identified language bias in TVQA as a potential factor

in the poor video-QA performance of bilinear pooling. Chapter 5 aims to balance

modalities by switching the focus from ‘reducing language bias’ to ‘improving vi-

sual contributions’ by applying the powerful generative pretraining methodology

instrumental to the powerful generative pretraining paradigm of language models

to vision, while highlighting the ‘static frame bias’ common in video benchmarks.

Finally, Chapter 6 uses new VQA datasets with state-of-the-art language-bias mit-

igation to test my dataset and model-agnostic neurolinguistic multiclass labelling

hypothesis for improving multimodal processing.

Modality bias is a pivotal theme as either focus or support for each of my con-

tributions. I therefore review modality bias in the question-answering benchmarks

relevant to this thesis. Details specific to each contribution are expanded upon in

their respective chapters.

2.3.2 Review

The terms ‘bias’, ‘modality bias’, and ‘language bias’ are overloaded with different

definitions in the field of deep learning. We most often say that predictions made

by machine learning models suffer from ‘bias’ when we believe said predictions are

caused by:

• A propagation of human assumptions or stereotypes present in the training

text.
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• A propagation of ‘spurious’ correlations in the data.

• An over-reliance on some inputs while ignoring other inputs.

These 3 common diagnoses often coincide, either causing eachother or present as

symptoms of some underlying flaw in the dataset. The first diagnosis (human as-

sumptions and stereotypes) is out of the scope of this thesis. See Figure 2.1 for a

visual breakdown of the research addressing modality bias in the broader fields of

visual QA.
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Modality Bias in VQA and Video-QA: Problems Highlighted and Solutions Proposed

General Review
[37]

Gender/Racial
Bias etc..

(Out of Scope)

Video
‘Directly’ Strengthen
Visual Contributions

Still Image

Fill in Blanks
[66]

Exploiting Human
Visual Cues

Positive
Results

[170]

Negative
Results

[175]

TVQA Modality Bias
Chapter 3 [204]

Research gap: Considers subtitle-
QA priors for TVQA. Proposes
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BLP in Video-QA
Chapter 4 [205]

Research gap: Struggles
of bilinear pooling in video-
QA. The contributions of

language bias from the TVQA
dataset to the findings are

touched on in the discussion.

Static
Frame Bias
[66] [119]

Generative Visual Pretraining
Chapter 5

Research gap: As visual information is
overshadowed by language, this chapter

aims to ‘directly’ strengthen visual repre-
sentations using a generative pretraining
paradigm in the same way that genera-

tive pretraining tasks of language models
yielded ‘stronger’ language representa-

tions (e.g. BERT vs GloVe embeddings).
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[24]

Counterfactuals
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Research gap: One-hot VQA answer
labels are overly simplistic. Previous

works improving the VQA answer
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a scalable scheme for answer space
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scores from humans, which would

be applicable to other datasets
and not reliant on VQA labels.

[113]
Balance by

Question Type
[4, 91]

[188,
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Figure 2.1: An overview of the literature of modality bias in VQA and Video-QA. The works displayed here do either one or both
of bringing attention to modality bias or proposing direct/indirect solutions to modality bias. References in italics are studies that
introduce substantial datasets alongside other contributions. Though Chapter 4 does consider modality bias in the discussion, it is
not primarily motivated by modality bias.
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2.3.2.1 Adversarial Regularisation

A successful method for mitigating language priors in VQA models is ‘adversarial

regularisation’: to train a purposefully biased model that only sees the question (i.e.

a ‘question-only’ model), and using the purposefully biased question-only predictions

to alter the real model’s training such that said biased predictions are discouraged.

Such approaches have the significant benefit of being both datasets and model in-

variant.

One of the earliest of such training strategies is introduced in Ramakrishnan

et al. [163] yields ∼4% increase in performance on VQA-CP v1.

Grand and Belinkov [71] propose a scheduling scheme that improves stability

during training. The authors further provide a deeper analysis of adversarial reg-

ularisation with several key insights: it yields significant improvement for yes-no

questions, but harms performance on more ‘challenging’ questions; linguistic cues

in the question can often be ignored in favour of salient visual features; and the im-

proved ‘out-of-domain’ performance comes at the cost of ‘in-domain’ performance.

The ‘reducing unimodal bias’ (RUBi) method [20] builds on [163] by training

both question-only and ‘real’ models together, with the question-only votes directly

applied to the gradients of the real model during training.

The work of Clark et al. [32] is distinguished from RUBi by using an already-

pretrained question-only model during adversarial training. They find ‘improved

robustness in all settings’, but do not provide the same thorough diagnostic break-

down of results as [71].

Yang et al. [216] posit that some ‘good’ language priors are worth exploiting

(similar to [202]), arguing that ‘reducing language bias weakens the ability of VQA

models to learn context prior(s)’. The authors introduce a content and context with

language bias (CCB) training scheme alongside a ‘bias-only’ model to regularise

biased predictions.

Han et al. [82] argue that what has conventionally been called ‘language bias’

should be split into ‘distribution bias’ and ‘shortcut bias’. Their Greedy Gradient

Ensemble (GGE) method is designed to greedily overfit to ‘distribution bias’, thus

forcing the full model to learn more thoroughly from examples that the biased models
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cannot answer.

Lao et al. [113] introduce a language-prior based focal loss ‘LP-Focal’ —using

votes from the biased question-only model to rescale the standard cross entropy—

increasing VQA-CP v2 performance by ∼18% accuracy.

It is important to note that while these regularisation methods yield improved

performance on datasets that are specifically designed to punish linguistic priors

(VQA-CP), they often lead to decreased performance for datasets where such short-

cuts exist to be exploited (VQA v1).

During my research, I found the field of adversarial regularisation to be saturated

and thoroughly explored. Though I aimed to find more unique research gaps to

address, I used adversarial regularisation as a tool to help test my hypotheses. My

work in Chapter 3 demonstrates that the RUBi method reduces accuracy on the

TVQA video-QA dataset, further implying that linguistic shortcuts exist in TVQA

as suppressing the exploitation of such priors causes a small decrease in performance.

2.3.2.1.1 +Vision-only Regularisation Preceding adversarial regularisation

techniques focus solely on a question-only model: unsurprising given the dominant

corrupting effect of language priors in VQA. However, recent research efforts include

a vision-only model in their adversarial regularisation.

Niu et al. [149] introduce a counterfactual adversarial regularisation technique

designed to make the model aware of the chance for bias on a given question through

counterfactual reasoning on both the image and question.

The D-VQA method Wen et al. [202] similarly includes a vision-only branch to

find and reduce ‘vision-to-answer’ bias alongside that of ‘question-to-answer’. How-

ever, the authors rather unconventionally argue that not all biases are undesirable

to VQA models, as “some biases learnt from datasets represent natural rules that

can help limit the range of answers”.

It is important to note that some of the author’s examples of ‘good biases’ —

e.g. ‘oranges (fruit) are orange (colour)— directly contradict the interpretations of

previous works that denounce functionally identical bias: ‘bananas are yellow’. It is

critical to the field of multimodality that such conflicting narratives are
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identified and reviewed in the future as the field continues to expand.

2.3.2.2 Counterfactuals

One of the most established methods for mitigating language priors is the use of

counterfactual examples with similar visual content but different answers. In the

preceding Section 2.2, I outline the design history of several counterfactual VQA

benchmark datasets : VQA v2 [70], Zhang et al. [234], and MUTANT [67]. Though I

take advantage of the counterfactual improvements in the VQA v2 and VQA-CP v2

datasets in my experiments in Chapter 6, there exists further research efforts more

closely examining the effects of counterfactuals themselves.

2.3.2.2.1 Includes Adversarial Regularisation

A trend in more recent research with counterfactuals as their primarily contribution

is to include adversarial regularisation in their experimental process and ablation.

Teney et al. [186] introduce a training scheme for generating counterfactuals by

both: completely masking or otherwise removing objects from images; and editing

questions in VQA v2. They further introduce a ‘gradient supervision’ loss function

that aims to improve learning from counterfactual pairs.

Chen et al. [27] introduce a counterfactual training scheme very similar to that of

Teney et al. [186]. A key insight in Chen et al. [27] is that such linguistic masking is

hypothesised to make question-only models in the adversarial ensemble more robust

against paraphrasing.

Liang et al. [126] propose a training methodology that creates factual and coun-

terfactual examples from each training sample for use in a triplet loss.

As with adversarial regularisation, I found the ‘counterfactual’ subfield to be

thoroughly explored and saturated. I instead use the useful properties counterfactual

design gives the VQA v2 and VQA-CP v2 datasets to test the hypotheses in my

work.

2.3.2.3 Improving Negative Answers

Chao et al. [24] demonstrate that the negative answers used in multiple choice VQA
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datasets have a significant and often-overlooked impact on model behaviour. If the

negative ‘decoy’ answers are too obviously incorrect for a given question, the authors

demonstrate that models learn to ignore visual information altogether. The authors

demonstrate that more carefully selected negative answers reduces vision-agnostic

behaviour. However, it remains unclear what ramification this may have for VQA

datasets with larger and open-ended answer vocabularies.

2.3.2.4 Other Training Schemes

This subsection highlights a more general and varied set of ‘training scheme’ contri-

butions.

Zhang et al. [233] argue that some questions concerned with logical reasoning

cause errors because ‘only visual information is present’ and is separated from ‘gen-

eral knowledge’ that could give crucial context for a correct answer. They introduce

a model that exploits an external knowledgebase of relations between objects not

unlike that of Visual Genome.

2.3.2.4.1 +Losses and Metrics

Some training schemes introduce new losses and metrics alongside their methodol-

ogy.

Lao et al. [112] present a curriculum learning strategy that starts with ‘easy’

questions (‘more-biased examples’), then proceeds to ‘harder’ questions (less biased

examples requiring multimodal reasoning) as determined by a proposed ‘difficulty’

metric. This metric is composed in part by a ‘Visual Sensitive Coefficient’ which

aims to detect the ‘difficulty driven by the language bias of each VQA sample’.

Guo et al. [77] consider the class-imbalance side of language priors in VQA, and

their analyses indicate that VQA models often give a frequent yet wrong answer to

a question whose correct answer is sparse in the training set. The authors introduce

a method of ‘loss rescaling’ in order to weight answers based on ‘training data

statistics’ such that easy mistakes don’t contribute much to the overall loss whereas

more challenging scenarios do.

Jiang et al. [97] propose a graph generative modelling-based training scheme
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(X-GGM) to improve ‘out-of-distribution’ performance. Out-of-distribution exam-

ples are generated by varying the attributes or objects in the image by ‘injecting

perturbations’ directly into the intermediate cross-modal representations. An ac-

companying ‘gradient distribution consistency’ loss function is designed to stabilise

the training procedure.

2.3.2.4.2 +Dataset Unshuffling/Balancing

Other training strategies focus specifically on some form of dataset balancing or

shuffling to yield improvements.

Si et al. [176] introduce a select and re-rank mechanism which proposes candi-

date answers at first, restricting the answer space, and then re-ranking the answers

afterwards. This approach is designed to minimise spurious correlations in answer

vocabularies with the aid of image features, but it is unclear if the subsequent re-

ranking of answers would not themselves be spuriously correlated.

Teney et al. [188] improve the out-of-distribution performance of their experi-

ments by splitting the dataset into multiple “well chosen” subsets and treating them

as separate instances of training. Subsets are chosen either through question-types,

or through K-means clustering on a binary bag-of-words representation of the ques-

tions.

Though VQA-CP has been demonstrated as a significant improvement over VQA

v1/v2 by many of the studies discussed in this section, Teney et al. [187] show that

it still contains “embarassingly simple” examples.

Sha et al. [173] extend the idea of balancing and shuffling subsets for superior

training to work across multiple datasets.

2.3.2.5 QA Priors in Video

I discuss the diagnostic design and question-type balancing of the CLEVRER [222]

and VQuAD [80] datasets in Section 2.1.2.1. However, there are other studies (aside

from dataset design) that analyse question-answering priors that exist in the less-

explored video-QA datasets.
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Jasani et al. [94] highlight the existence of language bias in the MovieQA dataset

by demonstrating that state-of-the-art results are achieved by using a text-only

model without any visual inputs. They further find that even a simple fully-

connected model using appropriately trained Word2Vec [140] vectors is sufficient to

correctly answer over 40% of questions. The authors speculate that this bias is in-

troduced by AMT workers either through: an over-representation of movie-relevant

characters and plots in the correct answers, or not watching the movie itself before

creating the questions.

Yang et al. [217] explore question-answer bias in both MovieQA and TVQA.

They demonstrate that the RoBERTa language model has the ability to overfit even

to the QA style of individual annotators. In particular, the authors show that ‘why’

and ‘how’ question types ‘incur more biases that language models can exploit’ which

they attribute to the relative complexities of such questions compared to the more

“factual and direct” ‘what’, ‘who’, or ‘where’ questions.

My work in Chapter 3 and its corresponding publication [204] was conducted

around the same time as both the studies discussed above, and the topic of text bias

in video-QA still remains relatively unexplored to date. I consider both textual bias

in TVQA from both questions and subtitles.

2.3.2.6 Static Frame Bias

A more esoteric form of modality bias is the ‘static frame bias’ identified in video-

lanaguage datasets i.e. models overly focus on information shortcuts from a single

frame (or very few) of an input video, effectively ignoring the temporal information

that should need to be exploited to succeed.

The diagnostic dataset CATER [66] builds the on design framework of CLEVR

with ‘compositional’ action recognition and object location. CATER is designed to

have ‘fully observable and controllable scene bias’ such that success on the dataset

‘truly requires’ temporal reasoning.

Lei et al. [119] demonstrate that models using only a single for the video-QA and

text-to-video retrieval tasks in their experiments outperform previous approaches.

The authors further introduce 2 new tasks, ‘template retrieval’ and ‘label retrieval’
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that they believe ‘require temporal modelling’.

I qualitatively explore the tendency of video tasks to tend towards static positions

through my visual modelling work in Chapter 5.

2.3.2.7 ‘Directly’ Strengthen Visual Contributions

Though research discussed in the previous subsection is aimed at creating conditions

such that the visual information is required and not ignored, such efforts strengthen

visual contributions indirectly i.e. they do not ‘increase the power’ of the visual

inputs to contribute. There does however exist some few works that aim to take a

more direct approach to improve visual information exploitation:

The Human Importance-aware Network Tuning ‘HINT’ algorithm [170] uses

small ‘hints’ of attention provided by humans to find out if such human-guided

attention for visual inputs is an improvement versus allowing the machine learning

model to learn as it normally would. The authors demonstrate that by providing

human hints for just 6% of the training data yields a substantial improvement of

5% on the VQA-CP v1 test set. In contrast, Shrestha et al. [175] later find that the

similar ‘human grounding’ methods are not responsible for improved accuracy, but

rather give rise to regularisation effect that reduces language priors.

I find these conflicting results to be a fascinating component of the broader hy-

pothesis ‘are more human-like behaviours desirable to encourage for deep learning?’.

My work in Chapter 6 tests this hypothesis through an augmented labelling scheme

for multimodal tasks using neurolinguistic scores from humans for visual concepts.

My work in Chapter 5 aims to directly improve the power of visual contributions

through a visual generative pretraining scheme that would yield stronger visual

representations (what BERT embeddings are to GloVe) for use in downstream visual

tasks i.e. VQA.
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CHAPTER 3

On Modality Bias in the TVQA Dataset

This chapter highlights and analyses textual biases in the TVQA video-QA dataset.

The contents of this chapter draw heavily from my BMVC paper: ‘On Modality

Bias in the TVQA Dataset’ [204]. The work in this chapter was conducted in 2019,

when the textual biases of VQA datasets were a very active area of research, but

video-QA datasets had yet to be similarly explored. This chapter also discusses the

benchmark model that was proposed alongside the dataset. This model is referred

to as the ‘TVQA model’. Readers should note that the term ‘TVQA’ will most often

refer to the TVQA dataset, but also may contextually refer to the aforementioned

TVQA model.

3.1 Introduction

Videos promise more raw visual content than still images used in VQA, and in-

clude temporal dependencies that models can exploit. Many notable video-QA

datasets have been developed to facilitate multimodal and temporal methodologies

for deep learning: MovieQA [184], MovieFIB [136], PororoQA [108], TGIF-QA [93],
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YouTube2Text-QA [220], EgoVQA [53] and TVQA [116]. The TVQA1 dataset in

particular was designed to address shortcomings in previous datasets: It is relatively

large; uses longer clips and realistic video content; and provides timestamps allowing

the identification of the subtitles and video frames relevant to a given question. Most

notably, the questions were specifically designed to encourage multimodal reason-

ing: i.e. models built to answer the questions should require both visual and textual

cues simultaneously. To achieve this, Amazon Mechanical Turk workers were asked

to design two-part compositional questions with a ‘main’ part (“What was House

saying..”) and a ‘grounding’ part (“..before he leaned over the bed?”). The authors

claimed this will naturally produce questions that require both visual and language

information to answer since “people often naturally use visual signals to ground ques-

tions in time”. Despite these specific efforts to ensure that “questions require both

vision understanding and language understanding”, my work in this chapter shows

that in practice this is not the case. I demonstrate that the subtitles are informative

enough to answer the majority of questions in TVQA without requiring comple-

mentary visual information as intended. I show that 68% of the questions can be

correctly answered using only the subtitles. Adding the visual information merely

increases the accuracy to ∼72%, yet without subtitles this drops by ∼27%. The

TVQA authors stress the importance of subtitles in video-QA “because it reflects

the real world, where people interact through language”. Though this argument has

merit and subtitles substantially improves performance on TVQA, my work in this

chapter finds their inclusion actively discourages multimodal reasoning, and that

the subtitles dominate rather than complement the video features. The TVQA+

dataset [117] is not considered in this study. Despite TVQA+ providing improved

timestamp annotations, it is a substantially smaller subset of TVQA. Furthermore,

the ‘visual concept words’ collected for TVQA+ sample from the questions and the

correct answers. This means that models trained on TVQA+ will be trained to use

additional textual hints disproportionately from correct answers 2. This defeats the

purpose of video-QA models as it assumes the correct answer is known to the model

1http://tvqa.cs.unc.edu
2TVQA+: http://tvqa.cs.unc.edu/download_tvqa_plus.html

38

http://tvqa.cs.unc.edu/download_tvqa_plus.html


during feature extraction.

The main contributions of this chapter are:

1. An evaluation framework for multimodal datasets that is suitable for use in

future datasets and models, but applied here to the TVQA dataset.

2. I introduce an ‘inclusion-exclusion measure’ (IEM) method of defining data

subsets that are correctly answered by a single modality or a combination of

modalities. This methodology is applicable to future datasets, but is intro-

duced and applied here on the TVQA dataset.

3. A topical case study of the ways in which even a carefully designed multimodal

dataset may still exhibit problematic modality biases.

4. Extensive analysis of the performance of the TVQA model and dataset per

modality and feature type, including the relative contributions of each feature,

notably finding that models trained with subtitles learn to suppress video

feature contributions.

5. Demonstration of an inherent reliance in the questions on the subtitles rather

than multimodal interactions as intended.

6. State of the art results3 achieved using the baseline TVQA model by simply

improving its textual reasoning with ‘contextual’ word embeddings from the

BERT language model [45].

7. I demonstrate that the model-agnostic RUBi learning strategy [20] fails to

improve TVQA performance, inline with other textually biased datasets.

The evaluation framework and proposed subsets are available on GitHub4.

3At time of publication.
4Available at https://github.com/Jumperkables/tvqa_modality_bias
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3.2 The TVQA Dataset

The TVQA dataset [116] is designed to address the shortcomings of previous video-

QA datasets. It has substantially longer clip lengths than other datasets and is based

on TV shows instead of cartoons, giving it realistic video content with simple coher-

ent narratives. It contains over 150k QA pairs. Each question is labelled with times-

tamps for the relevant video frames and subtitles. The questions were gathered using

AMT workers. Most notably, the questions were specifically designed to encourage

multimodal reasoning by asking the workers to design two-part compositional ques-

tions. The first part asks a question about a ‘moment’ and the second part localises

the relevant moment in the video clip i.e. [What/How/Where/Why/Who/...] —

[when/before/after] —, e.g. [What] was House saying [before] he leaned over the

bed?. The authors argue this facilitates questions that require both visual and lan-

guage information since “people often naturally use visual signals to ground ques-

tions in time”. The authors do identify certain biases in the dataset e.g. they find

that the average length of correct answers are longer than incorrect answers. They

analyse the performance of their proposed baseline model with different combina-

tions of visual and textual features on different question types they have identified.

However, they didn’t note the substantial performance of their baseline model on

either visual or textual features alone.

Other ‘Type’ Example

Spelling Variation
‘Whom did Roger say was following him after he made
the drop?’

Typo
‘tWhat was the reason House said they should do a
brain biopsy when they were discussing options of what
to do?’

Did/Does
‘Did Joey walk into the room before or after Chan-
dler?’

Double ‘When’ Question
‘When did Lucas say he made the video when he was
showing to Beckett and Castle?’

Table 3.1: Example questions from ‘other’ question type category. The ‘other’
category makes up 1.1% of the validation set.
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3.3 Experimental Framework

The evaluation framework I present here is built on the original TVQA model and

is designed to assess the contributions of visual and textual information in a multi-

modal dataset. However, inline with one of the guiding principals of this thesis, the

general approach of this chapter is invariant to model and dataset. The goal is to

identify any inherent biases towards either modality. As such, I focus the analysis

of the model on the processing streams of the visual and textual features, and the

use of ‘context matching’. This provides a powerful tool to assess in isolation the

contribution of the individual feature types and any combination of them.

3.3.1 Model Definition

The model takes as inputs:

• A question q (13.5 words on average)

• 5 potential answers {ai}4i=0 (each between 7-23 words)

• A subtitle S

• A video-clip V (∼60-90s at 3FPS)

and outputs the predicted answer. As the model can either use the entire video-clip

and subtitle or only the parts specified in the timestamp, I refer to the sections

of video and subtitle used as segments from now on. Figure 3.1 demonstrates the

textual and visual streams and their associated features in the model architecture.

3.3.2 ImageNet Features

Each frame is processed by a ResNet101 [83] pretrained on ImageNet [44] to produce

a 2048-d vector. These vectors are then L2-normalised and stacked in frame order:

V img ∈ Rf×2048 where f is the number of frames used in the video segment.
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3.3.3 Regional Features

Each frame is processed by a Faster R-CNN [167] trained on Visual Genome [110]

in order to detect objects. Each detected object in the frame is given a bounding

box, and has an affiliated 2048-d feature extracted. Since there are multiple objects

detected per frame (I cap it at 20 per frame), it is difficult to efficiently represent

this in time sequences [116]. The model uses the top-K regions for all detected labels

in the segment as in Anderson et al. [7] and Karpathy and Fei-Fei [102]. Hence the

regional features are V reg ∈ Rnreg×2048 where nreg is the number of regional features

used in the segment. Where you may consider ImageNet features as a representation

of information for the entire frame, regional features are information representations

of specific objects in that frame.

3.3.4 Visual Concepts

The classes or labels of the detected regional features are called ‘Visual Concepts’.

Yin and Ordonez [224] found that simply using detected labels instead of image fea-

tures gives comparable performance on image captioning tasks. Importantly they

argued that combining CNN features with detected labels outperforms either ap-

proach alone. Visual concepts are represented as either GloVe [158] or BERT [45]

embeddings V vcpt ∈ Rnvcpt×300 or Rnvcpt×768 respectively, where nvcpt is the number

of visual concepts used in the segment.

3.3.5 Text Features

In the evaluation framework, the model encodes the questions, answers, and sub-

titles using either GloVe (∈ R300) or BERT embeddings (∈ R768). Formally, q ∈

Rnq×d, {ai}4i=0 ∈ Rnai×d, S ∈ Rns×d where nq, nai , ns is the number of words in q, ai, S

respectively and d = 300, 768 for GloVe or BERT embeddings respectively.

3.3.6 Context Matching

Context matching refers to context-query attention layers recently adopted in ma-

chine comprehension [172, 226]. Given a context-query pair, context matching layers
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Figure 3.1: TVQA Model. � = element-wise multiplication, ⊕ = element-wise
addition, � = context matching. FC = stacked fully-connected linear layers. Any
of the feature streams may be enabled/disabled. Each model variation is trained
end-to-end with each of the activated features.

return ‘context aware queries’.

3.3.7 Bilinear Pooling: MCB and MFH

Bilinear pooling (BLP) refers to a family of operations recently developed for fus-

ing features from different modalities predominantly for visual question answering

(VQA) models. The various BLP techniques and their properties are the primary

focus of Chapter 4. In contrast, the work in this chapter instead applies the following

two BLP techniques simply in their capacity as examples of ‘joint representations’

[10]: multimodal compact bilinear pooling (MCB) [58], and multimodal factorised

higher-order bilinear pooling (MFH) [229]. Where I functionally describe the prac-

tical use of MCB for this scope of this chapter here, I formally and fully introduce

MCB and MFH alongside the other bilinear methods in Sections 4.2.3 and 4.2.7

respectively.

3.3.8 Model and Framework Details

In my evaluation framework, any combination of subtitles or visual features can be

used. All features are mapped into word vector space through a tanh non-linear

layer. They are then processed by a shared bi-directional LSTM [87, 72] (‘Global

LSTM’ in Figure 3.1) of output dimension 300. Features are context-matched with
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the question and answers. The original context vector is then concatenated with the

context-aware question and answer representations and their combined element-wise

product (‘Stream Processor’ in Figure 3.1, e.g. for subtitles S, the stream processor

outputs [F sub;Asub,q;Asub,a0−4 ; F sub�Asub,q;F sub�Asub,a0−4 ]∈ Rnsub×1500 where F sub ∈

Rns×300. Each concatenated vector is processed by their own unique bi-directional

LSTM of output dimension 600, followed by a pair of fully connected layers of

output dimensions 500 and 5, both with dropout 0.5 and ReLU activation. The

5-dimensional output represents a vote for each answer. The element-wise sum of

each activated feature stream is passed to a softmax producing the predicted answer

ID. All features remain separate through the entire network, effectively allowing the

model to choose the most useful features. This makes this model a strong tool in

assessing the biases towards certain features in the dataset.

3.3.9 Further Experimental Setup Details

My experiments are on the TVQA dataset and I use and adapt the code provided

by the authors5. Due to their size, the regional features are unavailable for down-

load and I extract them myself following the author’s instructions. The models are

trained on an RTX 2080-ti GPU with batch size 32 and a rectified-Adam solver

[130]. I use a pretrained, non-finetuned BERT embedding layer using the uncased

base tokenizer6. When using regional features I use the top 20 detections per video

segment. All further settings are as described in TVQA, most notably: I use 6B-

300d GloVe embeddings and all word embedding layers are frozen during training.

I use the timestamps annotations and train the model until improvements on the

validation set accuracy is not made for 3 epochs. I check validation and training set

accuracies every 400 iterations, except for the models that include regional features

where I check every 800 iterations as these run substantially slower. In this study I

control for the modality used in order to isolate its influence on the performance of

the overall model.

5https://github.com/jayleicn/TVQA
6https://github.com/huggingface/transformers
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3.4 Results and Discussion

3.4.1 Feature Contributions

Table 3.2 shows that all evaluated models trained with subtitles substantially out-

perform models trained without them.

Model Text Val Set Train Set

V GloVe 45.39% 60.82%
V BERT 43.44% 52.76%
I GloVe 44.86% 61.52%
I BERT 44.44% 65.02%
R GloVe 42.36% 54.83%
R BERT 42.53% 53.85%
VIR GloVe 46.72% 61.10%
VIR BERT 44.61% 61.38%

S GloVe 66.07% 76.42%
S BERT 68.30% 80.77%
SI GloVe 67.78% 78.78%
SI BERT 70.56% 84.84%
SVI GloVe 69.34% 78.90%
SVI BERT 72.13% 86.84%
SVIR GloVe 69.53% 80.08%
SVIR BERT 71.80% 81.58%

STAGE [117] GloVe 66.92% -
STAGE [117] BERT 70.50% -

VSQA [218] GloVe 67.70% -
VSQA [218] BERT 72.41% -

Human - 93.44% -

Table 3.2: Each experiment is a separate end-to-end model. E.g. ‘SI with BERT’
is the submodel of subtitles and ImageNet features (green and pink in Figure 3.1)
with BERT embeddings used for the subtitles, questions and answers (random choice
accuracy is 20%). Models shown in bold surpass the SOTA (at time of publica-
tion [204]). Models use timestamp annotations except STAGE which instead uses
‘temporal supervision’.

3.4.1.1 Models with Subtitles

Each BERT variation that includes subtitles gains at least 2% accuracy compared

to GloVe, leading to the SI (i.e. subtitle+ImageNet features), SVI, and SVIR vari-

ations achieving state-of-the-art results. Models trained using only subtitles achieve
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+20% accuracy using GloVe and +23% using BERT embeddings when compared

to the best performance using any combination of video features. This implies that

the subtitles are the most informative features in answering the majority of the

questions.

3.4.1.2 Models without Subtitles

With GloVe embeddings, the most impactful video feature is the visual concepts,

which increases performance by 0.5%, following a trend in image captioning [224].

Similarly, I find that using image features and visual concepts combined outperforms

using either alone. However, using BERT with just visual concepts drops perfor-

mance by ∼2%. I theorise this is due to the contextual nature of the BERT em-

beddings hindering the model by sequentially processing the intrinsically unordered

visual concepts.

3.4.2 Subtitles Dominate Instead of Complement

Figure 3.2: Pre-softmax vote contributions for answers in the validation set. Both
are BERT models: VIR (left) vs SVIR (right). The dashed lines represent quartiles.

To further analyse the contributions of each feature, I plot the pre-softmax votes

for answers between models trained with and without subtitles. Figure 3.2 shows

the votes per feature for SVIR and VIR trained model with BERT embeddings,

measured in true and false positive answers. In the VIR model (left side of Figure
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Figure 3.3: Pre-softmax vote contributions for answers in the validation set for the
VIR (left) and SVIR (right) trained models with GloVe embeddings. This is the
GloVe embedding counterpart to Figure 2.

Figure 3.4: Pre-softmax vote contributions for answers in the validation set for the
VIR (left) and SVIR (right) trained models with GloVe embeddings.

3.2) I find that all video features similarly contribute to answer votes. When av-

eraged across correct predictions, each feature contributes positively to the correct

answer i.e. true positives, and contributes less to the other incorrect answers. How-

ever, when trained with subtitles in the SVIR model, the subtitles overwhelmingly

contribute to the correct answer. Furthermore, in the true positive case, each video

feature actually contributes less on average than in the accompanying incorrect an-

swers. This is shown in the SVIR model in Figure 3.2, where the quartiles of true

positive votes in each video feature are below the votes for false positives. This shows

47



Figure 3.5: Pre-softmax vote contributions for answers in the validation set for the
VIR (left) and SVIR (right) trained models with BERT embeddings.

that in case of correct predictions, models trained with subtitles learn, on-average,

to suppress the video feature contribution, demonstrating a substantial bias towards

subtitles in TVQA. I find similar results in the GloVe models (see Figures 3.8 and

3.9). Strictly speaking, video-QA models that can constructively use video informa-

tion at all are, to an extent, multimodal as they interpret the video features with

respect to the textual questions and answers. However in TVQA, using subtitles

‘on-average’ actively suppresses these multimodal contributions.

3.4.3 All You Need is BERT

The state-of-the-art STAGE model [117], proposed by the authors of TVQA, im-

proves on the original TVQA model by exploiting spatio-temporal relationships and

simultaneously replacing GloVe with BERT embeddings. BERT embeddings have

been shown to empirically outperform GloVe embeddings on previous NLP tasks.

This comes with a substantial increase of model complexity with over 14 additional

layers and steps added to the original model. I show in Table 3.2 that simply upgrad-

ing GloVe to BERT embeddings in the relatively simple original model outperforms

the more complex STAGE model. Yang et al. [218] present a detailed analysis of

BERT on the TVQA dataset and propose a ‘V+S+Q+A’ model that is structurally

similar to the simple TVQA baseline (i.e. separate visual and subtitle streams that
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additively combines their contributions at the voting stage). Though they do not

explore bias in TVQA, they too demonstrate a substantial boost in performance over

STAGE by upgrading from GloVe to BERT on a simpler model. This implies that

better modelling of the subtitles using BERT in TVQA leads to higher performance

regardless of any improvement in modelling the video information. Furthermore,

these results indicate that complex models focused on improving more abstract be-

haviours do not necessarily improve video-QA performance in TVQA. I theorise that

these complex models are currently introducing unhelpful overhead and that, if the

goal is to increase performance on TVQA, models are best served by exploiting the

subtitles. These results also suggest that there is an imbalance in the information

contributed by visual and textual modalities. I argue that the contextual nature of

BERT embeddings makes them ideal for processing the sequential subtitles which,

since TVQA is based on TV shows, often follow a structured narrative.

3.4.4 Dataset Analysis

3.4.4.1 Feature Distributions

I analyse the features that are most useful in answering each of the question types.

Figure 3.6 shows that models trained without subtitles substantially underperform

(relative to their own model accuracy) on ‘which’ and ‘who’ questions. This makes

intuitive sense as names and named entities commonly appear in the subtitles. Sub-

title models substantially overperform on ‘why’ and ‘how’ questions, at ∼82%. In-

tuitively these question types are harder because the answers are implied rather

than concrete and often revolve around explanations that are best represented in

language.

As an alternative set comparison measure, I consider the proportion of questions

in the validation set that each pair of models answer the same, regardless if the

answer is correct or incorrect.
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Figure 3.7: IoU of correct answers between models.

Figure 3.8: Intersection / Union (IoU) score for correct predictions in the validation
set between GloVe models.

3.4.4.2 Modality Subsets

My work in this chapter thusfar has focused on carefully demonstrating the existence

of language biases in the TVQA dataset. In this section, I instead aim to complement

these findings with a proposed solution to the underlying problem of modality biases

in datasets. By analysing the similarity between the outputs of the different models,

I label each question with the modalities needed to answer it. I isolate subsets of

the validation set that are answered correctly using each of the evaluated models.
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Figure 3.9: Proportion of the validation set that GloVe models answer the same.

Figure 3.10: Proportion of the validation set that BERT models answer the same.

Figure 3.7 shows that the correctly answered questions of models trained without

subtitles have a relatively low intersection over union (IoU) score, approximately

58-68%. Although the models have similar overall accuracies, they seem to perform

well on different questions, implying they successfully use information from relatively

separate feature types. The overall accuracies of subtitle models are substantially

higher, giving higher IoU scores among those models. To inform my recommendation

on how to introduce the data subsets, I run a comparative analysis of the outcomes

of different groups of models, i.e. Group A and Group B, to identify the proportion
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Figure 3.11: The percentage increase of each respective question type, in the speci-
fied IEM subset, compared to the overall question type distribution in the validation
set. Each of the subsets analysed corresponds to a row in Table 3.3. The ‘Hard
dataset’ alluded to in this figure is the negation of the set of answers in Row 1 of
Table 3.3.

of the dataset that is answered correctly by models in Group A and incorrectly by

all models in Group B. I refer to this measure as the Inclusion-Exclusion Measure

(IEM). Table 3.3 summarises this analysis. Row ‘All/-’ shows that the union of

all correct answers of all models is 90.1%, whereas ‘All/Non-Subtitle’, contrasts

predictions of all models trained with subtitles versus those trained without subtitles.

This illustrates that 22.7% of the questions cannot be answered by non-subtitle

models. ‘Non-Subtitle/Subtitle’ shows that only 5.4% can be uniquely answered

by the models that don’t use subtitles. To identify multimodal reliant questions, I

consider those that SVIR can answer correctly but that the unimodal models cannot.

‘SVIR/S,V,I,R’ shows that 3.79% of the validation set and 2.62% of the training set

(see Table 3.4) fits this multimodal criteria (∼4.3k). IEM is a strict and minimal

lower bounding method. A less strict method of partitioning the dataset is to

consider ‘popular vote’, i.e. a set where the majority vote of the models in question

agree on the answer. Though more restrictive than popular vote, IEM removes

potential ambiguity, i.e. if a question cannot be correctly answered by any subtitle

model, then subtitle content is not answering that question. Note that my proposed
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Group A Group B BERT GloVe

All - 90.12% 87.68%
All Non-Subtitle 22.68% 22.91%
All SVIR 18.32% 18.16%
All S, V, I, R 7.68% 5.40%

Subtitle - 84.74% 80.56%
Subtitle Non-Subtitle 22.68% 22.91%

Non-Subtitle - 67.44% 64.77%
Non-Subtitle Subtitle 5.38% 7.12%
Non-Subtitle S 16.72% 18.50%

S, V, I, R - 82.44% 82.28%
S, V, I, R SVIR 14.44% 14.77%

SVIR - 71.80% 69.52%
SVIR S, V, I, R 3.79% 2.01%

S - 68.30% 66.07%
S Non-Subtitle 17.59% 19.80%
S V, I, R 21.94% 22.27%
S VIR 32.83% 30.78%

Table 3.3: The percentages of questions in the validation set that are correctly
answered by models in Group A, but incorrectly answered by Group B. Subtitle=
all models trained with subtitles. S = subtitle-only model. SVIR = model trained
with all 4 features. S, V, I, R = group of 4 models each trained with one of the 4
features. The scenarios where Group B is ‘-’ are those which do not consider models
that could not answer: e.g. the top row of this table (All | - ) simply shows the
proportion which all models could answer.

.

subsets are inherently linked to the model. Using my IEM approach, I discount

the large amount of questions answered by unimodal models as not multimodal (by

definition), providing a valuable starting point. Including better models as they

are developed in IEM would provide increasingly better subset splits. To provide

insight into how TVQA question information is actually distributed, I present the

relative abundance of each question type in my proposed IEM subsets in Figure

3.11. Most notably, ‘who’ and ‘which’ questions are more highly concentrated in

the ‘subtitle reliant’ subset. This is unsurprising as the subtitles contain a wealth

of named entities and nouns. Conversely, the ‘video reliant’ dataset contains more

‘what’ and ‘where’ questions. Despite the potential benefits of subsets derived from

IEM, my results on TVQA imply such subsets are likely to be substantially smaller

than the original size of the dataset, and are therefore subject to the drawbacks of
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Group A Group B BERT Models GloVe Models

All - 96.77% 94.54%
All Non-Subtitle 14.32% 14.56%
All SVIR 15.19% 14.47%

Subtitle - 94.80% 89.91%
Subtitle Non-Subtitle 14.32% 14.56%

Non-Subtitle - 82.45% 79.99%
Non-Subtitle Subtitle 1.96% 4.63%
Non-Subtitle S 12.34% 15.97%

S, V, I, R - 91.11% 90.52%
S, V, I, R SVIR 12.15% 12.03%

SVIR - 81.58% 80.07%
SVIR S, V, I, R 2.62% 1.58%

S - 80.77% 76.41%
S Non-Subtitle 10.67% 12.39%

Table 3.4: The percentages of the training set that are correctly answered by models
in Group A, but incorrectly answered by Group B. Subtitle models = {S, SI, SVI,
SVIR}, Non-Subtitle models = {V, I, R, VI, VIR}. All models = Subtitle + Non-
Subtitle. Though considering responses of the training set is inherently flawed due
to training bias, it provides a reasonable starting point and considerable size boost
to my initially proposed IEM subsets. The scenarios where Group B is ‘-’ are those
which do not consider models that could not answer: e.g. the top row of this table
(All | - ) simply shows the proportion which all models could answer.

small datasets. Though this is not necessarily a problem with the IEM metric itself,

it is nonetheless a consequence that must be acknowledged.

3.4.5 Further Experimental Findings

3.4.5.1 Joint Representations Appear Detrimental

Baltrusaitis et al. [10] consider representation as summarising multimodal data “in

a way that exploits the complementarity and redundancy of multiple modalities”.

Joint representations (e.g. concatenation, bilinear pooling [62, 58, 109, 106, 13])

combine unimodal signals into the same representation space. However, they strug-

gle to handle missing data [10] as they tend to preserve shared semantics while

ignoring modality-specific information [75]. I explore how a joint representation in

the TVQA model affects performance as another method of inferring potential uni-

modal reliances. I create the ‘dual-stream’ (Figure 3.12) model from the SI TVQA
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Figure 3.12: The dual-stream model. Both features are integrated into a single
adapted ‘stream processor’. � = context matching. BLP is used to fuse S and I
features.

baseline model with as few changes as possible:

• I use context matching between subtitle and ImageNet features to allow bilin-

ear pooling at each time step between both modalities.

• I use the new pooled feature as input for a single stream processor.

Table 3.5 shows that both my dual-stream models perform substantially worse than

the baseline model. This implies that questions in TVQA do not effectively use a

joint representation of its features, and potentially highlights:

• Information from either modality is consistently missing.

• Prioritising ‘shared semantics’ over ‘modality-specific’ information harms per-

formance on TVQA.

Both of these possibilities would contradict TVQA’s stated aim as a multimodal

benchmark.

3.4.5.2 RUBi Doesn’t Help

Strong unimodal language biases are prevelent in VQA. As discussed in Chapter 2

earlier, the VQA-CP v1/2 datasets [4] are rearrangements of the VQA v1/2 datasets

[9, 70] such that certain kinds of identified QA priors appear exclusively in the train-

ing or test sets. Unable to rely on these priors, many VQA baseline model’s perfor-

mance substantially drops. The model-agnostic RUBi strategy [20] uses a text-only

variant of a model during training (see this Figure 3.13) to reduce (increase) the
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Model Text Val Acc

TVQA SI GloVe 67.78%
TVQA SI BERT 70.56%
Dual-Stream MCB GloVe 63.46%
Dual-Stream MCB BERT 60.63%
Dual-Stream MFH GloVe 62.71%
Dual-Stream MFH BERT 59.34%

Table 3.5: Dual-stream vs TVQA SI baseline. The hidden pooling dimension is
1500. Both use only the subtitle and ImageNet features (including questions and
answers).

loss, and therefore importance, of highly-biased (visually dependent and difficult)

training samples. Shown in Table 3.6, benchmark models using RUBi perform sub-

stantially better on the less-textually-biased VQA-CP dataset, implying RUBi suc-

cessfully discourages models from relying on the now unhelpful text prior shortcuts.

Conversely, RUBi harms performance on datasets with greater text biases (VQA

v2 test-dev/val), implying RUBi’s bias-averse behaviour is actually detrimental on

Figure 3.13: The RUBi (reducing unimodal bias) learning strategy used in VQA.
The model-agnostic RUBi strategy [20] uses a text-only variant of a model during
training to reduce (increase) the loss, and therefore importance, of highly-biased
(visually dependent and difficult) training samples.
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Model Dataset Baseline Acc RUBi Acc

TVQA SI (GloVe) TVQA 67.78% 67.67%
TVQA SI (BERT) TVQA 70.56% 70.37%
RUBi Baseline [20] VQA-CP v2 test 38.46% 47.11%
SAN [219] VQA-CP v2 test 33.29% 36.69%
UpDn [7] VQA-CP v2 test 41.17% 44.23%
RUBi Baseline [20] VQA v2 test-dev 63.10% 61.16%
RUBi Baseline [20] VQA v2 val 64.75% 63.18%

Table 3.6: TVQA SI model trained on the RUBi criterion [20]. As subtitles can
also provide learned text-prior shortcuts, the TVQA text-only model in the RUBi
strategy also includes subtitles.

datasets where these shortcuts exist. I find that RUBi fails to improve accuracy on

TVQA and in fact slightly decreases performance on both BERT and GloVe models,

implying that TVQA could benefit heavily as a multimodal benchmark by address-

ing its own textual priors. To the best of my knowledge, at time of experimentation,

I was the first to apply RUBi to a video-QA dataset. I note that subtitles can

also provide learned text-prior shortcuts, as such, the TVQA text-only model in the

RUBi strategy also includes subtitles.

3.5 Conclusion

I develop a multimodal evaluation framework using the TVQA model that aims to

not only assess potential dataset biases, but also circumvent them by isolating and

removing problematic questions. I find that information needed to answer questions

in the TVQA dataset is concentrated in the subtitles to the extent that video infor-

mation is suppressed during training, contradicting the multimodal nature TVQA

was specially designed to have. I provide an extensive analysis on which question

types in TVQA require video or textual features and propose subsets of TVQA, in

particular those which require specific features for multimodal reasoning. I achieve

state-of-the-art results on the TVQA dataset by simply using BERT embeddings

with the TVQA model. This demonstrates that the performance increase in the

STAGE model is largely due to improved NLP embeddings. I find further evidence

for TVQA’s unimodal textual bias through my experiments with joint representa-

tions and the RUBi learning strategy. I show that multimodality is not always guar-
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anteed in video-QA and suggest that it is challenging to design questions without

introducing biases that discourage multimodality. My work in this chapter serves

as a crucial reminder that great care should be taken in creating datasets for mul-

timodal reasoning in video-QA. Despite the potential upsides of my proposed IEM

metric, my results here on the TVQA dataset imply that the subsets it generates

are likely to be substantially smaller than the original size of the dataset on current

benchmarks. My work here is applicable to both existing and future multimodal

datasets, able to evaluate these datasets on modality-reliant subsets and highlight

how a given model performs under different modality conditions.
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CHAPTER 4

Bilinear Pooling in Video-QA: Empirical Challenges and

Motivational Drift from Neurological Parallels

Where Chapter 3 focuses on problems with the use of a popular multimodal datasets,

this chapter shifts focus to the problems with the use of a popular multimodal

modelling techniques. This chapter heavily draws from my published paper ‘Bilinear

pooling in video-QA: empirical challenges and motivational drift from neurological

parallels’ [205]. The work in this chapter was undertaken in 2020/2021.

4.1 Introduction

It is essential to develop modelling and learning strategies with the capacity to learn

complex and nuanced multimodal relationships and representations. A particularly

notorious solution to learning multimodal relationships in VQA is the family of bi-

linear pooling (BLP) operators [62, 106, 228, 12, 229, 13]. A bilinear (outer product)

expansion is thought to encourage models to learn interactions between 2 feature

spaces and has experimentally outperformed ‘simpler’ vector operations (i.e. con-

catenation and element-wise-addition/multiplication) on VQA benchmarks. Though

successive BLP techniques focus on leveraging higher performance with lower com-
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putational expense, which I wholeheartedly welcome, the context of their use has

subtly drifted from application in earlier bilinear models e.g. where in Lin et al. [127]

the bilinear mapping is learned between convolution maps (a tangible and visualis-

able parameter), from compact BLP [62] onwards the bilinear mapping is learned

between indexes of deep feature vectors (a much less tangible unit of representa-

tion). Though such changes are not necessarily problematic and the improved VQA

performance they have yielded is valuable, they represent a broader trend of the use

of BLP methods in multimodal fusion being justified only by empirical success. This

can be limited as a measure of objective success as we have seen that a higher accu-

racy does not always imply more desirable behaviour. Furthermore, despite BLP’s

history of success in text-image fusion in VQA, it has not yet gained such notoriety

in video-QA. Though BLP methods have continued to perform well on video tasks

when fusing vision and non-textual features [90, 237, 155, 212, 43, 198, 42, 181], BLP

has recently been overshadowed by other vision and textual feature fusion techniques

in video-QA [107, 122, 61, 129, 125]. In this chapter, I aim to add a new perspective

to the empirical and motivational drift in BLP. In doing so, I aim to offer helpful

insight to the usage of this popular modality fusion technique for use in the multi-

modal benchmark models and datasets of the future. My contributions include the

following:

1. I carefully and experimentally ascertain the empirical strengths and limita-

tions of BLP as a multimodal text-vision fusion technique on 2 models (TVQA

baseline and heterogeneous-memory-enchanced ‘HME’ model) and 4 datasets

(TVQA, TGIF-QA, MSVD-QA and Ego-VQA). To this end, my experiments

include replacing feature concatenation in the existing models with BLP, and

a modified version of the TVQA baseline to accommodate BLP that I name

the ‘dual-stream’ model. Furthermore, I contrast BLP (classified as a ‘joint’

representation by [10]) with deep canonical cross correlation (a ‘co-ordinated

representation’). I find that my relatively simple integration of BLP does not

increase, and mostly harms, performance on these video-QA benchmarks. I

discuss how the decreased performance demonstrated by each individual ex-

periment uniquely highlights the shortcomings of BLP as a video-QA modality
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fusion methodology.

2. I discuss the motivational origins of BLP and share my observations of bilin-

earity in text-vision fusion.

3. By observing trends in recent work using BLP for multimodal video tasks and

recently proposed theoretical multimodal fusion taxonomies, I offer insight into

why BLP-driven performance gain for video-QA benchmarks may be more

difficult to achieve than in earlier VQA models.

4. I identify temporal alignment and inefficiency (computational resources and

performance) as key issues with BLP as a multimodal text-vision fusion tech-

nique in video-QA, and highlight concatenation and attention mechanisms as

an ideal alternative for use in the models of the future.

5. In parallel with the empirically justified innovations driving BLP methods, I

explore the often-overlooked similarities of bilinear and multimodal fusion to

neurological theories e.g. Dual Coding Theory [152, 153] and the Two-Stream

Model of Vision [69, 142], and propose several potential neurologically justified

alternatives and improvements to existing text-image fusion. I highlight the

latent potential already in existing video-QA datasets to exploit neurological

theories by presenting a qualitative analysis of the occurrence of neurolinguis-

tically ‘concrete’ words in the vocabularies of the textual components of the 4

video-QA datasets I experiment with.

4.2 Background: Bilinear Pooling

In this section I outline the development of BLP techniques, highlight how bilinear

models parallel the two-stream model of vision, and discuss where bilinear models

diverged from their original motivation.
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4.2.1 Concatenation

Early works use Vector concatenation to project different features into a new joint

feature space. Zhou et al. [236] use vector concatenation on the CNN image and text

features in their simple baseline VQA model. Similarly, Lu et al. [135] concatenate

image attention and textual features. Vector concatenation is a projection of both

input vectors into a new ‘joint’ dimensional space. Vector concatenation as a multi-

modal feature fusion technique in VQA is considered a baseline and has historically

been empirically outperformed in VQA by the following bilinear techniques.

a = (a0, a1, ..., am−1)

b = (b0, b1, ..., bn−1)

Concatenation(a,b) = (a0, a1, ..., am−1, b0, b1, ..., bn−1)

where a,b are vectors of dimension m, n respectively.

4.2.2 Bilinear Models

Working from the observations that “perceptual systems routinely separate ‘content’

from ‘style’ ”, Tenenbaum and Freeman [185] proposed a bilinear framework on these

2 different aspects of purely visual inputs. They find that the multiplicative bilinear

model provides “sufficiently expressive representations of factor interactions”. The

bilinear model in [127] is a ‘two-stream’ architecture where distinct subnetworks

model temporal and spatial aspects. The bilinear interactions are between the out-

puts of 2 CNN streams, resulting in a bilinear vector that is effectively an outer

product directly on convolution maps (features are aggregated with sum-pooling).

This makes intuitive sense as individual convolution maps represent specific pat-

terns. It follows that learnable parameters representing the outer product between

these maps learn weightings between distinct and visualisable patterns directly. In-

terestingly, both [185, 127] are reminiscent of two-stream hypothesises of visual

processing in the human brain [69, 143, 141, 68, 142] (discussed in detail later).

Though these models focus on only visual content, their generalisable two-factor

frameworks would later be inspiration to multimodal representations. Fully bilinear
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representations using deep learning features can easily become impractically large,

necessitating informed mathematical compromises to the bilinear expansion.

a = (a0, a1, ..., am−1)

b = (b0, b1, ..., bn−1)

‘Fully′Bilinear(a,b) = a⊗outer b

where a,b are vectors of dimension m, n respectively, and⊗outer is the outer product.

4.2.3 Compact Bilinear Pooling

Gao et al. [62] introduce ‘Compact Bilinear Pooling’, a technique combining the

count sketch function [25] and convolution theorem [47] in order to ‘pool’ the outer

product into a smaller bilinear representation. The count sketch function projects

vector v ∈ Rn to y ∈ Rd. Initialise 2 vectors s ∈ {−1, 1}n and h ∈ {1, ..., d}n: Each

coefficient of s is initialised to 1 or -1, and h maps each index i in input v to an

index j in the output y. s and h are randomly initialised from a normal distribution

and are constant for all further count sketch calls. For each element of the input

v[i ], we find it’s destination index in the output y, j = h[i ], and add s[i ] · v[i ] to

output y[i ]. The count sketch function Ψ has the favourable property

E[Ψ(x,h, s)�Ψ(y,h, s)] = x� y [25]

where E is statistical expectation and � is the dot product, i.e. the expectation of

the dot product of Ψ(x,h, s) and Ψ(y,h, s) is the dot product of x and y (the count

sketch algorithm is ‘unbiased’). Pham and Pagh [160] show that

Ψ(x⊗ y,h, s) = Ψ(x,h, s) ∗Ψ(y,h, s)

where ∗ is the convolution operation, i.e. the count sketch of the outer product

of 2 vectors is the convolution of the individual count sketches of those vectors.

Furthermore, by convolution theorem [47]:

• Convolution in the time domain is equivalent to element-wise multiplication

in the frequency domain.
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• One can apply the fast Fourier transform (FFT) [34] to the count-sketch of the

input vectors to use convolution theorem and simplify the calculation needed

from convolution to element-wise multiplication.

• One then applies the inverse fast Fourier transform to the resulting vector,

obtaining the count-sketch of the outer product, the compact bilinear repre-

sentation.

Fukui et al. [58] use compact BLP in their VQA model to learn interactions between

text and images i.e. multimodal compact bilinear pooling (MCB). I note that for

MCB, the learned outer product is no longer on convolution maps, but rather on the

indexes of image and textual tensors. Intuitively, a given index of an image or textual

tensor is more abstracted from visualisable meaning when compared to convolution

map. As far as I am aware, no research has addressed the potential ramifications

of this switch from distinct maps to feature indexes, and later usages of bilinear

pooling methods continue this trend. Though MCB is significantly more efficient

than full bilinear expansions, it still requires relatively large latent dimensions to

perform well on VQA (d≈16000).

4.2.4 Multimodal Low-Rank Bilinear Pooling

To further reduce the number of needed parameters, Kim et al. [106] introduce

multimodal low-rank bilinear pooling (MLB), which approximates the outer product

weight representation W by decomposing it into 2 rank-reduced projection matrices:

z = MLB(x,y) = (XTx)� (Y Ty)

z = xTWy = xTXY Ty = 1T (XTx� Y Ty)

where X ∈ Rm×o, Y ∈ Rn×o, o < min(m,n) is the output vector dimension, � is

element-wise multiplication of vectors or the Hadamard product, and 1 is the unity

vector. MLB performs better than MCB in [151], but it is sensitive to hyperpa-

rameters and converges slowly. Furthermore, Kim et al. [106] suggest using Tanh

activation on the output of z to further increase model capacity.
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4.2.5 Multimodal Factorised Low Rank Bilinear Pooling

Yu et al. [228] propose multimodal factorised bilinear pooling (MFB) as an extension

of MLB. Consider the bilinear projection matrix W ∈ Rm×n outlined above, to learn

output z ∈ Ro one needs to learn W = [W0, ...,Wo−1]. I generalise output z:

zi = xTXiY
T
i y =

k−1∑
d=0

xTadb
T
d y = 1T (XT

i x�YT
i y) (4.1)

Note that MLB is equivalent to MFB where k=1. MFB can be thought of as a 2-

part process: features are ‘expanded’ to higher-dimensional space by Wσ matrices,

then ‘squeezed’ into a “compact ouput”. The authors argue that this gives “more

powerful” representational capacity in the same dimensional space than MLB.

4.2.6 Multimodal Tucker Fusion

Ben-younes et al. [12] extend the rank-reduction concept from MLB and MFB to

factorise the entire bilinear tensor using tucker decomposition [191] in their multi-

modal tucker fusion (MUTAN) model. I will briefly summarise the notion of rank

and the mode-n product to describe the tucker decomposition model.

4.2.6.1 Rank and mode-n product

If W ∈ RI1×,...,×IN and V ∈ RJn×In for some n ∈ {1, ..., N} then

rank(W ⊗n V) ≤ rank(W)

where ⊗n is the mode-n tensor product:

(W⊗n V)(i1, ..., in−1, jn, in+1, ..., iN):=
∑In

in=1 W (i1, ..., in−1, in, in+1, ..., iN)V(jn, in)

In essence, the mode-n fibres (also known as mode-n vectors) of W ⊗n V are the

mode-n fibres of W multiplied by V (proof here [74]). See Figure 4.1 for a visual-

isation of mode-n fibres. Each mode-n tensor product introduces an upper bound

to the rank of the tensor. I note that conventionally, the mode-n fibres count from

1 instead of 0. I will follow this convention for the tensor product portion of this

chapter to avoid confusion. The tucker decomposition of a real 3rd order tensor
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Figure 4.1: Visualisation of mode-n fibres and matricisation.

T ∈ Rd1×d2×d3 is:

T = τ ⊗1 W1 ⊗2 W2 ⊗3 W3

where τ ∈ Rd1×d2×d3 (core tensor), and W1,W2,W3 ∈ Rd1×d1 , Rd2×d2 , Rd3×d3 (factor

matrices) respectively.

4.2.6.2 MUTAN

The MUTAN model uses a reduced rank on the core tensor to constrain represen-

tational capacity, and the factor matrices to encode full bilinear projections of the

textual and visual features, and finally output an answer prediction, i.e:

y = ((τ ⊗1 (qTWq))⊗2 (vTWv))⊗3 Wo

Where y ∈ R|A| is the answer prediction vector and q,v are the textual and visual

features respectively. A slice-wise attention mechanism is used in the MUTAN

model to focus on the ‘most discriminative interactions’. Multimodal tucker fusion

is an empirical improvement over the preceeding BLP techniques on VQA, but it

introduces complex hyperparameters to refine that are important for relatively its

high performance (R and core tensor dimensions).
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4.2.7 Multimodal Factorised Higher Order Bilinear Pooling

All the BLP techniques discussed up to now are ‘second-order’, i.e. take 2 functions

as inputs. Yu et al. [229] propose multimodal factorised higher-order bilinear pooling

(MFH), extending second-order BLP to ‘generalised high-order pooling’ by stacking

multiple MFB units, i.e:

ziexp = MFBi
exp(I,Q) = zi−1exp �Dropout(UT I�VTQ)

z = SumPool(zexp)

for i ∈ {1, ..., p} where I, Q are visual and text features respectively. Similar to how

MFB extends MLB, MFH is MFB where p = 1. Though MFH slightly outperforms

MFB, there has been little exploration into the theoretical benefit in generalising to

higher-order BLP.

4.2.8 Bilinear Superdiagonal Fusion

Ben-Younes et al. [13] proposed another method of rank restricted bilinear pooling:

Bilinear Superdiagonal Fusion (BLOCK). I will briefly outline block term decompo-

sition before describing BLOCK.

4.2.8.1 Block Term Decomposition

Introduced in a 3-part paper [39, 40, 41], block term decomposition reformulates a

bilinear matrix representation as the sum of rank restricted matrix products (con-

trasting low rank pooling which is represented by only a single rank restricted matrix

product). By choosing the number of decompositions in the approximated sum and

their rank, block-term decompositions offer greater control over the approximated

bilinear model. Block term decompositions are easily extended to higher-order ten-

sor decompositions, allowing multilinear rank restriction for multilinear models in

future research. A block term decomposition of a tensor W ∈ RI1×,...,×IN is a decom-

position of the form:

W =
∑R

r=1 Sr ⊗1 U1
r ⊗2 U2

r⊗3, ...,⊗nUn
r
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where R ∈ N∗ and for each r ∈ {1, ..., R},Sr ∈ RR1×,...,×Rn where each Sr are ‘core

tensors’ with dimensions Rn ≤ In for n ∈ {1, ..., N} that are used to restrict the

rank of the tensor W. Un
r ∈ St(Rn, In) are the ‘factor matrices’ that intuitively

expand the nth dimension of S back up to the original nth dimension of W. St(a, b)

here refers to the Stiefel manifold, i.e. St(a, b):{Y ∈ Ra×b : YTY = Ip}. Figure 4.2

visualises the block term decomposition process.

U1
1

U1
2

U1
3

S1W ≈ UR
1

UR
2

UR
3

SR+...+

Figure 4.2: Block Term Decomposition (n=3).

4.2.8.2 Bilinear Superdiagonal Model

The BLOCK model uses block term decompositions to learn multimodal interac-

tions. The authors argue that since BLOCK enables “very rich (full bilinear) inter-

actions between groups of features, while the block structure limits the complexity of

the whole model”, that it is able to represent very fine grained interactions between

modalities while maintaining powerful mono-modal representations. The bilinear

model with inputs x ∈ Rm,y ∈ Rn is projected into o dimensional space with

tensor products:

z = W ⊗1 x⊗2 y

where z ∈ Ro. The superdiagonal BLOCK model uses a 3 dimensional block term

decomposition. The decomposition of W in rank (R1, R2, R3) is defined as:

W =
∑R

r=1 Sr ⊗1 U1
r ⊗2 U2

r ⊗3 U3
r

This can be written as

W = Sbd ⊗1 U1 ⊗2 U2 ⊗3 U3

where U1 =[U1
1, ...,U

1
R], similarly with U2 and U3, and now Sbd ∈ RRR1×RR2×RR3

.

So z can now be expressed with respect to x and y. Let x̂ = U1x ∈ RRR1
and
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ŷ = U2y ∈ RRR2
. These 2 projections are merged by the block-superdiagonal

tensor Sbd. Each block in Sbd merges together blocks of size R1 from x̂ and of size

R2 from ŷ to produce a vector of size R3:

zr = Sr ⊗x x̂rR1:(r+1)R1 ⊗y ŷrR2:(r+1)R2

where x̂i:j is the vector of dimension j − i containing the corresponding values of

x̂. Finally all vectors zr are concatenated producing ẑ ∈ RRR3
. The final prediction

vector is z = U3, ẑ ∈ Ro. Similar to tucker fusion, the block term decomposition

based fusion in BLOCK theoretically allows more nuanced control on representation

size and empirically outperforms previous techniques.

4.3 Related Works

4.3.1 Bilinear Pooling in Video-QA With Language-Vision

Fusion

I aim to highlight and explore a broad shift away from BLP in favour of methods

such as attention in video-QA benchmarks. Several video models have incorporated

and contrasted BLP techniques to their own model designs for language-vision fusion

tasks. Kim et al. [107] find various BLP fusions perform worse than their ‘dynamic

modality fusion’ mechanism on TVQA [116] and MovieQA [184]. Li et al. [122] find

MCB fusion performs worse on their model in ablation studies on TGIF-QA [93].

Chou et al. [31] use MLB as part of their baseline model proposed alongside their

‘VQA 360◦’ dataset. Gao et al. [61] contrast their proposed 2-stream attention mech-

anism to an MCB model for TGIF-QA, demonstrating a substantial performance

increase over the MCB model. Liu et al. [129] use MUTAN fusion between question

and visual features to yield impressive results on TGIF-QA, though they are outper-

formed by an attention based model using element-wise multiplication [114]. The

Focal Visual-Text Attention network (FVTA) [125] is a hierarchical model that aims

to dynamically select from the appropriate point across both time and modalities

that outperforms an MCB approach on Movie-QA.
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4.3.2 Bilinear Pooling in Video Without Language-Vision

Fusion

Where recent research in video-QA tasks (which includes textual questions as in-

put) has moved away from BLP techniques, several video tasks that do not involve

language have found success using BLP techniques. Zhou et al. [237] use a mul-

tilevel factorised BLP based model to fuse audio and visual features for emotion

recognition in videos. Hu et al. [90] use compact BLP to fuse audio and ‘visual long

range’ features for human action recognition. Pang et al. [155] use MLB as part

of an attention-based fusion for audio and visual features for violence detection in

videos. Xu et al. [212] use BLP to fuse visual features from different channels in

RGBT tracking. Deng et al. [43] use compact BLP to fuse spatial and temporal

representations of video features for action recognition. Wang et al. [198] fuse mo-

tion and appearance visual information together achieving state-of-the-art results on

MSVD-QA. Sudhakaran et al. [181] draw design inspiration from bilinear processing

of [127] and MCB to propose ‘Class Activation Pooling’ for video action recognition.

Deb et al. [42] use MLB to process video features for video captioning.

4.4 Datasets

In this section, I describe in greater detail the video-QA datasets I use in my exper-

iments.

4.4.1 MSVD-QA

Xu et al. [210] argue that simply extending VQA methods is “insufficient and sub-

optimal” to conduce quality video-QA, and that instead the focus should be on the

temporal structure of videos. Using an NLP method to automatically generate QA

pairs from descriptions [84], Xu et al. [210] create the MSVD-QA dataset based

on the Microsoft research video description corpus [26]. The dataset is made from

1970 video clips, with over 50k QA pairs in ‘5w’ style i.e. (“what”, “who”, “how”,

“when”, “where”).
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4.4.2 TGIF-QA

Jang et al. [93] speculate that the relatively limited progress in video-QA compared

to image-QA is “due in part to the lack of large-scale datasets with well defined

tasks”. As such, they introduced the TGIF-QA dataset to ‘complement rather than

compete’ with existing VQA literature and to serve as a bridge between video-QA

and video understanding. To this end, they propose 3 subsets with specific video-QA

tasks that aim to take advantage of the temporal format of videos:

• Count: Counting the number of times a specific action is repeated [120] e.g.

“How many times does the girl jump?”. Models output the predicted number

of times the specified actions happened. (Over 30k QA pairs).

• Action: Identify the action that is repeated a number of times in the video

clip. There are over 22k multiple choice questions e.g. “What does the girl do

5 times?”.

• Trans: Identifying details about a state transition [92]. There are over 58k

multiple choice questions e.g. “What does the man do after the goal post?”.

TGIF-QA includes a 4th subset that is of a more general multimodal question-

answering design.

• Frame-QA: A VQA split using automatically generated QA pairs from frames

and captions in the TGIF dataset [123] (over 53k multiple choice questions).

4.4.3 TVQA

As I have already introduce the TVQA dataset [116] across Chapters 2 and 3, I will

not repeat the description here.

4.4.4 EgoVQA

Most video-QA datasets focus on video-clips from the 3rd person. Fan [53] argue

that 1st person video-QA has more natural use cases that real-world agents would

need. As such, they propose the egocentric video-QA dataset (EgoVQA) with 609
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QA pairs on 16 first-person video clips. Though the dataset is relatively small, it has

a diverse set of question types (e.g. 1st & 3rd person ‘action’ and ‘who’ questions,

‘count’, ‘colour’ etc..), and aims to generate hard and confusing incorrect answers

by sampling from correct answers of the same question type. Models on EgoVQA

have been shown to overfit due to its small size. To remedy this, Fan [53] pretrain

the baseline models on the larger YouTube2Text-QA [220]. YouTube2Text-QA is

a multiple choice dataset created from MSVD videos [26] and questions created

from YouTube2Text video description corpus [73]. YouTube2Text-QA has over 99k

questions in ‘what’, ‘who’ and ‘other’ style.

4.5 Models

In this section, I describe the models used in my experiments, built from the official

TVQA 1 and HME-VideoQA 2 implementations.

4.5.1 TVQA Model

I use the same TVQA model as described in Section 3.3 in Chapter 3. Figure 4.3

shows the TVQA model including the redesigns to the multimodal fusion compo-

nents relevant to the experiments in this chapter.

4.5.2 HME-VideoQA

To better handle semantic meaning through long sequential video data, recent mod-

els have integrated external ‘memory’ units [209, 182] alongside recurrent networks

to handle input features [60, 232]. These external memory units are designed to

encourage multiple iterations of inference between questions and video features,

helping the model revise its visual understanding as new details from the question

are presented. The heterogeneous memory-enhanced video-QA model (HME) [52]

proposes several improvements to previous memory based architectures:

1https://github.com/jayleicn/TVQA
2https://github.com/fanchenyou/HME-VideoQA
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Figure 4.3: TVQA Model. �/⊕ = Element-wise multiplication/addition, � = con-
text matching [172, 226], β = BLP. Any feature streams may be enabled/disabled.

4.5.2.1 Heterogeneous Read/Write Memory

The memory units in HME use an attention-guided read/write mechanism to read

from/update memory units respectively (the number of memory slots used is a hy-

perparameter). The claim is that since motion and appearance features are hetero-

geneous, a ‘straightforward’ combination of them cannot effectively describe visual

information. The video memory aims to effectively fuses motion (C3D [190]) and

appearance (ResNet [83] and VGG [178]) features by integrating them in the joint

read/write operations (visual memory in Figure 4.4).

4.5.2.2 Encoder-Aware Question Memory

Previous memory models used a single feature vector outputted by an LSTM or

GRU for their question representation [60, 232, 209, 7]. HME uses an LSTM ques-

tion encoder and question memory unit pair that augment each other dynamically

(question memory in Figure 4.4).
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4.5.2.3 Multimodal Fusion Unit

The hidden states of the video and question memory units are processed by a tem-

poral attention mechanism. The joint representation ‘read’ updates the fusion unit’s

own hidden state. The visual and question representations are ultimately fused by

vector concatenation (multimodal fusion in Figure 4.5). My experiments will involve

replacing this concatenation step with BLP techniques.

⊕ / β

Visual Features Questions Features

Figure 4.5: ⊕ = Concatenation, β = BLP.
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4.6 Experiments and Results

In this section I outline my experimental setup and results. I save my insights for

the discussion in the next section. See my GitHub repository3 for both the datasets

and code used in my experiments. Table 4.1 shows the benchmarks and SotA results

for the datasets I consider in this paper.

Dataset Benchmark SoTA

TVQA (Val) 68.85% [116] 74.97% [104]
TVQA (Test) 68.48% [116] 72.89% [104]
EgoVQA (Val 1) 37.57% [53] 45.05%* [29]
EgoVQA (Test 2) 31.02% [53] 43.35%* [29]
MSVD-QA 32.00% [210] 40.30% [78]
TGIF-Action 60.77% [93] 84.70% [114]
TGIF-Count 4.28† [93] 2.19† [114]
TGIF-Trans 67.06% [93] 87.40% [171]
TGIF-FrameQA 49.27% [93] 64.80% [114]

Table 4.1: Dataset benchmark and SoTA results to the best of my knowledge at
time of publication. † = Mean L2 loss. * = Results I replicated using the cited
implementation.

4.6.1 Concatenation to BLP (TVQA)

As previously discussed, BLP techniques have outperformed feature concatenation

on a number of VQA benchmarks. The baseline stream processor concatenates

the visual feature vector with question and answer representations. Each of the 5

inputs to the final concatenation are 300-d. I replace the visual-question/answer

concatenation with BLP (Figure 4.6). All inputs to the BLP layer are 300-d, the

outputs are 750-d and the hidden size is 1600 (a smaller hidden state than normal,

however, the input features are also smaller compared to other uses of BLP). I

make as few changes as possible to accommodate BLP, i.e. I use context matching

to facilitate BLP fusion by aligning visual and textual features temporally. My

experiments include models with/without subtitles or questions (Table 4.2).

3https://github.com/Jumperkables/trying_blp
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4.6.2 Dual-Stream Model

I create my ‘dual-stream’ (Figure 4.7, Table 4.3) model from the SI TVQA baseline

model for 2 main purposes:

1. To explore the effects of a joint representation on TVQA.

2. To contrast the concatenation-replacement experiment with a model restruc-

tured specifically with BLP as a focus. The baseline BLP model keeps subtitles

and other visual features completely separate up to the answer voting step.

My aim here is to create a joint representation BLP-based model similar in essence

to the baseline TVQA model that fuses subtitle and visual features. As before, I

use context matching to temporally align the video and text features.
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Figure 4.7: My Dual-Stream Model. � = Context Matching.
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Subtitles Fusion Type Accuracy Baseline Offset

- Concatenation 45.94% -
GloVE Concatenation 69.74% -
BERT Concatenation 72.20% -
- (No Q) Concatentation 45.58% -0.36%
GloVE (No Q) Concatentation 68.31% -1.42%
BERT (No Q) Concatentation 70.43% -1.77%
- MCB 45.65% -0.29%
GloVE MCB 69.32% -0.42%
BERT MCB 71.68% -0.52%
- MLB 41.98% -3.96%
GloVE MLB 69.30% -0.44%
BERT MLB 69.04% -3.16%
- MFB 41.82% -4.12%
GloVE MFB 68.87% -0.87%
BERT MFB 67.29% -4.91%
- MFH 44.44% -1.5%
GloVE MFH 68.43% -1.31%
BERT MFH 67.29% -4.91%
- Blocktucker 44.44% -1.5%
GloVE Blocktucker 67.95% -1.79%
BERT Blocktucker 67.04% -5.16%
- BLOCK 41.09% -4.85%
GloVE BLOCK 65.31% -4.43%
BERT BLOCK 66.94% -5.26%

Table 4.2: Concatenation replaced with BLP in the TVQA model on the TVQA
Dataset. All models use visual concepts and ImageNet features. ‘No Q’ indicates
questions are not used as inputs i.e. answers rely purely on input features.

4.6.3 Deep CCA in TVQA

In contrast to joint representations, Baltrusaitis et al. [10] define ‘co-ordinated rep-

resentations’ as a category of multimodal fusion techniques that learn “separated

but co-ordinated” representations for each modality (under some constraints). Peng

et al. [157] claim that since there is often an information imbalance between modal-

ities, learning separate modality representations can be beneficial for preserving

‘exclusive and useful modality-specific characteristics’. For example, given a ques-

tion about the orientation of an object, it may happen that there are no hints in the

text, and the visual inputs must exclusively be relied for that kind of information.

I include one such representation, deep canonical correlation analysis (DCCA) [8],

in my experiments to contrast with the joint BLP models.
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4.6.3.1 CCA

Canonical cross correlation analysis (CCA) [89] is a method for measuring the corre-

lations between 2 sets. Let (X0,X1) ∈ Rd0×Rd1 be random vectors with covariances

(
∑

r=00,
∑

r=11) and cross-covariance
∑

r=01. CCA finds pairs of linear projections

of the 2 views (w′0X0, w
′
1X1) that are maximally correlated:

ρ = (w∗0, w
∗
1) = argmax

w0,w1

corr(w′0X0, w
′
1X1)

= argmax
w0,w1

w′0
∑

01 w1√
w′0

∑
00 w0w′1

∑
11 w1

where ρ is the correlation coefficient. As ρ is invariant to the scaling of w0 and w1,

the projections are constrained to have unit variances, and can be represented as

the following maximisation:

argmax
w0,w1

w′0
∑

01w1 s.t w′0
∑

00w0 = w′1
∑

11w1 = 1

However, CCA can only model linear relationships regardless of the underlying re-

alities in the dataset. Thus, CCA extensions were proposed, including kernel CCA

(KCCA) [5] and later DCCA.

4.6.3.2 DCCA

DCCA is a parametric method used in multimodal neural networks that can learn

non-linear transformations for input modalities. Both modalities t, v are encoded in

neural network transformations Ht, Hv = ft(t, θt), fv(v, θv) , and then the canoni-

cal correlation between both modalities is maximised in a common subspace (i.e.

maximise cross-modal correlation between Ht, Hv).

max corr(Ht, Hv) = argmax
θt,θv

corr(ft(t, θt), fv(v, θv))

I use DCCA over KCCA to co-ordinate modalities in my experiments as it is gener-

ally more stable and efficient, learning more ‘general’ functions.

4.6.3.3 DCCA in TVQA

I use a 2-layer DCCA module to coordinate question and context (visual or subtitle)

features (Figure 4.8, Table 4.4). Output features are the same dimensions as inputs.

79



Though DCCA itself is not directly related to BLP, it has recently been classified

as a coordinated representation [75], which contrasts a ‘joint’ representation.

Model Text Val Acc

TVQA SI GloVe 67.78%
TVQA SI BERT 70.56%
Dual-Stream MCB GloVe 63.46%
Dual-Stream MCB BERT 60.63%
Dual-Stream MFH GloVe 62.71%
Dual-Stream MFH BERT 59.34%

Table 4.3: Dual-Stream Results Table. ‘SI’ for TVQA models indicates the model is
using subtitle and ImageNet feature streams only, i.e. the green and pink streams
in Figure 4.3
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Figure 4.8: Baseline concatenation stream processor from TVQA model (left-A)
vs my DCCA stream processor (right-B). � = Element-wise multiplication, � =
Context Matching.

Model Text Baseline Acc DCCA Acc

VI GloVe 45.94% 45.00% (-0.94%)
VI BERT – 41.70%

SVI GloVe 69.74% 67.91% (-1.83%)
SVI BERT 72.20% 68.48% (-3.72%)

Table 4.4: DCCA in the TVQA Baseline Model.

4.6.4 Concatenation to BLP (HME-VideoQA)

As described in the previous section, I replace a concatenation step in the HME

model between textual and visual features with BLP (Figure 4.5, corresponding to

the multimodal fusion unit in Figure 4.4). The goal here is to explore if BLP can

better facilitate multimodal fusion in aggregated memory features (Table 4.5). I
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replicate the results from [52] with the HME on the MSVD, TGIF and EgoVQA

datasets using the official github repository [29]. I extract my own C3D features

from the frames in the TVQA.

Dataset Fusion Type Val Test

TVQA (GloVE) Concatenation 41.25% N/A
EgoVQA-0 Concatenation 36.99% 37.12%
EgoVQA-1 Concatenation 48.50% 43.35%
EgoVQA-2 Concatenation 45.05% 39.04%
MSVD-QA Concatenation 30.94% 33.42%

TGIF-Action Concatenation 70.69% 73.87%
TGIF-Count Concatenation 3.95† 3.92†
TGIF-Trans Concatenation 76.33% 78.94%

TGIF-FrameQA Concatenation 52.48% 51.41%

TVQA (GloVE) MCB 41.09% (-0.16%) N/A%
EgoVQA-0 MCB No Convergence No Convergence
EgoVQA-1 MCB No Convergence No Convergence
EgoVQA-2 MCB No Convergence No Convergence
MSVD-QA MCB 30.85% (-0.09%) 33.78% (+0.36%)

TGIF-Action MCB 73.56% (+2.87%) 73.00% (-0.87%)
TGIF-Count MCB 3.95† (+0†) 3.98† (+0.06†)
TGIF-Trans MCB 79.30% (+2.97%) 77.10% (-1.84%)

TGIF-FrameQA MCB 51.72% (-0.76%) 52.21% (+0.80%)

Table 4.5: HME-VideoQA Model. The default fusion technique is concatenation. †
refers to minimised L2 loss.

4.7 Discussion

This section discusses both my experimental results and their significance with re-

spect to the trends in the literature that I have identified. Though the empirical

struggles and proposed alternatives to BLP in video-QA is one of the major intended

insights of my work in this chapter, each of the following subsections discusses —in

detail— the finer points and findings that each individual experiment raises.

4.7.1 TVQA Experiments

4.7.1.1 No BLP Improvements on TVQA

On the HME concat-to-BLP substitution model (Table 4.5), MCB barely changes

model performance at all. I find that none of my TVQA concat-to-BLP substitutions
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(Table 4.2) yield any improvements at all, with almost all of them performing worse

overall ( 0.3-5%) than even the questionless concatenation model. Curiously, MCB

scores the highest of all BLP techniques. The dual-stream model performs worse

still, dropping accuracy by between 5-10% vs the baseline (Table 4.3). Similarly, I

find that MCB performs best despite being known to require larger latent spaces to

work on VQA.

4.7.1.2 BERT Impacted the Most

For the TVQA BLP-substitution models, I find that the GloVe, BERT and, ‘no-

subtitle’ variations all degrade by roughly similar margins, with BERT models de-

grading more most often. This slight discrepancy is unsurprising as the most stable

BERT baseline model is the best, and thus may degrade more on the inferior BLP

variations. However, BERT’s relative degradation is much more pronounced on the

dual-stream models, performing 3% worse than GloVe. I theorise that here, the

significant and consistent drop is potentially caused by BERT’s more contextual na-

ture is no longer helping, but actively obscuring more pronounced semantic meaning

learned from subtitles and questions.

4.7.1.3 Blame Smaller Latent Spaces?

Naturally, bilinear representations of time series data across multiple frames or sub-

titles are highly VRAM intensive. Thus I can only explore relatively small hidden

dimensions (i.e. 1600). However, I cannot simply conclude my poor results are due

to my relatively small latent spaces because:

1. MCB is my best performing BLP technique. However, MCB has been outper-

formed by MFH on previous VQA models and it has been shown to require

much larger latent spaces to work effectively in the first place [58] ( 16000).

2. My vector representations of text and images are also much smaller (300-d)

compared to the larger representation dimensions conventional in previous

benchmarks (e.g. 2048 in [58]). I note that 16000/2048 ≈ 1600/300, and so

my latent-to-input size ratio is not substantially different to previous works.
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4.7.1.4 Unimodal Biases in TVQA and Joint Representation

Another explanation may come from works exploring textual biases inherent in

TVQA to textual modalities [204]. BLP has been categorised as a ‘joint represen-

tation’. Baltrusaitis et al. [10] consider representation as summarising multimodal

data “in a way that exploits the complementarity and redundancy of multiple modal-

ities”. Joint representations combine unimodal signals into the same representation

space. However, they struggle to handle missing data [10] as they tend to preserve

shared semantics while ignoring modality-specific information [75]. The existence of

unimodal text bias in TVQA implies BLP may perform poorly on TVQA as a joint

representation of its features because:

1. Information from either modality is consistently missing.

2. Prioritising ‘shared semantics’ over ‘modality-specific’ information harms per-

formance on TVQA.

Though concatenation could also be classified as a joint representation, I argue that

this observation still has merit. Theoretically, a concatenation layer can still model

modality specific information (see Figure 4.9), but a bilinear representation would

seem to inherently entangle its inputs which would make modality specific infor-

mation more challenging to learn since each parameter representing one modality

is by definition weighted with the other. This may explain why my simpler BLP

substitutions perform better than my more drastic ‘joint’ dual-stream model.

4.7.1.5 What About DCCA?

Table 4.4 shows my results on the DCCA augmented TVQA models. I see a slight

but noticable performance degradation with this relatively minor alteration to the

stream processor. As previously mentioned, DCCA is in some respects an opposite

approach to multimodal fusion than BLP, i.e. a ‘coordinated representation’. The

idea of coordinated representations is to learn a separate representation for each

modality , but with respect to the other. In this way, it is thought that multimodal

interactions can be learned while still preserving modality-specific information that a

joint representation may otherwise overlook [75, 157]. DCCA specifically maximises
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cross-modal correlation. Without further insight from surrounding literature, it

is difficult to conclude what TVQA’s drop in performance using both joint and

coordinated representations could mean. I will revisit this when I discuss the role

of attention in multimodal fusion.

4.7.1.6 Does Context Matching Ruin Multimodal Integrity?

The context matching technique used in the TVQA model is the birdirectional atten-

tion flow (BiDAF) module introduced in [172]. It is used in machine comprehension

between a textual context-query pair to generate query-aware context representa-

tions. BiDAF uses a ‘memoryless’ attention mechanism where information from

each time step does not directly affect the next, which is thought to prevent early

summarisation. BiDAF considers different input features at different levels of gran-

ularity. The TVQA model uses bidirectional attention flow to create context aware

(visual/subtitle) question and answer representations. BiDAF can be seen as a co-

ordinated representation in some regards, but it does project questions and answers

representations into a new space. I use this technique to prepare my visual and

question/answer features because it temporally aligns both features, giving them

the same dimensional shape, conveniently allowing us to apply BLP at each time

step. Since the representations generated are much more similar than the original

raw features and there is some degree of information exchange, it may affect BLP’s

representational capacity. Though it is worth considering these potential short-

comings, I cannot immediately assume that BiDAF would cause serious issues as

earlier bilinear technique were successfully used between representations in the same

modality [185, 62]. This implies that multimodal interactions can still be learned

between the more similar context-matched representations, provided the informa-

tion is still present. Since BiDAF does allow visual information to be used in the

TVQA baseline model, it is reasonable to assume that some of the visual informa-

tion is in fact intact and exploitable for BLP. However, it is still currently unclear

if context matching is fundamentally disrupting BLP and contributing to the poor

results I find. I note that in BiDAF, ‘memoryless’ attention is implemented to avoid

propagating errors through time. I argue that though this may be true and help in
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some circumstances, conversely, this will not allow some useful interactions to build

up over time steps.

4.7.2 The Other Datasets on HME

4.7.2.1 BLP Has No Effect

My experiments on the EgoVQA, TGIF-QA and MSVD-QA datasets are on concat-

to-BLP substitution HME models. These results are inconclusive. There is virtually

no variation in performance between the BLP and concatenation implementations.

Interestingly, EgoVQA consistently does not converge with this simple substitution.

I cannot comment for certain on why this is the case. There seems to be no intu-

itive reason why its 1st person content would cause this. Rather, I believe this is

symptomatic of overfitting in training, as EgoVQA is very small and pretrained on

a different dataset, and various BLP techniques have been shown to have difficulties

converging during training.

4.7.2.2 Does Better Attention Explain the Difference?

Attention mechanisms have been shown to improve the quality of text and visual

interactions. Yu et al. [228] argue that methods without attention are ‘coarse joint-

embedding models’ which use global features that contain noisy information unhelp-

ful in answering fine-grained questions commonly seen in VQA and video-QA. This

provides strong motivation for implementing attention mechanisms alongside BLP,

so that the theoretically greater representational capacity of BLP is not squandered

on less useful noisy information. The TVQA model uses the previously discussed

BiDAF mechanism to focus information from both modalities. However, the HME

model integrates a more complex memory-based multi-hop attention mechanism.

This difference may potentially highlight why the TVQA model suffers more sub-

stantially integrating BLP than the HME one.
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4.7.3 BLP in Video-QA: Problems and Recommendations

I have experimented with BLP in 2 video-QA models and across 4 datasets. My

experiments show that the BLP fusion techniques popularised in VQA has not ex-

tended to increased performance to video-QA. In the preceding sections, I have

supported this observation with experimental results which I contextualise by sur-

veying the surrounding literature for BLP for multimodal video tasks. In this sec-

tion, I condense my observations into a list of problems that BLP techniques pose

to video-QA, and my proposal for alternatives and solutions:

4.7.3.1 Inefficient and Computationally Expensive Across Time

BLP as a fusion mechanism in video-QA can be exceedingly expensive due to added

temporal relations. Though propagating information from each time step through

a complex text-vision multimodal fusion layer is an attractive prospect, my exper-

iments imply that modern BLP techniques simply do not empirically perform in

such a scenario. I recommend avoiding computationally expensive fusion techniques

like BLP for text-image fusion throughout timesteps, and instead simply concate-

nate features at these points to save computational resources for other stages of

processing (e.g. attention). Furthermore, I note that any prospective fusion tech-

nique used across time will quickly encounter memory limitations that could force

the hidden-size used sub-optimally low. Though summarising across time steps into

condensed representations may allow more expensive BLP layers to be used on the

resultant text and video representations, I instead recommend using state-of-the-

art and empirically proven multimodal attention mechanisms [118, 215]. Attention

mechanisms are pivotal in VQA for reducing noise and focusing on specific fine-

grained details [228]. The sheer increase in feature information when moving from

still-image to video further increases the importance of attention in video-QA. My

experiments show the temporal-attention based HME model performs better when

it is not degraded by BLP. My findings are in line with that of Long et al. [134] as

they consider multiple different fusion methods for video classification, i.e. LSTM,

probability, ‘feature’ and attention. ‘Feature’ fusion is the direct connection of each

modality within each local time interval, which is effectively what context matching
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does in the TVQA model. Long et al. [134] finds temporal feature based fusion

sub-par, and speculates that the burden of learning multimodal and temporal in-

teractions is too heavy. My experiments lend further evidence that for video tasks,

attention-based fusion is the ideal choice.

4.7.3.2 Problem with Alignment of Text and Video

As I highlight in Subsection 4.3.2, BLP has yielded great performance in video tasks

where it fuses the visual features with non-textual features. Audio and visual fea-

ture fusion demonstrates impressive performance on action recognition [90], emotion

recognition [237], and violence detection [155]. Likewise, different visual representa-

tions have thrived in RGBT tracking [212], action recognition [43] and video-QA on

MSVD-QA [198]. On the other hand, I notice that several recent video-QA works

(Section 4.3.1) have found in ablation that BLP fusion which specifically fuse visual

and textual features give poor results [107, 122, 61, 129, 125]. My observations and

my experimental results highlight a pattern of poor performance for BLP in text-

video fusion specifically. I demonstrate poor performance using BLP to fuse both

‘BiDAF-aligned’ (TVQA) and ‘raw’ (HME) text and video features i.e. temporally

aligned and unaligned respectively. As the temporally-aligned modality combina-

tions of video-video and video-audio BLP fusion continue to succeed, I believe that

the ‘natural alignment’ of modalities is a significant contributing factor to this per-

formance discrepancy in video. To the best of my knowledge, I am the first to draw

attention to this trend. Attention mechanisms continue to achieve state-of-the-art

in video-language tasks and have been demonstrated (with visualisable attention

maps) to focus on relevant video and question features. I therefore recommend us-

ing attention mechanisms for their strong performance and relatively interpretable

behaviour, and avoiding BLP for specifically video-text fusion.

4.7.3.3 Empirically Justified on VQA

Successive BLP techniques have helped drive increased VQA performance in recent

years, as such they remain an important and welcome asset to the field of multi-

modal machine learning. I stress that these improvements, welcome as they are, are
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only justified by their empirical improvements in the tasks they are applied to, and

lack strong theoretical frameworks which explain their superior performance. This

is entirely understandable given the infamous difficulty in interpreting how neural

networks actually make decisions or exploit their training data. However, it is of-

ten claimed that such improvements are the result of some intrinsic property of the

BLP operator, e.g. creating ‘richer multimodal representations’: Fukui et al. [58]

hypothesise that concatenation is not as expressive as an outer product of visual

and textual features. Kim et al. [106] claim that “bilinear models provide rich rep-

resentations compared with linear models”. Ben-younes et al. [12] claim MUTAN

“focuses on modelling fine and rich interactions between image and text modalities”.

Yu et al. [229] claim that MFH significantly improves VQA performance “because

they achieve more effective exploitation of the complex correlations between multi-

modal features”. Ben-Younes et al. [13] carefully demonstrate that the extra control

over the dimensions of components in BLOCK fusion can be leveraged to achieve yet

higher VQA performance, however this is attributed to its ability “to represent very

fine interactions between modalities while maintaining powerful mono-modal repre-

sentations”. In contrast, Yu et al. [228] carefully assess and discuss the empirical

improvements their MFH fusion offers on VQA. My discussions and findings high-

light the importance of being measured and nuanced when discussing the theoretical

nature of multimodal fusion techniques and the benefits they bring.

4.8 Theoretically Motivated Observations and Neu-

rologically Guided Proposals

BLP techniques effectively exploit mathematical innovations on bilinear expansions

represented in neural networks. As previously discussed, it remains unclear why any

bilinear representation would be intrinsically superior for multimodal fusion to al-

ternatives e.g. a series of non-linear fully connected layers or attention mechanisms.

In this section, I share my thoughts on the properties of bilinear functions, and how

they relate to neurological theories for multimodal processing in the human brain.

I provide qualitative analysis of the distribution of neurolinguistic norms present
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in the video-QA datasets used in my experiments with which, through the lens of

‘Dual Coding Theory’ and the ‘Two-Stream’ model of vision, I propose neurologi-

cally motivated multimodal processing methodologies.

4.8.1 Observations: Bilinearity in BLP

4.8.1.1 Nonlinearities in Bilinear Expansions

As previously mentioned in my description of MLB, Kim et al. [106] suggest using

Tanh activation on the output of vector z to further increase model capacity. Strictly

speaking, I note that adding the the non-linearity means the representation is no

longer bilinear as it is not linear with respect to either of its input domains. It

is instead the ‘same kind of non-linear’ in both the input domains. I suggest that

an alternative term such as ‘bi-nonlinear’ would more accurately described such

functions. Bilinear representations are not the most complex functions with which

to learn interactions between modalities. As explored by Yu et al. [229], I believe that

higher-order interactions between features would facilitate a more realistic model of

the world. The non-linear extension of bilinear or higher-order functions is a key

factor to increase representational capacity.

4.8.1.2 Outer Product Forces Multimodal Interactions

The motivation for using bilinear methods over concatenation in VQA and video-QA

was that it would enable learning more ‘complex’ or ‘expressive’ interactions between

the textual and visual inputs. I note however that concatenation of inputs features

should theoretically allow both a weighted multimodal combination of textual and

visual units, and allow unimodal units of input features. As visualised in Figure

4.9, weights representing a bilinear expansion in a neural network each represent a

multiplication of input units from each modalitiy. This appears to, in some sense,

force multimodal interactions where it could possibly be advantageous to allow some

degree of separation between the text and vision modalities. As discussed earlier, it

is thought that ‘joint’ representations [10] preserve shared semantics while ignoring

modality-specific information [75]. Though it is unclear if concatenation could effec-
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tively replicate bilinear processing while also preserving unimodal processing, it also

remains unclear how exactly bilinear representations learn. For now, the successes

and struggles of bilinear representations across VQA and video-QA remain justified

by empirical performance on datasets.

4.8.2 Proposals: Neurological Parallels

I have recommended that video-QA models prioritise attention mechanisms over

BLP given my own experimental results and my observations of the current state-

of-the-art trends. I can however still explore how bilinear models in deep learning

are related to 2 key areas of relevant neurological research, i.e. the Two-Stream

model of vision [69, 142] and Dual Coding Theory [152, 153].

4.8.2.1 Two-Stream Vision

Introduced in Goodale and Milner [69], the current consensus on primate visual

processing is that it is divided into 2 networks or streams: the ‘ventral’ stream

which mediates transforming the contents of visual information into ‘mental furni-

ture’ that guides memory, conscious perception, and recognition; and the ‘dorsal’

stream which mediates the visual guidance of action. There is a wealth of evidence

showing that these 2 subsystems are not mutually insulated from each other, but

rather interconnect and contribute to one another at different stages of processing

Figure 4.9: Visualisation of the differences between concatenation and bilinear rep-
resentations for unimodal processing. Concatenation (left) can theoretically allow
unimodal features from text or vision to process independently of the other modal-
ity by reducing its weighted contribution (see ‘V1 Only’). Bilinear representations
(right) force multimodal interactions.
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[142, 95]. In particular, Jeannerod and Jacob [95] argue that valid comparisons

between visual representation must consider the direction of fit, direction of causa-

tion, and the level of conceptual content. They demonstrate that visual subsystems

and behaviours inherently rely on aspects of both streams. Recently, Milner [142]

consider 3 potential ways these cross-stream interactions could occur:

1. Computations along the 2 pathways are independent and combine at a ‘shared

terminal’ (the independent processing account).

2. Processing along the separate pathways is modulated by feedback loops that

transfer information from ‘downstream’ brain regions, including information

from the complementary stream (the feedback account).

3. Information is transferred between the 2 streams at multiple stages and loca-

tions along their pathways (the continuous cross-talk account).

Figure 4.10: Visualisation of the 1st and 3rd cross-stream scenarios for the 2-stream
model of vision described by Milner [142]. The early bilinear model proposed by
Tenenbaum and Freeman [185] strikingly resembles the 1st (left-A). The 3rd and
more recently favoured scenario features a continuous exchange of information across
streams at multiple stages, and can be realised by introducing ‘cross-talking’ of deep
learning features (right-B).

Though Milner [142] focus mostly on the ‘continuous cross-talk’ idea, they believe

that a unifying theory would include aspects from each of these scenarios. The

vision-only deep bilinear models proposed in [185, 127] are strikingly reminiscent

to the 1st ‘shared-terminal’ scenario (see Figure 4.10). The bilinear framework pro-

posed in [185] focuses on splitting up ‘style’ and ‘content’, and is designed to be

applied to any 2-factor task. Lin et al. [127] note but do not explore the similarities

between their proposed network and the two-stream model of vision. Their bilinear
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CNN model aims to processes 2 subnetworks separately, ‘what’ (ventral) and ‘where’

(dorsal) streams, and later combine in a bilinear ‘terminal’. BLP methods devel-

oped from these baselines would later focus on multimodal tasks between language

and vision. As Milner [142] focus mainly on their 3rd scenario (right), subsequent

bilinear models that draw inspiration from the two-stream model of vision could

realise the ‘cross-talk’ mechanism i.e. using co-attention or ‘co-ordinated’ DCCA.

4.8.2.2 Dual Coding Theory

Dual coding theory (DCT) [152] broadly considers the interactions between the ver-

bal and non-verbal systems in the brain (recently surveyed in [153]). DCT considers

verbal and non-verbal interactions by way of ‘logogens’ and ‘imagens’ respectively,

i.e. units of verbal and non-verbal recognition. Imagens may be multimodal, i.e.

haptic, visual, smell, taste, motory etc. We should appreciate the distinction be-

tween medium and modality: image is both medium and modality and videos are

an image based modality. Similarly, text is the medium through which the natural

language modality is expressed. I can see parallels in multimodal deep learning and

dual coding theory, with textual features as logogens and visual (or audio) features

as visual (or auditory) imagens. There are many insights from DCT that could

guide and drive multimodal deep learning:

1. Logogens and imagens are discrete units of recognition and are often related

to tangible concepts (e.g. ‘pictogens’ [145]). By drawing inspiration from

pictogen/imagen style of information representation, it could be hypothesised

that multimodal models should additionally focus on deriving more tangible

features (i.e. discrete convolution maps previously used in vision-only bilinear

models [127]) as opposed to more abstracted ‘ImageNet-style’ feature vectors

more commonly used in recent BLP models (see Figure 4.11) are a more ideal

way to represent features.

2. Bezemer and Kress [15] explore the differences in student understanding when

text information is presented alongside other modalities. They argue that

when meaning is moved from one medium to another semiotic relations are
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redefined. This paradigm could be emulated to control how networks learn

concepts in relation to certain modal information.

3. Imagens (and potentially logogens) may be a function of many modalities, i.e.

one may recognise something as a function of haptic and auditory experiences

alongside visual ones. I believe this implies that non-verbal modalities (vi-

sion/sound etc..) should be in some way grouped or aggregated, and that while

DCT remains widely accepted, multimodal research should consider ‘verbal vs

non-verbal’ interactions as a whole instead of focusing too intently on ‘case-

by-case’ interactions, i.e. text-vs-image and text-vs-audio. This text/non-text

insight may be related to the apparent difference in text-vision video task per-

formance previously discussed.

4. Multimodal cognitive behaviours in people can be improved by providing cues.

Figure 4.11: Visualisation of moving from less tangible visual features to more
‘imagen-like’ visual features e.g. convolution maps of an image.

For example, referential processing (naming an object or identifying an object from

a word) has been found to additively affect free recall (recite a list of items), with

the memory contribution of non-verbal codes (pictures) being twice that of verbal

codes [154]. Begg [11] find that free recall from ‘concrete phrases’ (can be visualised)

of their constituent words is roughly twice that of ‘abstract’ phrases. However, this

difference increased 6-fold for concrete phrases when cued with one of the phrase

words, yet using cues for abstract phrases did not help at all. This was named
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the ‘conceptual peg’ effect in DCT, and is interpreted as memory images being

re-activated by ‘a high imagery retrieval cue’. Given such apparent differences in

human cognitive processing for ‘concrete’ and ‘abstract’ words, it may similarly be

beneficial for multimodal text-vision tasks to explicitly exploit the neurolinguistic

‘concreteness’ word norm. Leveraging existing neurolinguistic word-norm datasets,

I identify the relative abundance of concrete words in textual components of the

video-QA datasets I experiment with (see Figure 4.12). As the various word-norm

datasets use various scoring systems for concreteness (e.g. MTK40 uses a Likert

scale 1-7), I rescale the scores for each dataset such that the lowest score is 0 (highly

abstract), and the highest score is 1 (highly concrete). Though I cannot find a

concreteness score for every word in each dataset component’s vocabulary, I see

that the 4 video-QA datasets I experiment with have more concrete than abstract

words overall. Furthermore, I see that answers are on-average significantly more

concrete than they are abstract, and that (as intuitively expected) visual concepts

from TVQA are even more concrete. Taking inspiration from human processing

through DCT, it could be hypothesised that multimodal machine learning tasks

could benefit from explicitly learning relations between ‘concrete’ words and their

constituents, whilst treating ‘abstract’ words and concepts differently. Recently

proposed computational models of DCT have had many drawbacks [153], I believe

that neural networks can be a natural fit for modelling neural correlates explored in

DCT and should be considered as a future modelling option.

I personally find the exploitation of abstract and concrete concepts to be the

most promising avenue for neurological inspiration in machine learning thanks to the

abundance of concreteness norms in multimodal QA datasets. My work in Chapter 6

uses this part of dual coding theory to propose an improved neurolinguistic multiclass

labelling scheme for use in VQA.

4.9 Conclusion

In light of BLP’s empirical success in VQA, I have experimentally explored their use

in video-QA on 2 models and 4 datasets. I find that switching from vector concate-

94



nation to BLP through simple substitution on the HME and TVQA models does

not improve and in fact actively harms performance on video-QA. I find that a more

substantial ‘dual-stream’ restructuring of the TVQA model to accommodate BLP

significantly reduces performance on TVQA. My results and observations about the

downturn in successful text-vision BLP fusion in video tasks imply that naively

using BLP techniques can be very detrimental in video-QA. I caution against au-

tomatically integrating bilinear pooling in video-QA models and expecting similar

empirical increases as in VQA. I offer several interpretations and insights of my neg-

ative results using surrounding multimodal and neurological literature and find my

results inline with trends in VQA and video-classification. I take care to discuss the

finer points raised by each of my individual experiments. To the best of my knowl-

edge, I am the first to outline how important neurological theories i.e. dual coding

theory and the two-stream model of vision relate to the history of (and journey to)

modern multimodal deep learning practices. I offer a few experimentally and the-

oretically guided suggestions to consider for multimodal fusion in video-QA, most

notably that attention mechanisms should be prioritised over BLP in text-vision

fusion. I qualitatively show the potential for neurologically-motivated multimodal

approaches in video-QA by identifying the relative abundance of neurolinguistically

‘concrete’ words in the vocabularies for the text components of the 4 video-QA

datasets I experiment with. I would like to emphasise the importance of related

neurological theories in deep learning and encourage researchers to explore Dual

Coding Theory and the Two-Stream model of vision. My findings here on the abun-

dance of concreteness in multimodal QA vocabularies motivates my neurolinguistic

inspirations for my work in Chapter 6.
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Figure 4.12: The relative abundance of the neurolinguistic ‘concreteness’ score in the
vocabularies of each source of text in the video-QA datasets I experiment with. Stop-
words are not included. Concreteness scores are taken from the following datasets:
MT40k [18], USF [147], SimLex999 [85], Clark-Paivio [33], Toronto Word Pool [57],
Chinese Word Norm Corpus [221], MEGAHR-Crossling [132], Glasgow Norms [169],
[165], and [177]. The scores for each word are rescaled from 0-1 such that most ab-
stract = 0 and most concrete = 1, and the result averaged if more than 1 dataset
has the same word.
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CHAPTER 5

Visual Modelling: The Visual Parallel to Language Modelling

Evaluated on Dynamic Simulations

This chapter heavily draws from a paper currently under review at the Journal of

Machine Learning Research (JMLR). As such, this chapter’s contents are derived

from a collaboration project. I —Tom Winterbottom, the author of this thesis—

am the only first author of this paper and contributed: the underlying code and

framework; the experimental design; the literature review; the gathering of external

datasets; the design of the 6 proposed datasets; the analysis of experimental results;

and the contents of the paper and this chapter. Descriptions in subsections 5.4.1,

5.4.2, and 5.3.2; Figures 5.1, 5.4, and 5.5; and both the dataset design and exper-

imental design/analysis were created and undertaken in service to this project in

collaboration with G. Thomas Hudson and Daniel Kluvanec.

5.1 Introduction

As I have repeatedly highlighted throughout this thesis so far, multimodal QA

benchmarks fail to use visual data as effectively as its text. Chapter 2 extensively

reviews research aiming to address such visual ‘underperformance’, the vast major-
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ity of which seek to ‘correct’ the text information in some manner. In Chapter 3, I

have similarly played my part in highlighting the presence and consequences of such

language bias. I aimed to distinguish my work from the abundance of ‘text-focused’

research by introducing a method to isolate subsets responding to any particular

modality, of which textual data is currently most problematic. However, such subsets

currently remain unsuitably small for enabling multimodal research. Furthermore,

my analysis in Chapter 4 demonstrates how textual biases can frustrate attempts

to test specific and targeted hypotheses.

I am therefore motivated to shift my focus back to the pressing and overarching

problem of imbalance of vision and lanaguage, but in a manner such that I am

not subject-to or hindered-by the language bias. In this chapter, I look to

address the relative under-exploitation of vision vs language by instead improving the

exploitation of visual information using the same generative pretraining paradigm

that has been instrumental in improving the scope of language capabilities in deep

learning (language modelling).

Generative video prediction is a popular and active area of research [22, 150, 238]

that has recently adopted transformer-based architectures [21, 162, 55, 56] which

have led to great progress in language modelling. However, where other work focuses

on the state-of-the-art performance a transformer-based model can bring to video

generation [214, 56, 162], I instead explore the visual equivalent of the predictive

language modelling training approach that transformers are well known for. I dub

this generative pretraining ‘visual modelling’ (i.e. image-sequence-to-image). What

are the similarities and differences of predictive modelling in vision and language?

Under what circumstances could it be easier to predict a frame of a video than

the next word of a sentence? Is it always easier to predict a few language tokens

than it is to fully generate output pixels? Is language a more information dense

modality? Or is a picture worth 1,000 (or 16×16 [50]) words? In parallel with

similarly motivated work [164, 28], I seek to push this conversation to the forefront of

the field. However, the remarkable successes of predictive language modelling casts

a large shadow. Where language models can generate paragraphs of text comparable

to human quality [17], instead video generation models are comparatively primitive.

98



I identify 3 major barriers to closing this research gap:

1. Generating videos instead of language tokens is fundamentally more challeng-

ing. Instead of generating confidence scores for a word from a fixed language

token vocabulary, video requires precisely predicting values for clusters of pix-

els, or even entire images.

2. Video datasets have a much higher memory and storage overhead than lan-

guage datasets of comparative scale. Even the most ambitious and well re-

sourced video models down-sample frames to 64×64 [28, 214].

3. Though the first few frames of video predictions are impressive [28, 214], the

quality of longer term predictions is lacking [i.e. 10, 20, 50 frames into the

future, see Section 7 of 150]. This implies that these models do not have a

strong understanding of the physical laws underpinning the video.

Together these barriers highlight the often underestimated complexity of video

datasets (e.g. the simple action of walking involves simultaneous bends and rota-

tions of various body parts) and poor predictive performance resulting from poorly

understood visual laws. Motivated by this, I focus on simpler dynamic simulations

that I can use to verify the visual understanding that visual modelling pretraining

induces. I verify this understanding qualitatively in the observed properties of output

frames, quantitatively with pre-established vision metrics, and experimentally with

test-tasks that can only be solved if the model understands the appropriate visual

laws. To this end, I propose 6 dynamic simulation datasets for video prediction pre-

training (see Figure 5.1) with a total of 7 ‘probing tasks’ defined amongst them (e.g.

a 2D bouncing ball video dataset that also functions as a gravity regression task).

I couple the Moving-MNIST (MMNIST) video dataset [180] with MNIST classifi-

cation [115] for a total of 7 video datasets with 8 probing tasks. As I explore the

themes of vision and language modelling, I evaluate these datasets on 3 appropriate

models: A fully convolutional 2D ‘CNN’ serving as a baseline inspired from vision,

a language model style ‘Image Transformer’ as a baseline inspired from language

modelling, and a ‘Patch Transformer’ using convolutions and transformer blocks

serving as an overlap of both vision and natural language processing (NLP). I find
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Figure 5.1: Example visualisations of 6 sequential frames from each of the 6 pro-
posed dynamic simulation video datasets. From top to bottom: Pendulum, Roller
coaster with flight, Mars Moon, Colliding Blocks, 2D Bouncing balls, and 3D
bouncing balls.

that appropriately focused and simple datasets can demonstrate the potential of vi-

sual modelling pretraining for downstream vision tasks. I find both the convolution

based models (in particular the patch transformer) outperform the image trans-

former in frame generation, highlighting the importance of convolutions in video

models. I find that these models can generate physically reasonable simulations over

20 frames into the future (despite a buildup of small errors), thus demonstrating the

potential of long-term video prediction when visual laws are properly understood.

My probing experiments demonstrate that pretraining on the visual modelling task

induces features that are directly useful to downstream tasks. Furthermore, I find

that finetuning models on the proposed test-tasks that has been pretrained on visual

modelling either does not substantially harm, and often greatly, improves test-task
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Figure 5.2: The improvement ratio in scores for each task when pretrained on visual
modelling, compared with no pretraining, for the best performing model of each
task.

performance. 4 of these tasks improve by 20-80% (see Figure 5.2). This demon-

strates the potential for predictive pretraining in vision tasks, which represents a

small but sure step towards bringing the relative ‘power’ of vision features in line

with those in lanaguage. The visual modelling pretraining paradigm I introduce in

this chapter is designed to apply to any appropriate visual task or feature that future

models and datasets may leverage. The implementation is available on GitHub1.

5.2 Related Work

I give an overview of work exploring the overlapping themes of vision and language

modelling (i.e. visual modelling) and highlight my unique contributions. As I use

modern deep learning model architectures to predict videos with visual dynamics and

learn physical laws, I briefly summarise both the recent history of video generation

models, and the state of visual physics modelling in deep learning.

1https://github.com/Visual-modelling/visual_modelling
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5.2.1 Visual Modelling

Though I coin the term ‘visual modelling’, other works have explored visual parallels

to language modelling. Ranzato et al. [164] present an early baseline for unsuper-

vised video feature learning, and demonstrate its use in representing motion and

deformation. They find poor long-term prediction results as elements tend to a

static position. van den Oord et al. [195] introduce a contrastive learning strategy

for unsupervised feature learning in 4 domains (including image), and the BigBi-

GAN model introduced by [48], achieves state-of-the-art image generation and rep-

resentation learning results on ImageNet [44]. However, neither of these approaches

consider video data. The work in this chapter is most similar in motivation to that

of Chen et al. [28] who explore unsupervised representation learning for images using

a minimal adaption of transformers and vector-quantised Variational Autoencoder

(VAE) [194] architectures. By leveraging a very large amount of computational re-

sources, (a model comparable to GPT-2 i.e. 48 layers and ∼1.4B parameters [161])

and using auto-regressive next-pixel prediction or masked-pixel prediction training

strategies, Chen et al. [28] present an extensive probing study of the learned repre-

sentational capacity of layers in their models. They further demonstrate that un-

supervised image pretraining leads to state-of-the-art performance on downstream

tasks that increases with model scale. Unlike the previously discussed approaches, I

aim specifically to pair the visual pretraining datasets with quantifiable and observ-

able test-tasks, allowing me to strongly argue the benefits of pretraining that the

experiments demonstrate. Where Ranzato et al. [164] found poor long-term predic-

tion quality, I now find that modern vision architectures and more focused datasets

can improve both long-term prediction and downstream task performance. I show

that visual modelling pretraining can lead to substantial performance increases on

test-tasks even without the large-scale computational resources necessary [28] to try

and approach the scale of modern language models.
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5.2.2 Video Generation

The recurrent CNN proposed by Ranzato et al. [164] for unsupervised frame predic-

tion and filling drew inspiration from early language models [14] and RNNs [139].

Model predictions often tend towards still images after a few frames allegedly due

to the local spatial and temporal stationary assumption made by the model. The

authors note that predicting beyond a few frames inevitably invokes the curse of

dimensionality and argue it could necessitate moving from pixel-wise prediction to

higher-level pixel cluster features. Dosovitskiy and Brox [49] propose a family of

deep perceptual similarity metrics ‘DeepSiM’ to avoid the ‘over-smoothed’ results

of pixel-wise predictions by instead computing distances between image feature vec-

tors. van Amersfoort et al. [193] propose a convolutional network to generate future

frames by predicting a transformation based on previous frames and constructing

the future frames accordingly, leading to sharper images and simultaneously avoid-

ing the curse of high dimension predictions. Wang et al. [201] propose an integrated

Bayesian framework to cope with uncertainties caused by noisy observations (i.e.

perceptual) and forward modelling process (i.e. dynamics). Yilmaz and Tekalp

[223] use deformable convolutions [36] to try and exploit a larger and more adaptive

receptive field as opposed to normal convolutions. The recently released VideoGPT

[214] is a video generation model which combines vector-quantised VAE and trans-

former designs with large-scale training setups similar to those used by [28]; i.e.

similar in scale to Image-GPT and trained on up to 8 Quadro RTX 6000 GPUs.

Video-GPT yields very high quality frame predictions on the UCF-101 [179] and

TGIF [123] datasets . However, due to the inherent difficulty of modelling complex

real-world long-term videos, errors in motion still build up.

I acknowledge the difficulties that even richly resourced models encounter and

echo Yan et al. [214]: videos are just simply a “hard modelling challenge”. I instead

focus my efforts on demonstrating what is possible when the visual laws underpin-

ning the video data are kept appropriately simple. See the work of both Oprea et al.

[150] and Zhou et al. [238] for a thorough review and survey of video generation.
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5.2.3 Visual Physics Modelling

Wu et al. [206] collect the ‘Physics 101’ dataset which facilitates models explic-

itly learning physical properties of objects in videos (e.g. mass, acceleration, and

friction). Where they focus on encoding physical laws into neural networks, I addi-

tionally explore if generative visual modelling is a sufficient or desirable method to

induce a quantifiable understanding of these laws. Neural networks have successfully

modelled a variety of dynamic systems using images: e.g. fluid flow [189], Lyapunov

functions [138], motion flow [38] and precipitation nowcasting [174]. Li et al. [124]

propose a novel Fourier neural operator that can learn Burger’s equations, Darcy

flow, and Navier-Stokes with differing input image resolutions. Recently, Wang et al.

[200] push for more generalisable physical modelling with their proposed multi-task

DyAd approach.

5.3 Models and Configurations

To explore the visual parallels of language modelling, I focus on both CNNs (due to

their long history of state-of-the-art success in computer vision) and Transformers

(because of their well established dominance in language modelling). To this end, I

experiment on 3 models:

1. A fully convolutional ‘CNN’ model with skip connections as a baseline model

from vision (Figure 5.3).

2. A multi-head attention transformer typical of language modelling with min-

imal redesigns to accommodate video prediction that serves as a candidate

from language models. I call this the ‘image transformer’ (Figure 5.4).

3. The recently proposed SegFormer [208] transformer minimally adapted from

semantic segmentation to video generation as a transformer model directly

designed for use in vision. I call this adaptation the ‘patch transformer’ (Figure

5.5).

Each of these models has been designed or adapted to take a sequence of video
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frames as input, and output predictions for the next frame (further described in

Section 5.5).

5.3.1 Fully Convolutional 2D CNN

Introduced by Long et al. [133], fully convolutional neural networks (FCN) use

‘deconvolution’ layers [231] i.e. convolutional layers with fractional strides. Decon-

volution layers can be used to ‘reverse’ the convolution layers and generate a full

sized output. Note that upsampling between layers can be learned or can be fixed

(e.g. bilinear upsampling). As such, FCNs offer relatively inexpensive forward and

backward computation, and a reversal of convolution layers back up to the orig-

inal input dimensions for outputs. My CNN baseline model (depicted in Figure

5.3) is a U-Net style [168] FCN with skip connections [83]. Given a sequence of m

frames of a video, the model takes as input the m 64×64 grayscale input frames

in temporal order as inputs for m channels into the first of a series of U-Net style

double-convolution units. Each subsequent step halves the image resolution and

doubles the number of channels from a starting factor of 64. The upwards pass uses

bilinear upsampling and halves the number of channels, mirroring the downward

pass in reverse, resulting in the final output frame.

Figure 5.3: Fully Convolutional 2D CNN model. Each convolution unit is made
from 2 convolution layers, i.e. an initial convolution layer that changes the input
resolution, followed by another of kernel size 1×1 that does not. The arrows labelled
‘Probe’ indicate which points in the network are extracted to form linear probes used
in Section 5.5.2.2.
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5.3.2 Image Transformer

I adapt the model introduced by Vaswani et al. [197] and deploy it on sequences of

images that form a video instead of word embeddings that form language (Figure

5.4). I use every 64×64 pixel image as a single token consisting of 4096 features.

Unlike the original transformer that was trained on a language translation task, here

the output is only conditioned on its previous video frames. I choose not to use an

encoder and only use the decoder to predict the next frame output frame because

the input and output image sequences are not synchronised over the same time span

(there are m input frames translated to a single output frame; i.e. m 6= 1). Since the

tokens represent images, I use a pixel regression layer at the end of the architecture.

Using a dedicated pixel regression layer allows the output tokens to represent images

while alleviating this requirement from the transformer blocks. Although I can train

using batches with m input frames and predict one output frame, as in the CNN

and patch transformer, I can instead train the model with the entire sequence at

once. This can be done by predicting the next frame for every input using a masked

multi-head attention where every output is only conditioned on the past frames. I

find negligible difference in performance between the 2 approaches, and therefore

decide to use the fixed m input and one output for a more direct comparison with
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Figure 5.4: The Image Transformer model serves as a candidate from language
modelling. I use 64×64 images as tokens. The arrows labelled ‘Probe’ indicates
which points in the network are extracted to form linear probes used in Section
5.5.2.2.
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the other 2 models. I found negligible difference in performance when using more

than 2 transformer blocks. Similarly, I found a smaller number of heads in the

multi-head attention block to be beneficial, and thus only used 4.

5.3.3 Patch Transformer

I use a transformer-based semantic segmentation model and modify it for visual

modelling (Figure 5.5). Instead of feeding the model RGB images with 3 channels,

I use the sequence of video frames as the input channels and predict the following

frame as the output. Unlike the Image Transformer that applies the attention layers

across the time sequence of video frames, the patch transformer applies the attention

layers across patches of the images. I base the patch transformer architecture on

the SegFormer model [208] with the following light modifications. Since the visual

modelling task requires the same resolution of the input and output images and the

SegFormer outputs at 1/4 resolution, I balance this by predicting 16 times as many

channels and fold each pixel with 16 channels into a 4×4 patch with one channel.

When compared to the original SegFormer study, the smaller size of images I use
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allows me to use a reduction ratio ‘R’ of 1 in the efficient attention layer (i.e. not

compromising the representational capacity). This makes it functionally equivalent

to a standard multi-head attention layer.

5.4 Datasets

To explore the potential of visual modelling, given the previously discussed limita-

tions of the field, I focus my experiments on datasets that are both:

1. Simple dynamic simulations that can be used for video prediction.

2. Naturally affiliated with a classification or regression ‘downstream’ task ac-

companying the modelling.

See Table 5.1 for examples of the proposed datasets and details on the test-tasks

they pair with. I further ablate on 2 real world datasets, CMU Motion Capture

‘MOCAP’ dataset2 and the human motion database ‘HMDB-51’ [111] in order to

help demonstrate the limitations of the 3 models.

5.4.1 2D and 3D Bouncing Balls

The 2D bouncing dataset consists of videos with 1-3 balls which can collide with

both each other and the borders of the image. In this explicit Euler simulation, I

vary: the number of balls, ball radius (per ball), initial position (per ball), initial

velocity (per ball), gravity strength, gravity direction, background colour, and ball

colour (per ball). I define 2 downstream test-tasks on this 2D dataset: total number

of bounces prediction and y-directional gravity prediction. Where the 2D version

represents the balls as simple circles, I extend this approach to 3D, rendering the

balls using realistic lighting from a single light source. This 3D scenario is designed

to be more a challenging dataset as balls occlude each other and cast shadows on

both the environment boundary and on other balls. I define one downstream test-

task for this 3D bouncing dataset: total number of bounces prediction.

2http://mocap.cs.cmu.edu/
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Dataset Example # Videos Vid Length Affiliated Test-Task(s)

2D Bouncing 20,000 60

Bounce Regression: 59 in-
put frames. Count total
bounces demonstrated in the
input video. Both ball-to-
ball and ball-to-wall bounces,
capped at a maximum of 50.
Gravity Regression: 5 in-
put frames. Predict the grav-
ity demonstrated in the given
5 frames. Gravity is in the y
axis with 7 potential values [-
3e-4, -2e-4, · · · , 3e-4].

3D Bouncing 10,000 100

Bounce Regression: 99 in-
put frames. Count total
bounces demonstrated in the
input video. Both ball-to-
ball and ball-to-wall bounces,
capped at a maximum of 50.

Roller 10,000 100

Gravity Regression: 5 in-
put frames. Predict the grav-
ity demonstrated in the given
5 frames. Gravity is in the y
axis with 201 potential values
[0, 0.5, 1, · · · ,100].

Pendulum 10,000 100

Gravity Regression: 5 in-
put frames. Predict the grav-
ity demonstrated in the given
5 frames. Gravity is in the y
axis with 41 potential values
[0, 0.5, 1.0, · · · , 20].

Blocks 10,000 100

Block Mass Difference Re-
gression: 49 input frames.
2 blocks of different masses
move towards each other on
a smooth surface and collide.
Predict the difference of the
masses between the blocks,
positive or negative (positive
direction is fixed). Block 1
is always of mass 10, block 2
takes 39 different masses [0.5,
1.0, · · · , 19.5].

Moon 10,000 100

Moon Mass Regression: 5
input frames. Predict the
gravity demonstrated in the
given 5 frames. Gravity act-
ing on the small moon towards
the centre of a planet. Masses
have 26 potential values [70,
75, 80, · · · ,195].

MMNIST 5,200 100

MNIST Classification: 1
input frame. Input MNIST
frame. Copied 5 times for
a model pretrained on 5-1
input-ouput for example.

Table 5.1: Further details of the datasets and their affiliated test-tasks. The con-
stants for predictions for all test-tasks (aside from MNIST classification) are nor-
malised such that the standard deviation of constants across each individual dataset
is 1.
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5.4.2 Myphysicslab

Myphysicslab3 is a series of open-source animated physics simulations involving

pendulums, springs, collisions, and more. These simulations are calculated using

the Runge-Kutta method [19]. I experiment with the following simulations:

5.4.2.1 Mars Moon

A simplified simulation of an asteroid orbiting a moon using a rigid body simulation.

I vary the initial velocity, moon radius, moon mass, and asteroid radius. The test-

task is to predict the mass of the moon.

5.4.2.2 Colliding Blocks

Simulates 2 blocks that move along a single axis colliding with both the boundary

walls and each other. I vary the masses of one of the blocks (leaving the other block

mass fixed), the starting positions, and starting velocities. The test-task is to predict

the difference in the masses of the 2 blocks.

5.4.2.3 Pendulum

A single pendulum modeled as a point mass at the end of a massless rod. I vary the

initial angle, gravity strength, pendulum length, and pendulum mass. The test-task

is to predict the gravity acting on the pendulum.

5.4.2.4 Roller Coaster with Flight

A ball of mass M is released down a curved track under gravity g following F =

M · g · cos(θ). The ball can switch to free flight when the acceleration normal to the

curve is greater than v2/k (where v is the velocity of the ball, and k is the radius

of curvature at the current point along the curve). I vary the gravity strength and

track position. The test-task is to predict the strength of gravity acting on the ball.

3https://www.myphysicslab.com
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5.4.3 Moving MNIST

Moving MNIST (MMNIST4) refers to a video dataset [180] where one or more

MNIST [115] digit(s) are moving around a black background (overlapping each other

and bouncing off the frame boundaries). The digits move at fixed constant velocity

with no friction or gravity acting on them. The original dataset was 10,000 sequences

with 2 digits in each. I adapt code5 to generate an MMNIST dataset containing

videos with 1-3 digit(s). MMNIST serves as a simple dynamics dataset that can be

naturally considered alongside a downstream vision task: MNIST classification.

5.4.4 CMU Motion Capture

The CMU Motion Capture dataset is comprised of videos focusing on the motion of

humans and objects. I extract images from the 937 videos6 at 10 frames-per-second.

I convert the coloured frames to grayscale and then downscale and crop them to a

resolution of 64×64, in line with the other datasets.

5.4.5 HMDB-51

Motivated to challenge the high performance of models on the relatively simple

action datasets of the time, the Human Motion Recognition database (HMDB-51)

[111] is a large action video dataset with 51 action categories. HMDB-51 aims to

better capture the “richness and complexity of human actions”, with videos including

more challenging clutter and occlusion not typical of action benchmarks at the time.

Categories include ‘brush hair’, ‘sword exercise’, and ‘jumping’. I extract images

at 10 frames-per-second and convert and crop the images to grayscale in 64×64

resolution.

4http://www.cs.toronto.edu/~nitish/unsupervised_video/
5https://gist.github.com/tencia/afb129122a64bde3bd0c
6http://mocap.cs.cmu.edu/allmpg/
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5.5 Experiments

My experiments are carried out on the same 3 model architectures but are comprised

of 2 separate instances of training:

• Modelling tasks, a generative training strategy intended to mirror language

modelling and to induce an understanding of visual dynamics.

• These are followed by Test-tasks, a classification or regression task paired

with their appropriate modelling counterpart that function as downstream

vision tasks.

Together these tasks allow me to explore which laws of dynamics current vision

benchmarks can model, what information and understanding visual modelling (i.e.

next-frame prediction) induces, and to what extent this induced understanding is

desirable as a starting point for downstream vision tasks.

5.5.1 Modelling Tasks

Given a sequence of m + 1 frames of a video, the model takes as input the first m

64×64 grayscale input frames in temporal order and predicts as output the next

frame. This predicted frame is compared against the final (ground truth) frame

in the m + 1 sequence. A value is predicted for each pixel (i.e. dense prediction)

and the sigmoid function is used as activation for the outputs of the final layer,

which are then multiplied by 255 to create the resulting output grayscale image. I

use either smooth-L1 (SL1) or Structural Similarity (SSIM) as loss functions. As

SSIM takes values between -1 and 1, and should be maximised, I reformulate it as

a minimisation problem (as in Equation 5.1) in order to use it as a loss function:

LSSIM = 1− 1 + SSIM

2
∈ [0, 1]. (5.1)

Using the 3 models introduced in Section 5.3, I perform modelling experiments

(see Figure 5.6a) on the 9 datasets introduced in Section 5.4. The values of m in

my experiments (i.e. number of input frames) depends on the downstream test-

task it will be paired with. For example, the 2D bouncing, roller, pendulum, and
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(a) Modelling (b) Linear Probes (c) Direct Learning

Figure 5.6: The 3 different experimental setups. All 3 of these model architectures
can be adapted to visual modelling (i.e. video prediction; Figure 5.6a), and the
accompanying test-tasks with either linear probing of frozen models (Figure 5.6b)
or directly learning and finetuning on the test-task (Figure 5.6c).

moon datasets all have downstream test-tasks involving gravity, thus 5 input frames

should be sufficient to demonstrate gravity. The 2D and 3D bouncing datasets have

‘counting bounces’ tasks associated with them, thus m = 59 and 99 for 2D and 3D

datasets respectively (i.e. the length of the video clip; it is necessary to to see the

entire clip to predict the total number of bounces). See Table 5.1 for further details.

To assess the of performance the modelling task, I consider the Peak Signal-to-

Noise Ratio (PSNR) [88], Structural Similarity (SSIM) [239], and L1 scores between

the predicted frame and the ground truth frame. I do not consider metrics such

as Learned Perceptual Image Patch Similarity (LPIPS) [235] and Fréchet Video

Distance (FVD) [192]. LPIPS is a deep model based metric that is only well defined

on RGB images, and FVD requires an image resolution of at least 224×224.

5.5.2 Test-Tasks

Each of the modelling datasets is designed with a complimentary test-task in mind

(except 2D bouncing which has 2), and I further pair the MMNIST dataset with

the test-task of MNIST classification for a total of 8 test-tasks. I apply a cross

entropy loss for MNIST classification and a smooth-L1 loss with β = 0.01 for all

other tasks. In this subsection I describe my 3 categories of test-task experiments:

random baselines, frozen model probing, and direct training or finetuneing.
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5.5.2.1 Random Scores for Tasks

To contextualise the scores for each task, I ablate with 3 scenarios designed to give

a lower bound on performance (seen on the first, second, and third lines respectively

of each section in Tables 5.3 and 5.4):

1. Constant Output: I instantiate a layer of biases and optimise them directly

on the loss of each task. This scenario takes no inputs but is given the ground

truth. This should theoretically learn to mimic the average output of values

that the ground truth alone would induce.

2. Image + Linear Layer: I flatten the input images and pass them into a trainable

linear layer.

3. Frozen Random Model: I randomly instantiate the full model and freeze the

weights. I pass the loss function through trainable linear probes in the same

way as in the probing experiments.

5.5.2.2 Probing Frozen Models

I seek to ascertain if training on a given modelling dataset induces an understanding

of the appropriate physical laws (e.g. does pretraining on bouncing balls dataset

induce a verifiable understanding of gravity?). To this end, I freeze the weights of a

pretrained model and repurpose it for the appropriate test-task (see Figure 5.6b) by

flattening and concatenating the outputs of each substantial layer throughout the

network (see ‘Probe’ arrows in Figures 5.3, 5.4 and 5.5) and passing them through a

trainable linear layer and into the appropriate loss function. It has been shown that

CNN and transformer-based language models ‘learn representations that vary with

network depth’ [159], and that there is varying transferability of representations

in different layers of language models [131]. This motivates me to form the linear

probe from the output of all substantial blocks of the networks. Though the model

as a whole may contain the information needed to solve a test-task, only considering

the outputs of the final layer can be insufficient as that layer is perhaps instead for

example focused on solving the pixel regression.
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5.5.2.3 Finetuning for Downstream Test-Tasks

The proposed test-tasks allow me to verify if pretraining provides an advantageous

starting point for downstream vision tasks when compared with random initialisation

(e.g. will I notice superior performance on gravity prediction after pretraining the

model to understand bouncing?). Given a network that is either pretrained on visual

modelling or randomly instantiated: I unfreeze the weights, flatten the outputs of

the final layer, and pass them through a non-linear (GELU) fully connected unit

with dropout and batch normalisation. Lastly, the outputs of the fully connected

unit are passed to the appropriate loss function (see Figure 5.6c).

5.6 Results and Discussion

In this section I discuss the results of my visual modelling and test-task experiments.

5.6.1 Modelling Quality

I consider the quality of the generated frames by computing PSNR, SSIM and L1

scores between the predicted and ground truth frame (Figure 5.7). I provide an

alternative tabularised version for closer inspection of these scores in Table 5.2. In

the following subsections, I discuss the differences in modelling quality with respect

to the different datasets, models, and losses.

5.6.1.1 Modelling Quality by Dataset

The results show that the modelling tasks yielding the highest scores are roller,

pendulum, blocks, and moon. This is most obviously seen in the PSNR values from

Figure 5.7a (over 8 PSNR higher than the other datasets for the best model). This

trend is echoed with the very high SSIM (∼0.998; see Figure 5.7b) and lower L1

scores (see Figure 5.7c). I believe this is because the background for these tasks

is always black, and there are less structural variations than the other datasets.

Next are the 2D and 3D bouncing datasets which score slightly lower than the top

performing 4 datasets. Though I expected the 3D bouncing dataset to be more
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complicated than the 2D version because of the added potential for occlusion and

z-dimensional movement, the 3D bouncing dataset yields slightly higher scores than

the 2D bouncing dataset (∼2-10 PSNR higher for the Image and Patch Transform-

ers). I argue that although 3D bouncing must model motion in an extra dimension,

the fixed background and colour scheme of the 3D dataset allow an extra boost

to metric scores when compared to the 2D bouncing dataset which has varying the

background and ball colours. I find that increasing the number of input frames (m)

for the 2D and 3D bouncing datasets from 5 to 59 and 99 respectively causes a very

minor but consistent decrease in all 3 scores (by comparing the 1st-2nd, and 3rd-4th

entries of each sub-figure in Figure 5.7 respectively), implying there is little to gain

from increasing the input context for these modelling tasks. The real world MOCAP

and HMDB-51 datasets score lower than all other datasets except MMNIST. Though

the models explored in this chapter fail to capture the far more complex motion laws

dictating these real world datasets, the single predicted frame from these real world

datasets does not change substantially from the inputs. I argue that the movements

in these videos, despite being underpinned by complex motion, are relatively small

as the entities in them are small. This means that predicted movements are often

smaller in terms of absolute pixel variations when compared to the movements of

the high-contrast shapes seen in the simulation datasets I propose, causing smaller

penalties in the 3 metrics than might be expected. I discuss the inability of my

models to model long-term real-world movements in Section 5.6.2.2. The MMNIST

modelling task scores lowest on the 3 metrics of all datasets. Though intuitively

MMNIST should score higher than the real world datasets, I believe this result is

unsuprising for several reasons. MMNIST features a black background contrasted

with multiple white digits, meaning that a prediction with a white digit in a slightly

incorrect location will yield very high absolute differences in raw pixel values and

thus lower metric scores e.g. consider the difference in raw pixel values of a human

(mostly grey pixels) jumping slightly vs. a fully white shape of the same relative

size moving across a black background. The shape and structure of digits is more

complex than the circles and spheres typical of the other datasets. Furthermore,

the holes and lines tend to fill and fade, and each digit is moving in different direc-
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(a) PSNR↑

(b) SSIM↑

(c) L1↓

Figure 5.7: Metrics calculated between the ground truth and the predicted frame
on each modelling dataset. ↑ (↓) indicates that a higher (lower) score is better.
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Metric CNN Img Trans Patch Trans

SL1 SSIM SL1 SSIM SL1 SSIM

2D Bouncing m = 5

PSNR↑ 31.036 30.400 28.572 25.900 30.924 31.328
SSIM↑ 0.9717 0.9767 0.9439 0.9488 0.9714 0.9788

L1↓ 4.051e-3 8.879e-3 8.053e-3 2.009e-2 5.062e-3 8.069e-3

2D Bouncing m = 59

PSNR↑ 28.468 28.446 25.504 25.915 24.564 25.007
SSIM↑ 0.9577 0.9641 0.8993 0.8989 0.8979 0.9534

L1↓ 6.393e-3 1.016e-2 1.443e-2 2.154e-2 1.957e-2 2.251e-2

3D Bouncing m = 5

PSNR↑ 30.772 27.903 38.661 35.631 40.859 28.138
SSIM↑ 0.9477 0.9734 0.9847 0.9894 0.9892 0.9953

L1↓ 6.247e-3 9.284e-3 1.988e-3 2.410e-3 1.773e-3 2.839e-3

3D Bouncing m = 99

PSNR↑ 30.571 28.013 31.443 33.269 39.060 26.823
SSIM↑ 0.9447 0.9712 0.9454 0.9778 0.9850 0.9926

L1↓ 6.468e-3 9.388e-3 4.318e-3 4.297e-3 2.337e-3 5.120e-3

Roller m = 5

PSNR↑ 32.475 29.023 30.381 33.063 48.358 43.404
SSIM↑ 0.9914 0.9950 0.9898 0.9949 0.9998 0.9998

L1↓ 2.879e-3 3.642e-3 1.077e-3 9.768e-4 3.051e-4 3.600e-4

Pendulum m = 5

PSNR↑ 38.941 36.031 26.246 36.574 51.085 43.948
SSIM↑ 0.9972 0.9980 0.9608 0.9988 0.9998 0.9998

L1↓ 7.231e-4 8.512e-4 3.117e-3 5.420e-4 1.492e-4 1.938e-4

Blocks m = 49

PSNR↑ 31.561 30.365 41.905 43.402 51.069 47.371
SSIM↑ 0.9904 0.9922 0.9980 0.9986 0.9996 0.9996

L1↓ 5.128e-3 6.285e-3 5.585e-4 1.166e-3 2.510e-4 7.025e-4

Moon m = 5

PSNR↑ 45.399 45.515 38.928 38.785 54.618 54.618
SSIM↑ 0.9988 0.9990 0.9930 0.9945 0.9998 0.9998

L1↓ 6.844e-4 7.699e-4 6.529e-4 8.937e-4 2.100e-4 2.100e-4

MMNIST m = 5

PSNR↑ 17.794 18.097 13.904 13.089 17.975 18.237
SSIM↑ 0.8591 0.8641 0.6777 0.6768 0.8654 0.8700

L1↓ 2.880e-2 2.992e-2 5.607e-2 0.05853 2.784e-2 2.812e-2

MOCAP m = 5

PSNR↑ 25.816 24.024 30.431 30.226 32.943 31.835
SSIM↑ 0.8738 0.8917 0.9523 0.9515 0.9777 0.9807

L1↓ 2.485e-2 3.495e-3 1.147e-2 1.393e-2 7.456e-3 1.241e-2

HDMB51 m = 5

PSNR↑ 22.229 21.675 22.141 21.673 23.664 23.191
SSIM↑ 0.7566 0.7633 0.7119 0.7160 0.8378 0.8431

L1↓ 4.109e-2 4.627e-2 4.649e-2 5.102e-2 3.004e-2 3.549e-2

Table 5.2: Metrics between the first generated image and its respective ground truth.
All metrics are reported from the best epoch of the models respective loss. The L1
metric is calculate with mean reduction. ↑ (↓) indicates higher (lower) is better.

tions. As I explore later in Section 5.6.2, the long-term predictions for MMNIST are

more physically realistic than those generated from the real world datasets despite

these lower first-frame prediction metrics. This stresses how crucial it is to comple-
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ment metrics for first-frame prediction with long-term predictive analysis in video

generation.

5.6.1.2 Modelling Quality by Model

The patch transformer consistently has the best PSNR, SSIM, and L1 metric scores

for all but one of my experiments (2D bouncing with m = 59). The CNN and

image transformer alternate as the second best model across both the easier and

harder tasks. The patch transformer gives moderately higher scores for 2D bouncing

(m = 5), 3D bouncing (m = 5), MMNIST, and the real world datasets (∼1-3 higher

PSNR scores). On the 4 datasets with best scores overall (roller, pendulum, blocks,

and moon), the patch transformer demonstrates considerably higher scores when

compared with the other 2 models. This implies that the patch transformer excels

at replicating the more controlled conditions in these datasets, indicated by its very

high SSIM scores (∼0.999).

5.6.1.3 Modelling Quality by Loss

Models trained with the SSIM-based loss demonstrate higher SSIM scores on their

predictions compared to those pretrained on SL1. This can be seen in Figure 5.7b,

where the higher values of the dark bars of each colour represent SSIM training for

each model variant (∼0.01-0.05 increase consistently). Conversely, models trained

with the mean pixelwise SL1 loss have a lower (i.e. better) mean pixelwise L1 score

as seen in the lower lighter bars representing SL1 training in Figure 5.7c. This

improvement in each metric of models trained with that metric’s respective loss

counterpart further highlights how limited any single metric is in demonstrating the

quality of generated images. Despite each score’s preference for its own loss function,

I find that SL1 trained models almost always give a higher PSNR than their SSIM

counterparts (Figure 5.7a). This more pronounced covariance of PSNR and SL1

scores is expected behaviour as PSNR tends to infinity as mean squared error (and

hence SL1) tends to zero. This suggests that PSNR is optimised for by an SL1 loss.
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5.6.2 Long-Term Self-Output Prediction

As previously described, the models are trained using subsets of clips of size (m +

1) where m is the number of input frames and the final frame serves as ground

truth for the prediction. In order to gauge the model’s capacity for long-term video

generation, I consider ‘self-output’ experiments, i.e. for a video in the test set:

1. Generate the predicted frame from the first m frames.

2. Create, as new inputs, the starting m frames with the first frame removed and

the newly generated frame added to the end.

Algorithm 1 Self-Output Visualisation.

Input: video, m

totalFrames← length(video)
inputs← video[0 : m] . Python-style slicing.
for i← m to totalFrames do

output← model(inputs)
groundTruth← video[i]
plotTogether(groundTruth, output) . See Figure 5.8.
inputs← concatenate(inputs[1 : m], output) . Shift one frame into the

future.
end for

This effectively tests the model’s capacity to continue generating the video from the

initial m frames by using the predicted frame to shift the next inputs into the future

one frame at a time. Using the process described in Algorithm 1, I create a side-by-

side comparison of the predicted video frames and their ground truth counterparts in

Figures 5.8, 5.9, 5.10, 5.11, and 5.12. As it would be intractable to discuss detailed

behaviours from each model on each dataset and with both loss functions, I focus

on the major trends and properties I can observe in the generated videos. I invite

readers to explore the complete set of self-output videos and metrics for each test

set 7. In the following subsections, I discuss the differences in self-output predictions

with respect to the different models and losses.

7https://github.com/Visual-modelling/visual_modelling#all-self-output-gifs
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(a) 2D Bouncing

(b) MMNIST

Figure 5.8: Comparison of the first 25 generated frames of each model (m = 5) visualised alongside the ground truth.

121



(a) MOCAP

(b) 3D Bouncing

Figure 5.9: Comparison of the first 25 generated frames of each model (m = 5) across the datasets vs the ground truth.
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(a) Roller

(b) Pendulum

Figure 5.10: Comparison of the first 25 generated frames of each model (m = 5) across the datasets vs the ground truth.
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(a) Blocks

(b) Moon

Figure 5.11: Comparison of the first 25 generated frames of each model (m = 5) across the datasets vs the ground truth.
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(a) HMDB-51

Figure 5.12: Comparison of the first 25 generated frames of each model (m = 5) across the datasets vs the ground truth.
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5.6.2.1 Self-Output By Models

The patch transformer generates the most physically accurate long-term predictions

(i.e. more closely obeys the laws underpinning the video) on the 3D bouncing, roller,

pendulum, blocks, and moon datasets. The CNN model performs best on the 2D

bouncing (Figure 5.8a) and MMNIST (Figure 5.8b) datasets. The image transformer

is less physically accurate than both of the other models on all datasets. The CNN

struggles to smooth out lower resolution graininess. There are occasional oddities

with the CNN that imply it is overly relying on local spatial information e.g. a ball

will sometimes accelerate off the screen in the roller dataset. I speculate that this

is because the model has learned that a ball above a rail at a certain angle should

be moving upwards. Although it is thought that pure CNN architectures struggle

to properly model inter-frame variations in video sequences [150], my CNN model’s

self-output videos challenge this assumption by demonstrating an understanding

of gravity and collision physics (Figure 5.8a). The image transformer struggles

to generalise to different shapes. This can be observed in MMNIST where digits

degrade immediately within the first 5 frames (Figure 5.8b). Furthermore, the image

transformer often accumulates black ‘dead’ pixels. Though the patch transformer

appears to be the best model, it too demonstrates architecture specific artefacts

(e.g. the resolution of the patches forming the outputs are visible in some examples

from MMNIST).

5.6.2.2 Self-Output By Loss

When any of the 3 models are trained with SSIM loss, their predictions eventually

begin to distort the otherwise constant background colour. This can be seen in the

SSIM rows of Figure 5.8a as the background shifts from static white to grey. This

phenomenon implies a gradual buildup of errors in the background which I argue is

due to the insensitivity of SSIM function to changes in the background, and thus

the model is not forced to carefully maintain the background. Such background

distortion does not happen in SL1 outputs, indicating that the pixelwise-SL1 loss

is particularly sensitive to these artifacts and prioritises minimising them. My self-

output results challenge assumptions about the effects of different types of loss
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functions on generated videos. In their recent survey paper of video generation

techniques, Oprea et al. [150] argue that SL1 is a ‘deterministic’ pixelwise loss that

learns to accommodate uncertainty by blurring its predictions. It is argued that this

allows “plausible predictions in deterministic scenarios” (i.e. synthetic datasets),

and yet struggle with more uncertain video data. However, my self-output videos

demonstrate immediate and substantial blurring on the realistic MOCAP data for

both the SL1 and SSIM trained models (Figure 5.9a). Furthermore, the simpler

simulation data (MMNIST in Figure 5.8b, 2D bouncing in Figure 5.8a) shows almost

no blurring for either loss function. These results imply that, in some cases, blurring

can be caused by the difficulty of the dataset and not inherent properties of the

SL1 loss i.e. if the model/loss function is unable to induce understanding about

a specific movement, it may instead be optimised by smoothing that region into

the average pixel value. Despite the ‘synthetic’ MMNIST dataset scoring lower

PSNR, L1 and SSIM metrics compared to the real-world MOCAP for first-frame

prediction (discussed in Section 5.6.1.1), the superior long-term prediction stability

of MMNIST compared to MOCAP stresses the importance of complementing frame-

to-frame metrics and loss scores with qualitative long-term prediction comparisons.

5.6.3 Test-Task Performance

To make performance between my experiments more comparable, I normalise the

values for all predictions (excluding MNIST classification) such that the dataset has

a standard deviation of 1. In the following subsections, I will discuss the results of

the 4 variations of my downstream test-task experiments: random scores as lower

bounds on performance, models trained on test-tasks without pretraining, linear

probing for frozen models with pretraining, and models trained on test-tasks with

pretraining (i.e. finetuning).

5.6.3.1 Random Lower Bound

The results for random and frozen models may initially appear too strong to be

random baselines (i.e. each 3rd row of Tables 5.3 and 5.4; 4th row for MNIST only).

However, I note that random and frozen Conv2D PyTorch layers allow through a
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(a)

(b)

Figure 5.13: Matplotlib visualisation demonstrating that randomly initiated pytorch
Conv2D layers (with bias) can allow substantial image information to leak through.
Left: A visualisation of a 64x64 grayscale image from the MNIST dataset. Right:
Visualisations of 2 different channels (16x16) from the outputs of the first layer in
a randomly instantiated patch transformer/CNN model.

substantial amount of image information, even with trainable biases. This means

substantial image information can still bleed through to the trainable linear probe

layers as visualised in the MNIST examples in Figures 5.13a and 5.13b. I find

this induces strong performance in the random frozen models, in particular scoring

98.58% accuracy on MNIST. This limits its use as a lower bound of task performance

for the CNN and patch transformer. However as the image transformer does not
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have Conv2D layers, it does not suffer such information leakage. This allows the

random and frozen results from the image transformer to reasonably serve as an

indicator for random task performance. For this reason, I specifically refer to the

frozen random score for the Image Transformer when I discuss ‘random’ scores in

the following sections (i.e. 3rd row of subsections of Tables 5.3 and 5.4; 4th row for

MNIST).

5.6.3.2 Unfrozen Without Pretraining + Non-Linear MLP

The unfrozen model experiments with non-linear fully connected units serving as

classifiers (see Figure 5.6c) are designed to show the potential of the models to learn

visual laws directly from the task itself. The results of these experiments can be

seen as the last grey row of each section in Tables 5.3 and 5.4. All 3 of the models

can learn each task noticeably better than random (except the image transformer

on 3D bouncing and blocks). The tasks with the best performance are 2D bounce

counting, 2D gravity prediction, and roller gravity prediction. As these tasks all

represent gravity working directly on 2D balls in freefall, I believe this style of

simulation is the easiest to learn for these models. The 2D bounce counting task

performance implies these models are capable of effectively tracking and counting

collisions throughout the input frames. I note in particular the improved scores of the

3 following tasks. The bounce counting task for 2D bouncing scores 0.09786, which

is a drastic improvement compared to its random score of 0.6457. The 2D bouncing

gravity prediction task improves even further, scoring 0.02402 from a random score

of 0.6442. The roller gravity prediction improves from a random score of 0.8393 down

to 0.0722. The patch transformer is strongest model on 2D bounce prediction and

roller gravity prediction by a margin of ∼0.01-0.03. However, the CNN scores about

half the patch transformer’s loss on 2D bounce prediction. As MNIST classification

is an easy vision dataset, it is unsurprising that each model scores above 99%. The

moon and pendulum prediction tasks appear to be the most difficult, improving

from random scores of ∼0.89 to 0.325 and 0.2266 respectively. Though the patch

transformer is most often the best scoring model, the CNN scores are almost as

good. The CNN scores slightly better on the 3D bounce prediction task (∼0.01), and
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Model Details Baseline CNN Image Transformer Patch Transformer

Pretraining

Task Task L1
Modelling Loss

Task L1
Modelling Loss

Task L1
Modelling Loss

Task L1

Modelling Dataset = 2D Bounce Task = Counting Bounces in 59 Frames

- Constant Output 0.6525 - - - - - -
- Input Image + Linear Layer 0.7077 - - - - - -
None Frozen Model + Linear Probes - - 0.5193 - 0.6457 - 0.6070
None Unfrozen Model + Non-Linear MLP - - 0.1007 - 0.2080 - 9.786e-2
m = 59 SL1 Frozen Model + Linear Probes - 5.003e-3 0.2830 1.207e-2 0.6569 1.557e-2 0.5532
m = 59 SSIM Frozen Model + Linear Probes - 1.797e-2 0.2943 5.057e-2 0.6563 2.328e-2 0.3839
m = 59 SL1 Unfrozen Model + Non-Linear MLP - 5.003e-3 0.1247 1.207e-2 0.2148 1.557e-2 0.1037
m = 59 SSIM Unfrozen Model + Non-Linear MLP - 1.797e-2 0.1165 5.057e-2 0.2737 2.328e-2 0.1008

Modelling Dataset = 2D Bounce Task = Gravity, from 5 frames

- Constant Output 0.8676 - - - - - -
- Input Image + Linear Layer 0.8687 - - - - - -
None Frozen Model + Linear Probes - - 0.4272 - 0.6442 - 0.6076
None Unfrozen Model + Non-Linear MLP - - 1.269e-2 - 7.697e-2 - 2.402e-2
m = 5 SL1 Frozen Model + Linear Probes - 3.401e-3 0.1621 6.529e-3 0.7533 3.439e-3 0.4789
m = 5 SSIM Frozen Model + Linear Probes - 1.167e-2 0.1390 2.558e-2 0.7605 1.062e-2 0.3440
m = 5 SL1 Unfrozen Model + Non-Linear MLP - 3.401e-3 1.891e-2 6.529e-3 7.146e-2 3.439e-3 1.918e-2
m = 5 SSIM Unfrozen Model + Non-Linear MLP - 1.167e-2 1.774e-2 2.558e-2 5.960e-2 1.062e-2 1.385e-2

Modelling Dataset = 3D Bounce Task = Counting Bounces in 99 frames

- Constant Output 0.6651 - - - - - -
- Input Image + Linear Layer 0.4255 - - - - - -
None Frozen Model + Linear Probes - - 0.3756 - 0.6420 - 0.4832
None Unfrozen Model + Non-Linear MLP - - 0.2662 - 0.6441 - 0.2713
m = 99 SL1 Frozen Model + Linear Probes - 3.905e-3 0.3200 2.398e-3 0.5982 7.494e-4 0.3279
m = 99 SSIM Frozen Model + Linear Probes - 1.439e-2 0.3198 1.112e-2 0.5721 3.713e-3 0.3414
m = 99 SL1 Unfrozen Model + Non-Linear MLP - 3.905e-3 0.2952 2.398e-3 0.4276 7.494e-4 0.2273
m = 99 SSIM Unfrozen Model + Non-Linear MLP - 1.439e-2 0.2711 1.112e-2 0.4897 3.713e-3 0.2555

Modelling Dataset = Roller Task = Gravity, from 5 frames

- Constant Output 0.8645 - - - - - -
- Input Image + Linear Layer 0.8199 - - - - - -
None Frozen Model + Linear Probes - - 0.4305 - 0.8393 - 0.4699
None Unfrozen Model + Non-Linear MLP - - 0.1034 - 0.1679 - 7.220e-2
m = 5 SL1 Frozen Model + Linear Probes - 2.326e-3 0.1966 9.248e-4 0.8383 1.150e-4 0.3948
m = 5 SSIM Frozen Model + Linear Probes - 2.489e-3 0.1765 2.573e-3 0.8278 8.672e-5 0.2750
m = 5 SL1 Unfrozen Model + Non-Linear MLP - 2.326e-3 0.1016 9.248e-4 0.1318 1.150e-4 8.844e-2
m = 5 SSIM Unfrozen Model + Non-Linear MLP - 2.489e-3 0.1018 2.573e-3 0.1279 8.672e-5 7.790e-2

Modelling Dataset = Pendulum Task = Gravity, from 5 frames

- Constant Output 0.8878 - - - - - -
- Input Image + Linear Layer 0.8903 - - - - - -
None Frozen Model + Linear Probes - - 0.7194 - 0.8914 - 0.7238
None Unfrozen Model + Non-Linear MLP - - 0.2837 - 0.3493 - 0.2266
m = 5 SL1 Frozen Model + Linear Probes - 5.564e-4 0.3770 2.934e-3 0.8982 6.726e-5 0.3834
m = 5 SSIM Frozen Model + Linear Probes - 9.868e-4 0.3757 5.886e-4 0.9021 8.816e-5 0.3731
m = 5 SL1 Unfrozen Model + Non-Linear MLP - 5.564e-4 0.3214 2.934e-3 0.3903 6.726e-5 0.2196
m = 5 SSIM Unfrozen Model + Non-Linear MLP - 9.868e-4 0.2898 5.886e-4 0.3358 8.816e-5 0.2173

Modelling Dataset = Blocks Task = Mass Ratio, from 49 frames

- Constant Output 0.8880 - - - - - -
- Input Image + Linear Layer 0.8755 - - - - - -
None Frozen Model + Linear Probes - - 0.6372 - 0.8950 - 0.7296
None Unfrozen Model + Non-Linear MLP - - 0.5571 - 0.7836 - 0.4871
m = 49 SL1 Frozen Model + Linear Probes - 4.541e-3 0.6184 3.344e-4 0.8892 1.038e-4 0.7280
m = 49 SSIM Frozen Model + Linear Probes - 3.890e-3 0.6077 7.180e-4 0.8915 1.990e-4 0.6783
m = 49 SL1 Unfrozen Model + Non-Linear MLP - 4.541e-3 0.5799 3.344e-4 0.5516 1.038e-4 0.5296
m = 49 SSIM Unfrozen Model + Non-Linear MLP - 3.890e-3 0.5585 7.180e-4 0.5196 1.990e-4 0.5219

Table 5.3: Performance on test-tasks without vs. with modelling pretraining. Re-
sults are generated using checkpoints from the best validation epoch for pretraining
and test-task.
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Model Details Baseline CNN Image Transformer Patch Transformer

Pretraining

Task Task L1
Modelling Loss

Task L1
Modelling Loss

Task L1
Modelling Loss

Task L1

Modelling Dataset = Moon Task = Mass, from 5 frames

- Constant Output 0.8763 - - - - - -
- Input Image + Linear Layer 0.8512 - - - - - -
None Frozen Model + Linear Probes - - 0.7009 - 0.8751 - 0.8175
None Unfrozen Model + Non-Linear MLP - - 0.3287 - 0.5829 - 0.3250
m = 5 SL1 Frozen Model + Linear Probes - 4.781e-4 0.382 5.656e-4 0.8136 9.834e-5 0.6579
m = 5 SSIM Frozen Model + Linear Probes - 5.199e-4 0.4909 2.751e-3 0.8268 9.945e-5 0.6259
m = 5 SL1 Unfrozen Model + Non-Linear MLP - 4.781e-4 0.3552 5.656e-4 0.3127 9.834e-5 0.3324
m = 5 SSIM Unfrozen Model + Non-Linear MLP - 5.199e-4 0.3822 2.751e-3 0.4246 9.945e-5 0.3528

Modelling Dataset = MMNIST Task = MNIST

- Most Common Class 11.28% - - - - - -
- Constant Output 11.28% - - - - - -
- Input Image + Linear Layer 93.30% - - - - - -
None Frozen Model + Linear Probes - - 98.58% - 39.68% - 97.60%
None Unfrozen Model + Non-Linear MLP - - 99.44% - 99.00% - 99.52%
m = 5 SL1 Frozen Model + Linear Probes - 2.828e-2 98.70% 5.549e-2 81.16% 2.732e-2 86.22%
m = 5 SSIM Frozen Model + Linear Probes - 6.797e-2 98.66% 1.616e-1 77.76% 6.501e-2 87.24%
m = 5 SL1 Unfrozen Model + Non-Linear MLP - 2.828e-2 99.16% 5.549e-2 99.10% 2.732e-2 99.56%
m = 5 SSIM Unfrozen Model + Non-Linear MLP - 6.797e-2 99.42% 1.616e-1 99.02% 6.501e-2 99.56%

Table 5.4: Performance on test-tasks without vs. with modelling pretraining. Re-
sults are generated using checkpoints from the best validation epoch for pretraining
and test-task.

substantially better on 2D gravity prediction as previously mentioned. The image

transformer is substantially worse than both the CNN and patch transformer on

every non-MNIST task, which stresses the strengths of convolutional based models

in learning these test-tasks without pretraining.

5.6.3.3 Linear Probes

The linear probing experiments (see Figure 5.6b) with frozen and pretrained mod-

els are designed to verify if modelling pretraining induces a transferable understand-

ing of visual laws for downstream test-tasks (i.e. the top 2 white highlighted rows in

each section of Tables 5.3 and 5.4). The CNN and patch transformer test-tasks on

pretrained models consistently score better than random, yet do not perform near

as well as the ‘without pretraining and unfrozen’ experiments described in the pre-

vious subsection. The CNN model now outperforms the patch transformer on the

the previous subsection’s best performing experiments: 2D bounce prediction, 2D

gravity prediction, and roller gravity prediction with ∼0.29 (CNN) vs. 0.553/0.3839

(PT), ∼0.15 (CNN) vs. 0.34/0.4789 (PT), ∼0.18 (CNN) vs. 0.395/0.2750 (PT) for

each task respectively. However, I cannot directly conclude that all this information

has been induced by pretraining because the leakage of image information through
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random and frozen Conv2D layers demonstrates that the convolution based models

feed enough information to linear probes to achieve good scores. This highlights a

unique difficulty in probing frozen convolutional models. Despite this information

leakage, I can still verify the use of pretraining through linear probes on the CNN

and patch transformer by comparing their probing scores with ‘input image+linear

layer’ scores (see the second grey row of each section on Tables 5.3 and 5.4). This

‘input image+linear layer’ scenario shows how highly a trainable linear layer can

score on the test-tasks with the images as input. Given that image information can

leak through the frozen convolutions of the CNN and patch transformers and into

the trainable linear probes, the ‘input image+linear layer’ experiment scores provide

an upper bound to the performance the linear probes could have gained using only

the leaked image information. I argue that the ‘input image+linear layer’ scores

are upper bounds as all image information is provided, and images leaking through

convolution layers will be at least partially distorted. As the probing scores are

still much better than ‘input image+linear layer’ scores, this implies that modelling

pretraining alone has encoded some understanding that is useful to my downstream

test-tasks. Despite this, the linear probing models do not match ‘unfrozen+without

pretraining’ performance, showing that although pretraining does induce some de-

tectable understanding, it is still more useful to directly learn the task. As the image

transformer does not suffer from random Conv2D leakage, it can more accurately

demonstrate the induced understanding from pretraining. The image transformer is

however the worst performing model on all tasks by a large margin, and its frozen

probing tasks fail to exceed random scores on all but 3D bounce prediction and

moon mass prediction (both which only improve by a 0.05). There are few notice-

able differences between SL1 and SSIM pretraining for the CNN. SSIM is marginally

better on 2D bouncing gravity prediction (by 0.03), and SL1 is 0.11 better for the

moon task. The patch transformer however demonstrates improved performance for

SSIM pretraining on all but the 3D bouncing bounce counting task, improving by

between (0.03-0.15).
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(a) CNN

(b) Image Transformer

(c) Patch Transformer

Figure 5.14: The improvement ratio in scores (losses) for each task when pretrained
on visual modelling (vs. without pretraining) for each model architecture.
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5.6.3.4 Unfrozen With Pretraining + Non-Linear MLP (Finetuning)

My ‘finetuning’ experiments are designed to verify if visual modelling pretraining

can give an advantageous starting point for learning downstream vision tasks (vs.

without pretraining). The results of these experiments are on the last 2 rows for each

section on Tables 5.3 and 5.4. The results of directly training on tasks with versus

without pretraining are visualised in Figure 5.14. I find that the CNN noticeably

degrades in performance from both SL1 and SSIM pretraining in 3 of 8 tasks. The

CNN degrades most substantially on the 2D bouncing gravity and 2D bounce count-

ing tasks, with an improvement ratio of 0.8 and 0.7 respectively (Figure 5.14a).

Overall, the CNN fails to benefit from pretraining in its performance on the down-

stream test-tasks. The image transformer however improves substantially on 5 of

the 8 tasks when finetuning a modelling-pretrained model (Figure 5.14b), with im-

provement ratios varying between 1.3 to as high as 1.8. Visual modelling pretraining

for the patch transformer is almost as good or substantially better compared to no

pretraining for all tasks but roller gravity prediction (Figure 5.14c). Interestingly,

the image and patch transformer models show the same preference for pretraining

loss for each task. SSIM pretraining consistently gives higher scores compared to

SL1 for 2D bouncing, 2D gravity, roller, pendulum, and blocks datasets. Conversely,

SL1 outperforms SSIM for the 3D bouncing and moon datasets. When I consider

the best performing model for each task (Figure 5.2), i.e. either the image or patch

transformer, I find that pretraining on modelling tasks is around as good, or con-

siderably better for downstream task performance for 7 of the experimented 8 tasks

(improving by a ratio of 1.25 to 1.8) demonstrating the potential of the generative

pretraining visual modelling paradigm.

5.6.4 General Discussion

I focus specifically on pairing the visual pretraining datasets with quantifiable and

observable test-tasks and analysis, allowing me to strongly argue for the benefits

of pretraining that my experiments demonstrate. My finetuning experiments show

that visual modelling pretraining can yield substantially improved performance on

134



test-tasks while not impacting performance on the majority of other tasks that do

not benefit from pretraining. This shows that there can be both little risk and large

potential gain in generative pretraining for downstream vision tasks. The image

and patch transformer architectures benefit most substantially from visual mod-

elling pretraining. However, the CNN did not improve with pretraining on any of

the test-tasks. This may imply that there is some inherent property in a trans-

former that the CNN lacks (e.g. self-attention) that can successfully facilitate such

pretraining. When finetuning from pretraining, the image transformer scores the

highest on the blocks and moon test-tasks, with the patch transformer performing

best on the other 6 tasks. When considered alongside the first-frame prediction

and self-output experiments, I find that the patch transformer performs best with

visual modelling pretraining, and the image transformer benefits most substantially.

Though it would be thematically fitting that a convolutional adaption of a trans-

former architecture would best serve the overlap of vision and language modelling, I

cannot directly conclude this from my results. Future research focusing more specif-

ically on architecture would help verify my findings. Further improving the size

and scale of visual modelling pretraining is a promising path to realise even greater

performance increase. Chen et al. [28] demonstrate that by leveraging very large

computational resources (a model comparable to GPT-2 i.e. 48 layers and ∼1.4B

parameters), unsupervised image pretraining leads to state-of-the-art downstream

ImageNet and CIFAR-101 performance that increases with model scale. This trend

of increasing downstream task performance as model and data scale increases high-

lights how promising both visual modelling pretraining and the datasets that can

facilitate it can be to the future of downstream vision tasks.

5.6.5 Not as Directly Applicable to Multimodal Processing

The work in this chapter represents an attempt to avoid the problems of language

bias in multimodality entirely and simply focus on improving methodology from

a different perspective: ‘improving the methodology behind visual features, and

therefore their relative strength’. Though this distance from language bias has

unshackled me from similar limitations as in Chapter 4 and I have demonstrated
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positive experimental results, it is still the case however that the findings in this

chapter are currently not as directly applicable to multimodal processing as my

other contributions. This is not necessarily problematic, as the goal is to one day

apply my visual modelling methodology to use e.g. ‘improved’ ImageNet features

for multimodal processing. Nevertheless, there is still quite a long way to push

this visual modelling paradigm —evaluated here on simpler and controlled visual

dynamics— before it can be directly applied to the more complex behaviours and

scenarios underpinning the larger-scale VQA and video-QA datasets. In order to

be applicable to such VQA benchmarks, the datasets used for visual pretraining

should contain as many different visual scenarios as training resources can allow

(e.g. they should demonstrate colour, gravity, human interactions with objects

and the environment etc...). Though training on such datasets would be orders-

of-magnitude more expensive than on those in this chapter, it would be necessary

to at least match the variety and complexity of the visual components of VQA

datasets. Given sufficient resources to collect datasets at a similar scale to those

used in the training of DALL-E 28, a VQA-compatible visual pretraining dataset

could be collected by focusing on gathering captioned GIFs and videos (instead of

just captioned images). Such a dataset would allow visual pretraining with expansive

visual variety applicable to many smaller benchmark VQA datasets, and would itself

be naturally paired with its own QA dataset that could be used to test the visual

modelling hypothesis.

5.7 Conclusion

I explore the visual parallel to the powerful predictive language modelling paradigm,

which I dub ‘visual modelling’. I introduce 6 dynamic simulation video datasets that

also function as physical property prediction datasets with a total of 7 test-tasks.

In line with the theme of this chapter, I experiment with 3 models inspired from

the fields of both vision and NLP. My modelling results highlight the importance of

convolutional models in video generation. The patch transformer yielding the best

8https://openai.com/dall-e-2/
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performance may imply a combination of transformer and convolutional designs is

optimal for visual modelling. My self-output experiments show that current video

generation models can sustain reasonable predictions over many frames into the

future when datasets are sufficiently simplistic enough for the model to learn the

physical laws underpinning them. My test-task experiments demonstrate the poten-

tial performance increases visual modelling pretraining can bring to vision. I show

that visual modelling pretraining induces results on the downstream test-tasks that

are as good or significantly better when compared to no pretraining for 7 of the 8

test-tasks. My work in this chapter represents an encouraging step towards ‘improv-

ing the power of vision’, however the visual modelling methodology will need further

advancement before it is ready for direct application to state-of-the-art multimodal

benchmarks.
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CHAPTER 6

Neurolinguistic Multiclass Labelling: Are Human Measures of

Similarity Suitable for VQA?

6.1 Introduction

The preceding chapters represent my contributions to the problems of language bias,

multimodal processing, and the ‘strengthening’ of the exploitation of visual informa-

tion. Though I have aimed to ensure that my contributions can ‘scalably’ apply to

future datasets and models, they each contain drawbacks that limits their applica-

bility to multimodal research as it is right now : The modality-subset methodology

in Chapter 3 yields subsets an order-of-magnitude smaller than the original, leav-

ing one vulnerable to the problems of small datasets in deep learning. The work

to improve the relative ‘strength’ of vision compared to language through visual

modelling in Chapter 5 is not yet at a stage to be immediately applicable to the

multimodal benchmarks of our time. As such, for my final major project, I am

therefore motivated to contribute to a part of the machine learning pipeline common

across multimodal benchmarks regardless of dataset and model, but in a manner

such that I can best adhere to the lessons from my previous chapters. I argue that

the labelling scheme used for multimodal tasks evaluated on VQA is a
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reasonable candidate for this objective as:

1. Multimodal tasks share a structure of ‘predicting candidates from a vocabu-

lary’ regardless of if it happens in a single step (typical of the answer schemes

of VQA datasets) or in multiple steps (for generative open-ended multimodal

models that propose individual words one at a time), i.e. invariant to specific

datasets and therefore applicable to future datasets.

2. Returning to multimodal question-answering tasks makes the methodology

immediately applicable to multimodal processing, i.e. learning from Chapter

5.

3. A change to labelling would ideally mean no need to discard question-answer

pairs as in Chapter 3.

4. Evaluating this methodology on VQA is ideal as state-of-the-art VQA datasets

have gone further than video-QA datasets to control for language bias (as

detailed in Chapter 2), i.e. learning from Chapter 4.

Furthermore, answering schemes —and therefore their respective loss functions—

typically used in multimodal QA tasks seem to encourage a worrying oversimplifi-

cation of reality by assuming one correct answer, and functionally treating all other

answers as equally incorrect as visualised in Figure 6.1. Given that the conse-

quences of this ‘one-hot’ limitation in multimodal labelling schemes are also surpris-

ingly under-explored, it would represent an ideal research question for this thesis.

However, despite the same probabilistic cross-entropy answering style being used

across different datasets, the answer vocabularies themselves are different i.e. dif-

ferent words in the answer vocabularies. The aims of this chapter’s contribution are

therefore:

1. To develop a new labelling scheme.

2. A labelling scheme that induces a more ‘realistic’ understanding of the world

than the scenario in Figure 6.1.
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Figure 6.1: The limitations of typical answer schemes for VQA datasets.

3. To develop such a labelling scheme in a way that is invariant to the different

answer vocabularies across datasets.

To achieve this, I propose augmenting VQA labelling schemes using numerical scores

of similarity between words provided by neurolinguistic study, drawing from ‘dual

coding theory’ discussed at the end of Chapter 4. For the typical ‘one-hot’ labelling

scheme used in VQA tasks, the ground truth has a score of 1, and all other an-

swers are treated as equally incorrect at 0. Instead, I propose increasing the label

of specially selected incorrect answers to a score ∈ (0, 1) based on how neurolinguis-

tically ‘close’ it is to the correct answer (see Figure 6.2). In theory, this multiclass

neurolinguistic answer scheme satisfies the aims of this chapter by:

1. Inducing a more realistic model of the world than the arguably over-simplistic

‘one-hot’ scenario;

2. Because the scores of neurolinguistic ‘closeness’ are for mutually exclusive pairs

of words, and are assumed to be ‘human ground truths’, they can be applied

to any VQA answer vocabulary (provided that it contains at least one of the

word pairs that the ‘closeness’ score).

One might expect such an answer scheme to induce a more desirable and ‘better’

understanding of the world, potentially evidenced by some improved accuracy on the
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VQA tasks as a sufficient proxy to real-world understanding. However, my results

in this chapter show that this answering scheme in practice significantly reduces

accuracy the vast majority of the time for all 5 VQA datasets —VQA v1, VQA v2,

VQA-CP v1, VQA-CP v2, and GQA— and both VQA models —LXMERT [183],

and METER [51]— in my experiments. I cannot immediately conclude that this

decrease in VQA accuracy implies that the proposed labelling scheme has failed

to induce either a more ‘realistic’ or desirable understanding of the world. The

problem may instead lie with the VQA datasets themselves being an unsuitable test

of ‘realistic’ understanding (e.g. dataset biases), or the metric of VQA accuracy itself

being a poor measure of the potentially improved understanding induced. Though it

has been shown that VQA datasets are not always a good representation of ‘realistic’

or ‘desirable’ behaviour, (see Figure 6.2, and Chapter 2), it is prudent to suspect

that there are also non-trivial problems with my proposed approach. As such,

this chapter represents a thorough exploration of the hypothesised labelling scheme

across 2 VQA benchmark models and 5 benchmark datasets. I aim to identify and

test potential causes of these initial negative results. Most notably:

1. I find that despite the large quantity of neurolinguistic word-pair scores I use,

and the high number of words in dataset vocabularies with concreteness scores

(as in Figure 4.12, repeated for convenience in Figure 6.5) in practice there are

relatively few word pairs with scores in the answer vocabularies of the datasets

I use, leaving my labelling scheme relatively sparse.

2. I find that the VQA accuracy is not quite as significantly impacted using my

proposed loss function when using the full VQA datasets, which I suspect is

caused by the aforementioned sparseness.

3. To circumvent the limitations of my ‘sparse’ labelling scheme, I isolate and

experiment on subsets of the 5 VQA datasets that only contain answers I

have at least one score for in order to more effectively test the loss function

by ‘concentrating’ the dataset. I find that these more ‘concentrated’ datasets

experience a significant drop in accuracy in almost every scenario.

4. As the ‘concentrated’ dataset splits (designed to verify the effectiveness of my
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approach) are much smaller than the original splits, I ‘expand’ them by allow-

ing word pair scores using another —less ideal— measure of neurolinguistic

‘closeness’. I find that the drop in VQA performance persists in the larger

‘expanded’ splits.

5. I look beyond the simple VQA accuracy metric to detect potential benefits of

my approach by considering top-2, top-3, top-5, and top-10 accuracy. Though

it might be intuitively expected that a stronger understanding of the similari-

ties of concepts in VQA may yield improved top-k accuracy through ‘improved

second guesses’, in practice I find my labelling scheme also reduces top-k ac-

curacies when compared to the typical one-hot labelling scheme.

6. Given the successes of parallel work using multiclass labelling for VQA [103],

I conclude that the approach for multiclass labelling is itself promising, but

that there is some disconnect between the neurolinguistic scores I use and the

semantic space of the VQA labels in the 5 datasets I use.

I conclude this chapter with discussion offering further insight into my results. My

code and appropriate directions to the relevant datasets are available at my github

repository https://github.com/Jumperkables/a_vs_c.

6.2 Neurolinguistic Multiclass Labelling Scheme

The measures of neurolinguistic ‘closeness’ I use in this labelling scheme emulate

measures ‘categorical similarity’ and ‘association’ discussed in the neurolinguistic

model of ‘dual coding theory’. A key insight from dual coding theory is the different

Figure 6.2: The proposed neurolinguistically-guided labelling scheme.
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ways ‘abstract’ and ‘concrete’ concepts (non-imageable and imageable) are stored

and accessed by the brain, and the differences in cognitive processing (i.e. free-recall)

associated with either concept type. Most interestingly, Crutch and Warrington [35]

find evidence that abstract and concrete concepts are stored in structurally different

ways (irrespective of the type of information). Concrete concepts appear to be

categorically organised i.e. stored in more rigid, semantically related networks. For

example, a chair is categorically similar to a sofa in that they are both objects for

sitting. In contrast, abstract concepts are represented in associative frameworks,

near other concepts associated with it (but not necessarily similar in meaning).

For examples, ‘justice’ and ‘illegal’ may be associated, but are not categorically

similar in the same way that concrete concepts are. My experiments use both these

similarity scores —gathered from human participants from previous neurolinguistic

studies— in an effort to encourage more human-like behaviour. The hypothesis I test

in this chapter (see Figure 6.2) considers the idea that more human-like behaviour

is a desirable property to have for this VQA scenario. However, it is crucial to

emphasise that even the most modern artificial neural networks used in deep learning

models remain comparatively simple compared to sheer complexity of biological

neural structures that cause human behaviours. Though my hypothesised labelling

scheme may make intuitive sense, I stress that it is not currently self evident that it

is beneficial or even desirable to emulate human neurology in the confines of current

artificial neural networks.

6.2.1 Concreteness: How to Select Either Categorical or

Associative Similarity

For a given VQA question-answer pair, my proposed labelling scheme determines

which of the 2 potential similarity scores to use in populating the answer tensor by

measuring how neurolinguistically ‘concrete’ the answer is. Concreteness (Figure

6.3) and abstractness (Figure 6.4) scores are on the same continuous spectrum,

i.e. a lack of concreteness being referred to as abstractness. Note that . I collect

neurolinguistic scores from the following datasets: MT40k [18], MRC [203], USF

[147], Clark-Paivio [33], Glasgow Word Norms [169], Ljubešić et al. [132], Yee [221],
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Sianipar et al. [177], Reilly and Kean [165], Toronto Word Pool [57], and SimLex-999

[85]. The scores in these datasets do not share a standardised scale and are instead

mostly defined on various discrete likert scales e.g. 1-7 or 1-5. As such, I rescale

the scores from each of these datasets individually such that the concreteness score

∈ [0, 1], 1 being the highly concrete and 0 being highly abstract. For answers that

have multiple scores from different dataset, I use the average of each of the rescaled

scores. Naturally, there are answers in the VQA datasets that are too specific and

esoteric to have had a concreteness score e.g. ‘hazardous materials prohibited’.

The vast majority of such answers also do not have either associative or categorical

similarity scores, so words without scores default to the typical ‘one-hot’ scenario

for their ground truth. Figure 6.5 (also discussed earlier in Chapter 4) visualises

the relative abundance of concreteness scores to be exploited in video-QA datasets

vocabularies along with those of VQA datasets that are the focus of this chapter.
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Figure 6.3: Wordcloud of the most concrete words from across each of the various
collected word norm datasets. Words displayed have concreteness > 0.95 from a
scale of 0-1.
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Figure 6.4: Wordcloud of the most abstract words (least concrete) from across each
of the various collected word norm datasets. Words displayed have concreteness <
0.05 from a scale of 0-1.
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Figure 6.5: Concreteness of vocabularies for components of VQA and video-QA
datasets.
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6.2.2 Constructing The Labelling Scheme From Word Pairs

Similarity Scores

I have thus far described the neurolinguistic motivation behind the 2 similarity scores

I use and how I choose between them for my labelling scheme. This subsection de-

scribes exactly what the aforementioned categorical and associative similarity scores

are and how they are used.

The scores for association come from ‘free association’ metric in the University

of South Florida Free Association Norms (USF) dataset [147]. This metric was

gathered by asking participants to write the first word that comes to mind given

a presented ‘prompt’ word. The ‘strength’ of the association score is measured

from the proportion of participants that gave a given word for a particular prompt.

The scores for categorical similarity are taken from the SimLex-999 [85] dataset.

The SimLex-999 score is designed specifically to “capture object similarity instead

of relatedness or association”1. As with the concreteness scores, I scale the word

similarity measures such that both association and SimLex-999 ∈ [0, 1]. For a given

question-answer pair, I construct the VQA answer tensor such that the ground-truth

answer retains its value of 1, with the index of any other word in the answer tensor

replacing its default 0 with the appropriate similarity score (as visualised in Figure

6.2). This new answer tensor is used as the ground truth for a binary cross entropy

loss function. The intuition here is that the ground truth answer will still retain the

highest value in loss tensor and should therefore still be selected as the top answer

for VQA top-1 accuracy, but that the model will learn to associate that answer

with a neighbourhood of similar reasonable answers as dual coding theory implies

humans do. The output logits for the answers of the models in my experiments still

use softmax to bound the output space, thus the models predictions still sum to

1 wheras the new answer tensor will sum to a value greater than 1. I control for

any odd behaviours this scenario may cause by running additional experiments with

a ‘scaled’ version of this labelling scheme where the new answer tensor is rescaled

such that it sums to 1 (see Figure 6.6) — inline with the output logits of the model.

1See example given here https://fh295.github.io/simlex.html.
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Figure 6.6: Visualisation of answer tensors under my proposed labelling scheme:
both with and without scaling.

My initial experiments in Section 6.5 considers the full splits of the VQA datasets,

where there are many question-answer pairs that I have no scores for. However,

in order to overcome this lack of labelling to more precisely measure the effect of

my labelling scheme, my later experiments in Sections 6.6 and 6.7 experiment on

subsets that contain at least one score.

6.2.3 SimLex-999 and Association Measure Statistics

It is beyond the scope of this thesis to qualitatively verify if the association and

SimLex-999 truly measure what they aim to, and if they are meaningfully different

measures. However, as each of the word pair scores that have a SimLex-999 score

Similarity Measures between Assoc and SimLex word-pair scores

VQA v1 VQA v2 GQA

Cosine Similarity 0.503 0.518 0.491
Kolmogorov-Smirnov Test 0.671 0.667 0.682
Wasserstein Distance 0.041 0.036 0.039
Spearman Correlation 0.336 0.333 0.343

Table 6.1: Similarity measures between the SimLex-999 and USF Association scores.
Note that VQA v1 and v2 statistics are the same as VQA-CP v1 and v2 respectively
as they are identical dataset overall with a different train-test split.
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also has a USF score, I can quantitatively compare these numerical measures on

that full set of shared word pairs. Table 6.1 shows various similarity measures

between the association and SimLex-999 scores that appear in each of the datasets

in my experiments. These measures together overall imply that in reality there is

both reasonable overlap and difference in the association and SimLex-999 measures.

I provide word clouds of the word-pairs in the datasets used for my experiments

(Figure 6.7) for the reader’s qualitative consideration.
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(b) Categorically related: SimLex-999 word
pairs.

Figure 6.7: Word pairs from the SimLex-999 dataset of word norms. The SimLex-
999 score is used as a measure of ‘categorical relatedness’ for the proposed loss
function. The SimLex-999 dataset also contributes the USF association scores to
complement their SimLex-999 score, which I use as a measure of ‘association’. The
size of word-pairs in this figure corresponds to the intensity of each respective score.

6.2.4 Further Nuances of Dual Coding Theory

In this subsection I highlight some additional details in dual coding theory that the

reader may find interesting.

It is thought that all words are polysemous to some extent as their precise mean-

ing changes in different contexts [81], inspiring speculation that a strict ‘associa-

tive/categorical dichotomy’ is overly simplistic [35]. Concepts of middling concrete-

ness (e.g. nurse, chemistry) are thought to have both associative and categorical

connections. Dhond et al. [46] and Binder et al. [16] find evidence implying that

abstract and concrete words initially activate similar brain regions and then later

separate ones, with concrete concepts activating regions associated with visualisa-

tion.

149



6.3 Related Works

The work in this chapter shares similarities with various ‘multi-label’ and ‘soft-

evaluation’ learning approaches.

The authors of the DAQUAR dataset [137] introduce the ‘WUPS’ score, build-

ing ‘fuzzy’ labels for questions, with ‘semantically close’ answers yielding ‘partial

membership’ scores not unlike the scenario in my proposed loss function. However,

the WUPS score focuses on penalising ‘naive solutions’ where either too many or

too few answers are proposed for a given question. Furthermore, in constrast to my

approach, the proposed WUPS score is not designed as a loss function to be used

directly in training.

Geng [64] include various multi-label learning scenarios in their proposed ‘Label

Distribution Learning’ approach. The authors hypothesise a ‘general case’ of multi-

label learning in which multiple labels are weighted differently corresponding to how

‘correct’ they are for a given question.

The evaluation metric for VQA introduced with the VQA v2 dataset [70] uses ad-

ditional ground truth answers for each question, however this metric is not dataset-

invariant by relying on the additional labels of the dataset.

The design of the VQA-CP datasets [4] specifically do not change the distribution

of images between the train and test splits, instead changing the distribution of

answers for each question type under the hypothesis that: ‘it is reasonable to expect

models that are answering questions for the right reasons to recognise black colour

at test time even though white may be the most popular answer for that question

type in the training set’. This hypothesis implies that it is advantageous for VQA

to recognise answers that are semantically similar.

Jedoui et al. [96] highlight the high levels of uncertainty inherent in models

trained on ‘mutually exclusive’ output spaces with one correct answer. Given this

undesirable behaviour, the authors propose estimating answer uncertainty from the

‘internal hidden space’ of a model instead of its output layer. By using a triplet

loss to encourage similar answers together in the visual semantic space, the authors

demonstrate significantly improved performance on answers that are paraphrases or

eachother in VQA.
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The work in this chapter is most similar to that of Kervadec et al. [103]. Their

work shares our motivation that the typical ‘one-hot’ labelling practice in VQA (as

in Figure 6.1) to be overly simplistic. The authors propose 2 ‘proximity measures’

and a loss function designed to account for the similarities between answers. The

authors project their answers into a new semantic space that is designed to satisfy

the nuanced proximity measures by using either:

1. Co-occurrences of the ground truth with the auxiliary labels in the VQA

dataset.

2. GloVe vector representations of the ground truths.

I argue that, in theory, my approach offers desirable improvements compared to

those proposed in Kervadec et al. [103]. Nevertheless, their approach demonstrates

VQA accuracy increases whereas my results show VQA accuracy decrease. I further

elaborate on the details of their approach and the potential causes of the discrepancy

between our results in this chapter’s discussion (Section 6.8.3).

6.4 Experimental Practices

I use the official training and validation splits of each dataset for training and testing

respectively. All training and testing subsets proposed in Sections 6.6 and 6.7 are

derived entirely from their original split by simply discarding examples. The original

boundaries of the splits are respected and there is no mixing or merging of any kind.

There are test splits for these datasets available for evaluation on submission to

their respective leaderboard websites. I acknowledge the advantages (and perceived

necessity) in the ‘stewards’2 of datasets not releasing the labels of held-back testing

sets to the public. In the case of my particular experimental hypothesis however, the

point is to look beyond top-1 accuracy (top-2, 3, 5, 10) and evaluate the behaviour

of the models in neighbourhoods of labels and looking for any signs or benefit of

predetermined ‘humanlike’ behaviour. As this is unfortunately not possible with the

2For lack of a more appropriate term.
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official test splits of these datasets, I therefore use the validation splits for testing

in my experiments.

6.5 Initial Experiments: Full Datasets

My initial experiments apply my proposed labelling scheme to the full splits of

the following 5 datasets: VQA v1, VQA v2, GQA, VQA-CP v1, and VQA-CP v2

datasets. The model used is the LXMERT multimodal transformer introduced in

Tan and Bansal [183]. See Section A.2 for further details of the training setup.

Table 6.2 shows that both the scaled and unscaled versions of my proposed labelling

Dataset Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

LXMERT

VQA v1 (Full) Default 63.63 81.19 85.10 89.01 92.78
VQA v1 (Full) Mine -3.26 60.37 77.76 81.06 84.59 88.54
VQA v1 (Full) Mine (Scaled) -5.47 58.16 78.69 81.96 85.41 88.96

VQA v2 (Full) Default 61.26 80.27 84.42 88.59 92.54
VQA v2 (Full) Mine -2.83 58.43 78.31 82.33 86.55 90.83
VQA v2 (Full) Mine (Scaled) -4.90 56.36 77.15 80.71 84.45 88.39

VQA-CP v1 (Full) Default 43.03 62.52 70.07 76.31 82.95
VQA-CP v1 (Full) Mine -3.76 39.27 57.90 64.04 72.44 80.53
VQA-CP v1 (Full) Mine (Scaled) -5.96 37.07 57.46 63.95 73.23 82.05

VQA-CP v2 (Full) Default 47.71 66.90 74.38 81.91 88.99
VQA-CP v2 (Full) Mine -8.23 39.48 51.76 60.51 69.97 80.64
VQA-CP v2 (Full) Mine (Scaled) -7.15 40.56 53.79 63.03 73.21 83.45

GQA (Full) Default 65.89 83.47 87.48 91.68 95.43
GQA (Full) Mine -10.25 55.64 79.80 83.58 88.25 93.35
GQA (Full) Mine (Scaled) -11.59 54.30 80.33 84.35 88.82 93.78

Table 6.2: Accuracies for my initial experiments on the full splits of each of the 5
datasets using the LXMERT model.

scheme lead to a consistent and significant drop in accuracy for all 5 datasets, the

worst of which is GQA with an approximate ∼10% decrease. I initially intuitively

suspected that the benefits of my approach may instead be seen in the increase of top-

k accuracies, as the similarity measures may induce a more robust understanding

of a subject and therefore reasonable ‘second best guesses’. Instead however, all

datasets also demonstrate a performance decrease in each of the top-2, top-3, top-5,

and top-10 accuracy metrics. The differences between my approaches and the default
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setup generally decrease for the higher top-5 and top-10 accuracies: the differences

in top-10 accuracies are no worse than ∼4% for all datasets but VQA-CP v2 (which

demonstrates a more substantial ∼5% to ∼8% decrease). The generally ‘easier’

VQA v1/v2 datasets demonstrate the smallest accuracy reductions. Interestingly,

though the gap between top-1 accuracies for GQA is large, the discrepancy between

top-2 accuracies immediately reduces to ∼3%, and consistently remains closer for

the top-3, 5, and 10 accuracy metrics.

6.6 A More Targeted Scenario: Discarding An-

swers Without Similarity Scores

My initial results in the previous section imply that my labelling scheme is unhelpful

in the context of VQA. Before I can conclude this however, I need to explore and

control for some of the potential problems that may cause these negative results.

As I mention previously, there are many questions with answers for which I have

no similarity scores. It could reasonably be expected that accuracy increases may

only happen on the subset that I have similarity scores for, with the overall decrease

resulting from answers without similarity scores weighing the success down. This

section explores this potential cause by discarding questions from all datasets that

I do not have a similarity score for. I re-emphasise that one of the principal aims of

the work in this chapter is avoid the limitations of my work in Chapter 3: the need

to discard data. Unfortunately, I cannot reasonably gather word similarity scores

for the esoteric and specific answers in the VQA answer vocabularies. Regardless

of my initial motivation, I can only test the effect of a more ‘concentrated’ dataset

by discarding data and accepting the accompanying drawbacks. Table 6.3 shows

the differences in the sizes of the full dataset splits, and those ‘SimLex-only’ splits

that are the subject of this subsection. The first and fifth rows of both halves of

Table 6.3 demonstrate that both the total number of answers and unique answers

are an order of magnitude lower for the ‘SimLex-only’ splits. In exchange for this

substantial sacrifice: all remaining questions have answers with similarity scores;

and as the answer vocabulary is ∼10x smaller, the relative abundance of similarity
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VQA v1
(Full)

VQA v2
(Full)

GQA
(Full)

Dataset statistics for answers with Assoc and Simlex word-pair scores

Total Answers 335,738 609,939 1,075,062
Answers With Assoc Scores 26,825 51,806 184,468
Answers With Simlex Scores 26,893 51,950 190,722
Answers With Assoc or Simlex Scores 26,893 51,950 190,722

Total Unique Answers 2184 3128 1842
Unique Answers With Assoc 205 256 185
Unique Answers With Simlex 209 262 192
Unique Answers With Assoc or Simlex Score 209 262 192

Sum of Scores in Assoc Tensor (Total) 1.016 1.014 1.015
Sum of Scores in Assoc Tensor (Non-zero) 1.170 1.174 1.146
Avg # of Classes in Assoc Tensor (Total) 1.139 1.127 1.159
Avg # of Classes in Assoc Tensor (Non-zero) 2.483 2.547 2.578

Sum of Scores in Simlex Tensor 1.056 1.052 1.064
Sum of Scores in Simlex Tensor (Non-zero) 1.585 1.624 1.614
Avg # of Classes in Simlex Tensor 1.150 1.138 1.170
Avg # of Classes in Simlex Tensor (Non-zero) 2.569 2.649 2.635

VQA v1
(SimLex-

Only)

VQA v2
(SimLex-

Only)

GQA
(SimLex-

Only)

Dataset statistics for answers with Assoc and Simlex word-pair scores

Total Answers 26,893 51,950 190,451
Answers With Assoc Scores 26,825 51,806 184,197
Answers With Simlex Scores 26,893 51,950 190,451
Answers With Assoc or Simlex Scores 26,893 51,950 190,451

Total Unique Answers 209 262 192
Unique Answers With Assoc 205 256 185
Unique Answers With Simlex 209 262 192
Unique Answers With Assoc or Simlex Score 209 262 192

Sum of Scores in Assoc Tensor (Total) 1.166 1.170 1.141
Sum of Scores in Assoc Tensor (Non-zero) 1.170 1.174 1.146
Avg # of Classes in Assoc Tensor (Total) 2.455 2.511 2.521
Avg # of Classes in Assoc Tensor (Non-zero) 2.483 2.547 2.578

Sum of Scores in Simlex Tensor 1.585 1.624 1.614
Sum of Scores in Simlex Tensor (Non-zero) 1.585 1.624 1.614
Avg # of Classes in Simlex Tensor 2.569 2.649 2.635
Avg # of Classes in Simlex Tensor (Non-zero) 2.569 2.649 2.635

Table 6.3: Similarity measures of SimLex-999 and USF Assoc scores. Note that
VQA v1 and v2 statistics are the same as VQA-CP v1 and v2 respectively as they
are identical dataset overall with a different train-test split.

scores is ∼10x higher. It is particularly important that I emphasise that the subsets

I propose in Sections 6.6 and 6.7 do not include questions with ‘yes’ or ‘no’ answers.

I exclude these binary questions because I do not have similarity scores for either of

the words ‘yes’ or ‘no’.
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6.6.1 Experimental Results

There are a few factors to consider when comparing the expected overall accuracy

on my proposed data splits: The dataset splits are substantially smaller than the

full splits, and it therefore might be expected they are easier to solve. As previously

mentioned however, my subsets do not include binary ‘yes-no’ questions. Such

questions are almost always the most easily solved subsets of VQA datasets, and I

believe their exclusion from my subsets causes the accuracy on my smaller subsets

to be lower than may otherwise be expected.

6.6.1.1 LXMERT Model on SimLex-Only Data

Broadly speaking, my both versions of my proposed labelling scheme reduces accu-

racy for the SimLex-only splits slightly more than it does on the full dataset splits.

The differences in accuracies between the full splits in Table 6.2 and the SimLex-only

splits in Table 6.4 vary for each different dataset:

• VQA-CP v1/v2: The overall scores are very similar to those of the full dataset,

including the decrease in accuracy under my labelling scheme.

Dataset Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

LXMERT

VQA v1 (SimLex) Default 73.90 83.80 87.38 90.98 94.27
VQA v1 (SimLex) Mine -10.62 63.28 71.96 77.05 82.77 88.34
VQA v1 (SimLex) Mine (Scaled) -9.79 64.11 72.70 78.28 83.98 89.13

VQA v2 (SimLex) Default 71.60 82.90 87.02 90.92 94.36
VQA v2 (SimLex) Mine -7.37 64.23 72.40 76.82 82.46 88.02
VQA v2 (SimLex) Mine (Scaled) -9.19 62.41 71.80 76.85 82.69 88.77

VQA-CP v1 (SimLex) Default 43.03 62.52 70.07 76.31 82.95
VQA-CP v1 (SimLex) Mine -3.76 39.27 57.90 64.04 72.44 80.53
VQA-CP v1 (SimLex) Mine (Scaled) -5.96 37.07 57.46 63.95 73.23 82.05

VQA-CP v2 (SimLex) Default 47.71 66.90 74.38 81.91 88.99
VQA-CP v2 (SimLex) Mine -8.21 39.50 51.58 59.41 68.19 78.13
VQA-CP v2 (SimLex) Mine (Scaled) -7.15 40.56 53.79 63.03 73.21 83.45

GQA (SimLex) Default 70.15 84.63 91.02 95.63 98.59
GQA (SimLex) Mine -3.86 66.29 74.66 79.79 87.13 94.55
GQA (SimLex) Mine (Scaled) -3.91 66.24 74.28 78.70 86.18 93.33

Table 6.4: Accuracies for my more targeted experiments on the splits for which I
have similarity scores between answers. Accuracies are reported for each of the 5
datasets using the LXMERT model.
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• GQA: The overall top-1 accuracy for the SimLex-only GQA split are ∼5-10%

higher than the full dataset splits. The impact of my labelling scheme has

lessened from a ∼10% decrease on the full split to ∼4% decrease in top-1

accuracy. Interestingly, the difference in the top-k accuracies between the full

and SimLex-only splits disappears as k increases.

• VQA v1: The accuracy of SimLex-only VQA v1 split under the default la-

belling has increased ∼10% compared to the full split. However, the negative

impact of my labelling scheme on deepens from -3.26/-5.47% to -10.62/-9.79%.

• VQA v2: Similarly to VQA v1, default labelling top-1 accuracy increases by

∼10% and the negative impact of my labelling scheme now deepens from -

2.83/-4.90% to -7.37/9.19%.

The top-2, 3, 5, and 10 accuracies for all datasets change relatively inline with the

top-1 accuracy (other than those aforementioned in GQA). Overall, my proposed

labelling scheme under the LXMERT model fails to show any benefit in any of the

5 accuracy metrics.

Dataset Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

METER

VQA v1 (SimLex) Default 77.06 85.26 88.23 91.24 93.94
VQA v1 (SimLex) Mine -1.60 75.46 81.83 85.34 89.28 92.72
VQA v1 (SimLex) Mine (Scaled) -2.46 74.60 81.13 84.96 89.19 92.61

VQA v2 (SimLex) Default 63.06 73.71 78.69 83.79 88.91
VQA v2 (SimLex) Mine -0.75 62.31 69.60 74.39 80.23 86.24
VQA v2 (SimLex) Mine (Scaled) -1.30 61.76 69.56 74.54 80.41 86.70

VQA-CP v1 (SimLex) Default 69.10 79.39 82.79 88.20 92.27
VQA-CP v1 (SimLex) Mine -8.55 60.55 73.88 80.32 86.61 92.08
VQA-CP v1 (SimLex) Mine (Scaled) -9.58 59.52 72.03 76.78 83.92 89.53

VQA-CP v2 (SimLex) Default 59.75 72.28 77.59 83.21 88.76
VQA-CP v2 (SimLex) Mine -0.00 59.75 67.49 73.40 80.35 87.26
VQA-CP v2 (SimLex) Mine (Scaled) -0.78 58.97 67.15 73.32 80.19 87.24

Table 6.5: Accuracies for my more targeted experiments on the splits for which I
have similarity scores between answers. Accuracies are reported for each of the 5
datasets using the METER framework.
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6.6.1.2 METER Model on SimLex-Only Data

While the LXMERT model remains a strong benchmark for VQA, in the 3 years

since its introduction a number of newer, higher-performing, larger-scale multimodal

transformer models have been proposed. In this subsection, I experiment on the

SimLex-only dataset splits instead using larger and more modern Multimodal End-

to-End TransformER framework: ‘METER’ [51]. Overall, the METER framework

yields a substantial increase in all accuracies for 3 of the 4 VQA datasets (VQA v1,

VQA-CP v1/v2). However, the negative impact from my proposed labelling scheme

is significantly reduced (but still present) for 3 of the 4 VQA datasets (VQA v1/v2,

VQA-CP v2). A breakdown of the METER results in Table 6.5 versus the LXMERT

results in Table 6.4 (both on the SimLex-only splits) is as follows:

• VQA v1: METER yields a ∼4% top-1 accuracy increase versus LXMERT for

the default labelling scheme. The negative impact of my labelling scheme is

substantially improved from -10.62/-9.79% to -1.60/-2.46%.

• VQA v2: METER yields a ∼8% top-1 accuracy decrease versus LXMERT for

the default labelling scheme. The negative impact of my labelling scheme is

substantially improved from -7.37/-9.19% to -0.75/-1.30%.

• VQA-CP v1: METER yields a substantial ∼26% accuracy increase versus

LXMERT for the default labelling scheme. However, the negative impact of

my labelling scheme is significantly worsened from -3.76/-5.96% to -8.55/-

9.58%.

• VQA-CP v2: METER yields a substantial ∼23% accuracy increase versus

LXMERT for the default labelling scheme. The negative impact of my labelling

scheme is substantially improved from -8.21/-7.15% to 0,-0.78%.

Interestingly, the 3 datasets in Table 6.5 for which my labelling scheme causes a

relatively minor decrease in top-1 accuracy also demonstrate a more significant

negative difference in top-2 and top-3 accuracy. This implies that my intuition:

‘improvements may be seen in better second guesses’ is not correct for this VQA

scenario.
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6.7 Using Only the Highest Similarity Scores: Score

Clipping

6.7.1 Motivation

My experiments in the previous subsection imply that the negative results are not

alleviated by focusing only on questions for which I have similarity scores. Help-

fully however, the slight exacerbation in negative results for such ‘concentrated’

dataset subsets implies that these ‘norm-only’ scenarios are ideal for experimentally

identifying the effects of my labelling scheme. This subsection therefore uses these

‘norm-only’ subsets to explore another potential cause for the negative results: ‘Is it

destructively counter-productive to use low (but still non-zero) similarity scores?’.

The intuition here is that a low similarity score indicates 2 concepts are not related.

However, since the scores for my labelling scheme are relatively sparse, these low

scores between 2 concepts that I happen to have a score for would still stand out

from amongst the many other label pairs that are 0. Worse still, there will be sce-

narios where 2 answers are relatively similar, but my labelling scheme will leave a

similarity score of 0 for them simply because the neurolinguistic datasets do not

have that particular pairing. This leads to scenarios where the labelling scheme im-

plies that 2 very unrelated are more similar than more related answer pairs purely

Figure 6.8: An example scenario of the problems that incomplete similarity scores
can cause.
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because the neurolinguistic dataset is incomplete and may lack certain similarity

scores (see Figure 6.8).

6.7.2 Norm Clipping and Expanding Datasets

This section explores the previously described problems caused by similarity score

omission as a potential culprit for the negative VQA results of my labelling scheme.

To this end, the experiments in this section focus on ‘clipping’ the similarity scores

(derived from the neurolinguistic word ‘norms’) in the answer tensor at 3 different

thresholds: 0, 0.4, and 0.7 (i.e. replace any score below the given threshold with 0,

see Figure 6.9). My experiments in the previous sections can be thought as a norm

clipping threshold of 0 (i.e. no norm clipping). However, introducing norm clipping

on the ‘norm-only’ splits would even further reduces the already small and sparse

subsets. To offset this further decrease in dataset size, I augment the ‘SimLex-only’

splits from the previous section by expanding the ‘gold standard’ SimLex-999 and

USF association similarity scores with the next most appropriate word-pair scores

available respectively: the SimVerb dataset’s ‘similarity’ score [65] and extra USF

association scores beyond those for which a SimLex-999 score exists. See Figure 6.10

for wordclouds for these ‘expanded’ dataset splits.

Figure 6.9: A visualisation of norm clipping: replacing the similarity scores (derived
from the neurlinguistic word-pair norms) below a certain threshold with 0. Note
trivially that the experiments in the previous sections use norm clipping threshold
= 0.
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(b) Categorically related: SimLex-999 word
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Figure 6.10: The proposed expanded dataset of word pairs diluting the SimLex-999
scores with extra scores from the full USF dataset. Augmenting the USF Association
scores that appear in the SimLex-999 dataset alongside their own SimLex-999 scores
with further scores from the full USF represents a trade-off for more raw data at
the cost of potential incongruence between the SimLex-999 measure of categorical
relatedness and the newer ‘sim’ metric from SimVerb. The size of word-pairs in this
figure corresponds to the intensity of each respective score.

6.7.3 LXMERT Model with Norm Clipping

My experiments thus far have followed convention in VQA and use only the questions

the VQA splits whose answer occurs at least 9 times. In order to further offset the

loss of data from norm clipping, in this section I experiment with relaxing this

minimum answer occurrence to 3. Tables 6.6, 6.7, 6.8, and 6.9 detail the results for

VQA v1, VQA v2, VQA-CP v1, and VQA-CP v2 respectively. As this subsection’s

experiments aim to control for dataset size while the impact of norm clipping is

measured, I provide alternative representations for the results of Tables 6.6, 6.7, 6.8,

and 6.9 that appropriately visualise the accuracies of my experiments alongside the

size of the respective dataset splits in Figures 6.11, 6.12, 6.13, and 6.14.
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VQA v1: Performance vs Dataset Size

Figure 6.11: VQA v1: Accuracies vs dataset size for various norm clipping dataset setups. The outlined circle corresponds to top-1
accuracy, and the numerical symbols correspond to the appropriate top-k accuracy. The top 3 plots compare accuracies to the total
number of question-answer pairs, and the bottom 3 plots compare these same accuracies to the number of unique answers.
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Figure 6.12: VQA v2: Accuracies vs dataset size for various norm clipping dataset setups. The outlined circle corresponds to top-1
accuracy, and the numerical symbols correspond to the appropriate top-k accuracy. The top 3 plots compare accuracies to the total
number of question-answer pairs, and the bottom 3 plots compare these same accuracies to the number of unique answers.
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VQA-CP v1: Performance vs Dataset Size

Figure 6.13: VQA-CP v1: Accuracies vs dataset size for various norm clipping dataset setups. The outlined circle corresponds to
top-1 accuracy, and the numerical symbols correspond to the appropriate top-k accuracy. The top 3 plots compare accuracies to the
total number of question-answer pairs, and the bottom 3 plots compare these same accuracies to the number of unique answers.
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Figure 6.14: VQA-CP v2: Accuracies vs dataset size for various norm clipping dataset setups. The outlined circle corresponds to
top-1 accuracy, and the numerical symbols correspond to the appropriate top-k accuracy. The top 3 plots compare accuracies to the
total number of question-answer pairs, and the bottom 3 plots compare these same accuracies to the number of unique answers.
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Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

LXMERT

VQA v1 3 0 Default 62.24 74.08 78.79 83.63 88.48
VQA v1 3 0 Mine -7.21 55.03 66.02 71.14 76.85 82.65
VQA v1 3 0 Mine (Scaled) -6.55 55.69 67.25 72.23 77.64 83.06

VQA v1 3 0.4 Default 69.93 82.19 86.08 89.57 92.64
VQA v1 3 0.4 Mine -9.75 60.18 72.87 78.40 83.83 88.28
VQA v1 3 0.4 Mine (Scaled) -7.87 62.06 74.16 79.11 84.38 88.66

VQA v1 3 0.7 Default 71.54 85.27 88.71 91.91 99.49
VQA v1 3 0.7 Mine -5.09 66.45 79.94 84.42 88.86 92.51
VQA v1 3 0.7 Mine (Scaled) -5.05 66.49 80.27 84.78 89.05 92.86

VQA v1 9 0 Default 64.95 77.24 81.97 86.67 90.94
VQA v1 9 0 Mine -8.53 56.42 68.28 73.58 79.36 85.25
VQA v1 9 0 Mine (Scaled) -7.26 57.69 69.29 74.46 79.85 85.36

VQA v1 9 0.4 Default 71.71 84.17 88.12 91.40 94.20
VQA v1 9 0.4 Mine -8.11 63.60 76.69 82.21 86.89 90.71
VQA v1 9 0.4 Mine (Scaled) -9.28 62.43 76.03 81.65 86.43 90.79

VQA v1 9 0.7 Default 72.24 87.62 91.29 94.62 97.34
VQA v1 9 0.7 Mine -5.58 66.66 82.31 86.88 90.90 94.91
VQA v1 9 0.7 Mine (Scaled) -6.02 66.22 80.98 85.32 89.67 93.63

Table 6.6: VQA v1: Accuracies vs dataset size for various norm clipping dataset
setups. Mirrors Figure 6.11.

Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

LXMERT

VQA v2 3 0 Default 58.75 72.21 77.81 83.64 88.84
VQA v2 3 0 Mine -4.94 53.81 65.56 70.90 76.75 82.74
VQA v2 3 0 Mine (Scaled) -5.94 52.81 65.53 71.03 77.24 83.54

VQA v2 3 0.4 Default 68.19 81.42 85.94 89.90 93.17
VQA v2 3 0.4 Mine -7.66 60.53 72.64 77.76 83.16 87.73
VQA v2 3 0.4 Mine (Scaled) -6.66 61.53 74.34 79.45 84.41 88.81

VQA v2 3 0.7 Default 73.81 86.85 90.33 93.05 95.52
VQA v2 3 0.7 Mine -5.43 68.38 82.25 86.67 90.71 94.13
VQA v2 3 0.7 Mine (Scaled) -6.80 67.01 80.85 85.91 89.92 93.44

VQA v2 9 0 Default 61.06 74.77 80.40 85.94 91.06
VQA v2 9 0 Mine -6.36 54.70 67.19 72.92 79.25 85.64
VQA v2 9 0 Mine (Scaled) -4.37 56.69 69.27 74.76 80.56 86.20

VQA v2 9 0.4 Default 70.73 84.15 88.59 92.25 95.09
VQA v2 9 0.4 Mine -7.80 62.93 75.17 80.20 85.13 89.11
VQA v2 9 0.4 Mine (Scaled) -7.65 63.08 75.92 81.25 85.98 90.14

VQA v2 9 0.7 Default 70.86 86.43 89.89 93.17 96.14
VQA v2 9 0.7 Mine -4.41 66.72 81.53 86.07 90.89 94.32
VQA v2 9 0.7 Mine (Scaled) -5.60 65.26 80.70 85.99 90.25 93.70

Table 6.7: VQA v2: Accuracies vs dataset size for various norm clipping dataset
setups. Mirrors Figure 6.12.
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Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

LXMERT

VQA-CP v1 3 0 Default 35.91 50.81 58.24 66.31 74.47
VQA-CP v1 3 0 Mine -9.77 26.14 39.30 46.41 55.14 66.24
VQA-CP v1 3 0 Mine (Scaled) -12.92 22.99 35.39 42.05 50.56 63.75

VQA-CP v1 3 0.4 Default 45.63 61.96 68.34 74.73 80.94
VQA-CP v1 3 0.4 Mine -12.85 32.78 46.27 54.45 62.75 71.38
VQA-CP v1 3 0.4 Mine (Scaled) -13.77 31.86 45.34 53.27 62.30 71.76

VQA-CP v1 3 0.7 Default 47.71 68.98 77.84 84.82 91.70
VQA-CP v1 3 0.7 Mine -2.75 44.96 62.21 71.29 79.54 88.26
VQA-CP v1 3 0.7 Mine (Scaled) -4.18 43.53 61.78 70.20 78.17 86.26

VQA-CP v1 9 0 Default 38.85 54.94 62.30 69.79 77.26
VQA-CP v1 9 0 Mine -7.69 31.16 45.08 51.76 59.61 69.54
VQA-CP v1 9 0 Mine (Scaled) -12.99 25.86 37.37 43.58 52.25 63.97

VQA-CP v1 9 0.4 Default 45.17 62.02 68.41 74.37 79.98
VQA-CP v1 9 0.4 Mine -10.97 34.20 48.20 56.18 63.94 72.52
VQA-CP v1 9 0.4 Mine (Scaled) -15.18 29.99 44.32 51.66 59.94 68.41

VQA-CP v1 9 0.7 Default 49.03 70.73 78.95 87.83 93.63
VQA-CP v1 9 0.7 Mine -4.17 44.86 60.39 66.75 75.68 84.28
VQA-CP v1 9 0.7 Mine (Scaled) -7.11 41.92 63.40 73.00 80.43 87.85

Table 6.8: VQA-CP v1: Accuracies vs dataset size for various norm clipping dataset
setups. Mirrors Figure 6.13.

Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

LXMERT

VQA-CP v2 3 0 Default 16.54 28.51 36.62 47.38 57.94
VQA-CP v2 3 0 Mine +0.95 17.49 25.97 32.14 42.07 57.00
VQA-CP v2 3 0 Mine (Scaled) +4.15 20.69 30.09 36.13 45.12 56.53

VQA-CP v2 3 0.4 Default 36.91 56.25 65.63 76.06 85.81
VQA-CP v2 3 0.4 Mine -7.58 29.33 44.07 52.44 63.28 78.89
VQA-CP v2 3 0.4 Mine (Scaled) -8.26 28.65 46.45 56.01 67.81 81.43

VQA-CP v2 3 0.7 Default 42.22 71.55 80.58 86.93 92.39
VQA-CP v2 3 0.7 Mine -3.61 38.61 56.80 66.54 74.20 81.89
VQA-CP v2 3 0.7 Mine (Scaled) -7.38 34.84 57.59 76.31 83.98 90.61

VQA-CP v2 9 0 Default 14.53 25.96 33.24 44.92 58.36
VQA-CP v2 9 0 Mine +6.58 21.11 31.36 38.72 49.60 64.02
VQA-CP v2 9 0 Mine (Scaled) +8.56 23.09 35.10 43.05 53.07 67.17

VQA-CP v2 9 0.4 Default 36.49 58.85 69.16 78.73 86.37
VQA-CP v2 9 0.4 Mine -8.41 28.08 46.19 55.58 66.18 76.62
VQA-CP v2 9 0.4 Mine (Scaled) -10.96 25.53 39.64 49.19 60.89 79.44

VQA-CP v2 9 0.7 Default 41.40 60.16 68.68 76.49 83.32
VQA-CP v2 9 0.7 Mine -6.25 35.15 55.59 66.05 76.16 85.75
VQA-CP v2 9 0.7 Mine (Scaled) -4.22 37.18 56.56 69.61 78.24 87.84

Table 6.9: VQA-CP v2: Accuracies vs dataset size for various norm clipping dataset
setups. Mirrors Figure 6.14.
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As detailed in 4th row of Table 6.3, the SimLex-only splits for VQA v1/v2 con-

tain 26,893 and 51,950 question-answer pairs respectively. Figures 6.6, 6.7 and 6.8,

6.9 show that expanded subsets of VQA v1/VQA-CP v1 and VQA v2/VQA-CP v2

without norm clipping contain ∼120,000 and ∼230,000 question-answer pairs. Loos-

ening the required minimum answer occurrence from 9 to 3 only slightly increases

the total number of question-answer pairs, but does significantly increase the num-

ber of unique answers (as can be seen by comparing the blue and red plots in the

top and bottom halves of Figures 6.6, 6.7, 6.8, and 6.9). These same figures show

that the norm clipping thresholds of 0.4 (0.7) yield dataset splits of size ∼60,000

(20,000) and ∼120,000 (40,000) for VQA v1/VQA-CP v1 and VQA v2/VQA-CP v2

respectively.

Generally speaking, the experiments in this subsection reveal that my labelling

scheme still does not improve VQA accuracies under any of the norm clipping

scenarios. Though my labelling scheme still leads to a reduction in all accuracies

under norm clipping, the reductions are significantly lessened under the highest

level of norm clipping. It is unclear at this time if this less significant decrease

for higher norm clipping is caused by alleviating ‘incomplete similarity’ hypothesis

detailed in Figure 6.8, or if it is simply because ‘the less my labelling scheme is

used, the better’. The overall accuracies decrease slightly but consistently when

loosening the minimum answer occurrence requirement to 3. The overall accuracies

increase significantly as the norm clipping thresholds raise from 0 to 0.4 and 0.4

to 0.7, which I believe is evidence that the overall reduction in dataset size in turn

reduces the complexity/difficulty. Interestingly, though my labelling scheme causes

the least decrease for the highest level of norm clipping (0.7), the medium level of

norm clipping (0.4) consistently causes more of a decrease than no norm clipping

at all (e.g. in Table 6.6 rows 5 and 6 represent a bigger decrease of -9.75 and -7.87

than rows 2 and 3 with -7.21 and -6.55). The top-k accuracies continue to reveal no

advantage noticeable advantage in my proposed labelling scheme. A breakdown of

the experimental results by dataset is as follows:

• VQA v1: The LXMERT experiments are in line with all of the aforementioned

trends: e.g. the highest norm clipping level (0.7) yields the smallest decrease
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in top-1 accuracy under my labelling scheme (-5.58/-6.02 for minimum answer

occurrence of 9, and -5.09/5.05 for minimum answer occurrence of 3).

• VQA v2: As with VQA v1, the LXMERT experiments are in line with all

of the aforementioned trends. As VQA v2 is generally a harder dataset, the

overall accuracies for VQA v2 are lower than that of VQA v1. The decreases in

performance of my labelling scheme are generally smaller than those in VQA

v1.

• VQA-CP v1: As with VQA v1/v2, the LXMERT experiments are in line with

the aforementioned trends. VQA-CP v1 is a harder dataset than VQA v1/v2,

and thus its overall accuracies are lower still than those of VQA v2. The

negative impact of my labelling scheme is more pronounced at norm clipping

= 0.4: with -12.85/-13.77 and -10.97/-15.18 for minimum answer occurrence =

3 and 9 respectively. Conversely, the negative impact of my labelling scheme

is comparatively lessened at norm clipping = 0.7: with -2.75/-4.18 and -4.17/-

7.11 for minimum answer occurrence = 3 and 9 respectively.

• VQA-CP v2: The LXMERT experiments are in line with those of the pre-

vious 3 datasets for norm clipping = 0.4 and 0.7. For norm clipping = 0

however, my labelling scheme appears to give noticable increases over the de-

fault: +0.95/+4.15 and +6.58/+8.56 for minimum answer occurrence of 9 and

3 respectively. However, I believe these results are erroneous outliers caused

by the higher difficulty of the norm clipping = 0 split. Note that the over-

all accuracies for norm clipping = 0 for VQA-CP v2 are very poor (∼15%).

VQA-CP v2 is already the hardest dataset here, and recall that my dataset de-

sign excludes questions with ‘yes’/‘no’ answers (which are generally the easier

questions in this dataset). This combination of factors leads to poor training

and sub-optimal convergence in labelling scenarios, and thus the supposedly

positive results should not be considered reliable.
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6.7.4 METER Model with Norm Clipping

The difference in accuracies between the minimum answer occurrence of 9 and 3

dataset scenarios in the LXMERT experiments of this section proved relatively neg-

ligible and uninformative: i.e. the increase in data it yields does not in practice

lead to any significant differences. I therefore omit minimum answer occurrences of

3 from the more expensive and time-consuming METER experiments in this sub-

section. Tables 6.10, 6.11, 6.12, and 6.13 details the accuracies of the METER

framework on the VQA v1, VQA v2, VQA-CP v1, and VQA-CP v2 datasets respec-

tively.

Generally speaking, the negative impact of my labelling scheme on these ex-

panded dataset splits is almost entirely eliminated for almost all METER experi-

ments. The decrease in performance remains consistent, but in a much lower range

of ∼0.2-2.0% (except the VQA-CP v1 experiments). Notably, norm clipping =

0.7 yields the biggest decrease in accuracy for 3 of the 4 datasets, in contrast to

the LXMERT experiments in the previous subsection where norm clipping = 0.7

caused the least decrease in accuracy. A breakdown of the results by dataset for the

METER model is as follows:

• VQA v1: The overall accuracies for lower norm clipping thresholds are notice-

ably lower than those of LXMERT. However, the norm clipping = 0.7 results

are slightly higher than in LXMERT. The negative impact of my labelling

scheme is much lower at all norm clipping thresholds than in LXMERT. The

most negatively impacted norm clipping scenario is 0.7, with -2.14/-1.90%

top-1 accuracy reductions. The norm clipping = 0 scenario even yields a top-1

accuracy increase versus default labelling (+0.22). However, this increase is

not sustained in the accompanying top-2, 3, 5, and 10 accuracies.

• VQA v2: The overall accuracies for lower norm clipping thresholds are con-

siderably lower than those of LXMERT. The negative impact of my labelling

scheme is much lower at all norm clipping thresholds than in LXMERT. The

impacts of my labelling scheme range from +0.15% to -0.67%, with norm

clipping = 0.7 displaying the largest negative impact.
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• VQA-CP v1: The VQA-CP v1 METER experiments are the ‘odd ones out’

that break the aforementioned general trends. The METER results are higher

than those of LXMERT at each norm clipping threshold. Though norm clip-

ping = 0 yields no significant change under my labelling scheme, the higher

norm clipping thresholds display much more significant accuracy decreases

than the other METER experiments in this subsection (up to -6.51/-8.31% at

norm clipping = 0.7).

• VQA-CP v2: The VQA-CP v1 METER results are significantly better than

the corresponding LXMERT results in the previous subsection. Each model

reliably trains and converges at each norm clipping threshold. The most neg-

ative impact from my labelling scheme is experienced at norm clipping = 0.4

(-2.64/-3.37%).

Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

METER

VQA v1 9 0 Default 48.09 59.26 64.57 70.40 77.82
VQA v1 9 0 Mine +0.22 48.31 58.26 63.72 69.87 77.09
VQA v1 9 0 Mine (Scaled) -0.25 47.84 58.45 63.96 70.07 77.24

VQA v1 9 4 Default 64.87 75.86 80.58 84.94 89.53
VQA v1 9 4 Mine -0.49 64.38 74.21 78.89 83.64 88.61
VQA v1 9 4 Mine (Scaled) -0.60 64.27 74.62 79.20 84.13 88.85

VQA v1 9 7 Default 74.88 88.59 91.57 94.64 96.39
VQA v1 9 7 Mine -2.14 72.74 86.70 90.74 93.89 96.22
VQA v1 9 7 Mine (Scaled) -1.90 72.98 86.96 90.65 93.93 96.36

Table 6.10: VQA v1: Accuracies vs dataset size for METER on various norm clip-
ping dataset setups.
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Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

METER

VQA v2 9 0 Default 28.98 39.44 45.76 53.60 63.47
VQA v2 9 0 Mine +0.15 29.13 38.93 44.94 52.38 62.39
VQA v2 9 0 Mine (Scaled) -0.18 28.80 39.03 44.98 52.30 61.90

VQA v2 9 4 Default 46.63 59.04 65.67 72.59 80.47
VQA v2 9 4 Mine -0.26 46.37 57.07 63.23 70.36 78.51
VQA v2 9 4 Mine (Scaled) -0.58 46.05 57.78 64.06 71.18 79.45

VQA v2 9 7 Default 65.63 80.37 85.14 89.47 93.15
VQA v2 9 7 Mine -0.35 65.28 78.95 84.11 88.48 92.58
VQA v2 9 7 Mine (Scaled) -0.67 64.96 79.28 84.09 88.73 92.89

Table 6.11: VQA v2: Accuracies vs dataset size for METER on various norm clip-
ping dataset setups.

Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

METER

VQA-CP v1 9 0 Default 40.87 53.77 59.93 66.91 75.57
VQA-CP v1 9 0 Mine +0.70 41.57 54.54 61.27 68.76 77.05
VQA-CP v1 9 0 Mine (Scaled) -1.96 38.91 52.32 58.74 66.41 74.98

VQA-CP v1 9 4 Default 53.29 68.31 74.91 81.88 88.62
VQA-CP v1 9 4 Mine -2.18 51.11 65.01 72.38 80.95 87.13
VQA-CP v1 9 4 Mine (Scaled) -4.77 48.52 62.93 69.84 77.55 85.57

VQA-CP v1 9 7 Default 58.77 72.81 79.17 85.90 92.49
VQA-CP v1 9 7 Mine -6.51 52.26 72.81 81.80 88.24 92.63
VQA-CP v1 9 7 Mine (Scaled) -8.31 50.46 71.09 82.38 87.54 91.49

Table 6.12: VQA-CP v1: Accuracies vs dataset size for METER on various norm
clipping dataset setups.

Dataset
Min
Ans
Occ

Norm
Clip

Loss Accuracy
Top-2
Acc

Top-3
Acc

Top-5
Acc

Top-10
Acc

METER

VQA-CP v2 9 0 Default 26.51 36.85 43.08 50.97 61.02
VQA-CP v2 9 0 Mine +0.09 26.60 36.34 42.44 50.29 60.94
VQA-CP v2 9 0 Mine (Scaled) -0.81 25.70 35.79 42.51 50.59 61.21

VQA-CP v2 9 4 Default 41.84 56.53 64.10 72.41 80.16
VQA-CP v2 9 4 Mine -2.64 39.20 51.27 58.43 66.65 75.91
VQA-CP v2 9 4 Mine (Scaled) -3.37 38.47 53.37 61.52 69.95 78.62

VQA-CP v2 9 7 Default 50.56 70.59 78.67 85.56 91.80
VQA-CP v2 9 7 Mine -0.79 49.77 66.72 77.67 85.08 91.64
VQA-CP v2 9 7 Mine (Scaled) -1.61 48.95 65.27 76.76 85.44 92.11

Table 6.13: VQA-CP v2: Accuracies vs dataset size for METER on various norm
clipping dataset setups.
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6.8 Discussion

6.8.1 General Discussion

Overall, almost all of my experimental scenarios consistently demonstrate that my

labelling scheme (in both scaled and unscaled forms) significantly reduces top-1, 2,

3, 5, and 10 accuracies on the VQA datasets in my experiments. This chapter’s

contributions therefore point towards a ‘negative results’ study. Though negative

results can be important and useful [144, 54], it is crucial that such studies specif-

ically prioritise exploring potential causes of the negative results, and discuss why

efforts to alleviate them fail. I have approached the work in this chapter with that

specific philosophy in mind.

After my initial negative results on the full dataset splits (Section 6.5), my first

step in diagnosing the problem is to focus on the subset samples for which I have

similarity scores (Section 6.6). These focused ‘SimLex-only’ dataset splits slightly

exacerbated the negative impact of my labelling approach. As this magnification of

negative results is caused by concentrating the abundance of my labelling scheme,

then it is implied that labelling scheme is the direct source of the accuracy decrease.

Furthermore, as the top-2, 3, 5, and 10 accuracies mirror the reduction in top-

1 accuracy, then it follows my hypothesis that the benefits of ‘a more humanlike

understanding of similar concepts’ my labelling scheme aspires to has failed i.e.

models do not exhibit improved ‘second guesses’.

After exploring the previous 2 avenues for diagnosing negative results, I identify

the potential problem: ‘incomplete answer tensors encourage models to incorrectly

learn that 2 unrelated answers are more similar than other answers that are real-

istically more similar, but unfortunately lack a similarity score’. Section 6.7 seeks

improved results for my labelling scheme by remedying this problem through ‘norm

clipping’, but must relax the ‘gold standard’ of SimLex-999 categorical and asso-

ciative similarity scores in order to regain more data and offset the further loss of

data norm clipping creates. Though my results are mixed, these norm clipping ex-

periments overall imply that removing the smaller similarity scores in the answer

tensor only reduces the negative impact of my labelling scheme, but still fails to
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render it beneficial to VQA accuracies. It is unclear at this stage if alleviating the

‘incomplete score’ problem causes this improvement, or if it is simply that ‘the less

my labelling scheme is used, the better’. It could be argued that norm clipping is

indeed beneficial in its own right, as the highest norm clipping splits generate much

smaller and more concentrated datasets through the significant reduction in both

the total number of question-answer pairs and unique answers: since the highest

norm clipping threshold (0.7) leads to a more ‘concentrated dataset’ with less neg-

ative results —in contrast to the ‘concentrated dataset’ producing more negative

results in Section 6.6. It could therefore be argued that norm clipping is a partial

success, but I believe these results alone are insufficient to argue this.

My most promising findings are the results of METER framework on the norm

clipping subsets: the VQA v1/v2 and VQA-CP v2 datasets demonstrate either neg-

ligible change in accuracy, or a slight decrease in accuracy. The METER framework

is more modern and larger scale than the older LXMERT model. It could be that

when my labelling scheme is refined by norm clipping, the more powerful METER

framework is nuanced enough to either (optimistically) adapt to my labelling func-

tion or (more cynically) compensate for it. This may imply that my approach would

be worth re-visiting for use in the increasingly competent VQA models of the future.

6.8.2 Quality of Word Norms

Another potential explanation for my poor results may lie with the concreteness or

word pair scores themselves. It could be that scores themselves are not sufficiently

reliable for use in my labelling scheme: i.e. perhaps the SimLex-999 metric does not

always successfully measure the categorical-similarity it aims to. Though I may find

examples in the word cloud figures in this chapter that I find unintuitive, ultimately

however it is beyond my area of expertise to critique the quality of the word norms I

leverage. I can still quantifiably measure the scores I use (as in Table 6.1). However,

I cannot draw any conclusions about my results with respect to the quality of the

neurolinguistic norms I use.
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6.8.3 Comparison to Similar Research

As previously outlined in Section 6.3, my work in this chapter is similar in motivation

to Kervadec et al. [103]. The 2 ‘proximity measures’ the authors define are used in

a loss function designed to exploit the similarities between answers. The authors

project their answers into a new semantic space that is designed to satisfy the

nuanced proximity measures by using either:

1. Co-occurrences of the ground truth with the auxiliary labels in the VQA

dataset.

2. GloVe vector representations of the ground truths.

I argue that my proposed labelling scheme would ideally offer the following advan-

tages over their proposed approach:

1. Their first co-occurrence based approach is reliant on the VQA auxillary la-

bels to work, and thus is not guaranteed to be dataset-invariant, whereas my

labelling scheme can be applied to any dataset that contains answers there are

neurolinguistic scores for.

2. As the co-occurrence based approach work relies on the VQA auxillary labels,

it risks introducing another avenue of dataset bias by inducing ‘hints’ for VQA

specific answer trends.

3. Their second approach using GloVe vectors is dataset invariant, however it is

subject to the difficult-to-quantify biases that exist in the GloVe vectors, and

as such its behaviour may be more difficult to understand. In contrast, I argue

my proposed labelling scheme is intrinsically more easily interpreted because

the similarity scores in the answer vectors are ready for inspection, and have

been produced by rigorous neurolinguistic study.

I argue my approach would theoretically offer these desirable improvements com-

pared to those proposed in Kervadec et al. [103]. Nevertheless, their approach

demonstrate VQA accuracy increases whereas my results show VQA accuracy de-

crease. Their successes implies that the methodology of multiclass labelling based on
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similarity is promising, but that my specific approach is not suitable for the VQA

context. The authors qualitatively assess the structure of their 2 semantic spaces

by visualising them in t-SNE [196] plots. I regenerate their feature spaces and qual-

itatively compare them to the answer space of my labelling scheme: i.e. the set

of answer tensors (fully annotated with all similarity scores norm clipping = 0). I

project these feature spaces with t-SNE in Figures 6.15a and 6.15b. Note that the

VQA and VQA-CP versions both contain the same answers and data but reshuffled

i.e. Figure 6.15a depicts both VQA v1 and VQA-CP v1.
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(a) Features from VQA v1 (and VQA-CP v1).

(b) Features from VQA v2 (and VQA-CP v2).

Figure 6.15: t-SNE representations of the categorical and associative answer tensors in my experiments alongside the auxiliary answer
co-occurrence and GloVe representations in Kervadec et al. [103]. The coloured marks indicate the locations of the same examples
focused on in the qualitative analysis by Kervadec et al. [103]. Colours: ‘orange’, ‘white’, ‘red’, ‘blue’, ‘green’, ‘gray’, ‘black’, ‘pink’,
‘black’, ‘yellow’. Trees: ‘log’, ‘palm tree’, ‘tree branch’, ‘christmas tree’. Motorcycles: ‘yamaha’, ‘kawasaki’, ‘harley’, ‘suzuki’. Dogs:
‘puppy’, ‘golden’, ‘retriever’, ‘german shepherd’, ‘husky’, ‘terrier’, ‘labrador’, ‘rottweiler’, ‘corgi’.
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The radial separation of clusters from the 2 answer spaces used in my approach

reflect the fact that most of the similarity tensors for answers remain very sparse

(despite my best efforts to expand them). However, Figure 6.15 shows that some

of the very examples selected for visualisation in Kervadec et al. [103] similarly

remain loosely proximal in the t-SNE projection of my answer space. Though I

have argued that neurolinguistic human scores in theory offer attractive advantages,

Figure 6.15 strongly imply that both the GloVe and answer co-occurrence spaces

—in spite of their other drawbacks— are more heavily featured, nuanced, and com-

plete than the similarity spaces used in my experiments. It could be argued that

the comparative negative VQA results of my approach versus the successes of the

auxiliary co-occurrence and GloVe representations are instead in some sense incon-

gruent: i.e. there is some fundamental semantic difference between VQA auxiliary

labels/GloVe vectors and ‘real human neurolinguistic representations’. Indeed, my

review of dataset bias in Chapter 2 emphasises how specific, biased, and unintu-

itive VQA question-answer semantics can be. However, my work in this chapter

indicates that my proposed neurolinguistic similarity scores would need to be much

more thoroughly annotated before this hypothesis can be properly tested. Consid-

ering all I have covered in this discussion, overall I believe that my approach would

greatly benefit by achieving much more ‘complete’ (i.e. less sparse) similarity scores.

Furthermore, the successes of similar approaches on VQA accuracy imply that the

underlying methodology is promising.

6.9 Conclusion

Under the guiding principal of contributing dataset and model invariant methodol-

ogy, in this chapter I propose a neurolinguistically-guided multiclass labelling scheme

that aims to induce a more ‘humanlike’ behaviour in VQA frameworks. My initial

results demonstrate deteriorating accuracies in two multimodal transformer mod-

els across 5 VQA datasets. My subsequent efforts to diagnose potential causes of

this deterioration imply that ‘the more intensely my labelling scheme is used, the

more noticable the decrease in performance’ in the vast majority of my experimental
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scenarios. I do however find that applying ‘norm clipping’ to remove low similar-

ity scores causes the more powerful and modern METER framework to deteriorate

much less substantially under my labelling scheme, with some experimental sce-

narios demonstrating no significant accuracy deterioration. I qualitatively compare

my approach to similar successful methodologies by visualising clusters of our re-

spective answer spaces. I conclude that in principal my methodology is sound, but

that the neurolinguistic similarity scores I leverage are too general to sufficiently

populate the often esoteric and specific VQA answer space. In the context of the

widely explored problem of VQA dataset bias, I discuss the possibility that there is

a problematic incongruence between VQA answer spaces and ‘human-like’ neurolin-

guistic scores. However, I ultimately conclude that my labelling scheme would need

to be more completely annotated —through extra neurolinguistic similarity scores

or otherwise— before such a hypothesis can be properly entertained.
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CHAPTER 7

Discussion and Conclusion

In each of my preceding contribution chapters, I have provided a full discussion and

conclusion of the findings and results. I have explicitly chosen to do this so that the

significance of all my findings and details can be thoroughly and fully contextualised

right alongside their respective results subsections. To complement these existing

conclusions, this chapter aims to condense them into a more general discussion:

focusing on the findings, themes, and guiding questions of this thesis as a whole. To

these concluding ends, this is chapter therefore structured as follows:

1. Section 7.1 summarises the contributions and conclusions of my work in this

thesis.

2. Section 7.2 summarises the motivation and guiding principals that I have ad-

hered to in my work.

3. Section 7.3 discusses the significance of my findings, and examines how I have

answered the research questions of this thesis.

4. Section 7.4 discusses both the limitations of my work and outlines avenues for

future work to consider.
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7.1 Contributions

My literature review in Chapter 2 provides an extensive analytical overview of

areas share across my contribution chapters: VQA datasets, video-QA datasets,

and modality bias in multimodal question-answering datasets.

Chapter 3 exhaustively demonstrates the catastrophic presence of language bias

in the TVQA video-QA dataset, where most research in the field is focused instead

on VQA. I demonstrate that state-of-the-art results are achievable on TVQA by

focusing purely on the language features, rather than requiring the visual inputs as

intended. I propose a multimodal evaluation framework that can isolate ‘enriched’

modality-reliant subsets of datasets through my proposed Inclusion-Exclusion Metric

(IEM), with which I generate such subsets of the TVQA dataset. I emphasise that

a truly multimodal dataset is not easily attained, even with design a philosophy

specifically aspiring to it.

Chapter 4 experiments with applying the bilinear pooling operation —popularised

in VQA— to video-QA. My results across 2 models and 4 datasets show that bilinear

pooling harms performance in video-QA, contrasting its successes on VQA. I com-

bine my experimental results with insights from the surrounding literature to offer

explanations for the poor performance of bilinear pooling in a video-QA context,

most notably: that language-vision video tasks underperform with bilinear pooling

where other modality combinations succeed; and that bilinear operations are expen-

sive and inefficient to train throughout multiple time steps. I draw parallels between

the early use of bilinear techniques and two neurological theories: The Two-Stream

Model of Vision, and Dual Coding Theory. I complement these observations by

proposing several ideas for neurologically-inspired multimodal processing. I develop

one of these proposals from dual coding theory in Chapter 6.

Chapter 5 takes a different approach in addressing the relative imbalance be-

tween text and vision utilisation by ‘improving the power of vision’. This chapter

endeavours to avoid the problems of language bias entirely by focusing on visual dy-

namics video datasets, and applying the powerful generative pretraining paradigm

to vision —from its successes in language modelling— i.e. visual modelling. I

achieve this by demonstrating the benefits of visual pretraining for ‘downstream’
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tasks. To this end, I introduce 6 dynamic simulations that are naturally affiliated

with 7 ‘downstream tasks’ on which I demonstrate that visual pretraining can lead

to significant improvement in downstream task performance.

Chapter 6 returns to multimodal question-answering, using VQA instead of

video-QA as the experimental platform thanks more thorough VQA research in

mitigating language bias (VQA-CP and GQA). I realise one of my proposals in

Chapter 4 and introduce a neurolinguistically-guided multiclass labelling scheme

that aims to induce more humanlike behaviour through neurolinguistic similarity

scores. My initial results show my proposed labelling scheme deteriorates VQA

accuracy on 2 VQA models and 5 datasets. My subsequent experiments demonstrate

that ‘clipping’ away the low similarity scores can, at the very best, bring my labelling

scheme inline with that of the default ‘one-hot’ labelling. In light of my negative

results, I qualitatively compare my approach to similar successful methodologies by

visualising clusters of our respective answer spaces. I conclude that in principal

my methodology is sound, but that the neurolinguistic similarity scores I leverage

are too general to sufficiently populate the often esoteric and specific VQA answer

spaces.

7.2 Motivation and Guiding Principals

The most fundamental motivation that has underpinned the research questions I

tackle in this thesis is: “to improve the quality and capacity of multimodal pro-

cessing in machine learning”. As outlined in Chapter 1, I identified the overlap of

language and vision to be both the most advanced and heavily resourced area of

multimodal machine learning. In fact, interest and research output in multimodal

language-vision machine learning tasks has continued to grow exponentially in the

years I have dedicated to this thesis. Across the literature in Chapter 2 that I have

studied, I have identified language-vision question-answering tasks (VQA and video-

QA) as a suitably complex task, paired with the latest state-of-the-art modelling

techniques of their times, from which to develop and test my own methodology.

Recent history in the field has shown that the real significant leaps forward in the
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performance and state-of-the-art of language-vision question-answering is primarily

achieved by exponentially increasing the size of datasets and models, and that the

conceptually ‘uncomplicated’ and somewhat ‘pure’ attention-based transformer ar-

chitecture is sufficient (perhaps even optimal) to facilitate this. The players in this

field with the resources sufficient to push the ‘scale’ of language-vision benchmarks

provide appreciated and exciting new frontiers in multimodal processing and I whole-

heartedly welcome such investment in this field. As a researcher with more modest

resources, I have determined that I can best play my part in furthering multimodal

progress by focusing on the major problems in the field that I can address:

• Modality bias and the imbalance of classifying ‘power’ of language and vision

inputs.

• The sub-optimal exploitation of input features at both the modelling and

dataset level.

• The rapid growth of the field rendering even recently published work irrelevant

and outdated.

This incredible period of growth, interest, and topic volatility1 in particular moti-

vates one of my key guiding principals: to ensure my contributions remain relevant,

‘scaling’ with revolutionary new benchmark models and datasets of the near future.

Given this path I have described: through the initial research question of my thesis,

to the end of my final contribution in Chapter 6, I have therefore verbosely but

precisely chosen to my thesis title to be: Scalable Methodologies and Analyses

for Modality Bias and Feature Exploitation in Language-Vision Multi-

modal Deep Learning. My work in this thesis represents my cumulative efforts

to contribute to key elements of language-vision multimodality in deep learning. I

direct my work away from more ‘saturated’ areas of research towards those that

are ‘intuitive, yet overlooked’. I have aspired to be methodologically novel. This

has led me to focus more on theoretical studies, exploring the properties of modern

1Fuelled in no small part by exponentially more expensive and out-of-reach aforementioned
privately funded models.
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methodology, and discussing their suitability for future use. I have not focused on

application studies that —though of extreme import and interest to the field— are

likely to be quickly outgrown by the next big transformer or stable-diffusion model.

7.3 Significance, and Answering my Research Ques-

tions

In the following subsections: I highlight the prominent research questions raised in

each of my chapters; I discuss the extent to which I have addressed that research

question; and I discuss the significance of the answers I yield to the wider field.

7.3.1 Chapter 3

My early work in this PhD prioritised finding appropriately modern and complex

multimodal benchmark datasets and models to serve as an initial experimental plat-

form. I settled on the newly-proliferated video-QA task, but quickly found that the

state-of-the-art TVQA dataset I had chosen was seemingly plagued by textual short-

cuts that allowed models to catastrophically undervalue its visual inputs. The most

immediate (and to-date most focused on in citation) message from my work here is

that: despite the best efforts of the authors of TVQA to ensure ‘multimodality’ in

their dataset, hazardous language bias flaws still permeate this popular and widely

used dataset. My findings should serve as a caution to be critical of the design of the

datasets we use. With my guiding principals in mind, this raises the first research

question of this chapter: “Can we mitigate modality bias in datasets in a ‘scalable’,

future-proofed manner?”. In short, yes but with some limitations. My IEM method

does allow for modality-reliant subsets of a biased dataset to be isolated, but the

subsets I can propose on TVQA are an order of magnitude smaller that the full

dataset. The subset splits I propose are therefore likely to be less desirable for

experimentation in future research as dataset size is a crucial factor in deep learn-

ing. However, the small size of IEM subsets are likely to grow conveniently large

as future datasets increase in size. I argue that this will allow my IEM modailty-

183



subset methodology (already model/dataset-invariant) to be of relevant use for the

datasets of the future. At time of my experiments, such textual-bias analyses were

thoroughly analysed in still-image VQA datasets, yet surprisingly underexplored for

video-QA. As such, Chapter 3 addresses the relevant research gap of modality bias

in video-QA.

7.3.2 Chapter 4

My next area of focus shifted towards multimodal modelling methodology and the

way it is discussed and critically analysed in the field. My initial work in Chapter 4

—exploring a seemingly-overlooked research gap in the application of ‘bilinear pool-

ing’ from VQA to video-QA— grew from a curious experiment into a much longer

discussion about how the focus on achieving incremental empirical improvements

can overshadow other interesting findings. As for the immediate question: “how

does bilinear pooling work as a multimodal fusion technique when applied to video-

QA?”, my experiments across 4 datasets and 2 models show that bilinear pooling

yields consistent and significant accuracy decreases when substituted for a simple

concatenation of visual+textual features. Though my findings alone are already of

note for people wishing to ‘plug-and-play’ BLP in video models of their own, I have

further found in my review of surrounding literature that it coincides with a notable

gap in language-vision bilinear fusion for video tasks. Though I attribute the poor

performance of BLP in languague-video fusion to problems of temporal alignment

and sheer inefficiency-of-scale, I find the lack of work pointing to this relative under-

adoption quite perplexing. Though it might be natural to silently decide ‘What is

the point of bilinear fusion when attention in transformer models work so well?’,

does this hint at a problem in the way that we view or discuss our methodology?

Is it perhaps presumptive to claim that a bilinear operation (mathematically inge-

nious though it may be) increased VQA performance thanks to ‘richer multimodal

representation’? Furthermore, if we are so focused on the empirical performance of

our methodology on our datasets (even though this is quite naturally our main pri-

ority), does this attitude not sometimes cause us to overlook something interesting?

Indeed, I have noticed parallels in the application of bilinear models and multimodal
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fusion more generally to the ‘two-stream’ theory of vision, and dual coding theory.

I therefore hope that my work draws attention to what can often goes unsaid in our

collective mission for greater empirical performance on multimodal tasks.

7.3.3 Chapter 5

As I entered the latter half of my studies, I prioritised finding a more ambitious

way to try and harmonise visual contributions with their language complements: I

left the constraints of language-vision QA datasets behind for a time and focused

on exploring the vision parallel to the highly-successful language modelling training

paradigm. Naturally the most immediate questions I contend with in this work are:

“what are the similarities, differences, and challenges of potential visual parallels to

language modelling?”. Perhaps the most obvious difference is that the prediction in

visual generation here in generative learning is on a dense pixel space as opposed

to a sequential series of text tokens in a vocabulary. I found from both my work

and the surrounding literature (reviewed in Section 5.2.1) that this visual scenario

is still challenging in more ‘primitive’ tasks, compared to the prediction quality in

modern language modelling. I find that it is extremely difficult to sustain a realistic

visual simulation even a few frames into the future without obvious indication that

it is artificial i.e. failing some manner of visual Turing-test. Despite these obvious

visual inconsistencies, I show that an understanding of the underpinning physical

laws can be adequately induced e.g. gravity and bouncing is clearly understood even

if shape of object might shimmer and distort slightly. Furthermore, my results show

that this visual pretraining is beneficial on ‘downstream’ test-tasks, serving as a

promising proof-of-concept that generative pretraining can yield more useful visual

features on a variety of future tasks in the field. Though I am able to achieve these

promising results by gaining distance from the dataset and modelling challenges in

VQA and video-QA, such abstracted work is, by nature, less directly applicable to

current language-vision tasks of interest. I believe that the answer to the question

“what are the barriers to applying this methodology to multimodality in the fu-

ture?” will be answered in the not-so-distant future by the very new multimodal

diffusion models. I have used my modest resources to generate simple datasets on
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reasonably sized CNN and transformer models, aiming to carefully but unequivo-

cally demonstrate the promise of generative visual pretraining. However, given the

massive text-image datasets and computational resources invested in training this

diffusion process, I believe the fundamental step in diffusion decoder models —the

incremental ‘de-noising’ of image representations— could be repurposed to work

temporally instead, paralleling my generative work in visual modelling in a popu-

lar and powerful benchmark that has already proven highly effective in multimodal

deep learning.

7.3.4 Chapter 6

My finishing work in Chapter 6 returns to multimodal QA —benefiting from the

rapid advancement of the field during my previous study— aiming to unify the

themes of my work with design decisions informed by my previous findings: trad-

ing the novelty and complexity of video-QA benchmarks for the more thoroughly

improved text-bias mitigation in the more established VQA benchmarks (which con-

veniently has improved substantially since the beginning of my studies); leveraging

state-of-the-art text-image transformer models to overcome modelling inadequacies

as best I can; applying neurologically-inspired (initially considered in Chapter 4)

and dataset/model-invariant labelling methodology. I believe that if my labelling

scheme proposed in Chapter 6 could be refined to demonstrate consistent positive

results, then it could have a significant impact on the field: the answer vocabu-

lary for all such current and future classification datasets would be able to adopt

it as the neurolinguistic scores of similarity are gathered from human responses to

words, not linked with any specific dataset. However, the approaches that I have

tried thus far have not yet managed to yield consistent VQA improvements. Nev-

ertheless, I am content with my work in this chapter: I believe that it satisfyingly

unifies the guiding principals and research themes of my thesis thusfar; I argue that

the potential reward of improving multimodal classification labelling schemes (in

a dataset-invariant manner) is worth the risk; my approach is significantly distin-

guished from the few existing similar approaches by leveraging neurolinguistic scores

and not relying on correlations and bias of machine learning features or datasets;
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and perhaps most importantly, there are many yet-untested avenues left to refine

and improve my labelling approach in hope of its ultimate goal. In my opinion, the

most immediate and promising next-step would be to secure more neurolinguistic

word similarity scores. Collecting such scores could be reasonably achieved with

multidisciplinary collaboration for even a modest research project, and would allow

scores to be collected to specifically fill in common gaps in VQA answer vocabular-

ies. Though I have done my best to improve relative quality of my labelling scheme,

I needed to concede a significant portion of the dataset to do so. I would suggest

cleverly filling in this labelling gap through targeted data collection to be the most

promising next step of my approach.

7.4 Limitations and Future Work

Though I have explored limitations and future works in my contribution chapters

in isolation, In the following sections, I discuss them more thoroughly and in the

context the thesis as a whole.

7.4.1 Chapter 3: IEM Subsets Are Very Small

The subsets of TVQA that my IEM metric from Chapter 3 isolates are an order of

magnitude smaller than the full dataset. Such a size reduction severely limits the

applicability of the datasets generated. The small size subsets for any one dataset

could be offset by combining IEM subsets from multiple different datasets. However,

while the yielded subsets remain very small, it would require a large number of

datasets to offset this problem.

7.4.2 Chapter 3: IEM Works Better on More Accurate

Models

The IEM subsets should theoretically become more accurate if they are collected

using a higher quality model. It therefore follows that the subsets I propose are

likely to be at least somewhat inaccurate, as the random answer selections of the
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imperfect TVQA model I use will inevitably corrupt the ‘modality-reliant subsets’.

In this way, IEM is even less useful if the answer vocabulary is small, as the chance

of any specific corruption increases. Future work choosing to utilise my proposed

subsets or IEM methodology should revisit datasets with increasingly more accurate

models, and should be aware that a larger answer vocabulary may be beneficial for

avoiding accidental corruptions.

7.4.3 Hard to Escape Modality Bias

While Chapter 4 aims to shift focus from dataset bias to multimodal fusion tech-

niques, in practice I found it hard to test the hypothesis with the influence of modal-

ity bias present in the video-QA datasets. As explored in Chapter 2, modality bias

in video-QA datasets is much less thoroughly explored than that in VQA. As interest

grows in ‘harder’ video datasets and computational resources increase to meet this

challenge, it is very important that thorough modality bias analysis is undertaken

(e.g. a TVQA-CP dataset).

7.4.4 Neurological Inspirations Can Be Difficult to Realise

Future work may consider my propositions as detailed in Section 4.8.2: ‘two-stream-

style’ cross talk for ‘style’ and ‘content’ processing; or grouping features as either

‘verbal’ or ‘non-verbal’ modalities to reflect the idea of logogens and imagens. It

should be noted however that though neurological inspirations may be fine as initial

motivation for new methodology, my difficulties in Chapter 6 imply that even rel-

atively intuitive and seemingly well-resourced ideas can lack sufficient neurological

ground truth to properly test.

7.4.5 Chapter 5: Scale

My visual modelling approach does not match the sheer scale of modern language

modelling. Modern language models can train on a huge amount of data due to the

comparative ease of collecting, storing, and tokenising raw language. Such language

models are often trained with substantial computational resources. By directly
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training on and outputting raw images, which are much larger representations than

language tokens, I can’t yet approach the scale of large pretrained modern language

models with the resources available to me.

7.4.6 Chapter 5: Dataset Complexity

Larger and more complicated visual dynamics datasets are unexplored in Chapter

5. Though I do verify the pretraining on HMDB-51 and MOCAP, the vista between

these results and the longer term predictive power of simpler datasets highlight the

need for a more measured and careful probing approach to simpler visual tasks first.

7.4.7 Chapter 5: Long Term Visual Prediction

I don’t propose a direct solution in Chapter 5 for the tendency of visual models

to suffer in long term predictive power. Though there is work primarily aiming to

address this problem (surveyed by [150] in their Section 2.4). I instead highlight

that simpler physical simulations hold much longer under current loss functions

and suggest that loss functions may not always be to blame for poor generative

performance. I argue that sometimes the blame instead lies with capacity of current

models to handle the quality and scale of available datasets.

7.4.8 Chapter 5: More Nuanced Predictive Training Strat-

egy

Though I parallel language modelling, I only predict the final frame of a sequence,

and do not parallel more intricate language modelling training strategies, e.g. bidi-

rectional token prediction for words in the middle of a sentence. Although more

nuanced training methods for video has been explored on techniques from several

years ago [164], and more recently for generative pretraining with images [28], I am

able to present strong pretraining results without using such nuanced approaches in

this video-based study. Regardless, this is an interesting line of research for future

work.
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7.4.9 Chapter 6: More Complete Answer Similarity Vocab-

ularies

My results indicate that my proposed neurolinguistic similarity scores need to be

much more thoroughly ‘complete’ before my hypothesis ‘does human-like behaviour

benefit a VQA context’ can be properly tested. Future research should look to ‘com-

plete’ my sparse answer similarity tensors by either collecting more neurolinguistic

scores themselves, or finding a more elegant way to give an ‘overly specific’ VQA

answer a score e.g. by considering the concreteness of the subject of the answer.

7.4.10 Chapter 6: Better Suited to Better Models?

I find that the more powerful METER framework suffers much less performance

degradation than the older LXMERT model. It could be that my labelling scheme

performs better on more powerful models. Future research with access to better

computational resources could test this hypothesis.

7.4.11 Chapter 6: Setting Highly Unrelated Answer Scores

to Below 0

Given the chance to extend the work in this thesis myself, one of the two very

next things I would try is extending the concept of ‘norm clipping’ by setting the

similarity scores for highly dissimilar answers to below 0 in an effort to test the

alternative hypothesis ‘is it helpful for VQA models to not behave as humans do

not ’.

7.4.12 The Next Frontier? Text-to-Image Models

In the time I have spent working on this thesis, some of the newest and most

disruptive frontiers in multimodal research have been: breakthroughs in modality

bias; and the rise of multimodal transformers. However, most recently, the largest

and newest of these multimodal transformers have made monumental strides in the
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previously challenging text-to-image generation task e.g. DALL-E 22, GLIDE [148],

CM3 [1]. Given their unprecedented popularity and widespread appeal amongst

the general public, the use of these models may come to dominate the interest of

multimodal research in the near future. The priorities for bias in multimodality

may experience a shift away from language bias as it has been addressed over the

past few years, and towards the ‘social’ biases derived from human assumptions that

these models exhibit [30].

7.4.13 Visual Modelling in Multimodal Diffusion Models?

Perhaps the most natural application of my work to these powerful new diffusion

models would be to adapt the de-noising step in the decoder to work temporally,

i.e. given an input text condition, instead of gradually removing noise from an

image feature, instead train the model by gradually apply ‘time steps’ to an input

image, potentially inducing an understanding of visual dynamics in a powerful and

popular established multimodal benchmark. Were I to continue my work in this

thesis myself, this would be the second of the two ideas I would explore next.

2https://openai.com/dall-e-2/
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Khudanpur. Recurrent neural network based language model. In INTER-
SPEECH, 2010. 103

[140] Tomas Mikolov, Kai Chen, Gregory S Corrado, and Jeffrey A Dean. Com-
puting numeric representations of words in a high-dimensional space, May 19
2015. US Patent 9,037,464. 35

[141] A David Milner and Melvyn A Goodale. Two visual systems re-viewed. Neu-
ropsychologia, 46(3):774–785, 2008. 63

[142] Anthony David Milner. How do the two visual streams interact with each
other? Experimental Brain Research, 235:1297 – 1308, 2017. xvi, 62, 63, 90,
91, 92

[143] David Milner and Mel Goodale. The visual brain in action, volume 27. OUP
Oxford, 2006. 63

[144] Ana Mlinari, Martina Triplat Horvat, and Vesna upak Smoli. Dealing with
the positive publication bias: Why you should really publish your negative
results. Biochemia Medica, 27, 2017. 172

[145] John Morton. Facilitation in Word Recognition: Experiments Causing Change
in the Logogen Model, pages 259–268. Springer US, Boston, MA, 1979. ISBN
978-1-4684-0994-9. doi: 10.1007/978-1-4684-0994-9 15. URL https://doi.

org/10.1007/978-1-4684-0994-9_15. 92

[146] Jonghwan Mun, Paul Hongsuck Seo, Ilchae Jung, and Bohyung Han. Marioqa:
Answering questions by watching gameplay videos. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2886–2894, 2017. 16, 19

[147] Douglas Nelson, Cathy Mcevoy, and Thomas Schreiber. The univer-
sity of south florida word association, rhyme, and word fragment norms.
http://w3.usf.edu/FreeAssociation/, 1998. 96, 143, 147

[148] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela
Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards pho-
torealistic image generation and editing with text-guided diffusion models.
arXiv preprint arXiv:2112.10741, 2021. 191

204

http://openaccess.thecvf.com/content_cvpr_2017/papers/Maharaj_A_Dataset_and_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Maharaj_A_Dataset_and_CVPR_2017_paper.pdf
https://doi.org/10.1007/978-1-4684-0994-9_15
https://doi.org/10.1007/978-1-4684-0994-9_15


[149] Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and
Ji-Rong Wen. Counterfactual vqa: A cause-effect look at language bias. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. 29, 31

[150] Sergiu Oprea, P. Martinez-Gonzalez, Alberto Garcia-Garcia, John Alejandro
Castro-Vargas, S. Orts-Escolano, J. Garćıa-Rodŕıguez, and Antonis A. Argy-
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[194] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete
representation learning. In NIPS, 2017. 102
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CHAPTER A

Appendix

A.1 Chapter 5: Further Training Details

All inputs are preprocessed to grayscale images of dimension 64x64. The pixel values

are then normalised to ∈ [0,1] by dividing all pixels by 255. A pixel-wise sigmoid

activation is used to create the output image and calculate metrics and losses. The

visualisations of outputs in this chapter are the result of multiplying the pixel values

of the outputs by 255 and rounding them.

A.1.1 Fully Convolutional CNN

‘Depth’ refers to the number of broad convolution steps in both the downwards and

upwards directions. The models are of depth 3 (see Figure 5.3) and the convolutions

have both a kernel size of 3x3 and padding of 1. I found that varying the depth and

kernel size did not yield much difference in results and I have accordingly fixed them

at their highest performing values. The linear probes (for probing frozen models)

are created from:

1. The outputs of the final layer.
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2. The outputs of each double convolution layer in both the downward and up-

ward direction.

A.1.2 Patch Transformer

As previously described, the patch transformer is formed from 2 objects from the

SegFormer repository1:

1. As an encoder, the MixVisionTransformer object with: in chans = number of

input frames, img size = 64, sr ratios = [1,1,1,1] (scale reduction ratios).

2. As a decoder, the SegFormerHead object with: feature strides = [4,8,16,32],

in channels = [64,128,256,512], channels = 128, num classes = 16, in index

= [0, 1, 2, 3], decoder params = {“embed dim”:256}, dropout ratio = 0.1,

align corners = False. The linear probes (for probing frozen models) are cre-

ated from: 1) the outputs of the encoder, 2) the resized and reshaped outputs

of each of the linear projection layers in the decoder, 3) the output ‘linear fuse’

convolution module which takes as input the concatenation the outputs de-

scribed in 2).

A.1.3 Learning Rates

This section shows the learning rates used (chosen through a parameter search) for

the experimental results in this chapter.

1https://github.com/NVlabs/SegFormer
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CNN Img Trans Patch Trans

SL1 SSIM SL1 SSIM SL1 SSIM

2D Bouncing m = 5

1e-3 1e-4 1e-5 1e-5 1e-3 1e-3

2D Bouncing m = 59

1e-3 1e-3 1e-5 3e-6 1e-4 1e-4

3D Bouncing m = 5

1e-4 1e-3 3e-6 1e-5 1e-3 1e-3

3D Bouncing m = 99

1e-3 1e-3 3e-6 1e-5 1e-3 1e-3

Roller m = 5

1e-3 1e-3 1e-5 3e-6 1e-3 1e-3

Pendulum m = 5

1e-3 1e-4 3e-6 3e-6 1e-3 1e-4

Blocks m = 49

1e-3 1e-3 3e-6 3e-6 1e-3 1e-3

Moon m = 5

1e-2 1e-3 1e-5 3e-6 1e-3 1e-3

MMNIST m = 5

1e-2 1e-2 3e-6 3e-6 5e-4 5e-4

MOCAP m = 5

1e-4 1e-4 1e-5 1e-5 1e-4 1e-4

HDMB51 m = 5

1e-4 1e-4 3e-6 3e-6 1e-4 1e-4

Table A.1: Learning rates used for modelling experiments.
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Model Details CNN I-Trans P-Trans

Modelling Dataset = 2D Bounce — Task = Counting Bounces in 59 Frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-4 3e-7 3e-6
None Unfrozen Model + Non-Linear MLP 1e-3 1e-5 1e-4
m = 59 SL1 Frozen Model + Linear Probes 5e-6 3e-7 1e-5
m = 59 SSIM Frozen Model + Linear Probes 1e-5 3e-7 1e-5
m = 59 SL1 Unfrozen Model + Non-Linear MLP 1e-3 1e-5 1e-3
m = 59 SSIM Unfrozen Model + Non-Linear MLP 1e-3 1e-5 1e-3

Modelling Dataset = 2D Bounce — Task = Gravity, from 5 frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-4 1e-5 3e-6
None Unfrozen Model + Non-Linear MLP 1e-4 3e-6 1e-4
m = 5 SL1 Frozen Model + Linear Probes 3e-6 3e-6 1e-6
m = 5 SSIM Frozen Model + Linear Probes 3e-6 3e-6 3e-6
m = 5 SL1 Unfrozen Model + Non-Linear MLP 1e-3 1e-5 1e-3
m = 5 SSIM Unfrozen Model + Non-Linear MLP 1e-4 1e-5 1e-3

Modelling Dataset = 3D Bounce — Task = Counting Bounces in 99 frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-3 3e-6 2e-5
None Unfrozen Model + Non-Linear MLP 1e-5 1e-6 1e-4
m = 99 SL1 Frozen Model + Linear Probes 1e-5 1e-7 1e-5
m = 99 SSIM Frozen Model + Linear Probes 1e-5 1e-6 1e-5
m = 99 SL1 Unfrozen Model + Non-Linear MLP 1e-5 1e-6 1e-4
m = 99 SSIM Unfrozen Model + Non-Linear MLP 1e-4 1e-6 1e-4

Modelling Dataset = Roller — Task = Gravity, from 5 frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-3 1e-5 3e-5
None Unfrozen Model + Non-Linear MLP 1e-4 1e-6 1e-4
m = 5 SL1 Frozen Model + Linear Probes 1e-5 1e-6 8e-6
m = 5 SSIM Frozen Model + Linear Probes 1e-5 3e-6 8e-6
m = 5 SL1 Unfrozen Model + Non-Linear MLP 5e-3 3e-6 1e-3
m = 5 SSIM Unfrozen Model + Non-Linear MLP 5e-3 1e-7 1e-3

Table A.2: Learning rates of each of the test-task experiments.
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Model Details CNN I-Trans P-Trans

Modelling Dataset = Pendulum — Task = Gravity, from 5 frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-3 1e-6 1e-5
None Unfrozen Model + Non-Linear MLP 1e-4 3e-6 1e-4
m = 5 SL1 Frozen Model + Linear Probes 1e-5 1e-6 3e-6
m = 5 SSIM Frozen Model + Linear Probes 1e-5 3e-7 3e-6
m = 5 SL1 Unfrozen Model + Non-Linear MLP 1e-4 3e-7 1e-3
m = 5 SSIM Unfrozen Model + Non-Linear MLP 1e-3 1e-6 1e-3

Modelling Dataset = Blocks — Task = Mass Ratio, from 49 frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-3 3e-6 1e-5
None Unfrozen Model + Non-Linear MLP 1e-4 3e-6 1e-4
m = 49 SL1 Frozen Model + Linear Probes 1e-5 1e-7 6e-6
m = 49 SSIM Frozen Model + Linear Probes 1e-5 3e-7 6e-6
m = 49 SL1 Unfrozen Model + Non-Linear MLP 1e-3 3e-6 1e-3
m = 49 SSIM Unfrozen Model + Non-Linear MLP 1e-3 3e-6 1e-3

Modelling Dataset = Moon — Task = Mass, from 5 frames

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-3 1e-6 3e-6
None Unfrozen Model + Non-Linear MLP 1e-4 3e-7 1e-4
m = 5 SL1 Frozen Model + Linear Probes 3e-6 1e-5 6e-6
m = 5 SSIM Frozen Model + Linear Probes 2e-5 3e-6 6e-6
m = 5 SL1 Unfrozen Model + Non-Linear MLP 1e-4 1e-6 1e-3
m = 5 SSIM Unfrozen Model + Non-Linear MLP 2e-5 3e-7 1e-3

Modelling Dataset = MMNIST — Task = MNIST

- Constant Output
- Input Image + Linear Layer
None Frozen Model + Linear Probes 1e-4 3e-6 3e-6
None Unfrozen Model + Non-Linear MLP 1e-4 1e-6 1e-4
m = 5 SL1 Frozen Model + Linear Probes 3e-6 1e-7 1e-6
m = 5 SSIM Frozen Model + Linear Probes 3e-6 1e-5 1e-6
m = 5 SL1 Unfrozen Model + Non-Linear MLP 1e-3 1e-6 1e-3
m = 5 SSIM Unfrozen Model + Non-Linear MLP 1e-3 3e-7 1e-3

Table A.3: Learning rates of each of the test-task experiments.
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A.2 Chapter 6: Additional Implementation De-

tails

Accuracies are reported from the best checkpoint at during training.

I build a codebase around the implementation of LXMERT [183] submitted to

Hugging Face2. LXMERT models are trained with: a learning rate of 1e-6, an

Adam optimiser, and trained for up to 300 epochs. All layers are unfrozen, and the

only change made is to set the size of the output layer to fit each dataset’s answer

vocabulary.

My experiments using the METER [51] transformer use the METER codebase3.

The models in our experiment are finetuned by starting from the provided pretrained

checkpoint provided at the METER codebase. Experiments are trained for up to 20

epochs.

2https://huggingface.co/docs/transformers/model_doc/lxmert
3https://github.com/zdou0830/METER
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