918 research outputs found

    Monitoring and Control Framework for Advanced Power Plant Systems Using Artificial Intelligence Techniques

    Get PDF
    This dissertation presents the design, development, and simulation testing of a monitoring and control framework for dynamic systems using artificial intelligence techniques. A comprehensive monitoring and control system capable of detecting, identifying, evaluating, and accommodating various subsystem failures and upset conditions is presented. The system is developed by synergistically merging concepts inspired from the biological immune system with evolutionary optimization algorithms and adaptive control techniques.;The proposed methodology provides the tools for addressing the complexity and multi-dimensionality of the modern power plants in a comprehensive and integrated manner that classical approaches cannot achieve. Current approaches typically address abnormal condition (AC) detection of isolated subsystems of low complexity, affected by specific AC involving few features with limited identification capability. They do not attempt AC evaluation and mostly rely on control system robustness for accommodation. Addressing the problem of power plant monitoring and control under AC at this level of completeness has not yet been attempted.;Within the proposed framework, a novel algorithm, namely the partition of the universe, was developed for building the artificial immune system self. As compared to the clustering approach, the proposed approach is less computationally intensive and facilitates the use of full-dimensional self for system AC detection, identification, and evaluation. The approach is implemented in conjunction with a modified and improved dendritic cell algorithm. It allows for identifying the failed subsystems without previous training and is extended to address the AC evaluation using a novel approach.;The adaptive control laws are designed to augment the performance and robustness of baseline control laws under normal and abnormal operating conditions. Artificial neural network-based and artificial immune system-based approaches are developed and investigated for an advanced power plant through numerical simulation.;This dissertation also presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques with immunity-inspired enhancements. Several algorithms mimicking mechanisms of the immune system of superior organisms, such as cloning, affinity-based selection, seeding, and vaccination are used. These algorithms are expected to enhance the computational effectiveness, improve convergence, and be more efficient in handling multiple local extrema, through an adequate balance between exploration and exploitation.;The monitoring and control framework formulated in this dissertation applies to a wide range of technical problems. The proposed methodology is demonstrated with promising results using a high validity DynsimRTM model of the acid gas removal unit that is part of the integrated gasification combined cycle power plant available at West Virginia University AVESTAR Center. The obtained results show that the proposed system is an efficient and valuable technique to be applied to a real world application. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems

    Big Data Analytics in Static and Streaming Provenance

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing,, 2016With recent technological and computational advances, scientists increasingly integrate sensors and model simulations to understand spatial, temporal, social, and ecological relationships at unprecedented scale. Data provenance traces relationships of entities over time, thus providing a unique view on over-time behavior under study. However, provenance can be overwhelming in both volume and complexity; the now forecasting potential of provenance creates additional demands. This dissertation focuses on Big Data analytics of static and streaming provenance. It develops filters and a non-preprocessing slicing technique for in-situ querying of static provenance. It presents a stream processing framework for online processing of provenance data at high receiving rate. While the former is sufficient for answering queries that are given prior to the application start (forward queries), the latter deals with queries whose targets are unknown beforehand (backward queries). Finally, it explores data mining on large collections of provenance and proposes a temporal representation of provenance that can reduce the high dimensionality while effectively supporting mining tasks like clustering, classification and association rules mining; and the temporal representation can be further applied to streaming provenance as well. The proposed techniques are verified through software prototypes applied to Big Data provenance captured from computer network data, weather models, ocean models, remote (satellite) imagery data, and agent-based simulations of agricultural decision making

    Network inference from sparse single-cell transcriptomics data: Exploring, exploiting, and evaluating the single-cell toolbox

    Get PDF
    Large-scale transcriptomics data studies revolutionised the fields of systems biology and medicine, allowing to generate deeper mechanistic insights into biological pathways and molecular functions. However, conventional bulk RNA-sequencing results in the analysis of an averaged signal of many input cells, which are homogenised during the experimental procedure. Hence, those insights represent only a coarse-grained picture, potentially missing information from rare or unidentified cell types. Allowing for an unprecedented level of resolution, single-cell transcriptomics may help to identify and characterise new cell types, unravel developmental trajectories, and facilitate inference of cell type-specific networks. Besides all these tempting promises, there is one main limitation that currently hampers many downstream tasks: single-cell RNA-sequencing data is characterised by a high degree of sparsity. Due to this limitation, no reliable network inference tools allowed to disentangle the hidden information in the single-cell data. Single-cell correlation networks likely hold previously masked information and could allow inferring new insights into cell type-specific networks. To harness the potential of single-cell transcriptomics data, this dissertation sought to evaluate the influence of data dropout on network inference and how this might be alleviated. However, two premisses must be met to fulfil the promise of cell type-specific networks: (I) cell type annotation and (II) reliable network inference. Since any experimentally generated scRNA-seq data is associated with an unknown degree of dropout, a benchmarking framework was set up using a synthetic gold data set, which was subsequently affected with different defined degrees of dropout. Aiming to desparsify the dropout-afflicted data, the influence of various imputations tools on the network structure was further evaluated. The results highlighted that for moderate dropout levels, a deep count autoencoder (DCA) was able to outperform the other tools and the unimputed data. To fulfil the premiss of cell type annotation, the impact of data imputation on cell-cell correlations was investigated using a human retina organoid data set. The results highlighted that no imputation tool intervened with cell cluster annotation. Based on the encouraging results of the benchmarking analysis, a window of opportunity was identified, which allowed for meaningful network inference from imputed single-cell RNA-seq data. Therefore, the inference of cell type-specific networks subsequent to DCA-imputation was evaluated in a human retina organoid data set. To understand the differences and commonalities of cell type-specific networks, those were analysed for cones and rods, two closely related photoreceptor cell types of the retina. Comparing the importance of marker genes for rods and cones between their respective cell type-specific networks exhibited that these genes were of high importance, i.e. had hub-gene-like properties in one module of the corresponding network but were of less importance in the opposing network. Furthermore, it was analysed how many hub genes in general preserved their status across cell type-specific networks and whether they associate with similar or diverging sub-networks. While a set of preserved hub genes was identified, a few were linked to completely different network structures. One candidate was EIF4EBP1, a eukaryotic translation initiation factor binding protein, which is associated with a retinal pathology called age-related macular degeneration (AMD). These results suggest that given very defined prerequisites, data imputation via DCA can indeed facilitate cell type-specific network inference, delivering promising biological insights. Referring back to AMD, a major cause for the loss of central vision in patients older than 65, neither the defined mechanisms of pathogenesis nor treatment options are at hand. However, light can be shed on this disease through the employment of organoid model systems since they resemble the in vivo organ composition while reducing its complexity and ethical concerns. Therefore, a recently developed human retina organoid system (HRO) was investigated using the single-cell toolbox to evaluate whether it provides a useful base to study the defined effects on the onset and progression of AMD in the future. In particular, different workflows for a robust and in-depth annotation of cell types were used, including literature-based and transfer learning approaches. These allowed to state that the organoid system may reproduce hallmarks of a more central retina, which is an important determinant of AMD pathogenesis. Also, using trajectory analysis, it could be detected that the organoids in part reproduce major developmental hallmarks of the retina, but that different HRO samples exhibited developmental differences that point at different degrees of maturation. Altogether, this analysis allowed to deeply characterise a human retinal organoid system, which revealed in vivo-like outcomes and features as pinpointing discrepancies. These results could be used to refine culture conditions during the organoid differentiation to optimise its utility as a disease model. In summary, this dissertation describes a workflow that, in contrast to the current state of the art in the literature enables the inference of cell type-specific gene regulatory networks. The thesis illustrated that such networks indeed differ even between closely related cells. Thus, single-cell transcriptomics can yield unprecedented insights into so far not understood cell regulatory principles, particularly rare cell types that are so far hardly reflected in bulk-derived RNA-seq data

    Inventory and Characterization of the Riparian Zone of the Current and Jacks Fork Rivers

    Get PDF
    The ecological, recreational, and economic value of the 134 mile (216 km) riparian corridor within the Ozark National Scenic Riverways (ONSR) is of great interest to land managers and conservationists. Recent interest in applying ecosystem management to forest systems has necessitated a fresh look at the tools and methods in use to assess existing patterns of plant community structure and diversity. The purpose and objective of the study described in this report was to initiate a series of vegetation studies that could be integrated with existing research and management infonnation on the riparian vegetation in the ONSR. Defining the compositional and spatial attributes of the riparian corridor were at the core of our research efforts. We used multivariate analysis and ordination techniques to characterize the composition and distribution of woody and herbaceous vegetation within the ONSR

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    MOBILE, HYBRID COMPTON/CODED APERTURE IMAGING FOR DETECTION, IDENTIFICATION AND LOCALIZATION OF GAMMA-RAY SOURCES AT STAND-OFF DISTANCES

    Get PDF
    The Stand-off radiation detection system (SORDS) program is an advanced technology demonstration (ATD) project through the Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray spectroscopic and imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity provided by multiple detection modes while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of gamma-ray spectroscopy and two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 NaI crystals (5x5x2 in each), arranged in a random coded aperture CA, followed by 30 position sensitive NaI bars (24x2.5x3 in each) called the DA. The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, the implemented spectroscopic, coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than any mode alone. Since the TMI is a moving system, peripheral data, such as a GPS and INS must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the GEANT4. Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone

    Artificial immune systems

    Get PDF
    The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm
    • …
    corecore