288 research outputs found

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Lightweight edge-based networking architecture for low-power IoT devices

    Get PDF
    Abstract. The involvement of low power Internet of Things (IoT) devices in the Wireless Sensor Networks (WSN) allow enhanced autonomous monitoring capability in many application areas. Recently, the principles of edge computing paradigm have been used to cater onsite processing and managing actions in WSNs. However, WSNs deployed in remote sites require human involvement in data collection process since internet accessibility is still limited to population dense areas. Nowadays, researchers propose UAVs for monitoring applications where human involvement is required frequently. In this thesis work, we introduce an edge-based architecture which create end-to-end secure communication between IoT sensors in a remote WSN and central cloud via UAV, which assist the data collection, processing and managing procedures of the remote WSN. Since power is a limited resource, we propose Bluetooth Low Energy (BLE) as the communication media between UAV and sensors in the WSN, where BLE is considered as an ultra-low power radio access technology. To examine the performance of the system model, we have presented a simulation analysis considering three sensor nodes array types that can realize in the practical environment. The impact of BLE data rate, impact of speed of the UAV, impact of distance between adjacent sensors and impact of data generation rate of the sensor node have been analysed to examine the performance of system. Moreover, to observe the practical functionality of the proposed architecture, prototype implementation is presented using commercially available off-the-shelf devices. The prototype of the system is implemented assuming ideal environment

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    System assessment of WUSN using NB-IoT UAV-aided networks in potato crops

    Get PDF
    Unmanned Aerial Vehicles (UAV) are part of precision agriculture; also, their impact on fast deployable wireless communication is offering new solutions and systems never envisioned before such as collecting information from underground sensors by using low power Internet of Things (IoT) technologies. In this paper, we propose a (Narrow Band IoT) NB-IoT system for collecting underground soil parameters in potato crops using a UAV-aided network. To this end, a simulation tool implementing a gateway mounted on a UAV using NB-IoT based access network and LTE based backhaul network is developed. This tool evaluates the performance of a realistic scenario in a potato field near Bogota, Colombia, accounting for real size packets in a complete IoT application. While computing the wireless link quality, it allocates access and backhaul resources simultaneously based on the technologies used. We compare the performance of wireless underground sensors buried in dry and wet soils at four different depths. Results show that a single drone with 50 seconds of flight time could satisfy more than 2000 sensors deployed in a 20 hectares field, depending on the buried depth and soil characteristics. We found that an optimal flight altitude is located between 60 m and 80 m for buried sensors. Moreover, we establish that the water content reduces the maximum reachable buried depth from 70 cm in dry soils, down to 30 cm in wet ones. Besides, we found that in the proposed scenario, sensors & x2019; battery life could last up to 82 months for above ground sensors and 77 months for the deepest buried ones. Finally, we discuss the influence of the sensor & x2019;s density and buried depth, the flight service time and altitude in power-constrained conditions and we propose optimal configuration to improve system performance

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions

    Architecture and Methods for Innovative Heterogeneous Wireless Sensor Network Applications

    Get PDF
    Nowadays wireless sensor netwoks (WSN) technology, wireless communications and digital electronics have made it realistic to produce a large scale miniaturized devices integrating sensing, processing and communication capabilities. The focus of this paper is to present an innovative mobile platform for heterogeneous sensor networks, combined with adaptive methods to optimize the communication architecture for novel potential applications in multimedia and entertainment. In fact, in the near future, some of the applications foreseen for WSNs will employ multi-platform systems with a high number of different devices, which may be completely different in nature, size, computational and energy capabilities, etc. Nowadays, in addition, data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. The goal of this procedure is to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based sensing with WSN augmentation and real-time processing for immersive media experiences

    Green internet of things using UAVs in B5G networks: A review of applications and strategies

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16 / RC / 3918 (Ireland's European Structural and Investment Funds Programmes and the European Regional Development Fund 2014-2020)

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Optimizing communication and computation for multi-UAV information gathering applications

    Get PDF
    Typical mobile agent networks, such as multi-UAV systems, are constrained by limited resources: energy, computing power, memory and communication bandwidth. In particular, limited energy affects system performance directly, such as system lifetime. Moreover, it has been demonstrated experimentally in the wireless sensor network literature that the total energy consumption is often dominated by the communication cost, i.e. the computational and the sensing energy are small compared to the communication energy consumption. For this reason, the lifetime of the network can be extended significantly by minimizing the communication distance as well as the amount of communication data, at the expense of increasing computational cost. In this work, we aim at attaining an optimal trade-off between the communication and the computational energy. Specifically, we propose a mixed-integer optimization formulation for a multihop hierarchical clustering-based self-organizing UAV network incorporating data aggregation, to obtain an energy-efficient information routing scheme. The proposed framework is tested on two applications, namely target tracking and area mapping. Based on simulation results, our method can significantly save energy compared to a baseline strategy, where there is no data aggregation and clustering scheme

    DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture

    Full text link
    [EN] The increase in the world population has led to new needs for food. Precision Agriculture (PA) is one of the focuses of these policies to optimize the crops and facilitate crop management using technology. Drones have been gaining popularity in PA to perform remote sensing activities such as photo and video capture as well as other activities such as fertilization or scaring animals. These drones could be used as a mobile gateway as well, benefiting from its already designed flight plan. In this paper, we evaluate the adequacy of remote sensing drones to perform gateway functionalities, providing a guide for choosing the best drone parameters for successful WiFi data transmission between sensor nodes and the gateway in PA systems for crop monitoring and management. The novelty of this paper compared with existing mobile gateway proposals is that we are going to test the performance of the drone that is acting as a remote sensing tool to carry a low-cost gateway node to gather the data from the nodes deployed on the field. Taking this in mind, simulations of different scenarios were performed to determine if the data can be transmitted correctly or not considering different flying parameters such as speed (from 1 to 20 m/s) and flying height (from 4 to 104 m) and wireless sensor network parameters such as node density (1 node each 60 m(2) to 1 node each 5000 m(2)) and antenna coverage (25 to 200 m). We have calculated the time that each node remains with connectivity and the time required to send the data to estimate if the connection will be bad, good, or optimal. Results point out that for the maximum node density, there is only one combination that offers good connectivity (lowest velocity, the flying height of 24 m, and antenna with 25 m of coverage). For the other node densities, several combinations of flying height and antenna coverage allows good and optimal connectivity.This work is partially founded by the European Union with the "Fondo Europeo Agricola de Desarrollo Rural (FEADER)-Europa invierte en zonas rurales", the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020" project number PDR18-XEROCESPED, by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, grant number APOSTD/2019/04.García, L.; Parra-Boronat, L.; Jimenez, JM.; Lloret, J.; Mauri, PV.; Lorenz, P. (2020). DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture. Applied Sciences. 10(19):1-23. https://doi.org/10.3390/app10196668S1231019Agriculture and Rural Development Agriculture and Rural Development https://ec.europa.eu/agriculture/cap-post-2013/Kropff, M. J., Wallinga, J., & Lotz, L. A. P. (2007). Modelling for Precision Weed Management. Ciba Foundation Symposium 210 - Precision Agriculture: Spatial and Temporal Variability of Environmental Quality, 182-207. doi:10.1002/9780470515419.ch12Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. doi:10.1016/j.isprsjprs.2015.10.004Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. doi:10.14358/pers.81.4.281Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science, 24(2), 152-164. doi:10.1016/j.tplants.2018.11.007Psirofonia, P., Samaritakis, V., Eliopoulos, P., & Potamitis, I. (2017). Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies. International Journal of Agricultural Science and Technology, 5(1), 30-39. doi:10.12783/ijast.2017.0501.03Agriculture Drones Market by Offering (Hardware and Software & Services), Application (Precision Farming, Livestock Monitoring, Precision Fish Farming, and Smart Greenhouse), Component, and Geography—Global Forecast to 2024 https://www.marketsandmarkets.com/Market-Reports/agriculture-drones-market-23709764.html?gclid=CjwKCAiA-P7xBRAvEiwAow-VaRPLzQ4x9YHOwUyC4e-PBfJvjpkB4Bqx9WWIt6S-lM0FsKvUcbqLdxoC_VcQAvD_BwECunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. doi:10.1016/j.rse.2016.05.019Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69. doi:10.1016/j.biocon.2016.03.027Urbahs, A., & Jonaite, I. (2013). FEATURES OF THE USE OF UNMANNED AERIAL VEHICLES FOR AGRICULTURE APPLICATIONS. Aviation, 17(4), 170-175. doi:10.3846/16487788.2013.861224Raeva, P. L., Šedina, J., & Dlesk, A. (2018). Monitoring of crop fields using multispectral and thermal imagery from UAV. European Journal of Remote Sensing, 52(sup1), 192-201. doi:10.1080/22797254.2018.1527661Stehr, N. J. (2015). Drones: The Newest Technology for Precision Agriculture. Natural Sciences Education, 44(1), 89-91. doi:10.4195/nse2015.04.0772Kurkute, S. R. (2018). Drones for Smart Agriculture: A Technical Report. International Journal for Research in Applied Science and Engineering Technology, 6(4), 341-346. doi:10.22214/ijraset.2018.4061Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518. doi:10.1080/09720510.2017.1395171Valente, J., Sanz, D., Barrientos, A., Cerro, J. del, Ribeiro, Á., & Rossi, C. (2011). An Air-Ground Wireless Sensor Network for Crop Monitoring. Sensors, 11(6), 6088-6108. doi:10.3390/s110606088Hunt, E. R., & Daughtry, C. S. T. (2017). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15-16), 5345-5376. doi:10.1080/01431161.2017.1410300Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10(11), 349. doi:10.3390/info10110349Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019). A review on the use of drones for precision agriculture. IOP Conference Series: Earth and Environmental Science, 275, 012022. doi:10.1088/1755-1315/275/1/012022Boehm, F., & Schulte, A. (2013). Air to ground sensor data distribution using IEEE802.11N Wi-Fi network. 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). doi:10.1109/dasc.2013.6712581Stek, T. D. (2016). Drones over Mediterranean landscapes. The potential of small UAV’s (drones) for site detection and heritage management in archaeological survey projects: A case study from Le Pianelle in the Tappino Valley, Molise (Italy). Journal of Cultural Heritage, 22, 1066-1071. doi:10.1016/j.culher.2016.06.006Marín, J., Parra, L., Rocher, J., Sendra, S., Lloret, J., Mauri, P. V., & Masaguer, A. (2018). Urban Lawn Monitoring in Smart City Environments. Journal of Sensors, 2018, 1-16. doi:10.1155/2018/8743179Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66-84. doi:10.1016/j.compag.2015.08.011Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263-270. doi:10.1016/j.csi.2011.03.004Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, I. (2009). A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors, 9(6), 4728-4750. doi:10.3390/s90604728Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59-64. doi:10.1016/j.csi.2012.05.001Chaudhary, D. D., Nayse, S. P., & Waghmare, L. M. (2011). Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless & Mobile Networks, 3(1), 140-149. doi:10.5121/ijwmn.2011.3113Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M.-C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252-265. doi:10.1016/j.compag.2011.02.004Zhu, Y., Song, J., & Dong, F. (2011). Applications of wireless sensor network in the agriculture environment monitoring. Procedia Engineering, 16, 608-614. doi:10.1016/j.proeng.2011.08.1131Keshtgari, M., & Deljoo, A. (2012). A Wireless Sensor Network Solution for Precision Agriculture Based on Zigbee Technology. Wireless Sensor Network, 04(01), 25-30. doi:10.4236/wsn.2012.41004Hwang, J., Shin, C., & Yoe, H. (2010). Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks. Sensors, 10(12), 11189-11211. doi:10.3390/s101211189Garcia-Sanchez, A.-J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288-303. doi:10.1016/j.compag.2010.12.005García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2019). Practical Design of a WSN to Monitor the Crop and its Irrigation System. Network Protocols and Algorithms, 10(4), 35. doi:10.5296/npa.v10i4.14147Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., & Dragana, C. (2020). Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture. Sensors, 20(3), 817. doi:10.3390/s20030817Specifications of the WEMOS MINI DI https://docs.wemos.cc/en/latest/d1/d1_mini.htmlSpecifications of the Node MCU https://joy-it.net/en/products/SBC-NodeMCU-ESP32Specifications of the Arduino Mega https://store.arduino.cc/arduino-mega-2560-rev3Specifications of the Arduino UNO https://store.arduino.cc/arduino-uno-rev3Specifications of the Raspberry Pi Model B+ https://www.raspberrypi-spy.co.uk/2018/03/introducing-raspberry-pi-3-b-plus-computer/Zorbas, D., Di Puglia Pugliese, L., Razafindralambo, T., & Guerriero, F. (2016). Optimal drone placement and cost-efficient target coverage. Journal of Network and Computer Applications, 75, 16-31. doi:10.1016/j.jnca.2016.08.009Parra, L., Rocher, J., García, L., Lloret, J., Tomás, J., Romero, O., … Roig, B. (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms, 10(2), 95. doi:10.5296/npa.v10i2.1320
    corecore