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Summary

The scheduling of crew, i.e. the construction of work schedules for crew mem-
bers, is often not a trivial task, but a complex puzzle. The task is complicated
by rules, restrictions, and preferences. Therefore, manual solutions as well as so-
lutions from standard software packages are not always sufficient with respect to
solution quality and solution time. Enhancement of the overall solution quality
as well as the solution time can be of vital importance to many organisations.
The fields of operations research and mathematical optimisation deal with math-
ematical modelling of difficult scheduling problems (among other topics). The
fields also deal with the development of sophisticated solution methods for these
mathematical models.

This thesis describes the set partitioning model which has been widely used for
modelling crew scheduling problems. Integer properties for the set partitioning
model are shown, and exact and optimisation-based heuristic solution methods
for the model are described. All these methods are centered around the well-
known column generation technique. Different practical applications of crew
scheduling are presented, and some of these applications are considered in detail
in four included scientific papers. It is shown how these applications all fit into a
generalisation of the set partitioning model. Each of the four papers contribute
a novel solution method for the specific application treated in the paper.



vi



Resumé (Danish summary)

Arbejdsplanlægning for medarbejdere, dvs. udarbejdelse af arbejdsplaner for
medarbejdere, er ikke altid en let opgave, men snarere et komplekst puslespil.
Opgaven kompliceres af regler, restriktioner og præferencer. Manuelle løsninger,
s̊avel som løsninger fundet ved hjælp af standard software, er derfor ikke al-
tid tilstrækkelige med hensyn til løsningskvalitet og løsningstid. For mange
organisationer kan forbedringer af løsningskvaliteten og løsningstiden være af
afgørende betydning. Fagomr̊aderne operationsanalyse og matematisk opti-
mering omhandler matematisk modellering af vanskelige planlægningsproblemer
(blandt andre emner). Fagomr̊aderne omhandler ogs̊a udvikling af sofistikerede
løsningsmetoder for disse matematiske modeller.

Denne afhandling beskriver set partitioning modellen, som er blevet brugt i
vid udstrækning til at modellere arbejdsplanlægningsproblemer. Heltalsegen-
skaber for set partitioning modellen vises, og eksakte samt optimeringsbaserede
heuristiske løsningsmetoder til modellen beskrives. Metoderne er alle centre-
rede omkring den velkendte søjlegenereringsmetode. Forskellige praktiske an-
vendelser inden for arbejdsplanlægning bliver præsenteret, og nogle af disse bli-
ver behandlet i detaljer i fire inkluderede videnskabelige artikler. Det bliver vist
hvordan disse applikationer alle passer ind i en generaliseret udgave af set par-
titioning modellen. Hver af de fire artikler bidrager med en ny løsningsmetode
for den specifikke applikation som behandles i artiklen.
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Theory and Applications





Chapter 1

Introduction

Crew scheduling problems arise in many areas, and sometimes the scheduling
of crew is a trivial and uncomplicated task. However, for many crew scheduling
problems, there is a large number of rules, regulations, and restrictions that
must be taken into account. These complicating factors originate from laws,
union agreements, and local agreements (often only existing as tradition). Fur-
thermore, individual preferences of the crew and the clients are important to
respect as much as possible in order to maximise crew satisfaction. Within
the fields of operations research and mathematical optimisation, crew schedul-
ing problems are described mathematically. When finding solutions to specific
problem instances, it can indeed be very difficult to respect all complicating
factors, while still maintaining a high solution quality, if a structured, mathe-
matical, and computer-aided approach is not taken.

In many areas of work, employees are both a scarce and an expensive resource.
Therefore, good utilisation of crew is of vital importance to many organisations.
The potential savings from using sophisticated decision support systems, that
can deliver optimal or high quality solutions to crew scheduling problems, are
large. One example is from Air New Zealand, where Butchers et al. (2001)
report annual savings of NZD 15.7 million since the introduction of a new crew
scheduling system. In addition, the schedules produced by the system, were
better at respecting crew preferences. Another example is shown by Abbink et
al. (2005). They describe how the major Dutch railway operator, Netherlands
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Railways, have saved USD 4.8 million per year after the introduction of a crew
scheduling system. These examples should motivate the need for continued
research within solution methods for crew scheduling problems.

This thesis deals with modelling and finding solutions for selected practical
problems arising in crew scheduling. Sometimes it is sufficient to model the
given crew scheduling problem and then let a standard solver find solutions to
the problems. In many cases, however, this is not viable, simply because the
problem instances are too large, and therefore tailored solution methods must
be crafted. The tailored solution methods fall in five categories: Heuristics,
metaheuristics, approximation algorithms, exact methods, and optimisation-
based methods. The focus of this thesis will be on the latter two.

1.1 Thesis organisation

The thesis is divided into two parts. Part I describes the problem setting plus
relevant theory and highlights the findings from the collection of papers pre-
sented in Part II.

Part I is made up of six chapters in addition to this introductory chapter. Chap-
ter 2 describes the well-known set packing, set covering, and set partitioning
models. Integer properties for the models are discussed, and finally a general
core model that captures the applications presented Part II. Chapter 3 covers
solution methods that have been widely used in the literature for solving prob-
lems based on the aforementioned models. The covered solution methods are a
foundation for the solution methods presented in the papers of Part II. Chap-
ter 4 introduces crew scheduling in general terms and a selection of important
crew scheduling applications. Some of these applications have been investigated
in detail in the papers of Part II. In Chapter 5 we give brief introductions to the
papers of Part II. Additional computational experiments, that have not been
described in the papers, are reported in Chapter 6. Finally, in Chapter 7, we
will give a conclusion, highlight our contributions, and point out particularly
interesting directions for future research.

Part II is a collection of four scientific papers. These papers are the outcomes of
the work done during the Ph.D. project. All of the papers have been submitted
to international journals, and two of the papers have been accepted for publi-
cation at the time of writing. Changes are made to the layout of the papers in
order to give this thesis a uniform look, but the content is exactly the same as
the content submitted to the journals.



Chapter 2

Set Partitioning Extensions
and Properties

We begin this chapter with an introduction to three important and well-known
models: set packing, set covering, and set partitioning. The three models are
related in the sense that they are concerned with finding an optimal family of
subsets of elements from a set, and they are used as the basis for the applications
in this thesis. A comprehensive survey on especially the theory of the set pack-
ing, set covering, and set partitioning models can be found in Balas and Padberg
(1976), and in Vemuganti (1998) a survey with emphasis on applications of the
models can be found.

We state a model that unifies the three problems. We present four classes of
matrices that can appear as input to the problems. All four classes have the
property, that one can automatically solve the problem by solving a relaxed and
computationally easier version of the problem. At last we extend the unified
model to also cover additional types of constraints.
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2.1 Set packing

The first model we will present is the set packing problem in which a pairwise
disjoint family of subsets from a given set must be found, such that the added
profit of the subsets is maximised. The set packing problem is well-studied in
the literature and has been used to model many practical applications. For
instance: Rönnqvist (1995) develops a set packing model for a cutting stock
problem and solves it with Lagrangian relaxation combined with subgradient
optimisation. Lusby et al. (2009) give a survey of models and methods for
railway track allocation, including formulations that rely on the set packing
model. Avella et al. (2006) model the Intelligent Tourist Problem (scheduling
of a tourist’s visits with maximum satisfaction) with a set packing model and
solve it with a linear programming based heuristic. Rossi and Smriglio (2001)
model the Ground Holding Problem from airports and solve it with a branch-
and-cut algorithm.

The set packing problem is formally defined below.

Definition 2.1 [Set packing problem] Let S = {1, . . . ,m} be a set of m ele-
ments, and let {S1, . . . , Sn} be a family of n subsets of S, that is, Sj ⊆ S for
all j ∈ {1, . . . , n}. A packing Q = {Sj1 , . . . , Sjk} is a subfamily of {S1, . . . , Sn},
where the elements in Q are pairwise disjoint, i.e. Sjs ∩ Sjt = ∅ for all
s, t ∈ {1, . . . , k} with s 6= t. Let cj be the profit associated with subset Sj
for all j ∈ {1, . . . , n}. The set packing problem is then to find a packing with
maximum profit.

The set packing problem with unit profits is NP-hard (Garey and Johnson,
1979; Crescenzi and Kann, 1997), and therefore the more general set packing
problem defined above is also NP-hard. It should be noted that there always
exists at least one feasible solution, namely Q = ∅.

Let A be an m × n zero-one matrix with entries aij for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n} defined by

aij =

{
1 if i ∈ Sj
0 otherwise

, (2.1)

and let xj for all j ∈ {1, . . . , n} be a binary decision variable defined by

xj =

{
1 if Sj ∈ Q
0 otherwise

, (2.2)

and let c be the vector of profits cj for all j ∈ {1, . . . , n}. Now we can write the
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set packing problem as the following binary integer programme:

maximise c>x (2.3)

subject to Ax ≤ 1 (2.4)

x ∈ {0, 1}n . (2.5)

The jth column Aj = (a1j , . . . , amj)
>

of the A matrix is the column represen-
tation of the subset Sj . Constraints (2.4) enforce that the subsets are pairwise
disjoint.

2.2 Set covering

A problem related to the set packing problem is the set covering problem. In this
problem a minimum cost family of subsets from a given set, where the subsets
cover the whole set, must be found. The literature has many practical applica-
tions of set covering models. Huisman (2007) models rail crew re-scheduling with
a set covering model and devises a column generation-based solution algorithm.
In some periods of time, rail tracks are out of service due to maintenance, and
this affects the timetable, the rolling stock schedules and hence also the crew
schedules. The crew re-scheduling is due to planned maintenance and not a re-
covery due to an unforeseen disruption. Real-world instances from Netherlands
Railways are used for testing. Rubin (1973) uses a set covering formulation to
solve the airline crew pairing problem.

The set covering problem is formally defined below.

Definition 2.2 [Set covering problem] Let S = {1, . . . ,m} be a set of m ele-
ments, and let {S1, . . . , Sn} be a family of n subsets of S, that is, Sj ⊆ S for all
j ∈ {1, . . . , n}. A cover Q = {Sj1 , . . . , Sjk} is a subfamily of {S1, . . . , Sn}, where

Q covers all elements of S, that is
⋃k
s=1 Sjs = S. Let cj be the cost associated

with subset Sj for all j ∈ {1, . . . , n}. The set covering problem is then to find a
cover with minimum cost.

The set covering problem with unit costs is NP-hard (Garey and Johnson, 1979;
Crescenzi and Kann, 1997), and therefore the more general set covering problem
defined above is also NP-hard. It should be noted that, if

⋃n
j=1 Sj = S, there

always exists at least one feasible solution, namely Q = {S1, . . . , Sn}.

Let again A be an m× n zero-one matrix with entries aij for all i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n} defined by Equation (2.1), and let xj for all j ∈ {1, . . . , n}
be a binary decision variable defined by Equation (2.2). Let c be the vector of
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costs cj for all j ∈ {1, . . . , n}. The set covering problem can now be written as
the following binary integer programme:

minimise c>x (2.6)

subject to Ax ≥ 1 (2.7)

x ∈ {0, 1}n . (2.8)

Still, the jth column Aj = (a1j , . . . , amj)
>

of the A matrix is the column
representation of the subset Sj . Constraints (2.7) enforce that the subsets cover
all elements of S.

2.3 Set partitioning

The basic version of the core problem in this thesis can now be presented: The
set partitioning problem. In this problem a minimum cost family of pairwise
disjoint subsets from a given set, where the subsets cover the whole set, must be
found. A lot of attention has been given to the set partitioning problem in the
literature. Balinski and Quandt (1964) formulate a truck delivery problem as a
set partitioning model and solve the model by a cutting plane algorithm where
the columns are generated a priori. Garfinkel and Nemhauser (1969) introduce
the set partitioning problem as a set covering problem with equality constraints
and give a solution algorithm. Desaulniers et al. (1997) use a set partitioning
model solved with column generation to do crew scheduling for Air France. In
Rezanova and Ryan (2010) a recovery problem for train driver duties is modelled
by a set partitioning model and solved in a column generation-based framework.
Brønmo et al. (2010) use a set partitioning model and column generation to solve
a short-term ship scheduling problem where the cargo sizes are flexible. Cargoes
have a given profit rate, and some cargoes must be carried out while others can
be negotiated on the spot market. A schedule, i.e. a sequence of ports, for each
ship must be build, and the objective is to maximise profit.

The set partitioning problem is formally defined below.

Definition 2.3 [Set partitioning problem] Let S = {1, . . . ,m} be a set of m
elements, and let {S1, . . . , Sn} be a family of n subsets of S, that is, Sj ⊆ S
for all j ∈ {1, . . . , n}. A partitioning Q = {Sj1 , . . . , Sjk} is a subfamily of
{S1, . . . , Sn}, where the elements in Q are pairwise disjoint, i.e. Sjs ∩ Sjt = ∅
for all s, t ∈ {1, . . . , k} with s 6= t, and also Q covers all elements of S, that is⋃k
s=1 Sjs = S. Let cj be the cost associated with subset Sj for all j ∈ {1, . . . , n}.

The set partitioning problem is then to find a partitioning with minimum cost.
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As before, letA be a m×n zero-one matrix with entries aij for all i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n} defined by Equation (2.1), and let xj for all j ∈ {1, . . . , n}
be a binary decision variable defined by Equation (2.2). Let c be the vector of
costs cj for all j ∈ {1, . . . , n}. The set partitioning problem can now be written
as the following binary integer programme:

minimise c>x (2.9)

subject to Ax = 1 (2.10)

x ∈ {0, 1}n . (2.11)

Again, the jth column Aj = (a1j , . . . , amj)
>

of the A matrix is the column
representation of the subset Sj . Constraints (2.10) enforce that the subsets are
pairwise disjoint and cover all elements of S, i.e. every element of S is in exactly
one of the subsets in the solution.

The set partitioning problem is well-known to be NP-hard, and we will here
very briefly sketch the proof. The core of the proof is to reduce set packing
to set partitioning. For an introduction to NP-completeness proofs we refer
to Garey and Johnson (1979), Cormen et al. (2001), and Cook et al. (1998).
Consider a general set packing problem instance. Now, the original family of
subsets is augmented with zero-cost singleton subsets for each of the elements.
If we multiply all costs by minus one, we can then solve the set packing instance
as a set partitioning instance. As the set packing problem as described earlier is
NP-hard, we can conclude that also the set partitioning problem is NP-hard.

2.4 A unified model

The set partitioning problem can be transformed to both the set packing prob-
lem and the set covering problem. These transformations are well-known, see
for instance Balas and Padberg (1976), Darby-Dowman and Mitra (1985), and
Vemuganti (1998).

As we have shown previously, the set packing problem can be transformed to the
set partitioning problem (see Section 2.3), we can now classify the two problems
as equivalent problems. This makes sense intuitively: In the set packing problem
and the set partitioning problem each of the constraints imposes that there must
be at most one or exactly one of the many variables, that covers the constraint,
at value one. In the set covering problem each of the constraints enforce that
there must be at least one of the many variables, that covers the constraint, at
value one. So, set packing and set partitioning can be said to be more restricted
than set covering.
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The set packing problem, the set covering problem, and the set partitioning
problem can be combined in a unified model that covers all three problems.
The idea behind the unified model (see also Darby-Dowman and Mitra (1985))
is to allow undercovering (thereby yielding set packing) or overcovering (thereby
yielding set covering) of the set partitioning constraints.

Let A be an m × n zero-one matrix and let c ∈ Rn be an n-vector of costs.
Let yuc ∈ {0, 1}m be a vector of decision variables controlling whether or not
the ith constraint is undercovered. If the ith constraint is undercovered, then
yuc
i = 1, otherwise yuc

i = 0. Let yoc ∈ Zm+ be a vector of decision variables
controlling how much the ith constraint is overcovered. If the ith constraint is
overcovered, then yoc

i = oi, where oi is the number of times it is overcovered,
otherwise yoc

i = 0. Let cuc ∈ Rm+ be an m-vector of undercoverage costs, and
let coc ∈ Rm+ be an m-vector of overcoverage costs. Let x ∈ {0, 1}n be a vector
of decision variables controlling whether or not the column j is selected in the
solution. Now we can write the unified set partitioning model as:

minimise c>x+ cuc>yuc + coc>yoc (2.12)

subject to Ax+ Iyuc − Iyoc = 1 (2.13)

x ∈ {0, 1}n (2.14)

yuc ∈ {0, 1}m (2.15)

yoc ∈ Zm+ . (2.16)

Here I denotes the m ×m identity matrix. We now show how to capture the
set packing, the set covering, and the set partitioning problem in the unified
model:

• Set packing: Let us call the cost vector from the set packing problem
(2.3)–(2.5) for p. Then, in order to solve the set packing problem in
the unified set partitioning model, define the costs by cj = −pj for all
j ∈ {1, . . . , n}, and set cuc = 0 to allow undercoverage. Furthermore, set
coc
i = M for all i ∈ {1, . . . ,m}, where M is a sufficiently large positive

number, to disallow overcoverage. Sufficiently large would be fulfilled by
M >

∑n
j=1 max{|cj |}. Then the unified model will have the same optimal

solutions as the set packing model.

• Set covering: In order to solve the set covering problem (2.6)–(2.8)
in the unified set partitioning model set coc = 0 to allow overcoverage.
Furthermore, set cuc

i = M for all i ∈ {1, . . . ,m}, where M again is a
sufficiently large positive number, to disallow undercoverage. Sufficiently
large would be fulfilled as before. Then the unified model will have the
same optimal solutions as the set covering model, in the cases where the
set covering problem has feasible solutions.
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• Set partitioning: In order to solve the set partitioning problem (2.9)–
(2.11) in the unified set partitioning model set cuc

i = coc
i = M for all

i ∈ {1, . . . ,m}, where M is defined as before, to disallow both under- and
overcoverage. Then the unified model will have the same optimal solu-
tions as the set partitioning model, in the cases where the set partitioning
problem has feasible solutions.

In many practical applications where a set partitioning model is used, there
might not exist feasible solutions to the model. In such cases, a solution that is
just close to set partitioning feasible could still be interesting. Such a solution
would overcover or undercover some constraints in the problem. This situation
could, however, not be captured by the pure set partitioning model, but it can
be captured in the unified model. In the unified model, one can put a specific
price on over- or undercoverage of each of the constraint. The unified model
also captures situations where over- or undercoverage of a few constraints is
more preferable than a costly exact partition. Examples of the use of over-
and undercoverage are Desaulniers et al. (1997) and Darby-Dowman and Mitra
(1985) as well as Paper A, Paper C, and Paper D.

Since the set partitioning problem as described earlier isNP-hard and contained
in the unified set partitioning problem, we can conclude that also the unified
set partitioning problem is NP-hard.

2.5 The integer property

Let A be an m×n integer matrix, and let b be an integer n-vector. Let c ∈ Rn+
be an n-vector of costs, and let x be an n-vector of decision variables. Consider
the integer programme given by

minimise c>x (2.17)

subject to Ax = b (2.18)

x ∈ Zn+ . (2.19)

We will now investigate in which situations, we can get an optimal solution to
(2.17)–(2.19) by solving the LP relaxation, i.e. the linear programme

minimise c>x (2.20)

subject to Ax = b (2.21)

x ≥ 0 . (2.22)
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where (2.19) is substituted with x ≥ 0. Being able to get an optimal IP solu-
tion by solving an LP relaxation is very attractive, as finding LP solutions is
computationally much faster than finding IP solutions.

Definition 2.4 [Integer property] The polyhedron

{x ∈ Rn : Ax = b,x ≥ 0}

is said to have the integer property if it has only integral extreme points.

In the following we will present four classes of matrices that all ensure that the
accompanying polyhedrons have the integer property.

2.5.1 Totally unimodular matrices and unique subsequence

Let us first establish a sufficient condition that enables the LP relaxation to
solve also the IP. A basic feasible solution when solving an LP (2.20)–(2.22)
looks like (see for instance Hillier and Lieberman (2005) and Andersen (2006)):

x =

(
xB
xN

)
=

(
B−1b

0

)
where xB are the basic variables, xN are the non-basic variables, and B is an
m×m nonsingular submatrix of A.

From Messer (1994), we have that B−1 = adj(B)/det(B), where adj(B) and
det(B) is the adjoint matrix respectively the determinant of B. As B is a
submatrix of the integer matrix A, and as the entries of adj(B) are all products
of the entries inB, then adj(B) is integral. Now, b is also integral, so if det(B) =
±1, then B−1b is integral. Hence, we have proved a sufficient condition for the
integer property, see also Wolsey (1998):

Proposition 2.1 [LP solves IP] If the determinant of the optimal basis B is 1
or −1, then the LP relaxation solves the IP.

Based on this, we can now define a class of matrices that impose the integer
property. The class is called totally unimodular matrices and was first intro-
duced in Hoffman and Kruskal (1956) and is described in, for instance, Wolsey
(1998) and Nemhauser and Wolsey (1988).

Definition 2.5 [Totally unimodular matrices] A matrix A is said to be totally
unimodular if every square submatrix of A has determinant 1, −1, or 0.
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1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 1 1 0

1 0 1 0 1 0 1

0 0 0 0 0 0 1

0 1 1 0 0 1 0



Figure 2.1: Subsequence set for row 1.

It follows immediately from this definition that if the constraint matrix A from
(2.20)–(2.22) is totally unimodular, then any optimal basis B fulfills the suffi-
cient condition (Proposition 2.1), because the optimal basis B is non-singular
(i.e. det(B) 6= 0).

It also follows immediately from the definition that the entries aij of a totally
unimodular matrixA, must have aij ∈ {−1, 0, 1}, since also all 1×1-submatrices
must have determinant 1, −1, or 0.

Since the set partitioning, set packing and set covering problems are all defined
for a zero-one constraint matrix A, we will in the following restrict ourselves to
only consider zero-one matrices, i.e. matrices where the entries aij ∈ {0, 1}.

Another means to characterise matrices is the notion of subsequence set or sub-
sequences for a given row s, that is the pairs of rows (s, t) where a one in s is
followed (meaning that there are only zeros between them in a column) by a
one in t.

Definition 2.6 [Subsequence set] For an m×n zero-one matrix A with entries
aij, the subsequence set or the subsequences, S(s), for any row s is given by

S(s) = {(s, t) : [∃j ∈ {1, . . . , n} : asj = 1, aij = 0 for s < i < t, atj = 1]} ,

and the subsequence count, SC(s), for any row s is given by

SC(s) = |S(s)| .

Figure 2.1 shows an example where the subsequence set for row 1 is S(1) =
{(1, 3), (1, 4), (1, 6)}, yielding the subsequence count SC(1) = 3. We can now
define unique subsequence matrices:

Definition 2.7 [Unique subsequence matrices] Zero-one m× n matrices where
the subsequence count SC(s) ≤ 1 for all s ∈ {1, . . . ,m} are said to have unique
subsequence.
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Ryan and Falkner (1988) prove an important property for unique subsequence
matrices:

Proposition 2.2 [Unique subsequence and totally unimodularity] Let A be an
m×n zero-one matrix. If A has unique subsequence, then A is totally unimod-
ular.

Therefore, when A has unique subsequence, then the polyhedron {x ∈ Rn :
Ax = b,x ≥ 0} has the integer property.

2.5.2 Balanced and perfect matrices

An odd order two-cycle square matrix is a square matrix of odd dimension,
where there are exactly two ones in each row and each column, i.e. every row
and column sum is two. The smallest example of such a matrix is 1 0 1

1 1 0
0 1 1

 .

Introduced by Berge (1972) is the class of balanced matrices:

Definition 2.8 [Balanced matrices] A zero-one matrix is said to be balanced,
if it does not contain any odd order two-cycle square submatrices.

Balanced matrices impose the integer property on the set partitioning polyhe-
dron when b = 1, see Ryan and Falkner (1988).

Another important class of matrices with respect to the integer property, is the
class of perfect matrices, introduced by Padberg (1974). This class contains the
class of balanced matrices, but allows the odd order two-cycle square submatri-
ces, that cannot exist in a balanced matrix. The odd order two-cycles are then
“tamed” by a row outside the submatrix. The definition from Padberg (1974)
is:

Definition 2.9 [Perfect matrices] A zero-one matrix is said to be perfect, if
the set packing polytope

{x ∈ Rn : Ax ≤ 1,x ≥ 0} (2.23)

has only integral extreme points.
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Hence, if A is perfect then also the set partitioning polytope

{x ∈ Rn : Ax = 1,x ≥ 0}

will have only integral extreme points (assuming there are other extreme points
than 0), and therefore, per definition, perfect matrices impose the integer prop-
erty for b = 1.

Consider the matrix

A1 =

 1 1 0 1
0 1 1 0
0 0 1 1

 .

The matrix has an odd order two-cycle square submatrix, so it is not balanced.
Let us use A1 in the polytope (2.23). Then the extreme points are (0, 0, 0, 0)>,
(0, 1

2 ,
1
2 ,

1
2 )>, and (1, 0, 1, 0)>. Now, if the constraint x2 + x3 + x4 ≤ 1 is added,

we get

A2 =


0 1 1 1
1 1 0 1
0 1 1 0
0 0 1 1

 ,

and the extreme points are then restricted to (0, 0, 0, 0)> and (1, 0, 1, 0)>. The
matrix A2 is therefore perfect.

The example tells us something about how perfect matrices can be recognised.
We will need the following definition from Padberg (1974):

Definition 2.10 [Property Πβ,k] An m × k zero-one matrix A with k ≤ m is
said to have the property Πβ,k if

(i) A contains a k × k nonsingular submatrix Bk with all row and column
sums equal to β.

(ii) Each row of A which is not in Bk is either componentwise equal to a row
of Bk or has row sum strictly less than β.

Now perfect matrices can be recognised by looking for matrices with that prop-
erty. This is formalised in the following proposition by Padberg (1974).

Proposition 2.3 [Perfect matrix recognition] Let A be an m×n zero-one ma-
trix. The following conditions are equivalent:

(i) A is perfect.



16 Set Partitioning Extensions and Properties

(ii) For β ≥ 2 and 3 ≤ k ≤ m, A does not contain any m × k submatrix Ak

with the property Πβ,k.

We can put this proposition to immediate use and derive a result about matrices
with a special type of constraint, namely the so-called generalised upper bound
constraint.

Definition 2.11 [Generalised upper bound constraint] Let A be an m×n zero-
one matrix. A generalised upper bound (GUB) set packing constraint for A is a
constraint of the form 1>x ≤ 1, where 1 is an n-vector. A GUB set partitioning
constraint is a constraint of the form 1>x = 1.

Now, a matrix with a GUB constraint will prevent the existence of submatrices
with property Πβ,k. The GUB row will always have a row sum of at least β,
and hence it must be a part of Bk (or componentwise equal to a row of Bk)
for Definition 2.10 (ii) to be respected. In that case β = k and then Bk is a
unit square matrix and thus singular, why Definition 2.10 (i) is not respected.
Hence, by Proposition 2.3, we have showed the following corollary.

Corollary 2.1 [GUB constraint and perfect matrix] Let A be a zero-one matrix
with a GUB set packing or set partitioning constraint. Then A is a perfect
matrix.

The corollary is a fast means to identify perfect matrices, which in turn gives
the integer property.

The last class of matrices, that are interesting to mention with respect to the
integer property, is that of ideal matrices, introduced by Lehman (1979). We
will not go into details about this class of matrices, but just state its definition
for completeness.

Definition 2.12 [Ideal matrices] A zero-one matrix is said to be ideal, if the
set covering polyhedron

{x ∈ Rn : Ax ≥ 1,x ≥ 0}

has only integral extreme points.

From the definition it can be seen that the class of ideal matrices is the set
covering counterpart to perfect matrices.

In order to give an overview, we illustrate the set relations between the pre-
sented classes of matrices which impose the integer property on Figure 2.2. The
relations are shown in Berge (1972), Padberg (1974), Ryan and Falkner (1988),
and Conforti et al. (2001).
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Perfect Ideal

Balanced

Totally 
unimodular

Figure 2.2: Set relations between the different classes of matrices which impose the
integer property.

2.6 Generalised set partitioning

The pure set partitioning model presented in Section 2.3 as well as the uni-
fied set partitioning model presented in Section 2.4 are sometimes not general
enough to capture the requirements from a practical application. In such cases,
a generalised set partitioning problem is used. The generalised set partitioning
problem allows the entries of the constraint matrix as well as the right hand side
to be different from zero and one. The problem also allows the constraints to be
packing, covering and/or partitioning constraints. The generalised set partition-
ing problem is also widely used in the literature. For instance: Nissen and Haase
(2006) have a generalised set partitioning model for airline crew re-scheduling
and solve it using column generation in a branch-and-price framework. The
goal is to create new crew schedules fast and with minimal deviation from the
original schedule. Test instances are generated based on the flight schedule from
a major European carrier. Avella et al. (2004) use a generalised set partitioning
model for solving a fuel delivery problem with column generation. A company
with one warehouse and a fleet of trucks with different capacities delivers differ-
ent types of fuel to fuel pumps located at clients in an urban area. The trucks
are routed and scheduled to their client visits in a daily planning horizon.

We will define the generalised set partitioning problem below with offset in the
unified set partitioning integer programme (2.12)–(2.16).

Let A be an m × n-matrix where the entries aij ∈ Z for all i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}. Let c ∈ Rn be an n-vector of costs. Let b ∈ Zm be an



18 Set Partitioning Extensions and Properties

c1 · · · cn cuc
1 · · · cuc

m coc
1 · · · coc

m

1
... A U −O b
m

Figure 2.3: Constraint matrix with right hand side for the generalised set partitioning
model.

m-vector of right hand sides to the constraints. Let yuc ∈ Rm+ be a vector
of decision variables controlling how much the ith constraint is undercovered.
Let yoc ∈ Rm+ be a vector of decision variables controlling how much the ith
constraint is overcovered. Let cuc ∈ Rm+ be an m-vector of undercoverage costs,
and let coc ∈ Rm+ be an m-vector of overcoverage costs. Let x ∈ {0, 1}n be a
vector of decision variables controlling whether or not the column j is selected
in the solution. Now we can write the generalised set partitioning model as:

minimise c>x+ cuc>yuc + coc>yoc (2.24)

subject to Ax+Uyuc −Oyoc = b (2.25)

x ∈ {0, 1}n (2.26)

yuc,yoc ∈ Rm+ . (2.27)

Here, U and O are the m×m coefficient matrices for undercoverage respectively
overcoverage, where the entries uij , oij ∈ Z for all i, j ∈ {1, . . . ,m}. Note that
U and O are not necessarily identity matrices, because that would give a less
general model unable of capturing some important applications, see Chapter 4.

As the set partitioning problem is NP-hard (see Section 2.3) and contained in
the generalised set partitioning problem, we can conclude that also the gener-
alised set partitioning problem is NP-hard.

Constraints (2.25) can be rewritten to

(A | U | −O) ·

 x
yuc

yoc

 = b

and the constraint matrix (A | U | −O) with its right hand side can then be
illustrated as on Figure 2.3. If the matrix multiplications in (2.24)–(2.27) are
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written out we get the following integer programme:

minimise

n∑
j=1

cjxj +

m∑
i=1

cuc
i y

uc
i +

m∑
i=1

coc
i y

oc
i

subject to

n∑
j=1

aijxj +

m∑
j=1

uijy
uc
j −

m∑
j=1

oijy
oc
j = bi ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}
yuc
i , y

oc
i ∈ Z+ . ∀i ∈ {1, . . . ,m}

When we are considering a generalised set partitioning problem instead of a
pure set partitioning problem, the theoretical results about integer properties
from Section 2.5 do not hold any more. However, intuitively, the fewer non-
pure set partitioning constraints the constraint matrix has, the more likely it is
to maintain integer properties. Considering unique subsequence matrices, the
results from Ryan and Falkner (1988) indicate that the closer the matrix is to
unique subsequence, the more integer it is likely to be.
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Chapter 3

Solution Methods

In this chapter we will go through exact solution methods for optimisation
problems. We will present the column generation technique with its master and
pricing problem setup for linear programmes, as well as the Dantzig-Wolfe de-
composition method. For integer programmes we will describe the branch-and-
bound approach and also branch-and-bound with embedded column generation.
Finally, we will present optimisation-based heuristic approaches.

3.1 Column generation

Let A be an m × n matrix, and let b be an m-vector. Let c be the vector of
costs, and let x be the solution vector. We assume n > m and rank(A) = m.
Consider the linear programme (LP) given below.

minimise c>x (3.1)

subject to Ax = b (3.2)

x ≥ 0 . (3.3)

A linear programme is typically solved by the simplex method, see for instance
Hillier and Lieberman (2005), Andersen (2006), and Lasdon (2002).
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Suppose that the LP (3.1)–(3.3) has a huge number of columns n, say millions,
but only a relatively few number of constraints m, say hundreds. From sim-
plex theory, we know that every basis has m columns, so most of the columns
will not be in the basis and very likely never be part of a basis in any of the
iterations. Moreover, the calculations and bookkeeping for a huge number of
columns is computationally undesirable, and even just the generation of all
possible columns can be unachievable in reasonable time. All in all, this sug-
gests that columns should only be generated when needed. The majority of the
columns will be non-basic in an optimal solution anyway.

The column generation technique for linear programmes is a two-phase method,
divided in a master problem and a pricing problem, which we will explain in the
following sections. Column generation was introduced by Gilmore and Gomory
(1961) and Gilmore and Gomory (1963). For an introduction to column gen-
eration, see, for instance, Desrosiers and Lübbecke (2005), Lasdon (2002), and
Dirickx and Jennergren (1979).

3.1.1 Master problem

The master problem is Model (3.1)–(3.3), but as mentioned, explicit pricing over
all possible columns could be impossible or, at least, extremely time-consuming.
Therefore, we use the restricted master problem, where only a small subset of
the columns are present:

minimise c′>x′ (3.4)

subject to A′x′ = b (3.5)

x′ ≥ 0 . (3.6)

The restricted master problem must be feasible for the method to work. This is
ensured by adding dummy columns. In each iteration of the column generation
algorithm the restricted master problem (3.4)–(3.6) is solved, and the vector of
dual variables is passed on to the pricing problem. The pricing problem returns
a column with negative reduced cost, or proves that no such column exists.
The column Aj from the pricing problem with cost cj is then appended to the
restricted master problem, yielding the new restricted master problem for the
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next iteration of the column generation algorithm:

minimise

(
c′

cj

)>(
x′

xj

)
subject to

(
A′ | Aj

)( x′

xj

)
= b(

x′

xj

)
≥ 0 .

3.1.2 Pricing problem

Consider the LP (3.1)–(3.3). Let B denote the m×m matrix of basic variables,
and let N be the m× (n−m) matrix of non-basic variables. We split the cost

vector in c = (cB , cN )
>

, where cB are the costs corresponding to B, and cN
are the costs corresponding to N . In every iteration of the simplex method
a non-basic variable that can enter the basis (i.e. the set of basic variables) is
found. The m-vector of dual prices π for the basis of the current iteration is
given by

π> = c>BB
−1

and the reduced cost vector c̄N for the variables not in basis is given by

c̄>N = c>N − c>BB
−1N = c>N − π>N ,

so the individual reduced cost for non-basic variable j is then given by

c̄j = cj − π>Aj = cj −
m∑
i=1

πiaij .

Here Aj = (a1j , . . . , amj)
>

is the jth column of the A matrix.

The pricing problem now searches among all columns for a column j where
c̄j < 0 or proves that no such column exists. In the latter case it is then proof
that the current optimal solution to the restricted master problem is also an
optimal solution to the master problem, and the column generation algorithm
can terminate.

Often the pricing problem will return the column with the most negative reduced
cost, but this is not necessary, although it could speed up convergence. Any
column with negative reduced cost can be added. Therefore, the pricing problem
could be solved heuristically up to the point, where it needs to be proved that
no more negative reduced cost columns exist (Irnich and Desaulniers, 2005). It
is also possible for the pricing problem to return more than one column with
negative reduced cost, which again could speed up convergence (Kohl, 1995).
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3.1.3 Dantzig-Wolfe decomposition

If the LP (3.1)–(3.3) has the special block-angular form (Lasdon, 2002; Tebboth,
2001) the constraints (3.2) can be rewritten to

A1 A2 · · · AK

D1

D2

. . .

DK




x1

x2

...
xK

 =


b0

b1

b2

...

bK

 , (3.7)

and then the LP (3.1)–(3.3) can be written as

minimise

K∑
k=1

ck
>
xk (3.8)

subject to

K∑
k=1

Akxk = b0 (3.9)

Dkxk = bk ∀k ∈ {1, . . . ,K} (3.10)

xk ≥ 0 ∀k ∈ {1, . . . ,K} (3.11)

where ck is the part of the cost vector c that corresponds to xk. Given an
LP with this block-angular form, the LP can be reformulated by Dantzig-Wolfe
decomposition (Dantzig and Wolfe, 1960b) into a master problem/subproblem
setup suitable for column generation, see Martin (1999), Barnhart et al. (1998),
Tebboth (2001), Kalvelagen (2003), and Desrosiers et al. (1995). The master
problem will then have fewer constraints than the original LP, but the other
constraints are then enforced by the pricing problem. The master problem,
though, will have many more columns than the original LP.

The basic idea in Dantzig-Wolfe decomposition is to enforce the constraints
(3.10) in K subproblems, while keeping the so-called coupling constraints (3.9)
in a master problem.

For all k ∈ {1, . . . ,K} the polyhedron

Xk =
{
xk ∈ Rnk : Dkxk = bk,xk ≥ 0

}
is the feasible region for the kth subproblem. Here nk is the column dimen-
sion of Dk and Ak. Let conv(Xk) denote the convex hull of Xk and let
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{xk,1, . . . ,xk,Pk} be the extreme points of conv(Xk) with

xk,1 =
(
xk,11 , . . . , xk,1nk

)>
...

xk,Pk =
(
xk,Pk1 , . . . , xk,Pknk

)>
.

Let {yk,1, . . . ,yk,Rk} be the extreme rays of conv(Xk). Now, by Minkowski’s
Theorem (Nemhauser and Wolsey, 1988), we can describe any point xk ∈ Xk

as a convex combination of the extreme points plus a non-negative combination
of the extreme rays of conv(Xk):

xk =

Pk∑
p=1

λpkx
kp +

Rk∑
r=1

µrky
kr (3.12)

Pk∑
p=1

λpk = 1 (3.13)

λpk ≥ 0 ,∀p ∈ {1, . . . , Pk} (3.14)

µrk ≥ 0 ,∀r ∈ {1, . . . , Rk} (3.15)

If the set Xk is bounded, then we do not need extreme rays, so (3.12) becomes

xk =
∑Pk
p=1 λ

p
kx

kp and (3.15) is not necessary.

If we substitute with (3.12)–(3.15) in (3.8)–(3.11) and remove the constraints
(3.10), we get the following master problem:

minimise

K∑
k=1

ck
>

(
Pk∑
p=1

λpkx
kp +

Rk∑
r=1

µrky
kr

)
(3.16)

subject to

K∑
k=1

Ak

(
Pk∑
p=1

λpkx
kp +

Rk∑
r=1

µrky
kr

)
= b0 (3.17)

Pk∑
p=1

λpk = 1 ,∀k ∈ {1, . . . ,K} (3.18)

λpk ≥ 0 ,∀k ∈ {1, . . . ,K},∀p ∈ {1, . . . , Pk} (3.19)

µrk ≥ 0 ,∀k ∈ {1, . . . ,K},∀r ∈ {1, . . . , Rk} (3.20)

The constraints (3.10) are enforced implicitly through the subproblems, so the
master problem does not need to enforce these explicitly, yielding a simpler
problem. However, the number of columns is potentially enormous due to the
description by extreme points and rays. Most of these columns are not needed,
so the column generation technique could obviously be applied.
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3.2 Finding integer solutions

Let A be an m × n matrix and let b be an m-vector. Let c be the vector of
costs, and let x be the solution vector. Consider the integer programme given
below.

minimise c>x (3.21)

subject to Ax = b (3.22)

x ∈ Zn+ . (3.23)

The branch-and-bound framework for solving integer programmes as (3.21)–
(3.23) was introduced by Land and Doig (1960) and is widely used and described,
see e.g. Wolsey (1998). The backbone of the branch-and-bound method is a
decision tree. In the root node of the tree a relaxed version of (3.21)–(3.23) is
defined. Often the integrality requirements are relaxed, and this is known as
the LP relaxation. Relaxing the integrality requirements x ∈ Zn+, we can write
the relaxed problem as

minimise c>x (3.24)

subject to Ax = b (3.25)

x ≥ 0 . (3.26)

The method starts by finding an optimal solution to the relaxed problem (3.24)–
(3.26) in the root node. If the solution is integral, the solution is also optimal
for (3.21)–(3.23), and the algorithm terminates. If at least one of the relaxed
constraints is violated, then the solution space is divided into two or more sub-
sets, each corresponding to a branch in the decision tree, see Section 3.2.1, and
the new nodes corresponding to the branches are added to the pool of unpro-
cessed nodes. The union of the subsets contains all feasible solutions of the
original solution space of (3.21)–(3.23), and the solution from the relaxed prob-
lem (3.24)–(3.26) (which is infeasible in the original problem) is made infeasible
in each of the branches. Branching can be done for all nodes in the decision
tree.

The full decision tree corresponds to a total enumeration of all possible solutions.
A total enumeration is of course not desirable, and therefore subtrees are cut
off whenever possible. This is called pruning of the tree. For each unexplored
node in the tree, a lower bound is calculated. If the lower bound of a node is
larger than or equal to the value of the current best feasible solution for the
original problem—the so-called incumbent—the node is pruned by bound. A
node is pruned by feasibility if the optimal solution to the relaxed problem in
the node is also feasible with respect to the original problem. If the solution
value is lower than the incumbent, the incumbent is updated. A node is pruned
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by infeasibility if there are no feasible solutions to the relaxed problem in the
node. Branching and pruning continue until the pool of unprocessed nodes is
empty.

Given a pool of unprocessed nodes in the branch-and-bound tree, one has to
decide on a strategy for picking the next node to process. Classically, depth-first
search, where the node at the highest level in the tree is picked, or best-first
search, where the node with the most promising lower bound is picked, have
been used. Depth-first search find a feasible solution fastest, whereas best-first
might find an optimal solution fastest. The two can be used in combination,
where depth-first is used until a feasible solution is found, and then best-first is
used to prove optimality. More sophisticated search strategies are described in
Achterberg et al. (2005b).

3.2.1 Branching

As mentioned, branching is the means that is used to force an infeasible solution
to a feasible one. Consider the relaxed problem (3.24)–(3.26) and let S = {x ∈
Rn : A1x = b1,x ≥ 0} denote the solution space. Now, if a variable xj is
fractional at value x̂j in the solution to the relaxed problem, then it is clearly
infeasible in the original problem (3.21)–(3.23).

Traditional variable branching, as described by Wolsey (1998), suggests to
branch into two branches, where the solutions spaces are given by

S1 = {x ∈ S : xj ≤ bx̂jc}
S2 = {x ∈ S : xj ≥ dx̂je} .

Thereby the violating solution is forbidden in both branches. Let us look at the
set partitioning problem which is a special case of (3.21)–(3.23). Now A is an
m× n zero-one matrix and the decision vector x becomes binary:

minimise c>x (3.27)

subject to Ax = 1 (3.28)

x ∈ {0, 1}n . (3.29)

If the integrality requirements are relaxed for (3.27)–(3.29) the solution space
becomes S = {x ∈ Rn : Ax = 1,x ≥ 0,x ≤ 1}. For a variable xj which is
fractional at value x̂j with 0 < x̂j < 1, variable branching divides S into

S1 = {x ∈ S : xj = 0}
S2 = {x ∈ S : xj = 1} .



28 Solution Methods

The branch for S1 (called the 0-branch) forces the jth column not to be used.
In most cases there are a lot of other variables that can enter the basis and yield
a new fractional solution at the same objective function value. The branch for
S2 (called the 1-branch) forces the jth column to be selected and is thus likely
to give rise to an increase in the objective function value. The result of this is
a very unbalanced branch-and-bound tree, because pruning by bound is mostly
not possible for the 0-branches, see also Ryan (1992b).

Another problem with variable branching is that it does not work well with col-
umn generation performed in every branch-and-bound node, as we will describe
in Section 3.3. It is difficult to enforce the 0-branch in the pricing problems, i.e.
it is not simple to prevent the banned column from being re-generated by the
pricing problem.

Constraint branching

An alternative to variable branching is constraint branching, which has shown
great efficiency in resolving fractions for set partitioning problems. Constraint
branching was introduced by Ryan and Foster (1981) and is also described in
Barnhart et al. (1998) and Vanderbeck and Wolsey (1996).

Let J(s, t) denote the subset of columns that cover rows s and t in the constraint
matrix from (3.27)–(3.29). Formally, we can write

J(s, t) = {j ∈ {1, . . . , n} : asj = 1 and atj = 1} .

In any optimal fractional solution to the LP relaxation of (3.27)–(3.29), at least
one (s, t)-pair exists such that

0 <
∑

j∈J(s,t)

xj < 1 .

This is formally proved in Barnhart et al. (1998) and Vanderbeck and Wolsey
(1996). Now, for the 0-branch we enforce∑

j∈J(s,t)

xj = 0 , (3.30)

and for the 1-branch we enforce ∑
j∈J(s,t)

xj = 1 . (3.31)
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In the 0-branch (3.30) all columns from J(s, t) are removed from the problem,
either explicitly or implicitly by setting their upper bound to zero. The 1-branch
(3.31) can be imposed by enforcing∑

j∈J̄(s,t)

xj = 0 ,

where J̄(s, t) = {j ∈ {1, . . . , n} : (asj = 1 and atj = 0) or (asj = 0 and atj =
1)}, so all columns from J̄(s, t) are removed from the problem.

In both the 0-branch and the 1-branch potentially many columns are removed,
so this branching scheme leads to a more balanced branch-and-bound tree than
variable branching. In a balanced branch-and-bound tree, the lower bounds of
the nodes increase evenly, instead of one bound increases significantly and the
other bound is almost constant.

When one has to choose an (s, t)-pair with 0 <
∑
j∈J(s,t) xj < 1 to branch on,

often the pair (s∗, t∗) where the sum of fractions is closest to one, i.e. where

(s∗, t∗) = arg max
(s,t)

 ∑
j∈J(s,t)

xj : 0 <
∑

j∈J(s,t)

xj < 1


is chosen. This strategy follows directly the preference of the LP for covering two
constraints in the same column. Together with depth-first search this strategy
can lead to a feasible and often high-quality integer solution fast.

Another strategy that tries to aim for a more balanced branch-and-bound tree
by selecting the candidate closest to one-half, i.e.

(s∗, t∗) = arg min
(s,t)


∣∣∣∣∣∣
∑

j∈J(s,t)

xj −
1

2

∣∣∣∣∣∣ : 0 <
∑

j∈J(s,t)

xj < 1

 .

3.3 Branch-and-price

Let A be an m × n matrix, and let b be an m-vector. Let c be the vector of
costs, and let x be the solution vector. Consider the integer programme (IP)
given below.

minimise c>x (3.32)

subject to Ax = b (3.33)

x ∈ Zn+ . (3.34)
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Suppose as in Section 3.1 that (3.33)–(3.34) have an enormous number of feasible
columns. We cannot use column generation directly, as (3.33)–(3.34) is not a
linear programme, but fortunately column generation can be embedded in the
branch-and-bound framework. This technique is known as branch-and-price
and is described by for instance Desrosiers et al. (1984), Desrochers and Soumis
(1989), Barnhart et al. (1998), and Ralphs et al. (2003).

In the branch-and-price method, column generation is performed in every node
of the branch-and-bound tree. Let us denote (3.33)–(3.34) the master prob-
lem (MP). We restrict the enormous number of columns and then consider the
restricted master problem (RMP). For column generation we need the LP re-
laxation of the restricted master problem, that is, we work with the relaxed
restricted master problem (RRMP). Other constraints than the integrality re-
quirements can be relaxed in RRMP.

Every time a node is selected from the node pool, the relaxed MP optimum
is computed using column generation, taking into account the restrictions im-
posed in the current node. Therefore, the branch-and-price method is an exact
approach that will yield the optimal solution to the MP integer programme,
if such a solution exists. A flowchart for a branch-and-price algorithm can be
seen on Figure 3.1. Whenever a branching decision is enforced in a node, it is
necessary not only to remove columns that violate the branching restrictions,
but also to prevent the pricing problem from generating such violating columns.

An alternative (or a companion) to column generation is cut generation. A so-
called separation algorithm detects violated cuts from a collection of cuts, and
the violated cuts are then added to the LP, thereby cutting away the solution
that is infeasible in the original LP. Cut generation is described in detail in, for
instance, Wolsey (1998). Instead of using a separation algorithm where the cuts
are implicitly represented, a cut pool can be used. In a cut pool the cuts are
explicitly represented. One can also use constraint reintroduction. In constraint
reintroduction all the constraints or some of the constraints in the LP (3.1)–(3.3)
are left out when the relaxed LP is solved. Whenever a removed constraint is
found to be violated, it is reintroduced in the LP, thereby removing the infeasible
solution.

Also cut generation and constraint reintroduction can be embedded in the
branch-and-bound framework, giving rise to a branch-and-cut algorithm, see
Ralphs et al. (2003). Here, cuts are generated or constraints reintroduced in ev-
ery node of the branch-and-bound tree. Branch-and-price and branch-and-cut
can be combined to a branch-and-cut-and-price algorithm where both column
generation as well as cut generation (and constraint reintroduction) is carried
out in every branch-and-bound node. Again we refer to Ralphs et al. (2003). A
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Figure 3.1: Flowchart for the branch-and-price algorithm.
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Figure 3.2: Flowchart for the branch-and-cut-and-price algorithm.

flowchart for a branch-and-cut-and-price algorithm can be seen on Figure 3.2.

3.4 Heuristic solution approaches

The methods presented thus far have all been exact solution approaches. Some-
times, however, computation time restrictions, implementation time restrictions,
or computer hardware restrictions do not allow for an exact solution approach.
Therefore, many—if not every—mathematical problem presented in the litera-
ture has at least one heuristic solution approach tailored for the specific prob-
lem. Some of these heuristic approaches have been generalised to so-called
metaheuristics, i.e. generic heuristic frameworks for a solving a wide range of
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problems. See for instance Burke and Kendall (2005) and Glover and Kochen-
berger (2003) for more on metaheuristics.

When a heuristic can guarantee that the objective value of any solution found by
the heuristic is within a specified gap to the optimal objective value, it is called
an approximation algorithm. This class of heuristics have been well-studied, see
e.g. Hochbaum (1997) and Vazirani (2001). Approximation algorithms are tai-
lored for the specific problem and thus not generic in any way as metaheuristics.

3.4.1 Optimisation-based heuristics

The last class of heuristics that we will present, is the class of optimisation-
based heuristics. The methods in this class are based on the solution approaches
described in the preceding sections of this chapter, but some components are
made heuristic in order to speed up computation time.

One idea is to use heuristic, i.e. not necessarily true, lower bounds in the branch-
and-bound tree. When the lower bound used for pruning by bound is not
necessarily a true lower bound, then parts of the tree, that would be kept by an
exact approach, can be cut off. This will speed up the search, but could also
cut off a subtree containing the optimal solution.

The solution space S for the problem in question can be restricted to S′ ⊂ S.
The removed part S̄ = S\S′ of the solution space must be wisely selected
such that solutions from S̄ are predicted to be unattractive in terms of the
objective function. A smaller solution space will give faster pricing problem
computation times and also a smaller branch-and-bound tree. Furthermore, a
smaller solution space means fewer possible columns in the master problem, and
thus the subsequence counts are likely to decrease. If the size of the solution
space is decreased due to structural restrictions, then we would—as seen in
Paper A, Paper C, and Paper D—directly decrease the subsequence counts. As
mentioned in Section 2.6, low subsequence counts should lead to a less fractional
LP relaxation, which will require less branching to obtain an IP solution.

The drawback is that the optimal solution could be in S̄. In order to remedy this,
parts of S̄ can be reintroduced. If the reintroduction happens only in the root
node, then lower bounds in the tree behaves as usually, but if the reintroduction
can happen in every branch-and-bound node, then the LP objective value for
a child node can be lower than the LP objective value of its parent node. I.e.
the LP objective value of the parent node is not a true lower bound. Therefore
the branch-and-bound tree can develop somewhat unpredictably, yet still be
deterministic. Examples of this is in Paper A and Paper D.
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In the search of the branch-and-bound tree, depth-first searching can be used
and the algorithm can be stopped, when the first feasible solution is found.
Alternatively, one can continue exploring the tree (for instance using best-first
search) until some upper limit on computation time is hit, see Cordeau et al.
(2002). Both suggestions are likely to give a heuristic solution, but might also
produce optimal solutions.

As mentioned in Section 3.1.2, the pricing problem can be solved heuristically
until it needs to be proved that no more negative reduced cost columns exist.
This is done in Paper A and Paper B. The last step where the proof is needed,
can often be very time-consuming, so a heuristic approach would be to skip
the step. This would of course save the time spent to compute the proof, and
would also decrease the number of iterations in the solve pricing problem/solve
LP loop (the loop can be seen on Figure 3.1), but would sacrifice the proof of
optimality.



Chapter 4

Crew Scheduling Applications

In this chapter we present practical applications of the set partitioning models
introduced in Chapter 2. Some of the applications that we present here are
described in detail in the papers in Part II. The applications that we show deal
with crew scheduling, i.e. the assignment of task sequences to crew.

4.1 Scheduling of crew

The papers in Part II all deal with finding crew schedules. Therefore, we will
here begin by introducing the concepts of tasks and schedules.

First, we define a task. In this thesis a task is a generic term that can denote a
single piece of work, a shift, or collection of pieces of work. A task is carried out
by a crew member. A task i has a duration δi and a time window [αi, βi] within
which it must commence. The task cannot be started before the beginning of
the time window even if a crew member is available. Note, that the special case
αi = βi gives a fixed start time. Also, the task i has a travelling time sij to
another task j. It can be convenient to include the duration in the travelling
time. Again note the special case where the tasks are located at the same
geographical place. In this case all travelling times are zero. Figure 4.1(a)
illustrates a task.
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time

(a) A task.

time

(b) A crew schedule with four tasks.

Figure 4.1: Tasks and crew schedules. The duration of a task is shown as a rectangle.
The time window of a task is shown as the horizontal line starting and ending with
a smaller vertical line. In the crew schedule, the start times of the tasks are decided.
The start and the end of the schedule are shown as dots. The lines between the tasks
in the schedule indicate travelling or idle time.

A crew schedule is then a feasible sequence of tasks with start times. If the
start times are fixed, then they are only given implicitly. The crew schedule is
either anonymous or for a specific crew member. Feasible schedules must respect
durations, time windows, and travelling times as well as other regulations and
rules. Every schedule has an associated cost, which is a function of the task
sequence. Examples of cost measures are the total travelling time or the total
idle time for a schedule. Figure 4.1(b) illustrates a crew schedule. The crew
scheduling problem can now be defined as finding a minimum cost combination
of schedules that cover all tasks.

As mentioned, the notion of a task should be understood generally. In some
applications tasks are aggregated, so one task can be a sequence of tasks, i.e. a
partial schedule. Therefore, the meaning, and in particular the length, of a crew
schedule can also vary from one application to another. Dohn (2010) elaborates
on the concepts of tasks and schedules.

Set partitioning models can be used to assign tasks to crew. In such a case the
jth column in the constraint matrix from the set partitioning model corresponds
to schedule j, and the ith row corresponds to task i. Let A be an m×n zero-one
matrix with entries aij for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} defined by

aij =

{
1 if task i is in schedule j
0 otherwise

,

and let xj for all j ∈ {1, . . . , n} be a binary decision variable defined by

xj =

{
1 if schedule j is selected
0 otherwise

.

The crew scheduling problem can now be written as the following binary integer
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programme (see also Section 2.3):

minimise c>x (4.1)

subject to Ax = 1 (4.2)

x ∈ {0, 1}n . (4.3)

Constraints (4.2) ensures that tasks are covered exactly once. Each work sched-
ule has an associated cost cj , and the model then picks a minimum cost combi-
nation of work schedules that together cover all tasks exactly once.

Sometimes crew schedules has to be found for individual crew members, a pro-
cess also known as rostering. This is accomplished by adding a row to A for
each of the crew members. Every column is then given a one in a crew member
row, if the column represents a crew schedule belonging to that crew member,
and a zero otherwise. An example of this can be seen in Paper A.

In many cases this pure set partitioning model does not capture the specifics
of the application. Thus, a variant of the generalised set partitioning model
(2.24)–(2.27) must be used. As mentioned in Section 2.6, the theoretical results
about integer properties from Section 2.5 do not hold any more, when the set
partitioning problem is non-pure. However, if the non-pure constraints are few,
it is still expected that certain constraint matrices can have an integerising
effect. In most practical cases the constraint matrix does not belong to one of
the matrix classes presented in Section 2.5. Therefore, in some of the solution
approaches in the papers of Part II, the idea is to impose restrictions on the
constraint matrix, so that the constraint matrix will almost be a member of one
of the matrix classes from Section 2.5. This is done by exploiting structural
properties of the specific crew scheduling problem.

4.1.1 Temporal dependencies

In Paper A and Paper B, tasks are interconnected by temporal dependencies,
that restrict the starting times of tasks between work schedules. Consider two
tasks i and j. Synchronisation (see Figure 4.2(a)) requires i and j to start
at the exact same time, and is used in Ioachim et al. (1999) and Dohn et al.
(2009a). Minimum difference (see Figure 4.2(c)) and maximum difference (see
Figure 4.2(d)) require task j to start with a minimum respectively maximum
time difference to the starting time of task i. Min+max difference (see Fig-
ure 4.2(e)) requires both a minimum and a maximum time difference. Mini-
mum, maximum and min+max difference are described in Brucker and Knust
(2006). The last example of a temporal dependency we will show, is overlap (see
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t ime

(a) Synchronisation.

t ime

(b) Overlap.

t ime

(c) Minimum difference.

t ime

(d) Maximum difference.

t ime

(e) Min+max difference.

Figure 4.2: Examples of temporal dependencies. Each of the five subfigures shows the
time windows of two tasks i (top) and j (bottom) with a temporal dependency between
them. Assuming some start time for task i, the dotted line shows the earliest feasible
start time for task j, and the dashed dotted line shows the latest feasible start time.
For synchronisation (a) the two lines coincide, and are drawn as one full line.

Figure 4.2(b)), which require the execution of task i and task j to overlap in
time. This is a special case of min+max difference.

These temporal dependencies can be modelled by introducing generalised prece-
dence constraints (Dorndorf, 2002; Brucker and Knust, 2006; Brucker and Knust,
2010) of the form

σi + pij ≤ σj ,

where σi denotes the start time of task i, and pij ∈ Z quantifies the required gap.
The set of pairs of tasks (i, j) ∈ {1, . . . ,m}2 for which a generalised precedence
constraint exists is denoted P.

The generalised precedence constraint simply implies that j starts minimum
pij time units after i. The temporal dependency that is probably most used
in practice is that of synchronisation, where two visits are required to start
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Temporal dependency pij pji
(a) Synchronisation 0 0
(b) Overlap −δj −δi
(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table 4.1: Values for pij for the five temporal dependencies of Figure 4.2. δi is
the duration of task i, diffmin is the minimum difference required and diffmax is the
maximum difference required.

at the same time. Synchronisation is modelled by two generalised precedence
constraints (i, j) and (j, i) with pij = pji = 0. Table 4.1 shows how to model all
the temporal dependencies of Figure 4.2 with generalised precedence constraints.
It can be seen that (a), (b) and (e) each requires two generalised precedence
constraints, whereas (c) and (d) only need one each.

Given these additional constraints, the work schedules must also give a start
time σi for each task i in the schedule, and the start times must respect these
additional constraints.

4.1.2 Time window branching

In a branch-and-price setup, generalised precedence constraints can either be
enforced directly in the master problem or they can be enforced through the
branching. We will describe the latter approach here.

Let again σi denote the start time for task i in a solution to the master problem.
If a generalised precedence constraint (i, j) ∈ P is violated, then

σi + pij � σj .

The suggested time window branching scheme now branches in two and alters
the time window of i in both branches. In Ioachim et al. (1999) and Dohn et
al. (2009a) time window branching have been used to enforce synchronisation
temporal dependencies. In Gélinas et al. (1995) time window branching is used
to impose integrality.

A split time σsplit is selected where σj − pij + 1 ≤ σsplit ≤ σi. We here as-
sume that time is discretised. In the left branch the time window of task i is
changed to [αi, σsplit − 1], see Figure 4.3(b). In the right branch the time win-
dow of task i is changed to [σsplit, βi]. In the right branch we can also use the
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t ime

(a) Parent node.

t ime

(b) Left child node.

t ime

(c) Right child node.

Figure 4.3: Time window branching example. Each of the subfigures shows the time
windows of two tasks i (top) and j (bottom), and the start times of the tasks in a
solution to the master problem. The violated generalised precedence constraint for
(i, j) ∈ P has pij = 2. The dotted line shows the chosen split time σsplit, and the
distance between the ticks on the time line is two time units.

generalised precedence constraint (i, j) to change the time window of task j to
[σsplit + pij , βj ], see Figure 4.3(c). The time window branching scheme divides
the solution space of the parent node, see Figure 4.3(a) into two subspaces where
the violating solution is infeasible in both.

When time window branching is employed, we pick the time window as well
the accompanying split time that has most impact when branched upon. That
is, we rank time windows with split times according to how many generalised
precedence constraints violations that can be “repaired”. As mentioned, time
window branching can also be used to impose integrality. Therefore, we also rank
according to how much fractionality that can potentially be removed. Details
on this ranking can be found in Paper B.

4.2 Selected applications

In this section we will present a number of different crew scheduling problems.
The ambition is to show the diversity of the crew scheduling definition from the
previous section. We do certainly not cover every application; instead we will
refer to the comprehensive surveys Ernst et al. (2004b) and Ernst et al. (2004a).

4.2.1 Train driver scheduling

Scheduling of train drivers is most often divided in two problems, see Rezanova
(2009), Caprara et al. (2007), and Caprara et al. (1997). The decomposition of
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the problem in two phases is done in order to make the problem computationally
tractable. In the first phase, train trips (tasks) are combined into duties (partial
schedules). Each duty must respect driver regulations, such as for instance labor
union rules, and each duty has an associated cost, that reflects e.g. how much
idle time is spent in the duty. A minimum cost set of duties, that covers all
train trips is found, see Abbink et al. (2005). This first phase is often modelled
by a set covering formulation, and the cost measure seeks to—among other
objectives—minimise idle time for the drivers.

The second phase combines duties into schedules, and is sometimes referred
to as the rostering phase. Caprara et al. (2007) suggest that a network flow
formulation works better than a set partitioning formulation. The cost measure
in this step incorporates an even distribution of attractive and unattractive
work.

4.2.2 Nurse scheduling

In the nurse scheduling problem (also called the nurse rostering problem), shifts,
i.e. blocks of work hours, must be assigned to nurses. In between the shifts days
off must be scheduled, according to rules. The shifts have different start times,
so that the shifts cover full 24-hour periods. Normally, crew schedules for nurses
have a length of one month. By considering shifts as tasks, nurse scheduling fits
into our definition of crew scheduling, where the time windows are fixed and
there are no travelling times.

The problem is complicated by different qualification of the nurses and corre-
spondingly different qualification requirements of the shifts. Also several soft
constraints, such as personal preferences for specific shift must be taken into
account. In nurse scheduling the number of crew is fixed, so the aim is not to
minimise the number of necessary crew members. The cost measure instead
seeks to maximise crew preferences and satisfaction. The literature on nurse
scheduling is surveyed in Burke et al. (2004). A recent optimisation-based solu-
tion approach is given by Dohn et al. (2010), where a generalised set partitioning
model is used.

4.2.3 Home care crew scheduling

Paper A describes a crew scheduling problem from home care. In home care, a
staff of home carers have to carry out services (tasks) in the homes of elderly
citizens. The idea behind home care is to allow elderly or disabled citizens to stay
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Task 1

time

duty
start

duty 
end

Task 2 Task 3

Travelling time
FTF time
Idle time
Off duty

Figure 4.4: Duty for a home carer. FTF time is face-to-face time, i.e. the time the
home carer spends on actual visits.

in their own homes. The services include cleaning, laundry assistance, preparing
food, and support for other everyday tasks. They may also include assistance
with respect to more personal needs, e.g. getting out of bed, bathing, dressing,
and dosing medicine. As a consequence of the variety of services offered, people
with many different qualifications are employed as home carers.

The home care crew scheduling problem (HCCSP) is a daily planning problem
that assigns visits (tasks) to home carers, thereby giving the individual home
carer a schedule and a route, see Figure 4.4. The most important goal is to cover
as many visits as possible. If it is not possible to cover all tasks, the different
priorities of the visits are taken into account when deciding which tasks to
cancel. It is also important that a visit is handled by a so-called preferred home
carer, so that, for instance, the citizen will be serviced by a familiar home carer
if possible. Lastly, we prefer to minimise the total travel time.

HCCSP has temporal dependencies between some of the visits. For instance, a
temporal dependency can be used to allow a washing machine to finish before the
machine is emptied. Also shared visits are a part of the HCCSP. A shared visit
is e.g. needed when an elderly person needs to be lifted out of the bed. Shared
visits are modelled as two tasks at the same location having a synchronisation
temporal dependency.

In HCCSP, temporal dependencies must still be respected even if a visit is can-
celled, because cancelled visits are covered by substitutes by a manual planner
later on.

Thomsen (2006) and Lessel (2007) describe HCCSP based on instances from
home care in Denmark. Eveborn et al. (2006), Bredström and Rönnqvist (2007),
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and Bredström and Rönnqvist (2008) base their work on home care in Sweden,
and the two first of these use a generalised set partitioning formulation. Work
on home care in other countries are described by Begur et al. (1997), Cheng and
Rich (1998), and Bertels and Fahle (2006).

4.2.4 Scheduling of ground crew

In the ground crew rostering problem, work schedules for airport ground crew
must be produced. Schedules are made by combining shifts, and it is ensured
that a forecasted demand is met. The problem is somewhat similar to the nurse
scheduling problem, but with fewer soft constraints. Also the literature on this
problem is sparser than for nurse scheduling. We refer to Clausen (2010) and
Lusby et al. (2011). The problem is modelled as a generalised set partitioning
problem.

Another scheduling problem for ground crew is the daily assignment of tasks
to available crew. Tasks have different skill requirements and the crew have
different qualifications to match that. The problem is similar to home care crew
scheduling, but only synchronisation temporal dependencies are used, and, in
most cases, travelling times are smaller. The problem is called the manpower al-
location problem with time windows and job-teaming constraints and is described
by Dohn et al. (2009a), and is here modelled as a generalised set partitioning
problem. Li et al. (2005) describe the same problem, but in a port instead of
an airport.

4.2.5 Vehicle routing with time windows and temporal de-
pendencies

Paper B describes the vehicle routing problem with time windows and temporal
dependencies (VRPTWTD), which is a new variant of the well-known vehicle
routing problem with time windows (VRPTW). VRPTW deals with routing (i.e.
scheduling) of customers (tasks) to vehicles (crew). All tasks must be scheduled
within their associated time window and the capacity of the individual vehicles
cannot be exceeded. The literature on VRPTW is vast, see for instance Cordeau
et al. (2002), Kallehauge et al. (2005), and Cordeau et al. (2007). VRPTW is
often modelled as a set partitioning problem to allow for column generation
solution algorithms.

VRPTWTD then adds temporal dependencies (see Section 4.1.1) to VRPTW,
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Figure 4.5: The steps for airline crew scheduling. The times are for Air New
Zealand’s domestic scheduling.

thereby complicating the problem notably, as now a scheduled time of one cus-
tomer may restrain the scheduling options of other customers.

4.2.6 Airline crew scheduling

Scheduling of airline flight deck and cabin crew is the assignment of crew mem-
bers to the flights in the airline’s timetable. The aim is to provide monthly
work schedules (rosters) for the crew members. Airline crew scheduling is tra-
ditionally carried out in a fashion similar to that of scheduling of train drivers,
i.e. the optimisation problem is decomposed to two phases. The two phases
are: Crew pairing and crew rostering. These two phases follow the publication
of the flight timetable, and, naturally, they precede the day where the flights
are flown. Figure 4.5 shows the scheduling steps. Airline crew scheduling is
described in Gopalakrishnan and Johnson (2005), Barnhart et al. (2003), and
Desaulniers et al. (1998). Desaulniers et al. (1997) solve crew pairing instances
from Air France. The instances have between 150 and 1 100 flights and solve in
between 20 and 14 000 seconds.

As mentioned, the first phase of airline crew scheduling is the airline crew pairing
problem, which is the topic of Paper C and Paper D. Here, partial schedules
are constructed. The partial schedules are sequences of flights that can be
either operated or passengered (deadheaded) in a feasible way, separated by
rest periods. These sequences of flights are called pairings and are anonymous,
that is they are not associated with a specific crew member. An airline has one
or more home bases where its crew is located, and a pairing must start and
end at a home base. So-called base constraints then govern the minimum and
the maximum number of pairings that can be flown out of each home base. An
illustration of a pairing is shown on Figure 4.6.

The crew pairing problem can be solved separately for cockpit crew and cabin
crew, and it can also be solved separately per aircraft type qualification of
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Base Base

Duty period Duty periodRest period Operated f l ight

Deadheading

Rest

Figure 4.6: An illustration of a pairing.

the crew. The cost of a pairing are calculated in different and quite complex
ways by different airlines, for examples of this see Gopalakrishnan and Johnson
(2005). The crew pairing problem then finds a minimum cost combination of
pairings that covers all flights. This is most often modelled as a generalised set
partitioning problem.

The second phase of airline crew scheduling is crew rostering where pairings are
combined to form schedules for individual crew member. This phase is called
the airline crew rostering problem (Kohl and Karisch, 2004), and in this phase
a schedule needs to be found for each crew member. Individual preferences
and requests are often taken into account in this step. Again, a generalised
set partitioning model is used in the majority of the literature on airline crew
rostering.
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Chapter 5

Overview of Papers

In this chapter we will introduce the papers from Part II. We show how to model
the problems presented in the papers with the generalised set partitioning model
from Section 2.6, and we describe which solution methods from Chapter 3, that
have been used.

5.1 Paper A: The Home Care Crew Scheduling
Problem: Preference-Based Visit Clustering
and Temporal Dependencies

The home care crew scheduling problem (HCCSP) is the topic of Paper A: The
Home Care Crew Scheduling Problem: Preference-Based Visit Clustering and
Temporal Dependencies (Rasmussen et al., 2011f). We have presented similar
results in Rasmussen et al. (2010c), and preliminary results in Larsen et al.
(2010) and Dohn et al. (2008b), where the conference paper won the Best Paper
Award. HCCSP has also been described in the journal of the Danish Operations
Research Society (Dohn et al., 2008a). Additional computational experiments
are described in Section 6.1.

The HCCSP is modelled by a compact formulation and then reformulated by
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Dantzig-Wolfe decomposition (see Section 3.1.3) to a generalised set partitioning
model, see Section 2.6. Figure 5.1 illustrates how HCCSP fits into Model (2.24)–
(2.27). Temporal dependencies must still be respected even if a visit is cancelled,
so the generalised precedence constraints then take the form

βjy
uc
j + σjxj − σixi − αiyuc

i ≥ pij , for all (i, j) ∈ P .

The solution approach of Paper A is an optimisation-based heuristics, see Sec-
tion 3.4.1. The foundation is a branch-and-price algorithm, see Section 3.3, but
we restrict the solution space, by using preference-based clustering of the visits.
The original solution space is restricted by only allowing visits to be handled by
preferred home carers. This makes it possible to tackle larger problem instances,
but in some situations is it necessary to cover visits with non-preferred home
carers. Therefore, uncovered visits are iteratively added to also non-preferred
home carers, hence reintroducing parts of the removed solution space.

The restriction of the solution space by clustering of the visits makes the pricing
problem faster to solve. Moreover, it is very likely to decrease the subsequence
counts for all rows, so that fewer fractions in the LP solutions are expected.

Exactly one individual work schedule needs to be found for each of the home
carers. Hence, our model, see Figure 5.1(b), will include GUB constraints (see
Section 2.5.2), and as a consequence the constraint submatrices corresponding
to a home carer are perfect matrices. Therefore, fractions in the LP solution
only occur when different home carers compete for a visit. This is exploited
in the developed branching scheme, where we use constraint branching (see
Section 3.2.1) on a home carer-visit pair. In our approach we also relax the
temporal dependencies, so the generalised precedence constraints have to be
enforced through a second branching scheme, namely time window branching,
see Section 4.1.2.

The pricing problem is solved first heuristically and then refines to an exact solve
using a resource constrained elementary shortest path solver. Our shortest path
solver is implemented based on ideas from Feillet et al. (2004), Chabrier (2006),
and Irnich and Desaulniers (2005).

We perform computational tests on 94 realistic test instances. Four of these
instances are real-life instances from Denmark, and 60 other instances are gen-
erated based on the real-life instances. Lastly, 30 instances are made available
to us by Bredström and Rönnqvist (2007). Parsers for all instance classes have
been developed. We compare different clustering schemes to an exact solution
approach, and show that computation times can be lowered by 50–70%, where
the loss in solution quality is insignificant apart from a few instances.
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The main contribution of Paper A lies in the developed optimisation-based
heuristic that utilises clustering of the visits. The paper shows a solution method
to a real-life problem with promising results, and also branching on time win-
dows to enforce generalised precedence constraints is novel for real-life problems.

5.2 Paper B: The Vehicle Routing Problem with
Time Windows and Temporal Dependencies

The vehicle routing problem with time windows and temporal dependencies
(VRPTWTD) is presented in Paper B: The Vehicle Routing Problem with Time
Windows and Temporal Dependencies (Dohn et al., 2011). An earlier presenta-
tion is Dohn et al. (2009c).

As mentioned in Section 4.2.5, VRPTWTD is a new extension of the vehicle
routing problem with time windows. Two compact formulations for the problem
are presented. One of the compact formulations is similar to the HCCSP model,
see Figure 5.1. However, there are no GUB rows in the A matrix and W uc = 0,
as visits cannot be cancelled in VRPTWTD. The two formulations are then
reformulated using Dantzig-Wolfe decomposition (Section 3.1.3), so that a setup
suitable for column generation is achieved.

Four different master problem formulations are proposed, and they are ranked
according to the tightness with which they describe the solution space. It is
proved that one formulation is tighter than another. The solution approaches
used are exact branch-and-price or branch-and-cut-and-price, see Section 3.3.
Time window branching (Section 4.1.2) is used to enforce feasibility when gen-
eralised precedence constraints are relaxed. We show that time window branch-
ing on generalised precedence constraints is as strong as the special case of time
window branching on synchronisation constraints introduced by Ioachim et al.
(1999) and also used in Dohn et al. (2009a).

Tests are carried out in order to compare the different formulations. Three of
the formulations are tested: A time-indexed formulation, a time-indexed formu-
lation with only a limited number of constraints, and a direct formulation where
the generalised precedence constraints are relaxed. The test instances are ex-
tensions of the well-known VRPTW-instances by Solomon (1987b). The results
show, that the best performance is achieved either by relaxing the generalised
precedence constraints in the master problem, or by using the time-indexed
model with only a limited number of constraints, where generalised precedence
constraints are added as cuts when they become severely violated.
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Figure 5.2: Constraint matrix with right hand side. Only non-zero entries are shown.
F is the set of flights, P is the set of pairings, and B≤ (B≥) is the set of base constraints
that puts an upper (lower) bound on the number of pairings that are flown out of the
base. The number of constraints is m = |F|+ |B≤|+ |B≥|. Let M be a large constant.
Set cuci = 0 if i ∈ {|F|+ 1, . . . , |F|+ |B≤|} and set cuci = M otherwise. Set coci = 0 if
i ∈ {|F|+ |B≤|+ 1, . . . ,m} and set coci = M otherwise. By these cost settings, we get
set packing and set covering base constraints.

The main contribution of Paper B is the formulation and comparison of models
for VRPTWTD along with an efficient solution approach, that handles temporal
dependencies in a generic way. Moreover, it is a contribution that time window
branching on generalised precedence constraints is as strong as the special case
of time window branching on synchronisation constraints. Finally, we have
introduced a new set of benchmark instances which we hope will motivate future
research in this area.

5.3 Paper C: Subsequence Generation for the
Airline Crew Pairing Problem

The airline crew pairing problem (ACPP) is the topic of Paper C: Subsequence
Generation for the Airline Crew Pairing Problem (Rasmussen et al., 2011d). It
has also been presented in Rasmussen et al. (2011e) as well as in the conference
papers Rasmussen et al. (2009a) and Rasmussen et al. (2010a).

The ACPP is modelled directly as a generalised set partitioning model, see
Section 2.6. The columns correspond to pairing and the rows correspond to
flights that have to be covered. Base constraints are modelled as additional
constraints in the model. Figure 5.2 illustrates how ACPP fits into Model (2.24)–
(2.27).
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To solve ACPP we propose a new optimisation-based heuristic: Subsequence
generation. Initially the solution space is restricted severely (see also Sec-
tion 3.4.1), by forcing the subsequence counts very low. When we severely
limit the number of allowed subsequent flights, i.e. the subsequences, we signifi-
cantly decrease the number of possible columns. Set partitioning problems with
limited subsequence counts are very likely (Ryan and Falkner, 1988) to be easier
to solve, resulting in a decrease in solution time, and it is therefore possible to
enumerate all pairings. The problem though, is that some of the omitted subse-
quences might be needed for an optimal or near-optimal solution. Therefore, we
try to identify or generate such subsequences that potentially can improve the
solution value. Such attractive subsequences are found by collecting statistics
based on the dual values.

The pricing problem is solved by a resource constrained shortest path solver on
an acyclic network. The solver has been implemented based on the ideas from
Desrochers et al. (1992b), Chabrier (2006), and Irnich and Desaulniers (2005).

Computational tests are performed on 19 real-life test instances from Air New
Zealand, and data parsers have been implemented. The subsequence generation
approach is benchmarked on the real-life test instances against a classical column
generation approach. The LP relaxation is considered and comparison is done on
quality and integrality of the solutions. The LP solutions from the subsequence
generation approach are less fractional, but it comes at the cost of a worse
solution quality.

The contribution of Paper C lies in the description and implementation of the
novel subsequence generation approach and the comparison to a standard col-
umn generation algorithm.

5.4 Paper D: An IP Framework for the Crew
Pairing Problem using Subsequence Gener-
ation

In Paper D: An IP Framework for the Crew Pairing Problem using Subsequence
Generation (Rasmussen et al., 2011b) the airline crew pairing problem (ACPP)
is again the topic. It has also been presented in Rasmussen et al. (2011c) and in
Rasmussen et al. (2011a). Additional unpublished computational experiments
are described in Section 6.2.

The ACPP is modelled in the same way as in Paper C, see Section 5.3. Fig-
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ure 5.2 illustrates how the problem looks in the generalised set partitioning
model (2.24)–(2.27).

The solution method used in this paper builds on top of the subsequence gener-
ation approach from Paper C. However, we here develop a full IP framework for
the ACPP. The framework has similarities to branch-and-price (see Section 3.3),
but instead of performing column generation in every node of the branch-and-
bound tree, subsequence generation is performed.

The chosen branching scheme is follow-on branching, where a subsequence of
two flights is either required or banned. Follow-on branching is a special case of
constraint branching, see Section 3.2.1.

We carry out computational tests with the 19 real-life instances from Air New
Zealand also used in Paper C. We benchmark against a standard branch-and-
price approach, and the results show the developed framework is a viable alter-
native to the standard method.

The main contribution of Paper D is the development of a novel branch-and-
price-like IP framework, where subsequence generation is embedded in branch-
and-bound. Another contribution is the comparison to classic column genera-
tion.
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Chapter 6

Additional Computational
Experiments

In this chapter we will present computational experiments that have been carried
out in connection with the projects from the papers in Part II, but which have
not been described in any of the papers.

6.1 Comparison to current practice in home
care

We have compared solutions from the approach described in Paper A with so-
lutions from current practice. The current practice solutions are provided by a
Danish provider of home care software. The same company has also provided
the test instances, which are from two Danish municipalities. The current prac-
tice is based partly on an automated heuristic and partly on manual planning.
We compare on three quality parameters: Uncovered visits, constraint adjust-
ments, and total travel time. The results presented here have also been shown
in Dohn et al. (2008b).

An uncovered visit is a visit, where a home carer has not been assigned. In
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ll1 8 99 11 26 256 6 0 280 69
ll2 7 60 1 10 155 0 0 141 3
ll3 6 61 0 25 311 1 0 128 39

Table 6.1: Comparison of solution quality. ‘Current’ is the current practice and
‘B&P’ is the developed branch-and-price algorithm.

practical situations, this will lead to that, either the visit is cancelled, or a
substitute is assigned to the visit. An uncovered visit can also be dealt with by
adjusting the original constraints, so that the visit can be fitted into the schedule.
Constraints are adjusted by either reducing the duration of the visit, extending
the time window of the visit, or extending the duty hours of one or more of
the home carers. This happens frequently in practice. However, any of these
adjustments decreases the overall quality of the schedule. In the solution method
that we have developed, we have chosen not to adjust constraints, thereby letting
the constraint adjustment be manual post-processing work. This is supported
by that it is difficult to put a quantitative penalty on all possible adjustments
before solving. The number of constraint adjustments for our solutions will
hence always be equal to zero.

The total travelling time is measured in minutes for all home carers for the
whole daily schedule. Minimising the total travelling time is not as important
as minimising the two other measurements. Still, keeping the total travelling
time to a minimum is preferred. The total travelling time may be slightly larger
in our developed approach than in current practice, as more visits are included
in the schedule. The results from the computational experiments are shown in
Table 6.1.

The results clearly suggest that solution quality can be improved by the devel-
oped branch-and-price algorithm. There is a significant decrease in the number
of uncovered visits (from 5% of the visits to 3% on average) and a large drop in
the number of constraint adjustments (from 15 on average to zero). Table 6.1
also reveals that the improved solution quality can be obtained in reasonable
time.
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The constraint adjustments in the solution from current practice cover both
small (minor reductions of the travelling times) and severe modifications (sig-
nificant enlargements of the time windows). They are consequences of the com-
plexity found in the manual scheduling process. The manual planner cannot
overlook all possible solutions of the whole daily schedule and thus has to mod-
ify the constraints in order to create a good schedule. The most important
job for the manual planner is to avoid uncovered visits, so the planner is often
willing to accept a rather large number of constraint adjustments.

Figure 6.1(a) visualises the solution for the instance ll1 from current practice.
Time is running on the horizontal axis. Each feasible scheduled visit is repre-
sented by a green box, and the home carers are represented by underlying bars,
depicting the duty hours of that home carer. The red boxes below the line are
uncovered visits with the bars showing the time window of the visits. The blue
visits have had their constraints adjusted. From Table 6.1, we can see that this
sums to 26 constraint adjustments. As also visible in Figure 6.1(a), there are
eleven uncovered visits.

Figure 6.1(b) visualises the solution to ll1 for the developed branch-and-price
algorithm. The uncovered visits are subject to skill requirements and therefore
some home carer/visit combinations are not possible.

6.2 Subsequence removal

The subsequence generation approach used in Paper C and Paper D works with a
limited set of subsequences, thereby maintaining a beneficial severe restriction of
the solution space. The limited set of subsequences is then expanded whenever
the algorithm identifies a subsequence as attractive. However, it is possible
that the subsequence identification procedure guesses wrong and at one point
identifies a subsequence as attractive, which then later turns out to be not
attractive. This would mean that the LP relaxation would contain (and be
slowed down by) a lot of unnecessary columns—all the columns containing the
subsequence in question.

Therefore, we have developed a subsequence removal procedure, that can remove
subsequences from the limited set of subsequences. Subsequences that have not
appeared (i.e. columns containing the subsequence have not been selected even
fractionally) in the LP solution for a given span of iterations are removed. When
a subsequence is removed, all columns containing the subsequence are removed
from the LP relaxation.
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Figure 6.1: Comparison of solutions for ll1.
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Table 6.2 shows test runs for the 19 data instances. The data instances are
described in Paper C and Paper D. The table should be compared to Table D.2.

For each instance we show the objective value of the best integer solution and
the time it took to reach this solution. We show an indication of the quality
of this solution through a comparison with objective function value of the re-
laxed master problem (root LP) as well as the objective function value of the
relaxed master problem obtained using standard column generation. Standard
column generation does not limit the possible subsequences for a flight. On
all instances the column generation procedure timed out. Table 6.2 shows the
objective function value of the root node at time out (cg LP). We also provide
the gap between the objective value of our best integer solution and the column
generation root LP value at time out. Furthermore, we present the number of
uncovered flights in our solution (UF), the number of branch-and-bound nodes,
and the total run time for the algorithm.

In Table 6.3 we show the accumulated numbers over all instances. The integer
objective values and the LP objective values have been divided by 108. The
integer objective value, the root LP objective value, the gap, and the number
of uncovered flights, are all lower when subsequence removal is not used. Fur-
thermore, the run times are significantly lower when subsequence removal is not
used. Only on the number of branch-and-bound nodes, subsequence removal
seems to have a positive effect. The overall immediate conclusion to be drawn,
must be, that subsequence removal is not worth the overhead associated with
the procedure. At least more investigations and more work on the procedure
must be carried out.
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Best Integer Statistics
setting obj time (s) root LP cg LP gap (%) UF nodes time (s)

No removal 89.80 4531.57 91.87 70.49 470.23 88 867 4531.75
Removal 91.90 6333.71 92.04 70.49 539.34 90 475 6415.11

Table 6.3: Statistics with accumulated numbers for test runs with and without subse-
quence removal.
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Chapter 7

Conclusions

In this chapter we will summarise the content of the thesis. We will list the
main contributions found in the included papers, and we will discuss ideas for
future research.

In the first part of the thesis we have formulated a generalised set partitioning
model that has been able to capture all applications from the second part of the
thesis. We have presented solution methods from the literature. The solution
methods have mostly been centered around the column generation technique. In
the last chapters of the first part, we have presented crew scheduling problems
from the literature, and we have introduced the application that we have worked
on in detail in the papers. The second part of the thesis is containing four
scientific articles, which we will describe in the following. All papers have been
submitted to international journals, however only two of the papers have made
it to the end of the reviewing process at the time of writing. For three out
of four papers the computational experiments have been performed on realistic
test instances. For the last paper computational experiments have been carried
out on extensions of well-known academic instances.

We have described the home care crew scheduling problem, where a staff of
home carers has to be assigned a number of visits to patients’ homes. This have
been done in Paper A. The problem is a generalisation of the vehicle routing
problem with time windows. The challenge when assigning visits to home carers
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lies in the existence of soft preference constraints and in temporal dependency
constraints. We have introduced a novel visit clustering approach based on the
soft preference constraints. The visit clusters are expanded when needed. The
visit clustering decreases run times significantly, and only gives a loss of quality
for few instances. Furthermore, the visit clustering allows us to find solutions
to larger problem instances, which cannot be solved to optimality.

In Paper B we have formulated the vehicle routing problem with time windows
and temporal dependencies—an extension of the well-known vehicle routing
problem with time windows. Test instances are generated in order to study the
impact of the temporal dependencies. Different variants of a branch-and-price
solution approach have been compared. The result of the comparison is that it is
best from a performance point of view to either relax the temporal dependencies
from the master problem, or to have only the most violated constraints present
in a time-indexed master problem.

We have proposed a novel solution method for the airline crew pairing prob-
lem in Paper C. In the solution method the number of subsequences for a
flight is severely limited, thereby significantly decreasing the number of pos-
sible columns. Some optimal subsequences might have been omitted by this,
and therefore we have sought to generate such subsequences based on the infor-
mation in the dual vector. We have benchmarked the subsequence generation
approach against a standard column generation approach on real-life test in-
stances. The LP solutions from the subsequence generation approach are less
fractional, but it comes at the cost of a worse solution quality.

In Paper D we have continued to work on the airline crew pairing problem. We
have developed a new integer programming framework based on the concept of
subsequence generation. Benchmarking on real-life test instances against stan-
dard column generation have showed that the developed framework is reasonable
and an interesting alternative to standard column generation.

7.1 Main contributions

We will here list the main contributions of the thesis. These main contributions
are extracted from the individual papers from Part II.

• Solution of real-life instances from home care with results superior to cur-
rent practice.

• A novel preference-based clustering approach for scheduling of home care
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workers. The clustering approach allows for solving larger instances and
decreases run times significantly with a loss of quality on only a few in-
stances.

• A time window branching scheme that enforces generalised precedence
constraints. The branching scheme is used both for academic data sets
and for real-life test instances.

• It has been shown that when considering the synchronisation temporal
dependency, the general branching scheme for generalised precedence con-
straint is as tight as a branching scheme tailored for synchronisation.

• A new approach for the airline crew pairing problem has been developed.
The core of the approach is subsequence generation as opposed to the
standard column generation.

• The subsequence generation approach has been embedded in a novel
branch-and-price-like framework in order to find integer solutions to the
airline crew pairing problem.

• Subsequence generation as well as the subsequence generation integer
framework have been tested on real-life crew pairing instances and com-
pared to standard column generation.

7.2 Future research

Future research directions for the specific projects are described in the individual
papers of Part II. Here, we will mention the most important ones, and also point
out interesting future research on a more general level. For further ideas for
future research we refer to the papers.

An area of research that would be exciting to explore is the applicability
of the developed methods on other problems. We think specifically on the
optimisation-based heuristics: Preference-based clustering and subsequence gen-
eration. A necessity for preference-based clustering to be successful for a given
application, is that the objective function of the problem has terms with pref-
erences or something that can be converted to a preference-like measure. For
subsequence generation to work for a given problem, the problem must hold
some of the same structural properties that the airline crew pairing problem
holds, namely that subsequences can be ordered on their objective function
contribution. For the airline crew pairing problem, the ordering is, that a sub-
sequence with a short idle time is preferred to a subsequence with a longer idle
time.
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Disruption management and recovery problems have normally been the domain
of heuristics as solutions are often needed within seconds or minutes. The
optimisation-based heuristics proposed in this thesis have run times that are
able to compete with the run times of pure heuristics. Hence, it would be very
interesting to try to apply these optimisation-based heuristics for disruption
management problems. A successful attempt in this area is Rezanova and Ryan
(2010).

Considering the subsequence generation approach, post-result analysis showed
that a potential gain was in the subsequence identification. This is a core part of
the method and improvements in this part are predicted to have a great positive
effect on the overall method.

For the preference-based task clustering method, new clustering schemes could
be invented accompanied by cluster expansion schemes. For fixed-size clusters
(see Paper A), it could be interesting to look into what determines a good cluster
size. Perhaps it is possible to find a good cluster size as a function of number
of tasks and number of available crew.
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In the Home Care Crew Scheduling Problem a staff of home carers
has to be assigned a number of visits to patients’ homes, such that
the overall service level is maximised. The problem is a generalisa-
tion of the vehicle routing problem with time windows. Required
travel time between visits and time windows of the visits must be
respected. The challenge when assigning visits to home carers lies in
the existence of soft preference constraints and in temporal depen-
dencies between the start times of visits.

We model the problem as a set partitioning problem with side con-
straints and develop an exact branch-and-price solution algorithm,
as this method has previously given solid results for classical vehicle
routing problems. Temporal dependencies are modelled as gener-
alised precedence constraints and enforced through the branching.
We introduce a novel visit clustering approach based on the soft pref-
erence constraints. The algorithm is tested both on real-life problem
instances and on generated test instances inspired by realistic set-
tings. The use of the specialised branching scheme on real-life prob-
lems is novel. The visit clustering decreases run times significantly,
and only gives a loss of quality for few instances. Furthermore, the
visit clustering allows us to find solutions to larger problem instances,
which cannot be solved to optimality.
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A.1 Introduction

The Home Care Crew Scheduling Problem (HCCSP) described in this paper has
its origin in the Danish health care system. The home care service was intro-
duced in 1958 and since then, there has been a constant increase in the number
of services offered. The primary purpose is to give senior citizens and disabled
citizens the opportunity to stay in their own home for as long as possible. The
HCCSP is the problem of scheduling home carers in a way that maximises the
service level, possibly even at a reduced cost. In 2005 in Denmark a little more
than DKK 28 billion were spent in the whole area of elderly care, and around
200 000 senior citizens received home care, totalling between 1.0 and 1.1 million
service hours per week at the senior citizens, see Sekretariatet for ministerud-
valget vedrørende kvalitet i den offentlige sektor (2006). Therefore, the HCCSP
is a very important optimisation problem.

When a citizen applies for home care service, a preadmission assessment is ini-
tiated. The result of the assessment is a list of granted services. The services
may include cleaning, laundry assistance, preparing food, and support for other
everyday tasks. They may also include assistance with respect to more per-
sonal needs, e.g. getting out of bed, bathing, dressing, and dosing medicine.
As a consequence of the variety of services offered, people with many different
competences are employed as home carers.

Given a list of services for each of the implicated citizens, a long-term plan
is prepared. In the long-term plan, each service is assigned to specific time
windows, which are repeated as frequently as the preadmission assessment pre-
scribes. The citizens are informed of the long-term plan, and hence they know
approximately when they can expect visits from home carers. From the long-
term plan, a specific schedule is created on a daily basis. In the daily problem,
home carers are assigned to visits. A route is built for each home carer, respect-
ing the competence requirements and time window of each visit and working
hours of the home carer.

In the following, we restrict ourselves to looking at the daily scheduling prob-
lem only. The problem is a crew scheduling problem with strong ties to vehicle
routing with time windows. However, we have a number of complicating issues
that differentiates the problem from a traditional vehicle routing problem. One
complication is the multi-criteria nature of the objective function. It is, natu-
rally, important to minimise the overall operation costs. However, the operation
costs are not very flexible in the daily scheduling problem. More important is it
to maximise the level of service that can be provided. The service level depends
on a number of different factors. Often, it is impossible to fit all visits into
the schedule in their designated time windows. Hence, some visits may have to
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be rescheduled or cancelled. In our solutions, a visit is either scheduled within
the given restrictions or marked as uncovered. The manual planner will deal
with uncovered visits appropriately. The main priority is to leave as few visits
uncovered as possible. Also, all visits are associated with a priority and it is
important to only reschedule and cancel less significant visits. Furthermore, it
is important to service each citizen from a small subgroup of the whole work-
force (the so-called preferred home carers), as this establishes confidence with
the citizen. As mentioned, home carers have different working hours, so that
both early morning and evening can be covered, and home carers have different
compentences in order to cover the different competence requirements of the
visits. Also home carers can have different means of transportation, that is a
home carer either drives, bicycles or walks. Another complication, compared
to traditional vehicle routing, is that we have temporal dependencies between
visits. The temporal dependencies constrain and interconnect the routes of the
home carers. One temporal dependency is synchronisation. For instance, syn-
chronisation of two visits is used when a citizen needs help to get in or out of
bed. Here two home carers are required at the same time. The overlap tem-
poral dependency is, for example, seen when a home carer has to pass on a
key to the next home carer at a citizen. The temporal dependencies minimum
difference and maximum difference are for example used when a home carer
starts the washing machine at a citizen and a following home carer (perhaps the
same home carer) empties the washing machine at the same citizen. The visits
need to be separated by, say, two hours, but not more than four hours. This
can of course also be accomplished by time windows, but that would limit the
flexibility.

HCCSP generalises the Vehicle Routing Problem with Time Windows
(VRPTW) for which column generation solution algorithms have proven suc-
cessful, see Kallehauge et al. (2005). Therefore, we model HCCSP as a Set
Partitioning Problem (SPP) with side constraints and develop a branch-and-
price solution algorithm. Temporal dependencies are modelled by a single type
of constraints: generalised precedence constraints. These constraints are en-
forced through the branching. Different visit clustering schemes are devised for
the problem. The schemes are based on the existence of soft preference con-
straints. The visit clustering schemes for the exact branch-and-price framework
are novel. The visit clustering will naturally compromise optimality, but will
allow us to solve larger instances. We will compare the different visit clustering
schemes by testing them both on real-life problem instances and on generated
test instances inspired by realistic settings. To our knowledge, we are the first
to enforce generalised precedence constraints in the branching for real-life prob-
lems. The contribution of this paper is hence twofold. Firstly, we devise visit
clustering schemes for the problem, and secondly, we enforce generalised prece-
dence constraints in the branching for the first time for real-life problems.
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Optimisation methods for crew scheduling are widely used and described in the
literature, especially regarding air crew scheduling. However, when it comes to
scheduling of home care workers the literature is sparse. This work builds on
top of two recent Master’s theses, Lessel (2007) and Thomsen (2006). The most
recent of these, Lessel (2007), uses a two-phase approach which first groups the
visits based on geographical position, competences, and preferences. A home
carer is associated to each group and the second phase considers each group as
a Travelling Salesman Problem with Time Windows (TSPTW).

The other thesis, Thomsen (2006), treats the problem as a Vehicle Routing Prob-
lem with Time Windows and Shared Visits (VRPTWSV) and uses an insertion
heuristic to feed a tabu search with initial solutions. The models and solution
methods in Lessel (2007) and Thomsen (2006) can only handle connected visits
where two home carers are at the same time at the citizen.

With offset in the Swedish home care system, Eveborn et al. (2006) describe
a system in operation. They use a Set Partitioning Problem model and solve
the problem heuristically by using a repeated matching approach. The match-
ing combines home carers with visits. Eveborn et al. (2006) report that the
travelling time savings in a moderate guess are 20% and that the time savings
on the planning correspond to 7% of the total working time. Bredström and
Rönnqvist (2008) show a mathematical model that can handle synchronisation
constraints and precedence constraints between pairs of visits. The model is a
VRPTW with the additional synchronisation and precedence constraints that
tie the routes together. They solve the model using a heuristic. Bredström
and Rönnqvist (2007) develop a branch-and-price algorithm to solve the model
of Bredström and Rönnqvist (2008), but without the precedence constraints.
The model is decomposed to an SPP and the integrality requirement on the
binary decision variables is relaxed. Also, the synchronisation constraints are
removed from the SPP. Instead, integrality and synchronisation are handled by
the branching, and to our knowledge they are the first to use a non-heuristic
solution approach to home care problems. Their subproblem is an Elementary
Shortest Path with Time Windows (ESPPTW).

Bertels and Fahle (2006) use a combination of linear programming, constraint
programming and metaheuristics for solving what they call the Home Health
Care Problem. However, they do not incorporate connected visits, which makes
their approach less interesting for our situation. Begur et al. (1997) describe a
decision support system (DSS) in use in the United States. The DSS provides
routes for home carers by using GIS systems. Their model is a Vehicle Routing
Problem (VRP) without time windows and without shared visits, which again
is not suitable for our needs. Cheng and Rich (1998) describe the Home Health
Care Routing and Scheduling Problem which they model as a Vehicle Routing
Problem with Time Windows (VRPTW). They distinguish between full-time
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and part-time home carers. They use a two-phase heuristic approach, in which
they first find an initial solution using a greedy heuristic. Next, the solution is
improved using local search. The model does not include temporal connections
between visits.

Related to the HCCSP is the Manpower Allocation Problem with Time Win-
dows (MAPTW). A demanded number of servicemen must be allocated to each
location within the time windows. Primarily the number of used servicemen
must be minimised, and secondarily the used travel time. The jobs have differ-
ent locations, skill requirements, and time windows. This problem is dealt with
by Lim et al. (2004). More closely related to HCCSP is the Manpower Alloca-
tion Problem with Time Windows and job-Teaming Constraints (MAPTWTC).
Li et al. (2005) present a construction heuristic combined with simulated an-
nealing for solving MAPTWTC instances. Their model adds synchronisation
constraints to the model of Lim et al. (2004), but does not include precedence
constraints. MAPTWTC is also solved in Dohn et al. (2009a), again with mul-
tiple teams cooperating on tasks. An exact solution approach is introduced.
They decompose to a set partitioning problem and develop a branch-and-price
algorithm. The subproblem in the column generation is an ESPPTW.

The HCCSP can be seen as a VRPTW, but with the addition of the compli-
cating connections between visits, and with another objective than the regular
minimisation of total distance. When only synchronised visits are considered as
connection type, the problem can be referred to as shared visits, yielding the
VRPTWSV. The literature on VRPTW is huge. We refer to Kallehauge et al.
(2005) and Cordeau et al. (2002). Recently, a variant of VRPTW very similar to
the HCCSP has been described in Dohn et al. (2011). The authors formalise the
concept of temporal dependencies in the Vehicle Routing Problem with Time
Windows and Temporal Dependencies (VRPTWTD) and investigate the effec-
tiveness of different formulations and solution approaches. HCCSP complicates
VRPTWTD by adding visit preferences, visit priorities, visit cancellations, en-
forcement of temporal dependencies to cancelled visits, different working hours,
different competences, and different means of transportation for the home car-
ers.

The remainder of the paper is organised as follows. In Section A.2, we present
an IP formulation of HCCSP. In Section A.3, we introduce a decomposed version
of this formulation. In Section A.4, we present the specialised branching scheme
used. Section A.5 introduces clustering of visits and other methods to decrease
the solve time of the pricing problem. Real-life and generated test instances are
described in Section A.6. In Section A.7, we present results from test runs on
these instances. Finally, in Section A.8 we conclude on our work and suggest
topics for future research.
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A.2 Problem formulation

The set of home carers is denoted K, and the set of visits at the citizens is
denoted C = {1, . . . , n − 1}. For each visit i ∈ C a time window is defined as
[αi, βi], where αi ≥ 0 and βi ≥ 0 specify the earliest respectively latest possible
start time of the visit. For algorithmic reasons, we introduce artificial visits
0k and nk as the start visit respectively end visit for home carer k ∈ K, and
we define N k = C ∪ {0k, nk} as the set of all potential visits for home carer
k. The duty length for each home carer k ∈ K is given by the time window
[α0k , β0k ] = [αnk , βnk ], i.e. home carer k ∈ K cannot start his or her duty before
time α0k ≥ 0 and must have finished his or her last visit before time β0k ≥ 0.
The travel distance between a pair of visits (i, j) is given by the parameter skij .
The parameter depends on k ∈ K as the home carers use different means of
transportation. If it is not possible to travel directly between visits i and j
for home carer k, then skij = ∞. We define skii = ∞, ∀k ∈ K,∀i ∈ N k. The

parameter skij includes the duration (service time) of visit i. Travelling between

any two visits i and j gives rise to the costs ckij dependent on the home carer

k ∈ K. For any combination of i ∈ C and k ∈ K the parameter ρki = 1 if k can
be assigned to visit i, ρki = 0 otherwise. Also, for any combination of i ∈ C and
k ∈ K the preference parameter δki ∈ R gives the cost for letting home carer k
handle visit i. A negative cost means that we would like home carer k to handle
visit i, whereas a positive cost means that we would prefer not to let home carer
k handle visit i. The parameter γi is the priority of visit i ∈ C, the higher, the
more important.

As described in Section A.1, visits may be temporally dependent due to different
home care needs. In order to make it easier for the manual planner to assign
substitutes to the uncovered visits, it is required that visits, which have a tem-
poral dependency to an uncovered visit, still respect the temporal dependency.
In other words, a temporal dependency is still respected even if one of the visits
is uncovered. Five types of temporal dependencies are often seen in practice.
The five types can be seen in Figure A.1. These temporal dependencies can be
modelled by introducing generalised precedence constraints of the form

σi + pij ≤ σj ,

where σi denotes the start time of visit i, and pij ∈ R quantifies the required
gap. The set of pairs of visits (i, j) ∈ C × C for which a generalised precedence
constraint exists is denoted P.

As can be seen, this constraint simply implies that j starts minimum pij time
units after i. An often encountered example of a temporal dependency is that
of synchronisation, see Figure A.1(a), where two visits are required to start at
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t ime

(a) Synchronisation.

t ime

(b) Overlap.

t ime

(c) Minimum difference.

t ime

(d) Maximum difference.

t ime

(e) Min+max difference.

Figure A.1: Five types of temporal dependencies. Each of the five subfigures shows
the time windows of two visits i (top) and j (bottom) with a temporal dependency
between them. Assuming some start time for visit i, the dotted line shows the earliest
feasible start time for visit j, and the dashed dotted line shows the latest feasible start
time. For synchronisation (a) the two lines coincide, and are drawn as one full line.
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the same time. The way to handle this is to add both (i, j) and (j, i) to P with
pij = pji = 0. As also described by Dohn et al. (2011), Table A.1 shows how to
model all the temporal dependencies of Figure A.1 with generalised precedence
constraints. It can be seen that (a), (b) and (e) each requires two generalised
precedence constraints, whereas (c) and (d) only need one each.

Temporal dependency pij pji
(a) Synchronisation 0 0
(b) Overlap −durj −duri
(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table A.1: Values for pij for the five temporal dependencies of Figure A.1. duri is
the service time of visit i, diffmin is the minimum difference required and diffmax is the
maximum difference required.

A.2.1 Integer programme

To model the problem, three sets of decision variables are defined: the binary
routing variables xkij , the scheduling variables tki ∈ R+ and the binary coverage

variables yi. xkij = 1 if home carer k ∈ K goes directly from visit i ∈ N k to

j ∈ N k, and xkij = 0 otherwise. The scheduling variable tki is the time the

home carer k ∈ K starts handling visit i ∈ N k. tki = 0 if home carer k is not
assigned to visit i. yi = 1 if visit i ∈ C is not covered by any home carer and
yi = 0 otherwise. The weights w1, w2 and w3 are used to control the objective
function.

HCCSP can now be formulated as the integer programme given below. The for-
mulation is very similar to the formulation in Bredström and Rönnqvist (2007).
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minw1

∑
k∈K

∑
i∈Nk

∑
j∈Nk

ckijx
k
ij + w2

∑
k∈K

∑
i∈C

∑
j∈Nk

δki x
k
ij+ w3

∑
i∈C

γiyi (A.1)

s.t.
∑
k∈K

∑
j∈Nk

xkij + yi = 1 ∀i ∈ C (A.2)

∑
j∈Nk

xkij ≤ ρki ∀k ∈ K,∀i ∈ C (A.3)

∑
j∈Nk

xk0k,j = 1 ∀k ∈ K (A.4)

∑
i∈Nk

xki,nk = 1 ∀k ∈ K (A.5)

∑
i∈Nk

xkih −
∑

j∈Nk
xkhj = 0 ∀k ∈ K,∀h ∈ C (A.6)

αi

∑
j∈Nk

xkij ≤ tki ≤ βi
∑

j∈Nk
xkij ∀k ∈ K,∀i ∈ C ∪ {0k} (A.7)

αnk ≤ t
k
nk ≤ βnk ∀k ∈ K (A.8)

tki + skijx
k
ij ≤ tkj + βi(1− xkij) ∀k ∈ K,∀i, j ∈ N k (A.9)

αiyi +
∑
k∈K

tki + pij ≤
∑
k∈K

tkj + βjyj ∀(i, j) ∈ P (A.10)

xkij ∈ {0, 1} ∀k ∈ K,∀i, j ∈ N k (A.11)

tki ∈ R+ ∀k ∈ K, ∀i ∈ N k (A.12)

yi ∈ {0, 1} ∀i ∈ C (A.13)

The objective (A.1) is multi-criteria. Often, minimising uncovered visits (the
third term) is prioritised over maximising home carer-visit preferences (the
second term), which again is prioritised over minimising the total travel-
ling costs (the first term). This can be accomplished by setting w1 = 1,
w2 =

∑
k∈K

∑
i∈Nk

∑
j∈Nk c

k
ij and w3 = w2|C|maxk∈K,i∈C δ

k
i . Constraints

(A.2) ensure that each visit is covered exactly once or left uncovered, and home
carers can only handle allowed visits (A.3). Constraints (A.4)–(A.6) ensure that
the home carers begin at the start visit, end at the end visit, and that routes
are not segmented. Constraints (A.7) and (A.8) control that time windows are
respected. Furthermore, Constraints (A.7) set tki = 0 when k does not visit
i, because in this case

∑
j∈Nk x

k
ij = 0. Travelling distances are respected due

to Constraints (A.9). Constraints (A.10) are the generalised precedence con-
straints. The sums

∑
k∈K t

k
i give the starting time of visit i, using tki = 0 if k

does not visit i. Hence, the only non-zero contribution to the sum will be the
starting time of visit i for that single home carer that actually visits i (assum-
ing i is not cancelled). The y-variable terms ensure that generalised precedence
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constraints are respected even when visits are cancelled. If for example visit
j is cancelled and i is serviced, then

∑
k∈K t

k
j = 0 and the constraint reads∑

k∈K t
k
i + pij ≤ βj . This forces visit i to be scheduled pij time units before

βj , and therefore a manual planner can assign a substitute to visit j at least
at time βj , and hence respect the generalised precedence constraint. Finally,
Constraints (A.11)–(A.13) set the domains of the decision variables.

The HCCSP formulation can be seen as a generalisation of an uncapacitated,
multiple-depot VRPTW. The aim is to push flow for each home carer from start
visit to end visit through as many profitable nodes as possible while respecting
time windows and minimising costs. Also, it is only allowed for one home carer
to go through each node.

The HCCSP generalises the Travelling Salesman Problem (TSP). TSP is well-
known to be NP-hard as its decision problem version is NP-complete, see
Problem ND22 in Garey and Johnson (1979). Therefore, also HCCSP is NP-
hard, and we can therefore not expect to solve the problem efficiently, i.e. in
polynomial time. The NP-hardness of the HCCSP is the reason why we develop
a branch-and-price solution algorithm.

A.3 Decomposition

We will Dantzig-Wolfe decompose the HCCSP described in the previous section
and model it as a set partitioning problem with side constraints. Then we will
solve the model using dynamic column generation in a branch-and-price frame-
work. This approach has presented superior results on VRPTW and the simi-
larities to HCCSP are strong enough to suggest the same approach here. There
is a vast amount of literature on column generation based solution methods for
VRPTW, see e.g. Kallehauge et al. (2005) for a recent literature review and an
introduction to the method. In a branch-and-price framework the problem is
split into two problems, a master problem and a subproblem. The subproblem
generates feasible home carer schedules, which are then subsequently combined
in a feasible way in the master problem. In the master problem, given a large set
of feasible schedules to choose from, one schedule is chosen for each home carer.
Given a set of home carers K, each home carer must choose a schedule from the
set Rk, which is the set of potential schedules for home carer k. Together, the
schedules must cover as many visits as possible from the set C.

A feasible schedule r for a home carer k ∈ K is defined as a route starting at
0k and ending at nk and respecting all constraints in the IP formulation from
Section A.2.1 which do not link multiple routes. The schedule includes the
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starting times of the visits. The parameter ckr gives the cost for home carer
k ∈ K for schedule r ∈ Rk, and ci = w3γi gives the cost for leaving visit i ∈ C
uncovered. The binary parameter akir = 1 if visit i is included in schedule r for
home carer k and akir = 0 otherwise. Moreover, tkir is the start time of visit i in
schedule r for home carer k, if i is included in r for k. If i is not included in r
for k, tkir = 0.

A.3.1 Master problem

We introduce the binary decision variable λkr where λkr = 1 if schedule r ∈
Rk is chosen for home carer k ∈ K, and λkr = 0 otherwise. Furthermore,
we introduce the binary decision variable Λi where Λi = 1 if visit i ∈ C is
uncovered, and Λi = 0 otherwise. HCCSP can now be solved by finding a
minimum cost combination of schedules such that all constraints are fulfilled.
The master problem of the Dantzig-Wolfe decomposition of HCCSP is given by
the mathematical programme shown below.

min
∑
k∈K

∑
r∈Rk

ckrλ
k
r +

∑
i∈C

ciΛi (A.14)

s.t.
∑
k∈K

∑
r∈Rk

akirλ
k
r + Λi = 1 ∀i ∈ C (A.15)

∑
r∈Rk

λk
r = 1 ∀k ∈ K (A.16)

αiΛi +
∑
k∈K

∑
r∈Rk

tkirλ
k
r + pij ≤

∑
k∈K

∑
r∈Rk

tkjrλ
k
r + βjΛj ∀(i, j) ∈ P (A.17)

λk
r ∈ {0, 1} ∀k ∈ K,∀r ∈ Rk (A.18)

Λi ∈ {0, 1} ∀i ∈ C (A.19)

The total costs of the schedules plus the costs of leaving visits uncovered are
minimised (A.14). The cost of a schedule contains the remaining components
of the original objective and is therefore determined by the travel costs and by
the service level of the visits in the schedule. Constraints (A.15) ensure that
all visits are either included in exactly one schedule or considered uncovered.
One schedule must be assigned to each home carer (A.16), and the generalised
precedence constraints must be respected (A.17). Again, the Λ-variable terms
in Constraints (A.17) ensure that precedence constraints are respected even
for uncovered visits. Integrality of the decision variables is ensured by Con-
straints (A.18) and (A.19). Any feasible solution to the decomposed problem
is a feasible solution to the original problem, and any optimal solution to the
decomposed problem is an optimal solution to the original problem.



A.3 Decomposition 89

To be able to solve the master problem in an LP-based branch-and-price frame-
work, the integrality constraints on λkr and Λi are relaxed. Also, the precedence
constraints (A.17) are relaxed, as we thereby have no constraints interconnect-
ing the starting times in the schedules of different home carers. This gives a
simpler pricing problem, which will be explained further in Section A.3.2. The
two relaxed constraints will be handled in the branching.

As the number of feasible schedules for each home carer is enormous, the set Rk
of schedules for home carer k ∈ K is restricted to only contain a small subset
R′k of promising schedules, which will be generated by the column generating
pricing problem. We abbreviate the relaxed and restricted master problem as
RMP. For each primal solution to the RMP, we obtain a dual solution [π, ω],
where πi, i ∈ C, and ωk, k ∈ K, are the dual variables of Constraints (A.15)
and (A.16), respectively. The dual variables are used in the column generation
technique to generate new schedules that lead to an improvement of the solution
to the RMP.

A.3.2 Pricing problem

The pricing problem is used to find the feasible schedule with the most neg-
ative reduced cost (if any exists). As the home carers have different working
hours and competences, the pricing problem is split into |K| independent pricing
problems. The pricing problem is an Elementary Shortest Path Problem with
Time Windows (ESPPTW), which has been proved NP-hard in Dror (1994b).
The pricing problem for a home carer k ∈ K is formulated as an integer pro-
gramme below. Any feasible solution to the pricing problem with negative cost
represents a column with negative reduced cost in the RMP.
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min
∑
i∈Ñk

∑
j∈Ñk

(
w1c

k
ij + w2δ

k
i − πi

)
xij − ωk (A.20)

s.t.
∑

j∈Ñk

x0k,j = 1 (A.21)

∑
i∈Ñk

xi,nk = 1 (A.22)

∑
i∈Ñk

xih −
∑

j∈Ñk

xhj = 0 ∀h ∈ Ck (A.23)

αi

∑
j∈Ñk

xij ≤ ti ≤ βi
∑

j∈Ñk

xij ∀i ∈ Ck ∪ {0k} (A.24)

αnk ≤ tnk ≤ βnk (A.25)

ti + skijxij ≤ tj + βi(1− xij) ∀i, j ∈ Ñ k (A.26)

xij ∈ {0, 1} ∀i, j ∈ Ñ k (A.27)

ti ∈ R+ ∀i ∈ Ñ k (A.28)

Here, we have introduced the decision variables xij and ti which are the same
as in (A.1)–(A.13), without the k index. For a given k ∈ K, the subset of
visits Ck = {i ∈ C : ρki = 1} is the set of visits allowed for k. Moreover,
Ñ k = Ck ∪ {0k, nk}, and we define δk0k = δknk = π0k = πnk = 0.

The relatively simple expression (A.20) for the reduced costs of a column is
one of the reasons why the generalised precedence constraints are relaxed. One
could, as done in Akker et al. (2006) and in Dohn et al. (2011) have kept the
generalised precedence constraints in the RMP. This would have implied a more
complicated pricing problem, as the pricing problem then incorporates a means
of adjusting the starting times in a schedule based on the dual variables. In
Akker et al. (2006) they do not solve their pricing problem by an exact method,
but use a heuristic method. Benchmark results from Dohn et al. (2011) show
that in many cases it is as good to relax the generalised precedence constraints,
as to keep them in the master problem.

We solve the pricing problem with a labelling algorithm built on ideas from
Chabrier (2006) and Feillet et al. (2004).

A.4 Branching

The generalised precedence constraints and the integrality constraints that were
relaxed from the master problem are handled in the branching part of the
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branch-and-price algorithm. To handle both types of constraints, we need to
present two branching methods. One to handle the violation of an integral-
ity constraint and another to handle the violation of a precedence constraint.
The branching scheme used to handle precedence constraint violations is a time
window branching scheme. This also enforces integrality to a certain point as
shown in Gélinas et al. (1995). Nonetheless, one cannot solely rely on time win-
dow branching to enforce integrality, so we use an additional branching scheme
to force the solution to integrality. First, we will present a preprocessing tech-
nique.

A.4.1 Preprocessing of time windows

The visits C can be grouped according to how they are connected by gener-
alised precedence constraints. Define the directed temporal dependency graph
G = (V,A) by V = C and A = P. The graph G consists of one or more
sub-graphs, which corresponds to the connected components in the undirected
version of G. An example of such a graph is shown in Figure A.2(a). From the
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(a) Example of a temporal dependency
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(b) The same graph expanded with derived
arcs.

Figure A.2: A temporal dependency graph.

existing generalised precedence constraints, additional derived generalised prece-
dence constraints can be found. In every subgraph with three or more nodes,
we look for triples i, j, k ∈ C where (i, j), (j, k) ∈ P with i 6= j, j 6= k, k 6= i.
If (i, k) /∈ P, then the pair is added to P with pik = pij + pjk. If (i, k) ∈ P
the offset is updated to pik := max{pik, pij + pjk} in order to get the tightest
constraint. The process is repeated until no further constraints can be derived
or tightened. The example will now look as in Figure A.2(b). This derivation
of generalised precedence constraints will make it possible to reduce more time
windows, as there will be a greater number of precedence constraints on which
to perform the following pair-wise reduction technique.

If two visits i, j ∈ C are connected via a (possibly derived) generalised precedence
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constraint (i, j) ∈ P, it might be possible to tighten the time windows of i and j,
such that [α′i, β

′
i] = [αi,min{βi, βj − pij}] and [α′j , β

′
j ] = [max{αj , αi + pij}, βj ]

are the new time windows as illustrated in Figure A.3.

This preprocessing is repeated until no time windows are tightened. The pre-
processing technique can be used in every node of the branch-and-bound tree.
It should be noted that this time window reduction can only be carried out, be-
cause it is required that also temporal dependencies with cancelled visits must
be respected. If this was not the case, then the cancellation of a visit i with
(i, j) ∈ P would lead to the time window of j being “reset” (assuming it was
previously reduced by preprocessing).

t ime
p

ij
p

ij

(a) Before preprocessing.

t ime
p

ij
p

ij

(b) After preprocessing.

Figure A.3: Adjustment of time windows in accordance to a generalised precedence
constraint. Each of the subfigures shows the time windows of two visits i (top) and j
(bottom).

A.4.2 Branching on generalised precedence constraints

A generalised precedence constraint (i, j) ∈ P is violated if there exists positive
variables λk1

r1 > 0 and λk2
r2 > 0 (the relaxation allows for k1 = k2 and r1 = r2,

but we will prevent that in the subproblem) in the solution to the RMP for
which

tk1
i,r1

+ pij � tk2
j,r2

.

Therefore, to remedy this, we will alter the time windows in the branches. In
the left branch the time window of visit i is set to [αi, tsplit − ε], where tsplit is
the split time, and ε > 0 is a very small fraction. However, almost always ε = 1
can be used in practice as travelling times are integer (or easily convertible to
integers), as each pij is integer, and as the way the labelling algorithm generates
schedules sets the scheduling variables by summing up travelling times. In the
right branch the time window of visit i is set to [tsplit, βi]. The preprocessing
technique described in the previous section is used again, which will result in the
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time window of visit j in the right branch being changed to [tsplit + pij , βj ]. All
previously generated schedules violating these new time windows are removed.
The split time is selected such that tk2

j,r2
− pij + ε ≤ tsplit ≤ tk1

i,r1
. Hence, the

branching scheme divides the solution space into two sets, where the solution
that violates the precedence constraint for (i, j) becomes infeasible in each of
them. Synchronisation constraints are often seen in home care instances. The
branching scheme suggested here combined with preprocessing of time windows
is as strong as the scheme tailored for synchronisation described in Ioachim et al.
(1999). This is elaborated in Dohn et al. (2011), where it is also described how to
pick the best split time in the given interval. An illustration of the generalised
precedence constraint branching scheme can be found in Figure A.4.

t ime

(a) Parent node.

t ime

(b) Left child node.

t ime

(c) Right child node.

Figure A.4: Example of the branching applied when a generalised precedence con-
straint is violated. Each of the subfigures shows the time windows of two visits i (top)
and j (bottom), and the start times of the visits in an RMP solution. The violated
constraint for (i, j) has pij = 2. The dotted line shows the chosen split time, and the
distance between the ticks on the time line is two time units.

A.4.3 Integer branching

In the following, we will let Ak denote the |C|× |R′k|-matrix where the elements
are given by the parameter akir for a given home carer k ∈ K, i.e. each column in

Ak represents a schedule r ∈ R′k. Now, consider the structure of the constraint
matrix of the RMP which is shown in Figure A.5. For clarity, we only show
ones of the constraint matrix and introduce m = |K| and n̄ = n− 1.

We observe that the RMP has strong integer properties due to the generalised
upper bound constraints (A.16) for each home carer, see e.g. Rezanova and Ryan
(2010) for further details and references. That is, for all home carers k ∈ K,
their submatrix of the constraint matrix is perfect. Consequently, fractionality
in the LP solutions will never appear within one home carer’s block of schedules.
Any fractions in the RMP can therefore only occur between blocks of columns,
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λk1
1 · · · λk1

|R′k1 | · · · λkm
1 · · · λkm

|R′km | Λ1 · · · Λn̄

1 1
... Ak1 · · · Akm

. . .

n̄ 1
k1 1 · · · 1
...

. . .

km 1 · · · 1

Figure A.5: Constraint matrix for the RMP.

belonging to different home carers. Hence, if the LP solution is fractional, it
is because two or more home carers compete for one or more visits in their
schedules. Let i ∈ C denote a visit for which home carer k ∈ K is competing
with one or more other home carers. Since the visit can only be handled by one
home carer, then in an integer solution either k handles i or k does not handle
i.

We will exploit the strong integer properties of the constraint matrix of the RMP
to apply a so-called constraint branching strategy, see Ryan and Foster (1981).
We introduce the sum Ski =

∑
r∈R′k a

k
irλ

k
r . If a fractional solution occurs, the

constraint branching strategy is now to find a visit-home carer pair (i, k) of a
visit i ∈ C and a home carer k ∈ K for which 0 < Ski < 1. In the 1-branch visit
i is forced to be handled by k and in the 0-branch prohibit visit i from being
handled by k. Notice that since at least one of the unique λkr is fractional then
at least one sum Ski is also fractional.

Whenever the sum Ski is fractional for two or more visit-home carer pairs (i, k),
we have to select one of these as the candidate for branching in the node. If Ski
is close to 1, forcing Ski = 1 will probably not change the solution drastically,
so only a small increase in the lower bound can be expected in this branch. On
the other hand, as the LP solution suggests that home carer k should handle
i in an optimal solution, ruling out this option (Ski = 0) is likely to cause a
major increase in the lower bound. If Ski is close to 0, a similar line of reasoning
also shows a skewed branching. In order to keep the branch-and-bound tree
balanced, we select the “most fractional” candidate, i.e. the candidate closest to
one half. More formally, we select (i∗, k∗) = arg min(i,k)∈C×K:0<Ski <1

∣∣Ski − 1
2

∣∣.
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A.5 Clustering of visits and arc removal

The HCCSP exhibits a structural feature that can be used to group or cluster
visits. HCCSP has, as opposed to VRPTW, a preference parameter for each
home carer-visit combination. Moreover, test runs have suggested that the
ESPPTW solver is a bottleneck in the branch-and-price algorithm. Therefore,
we have developed schemes that reduce the sizes of the ESPPTW networks,
which will in turn decrease the running time of the algorithm. For some larger
instances, visit clustering is even needed to find feasible solutions.

When no reduction of the ESPPTW networks is used, every home carer k ∈ K
can visit every i ∈ C where ρki = 1. However, in a good solution (assuming the
objective function weights are set as suggested in Section A.2.1), a home carer k
will only handle visits i where δki is favourable. Therefore, we have devised three
ways of clustering visits for a home carer according to the preference parameter
δki , thereby effectively reducing the network sizes for each home carer. Again,
let Ck = {i ∈ C : ρki = 1}. All schemes operate with a cluster of visits C̄k ⊆ Ck
for a home carer. The first scheme only puts visits in the cluster, when it is
directly profitable, i.e. C̄k = {i ∈ Ck : δki < 0}.

In the second scheme preference parameters for home carer k are ordered non-
decreasingly as δki1 ≤ · · · ≤ δ

k
iξ
≤ · · · ≤ δki|Ck| with ties broken arbitrarily. Define

the set ∆k
ξ = {δki1 , . . . , δ

k
iξ
} given the parameter ξ. The second scheme then

defines the cluster as C̄k = {i ∈ Ck : δki ∈ ∆k
ξ}. The cluster contains the ξ most

profitable visits.

The two first clustering schemes do not guarantee that all visits are in a cluster.
Therefore, all remaining visits i ∈ C\

⋃
k∈K C̄k are added to all clusters.

The third scheme seeks to exploit the integer properties of the problem described
in Section A.4.3. If the home carers cannot compete for visits, the LP solutions
will be naturally integer, and hence the run times will decrease significantly.
Therefore, we make the visit clusters pairwise disjoint, i.e. ∀k1, k2 ∈ K, k1 6= k2 :
C̄k1 ∩C̄k2 = ∅. Again, the preference parameters for each home carer are ordered
non-decreasingly. Hereafter, the scheme iterates over the home carers in a round-
robin fashion and puts the most profitable visit in the home carer’s cluster (if it
is not already put in another home carer’s cluster). Suppose visit j is already in
C̄k for home carer k, then there are two conditions under which another visit i is
not permitted in the cluster. If i cannot be carried out before j, and also j cannot
be carried out before i, then the visits can never be scheduled in the same route.
This is detected whenever αi + skij > βj ∧ αj + skji > βi. The second condition
is when there is a temporal dependency, which disallows any route with both
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visits. This is the case when (i, j), (j, i) ∈ P and −skji < pij ∧ −skij < pji.

The use of clustering will sacrifice optimality, and later we will look into how
big the gap to optimality is, and compare it against the benefit of improved
run time. The closest to this idea we have seen in the VRP literature is the
petal method, see e.g. Foster and Ryan (1976), which clusters the visits based
on geographical position.

A.5.1 Expansion of visit clusters

The clustering of visits can lead to visits being uncovered not because it is
optimal, but due to the clustering. Hopefully, these are only a very few visits. In
order to remedy this, the clusters are made dynamic, in the sense that expansion
of the clusters is allowed. For any branch-and-bound node, uncovered visits can
be detected, by looking at the LP optimal solution. If there are uncovered visits,
they are added to all clusters, and the LP problem is solved again. We suggest
two versions of the cluster expansion. Either cluster expansion can happen only
in the root node, or it can happen in any node of the branch-and-bound tree.
Especially the latter adds a twist of unpredictability (though still deterministic)
to the problem, because the problem basically can be changed anywhere in the
branch-and-bound tree. It can happen that the lower bound for a child is lower
than the lower bound for its parent, which is avoided when expansion is only
allowed in the root node.

A.5.2 Removal of idle arcs

We will here present another method to reduce the network sizes. The time
where the home carer is neither visiting a citizen nor travelling is called idle
time. This is time where the home carer is basically just waiting for the time
window of the next visit to open. Therefore, another means to reduce the sizes
of the ESPPTW networks, is to remove arcs where the minimum idle time
φkij = αj − (βi + skij) between two visits is high. Again, proof of optimality is
sacrificed, but in a good solution, we probably would not see the use of many
arcs with large idle time.
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A.6 Test instances

We have had access to four authentic test instances from two Danish municipal-
ities. These are named hh, ll1, ll2 and ll3. Based on the authentic instances we
have generated 60 extra instances. These instances are constructed by generat-
ing new sets of generalised precedence constraints for each of the four authentic
instances, while still keeping the original sets of home carers and visits and orig-
inal travelling times. We found it necessary to generate new sets of generalised
precedence constraints in order to test our algorithm thoroughly. Most original
data sets from home care are very incomplete when it comes to registering the
temporal dependencies. These are either dealt with manually or by changing
the time windows. The new generalised precedence constraint sets are based on
the five types of temporal dependencies from Figure A.1, and we have created
five sets named td0–4. The generalised precedence constraints in the set td0
are of the temporal dependency type synchronisation (a). The set td1 is of the
type overlap (b). The set td2 consists of the types minimum difference (c) and
maximum difference (d). When values are drawn randomly, these categories col-
lapse to one. The set td3 is of type minimum+maximum difference (e). Finally,
td4 is a random combination of the other four types. Three sets of generalised
precedence constraints were generated for each of these fives sets: Sets A, B, and
C, where the number of generalised precedence constraints approximately is, re-
spectively, 10%, 20%, and 30% of the number of visits. The sets of generalised
precedence constraints were generated as in Dohn et al. (2011). Characteristics
for these test instances can be seen in Table A.2. The notation td[0-4] expands
to td0, td1, td2, td3, and td4. It is compacted in the table, because the instances
share the same characteristics.

Furthermore, Bredström and Rönnqvist (2007) have very kindly given us access
to their 30 data instances. These data instances are generated based on realistic
settings and only contain synchronisation constraints. All visits have the same
priority, and no visits are excluded for any of the home carers, i.e. ρki = 1,∀i ∈
C,∀k ∈ K. The preference parameter δki is drawn randomly between −10 and
10. For all of the instances, all home carers in that instance have the same duty
hours. Characteristics for these test instances can also be seen in Table A.2.
Again, br-[06-08][S,M,L]-td0 means that for each of br-06, br-07, and br-08,
there are three instances: One with small (S) time windows, one with medium
(M) time windows, and one with large (L) time windows.
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|K| 15 8 7 6 15 15 15 8 8 8 7 7 7 6 6 6 4 10 16
|C| 150 107 60 61 150 150 150 107 107 107 60 60 60 61 61 61 20 50 80
|P| 6 0 0 0 16 30 46 10 22 32 6 12 18 6 12 18 4 10 16

Table A.2: Characteristics for the test instances. |K| is number of home carers, |C|
is number of visits and |P| is number of generalised precedence constraints.

A.7 Computational results

The aim in this section is to compare the different visit clustering techniques
presented in Section A.5. We will also try to measure the effects of removal of
idle time arcs and cluster expansion. Using clustering will sacrifice optimality,
and we will here investigate how big the gap to optimality is, and compare it
against the benefit of improved run time.

We measure three quality parameters, which are also the terms of the objective
function: uncovered visits, home carer-visit preferences, and total travel costs.
The weights of the objective function are set as suggested in Section A.2.1,
so a hierarchical ordering is obtained. We seek to minimise the number of
uncovered visits and maximise the preference level of the solution. The total
travel costs are measured in minutes for all home carers for the whole daily
schedule. We subtract the durations of the visits in the total travel time, hence
giving preference to longer visits, and thereby maximising the so-called face-to-
face time. More formally, we define the travel cost as ckij = skij −2 ·duri. Hence,
if it were only possible to cover either visit i or the two visits j and h, coverage
of visit i is preferred, whenever γi ≥ γj + γh and duri > durj + durh, assuming
the travel time for both options is the same. Minimising the total travel costs
are not as important as minimising the two other measurements, but low travel
costs are naturally preferred. In order to be able to make comparisons this
third measure is ignored, when we are performing tests on the instances from
Bredström and Rönnqvist (2007).

The algorithm is implemented in the branch-and-cut-and-price framework from
COIN-OR, see Lougee-Heimer (2003), using the COIN-OR open-source LP
solver CLP. All tests are run on 2.2 GHz processors. As an outcome of pre-
liminary tests, we return up to five negative reduced cost columns per home
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carer per iteration. For all of the test runs we have set a time out limit of
one hour. The implementation of the ESPPTW solver ensures that generalised
precedence constraints, that make two visits mutually exclusive, are respected
within the individual routes. This tightens the lower bounds and reduces the
number of branch-and-bound nodes.

We have grouped the instances into 35 test groups based on their size, the type
of temporal dependency included, and the number of temporal dependencies.
The test groups can be seen in Tables A.3-A.4. For each of these groups, 13
different settings for the algorithm are compared. The settings are written as
CS-RA-ER, abbreviating clustering scheme, removal of arcs, and expansion in
root only, respectively. CS = 0 corresponds to no use of visit clustering. CS = 1
gives all-preferred clusters, i.e. clusters for home carer k where δki < 0 for all
visits i in the cluster, as described in Section A.5. CS = 2 gives fixed-size
clusters of a fixed size ξ. CS = 3 gives pair-wise disjoint clusters. Before the
preference parameters are sorted they are shuffled randomly in order to make
the tie-breaking arbitrary. The setting RA is a binary parameter, which is 1,
if we remove arcs based on idle time, and 0 otherwise. The setting ER is also
a binary parameter, which is 1, if we only allow cluster expansion in the root
node of the branch-and-bound tree, and 0 if cluster expansion is allowed in
every node of the branch-and-bound tree. Thus, the settings 0-0-0 (as well as
the redundant settings 0-0-1) give the optimal solution. However, some of the
instances are not possible to solve to optimality within the time limit, they can
only be solved using clustering. For CS = 2, we use a fixed cluster size ξ = 12.
With a fixed cluster size of 12, the pricing problems (at least initially, before
cluster expansion) are solved very fast. When arcs are removed, the largest
allowed minimum idle time φkij is set to 10 minutes, both based on preliminary
tests. The abbreviation BR is used when we show results from Bredström and
Rönnqvist (2007).

In Tables A.3–A.4 the comparison is shown. The numbers are averages over
all instances in the test group. In total, we have 1190 test runs, which gives a
good statistical foundation. Let T and Z denote the run time and the objective
value, respectively, of a given test run, and let Tref and Zref denote the run time
and the objective value of a reference solution, respectively. The time difference
is then calculated as T/Tref in percent, and the objective gap is calculated as
|(Z − Zref)/Zref| in percent. When the objective is better than the reference
objective a minus sign is added. The reference settings are the leftmost, in most
cases it will be the settings 0-0-0, which is a very intuitive reference. All the
instances in the test groups [hh,ll1] and [hh,ll1]-td[0-4]-[A,B,C] have not been
possible to solve to optimality. Any attempt has, when the one hour time out
limit is reached, ended up with around 70% or more of the visits uncovered in
the best solution in the branch-and-bound tree. Therefore, the reference settings
for these test groups will be 1-0-0. When using relative gaps for comparison, one
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should be careful, because relative gaps are highly dependent on the objective
measure. In our case we have a very high penalty on uncovered visits, so a
single uncovered visit as opposed to no uncovered visits would lead to a large
gap. Also, for all instances based on ll1, there will be eight visits that are
impossible to cover, as they cannot be completed within the working hours of
any of the home carers. This fixed cost for all generated routes makes the gaps
smaller.

As mentioned earlier, the dynamic expansion of visit clusters makes the al-
gorithm behave somewhat unpredictable. In the cases where we see the time
difference being close to 100% and the objective gap at the same time being
close to 0%, it is very likely that the clusters are expanded to nearly the entire
set Ck, thereby getting close to CS = 0. On the other hand, when the gap
is small and the time difference significantly below 100%, then a good initial
clustering is used. With regard to the time-quality trade-off, the all-preferred
(CS = 1) and the fixed-size (CS = 2) clustering schemes both have instance
groups where they are performing best. If dynamic cluster expansion was not
used, then it would be expected that the fixed-size clustering scheme would be
the fastest on larger instances (e.g. instances based on hh or ll1), as the cluster
size is kept small. This does not happen, though, due to the clusters being ex-
panded aggressively. The aggressive expansion happens when a lot of visits are
uncovered and therefore added to every home carer’s cluster. For the hh and
ll1 instance groups, we therefore see that the fixed-size clustering is slower, but
better than the all-preferred clustering. In some test runs with the fixed-size
clustering scheme in the test groups [ll2,ll3]-td0-A and [ll2,ll3]-td3-B, the initial
clustering has lead to very large branch-and-bound trees. This is visible in the
averages. For the pair-wise disjoint clustering scheme the picture is more clear.
As expected it is very fast, but it does not come without a price, as the solution
qualities for this scheme generally are the worst.

Focusing on the impact of removal of idle time arcs (RA), Tables A.3–A.4 do
not disclose much. It it very hard to find a pattern in the impact of this setting.
Removal of idle time arcs may reduce the ESPPTW networks, but the removal
could also lead to more visits being uncovered in the LP solution and therefore
added to all home carer’s clusters. This would increase the network sizes.

The table shows that when cluster expansion is allowed in every node in the
branch-and-bound tree (ER = 0), the solution quality tends to be just better
than when expansion is only allowed in the root node (ER = 1). This is ex-
pected, but still, if many visits are uncovered in the root LP solution, this could
lead to large clusters, and thereby better solution quality.

Looking at the numbers for the test groups ending with A, B, and C, there
does not seem to be a correlation between the performance of the different
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clustering schemes and the number of generalised precedence constraints for an
instance. None of the clustering schemes stand out with a consequently good or
bad performance in either size A, B, or C. Likewise, there does not seem to be
a correlation between the type of temporal dependency and the performance of
the schemes. This is also sensible, as the clustering is preference-based and as
such independent of types and numbers of temporal dependencies.

If we compare our results against the results from Bredström and Rönnqvist
(2007), we are significantly faster in all test groups. We are able to verify
their optimal solution values for the groups br-[01-05][S,M,L]-td0 and br-[06-
08][S,M,L]-td0, and we are able to improve the best known solution values for
the group br-[09-10][S,M,L]-td0 by 6% on average. For some instances we can
prove optimality of the improved solutions. The settings 1-1-0 and 1-1-1 give
better solution quality on average for the group br-[09-10][S,M,L]-td0 than the
setting 0-0-0. This is possible, because we reach the time out limit on some test
runs, and therefore the returned solution is not necessarily optimal, but only
the best solution in the branch-and-bound tree at time out.

Table A.5 shows detailed statistics for individual test runs. The test runs
shown here are chosen, because they are representative for the numbers from
Tables A.3-A.4. It should be noted, that we have integerised the preference
parameter in the instances from Bredström and Rönnqvist (2007), by scaling it
with a factor of 104. In the process some rounding took place, and furthermore
the results reported in Bredström and Rönnqvist (2007) are rounded. Therefore,
reported numbers for the settings 0-0-0 and BR in Table A.5 will not necessarily
match on all digits. Also, one should keep in mind that our lower bounds are
tighter.

The detailed statistics for the test runs show that there is a clear connection
between the run times and the sizes of the branch-and-bound trees, which is
intuitively very sensible and expected. It should here be noticed that Bredström
and Rönnqvist (2007) use significantly fewer branch-and-bound nodes than our
algorithm. This is most probably due to their branching candidate selection
which seems to perform very well.

Overall it can be said, that, as expected, run times can be decreased by using
visit clustering, but this implies a decreased solution quality. It is difficult
to point out the best settings as well as to quantify the speed gain/quality loss
trade-off. As mentioned earlier, it is seen that the pair-wise disjoint clustering is
by no doubt the fastest, but if quality is also taken into account, the all-preferred
clustering scheme tends to perform best. Settings with CS = 1 have at least
equally good and in most cases much better run times when compared to the
settings 0-0-0 and do only have a significant loss in quality for the test group br-
[01-05][S,M,L]-td0. The loss in quality is due to three out of 15 instances in the
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br-05S-td0 0-0-0 -76277.00 -76277 0 11 4 284 687 0.31 0.17 0.60
br-05S-td0 1-0-0 -71289.00 923612 1 3 1 64 124 0.02 0.02 0.05
br-05S-td0 1-1-0 -71289.00 923612 1 3 1 88 154 0.04 0.02 0.07
br-05S-td0 1-0-1 -71289.00 923612 1 3 1 64 124 0.02 0.03 0.05
br-05S-td0 1-1-1 -71289.00 923612 1 3 1 88 154 0.03 0.02 0.07
br-05S-td0 2-0-0 -76277.00 -76277 0 9 3 200 436 0.12 0.08 0.26
br-05S-td0 2-1-0 -76277.00 -76277 0 9 3 152 366 0.11 0.06 0.22
br-05S-td0 2-0-1 -76277.00 -76277 0 9 3 200 436 0.14 0.06 0.28
br-05S-td0 2-1-1 -76277.00 -76277 0 9 3 152 366 0.12 0.06 0.22
br-05S-td0 3-0-0 933849.00 933849 1 1 0 16 38 0.00 0.00 0.01
br-05S-td0 3-1-0 933849.00 933849 1 1 0 16 34 0.00 0.00 0.01
br-05S-td0 3-0-1 933849.00 933849 1 1 0 16 38 0.00 0.00 0.02
br-05S-td0 3-1-1 933849.00 933849 1 1 0 16 34 0.00 0.01 0.02
br-05S-td0 BR -76290.00 -76290 0 1 - 139 - - - 0.64

br-06M-td0 0-0-0 -380509.00 -379854 0 353 33 8989 8941 54.91 35.10 107.18
br-06M-td0 1-0-0 -380509.00 -379854 0 419 58 10284 8359 34.44 26.10 72.35
br-06M-td0 1-1-0 -379287.00 -378589 0 431 48 10904 8148 32.17 26.71 70.64
br-06M-td0 1-0-1 -380509.00 -379854 0 419 58 10284 8359 34.38 26.32 72.53
br-06M-td0 1-1-1 -379287.00 -378589 0 431 48 10904 8148 32.17 26.49 69.67
br-06M-td0 2-0-0 -376764.00 649853 1 77 38 1910 1399 2.67 4.16 8.22
br-06M-td0 2-1-0 -374594.00 -332648 0 109 54 2520 1701 4.04 5.23 11.37
br-06M-td0 2-0-1 -376764.00 641531 1 91 40 2240 1642 2.83 4.49 8.95
br-06M-td0 2-1-1 -374594.00 653339 1 177 43 4070 2254 5.11 7.72 15.67
br-06M-td0 3-0-0 -362005.00 686191 1 51 25 1060 530 0.22 1.73 2.42
br-06M-td0 3-1-0 -352443.00 -301188 0 33 16 840 464 0.14 1.41 1.87
br-06M-td0 3-0-1 -362005.00 1662244 2 47 13 880 436 0.20 1.31 1.81
br-06M-td0 3-1-1 -352443.00 3680521 4 31 15 520 282 0.08 0.81 1.12
br-06M-td0 BR -386860.00 -379880 0 101 - 1861 - - - 247.88

hh 1-0-0 6851842.00 6851850 5 187 21 16755 12032 27.74 587.64 639.90
hh 1-1-0 6851859.00 6851867 5 141 15 11910 9090 17.65 422.74 458.90
hh 1-0-1 6851842.00 6851850 5 171 19 15915 11629 22.73 517.76 564.61
hh 1-1-1 6851859.00 6851867 5 139 15 11640 8792 19.51 613.39 694.34
hh 2-0-0 6858829.00 6858843 5 167 21 16890 20070 42.30 549.17 617.44
hh 2-1-0 7860857.00 7860868 6 121 21 6630 6896 17.90 235.45 266.05
hh 2-0-1 6858829.00 6858843 5 167 21 16305 19558 43.97 569.96 639.66
hh 2-1-1 7860857.00 7860868 6 115 21 5880 6012 13.21 186.02 209.15
hh 3-0-0 11869075.00 10870068 9 23 11 1650 1594 1.06 45.22 48.64
hh 3-1-0 12871112.00 11872103 10 21 10 1080 1012 0.48 29.91 31.94
hh 3-0-1 11869075.00 13869078 10 21 10 1140 1223 0.60 29.90 32.29
hh 3-1-1 12871112.00 14871115 11 19 9 810 855 0.36 22.95 24.50

ll1-td1-B 1-0-0 36920146.00 37926295 17 21 10 952 1487 2.05 31.07 35.56
ll1-td1-B 1-1-0 36920146.00 37926294 17 17 8 992 1494 2.08 23.22 26.91
ll1-td1-B 1-0-1 36920146.00 44921229 18 25 12 792 1128 1.43 21.31 24.26
ll1-td1-B 1-1-1 36920146.00 48924236 19 27 13 888 1230 1.80 18.80 22.20
ll1-td1-B 2-0-0 33245315.00 35937179 15 65 32 2216 3688 33.05 86.91 128.25
ll1-td1-B 2-1-0 33245315.00 34937306 17 51 25 1856 3524 28.04 60.63 95.23
ll1-td1-B 2-0-1 33245315.00 40932305 17 39 19 1448 2962 21.55 65.10 94.11
ll1-td1-B 2-1-1 33245315.00 41932341 18 73 36 2104 3535 32.74 65.87 106.49
ll1-td1-B 3-0-0 38767254.00 39934260 16 17 8 856 1074 0.88 15.47 17.73
ll1-td1-B 3-1-0 38767255.33 39934260 16 21 10 816 1035 1.02 13.13 15.56
ll1-td1-B 3-0-1 38767254.00 48931257 19 19 9 552 825 0.53 8.86 10.31
ll1-td1-B 3-1-1 38767255.33 48932218 19 25 12 576 721 0.58 8.39 9.96

ll2-td4-C 0-0-0 940394.00 940400 1 341 22 15393 29336 204.53 103.45 333.50
ll2-td4-C 1-0-0 940394.00 940400 1 153 14 6279 8202 29.95 19.74 56.44
ll2-td4-C 1-1-0 940398.75 940400 1 27 7 938 1488 4.19 3.10 8.33
ll2-td4-C 1-0-1 940394.00 940400 1 153 14 6202 8114 29.61 19.24 55.40
ll2-td4-C 1-1-1 940398.75 940400 1 27 7 854 1331 3.88 2.83 7.72
ll2-td4-C 2-0-0 940412.00 4941459 2 3 1 203 582 0.31 0.79 1.26
ll2-td4-C 2-1-0 940415.00 4941423 2 3 1 203 553 0.23 0.70 1.09
ll2-td4-C 2-0-1 940412.00 4941459 2 3 1 203 582 0.31 0.79 1.25
ll2-td4-C 2-1-1 940415.00 4941423 2 3 1 203 553 0.25 0.67 1.09
ll2-td4-C 3-0-0 3949532.00 3949532 4 1 0 84 233 0.03 0.22 0.30
ll2-td4-C 3-1-0 25951558.00 25951558 8 1 0 56 152 0.01 0.14 0.21
ll2-td4-C 3-0-1 3949532.00 3949532 4 1 0 84 233 0.02 0.23 0.31
ll2-td4-C 3-1-1 25951558.00 25951558 8 1 0 56 152 0.02 0.15 0.22

Table A.5: Key statistics for selected test runs. Settings are written as CS-RA-ER.
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group having a single uncovered visit in the solutions with CS = 1. Focusing on
the all-preferred clustering scheme, it seems to be slightly better for the solution
quality to allow cluster expansion in every node of the branch-and-bound tree.

Lastly, it should be mentioned that we have also compared our solutions of
hh, ll1, ll2, and ll3 with the current practice. Current practice is based partly
on an automated heuristic and partly on manual planning. Unfortunately, it
is not straight forward to make a comparison. It is clearly indicated, though,
that we are able to enhance the service level. There is a significant decrease
in the number of uncovered visits and a truly dramatic decrease in the number
of necessary constraint adjustments. Constraint adjustments are another way
of dealing with an uncovered visit, so that it is possible to fit the visit into
the schedule anyway. Possible options are to: reduce the duration of the visit,
extend the time window of the visit or extend the work shift of one of the home
carers. This is done a lot in practice, and it makes comparison very difficult.
However, any of these adjustments will naturally decrease the overall quality
of the schedule. In the presented solution method, we have chosen to keep all
the original constraints intact, and let the constraint adjustment be a manual
post-processing task. This decision is supported by the fact that it is hard to
put a quantitative penalty on all possible adjustments before solving.

A.8 Conclusion and future work

Initiated by the method’s successful use in the VRPTW context, we have for-
mulated the Home Care Crew Scheduling Problem as a set partitioning problem
with side constraints and developed a branch-and-price solution algorithm. All
temporal dependencies are modelled as generalised precedence constraints, and
these constraints are enforced through the branching. To our knowledge, we are
the first to enforce generalised precedence constraints in the branching for real-
life problems. Based on the preference parameters, we have devised different
visit clustering schemes. The visit clustering schemes for the exact branch-
and-price framework are novel. We have compared the visit clustering schemes
in order to survey how much they decrease run times, and how much they
compromise optimality. The visit clustering schemes have been tested both on
real-life problem instances and on generated test instances inspired by realistic
settings. The tests have shown that by using clusters with only preferred visits,
run times were significantly decreased, while there was only a loss of quality
for few instances. The clustering schemes have allowed us to find solutions to
instances that could not be solved to optimality. Summarised, our main contri-
butions are: Development of visit clustering schemes for the Home Care Crew
Scheduling Problem, and enforcement of generalised precedence constraints in
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the branching for real-life problems.

We see a number of directions in which future work on this problem could go.
One direction is improvement of the algorithm presented in this paper. New visit
clustering schemes could be devised accompanied by cluster expansion schemes.
For the clustering scheme with a fixed cluster size, it could be interesting to
look into what determines a good cluster size for a given instance. It might be
possible to express the cluster size as a function of number of visits and number
of home carers.

Other very interesting and yet unexplored planning problems in home care are
long-term planning and disruption management. In the long-term planning
problem, the goal is to present a plan that spans e.g. half a year. The long-term
problem does not decide how the visits should be assigned to the specific home
carers, but only how to distribute the visits optimally on the weekdays and
possibly in time windows.

In a disruption management or recovery situation the original plan has become
infeasible due to unforeseen circumstances. Therefore, rescheduling of the home
carers for the remains of the planning period (most likely the rest of the day)
must take place. The goal of the rescheduling is to provide a new, feasible plan
very fast, i.e. within minutes, with as few alterations to the original plan as
possible. In many cases the disruption will only directly influence a smaller
subset of the home carers, and an approach could be inspired by what Rezanova
and Ryan (2010) do for train driver rescheduling.
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In this paper, we formulate the vehicle routing problem with time
windows and temporal dependencies. The problem is an extension
of the well studied vehicle routing problem with time windows. In
addition to the usual constraints, a scheduled time of one visit may
restrain the scheduling options of other visits. Special cases of tem-
poral dependencies are synchronization and precedence constraints.
Two compact formulations of the problem are introduced and the
Dantzig-Wolfe decompositions of these formulations are presented
to allow for a column-generation-based solution approach. Tempo-
ral dependencies are modeled by generalized precedence constraints.
Four different master problem formulations are proposed and it is
shown that the formulations can be ranked according to the tight-
ness with which they describe the solution space. A tailored time
window branching is used to enforce feasibility on the relaxed master
problems. Finally, a computational study is carried out to quantita-
tively reveal strengths and weaknesses of the proposed formulations.
It is concluded that, depending on the problem at hand, the best
performance is achieved either by relaxing the generalized prece-
dence constraints in the master problem, or by using a time-indexed
model, where generalized precedence constraints are added as cuts
when they become severely violated.
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B.1 Introduction

The vehicle routing problem with time windows and temporal dependencies
(VRPTWTD) is an extension of the vehicle routing problem with time windows
(VRPTW). Given is a fixed set of customers with individual demands and with
time windows specifying when each customer accepts service. The objective
is to find routes for a number of vehicles, all starting and ending at a central
depot in such a way that the total cost is minimized. The extension that we
present here is concerned with temporal dependencies between customers. A
temporal dependency which is often encountered in practical instances and that
has received the most attention in the literature, is the rather strict requirement
of synchronization between two visits. Synchronization on visits is also used
to model rendezvous between vehicles. Other, less restrictive, dependencies
are constraints on minimum overlap between visits and limits on minimum or
maximum gaps between visits.

In this paper, a context-free approach to VRPTWTD is presented for the first
time. We apply time window branching combined with time window reductions
to restore feasibility with respect to temporal dependencies. We prove that
the standardized modeling of temporal dependencies as generalized precedence
constraints does not affect the efficiency of the solution method. Along with a
direct formulation and a relaxed formulation, we introduce a time-indexed for-
mulation with an implicit representation of generalized precedence constraints.
We are able to rank the formulations theoretically, according to the tightness
with which they describe the solution space. For computational testing, we
introduce a fourth model, which is a hybrid of the relaxed formulation and
the time-indexed formulation. Finally, we introduce a new set of context-free
benchmark instances which enables a thorough quantitative analysis and which
we hope will facilitate future research in this area. The main contribution of
this paper is the formulation and comparison of models for VRPTWTD along
with a generic and efficient solution approach.

There is a vast amount of literature on VRPTW and its variants. VRPTW
is known to be NP-hard (Savelsbergh, 1985); nevertheless exact solution of the
problem has received a lot of attention. The most successful approach is based on
a Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960a) of the mathematical
model using column generation in a branch-and-cut-and-price framework. The
method was first proposed by Desrochers et al. (1992a). The most promising
recent work is based on solution of the subproblem as an elementary shortest
path problem with time windows and capacity constraints. Feillet et al. (2004)
were the first to apply this idea and were followed by Chabrier (2006), Danna
and Pape (2005), Jepsen et al. (2008), and Desaulniers et al. (2008) among
others. The approach that we present here for VRPTWTD builds on the same
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idea. See Kallehauge et al. (2005) for a recent review of the literature and a
thorough description of the technique.

The motivation behind this work is the many practical applications of
VRPTWTD. With the inclusion of temporal dependencies in the model, we
are able to describe numerous concrete problems. As Kilby et al. (2000) point
out, there is a need for more sophisticated models for the vehicle routing prob-
lem. They mention synchronization and precedence constraints as some of the
relevant extensions.

Ioachim et al. (1999) describe a fleet assignment and routing problem with syn-
chronization constraints. The problem is solved by column generation. A similar
problem with synchronization is described by Bélanger et al. (2006). Rousseau et
al. (2003) present the synchronized vehicle dispatching problem (SVDP), which
is a dynamic vehicle routing problem with synchronization between vehicles.
Constraint programming and local search are applied to arrive at high-quality
feasible solutions. Lim et al. (2004) and Li et al. (2005) study a problem from
the Port of Singapore, where technicians are allocated to service jobs. For each
job, a certain combination of technicians with individual skills is needed. The
technicians must be present at the same time, and hence the schedule for each
technician must respect a number of synchronization constraints with other
schedules. The problem is solved using metaheuristics. Another application
with synchronization between visits is in ground handling at airports. Teams
drive around at the airport and are assigned tasks on the parked aircraft. Dohn
et al. (2009b) describe this setup and present exact solutions to the instances
considered. Oron et al. (2008) consider ground handling with synchronization
constraints as well, and present computational results for a tailored heuristic
applied to data instances from an in-flight caterer in Malaysia. Bredström and
Rönnqvist (2007) present an application of vehicle routing with synchronization
constraints in home health care. A branch-and-price algorithm is applied to a
realistic home care routing problem and yields promising results.

The generalization of synchronization to other temporal dependencies has been
described for a few applications. Lesaint et al. (1998) present a workforce
scheduling software from a practical perspective. In the problem described,
both synchronization and various other sequencing constraints occur. Fügen-
schuh (2006) describes a problem in school bus routing. Busses must wait for
each other at various intermediate stops and hence precedence relations are in-
troduced for such stops. Fügenschuh refers to the problem as the vehicle routing
problem with coupled time windows. Doerner et al. (2008) describe an applica-
tion in blood collection from satellite locations for a central blood bank. Mul-
tiple visits at each location have to be scheduled with a certain slack between
them. They refer to the vehicle problem as having interdependent time win-
dows. Bredström and Rönnqvist (2008) modeled temporal dependencies for a
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home care routing problem in a mixed integer programming model (MIP) which
was solved with a standard MIP solver. In Justesen and Rasmussen (2008) and
Dohn et al. (2008c) a similar application is described and solved using branch-
and-price. Bredström and Rönnqvist (2008) have also continued their work in
this direction. An application with general temporal dependencies in machine
scheduling is described by Akker et al. (2006). Column generation is used to
solve the problem. The pricing problem is primarily solved heuristically by lo-
cal search and occasionally to optimality using a standard solver on an integer
programming formulation of the pricing problem. van den Akker et al. (2000)
and Bigras et al. (2008) describe machine scheduling problems and propose to
apply column generation approaches to time-indexed formulations. Hence, their
models have some similarities to the time-indexed formulation presented in this
paper.

The paper is organized as follows. In Section B.2, we present two valid compact
formulations of VRPTWTD. Possible decompositions of the compact formula-
tions are presented and compared in Section B.3. For the decomposed models, a
tailored branching method is required, which is described in Section B.4. A set
of test instances are introduced in Section B.5 and the test results for these are
found in Section B.6. Finally, we conclude on our findings and discuss possible
areas for future research in Section B.7.

B.2 Model

In the following, we present two valid model formulations for VRPTWTD,
namely a mixed-integer formulation that we refer to as the direct formulation
and a time-indexed formulation. The mixed-integer formulation is an extension
of the model commonly used for VRPTW, whereas a time-indexed model has
not received the same amount of attention.

In the traditional vehicle routing problem with time windows, the objective is
to find the cheapest set of routes to a set, C, of n customers. Given is a fleet of
identical vehicles, V, which are located at a central depot. Typically, the depot
is represented as two locations, namely a start depot, 0, and an end depot, n+1.
Together with all customers, they form the set, N . All vehicles have a capacity
of q. Each customer, i, has a demand, di, and a time window, where it accepts
service [αi, βi]. αi is the first possible service time. The vehicle is allowed to
arrive before this time, but must then wait at the customer for the time window
to open. βi is the latest possible time of initiation at customer i. [α0, β0] denotes
the scheduling horizon of the problem. Vehicles start at the depot at time α0

and must return to the end depot no later than β0. τij gives the travel time
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between any two customers, i and j. This may include service time at customer
i. Traveling between the two customers also incurs a certain cost given by cij .
We assume that q, di, αi, βi, and cij are non-negative integers and that τij are
positive integers, respecting the triangular inequality.

B.2.1 Direct formulation

The mathematical model of VRPTW is presented below. xijk are binary vari-
ables with xijk = 1, if vehicle k drives directly from customer i to customer j,
xijk = 0, otherwise. sik are continuous variables and are defined as the start
time for service at customer i, if the customer is serviced by vehicle k. Other-
wise, sik = 0. Without restricting the model, we can fix s0k = α0,∀k ∈ V and
sn+1,k = β0,∀k ∈ V.

min
∑
i∈N

∑
j∈N

∑
k∈V

cijxijk (B.1)

∑
j∈N :j 6=i

∑
k∈V

xijk = 1 ∀i ∈ C (B.2)

∑
i∈C

di
∑
j∈N

xijk ≤ q ∀k ∈ V (B.3)

∑
j∈N

x0jk = 1 ∀k ∈ V (B.4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C,∀k ∈ V (B.5)

∑
i∈N

xi,n+1,k = 1 ∀k ∈ V (B.6)

sik + τij −M(1− xijk) ≤ sjk ∀i, j ∈ N ,∀k ∈ V (B.7)

αi
∑
j∈N

xijk ≤ sik ≤ βi
∑
j∈N

xijk ∀i ∈ C,∀k ∈ V (B.8)

xijk ∈ {0, 1} ∀i, j ∈ N ,∀k ∈ V (B.9)

The objective is to minimize the total cost of all edges traveled (B.1). All
customers must be visited by exactly one vehicle (B.2) and the route for each
vehicle must respect the capacity of that vehicle (B.3). (B.4) and (B.6) ensure
that each route starts and ends at the depot. We also need to ensure that routes
are not segmented, i.e. if a vehicle arrives at a customer, it eventually leaves that
customer again (B.5). If a vehicle is set to travel between two customers, there
has to be enough time between the two visits (B.7). Finally, we need to make
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sure that all time windows are respected (B.8). (B.8) also ensure that sik = 0
when vehicle k does not visit customer i. (B.9) are the integrality constraints
on xijk.

In VRPTWTD, we furthermore have a number of temporal dependencies be-
tween customers. We are able to express all of these by generalized precedence
constraints. We introduce the parameter δij which specifies the minimum dif-
ference in time from customer i to customer j. The set ∆ defines all customer
pairs (i, j) for which a temporal dependency exists. The generalized precedence
constraints are formulated as follows, where

∑
k∈V

sik is the start time of service

at customer i. ∑
k∈V

sik + δij ≤
∑
k∈V

sjk ∀(i, j) ∈ ∆ (B.10)

Constraint (B.10) can be used to model all the temporal dependencies that were
observed in the literature review. There may be dependencies between several
customers, e.g. synchronization of three or more customers. Such dependencies
are modeled by applying the corresponding pair wise dependencies. In this
paper, we will focus on five kinds of temporal dependencies that are commonly
found in practice. These are visualized in Figure B.1.

i

j

)a( )b( )e()c( )d(

Figure B.1: Five kinds of temporal dependencies that are often encountered in prac-
tice. Each of the five subfigures shows the time windows of two customers i and j with
a temporal dependency between them. Assuming some start time for customer i, the
dashed line together with the arrows give the corresponding feasible part of the time
window of customer j. (a) synchronization, (b) overlap, (c) minimum difference, (d)
maximum difference, (e) minimum+maximum difference.

It is straight forward to model the temporal dependencies of Figure B.1 using
constraints (B.10). The correct values for δij and δji are listed in Table B.1.
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Temporal dependency δij δji
(a) Synchronization 0 0
(b) Overlap −durj −duri
(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table B.1: Parameter values for the five temporal dependencies of Figure B.1. duri
is the service time at customer i. diffmin and diffmax are, respectively, the minimum
and maximum differences required.

B.2.2 Time-indexed formulation

Time-indexed formulations have not received much attention in the column
generation context of VRPTW. A time-indexed formulation is usually disre-
garded because of its vast size. It is, however, popular in the formulation of
machine scheduling problems, as it gives a tight description of precedence con-
straints. Here, we present the time-indexed model of VRPTWTD, as it will
be used to strengthen the bounds in the branch-and-price algorithm. We in-
troduce the index t ∈ T on the x-variable, with T = {α0, . . . , β0}. xijkt is
defined as: xijkt = 1, if vehicle k services customer i at time t and then drives
directly to customer j. xijkt = 0, otherwise. Further, define the auxiliary sets
T τtij = {α0, . . . ,min{β0, t+ τij − 1}} and T δtij = {α0, . . . ,min{β0, t+ δij − 1}}.
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min
∑
i∈N

∑
j∈N

∑
k∈V

∑
t∈T

cijxijkt (B.11)

∑
j∈N :j 6=i

∑
k∈V

∑
t∈T

xijkt = 1 ∀i ∈ C (B.12)

∑
i∈C

di
∑
j∈N

∑
t∈T

xijkt ≤ q ∀k ∈ V (B.13)

∑
j∈N

∑
t∈T

x0jkt = 1 ∀k ∈ V (B.14)

∑
i∈N

∑
t∈T

xihkt −
∑
j∈N

∑
t∈T

xhjkt = 0 ∀h ∈ C,∀k ∈ V (B.15)

∑
i∈N

∑
t∈T

xi,n+1,kt = 1 ∀k ∈ V (B.16)∑
k∈V

∑
t′=t,...,β0

xijkt′ +
∑
h∈N

∑
k∈V

∑
t′∈T τtij

xjhkt′ ≤ 1 ∀i, j ∈ N ,∀t ∈ T (B.17)

∑
h∈N

∑
k∈V

∑
t′=t,...,β0

xihkt′ +
∑
h∈N

∑
k∈V

∑
t′∈T δtij

xjhkt′ ≤ 1
∀(i, j) ∈ ∆,
∀t ∈ T (B.18)

xijkt = 0
∀i ∈ C, j ∈ N ,∀k ∈ V,
∀t ∈ {α0, . . . , αi − 1}
∪{βi + 1, . . . , β0}

(B.19)

xijkt ∈ {0, 1}
∀i, j ∈ N ,∀k ∈ V,
∀t ∈ T (B.20)

Constraints (B.11)–(B.16) are similar to Constraints (B.1)–(B.6), where we now
sum over the time index as well. Constraints (B.17) provide the required travel
time between customers. If any vehicle goes directly from customer i to customer
j, and if customer i is scheduled at time t or later, then j cannot be scheduled
at time t+τij−1 or earlier. The strength of this model lies in the formulation of
generalized precedence constraints (B.18). Constraints (B.18) are the equivalent
of Constraints (B.10) of the former model. Similarly to the former constraints,
these constraints state that if customer i is scheduled anywhere from time t
and onward, then customer j is not scheduled before time t+ δij . This is valid
for all t ∈ T . Constraints (B.19) enforce the time windows and (B.20) are the
integrality constraints.
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B.3 Decomposition

As described earlier, Dantzig-Wolfe decomposition has been very successful in
exact optimization of VRPTW. The decomposition splits the problem into a
set-partitioning master problem and a resource constrained shortest path sub-
problem. See e.g. Kallehauge et al. (2005) for a thorough exposition. In the tra-
ditional VRPTW formulation, Constraints (B.2) are the only constraints that
link the vehicles. Without these, we can solve the problem separately for each
vehicle. Hence, the problem is split into a subproblem, where feasible routes are
generated and a master problem, where these routes are combined.

B.3.1 Master problem

We propose four applicable formulations of the master problem and rank them
according to the tightness with which they describe the solution space.

Direct formulation

The introduced generalized precedence constraints apply to routes from separate
vehicles, and hence these will be part of the new master problem. In the full
master problem, we have the set of all feasible routes, R. Each route has a cost
of cr and is defined by the customers visited and the time of each such visit,
described by two parameters, ari and sri . For each route, r, and each customer,
i, if customer i is in the route r, we set ari = 1 and set sri equal to the time of
that visit. If the customer is not in the route, ari = 0 and sri = 0. In column
generation, the variables of the master problem are generated iteratively and
the set of variables available in a specific iteration is denoted R′ . Decision
variables for the master problem are denoted λr, with λr = 1, if route r is used,
and λr = 0, otherwise. The LP-relaxation of the master problem defined by
a subset of the decision variables, R′ , is denoted the restricted master problem
and is formulated below. The master problem is obtained by decomposing the
compact direct formulation (B.1)-(B.10).
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min
∑
r∈R′

crλr (B.21)

∑
r∈R′

ariλr = 1 ∀i ∈ C (B.22)

∑
r∈R′

sriλr + δij ≤
∑
r∈R′

srjλr ∀(i, j) ∈ ∆ (B.23)

λr ≥ 0 ∀r ∈ R
′

(B.24)

The corresponding subproblem is that of generating negative reduced cost routes
for the master problem (B.21)–(B.24). In this context, we refer to the model
as the direct formulation. The main disadvantage of the model is that it intro-
duces linear time costs in the subproblem, namely the dual variables of Con-
straints (B.23). Hence, the subproblem is a resource constrained shortest path
problem with linear node costs. Another issue is that sri is a non-binary param-
eter, and the introduction of non-binary parameters in the master problem is
usually a feature that leads to highly fractional solutions.

Time-indexed formulation

In the time-indexed formulation, the master problem contains only binary pa-
rameters. Constraints (B.12) and (B.18) link the vehicles and must therefore
remain in the master problem. The parameters of the time-indexed master
problem are defined as arit = 1 if customer i is scheduled at time t in route r,
and arit = 0 otherwise. The decision variable λr has the same definition as in the
previous model. The relation to the decision variables of model (B.11)-(B.20)
is:

∑
j∈N

∑
k∈V

xijkt =
∑
r∈R′

aritλr,∀i ∈ C,∀t ∈ T . The restricted master problem of

the time-indexed formulation is:

min
∑
r∈R′

crλr (B.25)

∑
r∈R′

∑
t′∈T

ar
it′
λr = 1 ∀i ∈ C (B.26)

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′∈T δtij

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆,∀t ∈ T (B.27)

λr ≥ 0 ∀r ∈ R
′

(B.28)
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The obvious problem with the time-indexed restricted master problem (B.25)–
(B.28) is the number of constraints of type (B.27). The scheduling horizon
is usually large enough to make this model intractable in realistic problems.
The subproblem is a resource constrained shortest path problem with time-
dependent costs. The costs may be different for each time step. This is very
unlikely, however. Most of the constraints of type (B.27) will be non-binding
and this leaves the corresponding dual variables equal to 0. For the same reason,
we may choose to introduce them, only when they become violated.

Relaxed formulation

A third way of approaching the problem is to simply disregard the temporal de-
pendencies in the master problem. The dependencies must then be enforced by
the branching scheme. This approach is used for synchronization by Dohn et al.
(2009b) and Bredström and Rönnqvist (2007) and for generalized precedence
constraints by Justesen and Rasmussen (2008). It leaves the following master
problem, which is identical to the master problem of the VRPTW decomposi-
tion. Here, we refer to it as the relaxed formulation.

min
∑
r∈R′

crλr (B.29)

∑
r∈R′

ariλr = 1 ∀i ∈ C (B.30)

λr ≥ 0 ∀r ∈ R
′

(B.31)

Limited time-indexed formulation

In the time-indexed formulation (B.25)-(B.28), it is possible to include only a
subset of Constraints (B.27) and this idea is implemented in a limited version of
the time-indexed formulation. The formulation can be seen as a hybrid of the
time-indexed formulation and the relaxed formulation. Obviously, all general-
ized precedence constraints must be respected in a feasible solution. Therefore,
if a violation occurs for a generalized precedence constraint, which is not in the
subset of included constraints, the constraint is instead enforced by branching,
like in the relaxed formulation.

In our case, we have chosen to define the subset of generalized precedence con-
straints dynamically. More specifically, we only add cuts if they are maximally
violated, i.e. if the left hand side of constraint (B.27) is equal to 2. When a
cut has been added it stays in the model. Smaller violations are handled by
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the branching scheme. How to identify violated constraints is described in more
detail in Section B.3.2.

Strength of the formulations

The relaxed formulation is obviously a relaxation of both the direct formulation,
the full time-indexed formulation, and the limited time-indexed formulation. An
interesting result is that the direct formulation is also a relaxation of the time-
indexed formulation, and we are hence able to rank the models according to
their strength.

Proposition B.1 [The time-indexed master problem formulation is a stronger
formulation than the direct master problem formulation.]

Proof. In the following, we assume that we have a solution to (B.25)–(B.28)
and prove that the solution is also feasible for Constraints (B.21)–(B.24). For
all problems with a feasible solution, it holds that α0 + δij − 1 ≤ β0,∀(i, j) ∈ ∆
and hence a special case of (B.27) with t = α0 is:∑
r∈R′

∑
t′=α0,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,α0+δij−1

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆ (B.32)

Using (B.26) this entails the rather obvious:∑
r∈R′

∑
t′=α0,...,α0+δij−1

ar
jt′
λr = 0 ∀(i, j) ∈ ∆ (B.33)

⇓∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 0

∀(i, j) ∈ ∆,
t = α0, . . . , α0 + δij − 2

(B.34)

⇓∑
r∈R′

∑
t′∈T

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 1

∀(i, j) ∈ ∆,
t = α0, . . . , α0 + δij − 2

(B.35)

Summing Constraints (B.26), (B.35), and (B.27) over t, we get the following for
(i, j) ∈ ∆:
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∑
r∈R′

∑
t′∈T

ar
it′
λr = 1

For t = α0, . . . , α0 + δij − 2 :∑
r∈R′

∑
t′∈T

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 1

For t = α0, . . . , β0 :∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,min{β0,t+δij−1}

ar
jt′
λr ≤ 1

∑
r∈R′

∑
t′∈T

(t
′
− α0 + 1 + δij)a

r
it′
λr +

∑
r∈R′

∑
t′∈T

(β0 + δij − t
′
)ar
jt′
λr

≤ β0 − α0 + δij + 1

Therefore, for any feasible solution of (B.25)–(B.28), we have for (i, j) ∈ ∆:

0 ≤ β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

(t
′
− α0 + 1 + δij)a

r
it′
λr

−
∑
r∈R′

∑
t′∈T

(β0 + δij − t
′
)ar
jt′
λr (B.36)

=β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

t
′
aritλr − (−α0 + 1 + δij)

∑
r∈R′

∑
t′∈T

ar
it′
λr

− (β0 + δij)
∑
r∈R′

∑
t′∈T

ar
jt′
λr +

∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr (B.37)

=β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

t
′
ar
it′
λr + α0 − 1− δij

− β0 − δij +
∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr (B.38)

=
∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr −

∑
r∈R′

∑
t′∈T

t
′
ar
it′
λr − δij (B.39)

=
∑
r∈R′

srjλr −
∑
r∈R′

sriλr − δij (B.40)

The result in (B.38) is based on (B.26). The final result in (B.40) comes from
the following relation between the parameters of the models (B.21)–(B.24) and
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(B.25)–(B.28): sri =
∑
t∈T

tarit. The result in (B.40) proves that any feasible

solution of (B.25)–(B.28) also respects (B.23). (B.22) is trivially respected as
ari =

∑
t′∈T

ar
it′

, and hence (B.21)–(B.24) is a relaxation of (B.25)–(B.28).

To illustrate that the two formulations are not equally strong, we consider the
following small example. Take two customers i = 1 and j = 2 with δ12 = 2.
Three simple routes cover these two customers with a1

1 = 1, a2
2 = 1, a3

2 = 1 and
s1

1 = 1, s2
2 = 2, s3

2 = 4 for model (B.21)–(B.24). In model (B.25)–(B.28) this
corresponds to a1

11 = 1, a2
22 = 1, a3

24 = 1. A solution with λ1 = 1, λ2 = 0.5, λ3 =
0.5 is feasible in (B.21)–(B.24) but not in (B.25)–(B.28). This is verified by
inspecting (B.23) for i = 1, j = 2:∑

r∈R′
sr1λr + δ12 ≤

∑
r∈R′

sr2λr ⇒ 1 + 2 ≤ 3

and (B.27) for i = 1, j = 2, t = 1:∑
r∈R′

(ar11λr + ar12λr + ar13λr + ar14λr) +
∑
r∈R′

(ar21λr + ar22λr) = 1 + 0.5 � 1

Using the above result, we can conclude that the full time-indexed formulation
is a stronger formulation than the direct formulation. The direct formulation in
turn is stronger than the relaxed formulation. In the same way, we also know
that the full time-indexed formulation is a stronger formulation than the limited
time-indexed formulation, which is stronger than the relaxed formulation. It
is not possible to rank the direct formulation and the limited time-indexed
formulation.

A nice property of the time-indexed model is that it has only been relaxed with
respect to integrality and this means that if we can restore integrality, we have
a feasible solution. In this paper, we will only consider branching to restore
integrality, and hence the advantage may not seem immediate. For VRPTW, a
significant amount of work has been done on cut generation to remove fractional
solutions. Such cuts could be added to the time-indexed model of VRPTWTD
as well, and this may restore integrality without the need of branching. See e.g.
the work of Kohl et al. (1999), Cook and Rich (2001), Lysgaard et al. (2004),
and Jepsen et al. (2008) for more on the subject.
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B.3.2 Identifying violated cuts

As described earlier, the generalized precedence constraints (B.27) of the time-
indexed master problem (B.25)–(B.28) are only represented implicitly. The con-
straints are added as cuts, as they become violated. The constraint is repeated
below.

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′∈T δtij

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆,∀t ∈ T (B.27)

In theory, we have to check for violations for all t ∈ T , but actually it is possi-
ble to do with significantly less. As arit is a binary parameter and λr ≥ 0, the
sum

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr is non-increasing for increasing t. Correspond-

ingly, the sum
∑
r∈R′

∑
t′=α0,...,min{β0,t+δij−1} a

r
jt′
λr is non-decreasing. Con-

straints (B.27) are never violated for t = α0 as such violations are prevented
by preprocessing the time windows, see Section B.4.1. Therefore, for customer
i, we only need to check for violations with any t where ∃r ∈ R′ : aritλr > 0,
i.e. any point in time where customer i is scheduled (possibly with a fractional
value). It is easy to generate a list of all t where ∃r ∈ R′ : aritλr > 0, by running
through the routes of all variables with positive values and registering the time
of service for each customer. By separating cuts as described, we are not adding
all violated cuts, but we are sure to add at least one cut for each customer, if
any cuts are violated for that customer.

B.3.3 Subproblem

The subproblem of the Dantzig-Wolfe decomposition of VRPTW can be solved
as an elementary shortest path problem with time windows and capacity con-
straints (ESPPTWCC). Any feasible solution of the subproblem with negative
cost represents a column with negative reduced cost in the master problem and
may therefore enter the basis. The subproblem consists of Constraints (B.3)–
(B.9). The variables are defined as in the compact formulation, but now for
the single vehicle under consideration, i.e. the index k has been removed. The
objective function of the subproblem becomes:

min
∑
i∈N

∑
j∈N

(cij − πi)xij (B.41)
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πi, i ∈ N , are the dual variables of Constraints (B.30) of the VRPTW master
problem. Dror (1994a) proves that ESPPTW is NP-hard in the strong sense
and hence no pseudo-polynomial algorithms are likely to exist. The subproblem
is usually solved with a dynamic label setting algorithm. Desrochers et al.
(1992a) presented a dynamic algorithm for the non-elementary version of the
subproblem. This algorithm was adjusted to handle the elementary problem
by Feillet et al. (2004) and superior results based on this method have been
presented recently, see e.g. Desaulniers et al. (2008). The idea in the label setting
algorithm is to represent partial paths by labels. Given a label for some partial
path, it is possible to expand the path by creating new labels in nodes that can
possibly extend the current partial path. The length of the path is increased by
one, and the process continues iteratively.

The subproblem of the direct formulation must consider the dual variables of
Constraints (B.22), πi, and additionally the dual variables of Constraints (B.23),
σij , and the objective function becomes:

min
∑
i∈N

∑
j∈N

(cij − πi)xij −
∑

(i,j)∈∆

σijsi +
∑

(j,i)∈∆

σjisi (B.42)

As described previously, the subproblem is now a resource constrained shortest
path problem with linear node costs, which makes it much harder to solve.
Ioachim et al. (1998) describe a dynamic algorithm to solve the acyclic version of
this problem. A similar cyclic problem is solved as a subproblem by Christiansen
and Nygreen (2005).

The subproblem of the time-indexed formulation has the following objective
function which we split in three parts for easy reference:

min
∑
i∈N

∑
j∈N

(cij − πi)
∑
t∈T

xijt (B.43a)

−
∑

(i,j)∈∆

∑
t∈T

∑
t′=α0,...,t

ρijt′xijt (B.43b)

−
∑

(j,i)∈∆

∑
t∈T

∑
t′=max{α0,t−δji+1},...,β0

ρjit′xijt (B.43c)

where πi are the dual variables of Constraints (B.26) and ρijt are the non-
positive dual variables of Constraints (B.27). In the worst case, this objective
function introduces a distinct cost for each time step. In a label setting algorithm
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this means that we have to create a label for each time step and hence the
number of labels explodes immediately. In practice, only a few constraints of
type (B.27) are binding and therefore only few ρijt have non-zero values.

The idea in the basic label setting algorithm is to create and keep only labels
that are not dominated by better labels. With the objective function (B.43), we
have a lot of potential labels. It is, however, only an advantage to postpone a
visit, if it can possibly decrease the objective value. As ρijt ≤ 0 and xijt ∈ {0, 1},
adjusting time for a certain visit can only decrease the objective, if it removes
terms in (B.43b) or (B.43c). (B.43a) is neutral to service time of customers, i.e.
for a given transition (i, j) the contribution to the objective function coefficient
of xijt is the same for all t ∈ T . The smallest contribution from (B.43b) is
obtained by the smallest possible value of t as

∑
t′=α0,...,t

ρijt′ is non-increasing

over t for given i, j. Therefore, for customer i, we need a label for the earliest
possible time t0. Only the value of (B.43c) will decrease as t is increased (for
given i, j) and only when terms with ρjit′ < 0 are excluded. The value of (B.43c)
for t is lower than the corresponding sum for t− 1 when ρji(t−δji) < 0, i.e.:

ρji(t−δji) < 0⇒
∑

t′=max{α0,t−δji},...,β0

ρjit′ <
∑

t′=max{α0,t−δji+1},...,β0

ρjit′

The full objective function possibly decreases for such t and hence we need one
label for each t ∈ {t0 + 1, . . . , βi}, where ∃(j, i) ∈ ∆ : ρji(t−δji) < 0. For all
other potential labels, there will always be a label earlier in time with the same
or less cost.

A small improvement, that we found to have a significant effect, is to include
knowledge of mutually exclusive customers. Some temporal dependencies like
e.g. synchronization and overlap make it impossible to include both customers
in the same route. In these methods, such a restriction is imposed in the mas-
ter problem or in the branching scheme. Hence, routes could be generated that
would never occur in a feasible solution. By excluding the occurrence of mutually
exclusive customers in all routes generated in the subproblem, the LP-bounds
get stronger and as a consequence the algorithm is more efficient. The domi-
nance scheme in the subproblem solver is also modified to utilize this knowledge.
By visiting one of two mutually exclusive customers, the other becomes unreach-
able. Hence by updating the set of unreachable customers appropriately, two
labels which have visited two different mutually exclusive costumers can still be
compared in the dominance check, as their possible extensions are identical.
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B.4 Branching

The master problem models presented in the previous section are relaxations.
Therefore, we may need to apply branch and bound in order to get to a feasible
solution. The λ-variables of the master problems were introduced as binary
variables, but the integer property has been relaxed to allow solution by an LP-
solver. Therefore, integrality needs to be restored by branching. A lot of work
has already been done for VRPTW in this respect. See e.g. Kallehauge et al.
(2005) for a review. In the relaxed formulation, the generalized precedence con-
straints have also been relaxed. Therefore, in this model, we need a branching
method that will also restore feasibility with respect to temporal dependencies.

Gélinas et al. (1995) proposed to branch on time variables in order to arrive
at integer-feasible solutions. This type of branching was also used to enforce
synchronization by Ioachim et al. (1999), Dohn et al. (2009b), and Bredström
and Rönnqvist (2007), and for general temporal dependencies by Justesen and
Rasmussen (2008). Time window branching is not complete with respect to
integer feasibility and hence has to be complemented by another branching
scheme, e.g. traditional flow variable branching.

B.4.1 Time window reduction

Before describing the actual branching scheme, we introduce a simple reduction
technique based on the generalized precedence constraints. For any two cus-
tomers, i and j with (i, j) ∈ ∆, it is possible to reduce the time windows as
follows:

Customer i Customer j
Old time windows [αi, βi] [αj , βj ]
New time windows [αi,min{βi, βj − δij}] [max{αj , αi + δij}, βj ]

These reductions are illustrated in Figure B.2. The reductions are used to
preprocess the time windows and may also be used anywhere in the branching
tree. This technique is essential when applying time window branching.
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i

j

)b( )c( )d()a(

Figure B.2: Time window reductions. (a) The original time windows. (b) Using
the generalized precedence constraint, the first part of the time window of customer j
is removed. (c) In a similar way, the last part of the time window of customer i is
removed. (d) The time windows after the reduction.

B.4.2 Time window branching

In a feasible solution of VRPTWTD, all visits are scheduled at exactly one
point in time and all generalized precedence constraints are respected. In the
relaxed formulation, a solution may be integer feasible, but could still violate
precedence constraints. In the direct formulation and the time-indexed formu-
lation, an integer feasible solution will also respect precedence constraints. As
for VRPTW, we may still use time window branching to get integral solutions.
In the following, we use the relaxed formulation as a basis for introducing time
window branching, but it transfers easily to the other models.

: route in  Customer 1rj

: route in  Customer 2ri

:branch Left :branch Right

i

j

i

j

i

j

time split

i

j

i

j

reductionwindowtime

Figure B.3: Branching to avoid a violation of a precedence constraint.
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Figure B.3 shows a violation of the precedence constraint between customers
j and i, in routes r1 and r2. By branching on the time window of customer
i and using the time window reduction rule of Section B.4.1 for (j, i), r1 and
r2 are prohibited in the left and right branch, respectively. Note that there is
no overlap between the time window of customer i in the left branch and the
corresponding time window in the right branch.

Later, we describe a strategy to wisely select the point in time, ts, where the
time window is split. If si + 1 ≤ ts ≤ sj + δji, the current solution will be
excluded from the solution space by using the reduction rule for (j, i). The
modified time windows of customer i become: [αi, t

s− 1] in the left branch and
[ts, βi] in the right branch.

The tightest formulation is reached if time windows are reduced as much as
possible. Therefore in both branches, we run through all relevant precedence
constraints with the new time window of customer i and reduce time windows
where possible. This may also reduce the time windows of other customers than
i and j, and this process is repeated iteratively, until no further reduction is
possible.

An interesting result is that this branching strategy is as strong as the one for-
merly proposed specifically for synchronization, by e.g. Ioachim et al. (1999).
In the less general context, the time windows of two synchronized customers
are, naturally, always identical. Branching is done on the two time windows
simultaneously, so they always stay identical. Synchronization modeled by two
generalized precedence constraints, also has this property when time window
reductions are applied. Assume that we have a synchronization constraint be-
tween customers i and j, i.e. δij = 0 and δji = 0 and hence αj = αi ∧ βj = βi.
For a given split time ts for customer i, the time windows become:

Customer i Customer j
Old time windows [αi, βi] [αi, βi]
TW (left branch) [αi, t

s − 1] [αi,min{βi, ts − 1− δji}] = [αi, t
s − 1]

TW (right branch) [ts, βi] [max{αi, ts + δij}, βi] = [ts, βi]

This is illustrated in Figure B.4. The time windows of i and j are identical in
each of the branches after applying time window reduction.

Usually, there are several branching candidates to choose from and we need a
strategy to choose one of these. Gélinas et al. (1995) elaborate further on this
subject. When using strong branching (see e.g. Achterberg et al. (2005a)) a few
candidates are chosen for further probing. In any case, we need to specify a
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: route in  Customer 1rj

: route in  Customer 2ri

:branch Left :branch Right

i
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Figure B.4: Branching on a generalized precedence constraint of a synchronization
constraint.

priority ordering of candidates. First, we need to find the potential branching
candidates. In theory, we could branch on any time window and split it at
an arbitrary position. In practice, however, we limit this choice. We do not
want to consider candidates where the branching is without effect in one of
the branches, i.e. where one of the branches does not prohibit any columns of
the current solution. Also, many of the remaining candidates have an identical
effect on the current solution. They may still have a different effect on new
columns, but it is very hard to predict this impact. Figure B.5 (a) depicts
some of the potential branching candidates in the time window of customer i.
Customer i is a part of two routes that have been included in the solution with
fractional values and hence it appears at multiple positions within its own time
window. In this example we assume that the routes r2 and r3 are both in the
solution with a value of 0.5 and r1 and r4 with a value of 1. The effect on the
current solution of each candidate is shown in Table B.2. Candidates 1 and 6
are examples of ineffective candidates. Candidates 2 and 3 have an identical
effect on the current solution.

In our approach, when choosing between candidates with an identical immediate
effect, it is optimal to select the candidate which splits at the latest possible time.
For customer i, that split time coincides with either sri or with srj + δji for a
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Figure B.5: Some potential branching candidates in the time window of customer i.

Infeasible routes Sum of excluded variables
Left branch Right branch Left branch Right branch Preference

Candidate 1 r1, r2, r3 2 0 0
Candidate 2 r1, r3 r2 1.5 0.5 0.5
Candidate 3 r1, r3 r2 1.5 0.5 0.5
Candidate 4 r1, r3 r2, r4 1.5 1.5 1.5
Candidate 5 r1 r2, r3, r4 1 2 1
Candidate 6 r2, r3, r4 0 2 0

Table B.2: Effect of the branching candidates of Figure B.5.

route r, which is in the current basis of the master problem.

In Figure B.5 (a), we prefer candidate 3 to candidate 2 as there is less chance
that r2 can be adapted to the new time window of the right branch. We prefer
candidate 4 to candidate 3 as it excludes the same or more in both branches.
Figure B.5 (b) shows the three candidates that we would actually consider for
the time window of customer i. The candidates 1′, 4′, and 5′ get the same
values as 1, 4, and 5, respectively, in Table B.2. Remember that these are just
the candidates of customer i. There will be similar candidates for each of the
other customers. We find the candidates for customer i by running through all
routes that are included in the solution with a positive value. If customer i is in
the route, the start time of the customer is a candidate (ts = si). If the route
includes a customer j, where (j, i) ∈ ∆ the route contributes with a candidate
for customer i with split time ts = sj + δji.

The preference of late split times is due to the following algorithmic considera-
tions: The label setting algorithm, which is used to generate routes, schedules
visits at the earliest possible time in any route. Hence, it is impossible to sched-
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ule the visit earlier without rerouting. In the left branch, the service time of a
customer will be forced to decrease by at least one time unit and hence rerouting
is required. In the right branch, the current conflict is resolved, as the start of
the new time window is equal to sri or srj + δji which generated the branching
candidate in the first place.

In this paper, the problems are solved to optimality, which means that every
node in the branch-and-bound tree must be either explored or pruned. Hence,
we aim for a small, but at the same time, balanced tree. To achieve this, we
rank the branching candidates according to the corresponding sums of excluded
variables in the two branches. A candidate gets the value of the minimum of the
two sums, and hence only the worst of the branches counts. A large value of a
candidate is equal to a high preference. Hence, we prefer branching candidates
which exclude as much as possible in the least effective branch. In the example,
candidate 4 is preferred, as it excludes 1.5 routes in each branch, giving it a
preference ranking of 1.5.

If the aim is to get high-quality solutions, but not necessarily optimal solutions,
in a short time, it may be better to choose branching candidates where one of
the branches is more promising than the other. This may then be utilized in
a heuristic search of the branch-and-bound tree. This idea has been used in
several other contexts, see e.g. Ryan (1992a).

B.5 Benchmark instances

A set of benchmark instances has been used in the following quantitative anal-
ysis of the problem and in a comparison of the different models. The instances
are extensions of the 56 well known VRPTW-instances of Solomon (1987a).
Solomon’s VRPTW-instances have been used extensively in existing literature
and new solution algorithms for VRPTW are often tested on these to indicate
algorithm performance. The data sets are well suited for the tests, as they
represent a wide range of problems with varying structure. The locations of
customers are in some instances uniformly distributed over whole area. In oth-
ers, customers are located in clusters. The time windows of customers are also
varied to test both very tight and very loose time window constraints. The data
sets consist of a number of customers with a geographical location, a time win-
dow, service time, and a demand along with the number of available vehicles,
their capacity, and the scheduling horizon. The instances are publicly available.
We take the original instances and introduce temporal dependencies of various
types to these instances. We have chosen to look at the instances with 25 and
50 customers, as these are small enough to allow quick solution of the basic
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problem. Some of them still prove hard to solve as temporal dependencies are
introduced. A thorough analysis is carried out on the instances with 25 cus-
tomers, as most of these can be solved within one hour. Tests on instances with
50 customers are also included, to assess how the findings for 25 customers scale
to larger instances.

Five sets of instances were made: one for each of the five temporal dependencies
of Figure B.1, except maximum difference, and one set with a random com-
bination of the other four (Random Combination). The reason for omitting
maximum difference is its similarity to minimum difference. When we generate
instances randomly, the two types are actually identical. For all instances, a
list of temporal dependencies is created for each of the five types. All random
values are drawn from uniform distributions, and the list is generated randomly
in the following way:

1. Determine the type of the next temporal dependency to be added (For
Random Combination this choice is random, and for all other types it is
fixed).

2. Choose, at random, two visits, i and j, which are not already directly or
indirectly interdependent. Visits are indirectly interdependent if there is
a chain of dependencies from one to the other, e.g. if they both have a
dependency on a certain visit, but not directly on each other. We require
independency between the visits to avoid infeasible cycles of dependencies.

3. Check if it is possible to impose a temporal dependency between i and j. If
not possible, go to 2. If it is impossible to add more temporal dependencies
of this type, go to 1. If it is impossible to add more temporal dependencies
altogether, exit.

4. Draw random values for the temporal dependency. diffmin and diffmax are
random numbers drawn from all values that do not make the problem
infeasible and that impose a constraint which is more strict than that
already given by the time windows. For Synchronization and Overlap all
values are fixed.

5. Set values of δij and δji according to Table B.1.

6. Reduce time windows as explained in Section B.4.1. This is necessary to
ensure that all instances are feasible.

7. Go to 1.

As we do not allow cycles of dependencies, it is not possible to add more than
n − 1 temporal dependencies, where n is the number of customers. In some
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cases, the number may be smaller than this. E.g. for the very strict synchro-
nization constraint, it is obviously not possible to impose n−1 synchronizations,
corresponding to a synchronization of all visits, if some of the visits have non-
overlapping time windows. This results in fewer test instances for some instances
sets.

The addition of temporal dependencies to the instance set leads to a very large
number of new test instances. For every one of the original instances we have
five sets of dependencies and for each of these sets we can choose to use from 0
to n − 1 dependencies. Hence for instances with 25 customers, we are able to
run 125 tests for each of the original instances (except for a few cases, where
it was not possible to generate n − 1 dependencies). This totals to 7000 tests
and gives a good statistical foundation for the test results presented in the next
section. The data files containing the parameters for the randomly generated
temporal dependencies are available from the authors on request. We have also
generated similar files for instances of size 50 and 100.

B.6 Test results

The intention of this section is to give a general overview of the complexity of
vehicle routing problems with temporal dependencies. The tests are summarized
in graphs that capture the trends we see in the tests overall.

The algorithms are implemented in the branch-and-cut-and-price framework
of COIN-OR (Lougee-Heimer, 2003; Coin, 2006). The tests have been run on
2.2 GHz AMD processors with 2 GB RAM. Based on preliminary tests, the
algorithm is set to do strong branching with three candidates and add up to
five variables with negative reduced cost per iteration. For as long as possi-
ble, columns are generated by a heuristic version of the label setting algorithm
similar to the one proposed by Chabrier (2006).

The direct formulation is expected to lead to highly fractional solutions, as gen-
eralized precedence constraints can be respected by linearly combining routes,
where a particular customer has varying start times. Furthermore, the sub-
problem is a resource constrained shortest path problem with linear node costs,
which is significantly harder to solve, than the other subproblems presented.
To our knowledge, no exact solution methods for this problem exist in the lit-
erature. The method of Ioachim et al. (1998) could probably be adapted to
the cyclic case, but the efficiency is questionable. Therefore, the computational
experiments of this paper do not include the direct formulation.
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Time-indexed Time-indexed Relaxed
formulation formulation formulation
(all cuts) (limited)

Solved Solved Solved Solved Solved Solved
Instances in the before in the before in the before
in total root timeout root timeout root timeout

Synchronization 1148 483 1027 448 1141 138 1143
Overlap 1324 351 1058 322 1207 127 1240
Minimum difference 1400 741 1350 703 1377 226 1381
Min+max difference 1400 531 1226 465 1361 105 1384
Random mix 1400 506 1271 459 1382 155 1383

Table B.3: Overview of the test results for instances with 25 customers. Time out is
one hour.

To give an idea of the overall performance of the remaining three approaches,
the test results are summarized in Table B.3. As described in Section B.5, five
sets of instances were generated, and the table shows a clear tendency for all five
types. The full time-indexed formulation solves the largest number of instances
in the root node, as expected. The instances solved in the root node by the
relaxed formulation are a subset of those solved in the root node by the limited
time-indexed model which again is a subset of those of the full time-indexed
formulation. The numbers in the table illustrate this relationship. When looking
at the number of instances solved before timeout, the tendency is reversed. The
relaxed formulation is capable of solving the largest number of instances for all
five types. However, the performance of the limited time-indexed model is in
all cases almost as good as that of the relaxed model. Interestingly, the Overlap
instances seem harder to solve than the other types.

Table B.4 summarizes the results for the 50 customer instances. Incrementing
the number of temporal dependencies with one between each test, would result
in 14000 tests, as the temporal dependency generation scheme can generate 49
dependencies for each of the 5 types for all 56 original instances. To limit the
extend of the test, we have chosen to test only for 5, 15, 25, 35, and 45 temporal
dependencies. This limits the maximum number of tests to 1400 in total. As
can be observed from Table B.4, the results are similar to those of Table B.3.
In all cases, a smaller ratio of the instances can be solved within an hour and
a significant drop, in the number of instances solved in the root, is observed,
compared to the instances with 25 customers. Interestingly, the limited time-
indexed model now performs slightly better than the relaxed model.

In the remainder of this section, we have chosen to focus on two of the 25 cus-
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Time-indexed Time-indexed Relaxed
formulation formulation formulation
(all cuts) (limited)

Solved Solved Solved Solved Solved Solved
Instances in the before in the before in the before
in total root timeout root timeout root timeout

Synchronization 242 56 158 45 201 5 196
Overlap 276 24 121 23 156 2 150
Minimum difference 280 66 196 58 205 7 202
Min+max difference 280 50 108 44 135 3 134
Random mix 280 33 140 28 189 1 183

Table B.4: Overview of the test results for instances with 50 customers. Time out is
one hour.

tomer instance sets, namely instances with only synchronization relations and
a set with a random mix of the five temporal dependencies of Table B.1. These
two sets have been chosen as the first represents a large group of practical ap-
plications and the latter does not hold any particular structure. The statements
made in the following are in full accordance with the other instance sets.

The root node lower bound sometimes coincides with the value of the optimal
solution. In such cases, we often find the optimal solution at the root node.
As this results in low computation times, it is interesting to see how often it
happens.
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Figure B.6: Number of instances solved at the root node of the branch-and-bound
tree.

In Figure B.6 the total number of instances solved at the root node is given,
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summarized over all 56 instances. We clearly observe the strength of the time-
indexed formulation. There is a significant increase in the number of instances
solved at the root node compared to the relaxed formulation. Interestingly,
there is not much difference from the full formulation to the limited version. In
the relaxed formulation, if a problem can be solved at the root node, it means
that all temporal dependencies were respected by chance, and hence they would
not have been very constraining. Figure B.7 gives the number of nodes in the
branch-and-bound tree (the mean over all instances) and the conclusions are the
same as for Figure B.6. As we would expect for the relaxed formulation, we see
that the number of nodes increases with the number of temporal dependencies.
This does not seem to be the case for the time-indexed formulation.
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Figure B.7: Number of nodes in the branch-and-bound tree.

Another interesting aspect is the solution time. We examine the solution time
for each of the instances individually and we also consider the general trend.
The variation on solution time is large between the instances. Hence, an average
of these values would emphasize the harder instances. We want all instances
to count equally and therefore, we normalize the values by comparing each
computation time to the solution time for the same problem without temporal
dependencies. The mean over all instances is shown in Figure B.8.

Looking at Figure B.8, it is clear that the time-indexed formulation is worse
than the other two with respect to solution time. Closer inspection shows that
the full time-indexed formulation has a few instances where computation time
is excessive and this has a major impact on the mean value.

In connection with solution time, it is also interesting to make a direct compar-
ison between the approaches for each instance. For each number of temporal
dependencies, we count the number of instances where the limited time-indexed
approach is faster than the relaxed formulation and vice versa. The results are
summarized in Figure B.9. Looking at the instances individually, the limited
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Figure B.8: Normalized solution time (mean).

time-indexed approach seems a little better.
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Figure B.9: Number of tests where one of the approaches is faster than the other.
The two approaches are considered equally fast if they are within 20% of each other.

Finally, we look at the distribution of time spent in the algorithm. This is
illustrated in Figure B.10. The solution procedure in each node of the branch-
and-bound tree consists of three parts, namely cut generation, variable (column)
generation, and solution of the LP master problem. The times of Figure B.10
sum the time spent in all nodes of the tree. The branching time reported is the
time used to select branching candidates. As strong branching is applied, this
selection also involves the solution of a limited number of LP problems. There
may be an overhead on time from memory management, primarily. Therefore,
the four components illustrated of the figure do not sum to exactly 100%.

From Figure B.10, we observe that for the time-indexed formulation, the portion
of time spent in the LP-solver increases as problems with more temporal depen-
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Figure B.10: Distribution of solution time for the time-indexed model (top), the
limited time-indexed model (middle), and the relaxed model (bottom).

dencies are considered. This is due to the fact that more cuts are added and
hence the size of the LP-model increases. For the relaxed formulation, the ten-
dency is, not surprisingly, that more time is spent branching when the number
of temporal dependencies increases. The share of time spent by the LP-solver
is, in this case, stable.

On the basis of the tests, we are able to conclude that the temporal dependencies
introduce additional complexity to the problem, as expected. The time-indexed
formulation has the worst immediate performance, but may be more useful for
large instances with harder pricing problems. The performance of the limited
time-indexed approach and the relaxed formulation is comparable. A few in-
stances of each type turn out to be very hard to solve, no matter what method
is used. The time-indexed formulation does have a number of nice features that
could be utilized in future development. It has tighter bounds, both theoreti-
cally and in the practical instances that we have examined. The tighter bounds
mean that more instances are solved at the root node of the branch-and-bound
tree, and in these cases this formulation gives better results. Also, for instances
where the solution is not found at the root node, the branch-and-bound tree is
still significantly smaller than the corresponding tree for the relaxed formula-
tion. The number of variables that has to be generated is also generally smaller
for the time-indexed formulation. For most realistic problems, variable gener-
ation is the dominating factor of the overall solution time, and in these cases
the time-indexed formulation may be the better choice, as the LP solution time
becomes less important.
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B.7 Conclusions and future work

The vehicle routing problem with time windows and temporal dependencies has
been introduced. The problem has previously been treated in various practical
contexts in different forms, but this is the first generic analysis presented in the
literature. Four different models were presented and ranked according to their
theoretical strength. The time-indexed model has the tightest formulation and
hence gives the best bounds, but the number of constraints is too large for them
to be included explicitly. Instead, the model was implemented in a branch-and-
cut-and-price framework, where both constraints and variables are generated
dynamically. As this approach is novel, it was described how to efficiently
identify violated cuts and the necessary adjustments in the pricing problem were
introduced. The branching scheme was presented next. The scheme is based on
the traditional time window branching, where the scheme is also used to restore
feasibility with respect to temporal dependencies. The branching scheme is as
strong as and more general than the previously presented branching scheme for
routing with synchronization. Finally, benchmark instances were introduced
and a quantitative analysis was carried out.

The analysis showed that, even though the time-indexed model has some nice
properties, it also retains its major drawback, namely the number of constraints.
As a consequence, a hybrid method was implemented, where only a limited
number of the violated cuts are added. This approach kept most of the nice
features of the time-indexed model, while at the same time lowering the solution
time to the same level as that of the relaxed model.

The model presented in this paper is general and is therefore applicable to
various practical problems. Future work could be on an adaption to real world
problems. Another very interesting direction for future research is to include
additional cuts. Using the time-indexed formulation, we were able to solve many
instances at the root node of the branch-and-bound tree, and this number could
be increased by introducing additional cuts. From e.g. Desaulniers et al. (2008)
it is clear that the number of nodes can be limited severely by including cuts,
especially for large instances. In many cases, the problems are solved in the root
node. The performance of the time-indexed model was clearly better than the
relaxed model for the instances, where the optimal solution was obtained at the
root node.
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Good and fast solutions to the airline crew pairing problem are
highly interesting for the airline industry, as crew costs are the
biggest expenditure after fuel for an airline. The crew pairing prob-
lem is typically modelled as a set partitioning problem and solved by
column generation. However, the extremely large number of possible
columns naturally has an impact on the solution time.

In the solution method of this work we severely limit the number
of allowed subsequent flights, i.e. the subsequences, thereby signifi-
cantly decreasing the number of possible columns. Set partitioning
problems with limited subsequence counts are known to be easier to
solve, resulting in a decrease in solution time.

The problem though, is that a small number of deep subsequences
might be needed for an optimal or near-optimal solution and these
might not have been included by the subsequence limitation. There-
fore, we try to identify or generate such subsequences that potentially
can improve the solution value.

We benchmark the subsequence generation approach against a clas-
sical column generation approach on real-life test instances. We con-
sider the LP relaxation and compare the quality and the integrality
of the solutions. The LP solutions from the subsequence genera-
tion approach are less fractional, but it comes at the cost of a worse
solution quality.

The approach in the present paper is novel. To our knowledge gener-
ation of subsequences have not been described and tested previously
in the literature.
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Figure C.1: The airline crew scheduling process. The times are for Air New Zealand’s
domestic scheduling.

C.1 Introduction

Crew costs are the second largest expense for an airline company. Only fuel
costs are higher, see Gopalakrishnan and Johnson (2005). Here it is also reported
that, for instance, American Airlines spent USD 1.3 billion on crew in 1991. The
expenditures for an airline can roughly be divided equally between three areas:
Fuel, crew, and other costs (buildings, maintenance, administrative staff, etc.).
As fuel costs cannot be controlled by an airline, crew costs are probably the
most important area for potential savings. Therefore, airline crew scheduling
has received a lot of attention in the literature, and consequently, optimisation
is heavily used by the airlines. With such a large amount of money being
spent on crew, even small improvements in how they are scheduled can result
in significant savings.

The airline crew pairing problem which is dealt with in this work is a part of
a larger series of optimisation problems. The first step is flight timetabling. In
this step a schedule of all the flights that the airline will fly is constructed. The
next steps are fleet assignment, where aircraft types are allocated to the flights,
and aircraft routing, where the aircraft routes are laid. These steps, however,
do not directly influence the crew scheduling. The crew pairing step (which is
the focus of this paper) finds sequences of flights that can be flown in a feasible
way at a minimum cost. These sequences of flights are called pairings and are
anonymous, that is they are not associated with a specific crew member. The
crew pairing problem can be solved separately for cockpit crew and cabin crew,
and it can also be solved separately per aircraft type qualification. The last
step is crew rostering where pairings are combined to form actual rosters for
individual crew members. The crew pairing and the crew rostering steps are
together called airline crew scheduling, see Figure C.1.

This paper presents a novel subsequence generation approach to solving the crew
pairing problem. The subsequence generation approach is to our knowledge not
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found elsewhere in the literature. We consider the linear programming (LP)
relaxation of a set partitioning formulation of the problem. The idea is to
generate subsequences of flights that appears in the optimal pairings instead
of—as in classic column generation—to generate the actual pairings. Whenever
a subsequence is found, i.e. generated, a whole set of pairings containing that
subsequence is enumerated and added to the LP relaxation. The devised solution
algorithm is tested on real-life data instances and benchmarked against classic
column generation.

In Gopalakrishnan and Johnson (2005) a recent survey of airline crew schedul-
ing can be found. The authors describe the different approaches that have been
used over the last two decades, and point out promising directions for future
work in the area. The crew pairing problem is treated separately and in detail.
Barnhart et al. (2003) give a text book description of airline crew scheduling
and also have a detailed section on crew pairing with examples. They formulate
the crew pairing problem as a set partitioning problem and describe how the
problem can be solved as a weekly problem or a dated problem. The weekly
problem approach exploits repetitive patterns of flights over the weekdays, and
is thus able to break the problem into smaller parts, which are then combined.
This division of the problem is of course a trade-off against optimality. The
dated problem approach on the other hand solves the problem directly, and is
necessary for flight timetables where flights are not repeated several times a
week. The complex cost structures for pairings are described by Gopalakrish-
nan and Johnson (2005) and Barnhart et al. (2003). Andersson et al. (1998)
describe different approaches to crew pairing and give a detailed introduction to
the Carmen (now Jeppesen) system for solving the crew pairing problem. The
Carmen system uses a priori column generation; however, it has separated the
checking of the pairing requirements into a special rules language. The Carmen
system uses the algorithm described by Wedelin (1995). Desaulniers et al. (1998)
present the crew pairing model as a special case of a generic air crew scheduling
model, that also covers, for instance, rostering. They solve the crew pairing
problem with column generation. AhmadBeygi et al. (2009) develop an integer
programming model for generating pairings. The model can be used especially
in research to overcome the time-consuming task of implementing a pairing gen-
erator. Butchers et al. (2001) describe airline optimisation problems in general
and the crew pairing problem in particular for Air New Zealand’s domestic and
international schedule. Also here the crew pairing problem is formulated as a
set partitioning problem. Lavoie et al. (1988) use a set covering formulation
and perform column generation on a duty period network. A duty period is a
sequence of flights that corresponds to a day’s work, see more in Section C.2.
Graves et al. (1993) use a set partitioning formulation and do column genera-
tion on a network of flights. Vance et al. (1997) use a two-stage approach. First
flights are combined to form duty periods, and next duty periods are combined
to form pairings. Using dynamic constraint aggregation crew scheduling can be
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solved in an integrated approach, see Saddoune et al. (2011). In this way all
constraints are virtually present in the master problem, but in an aggregated
form, where basically constraints belonging to the same pairing are just repre-
sented by one active constraint. The update of these active constraints leads
to a complex setup in the interplay with the column generator. This, though,
does at present remain a very complex and time-consuming approach limited to
academic environments only.

The remainder of this paper is organised as follows. In Section C.2, we present
a formal definition of the airline crew pairing problem. In Section C.3, we intro-
duce the concept of subsequence limitation and the motivation behind it. In Sec-
tion C.4, we develop the suggested subsequence generation solution algorithm.
In Section C.5, we present real-life test instances, and we show benchmark re-
sults from the comparison between the subsequence generation approach and a
classical column generation approach. Finally, in Section C.6, we conclude on
the work and point out directions for future research.

C.2 Problem formulation

Let F denote the set of flights in the flight schedule for an airline. A duty
period is a sequence of flights from F which can be flown by an anonymous
crew member. A duty period must comply with several rules and regulations
in order to be feasible. A crew member can either be operating or passengering
(sometimes called deadheading) on a flight. Passengering allows crew members
to be repositioned in order to operate other flights. A duty period consists of
flying time, where the crew member is operating the flight, and idle time, which
together give the elapsed time. Each duty period has a maximum flying time and
a maximum elapsed time, as well as a maximum number of flights that can be
operated. Duty periods must also respect meal break regulations. Duty periods
are separated by rest periods, which must have a minimum length. Starting and
ending a duty period impose a sign-on and sign-off time, respectively.

A pairing (sometimes called a tour-of-duty) is a sequence of duty periods and
rest periods. Every airline has a set of crew bases, i.e. airports from where crew
can start working. A feasible pairing must start and end at the same crew base.
Pairings can only contain up to a maximum number of duties, and a pairing is
only allowed to stretch over a certain number of mandays. The manday count
is increased every time midnight is passed in the time zone where the pairing
originates. Different airlines use different and quite complex ways of calculating
the cost of a pairing, for examples of this see Gopalakrishnan and Johnson
(2005) and Barnhart et al. (2003). For the research carried out in the present
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Base Base

Duty period Duty periodRest period Operated f l ight

Deadheading

Rest

Figure C.2: Illustration of a pairing.

paper, we use the pairing’s idle time as the cost of the pairing. That way crew
utilisation is maximised. An illustration of a pairing can be seen on Figure C.2.

The airline crew pairing problem is then to find the set of pairings that covers
all flights exactly once at minimum cost. Let P be the set of feasible pairings.
The problem is modelled as a set partitioning problem. Each row corresponds
to a flight and each column corresponds to a pairing. Let m̄ = |F| be the
number of flights and n = |P| be the number of pairings. Now, the pairings
can be represented by a binary m̄ × n matrix A, where the entries are defined
by aij = 1 if flight i ∈ {1, . . . , m̄} is contained in pairing j ∈ {1, . . . , n}, and
aij = 0 otherwise. Let cj be the cost of pairing j ∈ {1, . . . , n}. The decision
variables xj for j ∈ {1, . . . , n} govern the inclusion of pairing j in the solution
and are binary. The mathematical programme can then be written as

minimise c>x

subject to Ax = 1

x ∈ {0, 1}n .

Most airlines, however, extend this standard model to include the so-called base
constraints. These constraints are required for distributing the pairings amongst
the crew bases in a way that matches the actual distribution of where the crew
is located geographically. Base constraints can be defined in many different
ways. In order to simplify matters, we have chosen to include only one type
of base constraint. A base constraint puts a lower or an upper bound on the
number of mandays that can be worked out of a set of crew bases in a given time
period. A pairing contributes to a base constraint, if the pairing origins from
that set of crew bases in the specified time period. The pairing’s contribution
to the base constraint is the manday count of the pairing and given as dj , where
j ∈ {1, . . . , n}.

Let B denote the set of base constraints and set m = m̄ + |B|. We can then
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augment A to an m× n matrix where

aij =

 dj if pairing j originates from the set of crew bases and in the
time period specified by base constraint i,

0 otherwise

for i ∈ {m′+1, . . . ,m} and j ∈ {1, . . . , n}. The base constraints are of less-than-
or-equal or greater-than-or-equal type, and most often have non-unit right hand
sides. We therefore end up with a generalised set partitioning model, where slack
and surplus columns are included to convert the inequality base constraints to
equality constraints:

minimise c>x

subject to Ax = b

x ∈ {0, 1}n̄ .

Here, the flight set partitioning constraints for i ∈ {1, . . . , m̄} have bi = 1, and
the base constraints for i ∈ {m̄+ 1, . . . ,m} have bi ∈ Z+ ∪ {0}. The dimension
n̄ is equal to n plus the number of slack and surplus columns.

We allow for the possibility of leaving flights uncovered at a high objective
value penalty, and we allow for the violation of base constraints, also with a
high penalty. This is modelled by having feasibility singleton columns for flights
and for base constraints in the model.

The number of possible pairings in the set partitioning formulation is very large,
so the pairings are typically only enumerated implicitly by column generation.
In the present approach we will, however, not perform column generation, but
subsequence generation.

C.3 Subsequence limitation

The subsequences for a flight f ∈ F are the set of pairs (f, g) ∈ F2 where g ∈ F
is a subsequent flight that can follow f in a feasible way in a pairing. We denote
this set S(f) ⊂ F2. Subsequences are illustrated on Figure C.3(a). In general
terms for an m×n zero-one matrix A with entries aij , the subsequence set S(s),
for any row s is given by

S(s) = {(s, t) : [∃j ∈ {1, . . . , n} : asj = 1, aij = 0 for s < i < t, atj = 1]} .

In the example on Figure C.4 we have S(1) = {(1, 3), (1, 4), (1, 6)}. Matrices
where the subsequence count |S(s)| ≤ 1 for all s ∈ {1, . . . ,m} are said to
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Airport

Time

Ingoing flight

Outgoing flight

(a) Subsequences.

Airport

Time

Ingoing flight

Outgoing flight

Disallowed flight

(b) Severely limited subsequences.

Figure C.3: Subsequences for an ingoing flight.



1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 1 1 0

1 0 1 0 1 0 1

0 0 0 0 0 0 1

0 1 1 0 0 1 0



Figure C.4: Subsequences for row 1.
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have unique subsequence, and such matrices are balanced, see Ryan and Falkner
(1988). Exploiting results from graph theory, see Conforti et al. (2001), we know
that the LP relaxation of a set partitioning problem with a balanced A matrix
has an integral optimal solution. Intuitively, the closer we get towards unique
subsequence, the closer we get to naturally integral LP solutions. Ryan and
Falkner (1988) show experimental results to support this.

Therefore, we severely limit the subsequence count for each flight when gener-
ating pairings, see Figure C.3(b). In this example the first disallowed flight is
removed, because there is not enough ground time for a robust aircraft change.
The three last disallowed flights are removed, because they have a lot of ground
idle time, so it is not likely (though still possible) that they will end up in an
optimal solution.

The possible subsequent outgoing flights for an ingoing flight f are now restricted
to be in the limited subsequence set L(f) ⊆ S(f). Let S =

⋃
f∈F S(f) denote

the set of all subsequences for all flights, let L =
⋃
f∈F L(f) denote the set of

limited subsequences for all flights, and let O denote an optimal subsequence
set, i.e. an optimal solution, for all flights. Naturally, O has unique subsequence
due to the set partitioning constraints. The relations between these three sets
can be illustrated by a Venn diagram, see Figure C.5(a). There could, of course,
be more than one set of optimal subsequences, but we only show one set on the
figure.

The disadvantage of this limited subsequence approach is that some optimal
subsequences might be excluded. However, the approach results in significantly
fewer possible pairings, and therefore a total enumeration of the pairings in L
can be carried out. Moreover, when the LP relaxation is solved, fewer fractions
are expected, as the subsequence count of all flights per construction is low.

C.4 Subsequence generation

To remedy the possible lack of optimal subsequences, the limited subsequence
set is made to be dynamic. The core idea is to generate subsequences that
will decrease the objective value. We exploit the fact, that in crew pairing the
chosen subsequences will most often be close in time, which is natural, keeping
the pairing cost definition in mind. Therefore, the hope is that only relatively
few subsequences with much idle time have to be generated.

A candidate subsequence set C(f) is defined for all flights f ∈ F , and again we
define C =

⋃
f∈F C(f). We have L(f) ⊆ C(f) ⊆ S(f) for all f ∈ F and L ⊆ C ⊆
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All subsequences

Limited subsequence set

Optimal subsequences

(a) Optimal subsequences might be missing.

All subsequences

Limited subsequence set

Optimal subsequences

Candidate subsequence set

(b) Limited subsequence set is dynamic.

Figure C.5: The relations between the set of all subsequences S, the limited subse-
quence set L, the candidate subsequence set C, and an optimal subsequence set O.

S, which is shown in Figure C.5(b). The idea is now to expand L with attractive
subsequences from C. A subsequence s ∈ C is attractive if it is likely that
s ∈ O, where again O is a set of optimal subsequences. Iteratively an attractive
subsequence set A ⊆ C is found and added to L. Although Figure C.5(b) shows
the set of optimal subsequences to be contained in the candidate subsequence
set, there is no guarantee for this. In Algorithm 1 the outline of the algorithm
for solving the LP relaxation of the pairing problem can be seen.

Algorithm 1 Subsequence generation

1: Find an initial limited subsequence set L
2: Enumerate all pairings over L
3: Solve the LP relaxation on these pairings
4: while stop criteria not met do
5: Based on the LP dual vector, identify a set of attractive subsequences

A ⊆ C
6: Enumerate pairings for each of the subsequences in A
7: Set L := L ∪ A
8: Expand the LP relaxation with the enumerated pairings and re-solve
9: end while

The means that is used to identify attractive subsequences is the dual vector
from the LP solution. The dual vector is passed on to a pairing generator that
produces negative reduced cost columns on a the candidate subsequence set C.
The pairing generator is a resource constrained shortest path solver, which is run
on subsequences from C. The shortest path solver is a labelling algorithm, see
for instance Irnich and Desaulniers (2005). The negative reduced cost columns,
that are returned from the pairing generator, are analysed in order to collect



C.4 Subsequence generation 155

statistics about the subsequences in C\L.

The pairing generator is run sequentially on N different networks consisting of
subsequences Ck ⊆ C for k ∈ {1, . . . , N} with

⋃N
k=1 Ck = C. The networks are

kept small, so that the shortest path solver can execute very fast. In crew pairing
there are four classes of subsequences that are very important to recognise:

1. Follow-the-aircraft subsequences: A follow-the-aircraft subsequence is a
subsequence, where the crew flies out on the same aircraft as they flew
in with. This type of subsequence is very robust towards possible delays,
and one would expect the majority of the subsequences in an optimal crew
pairing solution to be follow-the-aircraft. This expectation is supported
by data from Air New Zealand. The follow-the-aircraft subsequence is
unique, as there can only be one subsequent flight on the same aircraft.
Most often the follow-the-aircraft subsequence will be low-cost, because
the minimum sit time for crew is close to the minimum turnaround time
for the aircraft. Being unique, robust, and low-cost, the follow-the-aircraft
subsequence is the most attractive subsequence class.

2. Robust subsequences: A crew coming in on flight f can leave on flight
g, if the minimum sit time is respected. However, if flight f is delayed
and the time difference between arrival and departure of the two flights
is exactly the minimum sit time, then flight g will also be delayed. A
way to try avoid this delay propagation, is to add some buffer time to
the minimum sit time. This of course comes at a higher pairing cost, as
the crew might get unnecessary idle time. Studies in Ehrgott and Ryan
(2002) show that delays increase during the day (and reset at midnight),
so the buffer time should also increase during the day. We can now define
a robust subsequence, as a subsequence, where the time difference between
arrival and departure respects the buffer time needed at the given time of
day.

3. Meal break subsequences: Naturally, crew is entitled to meal breaks, which
is controlled by complex regulations. A meal break subsequence is a sub-
sequence, where there is sufficient time for a meal break either inflight or
on the ground between the flights.

4. Overnight subsequences: An overnight subsequence is a subsequence,
where the time difference between arrival and departure is longer than
the minimum rest time. An overnight subsequence is needed for a crew
that flies in to a non-base airport late at night, where there is no subse-
quent flight to a home base. The overnight subsequence is also needed for
a crew to fly out of a non-base airport early in the morning, where there
has been no preceding incoming flight.
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Follow-the-aircraft and robust subsequences are preferred from a pairing cost
and robustness point of view, but the meal break and overnight subsequences
are needed in order to make the pairings feasible and cover all flights. We will
work with three subset of the candidate subsequence set C (so we have N = 3),
based on these classes. The set C1 consists of follow-the-aircraft subsequences
and robust subsequences. The set C2 consists of follow-the-aircraft subsequences
and meal break subsequences, and C3 consists of follow-the-aircraft subsequences
and overnight subsequences. The motivation for this setup, is, that we will now
have networks for the pairing generator, that search specifically for robust, meal
break, or overnight subsequences.

In order for the pairing generator to solve quickly, the subsequence count for all
flights is kept low, that is |Ck(f)| ≤ nk, where nk is a small integer less than, say,
five for all k ∈ {1, . . . , N}. It is important to note that nk is an upper bound on
the subsequence count in the given set for a flight. Consider for instance a flight
going in to a non-busy airport. If the first robust outgoing flight (other than the
follow-the-aircraft flight) departs, say, nine hours after the arrival of the ingoing
flight, we do not include the flight as a robust subsequence, because it is unlikely
that a pairing with such excessive idle time will end up in an optimal solution.
Similar reasoning goes for the meal break and the overnight subsequence sets.

The set C1 is used as the initial limited subsequence set L, where total enumer-
ation is carried out.

For each subsequence s ∈ C we maintain four measures that are accumulated
over all iterations and updated after analysis of the set of negative reduced cost
columns returned by the pairing generator:

1. Count of columns containing s.

2. Count of different dual vectors that have produced columns containing s.

3. Sum of the reduced cost of columns that contain s.

4. Sum of the contribution from s to the negative reduced cost of columns
containing s.

These measures can all be computed and updated quickly, which is important
with respect to keeping the computational overhead of the approach at a mini-
mum. The measures are correlated, so a high rank in one measure could also give
a high rank in some of the other measures. In each iteration some subsequences
are identified as attractive based on these four measures and added to A. The
goal is, of course, to be able to, as early as possible, identify the subsequences
that potentially could end up in an optimal or near-optimal solution. Ideally
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one would identify subsequences that were non-dominated on all four measures
and add these to A. However, finding non-dominated points in four dimensions
is very time-consuming, so instead we use just add one of the four measures,
or we alternate between them. The idea of using dual information to identify
attractive flights is also used by Barnhart et al. (1995). Here, only passengering
flights are searched for, and added to a standard column generation approach.

Whenever a subsequence s is identified as an attractive subsequence, a whole set
of columns which include the new subsequence is added to the LP relaxation.
Enumeration is carried out in one of the following two ways:

1. Enumeration of all feasible pairings in C containing s.

2. Enumeration of all feasible pairings in L containing s.

The reason why a relatively large set of columns is added to the LP relaxation,
is, that whenever a subsequence is identified as attractive, it is believed that
it is likely to end up in an optimal solution. And hence, the optimal solution
will contain one of the enumerated columns. The first way of enumerating gives
rise to more columns in the LP relaxation. This is beneficial when it is strongly
believed that a “right” subsequence is identified. The second way of enumerating
is more restrictive on the set of columns that are added to the LP relaxation.
Hence, the second enumeration scheme is expected to be better at keeping the
good integer properties of the initial limited subsequence set. With this scheme,
adding a subsequence only increases the subsequence count with one for a single
flight, namely for the first flight in the added subsequence. The subsequence
generation algorithm is terminated, when the objective value has not improved
significantly over a given span of iterations.

The differences between classic column generation and subsequence generation
can be illustrated as the flowchart comparison in Figure C.6. Subsequence
generation has an extra part where columns are analysed.

C.5 Computational results

The goal in this section is to provide a benchmark analysis of the devised solution
algorithm. We will benchmark the subsequence generation approach against a
classical column generation approach. In this way, we will investigate the trade-
off between solution quality and integrality of the solutions.
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Figure C.6: Difference between classic column generation and subsequence genera-
tion.
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Table C.1: Characteristics for the test instances. |F| is number of flights and |B| is
number of base constraints.

Air New Zealand has provided us with 19 real-life data instances from their
domestic timetable. It should be noted that the domestic timetable for Air
New Zealand covers Australia and various destinations in the Pacific Ocean. In
order to allow the algorithm to terminate in reasonable time, we have limited
the number of flights in the instances. Characteristics for these instances can
be seen in Table C.1.

We consider two quality measures for a solution. The first quality measure is the
LP objective value. The objective value is value is the sum of idle time for all
pairings plus penalties for leaving flights uncovered and penalties for violating
base constraints. The second quality parameter is the number of uncovered
flights. A flight is uncovered, if the feasibility column for that flight is chosen
(perhaps fractionally) in the LP solution. Both quality parameters should be
minimised.



C.5 Computational results 159

To gauge the integrality of a solution, we consider two integer measures. Let
x∗ = (x∗1, . . . , x

∗
n)> denote an LP solution to the crew pairing problem. The first

integer measure counts the number of variables at value one in the solution and
is calculated as |{i ∈ {1, . . . , n} : x∗i = 1}| · 100/|{i ∈ {1, . . . , n} : x∗i > 0}|. The
second integer measure counts the number of “nice fraction”-variables in the
solution, where a nice fraction is nonzero rational number smaller than or equal
to one and a multiple of 1, 1/2, . . . , 1/8. It is calculated as |{i ∈ {1, . . . , n} : x∗i ∈
{a/b : a, b ∈ {1, . . . , 8}}}| · 100/|{i ∈ {1, . . . , n} : x∗i > 0}|. Integer measures
should be maximised. The integer measure should give an indication of how
easy or how difficult the fractions in the LP solution would be to resolve in a
branch-and-bound framework. The use of such integer measures are based on
the results from Ryan and Falkner (1988). The last measure we compare is run
time.

We test different settings of the subsequence algorithm:

1. Maximum sizes for the candidate subsequence sets for a flight nk: Exper-
iments are carried out with nk set to 2, 3, or 4.

2. Subsequence identification scheme: Either 1) count of columns, 2) count
of different duals, 3) sum of reduced costs, 4) sum of subsequence contri-
bution, or 5) an alternation of the previous is used.

3. Pairing enumeration scheme: Either enumeration is done over 1) C or 2)
L.

We identify one subsequence per iteration, and the algorithm is terminated,
when the improvement in the LP objective value is less than 1% over a span of
100 iterations. The pairing generator returns up to eight columns with negative
reduced cost each time it is run. For all of the 19 instances we run the algorithm
for all 30 combinations of the settings described above. For all instances we also
run a classic column generation algorithm where no limitation of subsequences
is used. In order to make a fair comparison on quality, we set the robust buffer
time to zero, so that we in effect do not search for robust subsequences. The
time-out for all test runs is set to one hour, and all tests are run on 2.67 GHz
Intel Xeon X5550 CPUs with 23.5 GB of memory. The algorithm is implemented
in C++ and compiled with g++ 4.4.0 on a Linux computer. LP relaxations are
solved with the LP solver from MOSEK version 6 using an academic license.

For all instances and for all 30 combinations of settings, we calculate ratios
R/Rben, where R denotes the value for the subsequence generation algorithm,
we want to benchmark, and Rben denotes the value for classic column generation
to benchmark against. Table C.2 shows the averages over all instances for each
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of the settings. For the solve time ratio it is preferable for our algorithm to have
a ratio less than 1.00, meaning that subsequence generation is faster. For the
root LP value ratio, and the uncovered ratio it is preferable for our algorithm
to have a ratio as close to 1.00 as possible, as the optimal values from classic
column generation is a lower bound. However, classic column generation times
out on all instances, and therefore it would actually be possible to have a ratio
less than 1.00. For the “at 1”-measure ratio and the “nice fraction”-measure
ratio it is preferable for our algorithm to have a ratio larger than 1.00. From
Table C.2 it can be seen that the subsequence generation algorithm is always
clearly faster than classic column generation. Classic column generation is still
producing negative reduced cost columns at the one hour time-out limit. This
is probably due to high degeneracy. From the table it can also be seen that the
subsequence generation algorithm performs worse on the two quality parameters,
LP objective value and number of uncovered flights. This was expected, as the
subsequence generation algorithm is working on a limited subsequence set and
therefore is more restricted than classic column generation, which has the full set
of subsequences to choose from. Still, the conclusion that must be drawn from
these averages, is, that more work on the subsequence identification procedure
must be carried out, as there are some optimal subsequences missing.

One should note that the number of uncovered flights have a very large impact
on both the ‘Root LP value ratio’ and the ‘Uncovered ratio’. If, for instance,
one setting results in two out of 400 flights to be uncovered, and a second setting
leaves three out of 400 flights uncovered, then the second setting would have a
‘Uncovered ratio’ of 1.5 when comparing to the first setting. The same holds for
the ‘Root LP value ratio’, due to the high and dominant penalty for violating
the flight constraints.

Lastly, from Table C.2, it can be seen, that the subsequence generation algorithm
has better integer measures on average. Therefore, we have very good reason
to believe that integer solution can be found faster than when classic column
generation is used.

Comparing the different settings of the subsequence generation algorithm, Ta-
ble C.2 shows, as expected, that the more the candidate subsequence set C is
limited, the worse the solution quality gets, but the solutions also get slightly
more integral, which is also expected. The different measures to identify at-
tractive subsequences seem to perform almost equally good. This is probably
due to a high correlation between them. Enumerating pairings over C gives a
better solution quality than enumerating pairings over L, but the integrality of
the solution is higher when enumerating over L. This is also expected, as L is
more restricted than C. Again, improving the subsequence identification would
lead to increased solution quality, while integrality benefits of the restrictions
could be kept.
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2/1/1 0.00 1.77 1.63 1.95 1.98
2/1/2 0.00 1.84 1.80 1.83 2.02
2/2/1 0.00 1.75 1.66 1.75 2.11
2/2/2 0.00 1.84 1.82 1.57 1.94
2/3/1 0.00 1.76 1.73 1.34 1.81
2/3/2 0.00 1.85 1.80 1.47 1.90
2/4/1 0.00 1.75 1.64 2.10 2.10
2/4/2 0.00 1.90 1.87 1.47 1.90
2/5/1 0.00 1.75 1.74 1.76 1.92
2/5/2 0.00 1.83 1.79 1.92 2.05
3/1/1 0.01 1.25 1.25 1.22 2.08
3/1/2 0.00 1.30 1.21 1.48 2.08
3/2/1 0.01 1.25 1.27 1.06 1.89
3/2/2 0.00 1.30 1.30 1.43 1.89
3/3/1 0.01 1.25 1.29 0.92 1.74
3/3/2 0.00 1.28 1.23 1.43 1.89
3/4/1 0.00 1.25 1.35 1.13 2.06
3/4/2 0.00 1.29 1.31 1.98 2.04
3/5/1 0.01 1.25 1.32 1.09 1.85
3/5/2 0.00 1.28 1.34 1.47 1.94
4/1/1 0.01 1.23 1.22 1.07 1.71
4/1/2 0.01 1.26 1.21 1.72 1.57
4/2/1 0.01 1.23 1.24 1.02 1.52
4/2/2 0.01 1.26 1.28 1.49 1.73
4/3/1 0.01 1.24 1.27 0.88 1.80
4/3/2 0.01 1.24 1.30 1.26 1.80
4/4/1 0.01 1.21 1.26 0.81 1.51
4/4/2 0.00 1.25 1.26 1.62 2.06
4/5/1 0.01 1.23 1.31 0.80 1.55
4/5/2 0.01 1.24 1.21 1.44 1.75
2/*/* 0.00 1.81 1.75 1.72 1.97
3/*/* 0.00 1.27 1.29 1.32 1.95
4/*/* 0.01 1.24 1.25 1.21 1.70
*/1/* 0.01 1.44 1.39 1.55 1.91
*/2/* 0.01 1.44 1.43 1.39 1.85
*/3/* 0.01 1.44 1.44 1.22 1.82
*/4/* 0.00 1.44 1.45 1.52 1.95
*/5/* 0.01 1.43 1.45 1.41 1.84
*/*/1 0.01 1.41 1.41 1.26 1.84
*/*/2 0.00 1.47 1.45 1.57 1.90
*/*/* 0.01 1.44 1.43 1.42 1.87

Table C.2: Benchmarking of the subsequence generation algorithm against classic
column generation. Settings are read as Maximum-candidate-set-size / Subsequence-
identification-scheme / Pairing-enumeration-scheme. An asterisk means that an av-
erage is taken over that setting.



162 Subsequence Generation for the Airline Crew Pairing Problem

Table C.3 shows statistics for the test runs on the w08r03b instance. The
statistics are representative for the other instances as well. The table reveals that
almost no computation time is spent with analysis of columns and subsequence
identification. As these are the two core parts of the solution approach, this
clearly points out an area for future research with a great potential gain. If the
right subsequences are identified, the solution quality would naturally increase.

Figure C.7 shows a typical graph of the LP objective value per main loop itera-
tion. The flat lines of the graph are especially interesting. Whenever there is a
flat line, it means that the subsequences added in those iterations did not lower
the LP objective value. This could mean one of two things: Either we have
identified the wrong subsequence, or we have identified the right subsequence,
but the subsequence cannot be used, so we do not get the gain of adding it.
The latter is most easily seen in the case with unique subsequence for all flights.
Let (f1, f2) be the subsequence selected in the current solution and let (f1, f3)
be the new subsequence that is identified as attractive in the current iteration.
However, (f1, f3) cannot be selected by the LP relaxation, before a new subse-
quence for (f4, f2) for f2 is added. The dual vector will point out a suggestion
for (f4, f2) eventually, but an early “subsequence partner”-prediction of (f4, f2)
would be beneficial. The problem is, though, that this problem propagates much
further than to just one other subsequence. Still, both cases support that an im-
provement of the subsequence identification would benefit the overall algorithm
a lot.

C.6 Conclusion and future work

We have contributed a novel solution approach based on generation of subse-
quences of flights for solving the well-known airline crew pairing problem. We
have developed a method for solving the LP relaxation of the crew pairing prob-
lem, and the method aims at keeping the LP solution as close to integral as pos-
sible, thereby providing a good starting point for branch-and-bound. We have
benchmarked the new method against a classic column generation algorithm.
The benchmarking has revealed that the subsequence generation approach in-
deed is less fractional, but this comes at the price of a decrease in solution
quality. The benchmarking has been carried out on real-life instances, and on
all instances the subsequence generation approach was clearly faster than classic
column generation.

There is a number of directions that future work on the subsequence genera-
tion method could go. Obviously, nesting the method in a branch-and-bound
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Figure C.7: The LP objective value per main loop iteration for the instance w08r03b
with settings 3/5/2.

framework in order to find integer solutions would be interesting. This could
be extended with delayed subsequence generation in each node of the branching
tree. It should be noted that generation of subsequences in all tree nodes would
mean that the objective value of a particular node is not a lower bound on the
solution value for the children nodes.

The subsequence identification step is very important for the method to be suc-
cessful. As mentioned earlier, the gain from adding a subsequence might not
appear before another subsequence is added. Therefore, some kind of “subse-
quence partner”-prediction could prove beneficial. Perhaps also new measures
for subsequence identification could be invented to complement the existing
four measures. Still, as mentioned earlier, such measures should be computa-
tionally fast in order to avoid a large overhead of the approach. It could also
be interesting to experiment with the outcome of identifying more than a single
subsequence per iteration.

To use of historic data could also be a key to success. If one has a set of
pairings that make up a good solution for June, then many of the subsequences
in these pairings would probably be repeated in a good solution for July, as flight
timetables and crew resources are relatively stable. Therefore, last month’s
subsequences could be put in the initial limited subsequence set, or a measure
that in some way took these into account could be used.
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As it is now the limited subsequence set L can only expand. It could speed
up computation and maybe improve integrality, if the set could also shrink.
Subsequences that have not appeared, i.e. columns containing the subsequence
have not been selected even fractionally, in the LP solution for a given span
of iterations could be removed. When a subsequence is removed, all columns
containing the subsequence should be removed.

At the moment the candidate subsequence set C is static. However, there might
be a gain in making it dynamic, as is the case for the limited subsequence set.
Regarding the column enumeration, it is possible to generate duplicate columns.
These could also be removed from the problem, if the overhead for doing this is
not to severe.

A final suggestion for future work is to let pairing generation happen in parallel.
Each of the Ck candidate subsequence subsets could be run on its own processor,
and then return negative reduced cost columns to a single controlling process.
As the pairing generation is faster than solving the LP relaxation, subsequences
could be enumerated and added to the LP relaxation, before the LP solver had
reached its optimum. Dual stabilisation should then be added in order to make
the duals reliable as early as possible.

Acknowledgements: The authors would like to thank Paul Keating from Air
New Zealand for providing the data instances and explaining them thoroughly,
as well as his participation in many stimulating discussions about the solution
approach.
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An IP Framework for the Crew Pairing Problem
using Subsequence Generation∗

Matias Sevel Rasmussen1, Richard M. Lusby1, David M. Ryan2, and Jesper
Larsen1

In this paper we consider an important problem for the airline indus-
try. The widely studied crew pairing problem is typically formulated
as a set partitioning problem and solved using the branch-and-price
methodology. Here we develop a new integer programming frame-
work, based on the concept of subsequence generation, for solving
the set partitioning formulation. In subsequence generation one re-
stricts the number of permitted subsequent flights, that a crew mem-
ber can turn to after completing any particular flight. By restricting
the number of subsequences, the number of pairings in the problem
decreases. The aim is then to dynamically add attractive subse-
quences to the problem, thereby increasing the number of possible
pairings and improving the solution quality. Encouraging results
are obtained on 19 real-life instances supplied by Air New Zealand
and show that the described methodology is a viable alternative to
column generation.

Keywords: Airline crew pairing, Subsequence generation, Set partitioning,
Integer programming

D.1 Introduction

For an airline company crew costs can be identified as the second largest expense,
typically only fuel costs are higher. In 1991 it was reported that American
Airlines spent USD 1.3 billion on crew (see Gopalakrishnan and Johnson (2005)).
Unlike fuel costs, crew costs can in some sense be controlled by an airline.
The inefficient use of crew may lead to unnecessary expenditure. As a result,
finding the optimal use of an airline’s crew is a topic that has received significant
attention in the literature, and now, as a result, optimisation tools are heavily

∗Submitted to: Journal of the Operational Research Society (2011).
1Department of Management Engineering, Technical University of Denmark, Produktion-

storvet, Building 424, DK-2800 Kgs. Lyngby, Denmark.
2Department of Engineering Science, The University of Auckland, New Zealand.
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Figure D.1: The airline crew scheduling process. The times are for Air New Zealand’s
domestic scheduling.

used by airlines in their planning operations. Due to the high cost associated
with crews, even minor improvements in the schedules can result in significant
savings.

The focus of this paper is on the so-called airline crew pairing problem. This
problem is one of the core optimisation problems encountered by an airline
company. Its position in the planning horizon, as well as the other main op-
timisation problems can be seen in Figure D.1. While the airline crew pairing
problem will be discussed in more detail in Section D.2, it essentially requires
one to find sequences of flights that crew members will fly, at minimum cost.
The sequences of flights are termed pairings and are anonymous. The pairing
problem succeeds the flight timetabling step. Here, a schedule of all flights that
will be flown by the airline must be constructed. This is then followed by fleet
assignment, which requires one to assign an aircraft type to each of the flights.
Finally, as a last step from an aircraft perspective, one must determine aircraft
routes, termed the aircraft routing problem. A solution to the flight timetabling
phase is required as input for the pairing problem; however, one can solve the
pairing problem separately for cockpit and cabin crew, or even separately for
each aircraft type. For example, here we consider the domestic Boeing 737 fleet
for Air New Zealand. The final step in the planning horizon is crew rostering.
Here, pairings, training, and vacation are combined to form actual rosters for
individual crew member. The crew pairing and the crew rostering steps are
together called airline crew scheduling. The steps for airline crew scheduling
can be seen in Figure D.1.

A recent survey on airline crew scheduling can be found in Gopalakrishnan and
Johnson (2005). The authors provide an overview of the different approaches
that have been used over the last two decades to solve this problem. In addi-
tion to this, some promising directions for future work are described. The crew
pairing problem has also been treated separately and in detail. Barnhart et al.
(2003) give a text book description of airline crew scheduling and also have
a detailed section on crew pairing with examples. The crew pairing problem
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is formulated as a set partitioning problem and the authors describe how the
problem can be solved as a weekly problem or a dated problem. In the weekly
problem approach, one exploits repetitive patterns of flights over the weekdays,
and can thus break the problem into smaller parts, which are then combined.
This division of the problem is, of course, a trade-off against optimality. The
dated problem approach, on the other hand, solves the problem directly, and
is necessary for flight timetables where flights are not repeated several times a
week. The complex cost structures for pairings are described by Gopalakrishnan
and Johnson (2005) and Barnhart et al. (2003). Andersson et al. (1998) describe
different approaches to crew pairing and give a detailed introduction to the Car-
men (now Jeppesen) system for solving the crew pairing problem. The Carmen
system uses a priori column generation; however, it has separated the checking
of the pairing requirements into a special rules language. The Carmen system
uses the optimisation approach described by Wedelin (1995). Desaulniers et al.
(1998) present the crew pairing model as a special case of a generic air crew
scheduling model that also covers, for instance, rostering. The crew pairing
problem is solved by column generation. AhmadBeygi et al. (2009) develop an
integer programming model for generating pairings. The model can be used,
especially in research, to overcome the time-consuming task of implementing a
pairing generator. Butchers et al. (2001) describe airline optimisation problems
in general and the crew pairing problem in particular for Air New Zealand’s do-
mestic and international schedule. The authors also formulate the crew pairing
problem as a set partitioning problem. Lavoie et al. (1988) use a set covering
formulation and perform column generation on a duty period network. Graves
et al. (1993) use a set partitioning formulation and do column generation on a
network of flights. Vance et al. (1997) use a two-stage approach. First flights
are combined to form duty periods, and next duty periods are combined to form
pairings. Using dynamic constraint aggregation crew scheduling can be solved
in an integrated approach, see Saddoune et al. (2011). In this way all constraints
are virtually present in the master problem, but in an aggregated form, where
constraints belonging to the same pairing are just represented by one active
constraint. The update of these active constraints leads to a complex setup in
the interplay with the column generator. This, though, does at present remain a
very complex and time-consuming approach limited to academic environments
only.

In this paper we extend the work of Rasmussen et al. (2011e), where the idea of
using subsequence generation for solving the pairing problem was first proposed.
Given the encouraging results from a linear programming (LP) perspective, here
we extend this methodology to a full integer programming framework. The
framework itself is similar to that of the well known branch-and-price approach
for solving large scale optimisation problems; however, it does possess certain
key differences. In particular, pairings found during the pricing phase of the
algorithm are not directly added to the master problem, but instead are anal-
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ysed in order to identify attractive subsequences. This is then followed by an
enumeration step in which all pairings containing the identified subsequence(s)
are enumerated and simultaneously added to the master problem.

The paper is organised as follows. In Section D.2 we provide a definition of the
airline crew pairing problem and present the conventional generalised set parti-
tioning formulation of it. Section D.3 describes a subsequence generation based
solution approach for solving the linear programming model. This methodology
is built into an integer programming framework in Section D.4 and computa-
tional results for the complete algorithm are presented in Section D.5. The main
conclusions and directions for future work are summarised in Section D.6.

D.2 Problem formulation

In this section we formally define the airline crew pairing problem and present
a mathematical formulation of it. We begin by introducing the required termi-
nology and sets.

The flight schedule of an airline consists of a set of flights, F . A duty period is
a sequence of flights in F that can be flown by a crew member. Any duty pe-
riod must adhere to several rules and regulations in order to be feasible. A crew
member can either be operating or passengering (sometimes called deadheading)
on a flight. Passengering allows crew members to be repositioned in order to
operate other flights. A duty period consists of flying time, where the crew mem-
ber is operating the flight, and idle time, which together give the elapsed time.
Each duty period has a maximum flying time and a maximum elapsed time, as
well as a maximum number of flights that can be operated. Duty periods must
also respect meal break regulations. Consecutive duty periods are separated by
a rest period, which must have a minimum duration. Finally, a so-called sign-
on (sign-off ) time, is imposed when starting (respectively, terminating) a duty
period.

A pairing (sometimes called a tour-of-duty) is a sequence of duty periods and
rest periods. Every airline has a set of crew bases, i.e. airports from where crew
can start working. A feasible pairing must start and end at the same crew base.
Pairings can only contain up to a maximum number of duties, and a pairing is
only allowed to stretch over a certain number of mandays (where one manday
is equivalent to the amount of work one person can produce in a day). The
manday count is increased every time midnight is passed in the time zone where
the pairing originates. Different airlines use different and quite complex ways
of calculating the cost of a pairing, for examples of this see Gopalakrishnan
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and Johnson (2005) and Barnhart et al. (2003). For the research described in
this paper, the pairing’s idle time is used as the cost of a pairing. This simple
measure ensures the crew utilisation is maximised. An illustration of a pairing
can be seen on Figure D.2.

Base Base

Duty period Duty periodRest period Operated f l ight

Deadheading

Rest

Figure D.2: Illustration of a pairing.

The airline crew pairing problem entails finding a set of pairings that covers all
flights exactly once at minimum cost. Let P be the set of feasible pairings. The
problem is modelled as a set partitioning problem. Each row corresponds to a
flight f ∈ F and each column corresponds to a pairing p ∈ P. Let m̄ = |F| be
the number of flights and n = |P| be the number of pairings. Now, the pairings
can be represented by a binary m̄ × n matrix A, where the entries are defined
by aij = 1 if flight i ∈ {1, . . . , m̄} is contained in pairing j ∈ {1, . . . , n}, and
aij = 0 otherwise. Let cj denote the cost of pairing j ∈ {1, . . . , n}.

In addition to the flight partitioning constraints, most airlines include so-called
base constraints. Such constraints are necessary in order to distribute the pair-
ings across the crew bases in such a way that is consistent with where the actual
crew are located. In other words, a base constraint is associated with a set
of crew bases and puts a lower limit and/or an upper limit on the number of
mandays that can be worked out of the associated bases over a given time hori-
zon. A pairing contributes to a base constraint if the pairing originates, in the
specified time horizon, from one of the bases associated with the constraint.
The pairing’s contribution to the base constraint is the manday count of the
pairing and given as dj , where j ∈ {1, . . . , n}. Here we denote the set of base
constraints that enforce an upper limit on manday count as B1, while those that
enforce a lower limit are given by the set B2. The two matrices B1 and B2, with
dimension |B1| × n and |B2| × n, respectively, reflect the manday coverage of

each pairing for each type of base constraint. Finally, vectors b1 ∈ N|B1|
0 and

b2 ∈ N|B2|
0 give the corresponding upper and lower limits on manday count.

The decision variables xj for j ∈ {1, . . . , n} govern the inclusion of pairing j
in the solution and are binary. We also allow the possibility for leaving flights
uncovered. The decision variables si for i ∈ {1, . . . ,m} give the possibility of
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leaving flight i ∈ F uncovered. Such variables are necessary to ensure feasibility
and to reflect their unattractiveness each is assigned a high objective coefficient,
M . In a similar way we also allow the base constraints to be violated. In reality
one would prefer to violate the base constraints in preference to cancelling some
of the flights. The decision variables uk where k = 1, . . . , |B1| and ok where
k = 1, . . . , |B2| give the number of mandays one violates the respective base
constraints by. Again, such decision variables are assigned a high cost, p (where
p < M), to make them unattractive. The mathematical programme can then
be written as follows:

minimise c>x+Ms+ pu+ po (D.1)

subject to Ax+ Is = 1 (D.2)

B1x+ I1u = b1 (D.3)

B2x− I2o = b2 (D.4)

x ∈ {0, 1}n (D.5)

s ∈ Rn (D.6)

u ∈ R|B1|
+ (D.7)

o ∈ R|B2|
+ . (D.8)

where I, I1 and I2 are identity matrices of appropriate size.

The number of possible pairings in the set partitioning formulation is very large
and the above model is typically only solved using branch-and-price methodol-
ogy. In what follows, however, we will present a new integer programming frame-
work for efficiently solving this problem based on the subsequence methodology
described in Rasmussen et al. (2011e).

D.3 Subsequence methodology

The idea of using subsequence generation to solve the airline crew pairing prob-
lem was first proposed in Rasmussen et al. (2011e). The fundamental idea with
this approach is to cleverly limit the number of subsequent flights that can feasi-
bly follow any flight f ∈ F and then dynamically introduce attractive so-called
subsequences during the solution process. Formally stated, the subsequences of
a particular flight f ∈ F are the set of pairs (f, g) ∈ F2, where g ∈ F is a
feasible subsequent flight of f . Figure D.3 illustrates this concept. We denote
the set of subsequences of any flight f ∈ F as S(f). The subsequence count of
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any flight f ∈ F is then given as |S(f)| and the term unique subsequence refers
to the situation in which the subsequence count of all flights f ∈ F is at most
one. We denote the set of all subsequences as S =

⋃
f∈F S(f), and O is used to

refer to a set of optimal subsequences.

The premise is that by considering a limited subsequence set, one can reduce
the complexity of the mathematical model and, if done in an intelligent manner,
the approach should not reduce the quality of the solution. Due to the set
partitioning constraints of the model, one can observe that an optimal integer
solution must have unique subsequence. In what follows, we discuss how one
first limits the number of subsequences and then how one identifies attractive
subsequences to add to the problem.

Airport

Time

Ingoing flight

Outgoing flight

Figure D.3: Subsequences.

D.3.1 Subsequence limitation

Limiting the number of possible subsequences for each flight in the problem
is beneficial from a computational perspective. Naturally it reduces the total
number of pairings that must be considered. In addition to this, however, from
a graph theoretical perspective problems with a limited subsequence set pro-
duce balanced or close to balanced constraint matrices. That is, the constraint
matrix defines a polytope that has integral or near integral vertices (see Ryan
and Falkner (1988) and Conforti et al. (2001) for details). Figure D.4 provides
an example of a limited subsequence set for an incoming flight f ∈ F . The set
L(f) ⊆ S(f) is used to denote the limited subsequence set for flight f ∈ F .
The set L =

⋃
f∈F L(f) contains all limited subsequences for all flights. In the

example |L(f)| = 2 and |S(f)| = 6. Being able to accurately identify which sub-
sequences to include in L(f) for every flight f ∈ F is of crucial importance with
this approach. Obviously, one must determine which subsequences to initially
include. However, the limited subsequence set for each flight is a dynamic set in
the sense that one can add attractive subsequences during the solution process.
Here, attractive refers to a subsequence’s ability to reduce the objective function
of the relaxed master problem. The relaxed master problem is problem of the
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Time

Ingoing flight

Outgoing flight

Disallowed flight

Figure D.4: Limited subsequences.

form of Model (D.1)–(D.8) that contains only a subset of all pairings and has
no integral restrictions. The overall aim of the subsequence approach is to be
able to identify a set of optimal subsequences without considering all possible
subsequences in the pairing construction.

D.3.2 Subsequence generation

The purpose of subsequence generation is to use successive solutions to the re-
laxed master problem to identify an attractive subsequence (or possibly more
than one) to add to the respective limited subsequence sets in order to enrich
the set of possible pairings in the problem. Given the nature of the objective
function it is unlikely that many deep subsequences will be in an optimal solu-
tion. A deep subsequence is one with a lengthy duration between the incoming
and subsequent outbound flight. Therefore, we begin by defining candidate sub-
sequence sets C(f) for each flight f ∈ F . Again we define C =

⋃
f∈F C(f). We

have L(f) ⊆ C(f) ⊆ S(f) for all f ∈ F and L ⊆ C ⊆ S. The relationship
between these sets can be seen in Figure D.5. Ideally we would like O ⊂ C.
Subsequence generation is an iterative procedure noticeably similar to column
generation. At every iteration the relaxed master problem is solved and the dual
vector is used to identify negative reduced cost pairings. Finding a negative re-
duced cost pairing entails solving a resource constrained shortest path problem
on a connection network, see Clausen et al. (2010). Each node of this network
corresponds to a particular flight f ∈ F , while an arc between any two nodes
indicates that it is possible for one flight to follow the other feasibly in a pairing.
Unlike column generation, however, the aim is not to return a pairing from the
pairing generation step, but rather to identify a good subsequence that should
be contained in a pairing. For this reason we set up a number of sparse networks
specifically designed to identify particular subsequences. The following classes
of subsequences are important to recognise in crew pairing:

1. Follow-the-aircraft
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All subsequences

Limited subsequence set

Optimal subsequences

Candidate subsequence set

Figure D.5: The relations between the set of all subsequences S, the limited sub-
sequence set L, the candidate subsequence set C, and an optimal subsequence set O.

2. Robust

3. Meal break

4. Overnight

For any flight f ∈ F , the follow-the-aircraft subsequence is the one where the
crew flies out on the same aircraft as they flew in with. This type of subse-
quence is very robust with respect to delays, because if crew is delayed on the
ingoing flight that can still operate the outgoing flight. Expectations and data
from Air New Zealand show that the majority of the optimal subsequences are
of this type. A robust subsequence is one in which the time difference between
the arrival of the incoming flight and departure of the subsequent flight exceeds
the minimum sit time for the crew plus a certain degree of buffer time. Robust
subsequences guard against delay propagation just as follow-the-aircraft subse-
quences. All crew members are entitled to meal breaks at certain time intervals.
A meal break subsequence is one which provides crew with the possibility of
taking a meal (either in the air or on the ground). Finally, since we typically
construct pairings that are longer than three days in generation, it is inevitable
that crew will have to overnight somewhere (base or non-base) during this time
interval. An overnight subsequence is one in which the crew’s idle time on the
ground exceeds the minimum rest time.

The above classes of subsequences collectively give the candidate set of subse-
quences C. We combine the follow-the-aircraft subsequences with each of the
other three classes to give three subsets of the candidate set in order to con-
struct networks that allow us to search specifically for robust, meal break, and
overnight subsequences. The set C1 contains subsequence classes 1 and 2, C2

contains classes 1 and 3, and C3 consists of classes 1 and 4. We note for com-
pleteness that

⋃3
k=1 Ck = C. To ensure that the shortest path solve on each of
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the networks is quick, we restrict the number of subsequences for each flight in
each of the subsets. That is |Ck(f)| ≤ nk, where nk is a small integer less than,
say, five. The set C1 is used as the initial limited subsequence set L.

While the pairing generation mirrors what is done in column generation (albeit
on slightly different networks), unlike column generation the pairings are not
returned directly to the relaxed master problem. Instead, all negative reduced
cost columns are passed through a subsequence analysis phase. For each subse-
quence s ∈ C the analyser maintains four measures that are accumulated over all
iterations and updated after analysis of the set of negative reduced cost columns
returned by the pairing generators. These statistics are:

1. Count of columns containing s.

2. Count of different dual vectors that have produced columns containing s.

3. Sum of the reduced cost of columns that contain s.

4. Sum of the contribution from s to the negative reduced cost of columns
containing s.

The measures are correlated, so a high rank in one measure could also give a high
rank in some of the other measures. In fact, three out of the four measures utilise
the dual information of the relaxed master problem. Utilising dual information
to identify favourable flights is also the topic of Barnhart et al. (1995). Here
the authors limit the search to deadhead flights only and incorporate it into a
standard column generation procedure.

At each iteration some subsequences are identified as attractive based on these
four measures and added to the set L. Once a subsequence s has been iden-
tified as an attractive subsequence, an enumeration procedure is performed to
generate a whole set of new pairings, which all contain the identified subse-
quence. All enumerated pairings are then added to the relaxed master problem.
The enumeration returns feasible pairings in L containing s. The reason why
a relatively large set of columns is added to the LP model, is, that whenever a
subsequence is identified as attractive, it is believed that it is likely to end up
in an optimal solution. That is, the optimal solution should contain one of the
enumerated columns.
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D.4 Integer programming framework

Given the preceding section on subsequence generation, one can obtain a high
quality solution to the relaxed master problem as shown by Rasmussen et al.
(2011e). Since only a subset of the subsequences are considered this approach
cannot provide a certificate of optimality. In order to solve the airline crew
pairing problem we need a solution that satisfies the integral restrictions of
Model (D.1)–(D.8). In this section we present an integer programming frame-
work, which utilises follow-on branching, to force the xj variables to assume
integer values. In Section D.4.1 we formalize the methodology of Section D.3.2
via a flow-chart, before introducing the idea of constraint branching in Sec-
tion D.4.2. Finally, in Section D.4.3, we provide an overview of the complete
integer programming approach.

D.4.1 Solving the LP relaxation

Figure D.6 provides a schematic view of how the subsequence generation proce-
dure solves an instance of the relaxed master problem. To initialise the algorithm
all possible pairings from the subsequence set C1 are enumerated and given to
the LP solver to obtain an initial solution. The dual solution to this problem
is then passed to the subsequence generation routine, which executes a series
of pairing generators. Each pairing generator returns a set of negative reduced
cost pairings which are then analysed in order to identify one or more attractive
subsequences. Upon identifying such a subsequence an enumeration procedure
is performed to generate all pairings that contain the specified subsequence.
Again, the enumeration is done only with subsequences from the limited set
L. The relaxed master problem is then re-optimised with the additional set of
pairings. One iterates in this fashion until one of the following situations occurs:

1. No significant improvement in the objective function for a specified number
of iterations.

2. No negative reduced cost pairings are returned from the pairing generators.

It can be observed that the process is quite similar to column generation. How-
ever, with column generation, the dual solution is passed to the pairing gener-
ators and any negative reduced cost pairings are added directly to the relaxed
master problem.
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Initial subsequence set

LP solver

Subsequence generator

Duals

Pairing generator(s)

DualsPairings

Set of

enumerated

pairings

Figure D.6: Subsequence generation.

D.4.2 Follow-on branching

Fractional solutions to the relaxed master problem arise when two or more pair-
ings compete to cover the same flight(s). Due to the set partitioning structure
of the model, one knows that in any optimal solution at most one pairing can
cover any flight. In most airline crew pairing applications the branching method
of choice is the so-called follow-on branching rule. This rule is a variation of
the constraint branching technique developed by Ryan and Foster (1981) and is
also what is implemented in this paper. In follow-on branching one must iden-
tify two flights that are flown consecutively and contained in a pairing that is
covered fractionally (i.e. at a value greater than zero, but strictly less than one)
in a solution to the relaxed master problem. This branching strategy partitions
the solution space into two disjoint subspaces (or branches). The first ensures
that the two flights are flown consecutively, while the second ensures that they
are covered by different pairings. Since one is branching on consecutive flights,
this rule is particularly easy to incorporate in the pairing generators as it only
requires the modification of arcs associated with two flights in the network.
Furthermore, the follow-on branching concept is closely related to the notion
of a subsequence—identifying two flights to be flown consecutively amounts to
identifying a subsequence.

To identify the subsequence to branch on given a fractional solution to a relaxed
master problem we simply find the subsequence that is covered fractionally at
maximum value (i.e. at a value greater than zero, but strictly less than one)
and create two new nodes to be solved, as outlined above. Imposition of a
branch requires one to first remove those pairings that violate the branch from



180
An IP Framework for the Crew Pairing Problem using Subsequence

Generation

the relaxed master problem. Here, we simply bound all such variables to zero.
As we mentioned in Section D.2, we allow the partitioning flight constraints
and base constraints to be violated, with an appropriate penalty. The artificial
variables are never bounded to zero and ensure we always have a starting basis
after this bounding step. By retaining the artificial variables, we do not need
to implement a time consuming phase 1/phase 2 approach.

Through modifications to the pairing generators, any pairing that violates the
branch is prevented from entering the problem. If the branch states that the
subsequence should not be contained in any pairing (i.e. the two flights cannot
be flown consecutively), then the corresponding arc is removed from any pairing
generators it appears in. If, on the other hand, one is forcing a subsequence to
be contained in a pairing, then one must ensure that the corresponding arc is
contained in the solutions to the respective resource constrained shortest paths.
Here, to enforce a particular subsequence, we remove all other conflicting subse-
quences from the relevant networks. This ensures that the desired subsequence is
contained and prevents us from having to introduce a new resource in the short-
est path solve. A conflicting subsequence is one in which either the inbound
or outbound flight is different to that stated in the subsequence to branch on.
Figure D.7 illustrates how a subsequence (consisting of flights one and two) is
enforced. The arcs given in red are all subsequences that must be removed in

Flight 2Flight 1

Figure D.7: Forcing a subsequence.

order to ensure that flight 1 and flight 2 are flown consecutively (or not flown
at all) in a pairing.

D.4.3 Solving the integer programme

To produce a high quality solution to Model (D.1)–(D.8), we combine the follow-
on branching strategy of the preceding section with the subsequence generation
methodology of Section D.4.1 to implement a kind of branch-and-price algo-
rithm. Branch-and-price is a well-known technique, which utilises column gen-
eration, for solving the crew pairing problem (see Barnhart et al. (1998) for de-
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tails). Due to the fact that we identify, and add dynamically, new subsequences
to the problem as we proceed, even during the branching phase of the approach,
the integer programming framework we propose does not strictly adhere to tra-
ditional branch-and-bound principles. In particular, one cannot guarantee that
a child node will have an objective function value that is at least that of its
parent. We are prepared to make this sacrifice, since as it is hoped that by
identifying good subsequences at the root node high quality integer solutions
can be obtained quickly (without too much branching).

When solving nodes of the branch-and-bound tree we adopt a depth-first strat-
egy, each time enforcing the identified subsequence, since this often produces
a good integer solution quickly. Upon finding the first integer solution, how-
ever, we switch to a best-first search. That is, we evaluate the unexplored
nodes in increasing order of their parent’s objective value. Figure D.6, with two
modifications, can be considered the solution procedure for any node. When
initialising the algorithm all pairings that do not satisfy the branch to enforce
must be removed. Furthermore, all networks must be modified to ensure only
feasible pairings (i.e. all necessary branches are enforced) are generated. The
branch-and-bound procedure terminates when all nodes have been evaluated or
the incumbent integer solution is within a degree of tolerance of the best, unex-
plored node. While this integer programming approach does not provide valid
lower bounds, the idea of subsequence generation is to provide a good integer
solution quickly. In the computational results of Section D.5 we compare our
integer solutions to the optimal solution of the relaxed master problem.

D.5 Computational results

In this section we analyse the performance of the proposed solution approach on
19 real-life data instances that were made available to us by Air New Zealand.
The data sets are taken from Air New Zealand’s domestic timetable. The do-
mestic timetable does, however, also include destinations in Australia and the
Pacific Islands. To perform the computational analysis we restrict the number
of flights in each of the instances. This is done to ensure that they terminate
in reasonable time. Table D.1 states the number of flights (|F|) and the total
number of base constraints for each instance (|B1|+ |B2|).

There are a number of parameters one must determine when implementing the
subsequence generation. These include the following:

1. Which criterion does one use to identify a subsequence to add to the
problem?
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|F| 450 430 430 370 400 380 400 320 450 350 320 420 420 450 320 400 400 350 320
|B1|+ |B2| 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5

Table D.1: Characteristics for the test instances.

2. How many subsequences should be contained in each of the sets C1, C2,
and C3?

Based on the results of Rasmussen et al. (2011e), the selection strategy that
is used to identify an entering subsequence is a round-robin procedure which
loops over the four measures described in Section D.3.2. At each iteration the
subsequence which has the highest score in the measure under consideration
is added to the problem. Enumeration is then performed. Here, we test and
compare the impact on solution time and quality by increasing the number of
subsequences that can be contained in the sets C1, C2, and C3. In the first case
we restrict the sets to contain at most three subsequences, while in the second
this limit is set to four. The branching routine terminates when the incumbent
integer solution is within 1% of the “best” unexplored node. We impose a time
limit of 3600 seconds on the complete algorithm. The penalties associated with
not covering a flight and violating a base constraint are 108 and 106, respectively.
All tests are run on 2.67 GHz Intel Xeon X5550 CPUs with 23.5 GB of memory.
The algorithm is implemented in C++ and compiled with g++ 4.4.0 on a Linux
computer. LP relaxations are solved with the LP solver from MOSEK 6.0 using
an academic license.

Table D.2 gives the results for the case in which each of the subsequence classes
C1, C2, and C3 contains at most three subsequences. For each instance we state
the instance name, the objective value of the best integer solution, and the time
at which this solution was obtained. Furthermore, we provide an indication of
the quality of this solution through a comparison with objective function value
of the relaxed master problem (root LP) as well as the objective function value
of the relaxed master problem obtained using a conventional column generation
procedure. The column generation procedure has no restrictions on the num-
ber of subsequences each flight can have and is also given a time limit of 3600
seconds. For a fair comparison, we also hot start this procedure with an enu-
meration of pairings on the C1 subsequence class. On all instances the column
generation procedure timed out and what is given in the table is the objec-
tive function value of the root node at termination (cg LP). We also provide
the percentage gap between the objective value of our integer solution and the
solution obtained using column generation, the number of uncovered flights in
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our solution (UF), the number of nodes explored in the branching phase of the
algorithm, and the time required for the algorithm to execute. The subsequence
generation procedure terminates when the incumbent integer solution is within
1% of the “best” unexplored. That is, within 1% of objective value of the best
node’s parent.

One can observe from the table that the subsequence generation procedure pro-
vides, with a few exceptions, good quality integer solutions (within a few per-
cent of the objective value obtained using column generation) given the one
hour time limit. In all cases an integer solution is obtained within 11 minutes
of computation time. The column generation procedure, on the other hand,
does not converge within the same time frame. It is encouraging to see that
for some instances (i.e. w08r02a and w08r04a) we are within 2% of the column
generation approach extremely quickly. However, instances w08r01e, w08r02c,
w08r03a, w08r03e, and w08r04d show that there is room for improvement in
the subsequence identification phase of the algorithm The large percentage gaps
can be explained by the fact that we have more uncovered flights than the col-
umn generation procedure. For example, for instance w08r03a we have twice
as many uncovered flights. However, to put this in perspective, w08r03a is a
flight schedule containing 320 flights and we uncover eight of them. Comparing
the time at which the best integer solution was found with the time it took the
algorithm to conclude, we note that all instances terminated upon finding the
first integer solution. One can also see that in several cases the integer solution
obtained has a better objective function value than the root node. As we men-
tioned in Section D.4.3, this is possible as subsequences are dynamically added
during the branching phase of the algorithm.

Table D.3 gives the results for the case in which each of the subsequence classes
C1, C2, and C3 contains at most four subsequences. While this table reinforces
many of the conclusions from Table D.2, one can also observe that the integer
solutions are slightly better than those obtained in Table D.2. Increasing the
class sizes does, however, slow the method down. This can be explained by
the following. A larger candidate set of subsequences creates larger networks
for the pairing generators and in doing so creates more feasible pairings. As
a result, the enumeration procedure not only takes longer, but there are also
more pairings in the relaxed master problem making the optimisation slower.
Interestingly, instance w08r04d is the only instance for which we uncover fewer
flights by increasing the candidate subsequence set size. This could be a result
of increased flexibility given the additional flights or a result of the subsequence
generation taking a different path in the execution of the algorithm. That is,
subsequences are identified in a different order, prompting a different sequence of
events in the algorithm. Finally, the fact that in some cases we undercover more
flights than would appear necessary would suggest that a more sophisticated
process of including subsequences in the candidate set might be required.
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D.6 Conclusion and future work

In this paper we have described a new integer programming framework for solv-
ing the well-known airline crew pairing problem. At the core of the methodology
is subsequence generation. This approach limits the number of subsequences in
the problem and dynamically adds attractive subsequences as needed. A follow-
on branching strategy is described for obtaining integer solutions. Encouraging
results are presented for 19 real-life instances supplied by Air New Zealand. In
comparison to a column generation procedure that fails to converge to the op-
timal solution of the relaxed master problem within in an hour of computation
time, the methodology presented in this paper produces good quality integer
solutions well within the same time limit. This indicates the method could po-
tentially be a viable alternative to the conventional column generation approach
to this problem.

While the results are encouraging, they also suggest that improvements are
necessary. For instance, as it is now, the candidate set of subsequences C is
a static set. If this does not contain the optimal subsequences (or at least a
close to optimal set), then it is unlikely the method will do well. One promising
improvement would be to be make this set dynamic so that one could add
new candidate subsequences during the solution process, or even remove some
unpromising ones. In this way one can keep a good, small set of subsequences.
Furthermore, one can also improve the subsequence identification step. This is
the core process in the approach and dictates how many pairings will be added
to the problem. Improvements here will positively impact the run time of the
approach.

Acknowledgements: The authors would like to thank Paul Keating from Air
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