4,496 research outputs found

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    Factory Gate Pricing: An Analysis of the Dutch Retail Distribution

    Get PDF
    Factory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution. Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers. Owing to both the asymmetry in the distribution networks (the supplier sites greatly outnumber the retailer distribution centers) and the better inventory and transport coordination mechanisms, this is likely to result in high savings. A mathematical model was used to analyze the benefits of FGP for a case study in the Dutch retail sector. Extensive numerical results are presented to show the effect of the orchestration shift from supplier to retailer, the improved coordination mechanisms, and sector-wide cooperation.supply chain management;factory gate pricing;retail distribution

    Optimisation-Based Solution Methods for Set Partitioning Models

    Get PDF

    Factory Gate Pricing: An Analysis of the Dutch Retail Distribution

    Get PDF
    Factory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution.Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers.Owing to both the asymmetry in the distribution networks (the supplier sites greatly outnumber the retailer distribution centers) and the better inventory and transport coordination mechanisms, this is likely to result in high savings.A mathematical model was used to analyze the benefits of FGP for a case study in the Dutch retail sector.Extensive numerical results are presented to show the effect of the orchestration shift from supplier to retailer, the improved coordination mechanisms, and sector-wide cooperation.pricing;retailing;distribution;supply chain management;Netherlands

    Optimization of a city logistics transportation system with mixed passengers and goods

    Get PDF
    International audienceIn this paper, we propose a mathematical model and an adaptive large neighborhood search to solve a two{tiered transportation problem arising in the distribution of goods in congested city cores. In the rst tier, goods are transported in city buses from a consolidation and distribution center to a set of bus stops. The main idea is to use the buses spare capacity to drive the goods in the city core. In the second tier, nal customers are distributed by a eet of near{zero emissions city freighters. This system requires transferring the goods from buses to city freighters at the bus stops. We model the corresponding optimization problem as a variant of the pickup and delivery problem with transfers and solve it with an adaptive large neighborhood search. To evaluate its results, lower bounds are calculated with a column generation approach. The algorithm is assessed on data sets derived from a eld study in the medium-sized city of La Rochelle in France

    Network Migration Problem: A Logic-based Benders Decomposition Approach Driven by Column Generation and Constraint Programming

    Full text link
    Telecommunication networks frequently face technological advancements and need to upgrade their infrastructure. Adapting legacy networks to the latest technology requires synchronized technicians responsible for migrating the equipment. The goal of the network migration problem is to find an optimal plan for this process. This is a defining step in the customer acquisition of telecommunications service suppliers, and its outcome directly impacts the network owners' purchasing behaviour. We propose the first exact method for the network migration problem, a logic-based Benders decomposition approach that benefits from a hybrid constraint programming-based column generation in its master problem and a constraint programming model in its subproblem. This integrated solution technique is applicable to any integer programming problem with similar structure, most notably the vehicle routing problem with node synchronization constraints. Comprehensive evaluation of our method over instances based on six real networks demonstrates the computational efficiency of the algorithm in obtaining quality solutions. We also show the merit of each incorporated optimization paradigm in achieving this performance
    corecore