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Abstract

In this paper, we formulate the vehicle routing problem with time windows and
temporal dependencies. The problem is an extension of the well studied vehicle rout-
ing problem with time windows. In addition to the usual constraints, a scheduled
time of one visit may restrain the scheduling options of other visits. Special cases
of temporal dependencies are synchronization and precedence constraints. Two
compact formulations of the problem are introduced and the Dantzig-Wolfe decom-
positions of these formulations are presented to allow for a column-generation-based
solution approach. Temporal dependencies are modeled by generalized precedence
constraints. A total of four different master problem formulations are proposed
and it is shown that the formulations can be ranked according to the tightness with
which they describe the solution space. A tailored time window branching is used to
enforce feasibility on the relaxed master problems. Finally, a computational study
is carried out to quantitatively reveal strengths and weaknesses of the proposed
formulations. It is concluded that, depending on the problem at hand, the best per-
formance is achieved either by relaxing the generalized precedence constraints in the
master problem, or by using a time-indexed model, where generalized precedence
constraints are added as cuts when they become severely violated.

Keywords: vehicle routing with time windows; temporal dependency; general-
ized precedence constraints; time window branching; relaxation; column generation;
branch-and-price; branch-and-cut-and-price; set partitioning; set covering; integer
programming.

1 Introduction

The vehicle routing problem with time windows and temporal dependencies (VRPTWTD)
is an extension of the vehicle routing problem with time windows (VRPTW). Given is a
fixed set of customers with individual demands and with time windows specifying when
each customer accepts service. The objective is to find routes for a number of vehicles,
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all starting and ending at a central depot in such a way that the total distance is min-
imized. The extension that we present here is concerned with temporal dependencies
between customers. A temporal dependency which is often encountered in practical
instances and that has received the most attention in the literature, is the rather strict
requirement of synchronization between two visits. Synchronization on visits is also
used to model rendezvous between vehicles. Other, less restrictive, dependencies are
constraints on minimum overlap between visits and limits on minimum or maximum
gaps between visits.

There is a vast amount of literature on VRPTW and its variants. VRPTW is
known to be NP-hard (Savelsbergh, 1985), nevertheless exact solution of the problem
has received a lot of attention. The most successful approach is based on a Dantzig-
Wolfe decomposition (Dantzig and Wolfe, 1960) of the mathematical model using column
generation in a branch-and-cut-and-price framework. The method was first proposed
by (Desrochers et al., 1992). The most promising recent work is based on solution of
the subproblem as an elementary shortest path problem with time windows. (Feillet
et al., 2004) were the first to apply this idea and were followed by (Chabrier, 2006),
(Danna and Pape, 2005), (Jepsen et al., 2008), and (Desaulniers et al., 2008) among
others. The approach that we present here for VRPTWTD builds on the same idea. See
(Kallehauge et al., 2005) for a recent review of the literature and a thorough description
of the technique.

The motivation behind this work is the many practical applications of VRPTWTD.
With the inclusion of temporal dependencies in the model, we are able to describe
numerous concrete problems. As (Kilby et al., 2000) point out, there is a need for more
sophisticated models for the vehicle routing problem. They mention synchronization
and precedence constraints as some of the relevant extensions.

(Ioachim et al., 1999) describe a fleet assignment and routing problem with synchro-
nization constraints. The problem is solved by column generation. A similar problem
with synchronization is described by (Bélanger et al., 2006). (Rousseau et al., 2003)
present the synchronized vehicle dispatching problem (SVDP), which is a dynamic ve-
hicle routing problem with synchronization between vehicles. Constraint programming
and local search are applied to arrive at high-quality feasible solutions. (Lim et al., 2004)
and (Li et al., 2005) study a problem from the Port of Singapore, where technicians are
allocated to service jobs. For each job, a certain combination of technicians with indi-
vidual skills is needed. The technicians must be present at the same time, and hence the
schedule for each technician must respect a number of synchronization constraints with
other schedules. The problem is solved using metaheuristics. Another application with
synchronization between visits is in ground handling at airports. Teams drive around at
the airport and are assigned tasks on the parked aircrafts. (Dohn et al., 2009a) describe
this setup and present exact solutions to the instances considered. (Oron et al., 2008)
consider ground handling with synchronization constraints as well, and present compu-
tational results for a tailored heuristic applied to data instances from an in-flight caterer
in Malaysia. (Bredström and Rönnqvist, 2007) present another application of vehicle
routing with synchronization constraints. A branch-and-price algorithm is applied to a
realistic home care routing problem and yields promising results.
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The generalization of synchronization to other temporal dependencies has been de-
scribed for a few applications. (Lesaint et al., 1998) present a workforce scheduling
software from a practical perspective. In the problem described, both synchronization
and various other sequencing constraints occur. (Fügenschuh, 2006) describes a problem
in school bus routing. Busses must wait for each other at various intermediate stops
and hence precedence relations are introduced for such stops. Fügenschuh refers to the
problem as the vehicle routing problem with coupled time windows. (Doerner et al.,
2008) describe an application in blood collection from satellite locations for a central
blood bank. Multiple visits at each location have to be scheduled with a certain slack
between them. They refer to the vehicle problem as having interdependent time win-
dows. (Bredström and Rönnqvist, 2008) modeled temporal dependencies for a home
care routing problem in a mixed integer programming model (MIP) which was solved
with a standard MIP solver. In (Justesen and Rasmussen, 2008) and (Dohn et al., 2008)
a similar application is described and solved using branch-and-price and (Bredström and
Rönnqvist, 2008) have also continued their work in this direction. An application with
general temporal dependencies in machine scheduling is described by (Van Den Akker
et al., 2006). Column generation is used to solve the problem. The pricing problem
is primarily solved heuristically by local search and occasionally to optimality using a
standard solver on an integer programming formulation of the pricing problem.

The contribution of this paper is the generalization of synchronization to any tem-
poral dependency that can be described by generalized precedence constraints, as well
as the inclusion of this in a branch-and-price context. We prove that the generalization
is as strong as the formerly introduced model with synchronization. The use of the
time-indexed model in the column generation is novel as well. Finally, we introduce
a new set of context-free benchmark instances which enables a thorough quantitative
analysis and which we hope will facilitate future research in this area.

The paper is organized as follows. In Section 2, we present two valid compact
formulations of VRPTWTD. Possible decompositions of the compact formulations are
presented and compared in Section 3, and for these, a tailored branching method is
required. This is described in Section 4. A set of test instances are introduced in and
the test results are found in Section 5. Finally, we conclude on our findings and discuss
possible areas for future research in Section 6.

2 Model

In the following, we present two valid models for VRPTWTD, namely a mixed-integer
model and a time-indexed model. The mixed-integer model is an extension of the model
commonly used for VRPTW, whereas a time-indexed model has not received the same
amount of attention.

2.1 Mixed-integer model

In the traditional vehicle routing problem with time windows, the objective is to find
the shortest total travel distance to a set, C, of n customers. Given is a fleet of identical
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vehicles, V, which are located at a central depot. Typically, the depot is represented
as two locations, namely a start depot, 0, and an end depot, n + 1. Together with the
locations of all customers, they form the set, N . All vehicles have a capacity of q. Each
customer, i, has a demand, di, and a time window, where it accepts service [αi, βi]. αi
is the first possible service time. The vehicle is allowed to arrive before this time, but
must then wait at the customer for the time window to open. βi is the latest possible
time of initiation at customer i. [α0, β0] denotes the scheduling horizon of the problem.
Vehicles start at the depot at time α0 and must return to the end depot no later than β0.
τij gives the travel time between any two locations, i and j. This may include service
time at customer i. Traveling between the two locations also incurs a certain cost given
by cij . We assume that q, di, αi, βi, and cij are non-negative integers and that τij is a
positive integer, respecting the triangular inequality.

The mathematical model for VRPTW is presented below. xijk is a binary variable
with xijk = 1, if vehicle k drives directly from location i to location j, xijk = 0,
otherwise. sik is a continuous variable and is defined as the service time at customer i,
if the customer is serviced by vehicle k. Otherwise, sik is set to 0. Without restricting
the model, we can fix s0k = α0,∀k ∈ V and sn+1,k = β0,∀k ∈ V.

min
∑
i∈N

∑
j∈N

∑
k∈V

cijxijk (1)

∑
j∈N

∑
k∈V

xijk = 1 ∀i ∈ C (2)

∑
i∈C

di
∑
j∈N

xijk ≤ q ∀k ∈ V (3)

∑
j∈N

x0jk = 1 ∀k ∈ V (4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C,∀k ∈ V (5)

∑
i∈N

xi,n+1,k = 1 ∀k ∈ V (6)

sik + τij −M(1− xijk) ≤ sjk ∀i, j ∈ N , ∀k ∈ V (7)

αi
∑
j∈N

xijk ≤ sik ≤ βi
∑
j∈N

xijk ∀i ∈ C,∀k ∈ V (8)

xijk ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ V (9)
sik ∈ R ∀i ∈ N ,∀k ∈ V (10)

The objective is to minimize the total cost of all edges traveled (1). All customers
must be visited by exactly one vehicle (2) and the route for each vehicle must respect
the capacity of that vehicle (3). (4) and (6) ensure that each route starts and ends at
the depot. We also need to ensure that routes are not segmented, i.e. if a vehicle arrives
at a location, it eventually leaves that location again (5). If a vehicle is set to travel
between two customers, there has to be enough time between the two visits (7). Finally,
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we need to make sure that all time windows are respected (8). (8) also ensures that
sik = 0 when vehicle k does not visit customer i. (9) is the integrality constraint on xijk
and (10) sets the domain of sik.

In VRPTWTD, we furthermore have a number of temporal dependencies between
visits. We are able to express all of these by generalized precedence constraints. We
introduce the parameter δij which specifies the minimum difference in time from visit i
to visit j. The set ∆ defines all customer pairs (i, j) for which a temporal dependency
exists. The generalized precedence constraints are formulated as follows, where

∑
k∈V

sik

is the start time of visit i.∑
k∈V

sik + δij ≤
∑
k∈V

sjk ∀(i, j) ∈ ∆ (11)

Constraint (11) can be used to model all the temporal dependencies that were ob-
served in the literature review. There may be dependencies between several visits, e.g.
synchronization of three or more visits. Such dependencies are modeled by applying
the corresponding pairwise dependencies. In this paper, we will focus on five kinds of
temporal dependencies that are commonly found in practice. These are visualized in
Figure 1.

i

j

)a( )b( )e()c( )d(

Figure 1: Five kinds of temporal dependencies that are often encountered in practice.
Each of the five subfigures shows the time windows of two visits i and j with a temporal
dependency between them. Assuming some start time for visit i, the dashed line together
with the arrows give the corresponding feasible part of the time window of visit j.
(a) synchronization, (b) overlap, (c) minimum difference, (d) maximum difference, (e)
minimum+maximum difference.

It is straight forward to model the temporal dependencies of Figure 1 using constraint
(11). The correct values for δij and δji are listed in Table 1.

2.2 Time-indexed model

Time-indexed formulations have not received much attention in the column generation
context of VRPTW. A time-index formulation is usually disregarded because of its vast
size. It is, however, popular in the formulation of machine scheduling problems, as it
gives a tight description of precedence constraints. Here, we present the time-indexed
model of VRPTWTD, as it will be used to strengthen the bounds in the branch-and-
price algorithm. We introduce the index t ∈ T on the x-variable, with T = {α0, . . . , β0}.
xijkt is defined as: xijkt = 1, if vehicle k services customer i at time t and then drives
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Temporal dependency δij δji
(a) Synchronization 0 0
(b) Overlap −durj −duri
(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table 1: Parameter values for the five temporal dependencies of Figure 1. duri is the
service time at customer i.

directly to location j. xijkt = 0, otherwise.

min
∑
i∈N

∑
j∈N

∑
k∈V

∑
t∈T

cijxijkt (12)

∑
j∈N

∑
k∈V

∑
t∈T

xijkt = 1 ∀i ∈ C (13)

∑
i∈C

di
∑
j∈N

∑
t∈T

xijkt ≤ q ∀k ∈ V (14)

∑
j∈N

∑
t∈T

x0jkt = 1 ∀k ∈ V (15)

∑
i∈N

∑
t∈T

xihkt −
∑
j∈N

∑
t∈T

xhjkt = 0 ∀h ∈ C, ∀k ∈ V (16)

∑
i∈N

∑
t∈T

xi,n+1,kt = 1 ∀k ∈ V (17)∑
t
′
=t,...,β0

xijkt′ +
∑

t
′
=α0,...,min(β0,t+τij−1)

xjhkt′ ≤ 1 ∀i, j, h ∈ N , ∀k ∈ V, ∀t ∈ T (18)

∑
t′=t,...,β0

xihkt′ +
∑

t′=α0,...,min(β0,t+δij−1)

xjglt′ ≤ 1 ∀(i, j) ∈ ∆,∀h, g ∈ C, ∀k, l ∈ V, ∀t ∈ T

(19)

xijkt = 0
∀i ∈ C, j ∈ N ,∀k ∈ V,
∀t ∈ {α0, . . . , αi − 1} ∪ {βi + 1, . . . , β0}

(20)

xijkt ∈ {0, 1} ∀i, j ∈ N ,∀k ∈ V,∀t ∈ T (21)

Constraints (12)–(17) are similar to (1)–(6), where we now sum over the time index
as well. (18) provides the required travel time between visits. The strength of this model
lies in the formulation of generalized precedence constraints (19). (19) is the equivalent
of (11) of the former model. The constraint states that if visit i is scheduled anywhere
from time t and onward, then visit j is not scheduled before time t + δij . This is valid
for all t ∈ T . (20) enforces the time windows and (21) is the integrality constraint.
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3 Decomposition

As described earlier, Dantzig-Wolfe decomposition has been very successful in exact
optimization of VRPTW. The decomposition splits the problem into a set-partitioning
master problem and a constrained shortest path subproblem. See e.g. (Kallehauge
et al., 2005) for a thorough exposition. In the traditional VRPTW formulation, (2)
are the only constraints that link the vehicles. Without this, we can solve the problem
separately for each vehicle. Hence, the problem is split into a subproblem, where feasible
routes are generated and a master problem, where these routes are combined.

3.1 Master problem

We propose four applicable formulations of the master problem and rank them according
to the tightness with which they describe the solution space.

3.1.1 Mixed-integer formulation

The introduced generalized precedence constraints apply to routes from separate vehi-
cles, and hence these will be part of the new master problem. In the full master problem,
we have the set of all feasible routes, R. Each route is defined by the customers visited
and the time of each such visit, described by two parameters, ari and sri . For each route,
r, and each customer, i, if customer i is in the route r, we set ari = 1 and sri equal to
the time of that visit, and if the customer is not in the route, ari = 0 and sri = 0. In
column generation, the master problem variables are generated iteratively and the set
of variables available in a specific iteration is denoted R′

. Decision variables for the
master problem are denoted λr, with λr = 1, if route r is used, and λr = 0, otherwise.
The LP-relaxation of the master problem defined by a subset of the decision variables,
R′

, is denoted the restricted master problem and is formulated below.

min
∑
r∈R′

crλr (22)

∑
r∈R′

ariλr = 1 ∀i ∈ C (23)

∑
r∈R′

sriλr + δij ≤
∑
r∈R′

srjλr ∀(i, j) ∈ ∆ (24)

λr ≥ 0 ∀r ∈ R′
(25)

The corresponding subproblem is that of generating negative reduced cost routes for
(22)–(25). In this context, we refer to the model as the mixed-integer formulation. The
main disadvantage of the model is that it introduces linear time costs in the subproblem,
namely the dual variables of constraints (24). Hence, the subproblem is a shortest path
problem with time windows and linear node costs. Another issue is that sri is a non-
binary parameter, and the introduction of non-binary parameters in the master problem
is usually a feature that leads to highly fractional solutions.
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3.1.2 Time-index formulation

In the time-index formulation, the master problem contains only binary parameters.
(13) and (19) link the vehicles and must therefore remain in the master problem. The
parameters of the time-indexed master problem are defined as arit = 1 if customer i is
scheduled at time t in route r, and arit = 0 otherwise. The decision variable λr has
the same definition as in the previous model. The restricted master problem of the
time-indexed formulation is:

min
∑
r∈R′

crλr (26)

∑
r∈R′

∑
t′∈T

ar
it′
λr = 1 ∀i ∈ C (27)

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,min(β0,t+δij−1)

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆,∀t ∈ T (28)

λr ≥ 0 ∀r ∈ R′
(29)

The obvious problem with the time-indexed master problem (26)–(29) is the number
of constraints. The scheduling horizon is usually large enough to make this model
intractable in realistic problems. The subproblem is a shortest path problem with time
windows and time-dependent costs. The costs may be different for each time step. This
is very unlikely, however. Most of the constraints of type (28) will be non-binding and
this leaves the corresponding dual variables equal to 0. As most of these constraints will
be non-binding, we may choose to introduce them, only when they become violated. To
identify constraints which are violated, a separation algorithm is used. The separation
algorithm is described in more detail in Section 3.2.

3.1.3 Relaxed formulation

A third way to approach the problem is to simply disregard the temporal dependen-
cies in the master problem. The dependencies must then be enforced by the branching
scheme. This approach is used for synchronization by (Dohn et al., 2009a) and (Bred-
ström and Rönnqvist, 2007) and for generalized precedence constraints by (Justesen
and Rasmussen, 2008). It leaves the following master problem, which is identical to
the master problem of the VRPTW decomposition. Here, we refer to it as the relaxed
formulation.

min
∑
r∈R′

crλr (30)

∑
r∈R′

ariλr = 1 ∀i ∈ C (31)

λr ≥ 0 ∀r ∈ R′
(32)
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3.1.4 Time-regulating formulation

In (Dohn et al., 2009a) it is considered to introduce a binary variable that specifies the
time of each visit and constraints are added to enforce synchronization. This idea trans-
fers to the general case considered in this paper. It is, however, proved that the model
considered is not stronger than the corresponding relaxed formulation. Analogously,
it is easily shown that time-regulating formulation here is a relaxation of the relaxed
formulation and hence it is not of great interest.

3.1.5 Strength of the formulations

The relaxed formulation is obviously a relaxation of both the mixed-integer formulation
and the time-indexed formulation. An interesting result is that the mixed-integer for-
mulation is also a relaxation of the time-indexed formulation, and we are hence able to
order the four models according to their strength.

Proposition 1 The time-indexed formulation is a stronger formulation than the mixed-
integer formulation.

Proof. Proof In the following, we assume that we have a solution to (26)–(29) and
prove that the solution is also feasible for (22)–(25). For all problems with a feasible
solution, it holds that α0 + δij−1 ≤ β0, ∀(i, j) ∈ ∆ and hence a special case of (28) with
t = α0 is: ∑

r∈R′

∑
t′=α0,...,β0

ar
it

′λr +
∑
r∈R′

∑
t′=α0,...,α0+δij−1

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆ (33)

Using (27) this entails the rather obvious:∑
r∈R′

∑
t′=α0,...,α0+δij−1

ar
jt′
λr = 0 ∀(i, j) ∈ ∆ (34)

⇒
∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 0 ∀(i, j) ∈ ∆, t = α0, . . . , α0 + δij − 2

(35)

⇒
∑
r∈R′

∑
t′∈T

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 1 ∀(i, j) ∈ ∆, t = α0, . . . , α0 + δij − 2

(36)

Summing the constraints (27), (36), and (28) over t, we get the following for (i, j) ∈
∆:
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∑
r∈R′

∑
t′∈T

ar
it′
λr = 1

∑
r∈R′

∑
t′∈T

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 1 t = α0, . . . , α0 + δij − 2

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,min(β0,t+δij−1)

ar
jt′
λr ≤ 1 t = α0, . . . , β0

∑
r∈R′

∑
t′∈T

(t
′ − α0 + 1 + δij)arit′λr +

∑
r∈R′

∑
t′∈T

(β0 + δij − t
′
)ar
jt′
λr ≤ β0 − α0 + δij + 1

Therefore, for any feasible solution of (26)–(29), we have for (i, j) ∈ ∆:

0 ≤ β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

(t
′ − α0 + 1 + δij)arit′λr −

∑
r∈R′

∑
t′∈T

(β0 + δij − t
′
)ar
jt′
λr

(37)
= β0 − α0 + δij + 1−

∑
r∈R′

∑
t′∈T

t
′
aritλr − (−α0 + 1 + δij)

∑
r∈R′

∑
t′∈T

ar
it′
λr

−(β0 + δij)
∑
r∈R′

∑
t′∈T

ar
jt′
λr +

∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr

(38)

= β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

t
′
ar
it′
λr + α0 − 1− δij − β0 − δij +

∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr

(39)

=
∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr −

∑
r∈R′

∑
t′∈T

t
′
ar
it′
λr − δij (40)

=
∑
r∈R′

srjλr −
∑
r∈R′

sriλr − δij (41)

The result in (39) is based on (27). The final result in (41) comes from the following
relation between the parameters of the models (22)–(25) and (26)–(29): sri =

∑
t∈T

tarit.

The result in (41) proves that any feasible solution of (26)–(29) also respects (24). (23)
is trivially respected as ari =

∑
t′∈T a

r
it′

, and hence (22)–(25) is a relaxation of (26)–(29).
To illustrate that the two formulations are not equally strong, we consider the fol-

lowing small example. Take two customers i and j with δij = 2. Three simple routes
cover these two customers with a1

1 = 1, a2
2 = 1, a3

2 = 1 and s1
1 = 1, s2

2 = 2, s3
2 = 4 for

model (22)–(25). In model (26)–(29) this corresponds to a1
11 = 1, a2

22 = 1, a3
24 = 1. A

solution with λ1 = 1, λ2 = 0.5, λ3 = 0.5 is feasible in (22)–(25) but not in (26)–(29).
This is verified by inspecting (24) for i = 1, j = 2:∑

r∈R′

sr1λr + δ12 ≤
∑
r∈R′

sr2λr ⇒ 1 + 2 ≤ 3
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and (28) for i = 1, j = 2, t = 1:∑
r∈R′

(ar11λr + ar12λr + ar13λr + ar14λr) +
∑
r∈R′

(ar21λr + ar22λr) ≤ 1⇒ 1 + 0.5 ≤ 1

Corollary 1 The time-indexed formulation is a stronger formulation than the mixed-
integer formulation. The mixed-integer formulation is stronger than the relaxed formu-
lation, which in turn is at least as strong as the time-regulating formulation.

A nice property of the time-indexed model is that it has only been relaxed with
respect to integrality and this means that if we can restore integrality, we have a feasible
solution. In this paper, we will only consider branching to restore integrality, and hence
the advantage may not seem immediate. For VRPTW, a significant amount of work has
been done on cut generation to remove fractional solutions. Such cuts could be added to
the time-indexed model of VRPTWTD as well, and this may restore integrality without
the need of branching. See e.g. the work of (Kohl et al., 1999), (Cook and Rich, 2001),
(Lysgaard et al., 2004), and (Jepsen et al., 2008) for more on the subject.

3.2 Separation algorithm

As described earlier, the generalized precedence constraints (28) of the time-indexed
master problem (26)–(29) are only represented implicitly. The constraints are added as
cuts, as they become violated. The constraint is repeated below.∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,min(β0,t+δij−1)

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆,∀t ∈ T (28)

A separation algorithm is applied to identify violated cuts. In theory, we have to
check for violations for all t ∈ T , but actually it is possible to make do with significantly
less. As arit is a binary parameter and λr ≥ 0, the sum

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr is non-

increasing for increasing t. Correspondingly, the sum
∑
r∈R′

∑
t′=α0,...,min(β0,t+δij−1)

ar
jt′
λr is

non-decreasing. (28) is never violated for t = α0 as such violations are prevented by
preprocessing the time windows, see Section 4.1. Therefore, for visit i, we only need to
check for violations with any t where ∃r : aritλr > 0, i.e. any point in time where visit i
is scheduled (possibly with a fractional value). It is easy to generate a list of all t where
∃r : aritλr > 0, by running through the routes of all variables with positive values and
registering the time of each visit. By separating cuts as described, we are not adding
all violated cuts, but we are sure to add at least one cut for each visit, if any cuts are
violated for that visit.
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3.3 Subproblem

The subproblem of the Dantzig-Wolfe decomposition of VRPTW is an elementary short-
est path problem with time windows and capacity constraints (ESPPTWCC). Any fea-
sible solution of the subproblem with negative cost represents a column with negative
reduced cost in the master problem and can therefore enter the basis. The subproblem
consists of constraints (3)–(10). The variables are defined as in the compact formulation,
but now for the single vehicle under consideration, i.e. the index k has been removed.
The objective function of the subproblem becomes:

min
∑
i∈N

∑
j∈N

(cij − πi)xij (42)

(Dror, 1994) proves that ESPPTW is NP-hard in the strong sense and hence no
pseudo-polynomial algorithms are likely to exist. The subproblem is usually solved with
a dynamic label setting algorithm. (Desrochers et al., 1992) presented a dynamic algo-
rithm for the non-elementary version of the subproblem. This algorithm was adjusted
to handle the elementary problem by (Feillet et al., 2004) and superior results based on
this method have been presented recently, see e.g. (Desaulniers et al., 2008). The idea
in the label setting algorithm is that a set of partial paths are represented by labels.
Given a label for some partial path, it is possible to expand the path by creating new
labels in nodes that can possibly extend the current partial path. The length of the
path is increased by one, and the process continues iteratively.

The subproblem of the mixed-integer formulation must also consider the dual vari-
ables of constraint (24), σij , and hence the objective function becomes:

min
∑
i∈N

∑
j∈N

(cij − πi)xij −
∑

(i,j)∈∆

σijsi +
∑

(j,i)∈∆

σjisi (43)

As described previously, the subproblem is now a shortest path problem with time
windows and linear node costs, which makes it much harder to solve. (Ioachim et al.,
1998) describe a dynamic algorithm to solve the acyclic version of this problem. A
similar cyclic problem is solved as a subproblem by (Christiansen and Nygreen, 2005).

The subproblem of the time-indexed formulation has the following objective function:

min
∑
i∈N

∑
j∈N

(cij − πi)
∑
t∈T

xijt−
∑

(i,j)∈∆

∑
t∈T

∑
t′=α0,...,t

ρijt′xijt−
∑

(j,i)∈∆

∑
t′=max(α0,t−δji+1),...,β0

ρjit′xijt

(44)
where ρijt is the non-positive dual variables of constraint (28). In the worst case, this
objective function introduces a distinct cost for each time step. In a label setting al-
gorithm this means that we have to create one label for each time step and using this
approach, the number of labels explodes immediately. In practice, only a few constraints
of type (28) are binding and hence only few ρijt have non-zero values.

The idea in the basic label setting algorithm is to only create and keep labels that
are not dominated by another better label. With the objective function (44), we have a
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lot of potential labels. It is only profitable to postpone a visit, if it can possibly decrease
the objective. As ρijt ≤ 0 and as ρijt is always subtracted, this is only possible, if we
can avoid terms in the sum. Therefore, for visit i, we only need a label for the earliest
possible time t0 and one label for each t in {t0, . . . , βi}, where ∃(j, i) ∈ ∆, ∃t′ ∈ T with
t′ = t− δji ∧ ρjit′ < 0. For all other potential labels, there will always be a label earlier
in time with the same or less cost.

A small improvement, that we found to have a significant effect, is to include knowl-
edge of mutually exclusive visits. Some temporal dependencies like e.g. synchronization
and overlap make it impossible to include both visits in the same route. This restric-
tion is imposed in the master problem or in the branching scheme. Hence, routes could
be generated that would never occur in a feasible solution. By disallowing mutually
exclusive visits to occur in all routes generated in the subproblem, the LP-bounds get
stronger and as a consequence the algorithm is more effective.

4 Branching

The master problem models presented in the previous section are relaxations and there-
fore we may need to carry out branching to get to a feasible solution. In the mixed-integer
formulation and the time-indexed formulation, the integer property of the λ-variables
has been relaxed and therefore integrality needs to be restored by branching. A lot of
work has already been done for VRPTW in this respect. See e.g. Kallehauge et al.
(2005) for a review. In the relaxed formulation, the generalized precedence constraints
have also been relaxed. Therefore, in this model, we need a branching method that will
also restore feasibility with respect to temporal dependencies.

Gélinas et al. (1995) proposed to branch on time variables in order to arrive at
integer-feasible solutions. This type of branching was also used to enforce synchroniza-
tion by Ioachim et al. (1999), Dohn et al. (2009a), and Bredström and Rönnqvist (2007),
and for general temporal dependencies by Justesen and Rasmussen (2008). Time win-
dow branching is not complete with respect to integer feasibility and hence has to be
complemented by another branching scheme, e.g. the traditional branching on a flow
variable.

4.1 Time window reduction

Before describing the actual branching scheme, we introduce a simple reduction tech-
nique based on the generalized precedence constraints. For any two visits, i and j with
(i, j) ∈ ∆, it is possible to reduce the time windows as follows:

Visit i Visit j
Old time windows [αi, βi] [αj , βj ]
New time windows [αi,min(βi, βj − δij)] [max(αj , αi + δij), βj ]
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These reductions are also illustrated in Figure 2. The reductions are used to pre-
process the time windows and may also be used anywhere in the branching tree. This
is useful when applying time window branching.

i

j

)b( )c( )d()a(

Figure 2: Time window reductions. (a) The original time windows. (b) Using the
generalized precedence constraint, the first part of the time window of visit j is removed.
(c) In a similar way, the last part of the time window of visit i is removed. (d) The time
windows after the reduction.

4.2 Time window branching

In a feasible solution of VRPTWTD, all visits are scheduled at exactly one point in time
and all generalized precedence constraints are respected. In the relaxed formulation, a
solution may be integer feasible but could still violate precedence constraints. In the
two other models, an integer feasible solution will also respect precedence constraints.
As for VRPTW, we may still use time window branching to get integral solutions. In
the following, we use the relaxed formulation as a basis for introducing time window
branching, but it transfers easily to the other models.

Figure 3 shows a violation of the precedence constraint between visits i and j, in
routes r2 and r1. By branching on the time window of visit i and using the time window
reduction rule of Section 4.1 for (j, i), r1 and r2 are prohibited in the left and right
branch, respectively. Note that there is no overlap between the time window of visit i
in the left branch and the corresponding time window in the right branch.

As long as the split time is chosen somewhere between si and sj + δji, the current
solution will be excluded from the solution space by using the reduction rule for (j, i).
The tightest formulation is reached if time windows are reduced as much as possible.
Therefore, with the new time window of visit i, we run through all relevant precedence
constraints and reduce time windows where possible. This may also reduce the time
windows of other visits than i and j, and this process is repeated iteratively, until no
further reduction is possible.

An interesting result is that this branching strategy is as strong as the one formerly
proposed specifically for synchronization. In the less general context, the time windows
of two synchronized visits are, naturally, always identical. Branching is done on the two
time windows simultaneously, so they always stay identical. Synchronization modeled
by two generalized precedence constraints, also has this property when time window
reductions are applied. This is illustrated in Figure 4. The time windows of i and j are
identical in each of the branches after applying time window reduction.
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Figure 3: Branching to avoid a violation of a precedence constraint.

Usually, there are several branching candidates to choose from and we need a strategy
to choose one of these. Gélinas et al. (1995) elaborate further on this subject. When
using strong branching (see e.g. Achterberg et al. (2005)) a few candidates are chosen
for further probing. In any case, we need to specify a priority ordering of candidates.
First, we need to find the potential branching candidates. In theory, we could branch
on any time window and split it at an arbitrary position. In practice, however, we limit
this choice. We do not want to consider candidates where the branching is without effect
in one of the branches, i.e. where one of the branches does not prohibit any columns
of the current solution. Also, many of the remaining candidates have an identical effect
on the current solution. They may still have a different effect on new columns, but it is
very hard to predict this impact. Figure 5 (a) depicts some of the potential branching
candidates in the time window of visit i. Visit i is a part of several routes that have
been included in the solution with fractional values and hence it appears at multiple
positions within its own time window. In this example we assume that the routes r2

and r3 are both in the solution with a value of 0.5 and r1 and r4 with a value of 1. The
effect on the current solution of each candidate is shown in Table 2. Candidates 1 and
6 are examples of ineffective candidates. Candidates 2 and 3 have an identical effect on
the current solution.

In our approach, when choosing between candidates with an identical immediate
effect, we select the candidate which splits at the latest possible time. This choice is
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Figure 4: Branching on a generalized precedence constraint of a synchronization con-
straint.

: route in  Visit 1rj

: and  route in  Visit 32 rri

3

: route in  Visit 4rk
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)a(

)b(

1′

Figure 5: Some potential branching candidates in the time window of visit i.

made due to the following algorithmic considerations: 1) We do not want a route that
has been prohibited in the branch to get a small fix and then reappear in the solution,
and 2) The candidate should at least need to reroute some of the visits, and hence create
a larger diversity between the branches. The label setting algorithm used to generate
routes will always try to schedule visits as early as possible, when everything else is
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Infeasible routes Sum of excluded variables
Left branch Right branch Left branch Right branch Preference

Candidate 1 r1, r2, r3 2 0 0
Candidate 2 r1, r3 r2 1.5 0.5 0.5
Candidate 3 r1, r3 r2 1.5 0.5 0.5
Candidate 4 r1, r3 r2, r4 1.5 1.5 1.5
Candidate 5 r1 r2, r3, r4 1 2 1
Candidate 6 r2, r3, r4 0 2 0

Table 2: Effect of the branching candidates of Figure 5.

equal. This means that there is a good chance that visits can be moved to a slightly
later position, without disrupting the route. On the other hand, it is impossible to
schedule the visit earlier without rerouting. The separation routine presented in Section
3.2 similarly benefits from this rationale.

Turning back to Figure 5 (a), we prefer candidate 3 to candidate 2 as there is less
chance that r2 can be adapted to the new time window of the right branch. We prefer
candidate 4 to candidate 3 as it excludes the same or more in both branches. Figure 5
(b) shows the three candidates that we would actually consider for the time window of
visit i. The candidates 1′, 4′, and 5′ get the same values as 1, 4, and 5, respectively, in
Table 2. Remember that these are just the candidates of visit i. There will be similar
candidates for each of the other visits. We find the candidates for visit i by running
through all routes that are included in the solution with a positive value. If visit i is in
the route, the start time of the visit in that route is a candidate. If the route includes
a visit j, where (j, i) ∈ ∆ the route contributes with a candidate for visit i with split
time sj + δji.

In this paper, the problems are solved to optimality, which means that every node in
the branch-and-bound tree must be either explored or pruned. Hence, we aim for a small,
but at the same time, balanced tree. To achieve this, we rank the branching candidates
according to the corresponding sums of excluded variables in the two branches. A
candidate gets the value of the minimum of the two sums, and hence only the worst of
the branches counts. A larger value of a candidate is equal to a high preference. This
means that we prefer branching candidates which exclude as much as possible in the
branch, where they exclude the least. In the example, candidate 4 is preferred, as it
excludes 1.5 routes in each branch, giving it a preference ranking of 1.5.

If the aim is to get high-quality solutions, but not necessarily optimal solutions, in a
short time, it may be better to choose branching candidates where one of the branches
is more promising than the other. This may then be utilized in a heuristic search of
the branch-and-bound tree. This idea has been used in several other contexts, see e.g.
Ryan (1992).
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5 Test results

The intention of this section is to give a general overview of the complexity of vehicle
routing problems with temporal dependencies. The tests are summarized in graphs that
capture the trends we see in the tests overall.

A set of benchmark instances have been used in the following quantitative analysis.
The generation of these instances is explained in detail in the technical report by Dohn
et al. (2009b). The instances are extensions of the 56 well known VRPTW-instances
of Solomon (1987). Solomon’s VRPTW-instances have been used extensively in exist-
ing literature and new solution algorithms for VRPTW are usually tested on these to
indicate how the algorithm performs. The data sets consist of a number of customers
with a geographical location, a time window, and a demand. The instances are pub-
licly available. We take the original instances and introduce temporal dependencies of
various types to these instances. We have chosen to look only at the instances with
25 customers, as these are small enough to allow quick solution of the basic problem.
Some of them still prove hard to solve as temporal dependencies are introduced. From
preliminary tests it was clear that instances with 50 customers proved too hard to solve.
This corresponds well with the results in the literature, where some of the 50 customer
problems without temporal dependencies remained unsolved until very recently.

Five sets of instances were made and in this section, we have chosen to focus on
two of the instance sets, namely instances with only synchronization relations and a
set with a random mix of the five temporal dependencies of Table 1. These have been
chosen since the first represents a large group of practical applications and the latter
does not hold any particular structure. The statements made in the following are in full
accordance with the other instance sets as well.

The algorithms are implemented in the branch-and-cut-and-price framework of COIN-
OR Lougee-Heimer (2003); Coin (2006). The tests have been run on 2.2 GHz AMD pro-
cessors with 2 GB RAM. Based on preliminary tests, the algorithm is set to do strong
branching with three candidates and adds up to five variables with negative reduced
cost per iteration. For as long as possible, columns are generated by a heuristic version
of the label setting algorithm similar to the one proposed by Chabrier (2006).

As will become apparent in the following, both the time-indexed formulation and
the relaxed formulation have areas where one does better than the other. Therefore, we
chose to also test a hybrid of the two formulations. The hybrid formulation is a limited
version of the time-indexed formulation, where only a reduced set of the violated cuts
are added. More specifically, we only add cuts if they are maximally violated, i.e. if the
left hand side of constraint (28) is equal to 2.

First, to give an idea of the overall performance of the three approaches, the test
results are summarized in Table 3. Secondly, to give a more detailed view, we present
some specific analyses of various problem properties. As the number of temporal depen-
dencies increases, the problem becomes more constrained, and hence the value of the
optimal solution will increase with the number of dependencies. It is interesting to look
at the lower bound found in the root node of the branch-and-bound tree. In a straight
forward version of the relaxed formulation, no generalized precedence constraints have
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Time-indexed Time-indexed Relaxed
formulation formulation formulation
(all cuts) (limited)

Solved Solved Solved
Instances Solved before Solved before Solved before
in total in root timeout in root timeout in root timeout

Synchronization 1148 483 1027 448 1141 138 1143
Overlap 1324 351 1058 322 1207 127 1240
Minimum difference 1400 741 1350 703 1377 226 1381
Min+max difference 1400 531 1226 465 1361 105 1384
Random mix 1400 506 1271 459 1382 155 1383

Table 3: Overview of the test results.

any effect in the root node, and the lower bound, naturally, is unchanged. Using the
time window reductions, we are, however, able to remove parts of the solution space and
this may increase the lower bound. The time-indexed formulation is always stronger
and hence the lower bounds of this formulation are always greater than or equal to the
ones of the relaxed formulation. For the same reason, the lower bound of the limited
version will always lie between the lower bounds of the other two. This is illustrated for
instance R110 in Figure 6.

0 5 10 15 20 25
400

450

500

550

600

650

700

750

800

850

Number of temporal dependencies

S
ol

ut
io

n 
va

lu
e

R110 − Synchronization

 

 
Optimal solution
LB−root (Time−indexed − all)
LB−root (Time−indexed − limited)
LB−root (Relaxed)
No temporal dependencies

0 5 10 15 20 25
400

450

500

550

600

650

700

750

800

850

Number of temporal dependencies

S
ol

ut
io

n 
va

lu
e

R110 − Random mix

 

 
Optimal solution
LB−root (Time−indexed − all)
LB−root (Time−indexed − limited)
LB−root (Relaxed)
No temporal dependencies

Figure 6: Comparison of solution values and lower bounds of the branch-and-bound root
node.

Comparing the two graphs of Figure 6, we also see that the synchronization con-
straints are stricter than random dependencies and therefore the optimal solution value
increases faster. The tendency observed, for instance R110, is consistent with the general
picture.

As shown in Figure 6, the root node lower bound sometimes coincides with the value
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of the optimal solution. In such cases, we often find the optimal solution in the root
node. Since this will result in low computation times, it is interesting to see how often
it happens.
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Figure 7: Number of instances solved in the root node of the branch-and-bound tree.

In Figure 7 the total number of instances solved in the root node is given, summa-
rized over all 56 instances. Again, we clearly observe the strength of the time-indexed
formulation. There is a significant increase in the number of instances solved in the
root node compared to the relaxed formulation. Interestingly, there is not much differ-
ence from the full formulation to the limited version. In the relaxed formulation, if a
problem can be solved in the root node, it means that all temporal dependencies were
respected by chance, and hence they would not have been very constraining. Figure 8
gives the number of nodes in the branch-and-bound tree (the mean over all instances)
and the conclusions are the same as for Figure 7. As we would expect for the relaxed
formulation, we see that the number of nodes increases with the number of temporal
dependencies. This does not seem to be the case for the time-indexed formulation.

Another interesting aspect is the solution time. We examine the solution time for
each of the instances individually and also consider the general trend. The variation on
solution time is large between the instances. This means that taking an average of these
values would emphasize the harder instances, but we want them to count equally in this
test. Therefore, we normalize the values by comparing each computation time to the
solution time for the same problem without temporal dependencies. The mean over all
instances is shown in Figure 9.

Looking at Figure 9, it is clear that the time-indexed formulation is worse than the
other two with respect to solution time. Closer inspection shows that the full time-
indexed formulation has a few instances where computation time is excessive and this
has a major impact on the mean value.

In connection with solution time, it is also very interesting to make a direct compar-
ison between the approaches for each instance. For each number of temporal dependen-
cies, we count the number of instances where the limited time-indexed approach is faster
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Figure 8: Number of nodes in the branch-and-bound tree.
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Figure 9: Normalized solution time (mean).

than the relaxed formulation and vice versa. The results are summarized in Figure 10.
Looking at the instances individually, the limited time-indexed approach seems best.

Finally, we look at the distribution of time spent in the algorithm. This is illustrated
in Figure 11. For the time-indexed formulation, the portion of time spent in the LP-
solver increases as problems with more temporal dependencies are considered. This is
due to the fact that more cuts are added for these problems and hence the size of the
LP-model increases. For the relaxed formulation, the tendency is not surprisingly that
more time is spent branching when the number of temporal dependencies increases. The
share of time spent by the LP-solver is, in this case, stable.

On the basis of the tests, we are able to conclude that the temporal dependencies
introduce additional complexity to the problem, as expected. The time-indexed formu-
lation has the worst immediate performance, but may be more useful in large problems
with harder pricing problems. The limited time-indexed approach seems to have the
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Figure 10: Number of tests where one of the approaches is faster than the other. The
two approaches are considered equally fast if they are within 20% of each other.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Branching
Solving LP−problems
Variable generation
Cut generation

0 5 10 15 20 25
0

50

100
Synchronization

0 5 10 15 20 25
0

50

100

T
im

e 
di

st
rib

ut
io

n 
(P

er
ce

nt
)

0 5 10 15 20 25
0

50

100

Number of temporal dependencies

0 5 10 15 20 25
0

50

100
Random mix

0 5 10 15 20 25
0

50

100

T
im

e 
di

st
rib

ut
io

n 
(P

er
ce

nt
)

0 5 10 15 20 25
0

50

100

Number of temporal dependencies

Figure 11: Distribution of solution time for the time-indexed model (top), the limited
time-indexed model (middle), and the relaxed model (bottom).

best performance in our tests, but the relaxed formulation is not far behind. A few in-
stances of each type turn out to be very hard to solve, no matter what method is used.
The time-indexed formulation does have a number of nice features that could be utilized
in future development. It has tighter bounds, both theoretically and in the practical
instances that we have examined. The tighter bounds mean that more instances are
solved in the root node of the branch-and-bound tree, and in these cases the formula-
tion gives better results. Also, for instances where the solution is not found in the root
node, the branch-and-bound tree is still significantly smaller than the corresponding tree
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for the relaxed formulation. The number of variables that has to be generated is also
generally smaller for the time-indexed formulation. For most realistic problems, variable
generation is the dominating factor of the overall solution time, and in these cases the
time-indexed formulation may be the better choice.

6 Conclusions and future work

The vehicle routing problem with time windows and temporal dependencies has been
introduced. The problem has previously been treated in various practical contexts in
different forms, but this is the first generic analysis presented in the literature. Four
different models were presented and ranked according to their theoretical strength. The
time-indexed model has the tightest formulation and hence gives the best bounds, but
the number of constraints is so large that they cannot be included explicitly. Instead,
the model was implemented in a branch-and-cut-and-price context, where both con-
straints and variables are generated dynamically. As this approach is novel, a sepa-
ration algorithm was presented and the necessary adjustments in the pricing problem
were introduced. The branching scheme was presented next. The scheme is based on
the traditional time window branching, but it is also used to restore feasibility with
respect to temporal dependencies. The branching scheme is as strong as the previously
presented branching scheme for problems with synchronization constraints only. Finally,
the benchmark instances were introduced and a quantitative analysis was carried out.

The analysis showed that, even though the time-indexed model has some nice prop-
erties, it also retains its major drawback, namely the number of constraints. As a
consequence, a hybrid method was implemented, where only a limited number of the
violated cuts are added. This approach kept most of the nice features of the time-
indexed model, while at the same time lowering the solution time to the same level as
the solution time of the relaxed model. In fact the hybrid method is only slower than
the relaxed model in a small number of instances.

The model presented in this paper is general and is therefore applicable to various
practical problems. Future work could be adaption to real world problems. Another
very interesting direction for future research could be to include additional cuts. Using
the time-indexed formulation, we were able to solve many instances already in the root
node of the branch-and-bound tree, and this number could be increased by introducing
additional cuts. The performance of the time-indexed model was clearly better than
the relaxed model for the instances where the optimal solution was obtained in the root
node.
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S. Gélinas, M. Desrochers, J. Desrosiers, and M. M. Solomon. A new branching strategy
for time constrained routing problems with application to backhauling. Annals of
Operations Research, 61:91–109, 1995.

I. Ioachim, S. Gelinas, F. Soumis, and J. Desrosiers. A dynamic programming algorithm
for the shortest path problem with time windows and linear node costs. Networks, 31
(3):193–204, 1998. ISSN 00283045.

I. Ioachim, J. Desrosiers, F. Soumis, and N. Belanger. Fleet assignment and routing with
schedule synchronization constraints. European Journal of Operational Research, 119
(1):75–90, 1999.

M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities ap-
plied to the vehicle-routing problem with time windows. Operations Research, 56(2):
497–511, 2008.

T. Justesen and M. S. Rasmussen. The home care crew scheduling problem. Master’s
thesis, Informatics and Mathematical Modeling, Technical University of Denmark,
2008.

B. Kallehauge, J. Larsen, O.B.G. Madsen, and M.M. Solomon. Vehicle Routing Problem
with Time Windows, chapter 3, pages 67–98. Desaulniers G., Desrosiers J., Solomon
M.M.: Column Generation, Springer, NY, 2005.

P. Kilby, P. Prosser, and P. Shaw. A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints, 5
(4):389–414, 2000.

25



N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts
for the vehicle routing problem with time windows. Transportation Science, 33(1):
101–116, 1999.

D. Lesaint, N. Azarmi, R. Laithwaite, and P. Walker. Engineering dynamic scheduler
for work manager. BT Technology Journal, 16(3):16–29, 1998.

Y. Li, A. Lim, and B. Rodrigues. Manpower allocation with time windows and job-
teaming constraints. Naval Research Logistics, 52:302–311, 2005.

A. Lim, B. Rodrigues, and L. Song. Manpower allocation with time windows. Journal
of the Operational Research Society, 55:1178–1186, 2004.

R. Lougee-Heimer. The common optimization INterface for operations research: Pro-
moting open-source software in the operations research community. IBM Journal of
Research and Development, 47(1):57–66, 2003.

J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming, 100(2):423–445,
2004.

D. Oron, S.-N. Sze, and A. S.-F. Ng. A heuristic manpower scheduling for in-flight
catering service. The 13th International Conference of Hong Kong Society for Trans-
portation Studies, 2008.

L.-M. Rousseau, M. Gendreau, and G. Pesant. The synchronized vehicle dispatching
problem. Technical Report CRT-2003-11, Centre de Recherche sur les Transports,
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In this paper, we formulate the vehicle routing problem with time windows and temporal dependen-
cies. The problem is an extension of the well studied vehicle routing problem with time windows. In 
addition to the usual constraints, a scheduled time of one visit may restrain the scheduling options 
of other visits. Special cases of temporal dependencies are synchronization and precedence con-
straints. Two compact formulations of the problem are introduced and the Dantzig-Wolfe decomposi-
tions of these formulations are presented to allow for a column-generation-based solution approach. 
Temporal dependencies are modeled by generalized precedence constraints. A total of four different 
master problem formulations are proposed and it is shown that the formulations can be ranked ac-
cording to the tightness with which they describe the solution space. 
A tailored time window branching is used to enforce feasibility on the relaxed master problems. Fi-
nally, a computational study is carried out to quantitatively reveal strengths and weaknesses of the 
proposed formulations. It is concluded that, depending on the problem at hand, the best performance 
is achieved either by relaxing the generalized precedence constraints in the master problem, or by 
using a time-indexed model, where generalized precedence constraints are added as cuts when they 
become severely violated.
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