
The Manpower Allocation Problem with Time Windows
and Job-Teaming Constraints: A Branch-and-Price

Approach

Anders Dohn�, Esben Kolind, and Jens Clausen
Informatics and Mathematical Modelling, Technical University of Denmark, Copenhagen, Denmark

March 12, 2007

In this paper, we consider the Manpower Allocation Problem with Time Win-
dows, Job-Teaming Constraints and a limited number of teams (m-MAPTWTC).
Given a set of teams and a set of tasks, the problem is to assign to each team
a sequential order of tasks to maximize the total number of assigned tasks. Both
teams and tasks may be restricted by time windows outside which operation is not
possible. Some tasks require cooperation between teams, and all teams cooperating
must initiate execution simultaneously. We present an IP-model for the problem,
which is decomposed using Dantzig-Wolfe decomposition. The problem is solved
by column generation in a Branch-and-Price framework. Simultaneous execution
of tasks is enforced by the branching scheme. To test the e¢ ciency of the proposed
algorithm, 12 realistic test instances are introduced. The algorithm is able to �nd
the optimal solution in 11 of the test instances. The main contribution of this
article is the addition of synchronization between teams in an exact optimization
context.

1 Introduction and Problem Description

The Manpower Allocation Problem with Time Windows, Job-Teaming Constraints and a
limited number of teams (m-MAPTWTC) is the problem of assigning m teams to a number
of tasks, where both teams and tasks may be restricted by time windows outside which
operation is not possible. Tasks may require several individual teams to cooperate. Due to
the limited number of teams, some tasks may have to be left unassigned. The objective is to
maximize the number of assigned tasks.
The problem arises in various contexts where cooperation between teams/workers, possi-

bly with di¤erent skills, is required to solve tasks. An example is the home care sector, where
the personnel travel between the homes of the patients who may demand collaborative work
(e.g. for lifting). The problem also occurs in hospitals where a number of doctors and nurses
are needed for surgery and the composition of sta¤ may vary for di¤erent tasks. Another
example is in the allocation of technicians to service jobs, where a combination of technicians
with individual skills is needed to solve each task.

�Corresponding author. E-mail address: adh@imm.dtu.dk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13708774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This study focuses on the scheduling of ground handling tasks in some of Europe�s ma-
jor airports. Between arrival and the subsequent departure of an aircraft, numerous jobs
including baggage handling and cleaning must be performed. Typically, specialized handling
companies take on the jobs and assign crews of workers with di¤erent skills. Any daily work
plan must comply with the time windows of tasks, the working hours of the sta¤, the skill
requirements of tasks, and union regulations. It may be necessary to have several teams
cooperating on one task in order to complete it within the time window. The workload has
to be divided equally among the cooperating teams. Furthermore, all teams involved must
initiate work on the task simultaneously (synchronized cooperation), as only one of the team
leaders is appointed as responsible supervisor. In the remainder of this paper, a team is a
�xed group of workers, whereas when referring to job-teaming or cooperation, we refer to a
temporary constellation of teams joined together for a speci�c task. In the airport setting,
all tasks require exactly one skill each.
MAPTWTC has previously been treated by Lim et al. [28] and Li et al. [26] in a

metaheuristic approach. They study an example originating from the Port of Singapore,
where the main objective is to minimize the number of workers required to carry out all
tasks, rather than carrying out the maximum number of tasks with a given workforce. Both
papers describe secondary objectives as well.
Our problem is closely related to the Vehicle Routing Problem with Time Windows

(VRPTW) which has been studied extensively in the literature.
The Vehicle Routing Problem with Split Deliveries (VRPSD) allows a customer to be

visited by several vehicles, each ful�lling some of the demand. The problem was introduced by
Dror and Trudeau [10]. See [25] for an overview of the literature. Frizzell and Gi¢ n [13] were
the �rst to include the time window extension in the split delivery problem (VRPTWSD).
They solve the problem heuristically. A tabu search for VRPTWSD is developed by Ho and
Haugland [16].
Lau et al. [24] formulate the vehicle routing problem with time windows and a limited

number of vehicles (m-VRPTW) and solve it using a tabu search approach. See [29] and [27]
for other heuristic approaches to the same problem.
In order to �nd literature on exact solution to VRPTW, we have to revert to a formulation

without split deliveries and without limitations on the number of vehicles. The most promis-
ing recent results for exact solution to VRPTW problems use column generation. Column
generation for VRPTW was initiated by Desrochers et al. [8]. They solve the pricing prob-
lem as a Shortest Path Problem with Time Windows (SPPTW). Their approach proved very
successful and was further applied and developed by Kohl [21], Kohl et al. [22], Larsen [23],
Cook and Rich [5], Kallehauge et al. [19], Righini and Salani [30], and Irnich and Villeneuve
[17].
Recently, Feillet et al. [12] suggested solving the pricing problem as an Elementary

Shortest Path Problem with Time Windows (ESPPTW) building on the ideas of Beasley
and Christo�des [2]. Chabrier [3], Danna and Pape [6], and Jepsen et al. [18] have extended
the ideas and achieved very promising results.
The remainder of this paper is structured as follows. In Section 2, we present an IP

formulation of m-MAPTWTC. In Section 3, the formulation is decomposed into a master
problem and a pricing problem using Dantzig-Wolfe decomposition. This decomposition
allows us to solve the problem using column generation in a Branch-and-Price framework.
In Section 4, the necessary branching rules are described. This includes branching to enforce
integrality as well as synchronized cooperation on tasks. The computational results on a
number of real-life problems are presented in Section 5. Finally, in Section 6 we conclude on
our work and discuss possible areas for future research.

2

2 Problem De�nitions and Formulation

2.1 IP Formulation of m-MAPTWTC

Consider a set C of n tasks and a workforce of inhomogeneous teams V . All shifts begin at
a service center, referred to as location 0. The set of tasks together with the service center
is denoted N . For each task i 2 C a time window is de�ned as [ai; bi] where ai and bi are
the earliest and the latest starting times for task i, respectively. ri is the number of teams
required to carry out task i (Task i is divided into ri split tasks). Each team k 2 V has a
time window [ek; fk], where the team starts at the service center at time ek and must return
no later than fk. Between each pair of tasks (i; j), we associate a time tij which contains
the travel time from i to j and the service time at task i. Further, gik is a binary parameter
de�ning whether team k has the required quali�cations for task i (gik = 1) or not (gik = 0).
We assume that ai, bi, ek, fk are non-negative integers and that each tij is a positive

integer. We also assume that the triangular inequality is satis�ed for tij .
To solve the problem, two sets of decision variables have to be de�ned:

xijk is binary with xijk =
n 1, if team k goes directly from task i to task j.
0, otherwise

si is an integer variable and de�nes the starting time of task i.

m-MAPTWTC can be formulated mathematically as:

max
X
k2V

X
i2C

X
j2N

xijk (1)

X
k2V

X
j2N

xijk � ri 8i 2 C (2)

xijk � gik 8i 2 C;8j 2 C;8k 2 V (3)X
j2N

x0jk = 1 8k 2 V (4)

X
i2N

xihk �
X
j2N

xhjk = 0 8h 2 N;8k 2 V (5)

ek + t0j �M(1� x0jk) � sj 8j 2 N;8k 2 V (6)

si + ti0 �M(1� xi0k) � fk 8i 2 N;8k 2 V (7)

si + tij �M(1� xijk) � sj 8i 2 C;8j 2 C;8k 2 V (8)

ai � si � bi 8i 2 N;8k 2 V (9)

xijk 2 f0; 1g 8i 2 N;8j 2 N;8k 2 V (10)

sik 2 Z+ [f0g 8i 2 N;8k 2 V (11)

The objective (1) is to maximize the number of assigned tasks. A task is counted multiple
times if split between teams (ri > 1). The constraints (2) guarantee that each task is assigned
the right number of teams or possibly less, if some of its split tasks are left unassigned. Only
teams with the required skill can be assigned to a speci�c task (3). Furthermore, we have to
ensure that all shifts start in the service center (4). Constraints (5) ensure that no shifts are
segmented. Any task visited by a team must be left again. The next four constraints deal

3

with the time windows. First, we ensure that a team can only be assigned to a task during
their working hours (6)-(7). Next, we check if the time needed for traveling between tasks
is available (8). If a customer i is not visited, the large scalar M makes the corresponding
constraints non-binding. Constraints (9) enforce the task time windows. Finally, constraints
(10)-(11) are the integrality constraints. The introduction of a service start time removes
the need for sub-tour elimination constraints, since each customer can only be serviced once
during the scheduling horizon because tij is positive.

2.2 Relations to Vehicle Routing

As mentioned earlier, m-MAPTWTC is closely related to VRPTW. Consider the teams as
vehicles driving from one customer to another as they in m-MAPTWTC move from one
task to another. The service that the teams deliver is an amount of their time, unlike the
vehicles that deliver goods which have taken up a part of the total volume. Hence, in that
sense m-MAPTWTC is uncapacitated. Except for the binding between teams in�icted by
the possibility of cooperation on tasks, the problem is similar to the Uncapacitated Vehicle
Routing Problem with Time Windows and a limited number of vehicles (m-VRPTW).

Column generation has proven a successful technique for exact solution of VRPTW and
as m-MAPTWTC is also NP-hard (see [26]) the solution procedure in this article is built on
the principles of column generation in a Branch-and-Price framework.

3 Decomposition

We present the Dantzig-Wolfe decomposition [7] of m-MAPTWTC. First, we introduce the
notion of a path. A feasible path is de�ned as a shift starting and ending at the service center,
obeying time windows and skill requirements, but disregarding the constraints dealing with
interaction between shifts. By this de�nition the feasibility of a path can be determined
without further knowledge about other paths. We de�ne Pk as the set of all feasible paths
for team k 2 V . Let the set Ti be the set of all possible start times for task i. Each path is
de�ned by the tasks it visits and the time of initiation of each task. Let âptik = 1 if task i is
initiated at time t on path p for team k and âptik = 0 otherwise.

3.1 Master Problem

In the integer master problem we solve the problem of optimally choosing one feasible path
for each team, maximizing the total number of assigned tasks. In the original formulation,
the equations (3)-(9) are used to ensure feasibility of paths. In the master problem, the set
Pk is used to guarantee this feasibility. The use of only one si for each task had the e¤ect
that cooperating teams would initiate work simultaneously. In the master problem this has
to be enforced by a new binary decision variable ti.

Now, the integer programming master problem is formulated as below, where �pk are
binary variables, which for each vehicle k are used to select a path p from Pk. ti is a binary
variable deciding if task i is initiated at time t. Any feasible solution to the master problem
is a feasible solution to the original formulation.

4

max
X
k2V

X
i2N

X
p2Pk

X
t2Ti

âptik�
p
k (12)

X
k2V

X
p2Pk

âptik�
p
k � ri

t
i 8i 2 C;8t 2 Ti (13)

X
t2Ti

ti = 1 8i 2 C (14)

X
p2Pk

�pk = 1 8k 2 V (15)

�pk 2 f0; 1g 8k 2 V;8p 2 Pk (16)

ti 2 f0; 1g 8i 2 C;8t 2 Ti (17)

The objective still is to maximize the number of assigned tasks (12). (13) has two e¤ects.
For each team it ensures that a path can only be selected if all tasks in the path comply with
their respective time of initiation. Further, it ensures that each task is not assigned more
teams than requested. In (14) we force all tasks to have only one time of initiation, and (15)
guarantees that all teams have exactly one path assigned to them.
To apply column generation, the integrality constraints are relaxed to allow solution of

the master problem by a standard linear solver. Unfortunately, the ti-variables loose all
signi�cance when LP-relaxed. Consider the LP-relaxed problem, i.e. (12)-(15) with the
relaxed constraints 0 � �pk � 1;8k 2 V;8p 2 Pk and 0 � ti � 1;8i 2 C;8t 2 Ti. The
LP-problem is a relaxation of the following problem:

max
X
k2V

X
i2N

X
p2Pk

X
t2Ti

âptik�
p
k (18)

X
k2V

X
p2Pk

X
8t2Ti

âptik�
p
k � ri 8i 2 C (19)

X
p2Pk

�pk = 1 8k 2 V (20)

0 � �pk � 1 8k 2 V;8p 2 Pk (21)

Proof. According to Wolsey [32]: A problem (PR) zR = maxff(x) : x 2 T � Rng is a
relaxation of (P) z = maxfc(x) : x 2 X � Rng if:

1. X � T

2. f(x) � c(x); 8x 2 X

Take any feasible solution �0 to (18)-(21). Set each 0ti equal to the portion of paths

where time t is used for task i: 0ti =

P
k2V

P
p2P0

k

âptik�
p
kP

k2V

P
p2P0

k

P
t02Ti

âpt
0

ik �
p
k

. Using (19), (13) is satis�ed

since 8i 2 C;8t 2 Ti : ri0ti = ri

P
k2V

P
p2P0

k

âptik�
p
kP

k2V

P
p2P0

k

P
t02Ti

âpt
0

ik �
p
k

=
P
k2V

P
p2P0

k

âptik�
p
k

riP
k2V

P
p2P0

k

P
t02Ti

âpt
0

ik �
p
k

�

P
k2V

P
p2P0

k

âptik�
p
k .

0 obviously satis�es (14) and (15) is identical to (20). So for each solu-

tion to (18)-(21) there is a corresponding solution to the LP-relaxation of (12)-(17). Since

5

the objective functions (12) and (18) are identical, the projection on the �-subspace of the
LP-relaxation of (12)-(17) is a relaxation of (18)-(21).
Hence, instead of using the model directly, we relax the constraint on synchronized co-

operation by using the model (18)-(21). We de�ne apik =
P
8t2Ti

âptik;8i 2 C;8k 2 V;8p 2 Pk,

where apik = 1 if task i is in path p for vehicle k and a
p
ik = 0 otherwise. At the same time, we

choose to change from a maximization problem to a minimization problem by introducing �i
as the number of unassigned split tasks of task i. This is our relaxed master problem. Finally,
to decrease the size of the problem, a set of promising paths P 0k (� Pk) is used instead of
Pk. In a column generation context P 0k contains all paths generated for team k in the pricing
problem so far. We arrive at the restricted master problem (RMP):

min
X
i2C

�i (22)

�i +
X
k2V

X
p2P0

k

apik�
p
k � ri 8i 2 C (23)

X
p2P0

k

�pk = 1 8k 2 V (24)

�pk � 0 8k 2 V;8p 2 P 0k (25)

�i � 0 8i 2 C (26)

The sum of �i over all tasks is minimized (22). (19) is changed to a greater-than inequality
constraint, penalizing inadequate assignment to a task by adding �i (23). This change allows
tasks to be done more times than required, which is useful in a column generation setting,
where an existing column may enter the solution basis, and we do not have to generate a new,
almost identical column containing a subset of the tasks. As a consequence, the estimates
of the �nal dual variables improve (see [20]). The new master problem has the form of a
generalized set-covering problem.
On the downside, any solution may now contain overcovering, i.e. we may have tasks

which are assigned to more teams than requested. However, in the new formulation, over-
covering can be removed without altering the objective value by unassigning the super�uous
number of teams for each task. The modi�ed solution is still feasible and the overcovering
can hence easily be removed from an optimal solution.
If the master problem contains no columns representing paths from the outset of the

column generation procedure, the problem will be infeasible due to the team constraints (24).
Therefore, we add an empty path �0k (a

0
ik = 0;8i 2 C) for each team to ensure feasibility

whether regular paths are present or not. An empty path can only be part of an optimal
solution if the presence of the team can not decrease the number of unassigned tasks. This
will be the case if manpower is available in abundance or the skills or working hours of the
team do not match those of the tasks.
The solution to the restricted master problem may not be integer. In addition, we have

relaxed the constraint on synchronization of tasks. Both of these properties must be enforced
by a branching scheme.
The solution to the restricted master problem is not guaranteed to be optimal either,

since only a small subset of feasible paths is considered. For each primal solution � to
the restricted master problem we obtain a dual solution [�; �], where � and � are the dual
variables of constraints (23) and (24) respectively. In column generation, the dual solution is
used in the pricing problem to ensure the generation of columns leading to an improvement
of the solution to the master problem.

6

3.2 Pricing problem

The pricing problem speci�es all the requirements of a feasible path. The objective is to
�nd the path with the lowest possible cost. In m-MAPTWTC with inhomogeneous teams
as described above, we obtain m = jV j separate pricing problems. Each pricing problem is
an Elementary Shortest Path Problem with Time Windows (ESPPTW). The binary variable
xij is de�ned as xij = 1 if the team goes directly from task i to task j and xij = 0 otherwise.
For a team k0 2 V the pricing problem is formulated as:

min
X
i2C

X
j2C

��ixij � �k0 (27)

X
j2N

x0j = 1 (28)

X
i2N

xih �
X
j2N

xhj = 0 8h 2 N (29)

ek0 + t0j �M(1� x0j) � sj 8j 2 C (30)

si + ti0 �M(1� xi0) � fk0 8i 2 C (31)

si + tij �M(1� xij) � sj 8i 2 C;8j 2 C (32)

ai � si � bi 8i 2 C (33)

xij 2 f0; 1g 8i 2 N;8j 2 N (34)

si 2 Z+ [f0g 8i 2 C (35)

The constraints match the constraints of the original formulation except for the relation
between vehicles.
The pricing problem can be perceived as a graph problem. Consider a graphG(NG; EG; c; t),

where the nodes NG are all tasks plus the service center and EG is the set of edges connect-
ing all nodes. With each edge e 2 EG is associated a travel time te = tij and a cost
ce = cij = ��i, where i and j are the two nodes connected by e. To simplify, the service
center is usually split into two vertices: a start vertex 0 and an end vertex n+1. The objec-
tive is to �nd a path in G from 0 to n+ 1 with a minimum sum of edge costs that does not
violate any time windows.
Solution methods to the Shortest Path Problem with Time Windows have been studied

extensively in the literature and successful algorithms for solving SPPTW have been built
on the concept of dynamic algorithms. We solve the elementary version of the problem
(ESPPTW), where no cycles are allowed. Dror [9] proves that the problem is NP-hard in the
strong sense and thus no pseudo-polynomial algorithms are likely to exist. We use a label
setting algorithm built on the ideas of Chabrier [3] and Jepsen et al. [18]. The authors of
both papers have recently succeeded in solving previously unsolved VRPTW benchmarking
instances (from the Solomon Test-sets [31]) by ESPPTW-based column generation. Further-
more, Feillet et al. [11], [12] address the Vehicle Routing Problem with Pro�ts (similar to
the Vehicle Routing Problem with a limited number of vehicles) and state that solving the
elementary shortest path problem as opposed to the relaxed version is essential to obtain
good bounds.
We will not go into the details of the label setting algorithm, since the problem is almost

identical to the pricing problem of VRPTW. We have a shortest path problem where all arc
costs out of a node are identical and hence can be moved to the node. The pricing problems
are �rst solved in a heuristic label setting approach and if no columns can be added, we
switch to the exact label setting algorithm.

7

3.3 Linking the Pricing Problem to the Master Problem

3.3.1 Team Priorities

As described earlier, each team has its separate pricing problem. This introduces the chal-
lenge of choosing the pricing problem in each iteration that is most likely to return usable
columns. Initially, we implement a round-robin style mechanism, where each team is picked
in turn. If a whole round is completed without at least one pricing problem returning a path
with negative reduced cost, optimality is proven for the relaxed master problem.
Typically, some teams have less tight schedules than others and good columns are gener-

ated earlier in the process. We introduce another scheme to utilize this feature. We associate
each team with a team priority, which is set equal to the reduced cost of the latest returned
column. If no column was returned for team k, the team priority is set to a positive num-
ber higher than all other priority values to ensure that all other teams are treated before
considering team k again.
By using team priorities, the teams which have recently shown the biggest improvements

are treated �rst. Notice, that in some iterations we may not �nd the column with minimum
reduced cost as it may be associated with a di¤erent team. However, when terminating the
column generation, optimality is guaranteed in the same way as for the simple round-robin
scheme.

3.3.2 Store Last Solved Pricing Problem

Having a number of separate teams with di¤erent skills and scheduling horizons means that
the pricing problems of some teams do not change for many iterations. In the extreme case,
we sometimes see master problems which are actually separable, i.e. the assignment of tasks
to one team has no way of altering the dual variables for the pricing problem of another
team. In these cases we may solve the exact same pricing problem repeatedly. To avoid this,
we save the last solved pricing problem for each team, if it did not return any columns with
negative reduced cost. If it did return such a column, there is no point in saving the problem
as the dual variables will now have changed.
Prior to solving a pricing problem, it is checked whether any circumstances have changed

since last time. These circumstances include dual variables and relevant branching decisions.

4 Branching

4.1 Branching to get integral solutions

Various branching strategies for VRPTW have been proposed. See [20] for a more thorough
review of branching strategies for VRPTW. In the MAPTWTC setting, a 0-1 branching on
an original �ow variable xijk (proposed independently by Halse [15] and Desrochers et al.
[8]) is equivalent to forcing team k to do (banning team k from doing, respectively) task
j immediately after task i. The branching is enforced by removing illegal columns in the
master problem in each child node and removing illegal arcs in the network formulation of
the pricing problem for team k. In VRPTW, another possibility is to perform a 0-1 branching
on
P

k xijk thus imposing the above constraint on all teams simultaneously. However, since
the teams are inhomogeneous due to di¤erent quali�cations and work hours and since tasks
i and j may need several teams to cooperate, the branching rule is no longer a 0-1 branching
and the advantage of keeping just one identical pricing problem for all teams is obviously
lost.

8

Instead, we focus on a 0-1 branching scheme based on
P

j xijk which simply implies that
team k is either forced to or banned from completing task i. Unlike the two strategies above,
there is no need to keep track of the status of individual arcs in the pricing problems of the
child nodes. The node corresponding to task i is either removed from the network (along
with all arcs incident to it) or given a very low (negative) cost to ensure its inclusion in any
optimal solution to the pricing problem.

4.2 Synchronized Cooperation using branching

Consider an optimal solution to the relaxed master problem, fractional or integral, and let spi
be the point in time where execution of task i begins on path p (if i is not a part of p, spi is
irrelevant). The solution violates the synchronized cooperation constraint for some task i if
there exist positive variables �p1k1 and �

p2
k2
associated with the two paths p1 and p2 (p1 6= p2),

both containing i where

sp1i 6= sp2i
If the solution is fractional, the teams k1 and k2 may be identical. In this case, the team

can be perceived as cooperating with itself.
De�ne s�i = d(s

p1
i + sp2i) =2e as the split time. Now, split the problem into two branches

and de�ne new time windows for task i as

[ai; s
�
i � 1] and [s�i ; bi]

respectively. Existing columns not satisfying the new time windows are removed from the
corresponding child nodes and new columns generated must also respect the updated time
window. In this way, the current solution is cut o¤ in both branches and the new subspaces
are disjoint. Since time has been discretized the branching strategy is guaranteed to be
complete.
The idea behind this branching scheme is to restrict the number of points in time, where

the execution of task i can begin. If the limited time window makes it inconvenient for the
teams to complete task i, the lower bound will increase and the branch is likely to be pruned
at an early stage. On the other hand, if the limited time window contains an optimal point in
time for the execution of task i, it may be necessary to continue the time window branching
until a singleton interval is reached. The time is discretized into a �nite number of steps
(minutes), and hence this will always be possible. However, since the label setting algorithm
for the pricing problem aims at placing tasks as early as possible (see [8]), the actual number
of di¤erent positions in time for any task is rather small. In fact, as the time windows are
reduced, the tasks are more and more likely to be placed at the very beginning of their time
window. This property greatly reduces the number of branching steps needed.
Using time window branching, the solution will eventually become feasible with respect

to the synchronized cooperation constraint. It is not guaranteed to be integral, though, and
it may therefore be necessary to apply the regular

P
j xijk branching scheme, branching on

a combination of a task and a team. As both schemes have a �nite number of branching
candidates, the solution algorithm will terminate when they are used in combination. In
general, when none of the feasibility criteria (integrality and synchronized cooperation) are
ful�lled, we have a choice of branching scheme.
Our algorithm has been set to use time window branching whenever applicable. The

restricted time windows reduce �exibility in the column generation which, in turn, limits
the possibilities of combining fractional columns when solving the master problem. Thus,
time window branching is also expected to have a positive in�uence on the integrality of

9

the solution as observed by Gélinas et al. [14] for VRPTW. This property has also been
observed in practice when testing the algorithm, hence the choice of prioritizing time window
branching.
We now focus on how good branching candidates are selected for branching. Let Pi be

the set of all paths p including task i with �pk > 0 in the current solution to the restricted
master problem. If

sp1i 6= sp2i
for any two paths p1; p2 2 Pi, task i is stored in the set C 0 of possible candidates. We
determine the split time as

s�i =

�
minp2Pi (s

p
i) + maxp2Pi (s

p
i)

2

�
;8i 2 C 0

When ranking the branching candidates, we prefer candidates that provide a balanced
search tree. That is, the paths in Pi should be divided equally into the two child nodes when
weighted according to the variable values �pk. De�ne

Si =
X

k2V;p2Pi

�pk;8i 2 C
0

as the sum of all positive variables containing i and let

S<i =
X

p2Pijspi<s�i ;k2V

�pk;8i 2 C
0

be the same sum restricted to the variables where task i is executed before the split time.
The branching candidate i� is now determined by

i� = arg min
i2C0

����S<iSi � 0:5
����

5 Computational Results

The Branch-and-Price algorithm has been implemented in the Branch-and-Cut-and-Price
framework of COIN-OR [4] and tests have been run on 2.7 GHz AMD processors with 2 GB
RAM. The implementation has been tuned to the problems at hand and parameter settings
have been made on the basis of these problems. The algorithm is set to do strong branching
[1] with 25 branching candidates and adds up to 10 columns with negative reduced cost per
pricing problem.
The test data sets originate from real-life situations faced by ground handling companies

in two of Europe�s major airports. This gives rise to four di¤erent problem types, since the
two airports each produce problems of two distinctive types. Each type is represented by
three problem instances, each spanning approximately one 24-hour day, thus, a total of 12
test instances are available.
Generally, the four problem types can be summarized as (In brackets: The total number

of tasks after splitting into requested split tasks):

Type A Small instances, Airport 1. 12-13 teams and 80 (120) tasks

Type B Medium instances, Airport 2. 27 teams and 90 (150) tasks.

10

Type C Small instances, Airport 2. 15 teams and 90 (110) tasks.

Type D Large instances, Airport 1. 19-20 teams and 270 (300) tasks.

Figure 1: Problem instance A.1 and its optimal solution.

The problem instance A.1 and its optimal solution is illustrated in Figure 1. The �gure
depicts the distribution of tasks over the day and the skill requirements for these. The
execution time of tasks and the length of their time windows are similar in the other problem
types. In our problem instances, each team must be given a prede�ned number of breaks
during their day and within certain time windows. Breaks are treated as regular tasks, with
the exceptions that they can only be assigned to the related team, and they cannot be left
unassigned in a feasible solution.
The individual schedules of the teams are captured in the 13 boxes, which clearly show

the start and end time of each shift. Each task is represented by one or more small boxes
labeled with the task ID (Breaks have ID: "BR"). The superscript denotes the number of
teams that the task must be split between. This number therefore corresponds to the total
number of boxes labeled with the task ID of this task. Above each task is a thin box depicting
the time window of the task. Furthermore, each task has a color pattern revealing its skill
requirement. Each team has between one and three skills, identi�ed by the small squares to
the left of the team ID. To assign a task to a team, the color pattern of the task must match
that of one of these small squares.

11

To illustrate how to read the �gure, we go through the work plan of team 9. The �rst
task carried out is task 6 which requires skill C. The task is scheduled from 6:10 to 7:10 and
hence the time window of the task is respected, since execution cannot start before 6 o�clock
and must be �nished by 7:30. The task is solved in collaboration with team 6. The light gray
box in front of the task gives the required travel time. Next, the team takes care of task 52
(requires skill A), this time cooperating with team 7. After this, team 9 is given their daily
break. Subsequently, they will carry out 71, 49, and 22, where task 49 and task 22 are dealt
with by team 9 alone.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 �7 1 0 3 5 �3 �6 �10 �29 24 �31

Lower Bound
 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 133 OM 2663 120 172 97 OM OM OM TO 2719 TO

- LP (%) 15 46 20 10 10 11 29 9 34 2 5 3

- Branching (%) 68 7 70 82 82 78 34 81 32 5 10 4

- Pricing Problem (%) 4 8 2 1 2 2 4 4 9 93 83 91

- Overhead (%) 13 39 8 7 6 9 33 6 25 0 2 2

Tree size 605 42435 3207 537 597 507 188623 87843 69637 4961 487 2741

Max. depth 160 162 168 264 291 253 122 166 204 219 235 228

Pricing Problems 13292 3 � 106 107320 15554 17240 14813 3 � 106 2 � 106 2 � 106 379799 20728 247634

Vars added 12268 2 � 106 109810 4074 5223 4321 2 � 106 1 � 106 1 � 106 231209 16659 204614

Table 1: Results of the Branch-and-Price algorithm with no initial solution.
OM = Out-of-Memory was encountered. TO = The Time-Out limit of 10 hours was reached.
� The solution given is the best feasible solution found.

 Lower Bound (more details in Table 3).

In Table 1 the results from the 12 datasets are given. From the table we conclude the
following. 6 of the 12 datasets were solved to optimality within one hour. The remaining 6
instances are split in two cases: one case for the small and medium-sized problems (Type
A-C) and one case for the large instances (Type D). For the unsolved problems of Type
A-C we see an explosion in the size of the branching tree. In these cases the time-out limit
is never reached, since we run out of memory before time out. The reported results for these
instances have been recorded after 2 hours, which in these cases is just before the memory
limit is reached. For Type D the results indicate that the generation of columns is now in
itself a time-consuming task and time-out is encountered with a relatively small tree-size.
The branching trees from the above test have been built without a good initial solution.

For each of the un�nished problems, we restart the algorithm with an initial solution, namely
the best feasible solution of Table 1. The results of the new test are displayed in Table 2.
It is interesting that most of these instances are now solved to optimality within seconds.

It clearly indicates that inexpedient branching decisions were made in the �rst run and more
reliable branching is possible when promising columns exist initially. Another observation
is that solving C.1 under default settings leads to another out-of-memory failure, whereas
changing the settings slightly gives an optimal solution within one second. This is another
indication of the importance of making the right branching decisions and the consequence of
not doing so. It has been tested that the settings giving a fast solution in this case are not
superior in general.
Systematic exploitation of these features is outside the scope of this article. Automatic

restart of the branching procedure could be implemented fairly easy. To achieve even faster

12

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 7 1 0 3 5 �3 4 9 �29 24 31

Lower Bound
 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.84 0.80 36 0.97 TO 235

- LP (%) 33 25 21 17 0 5

- Branching (%) 5 8 25 8 0 0

- Pricing Problem (%) 18 6 14 8 100 95

- Overhead (%) 44 61 40 67 0 0

Tree size 11 19 981 59 447 9

Max. depth 3 5 46 28 40 4

Pricing Problems 530 561 32921 1358 42284 6415

Vars added 785 758 16406 475 37212 6104

Table 2: Results of the Branch-and-Price algorithm with initial solution from the test of
Table 1.
TO = The Time-Out limit of 10 hours was reached.
� The solution given is the best feasible solution found.
� After OM on the �rst run, the pricing problem solver was in this case changed to not create
heuristic columns.

 Lower Bound (more details in Table 3).

results, a variety of acceleration strategies should be investigated. Look to [6] for more on
this topic.
To reveal the complexity added by the synchronized cooperation requirement, we also

show results for a version of the problem where no branching on time windows is done (Table
3). This means that cooperation is no longer synchronized, but we are able to reach optimal
solutions faster. Since the latter is a relaxation of the original problem, we are able to use
the solution values as lower bounds on our problem.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.96 1.10 1.37 0.64 0.77 0.80 1.18 1.86 1.65 75.18 413.26 2195.59

- LP (%) 16 8 15 6 4 3 19 25 10 17 10 2

- Branching (%) 7 0 0 0 0 1 39 24 49 17 8 1

- Pricing Problem (%) 45 74 69 19 22 30 9 11 17 62 81 97

- Overhead (%) 32 18 16 75 74 67 33 40 24 4 1 0

Tree size 3 3 1 1 3 3 11 21 19 35 83 97

Max. depth 1 1 0 0 1 1 5 8 9 17 41 22

Pricing Problems 163 93 291 103 80 81 288 481 367 4450 8783 9811

Vars added 407 350 663 309 222 212 586 683 435 4489 7773 14111

Table 3: Results of the Branch-and-Price algorithm with no constraint on synchronized
coordination.
All solution values can be used as lower bounds on the original formulation.

Solution times of Table 3 should be compared to the times of Table 1 and reveal that
solving the relaxed problem evidently is much faster and optimal solutions are found in all
cases. The running times for the small and medium problems are up to 2 seconds, where one

13

of the large problem instances uses around 37 minutes.
It is conspicuous that all the optimal solutions found in Table 1 are equal to the lower

bound found in Table 3. The lower bound found by the unsynchronized model is naturally
closely related to the lower bound found in the root node of the branching tree of the problems
in Table 1 and these results stress how important a good lower bound is.

6 Conclusion and future work

The Manpower Allocation Problem with Time Windows, Job-Teaming Constraints and a
limited number of teams is successfully solved to optimality using a Branch-and-Price ap-
proach. By relaxing the synchronization constraint and using Dantzig-Wolfe decomposition,
the problem is divided into a generalized set covering master problem and an elementary
shortest path pricing problem. Applying branching rules to enforce integrality as well as syn-
chronized execution of divided tasks enables us to arrive at optimal solutions in half of the
test instances. Running a second round of the optimization, initiated from the best solution
found in round one, uncovers the optimal solution to all but one of the 12 test instances.
The test instances are all full-size realistic problems originating from scheduling problems
of ground handling tasks in major airports. Synchronization between teams in an exact op-
timization context has not previously been treated in the literature. We have successfully
integrated the extra requirements into the solution procedure and the results are promising.
Future work could aim at creating a structured approach to utilize the e¤ect of restarting

the branching mechanism. By simply restarting the algorithm once, we see a remarkable
increase in the number of solvable problems, and an extended strategy may shorten solution
time signi�cantly and it may further increase the chance of �nding optimal solutions. Other
acceleration strategies are likely to reveal improved results as well.

References

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42�54, 2005.

[2] J.E. Beasley and N. Christo�des. An algorithm for the resource constrained shortest
path problem. Networks, 19:379�394, 1989.

[3] A. Chabrier. Vehicle routing problem with elementary shortest path based column
generation. Computers and Operations Research, 33(10):2972�2990, 2006.

[4] Coin. COmputational INfrastructure for Operations Research (COIN-OR), 2006.
http://www.coin-or.org/.

[5] W. Cook and J.L. Rich. A parallel cutting-plane algorithm for the vehicle routing
problem with time windows. Technical report, Rice University, Houston, TX, USA,
1999.

[6] E. Danna and C.L. Pape. Branch-and-Price Heuristics: A Case Study on the Vehi-
cle Routing Problem with Time Windows, chapter 4, pages 99�129. Desaulniers G.,
Desrosiers J., Solomon M.M.: Column Generation, Springer, New York, 2005.

[7] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101�111, 1960.

14

[8] M. Desrochers, J. Desrosiers, and M.M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40:342�354, 1992.

[9] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operation Research, 42(5):977�978, 1994.

[10] M. Dror and P. Trudeau. Savings by split delivery routing. Transportation Science,
23(2):141�149, 1989.

[11] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with pro�ts. Trans-
portation Science, 39(2):188�205, 2005.

[12] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216�229, 2004.

[13] P. W. Frizzell and J. W. Gi¢ n. The split delivery vehicle scheduling problem with time
windows and grid network distances. Computers and Operations Research, 22(6):655�
667, 1995.

[14] S. Gélinas, M. Desrochers, J. Desrosiers, and M.M. Solomon. A new branching strat-
egy for time constrained routing problems with application to backhauling. Annals of
Operations Research, 61:91�109, 1995.

[15] K. Halse. Modeling and Solving Complex Vehicle Routing Problems. PhD thesis, Tech-
nical University of Denmark, 1992.

[16] S. C. Ho and D. Haugland. A tabu search heuristic for the vehicle routing problem with
time windows and split deliveries. Computers and Operations Research, 31(12):1947�
1964, 2004.

[17] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k � 3. INFORMS Journal on Computing, 18(3), 2006.

[18] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. A non-robust branch-and-
cut-and-price algorithm for the vehicle routing problem with time windows. Technical
report, Department of Computer Science, University of Copenhagen, Denmark, 2006.

[19] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangean duality applied on vehicle
routing with time windows - experimental results. Technical report, IMM, Technical
University of Denmark, Copenhagen, Denmark, 2001.

[20] B. Kallehauge, J. Larsen, O.B.G. Madsen, and M.M. Solomon. Vehicle Routing Problem
with Time Windows, chapter 3, pages 67�98. Desaulniers G., Desrosiers J., Solomon
M.M.: Column Generation, Springer, New York, 2005.

[21] N. Kohl. Exact Methods for Time Constrained Routing and Related Scheduling Problems.
PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark,
DTU, Denmark, 1995.

[22] N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101�116,
1999.

15

[23] Jesper Larsen. Parallelization of the Vehicle Routing Problem With Time Windows.
PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark,
DTU, Denmark, 1999.

[24] H.C. Lau, M. Sim, and K.M. Teo. Vehicle routing problem with time windows and
a limited number of vehicles. European Journal of Operational Research, 148:559�569,
2003.

[25] Chi-Guhn Lee, Marina A. Epelman, Chelsea C. White III, and Yavuz A. Bozer. A short-
est path approach to the multiple-vehicle routing problem with split pick-ups. Trans-
portation Research Part B, 40:265�284, 2006.

[26] Y. Li, A. Lim, and B. Rodrigues. Manpower allocation with time windows and job-
teaming constraints. Naval Research Logistics, 52:302�311, 2005.

[27] Zhiye Li, Songshan Guo, Fan Wang, and Andrew Lim. Improved GRASP with tabu
search for vehicle routing with both time window and limited number of vehicles. In
Innovations in Applied Arti�cial Intelligence, pages 552�561, 2004. 17th International
Conference on Industrial and Engineering Applications of Arti�cial Intelligence and Ex-
pert Systems, IEA/AIE 2004.

[28] A. Lim, B. Rodrigues, and L. Song. Manpower allocation with time windows. Journal
of the Operational Research Society, 55:1178�1186, 2004.

[29] A. Lim and Xingwen Zhang. A two-stage heuristic for the vehicle routing problem with
time windows and a limited number of vehicles. In Proceedings of the Proceedings of the
38th Annual Hawaii International Conference on System Sciences (HICSS�05) - Track
3 - Volume 03. IEEE Computer Society, 2005.

[30] G. Righini and M. Salani. Symmetry helps: Bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-
timization, 3(3):255�273, 2006.

[31] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2):254�265, 1987.

[32] L.A. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.

16

