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Resumo

À luz da quarta revolução industrial, inúmeros setores da Indústria, outrora centralizados e es-
táticos, estão a tornar-se cada vez mais adaptáveis e tomam a forma de arquiteturas mais de-
scentralizadas. No entanto, como os sistemas são mais plásticos e dinâmicos, são também muito
mais imprevisíveis. Aliás, a complexidade ainda aumenta pela relação entre os dispositivos inter-
venientes. Embora a interligação entre dispositivos providencie oportunidades, também origina
interações imprevisíveis com resultados indesejáveis.

O problema a resolver consiste na deteção de anomalias de forma autónoma e flexível em am-
bientes industriais, com especial atenção dirigida à deteção de falhas. Em particular, assume-se
a existência de um processo físico a monitorizar e pretende-se detetar mudanças de comporta-
mento para um dado comportamento normal. Assim, esta dissertação tem os seguintes objectivos:
fornecer uma solução de deteção de anomalias que seja escalável, flexível, e forneça resultados
atempados; validar a referida solução num cenário representativo de ambiente industrial.

Esta dissertação enquadra-se na temática dos sistemas imunes artificiais, cuja inspiração ad-
vém do sistema imunológico dos seres vivos. Esta área de investigação ainda é pouco investigada,
apesar de resultados previamente obtidos, que revelam o seu potencial. Este trabalho ambiciona
aplicar os conceitos dos sistemas imunes artificiais à deteção de anomalias, mais especificamente,
o projeto pretende detar mudanças no comportamento classificado como normal. De acordo com
os requisitos da Indústria 4.0, este algoritmo tem a vantagem de ser aplicado em tempo real, ser
mais flexível e compatível com escalabilidade.

Tendo liberdade de escolha para o algoritmo a aplicar, foi desenvolvido um estudo comparativo
das soluções mais comuns e atuais no âmbito dos Sistemas Imunes Artificiais. A opção recaiu
sobre o Algoritmo de Células Dendríticas, que usa um modelo imunulógico mais moderno que
as propostas contemporâneas. De entre as contribuições, foi necessário adaptar o algoritmo de
forma a monitorizar continuamente o processo e para flexibilizar a fusão da arquitetura com outros
métodos.

A metodologia foi desenvolvida e validada com recurso a um conjunto de dados de acesso
público que simula um sistema hidráulico simples. O conjunto de dados tem, associado, um
conjunto de resultados de outras implementações. Em termos de resultados, verificam-se mel-
horamentos em relação às demais implementações atualmente constantes na tabela a nível da sua
métrica principal - F1 score - em que o melhor resultado obtido com a implementação desenvolvida
foi de 0.72, enquanto que o melhor resultado atual na tabela, usando deep learning, obteve uma
classificação de 0.79. No entanto, constatam-se também alguns defeitos no algoritmo, nomeada-
mente, no que toca à sua característica de requerer vários dados para classificar pontos individuais
(em média, um dado ponto necessita de 7 pontos para ser classificado), o que leva a um inevitável
atraso na sua classificação. O algoritmo foi ainda validado num segundo dataset, de forma a cor-
roborar que, com a nova versão do algoritmo, se torna mais fácil modelar problemas.

Com base nos resultados obtidos, é possível identificar trabalho futuro. A validação do algo-
ritmo num ambiente real será essencial para provar a sua aplicabilidade em ambiente industrial.

i



ii

Desenvolvimentos futuros incluem: a sua otimização a nível de memória e tempo de processa-
mento; a utilização de outras técnicas para geração de sinais; desenvolver uma forma de classifi-
cação imediata; acrescentar uma componente espacial (para além de temporal) e tornar o algoritmo
descentralizado.



Abstract

The world is undergoing the fourth industrial revolution, where sectors in the industry migrate
from centralized, static approaches, to more adaptable and decentralized architectures. The in-
crease in the dynamics of such systems also renders them more unpredictable. Furthermore, de-
vices are more and more connected, opening opportunities for unforeseen interactions that can
lead to undesirable effects.

The problem to be solved is the autonomous and flexible detection of anomalies in industrial
environments, with a focus on fault detection. In particular, the existence of a physical process is
assumed, where any behavioral changes (relative to normal behavior) are to be detected. Thus, this
dissertation has the following goals: provide an anomaly detection solution that is scalable, flexi-
ble, and provides timely results; validate said solution in a representative scenario of an industrial
setting.

In this thesis, an algorithm from the field of Artificial Immune Systems - a field inspired by the
human immune system - is adapted for the problem of anomaly detection, i.e., detecting changes
in normal behavior. This field is still overlooked, despite its promising results. With Industry 4.0
in mind, the algorithm is made more apt for real-time operation and is adapted to be more flexible
and scalable.

The adapted algorithm was a result of analyzing current solutions in Artificial Immune Sys-
tems, and thus, the process of analyzing said solutions is also presented. Then, the algorithm
that showed the most potential was chosen - the Dendritic Cell Algorithm - which uses a more
modern immunology model than previous approaches. This algorithm was adapted to be able to
continuously monitor a process and to be flexible by fusing its architecture with another technique.

The algorithm was then developed and validated using a dataset that emulates a simplified
water circulation system. The algorithm shows promising results in what concerns classification
results when compared to the remaining algorithms in the dataset’s benchmark’s main metric -
F1 score - scoring, at best, 0.72, with the current best being achieved by a convolutional with
autoencoder neural network at a score of 0.79. There were some identified shortcomings as well,
namely on how it can not classify data points in a single iteration, and requires further points (on
average, 7 points), leading to a delay in classification. The algorithm was also validated on a
second dataset, to corroborate that it is easier to model a problem for the algorithm.

Based on the results obtained, future work can be identified. Validation of the algorithm in a
real environment will be essential to prove its applicability in an industrial environment. Future
developments include: optimizing its memory and processing time; using other techniques for
signal generation; developing a form of immediate classification; adding a spatial (in addition to
temporal) component; and making the algorithm decentralized.
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Chapter 1

Introduction

1.1 Context

At its core, Cyber-Physical System (CPS) are an integration of computation with physical pro-

cesses, aligned with communication networks [7]. While traditional embedded systems incorpo-

rate computation with real-world interactions, CPS have a particular focus on inter-device commu-

nication [7]. They are often integrated into feedback loops where the cyber component (control,

communication, and computation in general) and physical components (the physical process itself,

measurements by sensors, impacts of actuators) are tightly coupled, just as with embedded sys-

tems, but with the added component of subsystem interactions, due to the ability of these subsys-

tems to communicate. This adds complexity and dynamics to such systems that are often difficult

to handle in centralized and predefined approaches. As time goes on, CPS tend to have more and

more devices connected in a network, more access to the Internet, and less human interaction [8]

as CPS are commonly seen as a core ingredient in the concept of Internet of Things (IoT) and the

so-called 4th Industrial Revolution [9].

Industry 4.0 is a very attractive concept that was introduced in Germany [9] where the fourth

industrial revolution is identified as the incorporation of the Internet and adaptable objects ("smart"

[9] machines and products) with the already digitized industry. CPS with access to the Internet are

one of the key enablers of the fourth industrial revolution, and this combination is often referred

to as the Industrial Internet of Things (I-IoT). The application of IoT in Industry 4.0 allows for de-

vices to be flexible in the way they interface and behave and allows the integration of significantly

more complex architectures in the industry, including components that process enormous amounts

of data (Big Data), and distributed computation as with cloud computing and edge computing,

where lower level devices (i.e. devices closer to the physical process) have increasing processing

power and can contribute with more complex computations. This increase in processing power

allows CPS components in Industry 4.0 to be independent, such that components organize them-

selves in a network based on the context that they are inserted in, can monitor their environment,

assess potential problems, and be able to adapt, in a way that the system as a whole becomes

decentralized [9].
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1.2 Motivation

CPS are applied in many different contexts, including, but not limited to, smart grids, water plants,

chemical plants, oil, and natural gas distribution systems, transportation systems, medical devices

and systems, manufacturing plants, avionics, and automotive control. In many of these contexts,

the CPS application is deemed to be safety-critical, in which a change in the standard behavior

can lead to drastic economic losses, material damage, if not human lives. Given that attacks have

been observed in the past, such as the Stuxnet worm [10], the Ukraine SCADA Attack [11], the

Mirai attack [12], Maroochy Water Services in Australia (2000), German Steel Mill Thyssenkrupp

(2014), and Norsk Hydro Aluminium (2019) [13], it’s important to design these systems to be

robust, especially when under faults or attacks.

As the connectivity of CPS increases, and with the I-IoT allowing access to the Internet, so do

the attack vectors of such a system. Furthermore, the increase in automation and system dynamics

due to complexity also contribute to attacks and naturally occurring faults to be harder to detect,

diagnose and repair by a human operator. This leads to a necessity for CPS to detect such attacks

or faults and take appropriate measures. Additionally, CPS have real-time requirements, given

that a process has to be sensed and processed to prepare any sort of response, and are typically

resource-constrained [14].

The field of AIS provides solutions based on immunology and exhibits promising properties,

namely adaptivity, scalability, and lightweight solutions. However, it is still largely overlooked by

the engineering community. Thus, it is important to assess its applicability for solving the issues

stated in the previous paragraph.

1.3 Research Questions and Objectives

Given the presented motivation and context, the following research questions were formulated:

• RQ1: What are CPS and what’s their role in industrial environments?

• RQ2: What kinds of Anomaly Detection techniques currently exist in industrial environ-

ments?

• RQ3: Which anomaly detection and recovery techniques are more appropriate for CPS in

industrial environments?

• RQ4: How can these techniques be tested and validated?

Due to the significant role of CPS in Industry 4.0, and the attractiveness of the latter, this

thesis aims to develop an approach to implement anomaly detection as a tool to detect faults.

The anomaly detection will focus on the underlying physical process (the plant), as it is often

overlooked by existing literature [15]. With the development of the thesis these objectives were

further narrowed down to the field of Artificial Immune System (AIS) - a field of algorithms that
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are inspired by the human immune system - as a largely unexplored field with analogies that fit

the problem of anomaly detection, with potential for lightweight, yet effective solutions.

In this context, this dissertation has two main goals:

• Develop a real time process-based anomaly detection technique with CPS resource and time

constraints in mind.

• Validate the developed technique using data that is representative of a real world scenario of

CPS operation.

1.4 Document Structure

Chapter 2 presents a brief systematic study of literature that resulted in concepts regarding the

problem of anomaly detection, and the environment of Industry 4.0, which are given in the same

chapter. This chapter further contains state of the art and related work and concludes with a

heuristic in literature distribution regarding the problem of anomaly detection.

Chapter 3 elaborates on early work conducted in the field of AIS to elect an algorithm to

expand.

Chapter 4 presents the main proposal for this thesis, which consists of expanding on the current

algorithm of DCA, which is described in the previous chapter.

Chapter 5 consists of the implementation of the proposed solution on a dataset that resulted

from an existing testbed. Results are analyzed considering anomaly detection in the context of

Industry 4.0, with conclusions regarding the proposed solution’s limitations and strong points.

Chapter 6 concludes the dissertation by summarizing the key contributions provided, summa-

rizing the work done, and providing aspects regarding future work.
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Chapter 2

Literature Review

In this chapter, an explanation of how state-of-the-art research was conducted is presented as

well as key topics that were identified, followed by the results of said research. Furthermore, the

problem characterization and problem definition are also given.

2.1 Systematic Review Approach

Initially, a systematic mapping study was attempted according to the guidelines provided by [16].

Where, in a first step, the key topics to be researched were identified, as research questions:

• RQ1: What are CPS and what’s their role in industrial environments?

• RQ2: What kinds of Anomaly Detection techniques currently exist in industrial environ-

ments?

• RQ3: Which anomaly detection and recovery techniques are more appropriate for CPS in

industrial environments?

• RQ4: How can these techniques be tested and validated?

Given these research questions, the initial approach was to subdivide the research into three

categories: Anomaly Detection, CPS, Anomaly Detection in the context of CPS. Both Anomaly

detection and CPS are very complex and broad topics, resulting in high numbers of entries,

which, given the time frame to conduct state-of-the-art, made a full systematic mapping too time-

consuming.

Although a systematic mapping study was not completed, some of the steps of such a study

were applied in the last research category: Anomaly Detection in the context of CPS. After a

review of articles, by choosing relevant temporary keywords, multiple sources in the literature

were read to identify which keywords were more appropriate. These keywords were, then, applied

to multiple peer-reviewed databases, namely: IEEE Xplore, ACM Digital Library, Engineering

Village (Compendex + Inspec), and Scopus, as shown in Table 2.1. Entries that were dated 2014 or

older, were not in English, or did not provide full-text under the licenses provided by the Faculty

7
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Figure 2.1: Research results, per step.

of Engineering, University of Porto’s b-on license, were excluded in what shall be called "first

exclusion". The initial results are shown in Table 2.2 as well as results after the first exclusion. All

articles were then grouped, and duplicate entries, resulting from the same entry being present in

multiple databases, were removed. Then, all entry titles were conservatively evaluated in respect

to their relevance to the research questions, such that only entries with clearly irrelevant titles were

removed. The same procedure was done to each entry’s abstract. The criteria for including articles

based on title and abstract were based on the following criteria:

• Offers either insight into requirements, a framework, a survey, a review, or a specific solution

with implementation for anomaly detection.

• Is inserted in an industrial context.

The process is summarized in Figure 2.1, along with each step’s results. The full (unclassified)

literature results are listed in Appendix A.

As previously mentioned, other sources were used, as the systematic mapping study was not

successfully applied to all categories. Namely, it would be necessary to apply the same rationale

to CPS in industrial environments, as well as Anomaly Detection independently of industrial con-

texts, to assess which applications could be used in such a context. Furthermore, this methodology

was used as source selection, but no actual mapping of studies was done.
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Table 2.1: Preliminary systematic study keywords used for each database.

Database Search Input

IEEE
Xplore

((("Industrial Environment" OR "Industrial Internet of Things" OR
"IIoT" OR "I-IoT" OR "Manufacturing Systems" OR "Industrial Wireless
Sensor Network" OR "IWSN" OR "Industry 4.0") AND ("Cyber Physical
System" OR "Cyber-Physical-System" OR "Cyber-Physical System" OR

"CPS" OR "Distributed Control System")) OR ("Cyber Physical
Production System" OR "CPPS")) AND ("Anomaly Detection" OR

"Outlier Detection" OR "Anomaly-Detection" OR "Outlier-Detection"
OR "Self-Healing" OR "Self Healing" OR "Recovery")

Engineering
Village
(Inspec

+
Compendex)

((((("Industrial Environment" OR "Industrial Internet of Things" OR
"IIoT" OR "I-IoT" OR "Manufacturing Systems" OR "Industrial Wireless
Sensor Network" OR "IWSN" OR "Industry 4.0") AND ("Cyber Physical
System" OR "Cyber-Physical-System" OR "Cyber-Physical System" OR

"CPS" OR "Distributed Control System")) OR ("Cyber Physical
Production System" OR "CPPS")) AND ("Anomaly Detection" OR

"Outlier Detection" OR "Anomaly-Detection" OR "Outlier-Detection"
OR "Self-Healing" OR "Self Healing" OR "Recovery")) WN ALL)

Scopus

( ( ( "Industrial Environment" OR "Industrial Internet of Things" OR
"IIoT" OR "I-IoT" OR "Manufacturing Systems" OR "Industrial

Wireless Sensor Network" OR "IWSN" OR "Industry 4.0" ) AND
( "Cyber Physical System" OR "Cyber-Physical-System" OR

"Cyber-Physical System" OR "CPS" OR "Distributed Control System" ) )
OR ( "Cyber Physical Production System" OR "CPPS" ) ) AND

( "Anomaly Detection" OR "Outlier Detection" OR "Anomaly-Detection"
OR "Outlier-Detection" OR "Self-Healing" OR "Self Healing" OR

"Recovery" )

ACM
Digital
Library

((("Industrial Environment" OR "Industrial Internet of Things" OR
"IIoT" OR "I-IoT" OR "Manufacturing Systems" OR "Industrial Wireless
Sensor Network" OR "IWSN" OR "Industry 4.0") AND ("Cyber Physical
System" OR "Cyber-Physical-System" OR "Cyber-Physical System" OR

"CPS" OR "Distributed Control System")) OR ("Cyber Physical
Production System" OR "CPPS")) AND ("Anomaly Detection" OR

"Outlier Detection" OR "Anomaly-Detection" OR "Outlier-Detection"
OR "Self-Healing" OR "Self Healing" OR "Recovery")

Table 2.2: Preliminary systematic study results, per database used. Only the unfiltered results
using the specified keywords and results after first exclusion are shown.

Database Initial results First Exclusion
IEEE Xplore 32 20

Engineering Village
(Inspec + Compendex)

27 24

Scopus 120 79
ACM Digital Library 65 60
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2.2 Background

This chapter includes various topics that are relevant for both the developed work throughout this

dissertation, as well as for the upcoming section on state of the art (Section 2.3)

2.2.1 CPS and Industry 4.0

CPS are applied in many different contexts, including, but not limited to, smart cities, smart grids,

water plants, chemical plants, oil and natural gas distribution systems, transportation systems,

medical devices and systems, manufacturing plants, avionics, and automotive control. The ongo-

ing trend is for these applications to be as robust, efficient, and autonomous as possible [17].

Industrial Internet of Things (I-IoT), as IoT applied to industrial manufacturing, is one of the

key concepts in Industry 4.0, as sensors, actuators, controllers, etc. (i.e. the "things") are all

loose and dynamically connected. The key differences in CPS in the context of Industry 4.0 stem

from their Internet access and need for autonomy in the form of the self-x philosophy [18] (e.g.,

self-healing, self-organizing, self-monitoring and, more generally, self-adapting). In this context,

according to [19], CPS desirably possess the following properties:

• Interoperability: all components can exchange information regarding their context and knowl-

edge.

• Virtualization: the physical process is digitized, such that a virtual representation can be

used to simulate the said process, to optimize production.

• Modularity: all components are independent enough, that they can be reconfigured in real-

time without the need for redesign while keeping their functionalities.

• Distributed Control: components execute independent control, favoring decentralized archi-

tectures over centralized ones.

• Flexibility: components can adapt to new contexts.

• Personalization: the system as a whole can respond to human feedback.

• Real-Time Response: the system can respond to contextual changes, as well as changing

needs at any point during the production.

• Self-Maintenance: components can respond to attacks or faults by maintaining performance

in adverse conditions, without human intervention.

The implementation of CPS in a large-scale environment, with heavily networked components

and immense amounts of data, is only possible through certain technologies:

• Communication: many key features of CPS in industrial environments require inter-component

communication. This is only possible if components can exchange information between
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each other respecting timeliness and integrity. A high number of components communi-

cating between each other lead to the need for high-speed connectivity, but also lead to

problems such as message collision and incompatible communication protocols [20]. Key

technologies that allow this communication to occur include 5G/6G, WiFi, M2M communi-

cation and software-defined networking [17] that allow internet access and inter-component

communication.

• Processing: with a higher number of components and higher interaction dynamics, pro-

cessing large amounts of information becomes a concern in Industry 4.0. Data mining and

Big data [19] contribute significantly in decision-making based on the immense amounts of

data that exist, making use of artificial intelligence, namely, machine learning. On the other

hand, the sheer amount of processing power required is provided, not only by the increase

of computer performance, but in the distributed philosophy of fog and edge computing [19],

where individual components process information that a single, resource-constrained cen-

tral system could not handle by itself, or make use cloud computing, migrating processing

to more capable computers. Concerning virtualization, virtual/augmented reality and digital

twins are examples of enabling technologies [19].

These technologies can be incorporated in a convenient architecture that allows for scalability,

interoperability while simultaneously accounting for the independent nature of CPS components.

P. Zhou et al. [21] distinguish between three categories of architectures: Service-Oriented Ar-

chitecture (SOA), Multi-Agent System (MAS), and other. SOA defines subsystems as service

providers that communicate what they can provide, while some sort of entity is responsible for

managing these subsystems based on their provided services; in this perspective, each subsystem

is not independent which is the main difference from MAS, where each agent acts on its own based

on the context where they are inserted, favoring a more decentralized approach over SOA. The

"other" category, that the authors describe as other "aspect-oriented architectures", are mainly con-

cerned with the problem of repurposing or incorporating legacy systems, as developing new CPS

that follow the previous architectures over reusing existing devices and protocols can be costly.

More traditional architectures make use of centralized architectures, but these are less dynamic

and adaptable by nature.

2.2.2 Anomaly Detection

Anomaly detection or outlier detection refers to algorithms that analyze data to identify anomalies

or outliers. An anomaly detection algorithm can be based around prior knowledge or by using

normal operating conditions to train the algorithm; in either case, a profile of what is to be consid-

ered normal is built. The algorithm then receives input data and evaluates if it matches its normal

behavior, or if it constitutes an outlier. Anomaly detection has a vast application range, as long

as data can be correlated, anomaly detection is possible, as a simple example: a person’s IQ test

results usually do not drastically change in between IQ tests, and, if it does, an anomaly can be

identified.
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For this dissertation, the most relevant anomaly detection is time series data anomaly detection,

where, as the name implies, the input data is a time series, usually through the use of timestamps

in each data instance. This type of anomaly detection is particularly important when discussing

anomaly detection in the context of networks or physical processes in real-time, leading to char-

acteristic challenges that are not shared with anomaly detection in data that is not time-dependent.

Time series anomaly detection is further discussed in section 2.2.2.4. K. Mehrotra et al. [6] offer a

comprehensive introduction into anomaly detection, along with existing algorithms, including the

category of anomaly detection in time series. This will be used as a reference for the remainder of

this section, regarding anomaly detection, unless otherwise specified.

2.2.2.1 Anomaly Detection Principles

Different algorithms can vary greatly in how they analyze data and draw conclusions, however,

there is a set of principles common to all algorithms which will be explained in the following

subsections.

Independently of how an algorithm works, it needs to identify data as either anomalous or

normal. Anomalies can be manifested in three ways [1]:

• Point anomaly: this is the simplest case in which the individual data instance is anomalous

when compared with the rest of the data. For instance, if a data instance presents values that

are higher than all other data instances.

• Contextual anomaly: data instance is anomalous regarding its context. The definition of

context is problem-specific. For instance, a recorded average yearly temperature of 9ºC in

the Amazon rain forest can be seen as a contextual anomaly, because it is abnormal in the

context that it is recorded (here, the context is longitude and latitude), but such an average

yearly temperature wouldn’t be anomalous in all contexts (e.g., Europe).

• Collective anomaly: a related collection of data is anomalous in respect to the entire dataset.

As an example, if a periodic behavior that repeats for every constant time interval suddenly

changes for a single period, that period alone is not anomalous, nor is any point in the context

deviating from the sequence, but the entire period behaves inconsistently when compared

to surrounding data points, despite possibly not having any significantly high values or high

rate of change.

Figure 2.2 illustrates these three types of anomalies in a time series.

Regarding a particular algorithm, four different cases of data classification can be defined:

• True Positive (TP): data was correctly classified as anomalous.

• True Negative (TN): data was correctly classified as normal.

• False Positive (FP): data was classified as anomalous, but the data is normal.

• False Negative (FN): data was classified as normal, but the data is anomalous.
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Figure 2.2: Three types of anomalies [1], applied to a noisy sine wave. Anomalies are highlighted
in red.

2.2.2.2 Anomaly Detection Metrics

In order to compare different algorithms, their performance can be calculated through evaluation

metrics. The commonly used accuracy metric serves anomaly detection evaluation poorly, as,

given that most data points constitute normal occurrences, an algorithm that identifies all points as

normal will have reasonable accuracy. Three common metrics to evaluate an imbalanced dataset

algorithm’s performance are precision, recall, and Rank-Power. Additionally, [22] further men-

tions the use of F1-score (more broadly, Fβ -score). The ROC curve [23] is also used frequently.

Less common metrics include balanced accuracy (e.g. used by P. Li et al. [24]) and the Matthews

correlation coefficient (e.g. used by M. Pamukov et al. [25]).

• Precision accounts for the ratio of correctly identified outliers to total outliers detected

(Equation 2.1). If all outliers that were detected are, indeed, outliers, then the algorithm’s

precision is 1, even if some outliers were deemed as normal.

Precision =
T P

T P+FP
(2.1)

• Recall measures the ratio of correctly identified outliers in respect to all outliers in a given

dataset (Equation 2.2). If all outliers that exist in the dataset are identified by the algorithm,

then the algorithm’s recall is 1, even if some normal occurrences were deemed anomalous.

Sometimes it is also called sensitivity.

Recall =
T P

T P+FN
(2.2)

• Rank-Power incorporates the notion of ranking anomalies according to their degree of sus-

picion (Equation 2.3), naturally, this is only possible if the algorithm can rank anomalies

accordingly, which is usually possible as most algorithms use some notion of distance or
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difference to decide if data is anomalous or not. If all correctly identified outliers have the

highest degree of suspicion, then Rank-Power will be 1.

Rank−Power =
T P(T P+1)

2∑
T P
i=1 Ri

(2.3)

Where Ri is the rank attributed to the ith correctly identified outlier.

• The Fβ -score (Equation 2.4) offers a combined metric of precision and recall, as β increases,

precision is favored, while lower values favor recall. The F1-score (Equation 2.5) gives

a harmonic mean between recall and precision, being closer to the smallest of those two

values, but favoring none, in particular, being used often to compare between algorithms.

Fβ =
(β 2 +1)∗Precision∗Recall

Recall +β 2 ∗Precision
(2.4)

F1 = 2
Precision∗Recall
Precision+Recall

(2.5)

• Balanced accuracy (ACC) measures the mean value between recall and specificity. Speci-

ficity is the opposite of recall, which was described in Equation 2.2, in that it measures the

ratio of correctly identified normal occurrences in respect to all existing normal occurrences

in a given dataset. Balanced accuracy’s calculation is specified in Equation 2.6, where the

first term in the numerator is recall.

ACC =
T P

T P+FN + T N
T N+FP

2
(2.6)

• The Matthews Correlation Coefficient (MCC) measures the correlation between the true

values and the predicted values (Equation 2.7). Its values vary between -1 and 1, where

0 means that the algorithm’s performance is similar to that of a random classifier, -1 is a

completely wrong classification, and 1 means a perfect classification.

MCC =
(T P∗T N)− (FP∗FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.7)

• The ROC curve, similarly to Rank-Power, requires a given algorithm to be able to rank its

results according to their degree of suspicion. However, unlike Rank-Power, the ROC curve

does not result in a single, absolute number, but rather a curve, as the name implies. This

curve is a plot of the False Positive Rate (FPR) in respect to the True Positive Rate (TPR),

i.e., recall. The FPR can be calculated according to Equation 2.8, while TPR was already

shown in Equation 2.2. In algorithms where the outcome is based on continuous numerical

outputs, being further classified into a binary result through the use of thresholds, a ROC

curve can be constructed by varying said threshold (theoretically from -∞ to +∞) and plotting
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Figure 2.3: Mapping example of 4 different hypothetical algorithms in ROC space.

FPR and TPR. ROC curves are indeed a sum of step functions as varying thresholds change

the classification of a given data point discretely, but as the number of data points increases,

the step function approaches a continuous curve. For algorithms where a ROC curve isn’t

possible, the algorithm’s results can still be plotted as a single point, with fixed FPR and

TPR. However, if the algorithm can be plotted in a curve, the Area Under the Curve (AUC)

of the ROC curve can be used as a numerical reference.

As an example for ROC, in Figure 2.3, four hypothetical algorithms are presented. Algo-

rithms A, B, and D have a varying threshold that changes from classifying all data points as

negative (bottom-left corner) to classifying all data points as positive (upper-right corner).

Algorithm C is mapped as a single point, corresponding to a specific implementation of an

algorithm that already classifies points without the use of thresholds. Furthermore, the gray

diagonal, where TPR has the same value as FPR, represents an algorithm reference that

randomly classifies any data point and its AUC is 0.5. The ideal algorithm lies in the upper-

left corner of ROC space and has an AUC of 1, corresponding to an algorithm that never

misclassifies any data point. Algorithms that lie below the gray diagonal (such as algorithm

D, with an AUC below 0.5) perform poorly, because a random-classifying algorithm would

perform better. Algorithm C outperforms both algorithms A and B. Neither algorithm A and

B is better than the other (their AUC is similar): for applications where false positives are

costly, algorithm A is better, while for applications where positive cases must be identified,

algorithm B is better.

FPR =
FP

FP+T N
(2.8)
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As a quick example, for a given dataset consisting of 100 data points, where 10 of them are

anomalous, an anomaly detection algorithm is applied and detects 20 outliers, out of which, 8

are truly anomalous (12 of the outliers detected are normal data points). The 8 correctly identified

outliers occupy positions 1 through 7 and 20, i.e., 7 of the outliers that were correctly detected were

considered to be the most suspicious, whereas one of the outliers that were correctly identified

was considered to be less suspicious than the remaining 19 outliers detected. In this scenario, the

previously mentioned metrics (except the ROC curve) would be given by:

T P = 8 FP = 12 T N = 78 FN = 2

Precision =
8

8+12
= 0.4

Recall =
8

8+2
= 0.8

Rank−Power =
8∗ (8+1)

2∗ (1+2+3+4+5+6+7+20)
= 0.75

F1 = 2
0.4∗0.8
0.4+0.8

= 0.53

F2 =
(22 +1)+0.4∗0.8

0.8+22 ∗0.4
= 0.44

F0.5 =
(0.52 +1)+0.4∗0.8

0.8+0.52 ∗0.4
= 0.66

ACC =
8

8+2 +
78

78+12

2
=

0.8+0.86
2

= 0.83

MCC =
(8∗78)− (12∗2)√

(8+12)(8+2)(78+12)(78+2)
= 0.5

In the provided example, precision is low because a significant number of normal data points

were misclassified as outliers, recall is higher because most actual outliers were identified, and

Rank-Power is not ideal because one of the correctly identified outliers had a low degree of suspi-

cion (the one that was placed in the twentieth position), F1 is highly impacted by the low precision;

that impact increases in F2, while F0.5, which favors recall, isn’t impacted as much. Balanced accu-

racy is just the average between recall and specificity (specificity would be 0.86, in this example)

and MCC is 0.5 which indicates this algorithm does significantly better than a random classifier

but can be improved substantially. All of these metrics have their limitations, namely: if an al-

gorithm identified a single outlier in total, but it is correctly identified, precision and Rank-Power

will be 1, even if an enormous amount of actual outliers were unidentified; if an algorithm deter-

mines all data points to be anomalous, the recall will be 1, despite the algorithm being useless for

any application. Thus, no single metric provides a good evaluation of performance, and multiple

metrics have to be used.

As previously mentioned, anomaly detection attempts to identify data points that are anoma-

lous when compared to what’s "normal". A first problem is to define what is normal and anomalous
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Figure 2.4: Simplified classification of anomaly detection approaches, adapted from [2].

in an objective and computable manner. This definition varies depending on the approach taken

by a specific algorithm and will be further discussed in the next section (Section 2.2.2.3).

2.2.2.3 Anomaly Detection Approaches

Three main approaches to what constitutes an anomaly can be identified:

• Distance-based: data points that are distant from others are outliers.

• Density-based: data points that are located in lower density regions are outliers.

• Rank-based: data points whose nearest neighbors have other points as nearest neighbors are

outliers.

Furthermore, the classification used by [2], which was derived from previous literature, can be

used, where two main groupings of anomaly detection algorithms are distinguished: parametric

and non-parametric. Non-parametric algorithms are further separated by [2] as well as [6] into

three groups: supervised, semi-supervised and unsupervised (as illustrated in Figure 2.4).

In parametric anomaly detection data has a known distribution and parameters (e.g., normal

distribution characterized by mean and standard deviation). In non-parametric approaches, prior

knowledge of data may be known, but its distribution is not and, thus, we need to learn it. This

can be accomplished through a supervised algorithm where all data points used have a known

classification through the use of labels (e.g., "anomalous" and "normal"), through an unsupervised

algorithm where data points have no labeling and data patterns and relationships are learned, or

through a semi-supervised algorithm using a small amount of labeled data and using that knowl-

edge to attempt learning on further, unlabeled data, where the latter constitutes the majority of all

data, which can be accomplished by applying what was learned in a supervised setting to label the

unlabeled data, for example.

Examples of anomaly detection approaches are summarized in Tables 2.3, 2.4 and 2.5 for

distance-based, clustering-based and model-based approaches, respectively.

One final concept to introduce is the application context in which anomaly detection occurs:

whether it is online or offline. Offline anomaly detection refers to the analysis of data that is

complete and obtained in an arbitrary moment in the past, which tends to have loose constraints
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Table 2.3: Different approach examples of distance-based criteria to identify outliers. Information
source: [6]

.

Approach Description
Distance to All Points Computes sum of distance to all other points.

Distance to Nearest Neighbor Computes distance to closest point.
Average Distance to k Nearest Neighbor Computes average distance to k nearest points.
Median Distance to k Nearest Neighbor Computes median distance to k nearest points.

Table 2.4: Different approach examples of clustering and of clustering-based criteria to identify
outliers. Information source: [6]

.
Goal Approach Description

Identify
different
clusters

k Nearest
Neighbors

Labels a given point according to the majority of k nearest points’
labels.

k-Means
Clustering

Labels a given point according to which cluster centroid cluster it
is closest to, updating the cluster centroid that it gets associated

with.

Fuzzy
Clustering

Labels a given point according to which cluster centroid cluster it
is closest to, updating the cluster centroid that it gets associated

with, having less impact the farthest it is from the centroid.

Agglomerative
Clustering

Starts with a high number of small clusters. Clusters merge as
more points are processed based on algorithm-dependent

criteria.
Density-Based
Agglomerative

Clustering

Clusters are defined based on a minimum of points within a
specified distance (representative of density), labeling data

accordingly.
Divisive

Clustering
Clusters are successively partitioned into smaller clusters until

algorithm-dependent criteria is verified.

Detect
anomalies
through

identified
clusters

Cluster
Membership

or Size

Identified clusters containing a small number of data points, or
data points that have very low membership values to any cluster

are considered outliers.
Proximity
to Other
Points

If a data point is significantly distant to other points in the same
cluster, is is considered an outlier.

Proximity
to Nearest
Neighbor

If a data point is significantly distant to its closest neighbor in the
same cluster, is is considered an outlier.

Boundary
Distance

If a data point’s distance to its closest cluster boundary, it is
considered an outlier.

When Cluster
Sizes Differ

If a data point’s normalized distance to its closest cluster
boundary, based on cluster size, it is considered an outlier.

Distances from
Multiple Points

Not a method on its own and can be applied to any of the above.
E.g., choose multiple neighbors, choose multiple cluster

boundaries, choose multiple cluster centroids as reference.
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Table 2.5: Different approach examples of model-based criteria to identify outliers, distributions
and models for data that depends on time. Information source: [6].

Goal Approach Description

Given a
model,
detect

anomalies

Model
Parameter

Space

If the inclusion of a data point changes some learned model’s
parameters (.e.g., coefficients of a linear model) by a significant

amount, it is considered anomalous.
Data

Space
If a data point diverges from a concrete model (e.g., an equality) it

is considered an outlier.

Distributions

Parametric
Distribution
Estimation

Construct a model based on data metrics (e.g., Gaussian using
mean and standard deviation). Points that don’t have high

likelihood values according to the distribution are considered
outliers.

Regression
Models

Construct a model based on regression (e.g., linear regression,
artificial neural networks, kernel regression - often used in

Support Vector Machines, and splines), usually using gradient
descent in respect to error.

Model a
Time-Varying

Process

Markov
Models

Computes probability of outcomes based on past occurrences.
Data is modeled as a sequence of events

Time Series
Models

If time spacing between events has significance, time series
models can be used (e.g., ARIMA, DFT, Haar Wavelet

Transform) as a pre-processing step to numerically model
time as a feature.

on used algorithms as they can be more complex and do not need to offer fast response times.

On the other hand, online anomaly detection is either real time or near real time and is usually

associated with the streaming of data resulting in a continuous process of data acquisition and

anomaly detection. A problem with online anomaly detection is that we cannot define what normal

behavior is for the entire data, because data is never assumed to be complete; if an algorithm learns

the typical behavior of a system at a given time, later on, the system can change behavior which

prompts the algorithm to learn this new behavior, which is usually a computationally intensive

procedure that cannot be repeated arbitrarily. The problem of online anomaly detection is much

pertinent to time series anomaly detection.

2.2.2.4 Anomaly Detection in Time series

In time series data, data order and the spacing in time between data points have a significant

impact, as opposed to non-time series where data points can be processed in an arbitrary order

without loss of information (although results may change, depending on used techniques). Due to

this, time can not be looked at as just another variable to analyze, because of its unique characteris-

tic as a dynamic and contextual indicator. As a quick example of this last statement: a temperature

sensor may normally measure 50ºC and 20ºC for a given process at different moments in time,

however, if this same sensor measures these two values alternately in a very small time window,

then it is behaving in an anomalous way.
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Anomaly detection can be applied in a single time series or between time series. In the former,

we’re interested in detecting anomalies occurring in a time series that differ from the rest of that

same time series, while in the latter, we’re interested in detecting anomalies regarding a time

series as a whole, when compared to other related time series. It is worth noting that the problem

of detecting anomalies in a single time series often turns into the problem of detecting anomalies

between time series when approaches that subdivide a single time series into subsequences are

used (such as sliding window approaches).

2.2.2.5 Time Series Models

In order to use time in approaches previously summarized in section 2.2.2.3, time may be modeled

in a way that time series data’s dynamics can be numerically used as a common feature. In the

interest of reducing the dimension of data, various models aim at capturing time series’ specific

information, such as long-term trends, periodicity, seasonality, and frequency domain behavior,

at the cost of losing information regarding small changes that occur in a small number of points.

Some time series models will be discussed, namely 1. Autoregressive Integrated Moving Average

(ARIMA) models, 2. Discrete Fourier Transform, and 3. Haas Wavelet Transform.

ARIMA models capture the dependence of a variable based on its past values, using recent

values more prominently than older ones, which allows it to model changes in behavior, success-

fully modeling non-stationary data. Furthermore, it uses a moving average which eliminates noise,

to an extent, but includes a term to represent random noise, and a term to represent drift over time.

Because ARIMA models are a combination of terms that model different aspects of data, vari-

ations to the model can be introduced according to the expected behavior and structure of data,

namely, Vector ARIMA (VARIMA) can be used in vector data, Seasonal ARIMA (SARIMA) is

particularly well suited for seasonal data, and Fractional ARIMA (FARIMA) is well suited for

data with long-range dependence, by reducing the rate at which the impact of older values decay.

Discrete Fourrier Transform (DFT) is the discrete version of the Fourier Transform for contin-

uous signals, and aims to do the same: capture the time-domain signal as a sum of sinusoids of dif-

ferent frequencies and amplitudes. Because sinusoids with frequencies that match the time-domain

signal the best will have higher amplitudes, DFT is usually described as offering a frequency-

domain description of signals. This allows to numerically represent the shape of signals as an

array of complex coefficients, at the cost of ease of access to information regarding temporal

localization (although this information is theoretically preserved).

Discrete Wavelet Transformation (DWT) allows the generation of wavelets based on a discrete

time series, capturing information regarding frequency as well as time. Haar wavelets, for instance,

are obtained by computing how much a signal matches a single period of a square wave averaged

at zero shifted over the entire signal, for multiple frequencies (as well as a constant term with

non-zero average value to capture signal offset).
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2.2.2.6 Detecting Anomalies in Time Series

In order to detect anomalies, we may have a model-based algorithm, which compares predicted

values, which can be obtained from models such as ARIMA, and Support Vector Machine (SVM)

and compare them with real measurements directly. We can also use a prior transformation of

time series, by aggregating data (such as aggregating points by their average values), discretizing

them (such as using symbolic variables to represent a range of values), or by applying transforma-

tions (such as DFT or DWT) using these transformed versions of data in approaches previously

described in section 2.2.2.3.

Some example approaches to numerically measure the distance between time series are in-

troduced in Table 2.6 along with their strengths and weaknesses. Ensemble methods make use

of multiple distances obtained through a weighted combination of different methods to compute

a combined anomaly score that allows for the use of two different methods to make up for each

other’s weaknesses. E.g., Symbolic Aggregate Approximation (SAX) with sliding window is not

well suited for detecting anomalies with time lagging, generating false positives often, and can

be combined with an approach such as Dynamic Time Warping (DTW), which does detect such

anomalies, but is not well suited for anomalies consisting in small deviations; these two approaches

combined may complement each other well. On a final note, the computational overheads of these

methods are not negligible and depending on the application, this might be prohibitive of their

usage.

2.3 State of the Art

In this section, state of the art of CPS and anomaly detection techniques will be shortly introduced,

to identify promising or unexplored approaches in anomaly detection.

2.3.1 Anomaly Detection in Industrial CPS

As previously explained in Section 2.2.1, Industry 4.0 comes with its challenges. Applying

anomaly detection in such a setting implies identifying critical aspects relating to these challenges

as well as the typical anomaly detection in time series problems. These challenges depend on the

specific context of industrial application, but generally, an appropriate anomaly detection mecha-

nism must accommodate the following characteristics:

1. Generalization: it is difficult to predict what kinds of anomalies will occur, and how they

manifest in a time series. As an example, a given time series may be highly periodic and

approaches that accommodate for seasonal patterns will do very well in detecting devia-

tions, while that same approach in highly unstable time series will perform poorly. A good

anomaly detection mechanism must be consistently effective in a way that is agnostic to the

time series normal behavior and needs to assume the intended behavior to be dynamic.
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Table 2.6: Different approaches to measure distances in time series, with their respective strengths
and weaknesses. This table is a reformatting from a table available at [6].

Time Model Strengths Weaknesses
Cross Euclidean

Distance Easy to implement;
Computationally Efficient

Lock-step measure;
normal series with time lagging
cause problems;

Cross Correlation
Coefficient-based

measure
Standard Deviation

of Differences

Dynamic Time
Warping

Elastic measure;
successfully addresses problems
with time lagging between
sequences

Small deviations may not be
detected

Discrete Fourier
Transform

Good in detecting anomalies
in frequency domain;
normal series with time lagging
can be solved

Small deviations may not be
detected;
cannot detect anomalies with
time lagging

Discrete Wavelet
Transform

Good in detecting anomalies
in frequency domain;

Small deviations may not be
detected;
sensitive to time lagging

Symbolic
Aggregate

approXimation
(SAX)

with Sliding
Window

Tolerates noise, as long as its
standard deviation is small

May not detect abnormal
sequence of shorter length than
feature window size;
normal series with time lagging
can result in false positives

SAX without Sliding
Window

Tolerates noise, as long as its
standard deviation is small

May not detect abnormal
sequence of shorter length than
feature window size;
normal series with time lagging
can result in false positives;
small deviations may not be
detected;

SAX with
Bag-of-Pattern

Tolerates noise, as long as its
standard deviation is small;
normal series with time lagging
can be solved

Cannot detect anomalies with
time lagging;
cannot detect anomalous series
with similar frequencies but
different shapes
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2. Time Performance: in industrial applications, anomaly detection must be detected within

useful time as a late detection will potentially lead to enormous losses and compromise

safety.

3. Resource Efficiency: in the concept of Industry 4.0, CPS components are expected to be

self-monitoring. As such, components need to perform anomaly detection in a decentral-

ized manner which leads to concerns regarding resource usage, as these components are

often resource-constrained, both in themselves and in the use of network infrastructures (i.e.

communication itself must be efficient).

4. Low Need for Labeled Data: publicly available datasets for industrial settings undergoing

attacks are not abundant. For proper learning, many approaches require immense amounts

of data, which is not viable in this context. Furthermore, relying on labeled data could

eventually lead to approaches that don’t respond well if the system changes its behavior

intentionally as the model would be tightly coupled with the data it had learned from, which

would be against the characteristic mentioned in point 1.

5. Robustness and Safety: components need to be able to respond to adverse conditions, by

continuing normal operation, without compromising the safety of the equipment and that of

human life.

These challenges are non-trivial and, to the best of this dissertation’s author’s knowledge, no

solution attempts to solve all of these challenges simultaneously, tackling only a portion of them.

2.3.1.1 Anomaly Detection Techniques

In this section, anomaly detection techniques that were acquired from the literature review are

presented.

A vast majority of techniques make use of deep learning approaches (e.g., [26], [27], [28]),

a more detailed analysis of such techniques was conducted by [29]. Deep learning techniques

offer great generality, in that they are highly adaptable, however, they tend to have relatively big

computation times, high resource usage, and often require significant amounts of data to train

the model. These aspects of deep learning are indicators that it is not well suited for a CPS

environment, with real-time constraints, resource limitations, and reduced publicly available data.

Despite this, a significant portion of literature still pertains to this area.

AIS is one of the most promising modern solutions to the problem of anomaly detection [30].

These techniques have high generality, are usually computationally efficient and typically require

less resource use. [31] and [30] offer insight into existing AIS techniques. These techniques are

inspired by the mammalian adaptive immune system and are a subclass of artificial intelligence.

Most work has been developed according to the Negative Selection Algorithm (NSA) where ran-

domly generated so-called detectors are compared with data generated by the CPSs normal opera-

tion, being killed during its maturation period if they match any of that data. After the maturation

period, the detectors will be considered to match only with data that is "non-self", corresponding to
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data that is corresponding to an outlier. These algorithms are highly dynamic due to the detector’s

lifetime, which makes each detector locally restricted, in time.

The selected papers according to Section 2.1 that present anomaly detection techniques will be

shortly presented in the following paragraphs. These are not exhaustive descriptions of each pa-

per’s contributions, and as such, it is recommended that the original paper is read by any interested

readers.

F. De Vita et al. [32] use Deep Learning techniques to both extract meaningful features and

identify anomalies. In an early data analysis phase, the authors used PCA to determine which

features to include in the anomaly detection pipeline, visualizing both normal and anomalous

data and visually identifying which features differ the most from one case to another. In the

anomaly detection pipeline, time series data goes through an Autoencoder (AE) to reduce data

dimensionality, followed by PCA to separate meaningful information, and the result is inputted to

a K-Means algorithm which outputs if the input is anomalous or not. The authors use two different

time series models: for one of the inputs, a fixed time window is used and its mean, maximum

and minimum values are calculated and used as features; for the other input, they compute its

Fast Fourier Transform (FFT) and use a given number of frequency components. The authors

also use a Deep AE for the FFT input, as its dimensionality is high and the relationship between

FFT coefficients is highly non-linear. AEs are unsupervised neural networks that work by first

compressing input data into a reduced dimensionality format (encoding) and then decompressing

it back to the original data (decoding) and learning based on the difference between output and

input, effectively learning how to find a so-called "latent" representation of data without the need

for labeling. This latent representation can be seen as an abstract feature extraction method that

reduces input dimensionality without losing information. In this use case, the decoder is only

useful in the learning phase, after which, only the latent representation (i.e. the encoded input)

will be used.

G. Bernieri et al. [33] use Deterministic Finite Automata (DFA) to detect abnormal behav-

ior analyzing packets that use Modbus/TCP and CoAP protocols. DFAs analyze an alphabet se-

quence and produce a single result for a given sequence. The authors extend altered DFAs which

learn normal behavior and automatically build a DFA with expected alphabet sequences which

are representative of packets; the finite state machine analyzes these sequences which, if operat-

ing normally, will follow along with the expected state transitions that were built during training.

The authors further extend this approach to include multi-modal DFA that can select appropri-

ate, lower-level DFAs that correspond to a predicted behavior, which allows for more than one

behavior to be monitored; furthermore, they implement timing mechanisms that allow for the de-

tection of DoS attacks, even if these attacks follow along with a normal behavior in terms of packet

sequences.

G. Bernieri et al. [34] use Variational Autoencoder (VAE) for anomaly detection. VAEs behave

the same way as AEs with the difference that the latent representation is expressed as a Gaussian

distribution, and the decoder, instead of using the latent representation directly, samples from the

learned distribution, which acts as regularization and avoids overfitting at the cost of generally less
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accuracy. The authors separate Anomaly Detection into three modules: a module that monitors

packets between a Corporate Network and a Control Network; a module that monitors packets

inside the Control Network; a module that monitors physical side-channel data from the system.

These three modules each have their VAE, and their respective analyses are all inputted into a final

"Correlation Node" that, based on all three modules, decides if data is anomalous or not.

H. Shin et al. [35] use SVM to learn typical parameters of queue models (based on Queue

Theory) of a shop-floor simulation. SVM is a supervised learning technique that learns to split data

linearly using hyperplanes that maximize the distance between either classification. Non-linearly

separable data can also be classified through SVM by first converting input features into another

space where linear classification is possible, through the usage of kernel functions. Although the

authors in [35] do not specifically mention it, it can be assumed they used One-Class SVM as they

defined a margin parameter and only used "normal" condition data for training, in which case, the

technique is unsupervised.

H. Sandor et al. [36] use Dempster-Shafer’s "Theory of Evidence", where a given number of

states are specified and, given evidence (i.e. measurements), one can assign a probability of belief

which specifies the degree that the measurement can be used to infer a certain hypothesis. It is also

possible to combine multiple evidences’ contributions to a hypothesis into a joint contribution,

which allows for data fusion. In the particular case of anomaly detection, the hypotheses set,

named frame of discernment, can be made up of two hypotheses such as "anomaly" or "normal"

and, if the evidence that supports the "anomaly" hypothesis does so with a high joint probability

(higher than a given threshold), the "anomaly" hypothesis can be deemed correct and be detected.

Previous work[37] includes more hypotheses to further specify between "physical anomaly" and

"cyber anomaly" along with the standard "normal" hypothesis.

P. Li et al. [24][38][39] use clustering algorithms, after which, the authors developed an algo-

rithm to automatically define geometrical convex hulls that encompass each found cluster. After

an initial convex hull is created for each cluster, using the quickhull algorithm by C. Barber et

al. [40], the algorithm P. Li et al. developed "digs" each hull to be more restrictive of the cluster

data, allowing for hulls to be non-convex. They view this as an improvement over clustering al-

gorithms that assume data structure as it makes no assumptions on the structure of each cluster,

e.g. the assumption that clusters follow along ellipsoids, normal distributions, or have some sort of

symmetry; and it is also an improvement over neighbor-based clustering as these algorithms have

to store every single point in memory to classify new points, while hull-based methods require

only the hull itself to be stored. The authors don’t mention how the algorithm behaves when hol-

low datasets are used, e.g. whether a donut-shaped normal behavior cluster would consider points

that reside inside the hollow part of the cluster to be normal occurrences.

Q. Li et al. [41] use an ensemble algorithm that combines Moving Average (MA), Auto-

regressive Prediction (AR), Artificial Neural Network (ANN), Gene Expression Programming

(GEP) and SVM. The authors recognize each algorithm’s shortcomings and linearly combine their

results in a weighted sum such that these weights are dynamically updated depending on which

algorithm performs best. A downside to their approach is that a lot of resources are used, and
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there’s a possibility that a complex algorithm that doesn’t contribute substantially to classifying

anomalies has a very low weight attributed to it, yet it still needs to execute.

M. Saez et al. [42] use expert knowledge to build states that describe CPS operation in multiple

levels. They use DTW to automatically estimate event starting and end times regarding machine-

part interactions. Using these states, the authors claim that anomaly detection can be narrowed

down to a smaller scope, and, therefore, anomalies become easier to detect. Their use case uses

adaptive threshold limits, SVM, among others, to detect anomalies, but any anomaly detection

method could theoretically be used, and changing anomaly detection methods depending on the

current state is possible. The definition of states seems to not be scalable, as complex CPS can

lead to a "state explosion". In more recent work, M. Saez et al. [43] address this issue, mentioning

the possibility of identifying unreachable states to mitigate this problem. In [43], the authors use

both data-driven and physics-based models to validate their approach, using expert knowledge in

the latter.

R. Pinto et al. [44] use the deterministic Dendritic Cell Algorithm (dDCA) to detect intrusions

through anomaly detection. dDCA is part of a broader group of algorithms known as Artificial Im-

mune Systems (AIS), which are algorithms inspired by immunology (this field is further explained

in Chapter 3). By identifying features that are indicative of anomalies and normal occurrences, the

algorithm applies a stochastic sliding window to determine if data points are anomalous based on

previous occurrences. The algorithm needs to be properly modeled according to the application

scenario, and the authors show that using the wrong features can lead to poor performance, akin

to that of a random classifier.

D. Ramotsoela et al. [2] conducted a survey on anomaly detection applied to intrusion detec-

tion, where they include both parametric and non-parametric solutions. As previously mentioned,

parametric anomaly detection is not suitable for dynamic systems where normal behavior is usu-

ally not known a priori and might change over time, therefore, these solutions will not be summa-

rized here. Regarding non-parametric solutions, the authors mention k-Nearest Neighbors (kNN),

SVM, ANN, Genetic Algorithm (GA) and hybrid solutions. The authors point out that practical

feasibility is often overlooked, and the majority of research does not consider resource constraints.

A. Bagozi et al. [45] apply anomaly detection in fault detection through cloud computing.

The authors perform two steps of clustering: first, they apply a variant of a clustering algorithm

that is appropriate for streaming data[46] obtaining synthesized data, which is then, secondly,

supplied to an X-means algorithm[47] that does the final clustering. The system designer needs to

predefine warning and error boundaries, but the algorithm potentially detects state changes before

these boundaries are crossed by computing relevance (distance between cluster centroids, distance

between points, and difference in the number of clusters) between clusters that result from different

time steps, improving anomaly detection efficacy.

L. Kaupp et al. [48] use AE to gather features from mixed data, i.e. “numerical, categorical and

temporal attributes”. Unlike the approach previously mentioned in this paper ([32]), AEs are not

used to reduce data dimensionality by using the latent space representation as features, but rather

the AE itself is used as an anomaly detection algorithm, by analyzing the error in reconstruction
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of the input. The rationale is that, as normal data was used as training for the AE, anomalies will

lead to bad reconstructions of input, since they differ significantly from training data.

A. von Birgelen et al. [49] use a Self-Organizing Map (SOM) which is an ANN that is usu-

ally used for dimensionality reduction by representing an arbitrary number of features as an

N-dimensional map (most often two-dimensional for ease of human visualization). The authors

use it as an anomaly detection tool by looking at the quantization error, i.e., how far off the data

points map to any neuron in the SOM. This approach isn’t the paper’s contribution, it is the esti-

mation of where the anomaly originated that is the main contribution of the paper- The authors use

reverse mapping (from SOM output to the original input, which effectively works as an estimator)

to discover which signal or sensor most likely originated the anomaly by, once again, mapping the

anomalous input to the SOM and measuring the distance between the signals and the weights of

the neuron it was mapped to. The underlying principle is that signals with higher distances are

more likely to be the root of anomaly.

M. Caporuscio et al. [50] survey multiple aspects of "Smart Troubleshooting" namely preven-

tion, detection, recovery, and adaptation. For this dissertation, focus will be given to the literature

review the authors conducted on detection, which they classified as log analysis or model-based

analysis. In log analysis, they name Deep Learning, SVM and clustering as the used methodology

for anomaly detection. In model-based analysis, they identified Hidden Markov Model (HMM),

Petri Nets, and automaton, regarding the latter, automata learning is emphasized.

2.3.1.2 Literature Distribution

Based on the state of the art that was conducted, key technologies of anomaly detection were iden-

tified. For each key technology, a custom query was designed to be applied in multiple databases

(the same databases shown in Table 2.2). The results were then recorded and plotted as shown in

Figure 2.5. Further results can be found in Appendix B

Note that these results do not replace a full literature review, and serve merely as a heuristic to

obtain some insight into how much researchers invest in each technology. Following, are the main

identified limitations to the methodology used here:

• duplicate results between databases were allowed;

• duplicate results within the same database were allowed (from different queries);

• no analysis of the results’ titles or any sort of content was conducted;

• only technologies that were discussed in Section 2.3.1.1 were considered, therefore it is

likely that there are other fields in anomaly detection or fault detection that were not con-

sidered;

• the results obtained were not subjected to any filter (e.g. time-window filter to avoid results

that were too old).
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Figure 2.5: Relative results for all databases. Each database’s results were summed and then the
final percentage was computed by dividing each categories results with the full number of results
for all categories. These results were last updated 10th August, 2021.

Despite these limitations, it was assumed that the results are somewhat representative of the

main technologies being researched, and were deemed fit considering this is a heuristic approach.

From Figure 2.5, it is possible to highlight clustering techniques as the most often researched,

which can be justified by the fact that most technologies achieve clustering, namely SVM, which

comes in second, and ANN and deep learning techniques with binary outputs, which come in third

and fourth, respectively. ANN and deep learning techniques are about the same in prevalence,

which can be attributed to the fact that deep learning techniques necessarily implement ANNs.

Decision trees (including forest-like algorithms) and finite automata are good solutions for sim-

ple problems, but degrade in performance as the problem becomes more and more complex due

to its reductive nature, and necessity of storing high quantities of data, and both suffer from a

"state explosion" problem with the increase in complexity. kNN and other "nearest neighbors"

are usually inefficient in what concerns memory, as data points need to be stored, some way or

another. The least researched topic considering all databases is Dempster–Shafer’s theory, which

is used mainly for data fusion (sensor fusion, in particular) with its applicability in anomaly de-

tection being mostly associated with the problem of intrusion detection. AIS is the second least

researched topic across all databases analyzed, despite its intuitive applicability in anomaly de-

tection (explained in Section 3.0.0.1), which can be due to its rather immature state [51] and the

lack of an algorithm from AIS that has both the required efficacy and efficiency to be applicable

in large scale scenarios, although some algorithms from AIS were deemed to complex, this field

is still largely unexplored.

Given the lack of research into AIS, its analogy with anomaly detection, and the room for

improvement it offers, the scope of this dissertation was further restricted to AIS algorithms, which

will be discussed in the following chapter.



Chapter 3

Artificial Immune Systems Overview
and Analysis

In this chapter the main AIS approaches will be introduced with a higher level of detail. Sec-

tion 3.0.0.1 introduces the field of AIS. Section 3.1 discusses the most basic algorithms of each

branch of AIS, including their biological inspiration and algorithm description, and Section 3.2

offers early results between these algorithms applied to anomaly detection, to explore each algo-

rithm’s potential and where they might be improved upon. A summary of the chapter is given in

Section 3.3.

3.0.0.1 Introduction to Artificial Immune Systems

Artificial Immune Systems (AIS) are algorithms that are inspired by the field of immunology, be-

ing applied to computer science. Its main goal is to use known theories from immunology for prob-

lem solving where a parallel between a given problem and the immune system can be established.

Its maturity as a field is still relatively new, and as previously stated in Section 2.3.1.2, research in

this field as an anomaly detection solution is still comparatively recent. AIS is bio-inspired, as it

draws analogies from biological functions, and progress in the field is closely coupled to research

in biology.

One underlying principle of any AIS algorithm is that the (biological) immune system, mainly

the human immune system, as a system that has been tried and tested naturally over the years, can

be leveraged to produce working algorithms for multiple applications. However, this also means

that the main goal is to produce, not a replica of the immune system, but a solution to a problem,

and, thus, abstractions are implemented for the sake of practicality. Furthermore, the usage of

immunology as inspiration can be considered problematic, as wrong theories or the inability to

explain certain immune phenomena can translate to wrong abstractions in algorithms.

Applications of AIS include computer security, fault detection, fault-tolerant control, pattern

recognition, clustering, and optimization.

The main identified branches of AIS are further explained in the upcoming chapter.

29
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Figure 3.1: AIS taxonomy used in this thesis.

3.1 Algorithm Branches Overview

As a relatively new research field, AIS has no universally agreed-upon division into sub-fields. In

this section, the division presented in Figure 3.1 will be assumed, but producing an AIS taxonomy

is out of the scope of this thesis, and this taxonomy will only be used for the structure. Each

sub-field pertains to a particular biological model of the immune system, which will be briefly

explained, albeit simplified, with specific scientific terms and biological phenomena that are not

directly relevant to the respective algorithms reduced to a minimum (e.g. cellular organelles,

specific substance names such as peptides, chemical interaction details such as the binding of

antigens to cells). Note that the described algorithms do not intend to enforce a basis to which all

and any algorithm in the sub-field must follow, but rather a generic algorithm that is an attempt

at generalizing each algorithm according to multiple specific implementations, and, thus, as long

as the underlying biological theory is the same, an algorithm that does not follow the presented

generic structure can be developed under the same sub-field without loss of value.

3.1.1 Negative Selection Algorithm

The Negative Selection Algorithm (NSA) was first proposed in the work of S. Forrest et al. [52], in

1994. It is based on the self-non-self theory and was first used in computer virus detection through

anomaly detection.

3.1.1.1 Biological Background: Self/Non-self

The main basis behind Self/Non-self theory [53] is that the immune system identifies organisms

that are foreign to the body (non-self) and that the presence of such organisms leads to an immune

response. In the vertebrate immune system, the theory hypothesizes that this is accomplished by

a process of negative selection in the thymus, where immature T cells migrate to, to mature (step

a in Figure 3.2). The thymus is a protected space where, ideally, only "self" antigens exist, i.e.,

it is highly unlikely that intruder organisms infiltrate the thymus. T cells that react to "self" anti-

gens, i.e., recognize the body’s own signature antigens, are sent an apoptotic signal and undergo

apoptosis (programmed cell death) (step b in Figure 3.2). This way, matured T cells that leave

the thymus, are only able to recognize "non-self", theoretically resulting in a distributed system of

agents that can tolerate the system itself and detect intruders (step c in Figure 3.2).
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Figure 3.2: Simplified diagram of Self/Non-self theory. Note that self antigens are immensely
varied, as are non-self antigens. This figure is for illustrative purposes only, and illustrates all self
antigens as identical.

3.1.1.2 Algorithm Overview

NSA is inspired by the Self-Non-self theory [54], more specifically the negative selection of T

cells. The analogy is rather straightforward for intrusion detection through anomaly detection,

leading this application to be how the first instance of this algorithm was used by S. Forrest et

al. [52]. The algorithm works by generating so-called "detectors" which are analogous to T cells.

These detectors can be generated in any way, but are mostly generated randomly inside a search

space that is problem-dependent. Then, an appropriate metric has to be implemented to compare

these detectors to data points from known normal behavior. Detectors that can detect data points

from this normal behavior are discarded, while detectors that do not detect normal behavior are

saved for later use. Upon established stop criteria, detectors stop being created, and the detector

set that is now "mature" is used for future classification of anomalies, under the assumption that if

these detectors detect any instance of data, then it is likely an anomaly.

Algorithm 1 describes how NSA’s detectors are generated.

To implement NSA the following has to be defined, according to the target application sce-

nario:
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• Detectors: how to represent detectors. E.g. real-valued arrays, strings. The nature of the

detectors is also coupled to the input data that is to be classified. Depending on the nature

of detectors, the following also has to be defined:

– Detection: procedure that, given a detector and a point to classify, results in a bi-

nary decision of detection ("detected" or "not detected"). E.g. common n-contiguous

bits/elements, euclidean distance compared to a threshold.

– Detector generation: procedure that allows the generation of new detectors. E.g.

random generation of detectors.

• Stop criterion: when to stop generating detectors during training phase. E.g. n number of

detectors reached; estimated search space coverage.

Algorithm 1: General Negative Selection Algorithm Detector Set Generation
Input: Ssel f set of points that are normal

Output: D detector set

1 while not stop_condition() do
2 sel f _detected = True;

3 while sel f _detected do
4 d = generate_new_detector();

5 foreach si in Ssel f do
6 if detect(d,si) then
7 break;

8 end
9 sel f _detected = False;

10 end
11 end
12 D← d

13 end
14 return D

3.1.2 Clonal Selection Algorithm

The first instance of a Clonal Selection Algorithm (CSA) was proposed in the work of L. de Castro

et al. [55], in 1999. It is based on the clonal selection theory, which aims to explain acquired

immunity, and was first used in pattern recognition.

3.1.2.1 Biological Background: Clonal Selection

Clonal selection theory[54] aims to explain how B cells are selected and favored in response to

their affinity towards antigens. B cells are responsible for secreting antibodies that can fight or

inhibit pathogenic organisms, and T cells regulate the B cells’ activity. Foreign organisms have
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their antigens collected and presented to B cells. Those B cells that have receptors that recognize

these antigens (step b in Figure 2) will be split into two groups (step c in Figure 2). B cells react

to antigens that they match with, in two simultaneous ways: on one hand, they differentiate into

short-lived plasma cells that secrete the antibodies required for an immune response (stepd.1 in

Figure 3.3); on the other hand, they clone themselves, generating long-lived memory cells (stepd.2

in Figure 3.3). The memory cells are clones of their parents but are subjected to hypermutation

(mutation at high rates) to potentially create children that have a higher affinity than their parents.

Throughout different kinds of antigen exposure, this leads to a pool of B memory cells that are

proportionate to their affinity towards the most common antigens that the body found in the past,

and these memory cells can readily respond to future occurrences of the antigen that lead to its

proliferation, with even higher efficacy than their parents due to the hypermutations they were

subjected to.

Figure 3.3: Simplified diagram of clonal selection theory.

3.1.2.2 Algorithm Overview

CSA is inspired by the clonal selection theory, more specifically the selection of B cells according

to their affinity to antigen, the selective cloning of selected B cells, and their subsequent mutation

and differentiation into memory cells. The differentiation into plasma cells, albeit important in the
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context of the clonal selection theory itself, is not implemented in algorithms of this subgroup. The

main principle of these algorithms is to pick, among candidate solutions (analogous to B cells, or,

more directly, the antibodies they produce), those that have the highest (or lowest) affinity, storing

them in a pool, and create new candidate solutions that result from small changes to the previous

best solutions. The worst solutions are discarded keeping only the best candidates, although new

candidates can be generated to provide more exploration to the algorithm. CSA is close to GA in

that they both implement a Darwinian philosophy of "survival of the fittest" where the strongest

solutions are the ones that carry over to the next generation, but they differ in how CSA clones

and mutates the solutions in between generations. As the algorithm aims to maximize/minimize

the affinity of the overall population, algorithms from this branch are mostly coupled to function

optimization and pattern recognition [56].

Algorithm 2 describes how CSA’s population is gradually generated and selected.

To implement CSA the following has to be defined, according to the target application sce-

nario:

• Antibodies: how antibodies represent candidate solutions in the problem domain. Because

CSA has many applications, it is difficult to contextualize precisely what is meant with

"candidate solution". E.g. bit-string to match to patterns, set of parameters to be applied to

a problem (such as hyperparameters for a machine learning model, or scheduling times for

scheduling problems). Given the antibody structure, the following also has to be defined:

– Affinity: how to rank candidate antibodies for selection. Overall, higher affinity

means better solutions, although, in problems of minimizing a cost function, a higher

affinity can be associated with worse solutions, instead. E.g. number of matches of

specific bit-string to target set of bit-strings, the accuracy of machine learning model

using a specific set of hyperparameters.

– Mutation: how to slightly change antibodies. E.g. bit-flips in bit-strings, adding/multiplying

a random real-valued number to a single random hyperparameter of a machine learning

model.

– Generation: how to produce new antibodies. E.g. random bit-strings, random sam-

pling of hyperparameters from a parameter sweep (also known as grid search) search

space.

– Selection: how to select which antibodies survive. Selection can happen in multiple

ways in the algorithm, namely: which antibodies will be chosen to be cloned; which

antibodies will be chosen to survive, and, conversely, which will be replaced by newly

generated ones. This is mostly accomplished by simply picking the highest-ranking

ones, according to affinity, but random new antibodies can be left to survive, or be

subjected to cloning, to potentially find other optimal solutions, and avoid converging

to local optima.

– Cloning: how to distribute clones. The cloning process itself consists in creating

copies, but the number of copies to create, and subsequently mutate, can be managed
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in many ways. E.g. create clones proportional to affinity rankings; create clones of x

best antibodies; create clones of the entire population.

– Stop criterion: when to stop generating solutions. E.g. hard limit on iteration number,

decline in affinity over generations.

Algorithm 2: General Clonal Selection Algorithm, adapted from [57]
Input: N population size
n number of antibodies to clone
d number of new antibodies to be generated each iteration
Output: P best population

1 P← generate_antibodies(N)
2 while not stop_condition() do
3 foreach p in P do
4 update_a f f inity(p)
5 end
6 P′← select(P,n) foreach p′ in P′ do
7 C← clone(p′)
8 end
9 foreach c in C do

10 hypermutate(c)
11 end
12 foreach c in C do
13 update_a f f inity(c)
14 end
15 P← insert(C,n)
16 Pnew← generate_antibodies(d)
17 P← replace(P,Pr)
18 end

3.1.3 Artificial Immune Networks

Early work in Artificial Immune Network (AIN) was proposed independently both in the work

of L. de Castro et al. [58] and J. Timmis et al. [59], in 2000, for clustering data. It is based

on the immune network theory, which aims to explain acquired immunity as a deeply dynamic

phenomenon.

3.1.3.1 Biological Background

The immune network theory or idiotypic network theory [60] proposes that the immune system

is more dynamic than previously suggested. Rather than waiting for external organisms to invade

and stimulate a response, the immune system is constantly stimulating itself. The theory suggests

that immune cells not only recognize antigen from foreign organisms but also recognize each other

(either through each other’s receptors or through free antibodies), creating a loose and dynamic
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Figure 3.4: Richter’s model [3] of an antibody chain. Each antibody is labeled Abx and the antigens
are pictured as dark squares. This example showcases how an antigen can trigger a cascade of
reactions. The presence of the antigen is initially recognized by Ab1, which increases in number.
This leads to Ab2 to start recognizing Ab1, which prompts Ab2 to increase in number and so on.
As the antibodies increase due to stimulation, they also inhibit the antibodies lower on the chain,
regulating the response. An increase in Ab4 will lead to a reverse cascade to gradually suppress
the subsequent antibodies.

network of immune cells. The essential idea is that the immune system learns over time, not exclu-

sively by the stimulation of individual cells by antigens, but rather by the network of immune cells

as a whole. This implies that the immune system tolerating a given antigen, may not mean that the

antigen was not recognized, but instead, it was recognized by some immune cells, which, in turn,

were recognized by other cells, which suppressed the former cells’ response or even eliminated

some of these cells. Conversely, an antigen may be recognized by some immune cells, and this

can further be potentiated by other immune cells recognizing the former cells. In this perspective,

any given cell can stimulate or suppress matching cells that it recognizes, indirectly affecting how

the system responds to antigens, and thus, the immune network theory can be seen as an expan-

sion on the clonal selection theory explained in Section 3.1.2.1. Note that the immune network

theory is not as intuitive as the remaining theories explained in this chapter, even to immunolo-

gists, and, according to G. W. Hoffman, the "proposal initially seemed to many immunologists to

make a complex subject even more complex, in fact unmanageably so." [61]. Multiple models at-

tempt to describe the network’s dynamics, e.g. Figure 3.4 showcases the Richter model [3], more

specifically, a scenario that exemplifies how multiple B cells (and their antibodies) can react to

antigens, even if a majority of those cells do not directly react to the specific antigens that began

the response.
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3.1.3.2 Algorithm Overview

An AIN explores the interconnectivity of immune cells, mainly their mutual suppression/stimulation

mechanism. The main focus of these algorithms is to create populations that are dynamically

linked over generations. AIN can be distinguished from CSA as the evolution of the population

is no longer individualized, and there is always some sort of interaction between the population’s

participants. Algorithms under this category are vastly different in how they interpret biological

theory to solve problems. In@articleKnight2001,this thesis, special attention is given to cluster-

ing approaches. As an example, for clustering, usually, the populations are represented as graphs,

where nodes symbolize the cells, and edges symbolize the stimulation/suppression of a given cell

to other cells it "recognizes". This recognition is abstracted as affinity, usually by some measure-

ment of similarity, such as Euclidean distance [58]. Through this affinity, each cell will selectively

clone itself and potentially mutate itself, or die off, which, in theory, will lead to clusters of cells

that represent the clusters of the original data. Each of these clusters is named Artificial Recogni-

tion Ball (ARB) and is made up of multiple B cells. Algorithm 3 shortly introduces AINE [62],

where each ARB includes a data representation, number of B cells, and stimulation values.

3.1.4 Danger-Inspired Algorithms

A Danger Inspired Algorithm (DIA) is an algorithm that draws inspiration from the danger the-

ory [53]. This subfield is relatively new with the most prominent algorithm being DCA originally

proposed by J. Greensmith et al. [63], implemented for intrusion detection through anomaly de-

tection.

3.1.4.1 Biological Background

Danger theory [53] addresses key shortcomings identified in Negative Selection. It aims to explain

how the human immune system can start an immune response to things that are self, such as cancer

cells, and avoid immune responses to things that are non-self, but beneficial or harmless, such as

gut microbiota. The theory proposes that, although the immune system can identify self and non-

self, it is not this phenomenon that triggers immune responses. Rather, a specific kind of cell -

the Dendritic Cell (DC) - functions as a biological detective that navigates body tissue. These

DCs start their life cycle as being immature, a period during which they collect any antigens

they find, and also recognize signals from the tissue itself and Pathogen-Associated Molecular

Pattern (PAMP) - molecules that function as signatures of pathogenic presence. The origin of

these signals is not fully known, but the theory proposes that tissue cells can communicate if they

are in distress (e.g. in the event of the tissue’s cells being killed or presence of PAMP) or if they

are safe (e.g. the cell died naturally through programmed cell death). As the immature DC collects

antigens and identifies the tissue signals it eventually differentiates into either a mature Dendritic

Cell (mDC) or a semi-mature Dendritic Cell (smDC) if they come from a "dangerous" context,

or a "safe" context, respectively. Then, they migrate to a nearby lymph node, where T cells are

found, and present their collected antigens to T cells that recognize them. For mDC, T cells that
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Algorithm 3: A specific AIN implementation for generating an ARB population, based
on AINE [62]

Input: A input data (antigens)
N population size
NAT network affinity threshold
Rm mutation rate
Nc number of clones on each ARB
Output: SARB set of all ARBs

1 SARB← initialize_population()
2 CARB = {}
3 while True do
4 foreach arb in SARB do
5 foreach a in A do
6 present_antigen(p)
7 end
8 end
9 foreach arb in SARB do

10 update_stimulation(arb)
11 end
12 foreach arb in SARB do
13 allocate_b_cells(arb)
14 end
15 if stop_condition() then
16 break
17 end
18 CARB = clone_and_mutate(SARB) foreach arb in CARB do
19 SARB← arb
20 end
21 end
22 return SARB
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Figure 3.5: Simplified model of danger theory. Note that immature dendritic cells collect a vast
variety of antigens, not just one specific type, which is not illustrated in this figure.

recognize its antigens may start an immune response; conversely, for smDC, T cells that recognize

its antigens will tolerate the antigens presented. Figure 3.5 illustrates the interaction between DCs,

the organism’s tissue, and T cells in the perspective of danger theory.

3.1.4.2 Algorithm Overview

Danger-inspired algorithms draw inspiration from danger theory’s principle that immune responses

are triggered by the damaging effects of pathogen on tissue, rather than by directly identifying the

pathogen. In the case of Toll-Like Receptor Algorithm (TLRA) [64], the algorithm defines what

is meant by PAMP, and defines a T cell matching metric. In the case of DCA [63] four signals

are available for definition: safe, danger, PAMP and inflammatory cytokines. A more detailed

description of DCA is given in Section 3.2.6.

3.2 Algorithms Analysis for Anomaly Detection

In this section, some algorithms are implemented by this dissertation’s author for a simple bench-

mark dataset and compared for application in anomaly detection. These implementations are not
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Table 3.1: Summary table of random circle dataset’s features.

Feature Order Feature Data Type
1 ID number

Integer
2 Label
3 X coordinate Real

Valued4 Y coordinate

optimized for performance and are an attempt at evaluating these algorithms comparatively, to

identify potential weaknesses and strengths to select one which to improve on in this thesis. First,

the overall procedure is explained in Section 3.2.1, then the two used datasets are introduced in

Section 3.2.2. Each algorithm used is explained in Sections 3.2.3 through 3.2.6. Finally, the results

of applying these algorithms to the two datasets are discussed in Section 3.2.7 with limitations of

this comparative study being shown in Section 3.2.8

3.2.1 Procedure

The implemented algorithms are applied to two datasets (described in the next section). All algo-

rithms were implemented in Python, using only the built-in Python packages, to avoid differences

in performance due to one problem being easier to adapt to a package with good performance, in

which case the difference in performance would be due to the package itself, and not the algorithm

being somehow faster in nature. Based on Section 2.2.2.2, three metrics are used: precision, recall

and F1 score. Furthermore, to evaluate the applicability of the algorithms in real time scenarios,

the time per data point will also be measured. Finally, for scalability, the effect on relative time

due to problem complexity will be analyzed.

3.2.2 Target Datasets

For each algorithm, two datasets will be used. The first dataset (Section 3.2.2.1) is a simple

dataset that aims to validate that the algorithm works. The second dataset (Section 3.2.2.2) is

a well-known benchmark dataset used in many machine learning approaches, adapted here for

anomaly detection.

3.2.2.1 First Dataset: Random Circle

This dataset is a randomly generated dataset where multiple two-dimensional points were gen-

erated between 0 and 1 (for both dimensions). If the point’s distance to the center point with

coordinates (0.5,0.5) is lesser than 0.2 the point is considered normal, and if it is greater than 0.2,

the point is considered anomalous. This dataset’s simplicity is meant to ease the first validation

for the algorithms in the following sections. Table 3.1 summarizes each feature. There are 800

points labeled as normal, and 200 points labeled as anomalous.
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3.2.2.2 Second Dataset: Wisconsin Breast Cancer Diagnosis Dataset

The Wisconsin Breast Cancer Diagnosis Dataset [65] is a well-known two-class dataset that con-

sists of 32 features obtained from multiple breast cancer images. Table 3.2 summarizes each

feature. The dataset consists of 357 benign data points and 212 malignant data points, for a total

of 569 points. From the dataset’s source images, 10 features were extracted, and then, for each

feature, the mean, the standard deviation, and the mean between the three worst values were com-

puted, effectively tripling the features to 30. Then each point contains its unique identification

number and its classification for a total of 32 features.

This dataset was not used in its raw form. First, the labels of ’B’ for benign and ’M’ for ma-

lignant were replaced by numerical values: 0 and 1, respectively. Then, the data were scaled in

the range of [0,1] across all its data features (i.e. features 3-32), and this was saved as a separate

dataset. Additionally, the original dataset was standardized (i.e. its means were made null and its

standard deviations were made unitary across all data features), after which, Principal Component

Analysis (PCA) was applied for 1 component, 2 components, and so on, up to 29 components,

such that each result was saved as a separate dataset, for a total of 29 datasets. These 29 datasets

will be used to test each algorithm’s capacity for scalability. PCA is a technique that allows the

projection of m-dimensional numeric data into n-dimensional data, such that n < m. This is ac-

complished by finding n orthogonal unit vectors that follow along with the directions that best fit

the original data’s variance, and then project that original data into the new-found vectors, effec-

tively reducing the dimensions of data while attempting to lose the least amount of information

possible. Figure 3.6 is an example of applying 1, 2, and 3 component PCA (i.e. reducing data

from 30 dimensions to 1, 2, and 3 dimensions, respectively) to the standardized data. Although

this was not the initial purpose of applying PCA, this allows us to have an initial grasp on the

data’s distribution, showing that there is a separation in data in what concerns benign cells and

malignant cells (represented in blue and red, respectively, in Figure 3.6).

3.2.3 Real-Valued Negative Selection Algorithm

NSA originally used bit-strings and metrics such as Hamming distances and n-contiguous bits to

compare antigen and T cell (detector). Z. Ji and D. Dasgupta [66] developed the first real-valued

NSA, which was chosen to be implemented, as real-valued data is often more adequate for the

task of monitoring physical processes. Following the requirements previously described for these

sorts of algorithms in Section 3.1.1.2, the following was defined:

• Detectors: Real-valued arrays. Each array represents a point in space with the same dimen-

sions as the input data.

– Detection: if a given point is closer than a given distance (Euclidean) to one of the

detectors, it is considered anomalous. This way, each detector can be seen as an hyper

sphere of "non-self". A point is considered normal if it matches no detector.
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Figure 3.6: PCA applied with 1 component (upper left), 2 components (bottom left) and 3 compo-
nents (right). In the two leftmost plots, it is possible to visualize the projection of the 2 components
PCA into the single component PCA plot, notably in the rightmost outlier point (isolated point in
red).

Table 3.2: Summary table of UCI’s Wisconsin Breast Cancer Diagnosis dataset’s features.

Feature Order Feature Data type
1 ID number Integer
2 Diagnosis Character

Mean St. dev Worst

3 13 23
radius (mean of distances from

center to points on the perimeter)

4 14 24
texture (standard deviation of

gray-scale values)
5 15 25 perimeter
6 16 26 area

7 17 27
smoothness (local variation in

radius lengths)
Real

Valued
8 18 28 compactness ( perimeter2

area −1)

9 19 29
concavity (severity of concave

portions on the contour)

10 20 30
concave points (number of concave

portions of the contour)
11 21 31 symmetry

12 22 32
fractal dimension

("coastline approximation" - 1)
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Table 3.3: Parameters for the NSA algorithm version implemented in this thesis.

Parameter Description
N Number of detectors to be generated in training

distthreshold

Distance threshold which is to be used both in
eliminating detectors during training phase, and
to be used during evaluation to classify self and
non-self (normal points and outliers, respectively)

– Detector generation: detectors are generated randomly using the input data’s bounds

as limits.

• Stop criterion: generate detectors until a specified number is reached.

First, to train the model we need to generate detectors. Thus, we take a subset of the points

under the assumption that this subset is normal (no outliers exist) as training data. For each poten-

tial candidate detector, di, a random array with the same dimension (i.e. number of features) as the

input data is computed; di is compared towards all data points in the normal subset using the Eu-

clidean distance as described in Equation 3.3, if this distance is lesser than a predetermined value,

distthreshold , di is discarded and a new detector undergoes the same procedure, if the distance is

greater than distthreshold , the detector is stored in a detector set, D. The training procedure finishes

when the set D has a predefined number of detectors, N.

After training, for each point to be classified, xi, with m features (Equation 3.1), we evaluate

its distance to all detectors in D (which now has a structure according to Equation 3.2) using

Euclidean distance and classify it as anomalous if its distance to any single. Table 3.3 summarily

describes all user parameters for the version implemented in this section.

X = {x0,x1, . . . ,xn}, x ∈ IRm (3.1)

D = {d0,d1, . . . ,dN}, d ∈ IRm (3.2)

distance(xi,di) =

√
m

∑
a=0

((xa
i )

2− (da
i )

2) (3.3)

3.2.4 Clonal Selection for Optimization

CSA was originally used for pattern recognition and function optimization, and, as such, its poten-

tial for anomaly detection is not clear. Some solutions implement a hybrid where CSA is used to

optimize the suitability of another algorithm’s parameters (e.g. NSA), but it is the latter algorithm

that is responsible for anomaly detection. To the best of this dissertation’s author’s knowledge,
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Table 3.4: Parameters for the CSA version implemented in this thesis.

Parameter Description
NA Population size at the end of each iteration of the algorithm
NC Number of clones that will be produced at each iteration

Nnew Newly generated antibodies produced at each iteration
Imax Maximum number of iterations the algorithm goes through

A f ftarget Affinity value to be achieved, after which the algorithm stops

no implementation of CSA alone achieves anomaly detection. Nevertheless, the optimizing prop-

erties of CSA were tested towards optimizing NSA’s parameters. Following Section 3.1.2.2’s

requirements:

• Antibodies: parameter pairs (N and distthreshold) to apply to NSA.

– Affinity: performance of NSA for the antibody. This is evaluated by promoting higher

F1 scores and estimated area coverage, and penalizing algorithm running time.

– Mutation: for a given antibody, randomly select one of its parameters and multiply it

by a random value inside [2/3,3/2].

– Generation: randomly select parameter pairs inside a given range of values.

– Selection: select the NA highest affinity antibodies.

– Cloning: clone the NC highest affinity antibodies.

– Stop criterion: max iterations, Imax reached, or target affinity, A f ftarget , reached.

For the optimization of NSA, first, a static set of "self" points is stored for training. For each

antibody 3.4’s affinity, the NSA algorithm runs for a test dataset, and its F1 score (previously de-

scribed in Section 2.2.2.2) and detector estimated coverage are calculated, and its time is averaged

between each data point. The highest affinity NC antibodies are cloned, mutated, and re-evaluated,

and the worst antibodies are eliminated and replaced by Nnew new ones, such that the population

has NA antibodies. The entire procedure is performed for either a max number of iterations, Imax,

or until the best affinity in the population achieves a predetermined value, A f ftarget .

The detector estimated coverage is determined by generating evenly spaced points along with

the data space and computing the ratio of non-self points to self points that result after running the

algorithm for all points (Equation 3.6). The area, F1 score, and execution time are all fused into

a single affinity value as described in Equation 3.5. This equation always leads to affinity values

between 0 and 1 and only works if all factors are also between 0 and 1, such that the factor of

all these values will be highly penalized by the lowest of them. To normalize the impact of the

execution time, a custom sigmoid function is applied, such that low values of time will lead to

values close to 1, and high values of time will lead to values close to 0. This customized sigmoid

is shown in Equation 3.7, where mid point is the value of x for which the function evaluates as 0.5,

and slope is the slope of the function at the midpoint. This customized sigmoid allows us to define
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a soft limit on desired execution time such that values well over this limit are very close to 0, and,

therefore, lead to an affinity that is also very close to 0 and undesirable. The slope, in this context,

has to be a negative number and defines how steep the transition between 1 and 0 is, such that a

value close to 0 leads to a very soft curve, and a value approaching− inf resembles a reversed unit

step function.

A = {a0,a1, . . . ,aNA}, ai = {Ni,dist i
threshold} (3.4)

a f f inity(ai) = area×F1× sigmoid(timeexecution) (3.5)

area =
T P+FP
T N +FN

(3.6)

sig(x) = (1+ e4×slope×(x−mid point))
−1

(3.7)

3.2.5 Immune Networks

AINs can be used as anomaly detectors by learning normal data distribution through its clustering

properties, and, somehow, quantify how much a given point belongs to a cluster. Let this metric of

how much a point belongs to a cluster be named "normality score". It is then possible for points

to be classified as normal points if their normality score is high (above a certain threshold), and be

classified as abnormal in the opposite scenario. It is not the main scope of this thesis to conduct

a thorough exploration of all AIS algorithms. This work is merely indicative of which algorithm

to pursue to adapt/improve for real time anomaly detection. This, aligned with some limitations,

lead to the decision of not further exploring this family of algorithms, but their applicability for

anomaly detection is not discarded. The following reasons are presented:

• Unintuitive: the algorithm’s interactions are hard to understand, variations in its parameters

are not very clear in their effect, and the algorithm’s evolution is highly unpredictable. The

biological theory that inspires it is loosely coupled to the algorithms in this family, which

further hinders the ease of understanding the algorithm.

• Complex: as it contains a highly networked and dynamic structure, its time complexity

discourages its application in real time scenarios.

• Scope: as mainly a clustering algorithm, its suitability for anomaly detection is not clear,

although, as was described earlier, it is possible to still be applicable for this family of

problems. To the best of this dissertation’s author’s knowledge, this was never done.

3.2.6 Dendritic Cell Algorithm

J. Greensmith’s thesis [67] proposed DCA for anomaly detection applied to intrusion detection as

a DIA. This algorithm draws direct inspiration from DCs as cells that indiscriminately collect data
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(antigens). The algorithm, as implemented in this section, is listed in Algorithm 4. DCA has no

training phase, instead, when implemented, danger, safe, PAMP and inflammatory signals need to

be extracted from data. The way these signals are extracted, currently, rely on expert knowledge.

Each signal represents degrees of danger (as a non-negative real value or integer) in the problem

domain:

• PAMP signals indicate the presence of danger with great confidence;

• Safe signals indicate the absence of danger with moderate confidence;

• Danger signals indicate the presence of danger with low confidence;

• Inflammatory cytokines increase the magnitude of all previous signals, increasing their ef-

fects.

As previously mentioned, the modeling of these signals is coupled with the problem, i.e., the

anomalies to detect. E.g. in intrusion detection, the PAMP signal can be associated with an

increase in incoming connections [68], error messages [67] and danger signals can be packet

counts, message size, and also a fusion of multiple features [44].

Each data point is processed in the algorithm as antigen-signal pairs. The signals were de-

scribed in the previous paragraph, the antigens are unique identifiers and will ultimately be the

target for detection. Thus, antigens are what we want to classify, and signals are what we use for

that classification.

DCA collects these data points over time, resulting in classifications that take into account

the context of recent and future data. A single data point with a large danger signal will prob-

ably be considered safe if surrounded by safe-signaling data points. The way classification is

accomplished is by distributing data points among immature Dendritic Cell (iDC)s. Each iDC

will store the antigen (i.e. the identifier) and use its signals to update its state in two ways: it will

update its context value, k, which indicates danger (positive values) or safety (negative values) and

increases with PAMP and danger signals, and decreases with safe signals; it will update its cos-

timulation value, csm, which denotes how much it has processed signals, increasing with PAMP

danger and safe signals. Inflammatory cytokines increase the magnitude of all three signals, ef-

fectively increasing the rate at which both k and csm change. Equation 3.9 is a matrix adaptation

of J. Greensmith’s method for calculating k and csm signals from safe, danger, PAMP and inflam-

matory signals, while Equation 3.10 is the same, but in iterative form, which is effectively the one

used in the implemented algorithm in this section. When the iDC’s csm reaches a given thresh-

old, the iDC matures into either mDC or smDC, depending on whether k is greater than 0 or not,

respectively. A given antigen can be classified as normal or anomalous according to its Mature

Context Antigen Value (MCAV). The MCAV value is computed according to Equation 3.8, where

#mDCAgi denotes the number of times that a given antigen, Agi, was found in a DC that matured

into a mDC and #DCAgi is the number of times that a given antigen, Agi, was collected by any DC.

If the MCAV is greater than a predefined threshold the antigen is considered anomalous, else it is

considered normal.
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Note that in this implementation, the antigen pertains to the specific data point, but this is not

a necessity (e.g. the antigen can be a process ID which originated data points, in which case it is

the process ID, and therefore the process, that gets classified, not the individual data points).

MCAV (Agi) =
#mDCAgi

#DCAgi

(3.8)

[
csm

k

]
=

[
wP,csm wD,csm wS,csm

wP,k wD,k wS,k

]
∑
i

Pi ∗ (1+ Ii)

∑
i

Di ∗ (1+ Ii)

∑
i

Si ∗ (1+ Ii)

 (3.9)

[
csmi

ki

]
=

[
csmi−1

ki−1

]
+

[
wP,csm wD,csm wS,csm

wP,k wD,k wS,k

]Pi

Di

Si

∗ (1+ Ii) (3.10)

3.2.6.1 Signals and Antigens

Given the nature of DCA, the description of the implementation would not be complete without

the functions that allow the extraction of signals from data points. For each dataset presented in

Section 3.2.2, different signals will be used. In each case, the antigens were the unique IDs of

each data point, as the goal is to classify each data point.

For the first dataset, it is known that the data points follow a perfect circle centered in point

(0.5,0.5). Thus, we can model each point’s safety as the distance of the point to the circumference

if it is inside the circle, and the danger signal as the same distance, if it is outside the circle. The

distance metric is the same as previously shown in Equation 3.3. Equations 3.11 and 3.12 show

the signal functions used, where pi is the point whose signals are to be calculated, and p0 is the

center point at (0.5,0.5). Recall that the radius of the circle in this dataset is 0.2.

danger(pi) = max [ (distance(pi, p0)−0.2) , 0] (3.11)

sa f ety(pi) = max [ (0.2−distance(pi, p0)) , 0] (3.12)

The second dataset needs to be examined. To use the data that is most meaningful for the

label, the Pearson’s correlation coefficient between each feature and the label were computed

(Equation 3.13, such that y is the label’s numerical value of 0 or 1). Note that Pearson’s correlation

coefficient does not apply to categorical data, but in the case of encoded binary categorical data

(as is the case), it is still applicable. These results are used for two purposes: the most highly

correlated value with the label will be used for both PAMP and safe signals; the remaining values

will be used for the danger signal which will be obtained as a weighted sum of each feature’s

difference to the mean of normal data points only (Equation 3.16, where Xnormal
j denotes the mean
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Algorithm 4: DCA algorithm implemented in this section. This algorithm is adapted
from J. Greensmith [67]

Input: Ag input data (antigens)
N DC population size
c number of times any antigen will be presented to distinct DCs
tmigration migration threshold after which DC matures
tmcav MCAV threshold above which the antigen is considered anomalous
Output: Classification of antigens as normal or anomalous

1 foreach ag in Ag do
2 signals = compute_signals(ag)
3 DCsample = sample_random(c)
4 foreach dc in DCsample do

/* update csm and k of each cell and store the antigen in
their repertoire */

5 expose(dc,ag,signals)
6 if dc.csm > tmigration then
7 if dc.k > 0 then

/* this will increment the count of mDC for all
antigens that this cell had */

8 mature(dc,MATURE)
9 else

10 mature(dc,SEMIMATURE)
11 end
12 reset(dc)
13 end
14 end
15 end
16

17 foreach ag in Ag do
18 mcav = mDC_count(ag)

c
19 if mcav > tmcav then
20 classi f y(ag,OUT LIER)
21 else
22 classi f y(ag,NORMAL)
23 end
24 end
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of feature X j considering only benign data points.), in which the weights will be the respective

correlation coefficients divided by the sum of all coefficients, as shown in Equation 3.15 to prevent

the danger signal from being too high as a result of summing too many values. The PAMP and

safe signals are, in this case, mutually exclusive, and are given in Equations 3.17 and 3.18, where

o corresponds to the mean of the most correlated feature (the texture mean, feature order 4 in

Table 3.2) across its normal occurrences, only, ignoring the anomalous (malignant) data points,

and to denotes the greatest distance between any normal point and o.

ρ(X ,Y ) =
∑

n
i=0(xi− x)(yi− y)√

∑
n
i=0(xi− x)2 ∑

n
i=0(xi− x)2

(3.13)

pi = {x3
i ,x

4
i , . . . ,x

32
i } (3.14)

wXi =
ρ(Xi,Y )

∑ j∈{3,5,...,32}ρ(X j)
(3.15)

danger(pi) = ∑
j∈{3,5,...,32}

wXi× (x j
i −Xnormal

j ) (3.16)

PAMP(pi) = max ( |x4
i −o|− to , 0) (3.17)

sa f e(pi) = max ( to−|x4
i −o| , 0) (3.18)

With these signals defined, the previously described Algorithm 4 can be applied.

3.2.7 Results and Discussion

All specific algorithms mentioned in the previous sections (Real-Valued NSA, CSA for optimiza-

tion and DCA) were implemented (not designed) by me, using Python for faster prototyping. In

this section, the validity of the implemented algorithms is evaluated, and their performance and

parameter effect will also be analyzed. Section 3.2.7.1 offers initial insights into each algorithms’

advantages and shortcomings, while Section 3.2.7.2 focuses on evaluating performance for differ-

ent data dimensions (as a representation of scalability) and aims to further validate the algorithms’

performance in data that is not so clearly separable.

3.2.7.1 Random Circle Dataset

For all algorithms, the random circle dataset was split into 200 normal occurrences for training,

with 600 normal occurrences and all 200 abnormal occurrences being used for testing. Note that

DCA has no training phase, thus, to simulate this, the mentioned procedures for feature means in

normal occurrences were applied only to this training subset, instead of all normal occurrences. In
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(a) Detectors representation as circumferences (b) Detectors representation by self space

Figure 3.7: Two equivalent representations of detectors. (a) represents the detectors directly as
circumferences where points residing inside said circumferences are considered anomalous. (b)
illustrates the opposite, i.e., normal space where points inside it are considered normal. In both
cases, points in orange are anomalies that were misclassified as normal, and blue points are normal
points misclassified as anomalies.

any case, the 200 training normal occurrences were never used to evaluate the performance of any

algorithm, only the remaining 800 test data points were used.

For NSA, with 100 detectors and a threshold distance of 0.1, the model could achieve an F1

score of 0.93 with 6 false positives and 21 false negatives. As the dataset is two dimensional,

the detectors themselves can be visualized, and the false positives can be visualized as shown in

Figure 3.7, where a known problem of NSA becomes visible, which is the problem of non-self

gaps: areas that are uncovered by any detector but which represent anomalous space, leading

to false negatives. All false positives are data points that were too close to the normal-anomaly

boundary circle and were not included in the training. Some shortcomings are identified, but the

algorithm is validated.

Regarding CSA, NSA was optimized regarding the two main parameters, as described in Sec-

tion 3.2.4. Before using the algorithm, the customized sigmoid function previously described in

Equation 3.7 needs to be tuned to a goal. As the processing time per antigen, the midpoint was

established as 0.5 ms/antigen, and the sigmoid was tuned such that at 0.7 ms the score would be

0.1, leading to a sigmoid with slope = 2750 and the mid point = 0.5× 10−3 (Figure 3.8a). This

can be interpreted as defining 0.5 ms as a soft limit and 0.7 ms as a hard limit. As the affin-

ity of each antibody is calculated by factoring in three factors that are in the range of 0 and 1,

we can conveniently plot the algorithm’s progress across generations in a single plot as shown in

Figure 3.8b. In this particular case, the best parameters found for NSA were 79 detectors with a

threshold distance of approximately 0.168 for an affinity of about 0.984 resulting from an F1 score

of 0.9975 and just under a 0.1 ms per antigen processing time. Because CSA has to execute NSA
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(a) Customized sigmoid function.
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Figure 3.8: Customized sigmoid function used to normalize time scores (a) and evolution of both
F1 score and time score as well as the resulting affinity over multiple generations.

for all points every time a new antibody is produced, the algorithm is slow, taking approximately

3 minutes using only a population size of 10 with 4 clones and 3 antibody additions per iteration,

with a max iteration limit of 25. However, the NSA resulting from this implementation was better

than that of the previous paragraph. Nonetheless, after full implementation, the applicability for

anomaly detection in real time for CSA could not be found.

For DCA, the implementation was executed with 100 cells, with each antigen being captured

by 10 random unique cells; the MCAV threshold was set to 0.4 and the migration threshold was

set to 1.0. Applying the algorithm in the dataset directly resulted in a F1 score of 0.49 with 20

false positives and 105 false negatives, despite using danger and safe functions that model the

data’s distribution perfectly. This is because DCA is designed to be implemented in time series

by leveraging the time locality of data points, with the assumption that outliers do not occur in

isolation. By ordering the dataset, such that all normal points have lower indexes, DCA achieves

an F1 score of 0.954 with 19 false positives. Creating 4 partitions of anomalies, each with 50

consecutive outliers, DCA achieves an F1 score of 0.90. These two last results are shown in

Figure 3.9. The only uncertainties come from transition areas, where DCA’s "sliding window"

effect is noticeable.

3.2.7.2 Wisconsin Breast Cancer Diagnosis Dataset

In this scenario, only DCA and NSA will be compared. For each algorithm, all 29 datasets of

PCA components were used, and the original, normalized version, for a total of 30 datasets used

on each algorithm.

First, DCA needs to be revalidated for the signal functions (danger, safe, and PAMP) described

in Section 3.2.6 as these are not the same used in the previous dataset. The normalized version of

the dataset is fully ordered, and the signals that result from each antigen are plotted, as well as the

final classification results. Figure 3.10 shows all three signals and the MCAV, the same parameters
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(a) DCA applied to fully ordered data.
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(b) DCA applied to 4 partitions of ordered data.

Figure 3.9: DCA results for both fully ordered (left) and partitioned (right) datasets. The orange
line represents the true classification, the blue plot is the MCAV of each antigen, with higher
values implying danger and lower values implying safety. The red points represent points that
were misclassified, with their position being the classification that DCA attributed to them.

were used as with the first dataset (random circle), and the F1 score in this instance was 0.986 with

6 false positives and no false negatives, and thus, the algorithm is considered validated.

For each PCA reduced dataset, DCA was adapted for the new correlation coefficients and

means, but the parameters remained the same. In NSA the parameters were also the same. Fig-

ure 3.11 reveals that DCA is faster than NSA, but when normalized, both algorithms seem to

follow a O(n) progression (n being the number of features of each data points). When analyzing

the scores of Figure 3.12, NSA seems to fall drastically as the number of features increase, while

DCA remains effective. The disproportion between precision (near 1) and recall (near 0) of NSA

are signs that the algorithm is evaluating all points as negative (as normal) leading to no false

positives, but many false negatives.

In the case of data dimensions increase, it stands to reason that the same number of detectors

does not cover the same amount of space, relative to the full problem space. As an attempt to

find useful values for NSA, another test was made where the number of detectors increases with

each added dimension, by doubling the previous number of detectors. This lead to an increase

in recall for the smaller dimension, but the algorithm still declines greatly for both recall and

precision values with dimension increase, although now, the processing time per antigen increases

exponentially as well. Thus, NSA scales poorly with the number of dimensions. With this in

mind, DCA seems to hold potential as an anomaly detection algorithm and will be pursued in the

following chapters.

Further results not shown in this section can be found in Appendix C

3.2.8 Limitations

This study was a superficial study to gain insight into each algorithm’s potential as an online

anomaly detection technique. However, it is important to note the limitations of the work devel-

oped in this chapter:
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Figure 3.10: All three used signals (inflammation isn’t used) and the resulting MCAV. The black
dashed line represents the original label from the dataset (0 or 1). All signals were scaled up to
double their original value for better visualization.

• AIN was not analyzed other than conceptually, i.e., it was not implemented and fully under-

stood before being discarded;

• CSA was not implemented as an anomaly detection algorithm, as a way to do this was not

easily achieved without merging CSA with other algorithms;

• The used datasets are fairly simple and are not time series, which leads to a lack of under-

standing on how these algorithms scale to real use cases, namely in real-time scenarios;

• Optimized versions of these algorithms exist, which were not explored.

3.3 Summary

In this chapter the main four families of AIS were introduced, namely, those based on: self non-

self theory, clonal selection theory, immune network theory, and danger theory. A simplistic

implementation of one algorithm from each family was implemented and their applicability for

anomaly detection was evaluated:

• NSA requires no knowledge or modeling of the problem, being conceptually simple which

makes it easy to implement. The intuition behind T cells (detectors) allows visualization of

the detectors themselves and, consequentially, of the "normal space". However, the algo-

rithm was found to scale poorly with data dimension, and detectors very often overlap and

leave gaps between them that fail to detect anomalies.
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Figure 3.11: Plots of times (y-axes) over each dataset with different numbers of features (x-axes).
The left plots show the original time values, while the right plots are normalized linearly between
0 and 1.
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Figure 3.12: Plots of precision, recall and F1 scores (y-axes) over each dataset with different
numbers of features (x-axes).
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• CSA was only shortly explored, as its application in anomaly detection was not clear. The

algorithm succeeded in tuning NSA’s parameters, but the problem domain was simple and

the execution time of NSA in the second dataset made it prohibitive to attempt CSA in that

context.

• AIN, as a networked population algorithm was deemed unintuitive in its implementation,

too complex, and, as primarily a clustering algorithm, was left aside. This does not mean

that the algorithm does not apply to anomaly detection.

• DCA is relatively lightweight in what concerns execution time. Its scalability is also rea-

sonable, maintaining high metrics for increasing data dimensions. Two identified drawbacks

from this algorithm are that extensive modeling of the problem was required, and the algo-

rithm currently needs for all cells that collect a given data point to mature before classifying

said data point, which leads the algorithm as it is to be unfit for online anomaly detection.



Chapter 4

Improving DCA for Online Anomaly
Detection

In the previous chapter, two main shortcomings were identified for the application of DCA for

online anomaly detection:

1. The voting mechanism implies that, in the worst-case scenario, all data has to be processed

before classification, which is not a problem in offline detection.

2. The modeling of the algorithm is extremely coupled to the problem at hand. This means that

a model of DCA in a problem is not transferable to another problem, and significant effort

is required in each problem.

Section 4.1 explains how a modular structure was implemented to make experimentation in

the upcoming sections easier. In Section 4.2, a procedure of adapting DCA to function as an

online anomaly detection algorithm is proposed. In Section 4.3 fusing DCA with unsupervised

techniques to benefit from more data-oriented solutions is proposed.

4.1 Modular Dendritic Cell Algorithm

In this section, a different architecture for DCA design was implemented. The motivation behind

this is that different alterations to the algorithm would inevitably lead to great effort in reprogram-

ming the implementation. Thus, a modular architecture was implemented as shown in Figure 4.1.

This allows for more experimentation, without the need to adapt the entire software structure to

accommodate changes. This includes the following modules:

• Interface: to keep the API consistent, the interface module implements the same functions,

even if the algorithm changes. It is capable of receiving antigens and outputting their clas-

sification (if available). Internally, it sends the received antigens to the signal extractor and

the antigen repertoire.
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Figure 4.1: Modular DCA model from the perspective of data flow.

• Signal Extractor: the way signals are inferred from data. It is capable of receiving antigens

and extracting safe, danger, PAMP and inflammation signals from them. It outputs the

inferred signals as well as the antigen it received, sending it to the sampler.

• Sampler: how the antigens will be distributed among the DC population. It receives a

single antigen-signals pair and decides which DCs receive it, if they get copied, or any other

intermediate processing procedure.

• DC Population: the DC population collect antigens, storing them locally. Any DC has

access to the antigens it collected and can change them in the repertoire.

• Antigen Repertoire: where the data to be classified is stored. It can function as a passive

database or can be implemented to have behavior, such as changing the antigens it collects

in some way.

As long as the previous description of each module is implemented, each module can be re-

placed and tested with different approaches.

4.2 Adapting Dendritic Cell Algorithm for Online Anomaly Detec-
tion

In this section, an adaptation of DCA into a more suitable online anomaly detection algorithm is

proposed. To refer to this new implementation, let CDCA refer to the online adapted version of

DCA.
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4.2.1 Deterministic Dendritic Cell Algorithm

This adaptation is partially based on the work of J. Greensmith et al. [69], after the original DCA,

which attempted to implement a version of DCA with fewer parameters, that the authors called

deterministic Dendritic Cell Algorithm (dDCA) [69]. dDCA was evaluated in its aptitude for

intrusion detection in industrial scenarios, by Pinto et al. [44]. These are the main differences

between dDCA as described in [69] when compared to the original DCA as implemented in the

previous chapter:

• The exposure of antigens to cells is done as a sliding window of cells, rather than randomly

picking n cells

• The signals were reduced to only safe and danger signals, and the weights were set as

predetermined, rather than as a user parameter.

• A new classification metric is proposed, that takes into account all signals in the data, but

this is only possible if the signals are known beforehand.

The signals in dDCA are calculated as indicated in Equation 4.1 (compare with Equation 3.10),

where Di and Si stand for danger and safe signals associated with the ith collected antigen, respec-

tively. [
csmi

ki

]
=

[
csmi−1

ki−1

]
+

[
Di +Si

Di−2Si

]
(4.1)

4.2.2 Online Adaptation

The main impediment for online detection is the fact that the MCAV assumes all DCs already

matured. However, this dissertation’s authors notice that it is possible to classify a point before

all DCs collect it. Thus, it is proposed that each time a new antigen is collected, the signals of

each cell are updated and an intermediate MCAV value is calculated, under the assumption that

the antigen has already been collected by all cells that are to collect it. Figure 4.2 summarily

represents how this is achieved: each antigen will be stored as a data structure, with three possible

states: "Inconclusive", "Dangerous" and "Safe". The "Inconclusive" state is undesirable as it

means that for some iterations, the data point has no classification, however, this approach allows

"Dangerous" points to be identified much sooner when compared to "Safe" points that still have

to wait for all cells that collected the antigen to mature. The effect of the new "inconclusive" state

can be observed in Figure 4.3, where the same instance of CDCA is executed and the progress is

captured in four different moments in time.

To further validate that CDCA works as intended, it was applied to the same dataset as the pre-

vious version in Section 3.2.7.2. An F1 score of 0.945 was obtained, considering all inconclusive

points to be false positives or false negatives. This implementation, despite being adapted from

dDCA, still includes PAMP signals and Inflammation signals, but a null weight can be given to

them if desired.
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Figure 4.2: Finite state diagram of each DC and antigen. Antigens are stored until classified, after
which their classification is flagged and the antigen is erased.

Figure 4.3: The same execution of CDCA over four different moments in time (the points are
inputted to the algorithm from left to right). The lifespan of each cell was increased significantly
to allow an easy visualization of inconclusive data points (shown in green). Normal points are
shown in yellow, with purple points representing anomalies.
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In the modular approach presented in Section 4.1, this implied switching the antigen repertoire

to store intermediate values for MCAV computation and changing the DC population module to

incrementally update the MCAV every time it collects antigens and matures, rather than letting

this procedure be done at the end of the algorithm’s execution.

With CDCA being suitable for online anomaly detection, the following section explains how

it was attempted to be made easier to model.

4.3 Adapting Dendritic Cell Algorithm for Unsupervised Anomaly
Detection

Regarding the problem of modeling, the bulk of the effort is in deciding the signals. The remainder

of the algorithm’s performance is relative to parameter tuning and requires no expert knowledge

of the problem domain. Thus, the extraction of signals is proposed to be based on unsupervised

techniques in an attempt to overcome this problem. The chosen unsupervised technique(s) needs

to:

• Functional requirements:

– be capable of processing multi-dimensional data;

– be able to process data online, which also implies that it needs to be able to process

previously unseen data;

– provide real-valued information regarding the data (to be used as signals);

• Performance requirements:

– be scalable in what concerns memory storage;

– be scalable in what concerns execution time per data instance.

In addition to these requirements, it is beneficial if the technique can be expanded, which

would allow for DCA to adapt to new environments (e.g. device changed place, now exhibits new

normal behavior which needs to be relearned; new device connects to the factory floor, chang-

ing the interactions in the system to a new normal). These requirements were considered with

flexibility and real time response in mind (two of the factors for CPS described in Section 2.2.1)

additionally to being adaptable to DCA.

In the modular approach presented in Section 4.1, this section is mostly restricted to the signal

extractor module, to encapsulate an unsupervised technique as a signal extractor.

4.3.1 Clustering

As previously described in Section 2.2.2.3, clustering can be used for anomaly detection. Using

sklearn [70] as a reference for potential candidates, the following cluster techniques are consid-

ered: 1. K-means 2. Affinity propagation 3. Mean-shift 4. Spectral clustering 5. Ward hierarchical

clustering 6. Agglomerative clustering 7. DBSCAN 8. OPTICS 9. Gaussian mixtures 10. BIRCH
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Techniques 4 through 8 are all transductive clustering algorithms, meaning they only work

under the assumption that all data is accessible, thus, to classify new data, the algorithm needs

to run over the entirety of the data again, as if analyzing a new problem. Affinity propagation,

Mean-shift, and Gaussian mixtures have poor scaling [70], with affinity propagation having a

time complexity of O(N2T ) and memory complexity of O(N2), and Mean-Shift having O(N2)

time complexity. The mentioned time complexities are in total, and time complexity of O(N) is

desirable for online usage (such that each data point will be processed in O(1) time). BIRCH

scales relatively poorly to high dimensional data but might be applicable.

4.3.1.1 Adapting K-Means

K-Means attempts to find K clusters that minimize the variance within each cluster. Each cluster

is described by a single point - the centroid - in the same space as X which represents the mean

of the values that pertain to the cluster, and this centroid is iteratively moved until the difference

in how much it moves is below a certain threshold. Classification of future points is done by

simply computing which centroid is closer to it. K-Means suffers in irregularly shaped data,

whose clusters are not successfully separated by how distant they are to centroids. To apply K-

Means to DCA, rather than using the categorical classification it provides, the distance to centroids

can be used. The proposed approach uses specific training data to calculate the centroids of the

training data (this is the same as the original K means). From this procedure, the centroids are

stored for later use. Additionally, for each centroid, the distance to the furthest point belonging to

that centroid’s cluster is also stored. Then, a parameter ftol ∈ (0,+ inf) allows tuning how much

to increase/decrease the radius of each centroid (higher values should increase true negatives, at

the potential cost of false negatives, and vice versa). Algorithm 5 presents how danger and safe

signals can be extracted from the collected centroids and radii.

Algorithm 5: K-Means danger and safe extraction algorithm.
Input: x data point
R,C sets of centroids and radii, respectively
Output: safe and danger signals

1 signalmin =+ inf
2 foreach ci,si in C,R do
3 signal = distance(x,ci)− ri

4 if signal < signalmin then
5 signalmin = signal
6 end
7 end
8 if signalmin < 0 then
9 danger = signalmin

10 else
11 sa f e =−signalmin

12 end
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Applying this version of K-Means we get the heat map for danger and safe signals shown in

Figures 4.4 and 4.5, for different cluster number and tolerance values, respectively.

Figure 4.4: Heat maps for different values of k clusters and 1.0 tolerance. Low numbers of clusters
create unrealistically large areas leading to a big amount of false negatives. Overly big values of k
lead to diminishing returns and, although not the case here, an increase in false positives.



64 Improving DCA for Online Anomaly Detection

Figure 4.5: Heat maps for different values of tolerance clusters for 10 clusters. Low numbers of
tolerance increase the chances that an anomaly will lie in the "dangerous" area, but some normal
points will also be included. Increasing tolerance will have a non-linear effect, as doubling the
radius will increase covered problem space by that increase to the power of data dimension.



Chapter 5

Results and Discussion

In this chapter, two datasets are introduced, in which CDCA is applied with the goal of validating

it in two aspects. In Section 5.1 the Skoltech Anomaly Benchmark (SKAB) dataset is introduced,

as the dataset to be used to validate the approach in regards to its performance. Then, in Section 5.2

the proposed solution in this dissertation is compared with another DCA approach, validating if its

performance is competitive, despite its modeling effort being decreased. All results were obtained

using the Python programming language, executing the tests on a computer with the following

characteristics:

• Intel(R) Core(TM) i7-6700HQ CPU with 4 physical cores and 8 logical cores

• CPU speed of 2.60 GHz

• 16.0 GB of Random Access Memory

• Windows 10 Operating System

5.1 Skoltech Anomaly Benchmark Dataset

The dataset used is the Skoltech Anomaly Benchmark (SKAB) dataset (dataset can be found in

[4]). This dataset was chosen due to the exclusivity to physical process measurements (no network

packets, CPU usage, etc.) and the anomalies are caused by faults, rather than by intentional attacks,

which goes in accordance with the scope of the thesis (anomaly detection for fault detection). It

contains a collection of data points to be used for training (anomaly free collection of points) and

anomalies are grouped, i.e., only collective anomalies are present (recall the concept of collective

anomalies in Section 2.2.2.2), which aligns with the assumption that anomalies usually occur

together in physical processes. It is also inserted in the context of I-IoT and the benchmark has a

GNU AGPL v3.0 license, making it accessible. Finally, as a benchmarking solution, the proposed

approach can be compared with both current and future solutions using the same benchmark.
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Table 5.1: Distribution of SKAB dataset. Number of trials refers to how many times the experi-
ment was done and recorded as a separate file. In case of multiple trials, the number of points and
number of anomalous points is the average among trials.

Anomaly
Description

Number
of Trials

Number
of points

Number of
anomalous

points
Closing of the valve at the outlet

of the flow from the pump
4 1078 379.25

Closing of the valve at the
inlet of the flow from the pump

16 1135.125 394.3125

Sharp behavior 1 968 398
Linear behavior 1 1153 410

Rotor imbalance Step behavior 1 1147 401
Dirac delta function behavior 1 1091 346

Exponential behavior 1 1147 403
Increase in the amount
of water in the circuit

Slow increase 1 1145 402
Sudden increase 1 1326 587

Draining the water from the tank
until cavitation

1 1191 451

Two-phase flow supply to the pump inlet
(cavitation)

1 1141 401

Water supply of increased temperature 1 1079 339

5.1.1 Assumptions

The assessment of the algorithm’s performance is made on the following assumptions:

• An observable physical process exists, whose normal behavior exhibits patterns that are

different in the observable data, in respect to the patterns that originate from abnormal be-

havior;

• The physical process is described by real valued data (e.g. sensor measurements, time be-

tween events);

• anomalies occur only sporadically, and thus the implementation can not use a priori infor-

mation regarding the nature of anomalies. This also implies that an implementation can

assume the system to start by behaving normally, as the majority of observations ought to

be normal;

• anomalies do not occur in isolation, i.e., a single point of data, if anomalous, has other

anomalous points of data in close proximity in time.

5.1.2 Description

The testbed used for the production of the SKAB dataset is a water circulation system and is

shown in Figure 5.1 (this figure was obtained from [4], with slight alterations in the numbering).
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Furthermore, not shown in Figure 5.1, the system contains two vibration sensors, a pressure meter,

a flow meter, and a thermocouple. The system communicates through OPC-UA and the data

collected from the system is stored in a MySQL database. The data is processed from the database

and stored in the .csv format files which constitute the dataset. Currently, the anomalies present

in the dataset are summarized in Table 5.1 (previous page).

Figure 5.1: Testbed used for the production of the SKAB dataset. Figure obtained from [4]. The
numbered components are (from [4]): 1 - inverter; 2 - water pump; 3 - emergency stop button; 4 -
electric motor; 5 - compactRIO controller; 6 and 7 - solenoid valves; 8 - water tank; 9 - mechanical
lever for shaft misalignment.

5.1.3 Early analysis and preprocessing

To infer if the current features enable anomaly detection, a first step was to visualize the data. As

high dimensional data, it is not possible to conveniently plot the entire information, so PCA with

two components was used. Figure 5.2 illustrates these results, where there is an indication that

more features may be required. Note that PCA leads to loss of information and this analysis is

superficial, however, if PCA would reveal clear data separation, then the original data would also

be easily separable.

In the following are some attempts at gathering more data as a preprocessing step (note that

these features are to be used in addition to the original features, not as a replacement): 1. Mov-

ing average; 2. Derivative; 3. Absolute derivative; 4. Moving average of derivative (or absolute

derivative); 5. Difference from moving average; 6. Squared distance from moving average.
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Figure 5.2: Visualization of fault introduced in valve 1 (cf. Figure 5.1). No clear data distribution
is perceptible although outliers seem to tend to lie in a cluster in the positive direction of PC1,
overlapping with normal values.

Note that applying any of these procedures effectively doubles the number of features (using

two of these procedures triples the number of features, and so on). Thus, it is desirable to ap-

ply only one or a few more to reduce the complexity. Two of these feature extraction methods

were used: moving average and moving average of derivative (signed derivative). The usage of

moving average smoothes the otherwise noisy curves, which is particularly relevant for the deriva-

tive, when applied to noisy signals of small intervals, the derivative can achieve high values that

change significantly from one point to the next, however, the information of whether the signal

is increasing or decreasing was considered valuable and thus a moving average of the derivative

was used. Given the physical nature of the process, it was considered that values don’t drastically

change from one point to the next, and thus, metrics of difference from average were considered

less informative. Table 5.2 summarizes all original and added features of the dataset. The effect

of adding these features will be evaluated in the next section.
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Table 5.2: Summary of features used from the SKAB dataset. Features 11-26 were added as a
preprocessing step. Features 1 and 3-10 are the original features from the dataset. The anomaly
field is not a feature, but was included in this table as it belongs to the dataset and is used for
scoring results.

Order Feature Description Data Type

1 datetime
Date and time of day when the

value was written to the database
String

2 anomaly
Whether a particular point is
anomalous (=1) or not (=0)

3 Accelerometer1RMS
Vibration acceleration from

accelerometer 1 [g]

4 Accelerometer2RMS
Vibration acceleration from

accelerometer 2 [g]

5 Current
Current in the electric

motor [A]

6 Pressure
Pressure in the fluid loop,

at the outlet of the water pump [bar]
7 Temperature Temperature of the engine body [ºC] Real value

8 Thermocouple
Temperature of the fluid in the

circulation loop [ºC]
9 Voltage Voltage of the electric motor [V]

10 Volume Flow Rate RMS
Circulation flow rate of the
fluid inside the loop [l/min]

11-18 Moving averages
Moving averages of features

3 through 10 (same units)

19-26
Moving average of

time derivatives
Moving averages of derivatives over

time of features 3 through 10 (same units)
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5.1.4 Results and Discussion

Table 5.3: Results for all existing algorithms in SKAB and CDCA as well as the adapted version
of K Means. Results for CDCA and K Means are an average of the results of 10 repeated test
instances.

Algorithm F1 FAR [%] MAR [%]
Perfect detector 1 0 0

Conv-AE 0.79 13.69 17.77
MSET 0.73 20.82 20.08

CDCA_100_10_20 0.72 37.95 5.71
CDCA_100_5_20 0.72 38.27 5.75
CDCA_50_10_20 0.72 38.33 5.80
CDCA_20_10_20 0.72 37.74 6.41
CDCA_100_1_20 0.72 38.76 5.57
CDCA_100_10_5 0.72 29.18 15.24

CDCA_100_10_20_original 0.71 28.27 15.61
LSTM-AE 0.68 14.24 35.56

T-squared+Q (PCA) 0.67 13.95 36.32
MSCRED 0.64 13.56 41.16

LSTM 0.64 15.40 39.93
K Means w/ danger signals 0.61 25.63 35.76

CDCA_100_10_20_full 0.61 19.40 41.11
LSTM-VAE 0.56 9.13 55.03
T-squared 0.56 12.14 52.56

Autoencoder 0.45 7.56 66.57
Isolation forest 0.40 6.86 72.09
Null detector 0 0 100

SKAB [4] includes a scoring system that allows comparing results with the currently implemented

solutions, using F1 score, False Alarm Rate (FAR) and Missed Alarm Rate (MAR). FAR is numer-

ically the same as the FPR (Equation 2.8 in Section 2.2.2.2) and MAR is the complement to recall,

i.e., it can be calculated as 1−Recall. As SKAB is relatively new, only ad hoc implementations

from the authors currently populate the public score table.

Six versions of CDCA with K means are presented, with different parameters, denoted as

CDCA_cells_copies_k such that cells refers to the number of cells in the population, copies

is the number of copies of each antigen created and distributed to the population, and k is the num-

ber of clusters used for K means. Furthermore, two versions of preprocessing were attempted for

CDCA_100_10_20, to evaluate the effect that the preprocessing step had on the results, these

test instances are denoted in the same way as the previous instance with _original appended

meaning that no preprocessing was used, and _full for all feature alterations initially discarded

in Section 5.1.3 being included as well. One final version is the usage of adapted K means’ danger

and safe signals directly, by classifying points as anomalous if a danger signal is extracted from

K means, and classifying them as normal if a safe signal is extracted from K means, using the
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preprocessed data as was used for the majority of CDCA. Effectively, in this version, we’re using

adapted K means alone, without the voting mechanism of CDCA. This last test aims to evaluate

if CDCA is effectively improving and using the temporal locality of signals, or if the results are a

result of the K means signal extractor component, and it could be used by itself.

In all cases, inconclusive points were considered false positives or false negatives, to obtain a

conservative result to represent a baseline. Table 5.3 shows all results obtained, averaged over ten

instances for each test, ordered by descending F1 score.

Regarding the preprocessing method, using the original features, with no further feature ex-

traction, has positive results, unlike what was indicated by PCA in Section 5.1.3. Preprocessing

the original data with further moving average and moving average of derivative had little effect

on F1 score, having a higher impact on both FAR and MAR, improving the former and worsening

the latter. Adding all preprocessing methods degraded the performance of CDCA. This can be

attributed to the fact that a higher number of features represents more potential for variation, and

the learned centroids will tend to be larger, which, in turn, leads to more points being considered

normal. This is corroborated by the increase in MAR and decrease in FAR.

The proposed K means for danger signals without CDCA has significantly worse performance

regarding F1 score, when compared to all instances of CDCA, except for the previous instance

with full features. This indicates that CDCA is leveraging the effects of time locality to improve

the results yielded by K means.

In what concerns the parameters of CDCA, all alterations consistently lead to similar F1 scores,

with significant differences in FAR and MAR, namely, CDCA seems to be consistently worse than

all other algorithms in terms of its FAR, but consistently better in what concerns MAR. In other

words, CDCA suffers from too many false positives but excels in capturing all anomalies. The

most noticeable impact in changing parameters is in the smaller number of clusters leads to larger

clusters, which leads to lower FAR and higher MAR. Thus, the number of clusters regulates

the tradeoff between false positives and false negatives, with fewer clusters leading to more true

positives at the cost of an increase in false negatives, and more clusters having the opposite effect.

Both population and number of copies seem to have little impact on the classifications, with larger

populations resulting in slightly less MAR and larger copies sampled resulting in slightly less

FAR.

Regarding performance, the main concern is the time of classification, i.e. between receiving

an instance of data and classifying it. SKAB does not evaluate the time of execution or classifi-

cation, thus, only CDCA’s timings are presented in Table 5.4 for outlier classification times only,

as these timings are most crucial (for times concerning classification as normal, see Appendix E).

Currently, CDCA’s biggest limitation is its cycle delay in classification: the algorithm as is, can

not classify a data point in the same iteration it receives it, in the majority of cases (some excep-

tions include data points that have a very high danger or safe signals and using very low migration

thresholds).

In Table 5.4 the classification cycle delay is understood as the number of iterations between

the iteration where CDCA received a point, and the iteration it outputted its classification. Ideally,
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if CDCA can output a classification the moment it receives a new point, this would imply a clas-

sification cycle delay of 0. The population size seems to have little impact on the time it takes to

classify anomalies. This is an unexpected result, as it would be logical for bigger populations to

lead to longer classification times, as it would be less frequent for any given DC to be exposed to

antigens. A possible explanation is that the increase in population, with the same MCAV threshold

(recall that MCAV threshold is the threshold of the value of the proportion of DC cells that define

an antigen as dangerous to the total population of DC with that antigen), leads to cells migrating

faster, but with less consistent results as they are being exposed to antigens much faster, and thus

the MCAV might not achieve the threshold significantly faster.

Regarding the number of clusters, a lower number of clusters leads to longer times for anoma-

lies to be detected, which is to be expected, for the same reason as explained before: a smaller

number of clusters means bigger clusters, which implies that more points will be considered safe,

and hence it will be harder for cells to migrate as dangerous (and those that do, take longer to

do so). The last parameter evaluated is the sample copies of antigens from each sample, and a

decrease in antigen copies consistently leads to classification delays on average, but with highly

irregular results, meaning the average case improves (in what concerns its delay) but the worst-case

scenario worsens. One final observation is that, although the results from using all preprocessing

methods initially discarded yield worse results in what concerns F1 score, FAR and MAR, the

anomaly classification cycle delay improves, when compared to using the original features. Con-

versely, using no preprocessing might yield similar metrics in the SKAB score table, but leads

to significantly worse delays, likely due to the less distance between outliers and the learned K

means centroids (in higher dimensions, Euclidean distance tends to increase in value).

Table 5.4: Performance results for CDCA with multiple parameters. Results are sorted by ascend-
ing order of anomalous classification cycle delay means (first column after test instance), smaller
values are better.

Classification Cycle Delay Classification Delay [ms]
Test Instance Mean Standard Deviation Mean Standard Deviation

CDCA_100_1_20 7.684 10.290 1.537 2.097
CDCA_20_10_20 7.758 8.797 2.124 3.242

CDCA_100_10_20 7.818 8.654 2.112 2.288
CDCA_100_10_5 10.081 10.889 2.662 2.854

CDCA_100_10_20_full 11.893 9.298 3.189 2.676
CDCA_100_10_20_original 14.055 15.185 3.801 4.450

Lastly, the raw throughput of this CDCA implementation is analyzed. This metric is used as a

way to measure the potential that this algorithm has for analyzing data online if no classification

delay cycles are achieved. Table 5.5 shows different parameter combinations and their resulting

processing capacity in antigens per second. The most impactful parameter in what concerns raw

throughput is the number of copies of each antigen, given that each time the antigen is collected

these copies have to be made, distributed among DCs, and their signals propagated, triggering
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MCAV updates of other antigens, in case any of these DCs migrate. The population size is irrele-

vant for the raw throughput, as the impacted DCs are purely determined by the number of copies

of the antigen being sampled, and accessing each DC is done in O(1) time, as are the antigens

as they are, in this implementation, represented in a hash table. The number of clusters also has

reduced impact as calculating the Euclidean distance is only carried out once per antigen, even if

the number of copies is higher (the signals themselves are also copied). In this particular scenario,

an increase in the number of clusters from 20 to 50 resulted in a 10 % reduction in throughput

The decrease in throughput from the original dataset (8 features) to the fully preprocessed

dataset (56 features) is an indicator that this implementation is scalable to problem complexity.

Table 5.5: Results obtained for raw throughput, i.e., without considering classification and classi-
fication delay.

Test Instance
Processing
Capacity

[Antigen/s]

Relative
Processing
Capacity

[%]
CDCA_100_1_20 14375.849 177.7

CDCA_100_10_20_original 8578.720 106.0
CDCA_1000_10_20 8127.645 100.5
CDCA_100_10_20 8090.653 100.0
CDCA_100_10_5 8024.461 99.2

CDCA_100_10_20_full 7957.220 98.4
CDCA_20_10_20 7548.657 93.3
CDCA_100_10_50 7227.560 89.3
CDCA_100_100_20 1720.764 21.3

In all cases, the fact that the algorithm takes more than one iteration to classify the points is

a significant limitation that renders it inapt for time-critical scenarios, in its current state. Given

that in this dataset each data point is separated by approximately 1 second, this implies that most

anomaly classifications take, at least, 7 seconds, even though the algorithm requires less than

4 ms of execution time (i.e., disregarding the delay between receiving one point and the next).

This implementation, as is, can still be useful in an Industry 4.0 scenario due to its scalability.

The algorithm also proves to work well in combination with other techniques, easily adapting

techniques from other fields. Note that the modeling required for K Means is universal and not

tied to this problem. This will be corroborated in the following section.

5.2 M2M using OPC UA Dataset

M2M using OPC UA Dataset [5] is an intrusion detection validation dataset. Although the dataset

pertains to intrusion detection and not fault detection, which is the scope of this dissertation, it

was, to the best of this dissertation’s author’s knowledge, the only dataset used to validate a DCA
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Figure 5.3: Illustration of the testbed used for the generation of the M2M using OPC UA Dataset.
Figure obtained from [5].

implemented in an industrial scenario, in [44]. In this section, the main goal is to prove that CDCA

with K Means is easily adaptable to different problems, without expert knowledge.

5.2.1 Description

The dataset was obtained from a testbed of multiple connecting devices, as shown in Figure 5.3.

The system was attacked by sniffing, injecting, and modifying packets, and then OPC UA packets

were captured to form the dataset. Data is labeled with whether it is normal or anomalous, and

further, if anomalous, which kind of attack it relates to: Denial of Service, Eavesdropping or Man-

in-the-middle, and Impersonation or Spoofing attacks. The dataset’s constitution can be found in

Appendix F.

5.2.2 Preprocessing

The only preprocessing that was done in the dataset was the removal of all categorical features

(except for the label, which will be used for evaluation), and the removal of timestamp features

(timestamps of flow start and end).

5.2.3 Results

Applying CDCA with adapted K Means with 100 population size and 10 copies of each data points

sampled, and using 20 clusters, the instance was trained using the first 8000 data points, of the total

of 107.634 data points, of which 33.567 are normal instances. The AUC of the obtained ROC is

0.978, in comparison to the value of 0.99 obtained in [44]. It is noteworthy that both the AUC of

ROC of both approaches is too close to a perfect 1.0, which might indicate that the dataset might

not be reliable as a benchmarking dataset for anomaly detection.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the objectives that were established, this thesis can be considered partially successful. A

new algorithm was developed that expands on the previous work of the Artificial Immune System

algorithm - the Dendritic Cell Algorithm - adapting this algorithm to work in real-time as an

online anomaly detection tool, leading to the Cursory Dendritic Cell Algorithm, which uses the

same principles of the original version, but iteratively updates the classification metric, and keeps

track of said metric for individual points. This leads to near real-time classification but opens the

possibility of interim "inconclusive" points - points that are awaiting classification. The algorithm

was further adapted to be more flexible in its implementation, by first implementing a modular

structure that easily allows replacing sub-components, namely how data is collected, how it is

preprocessed, how values of abnormality are extracted from it, how those values are mapped to the

algorithm’s inherent population, and how the population behaves. Consequentially, this modular

approach allows faster development.

An adaptation of K Means, an unsupervised clustering algorithm, was implemented to allow

easing the implementation process of the Dendritic Cell Algorithm to make it substantially easier

to model to any given real valued problem. The hypothesis is that using adapted K Means to

extract values of abnormality, both algorithms can help each other: DCA has the means to be

more flexible and adapt to different problem contexts, while K Means’ classification is made more

robust for detecting collective anomalies, which are closely located in time.

The results were validated in the SKAB [4] dataset, which was deemed representative of an

I-IoT scenario, albeit on a smaller scale. The results revealed some strong points and some short-

comings in the implemented algorithm. Namely, the usage of signals from adapted K Means

effectively increases the performance of the algorithm, by leveraging anomalies as phenomena

that tend to happen with proximity in time, corroborating the hypothesis that the algorithms bene-

fit each other. The current implementation also outperforms a significant amount of results found

in the same benchmark in what concerns the chosen metric. The algorithm was further tested on

another dataset [5], with the main focus of corroborating that it is easy to adapt the algorithm to

75
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different scenarios, with comparative results to a similar algorithm of DCA. However, shortcom-

ings of the algorithm are also identified:

• Strengths:

– The algorithm does not require offline implementation, being able to process data

point-wise;

– It exhibits competitive performance in what concerns F1 score when compared to state-

of-the-art approaches, such as deep learning approaches;

– The algorithm was made modular, such that it can be easily adapted to different prob-

lems without a full redesign;

– Signals can come from other data-oriented techniques, and the algorithm can success-

fully leverage time proximity to achieve better results and improve the capacity of

detecting collective anomalies;

– The algorithm prioritizes anomalies over normal points, classifying the former faster

than it does the latter;

– The processing capacity of the algorithm can achieve values of 14k data points per

second, for data with 56 real valued features.

• Weaknesses:

– Data points are rarely classified in the same instance as they are received by the algo-

rithm, presenting potentially unacceptable delays;

– Single point anomalies, be it point anomalies or contextual anomalies, are usually not

detected;

– The algorithm has significant false positive rates;

– The effect of the population size parameter is unclear.

6.2 Contributions

• Comparative work of AIS, mainly pertaining NSA and DCA, in terms of their potential for

online anomaly detection;

• Developed a new modular structure to implement DCA in a more decoupled and extensible

way;

• Developed Cursory Dendritic Cell Algorithm (CDCA), a version of DCA that is more apt

for anomaly detection;

• Adapted K Means as a flexible tool to extract signals from data, attenuating the problem of

modelling related to DCA;

• Validated a version that implements CDCA with the developed modular structure, using the

adapted K Means as signal extractor, using the SKAB dataset.
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6.3 Future Work

Significant work is still left to do in the development of the proposed solution. Firstly, the main

drawback of the algorithm as is, is its delay in classification, which needs to be further refined to

offer immediate classification. Furthermore, its application in a real test case is critical before it

can be validated as a real-time implementation. The association with other scalable techniques for

the generation of signals, other than K Means, is also a promising point to explore. Finally, the

algorithm was not built with time optimization in mind, giving priority to achieving a first working

prototype, and, thus, optimizing the algorithm for performance is also a promising avenue. With

the distributed nature of Industry 4.0, another interesting proposal is to investigate the algorithm’s

potential to leverage not only time locality, but also spacial locality, such that devices can identify

their processes as antigens, send them to the cloud, and thus DCA could identify, not only when

the anomaly happened, but also where, in a decentralized manner.

Lastly, an article is being written on the developments of this dissertation, which, if approved,

will further validate the potential of DCA.



78 Conclusion and Future Work



Appendix A

Systematic Review Results

79



80 Systematic Review Results

Table A.1: First part of articles that resulted from the queries shown in Table 2.1 applied to the
research steps illustrated in Figure 2.1. Remaining results can be found in Table A.2.

Reference Title
[33] AMON: an Automaton MONitor for Industrial Cyber-Physical Security

[34]
KingFisher: an Industrial Security Framework based on Variational
Autoencoders

[36] Cross-Layer Anomaly Detection in Industrial Cyber-Physical Systems

[42]
Anomaly Detection and Productivity Analysis for Cyber-Physical
Systems in Manufacturing

[71]
Protecting Cyber Physical Production Systems using Anomaly
Detection to enable Self-adaptation

[24]
A Geometric Approach to Clustering Based Anomaly Detection for
Industrial Applications

[41]
Safety Risk Monitoring of Cyber-Physical Power Systems Based on
Ensemble Learning Algorithm

[38]
On the Identification of Decision Boundaries for Anomaly Detection
in CPPS

[43]
Context-Sensitive Modeling and Analysis of Cyber-Physical
Manufacturing Systems for Anomaly Detection and Diagnosis

[72]
Nowhere to Hide Methodology: Application of Clustering Fault
Diagnosis in the Nuclear Power Industry

[32]
A Novel Data Collection Framework for Telemetry and Anomaly
Detection in Industrial IoT Systems

[44]
Attack Detection in Cyber-Physical Production Systems using the
Deterministic Dendritic Cell Algorithm

[21]
A Comprehensive Technological Survey on the Dependable
Self-Management CPS: From Self-Adaptive Architecture to
Self-Management Strategies

[73]
A framework for Model-Driven Engineering of resilient
software-controlled systems

[74]
A New Concept of Digital Twin Supporting Optimization and
Resilience of Factories of the Future
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Table A.2: Continuation of Table A.1.

Reference Title
[75] Artificial intelligence in cyber physical systems

[76]
A scalable specification-agnostic multi-sensor anomaly
detection system for IIoT environments

[77]
A simulation-based platform for assessing the impact of cyber
threats on smart manufacturing systems

[2]
A Survey of Anomaly Detection in Industrial Wireless Sensor Networks
with Critical Water System Infrastructure as a Case Study

[45]
Big Data Summarisation and Relevance Evaluation for Anomaly
Detection in Cyber Physical Systems

[78] Dawn of new machining concepts:: Compensated, intelligent, bioinspired

[79]
Designing Context-Based Services for Resilient Cyber Physical
Production Systems

[80]
Detecting cyber-physical attacks in Cyber Manufacturing systems with
machine learning methods

[81]
Improving Security in Industrial Internet of Things: A Distributed
Intrusion Detection Methodology

[82]
Machine Learning Quorum Decider (MLQD) for
Large Scale IoT Deployments

[27] Non-convex hull based anomaly detection in CPPS

[48]
Outlier Detection in Temporal Spatial Log Data Using
Autoencoder for Industry 4.0

[83]
Real-Time Outlier Detection and Bayesian Classification using
Incremental Computations for Efficient and Scalable Stream Analytics
for IoT for Manufacturing

[49]
Self-Organizing Maps for Anomaly Localization and Predictive
Maintenance in Cyber-Physical Production Systems

[50]
Smart-troubleshooting connected devices: Concept, challenges
and opportunities

[35]
SVM-Based Dynamic Reconfiguration CPS for Manufacturing System
in Industry 4.0
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Table B.1: Search inputs used for each technology. To all these inputs, "AND ("anomaly
detection" OR "fault detection")" was appended, which is not shown in this table,
as it is common to all technologies.

Technology Search Input

Clustering
("Clustering" OR
"Cluster based")

SVM
("SVM" OR

"Support Vector Machine" OR
"Support Vector Machines")

ANN
("artificial neural network" OR

"artificial neural networks")

Deep Learning

("Deep Neural Network" OR
"Deep Auto Encoder" OR

"Recurrent Neural Network" OR
"Convolutional Neural Network" OR

"Long Short Term Memory" OR
"Generative Adversarial Network" OR

"Self Organizing Map")

Decision Trees
("Decision Tree" OR

"Random Forest")

Regression

("Gaussian Process Regression" OR
"Logistic Regression" OR
"Linear Regression" OR
"Kernel Regression" OR

"fuzzy Regression")

Nearest Neighbors

("Nearest Neighbors" OR
"Nearest Neighbor" OR

"k Nearest Neighbors" OR
"k Nearest Neighbor")

Bayesian Networks
("Naive Bayes" OR

"Bayesian Network")
Markov Models ("Markov Model")

Finite Automata
("Finite Automata" OR

"Finite State Machine" OR
"FSM")

Dempster-Shafer
("Dempster Shafer" OR

"Theory of Evidence" OR
"Evidence Theory")

AIS
("artificial immune system" OR

"artificial immune systems")
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Figure B.1: Obtained results for each query shown in Table B.1 for the ACM database.

Figure B.2: Obtained results for each query shown in Table B.1 for the IEEE Xplore database.
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Figure B.3: Obtained results for each query shown in Table B.1 for the Engineering Village/Ei
Compendex database.

Figure B.4: Obtained results for each query shown in Table B.1 for the ScienceDirect database.
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Figure B.5: Sums of all results obtained from previous queries on all databases (shown in Fig-
ures B.1 through B.4).
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Table C.1: All timings for both NSA and DCA using static parameters.

Number
of

Features

NSA DCA

Train
Time
[ms]

Test Time
Mean

[µs/antigen]

Test Time
Standard
Deviation

[µs/antigen]

Train
Time
[ms]

Test Time
Mean

[µs/antigen]

Test Time
Standard
Deviation

[µs/antigen]
1 15.4206 110.4164179 36.15842196 0.863 78.20191898 39.80410716
2 27.525 146.1882729 95.2403787 2.3802 109.769936 52.2004483
3 45.9291 256.4950959 121.3121175 1.6195 139.673774 76.10419481
4 30.8797 276.4108742 79.26623534 1.8557 105.9375267 45.6309226
5 40.074 386.8230277 101.7576802 1.8481 137.3861407 64.21182807
6 43.2855 444.5304904 83.13679141 3.2272 135.224307 53.32507108
7 57.2805 467.3012793 113.9640066 3.5085 134.2579957 72.15207462
8 53.3295 573.9671642 146.9023116 2.4656 160.3957356 70.63717119
9 52.9023 589.0609808 147.849037 2.6942 155.0624733 72.50998033

10 66.0244 647.7466951 148.8625107 5.8144 158.2266525 73.84350019
11 61.4916 613.6317697 94.55780958 3.9377 142.3579957 52.2316838
12 83.8024 644.928145 116.2694898 3.96 145.3366738 63.0614612
13 74.9727 799.7513859 143.2211761 3.6993 168.4236674 60.54158418
14 84.5941 800.1059701 165.2805933 5.898 163.3884861 68.68373321
15 102.6854 940.0264392 195.5337202 5.7558 184.9151386 68.16204
16 87.4177 852.3498934 158.0440345 4.217 161.6876333 64.14844327
17 88.8748 955.4614072 196.4661175 6.543 179.4646055 67.71293733
18 105.3135 982.0121535 213.4399225 4.7622 178.3187633 71.58413642
19 103.9708 1095.571642 211.4217401 5.1133 196.8066098 78.17688009
20 107.9244 1172.669723 243.0811088 5.3845 205.8891258 79.77440967
21 107.6563 1171.376119 267.0046773 7.6665 201.5648188 76.58415879
22 113.1483 1175.895736 200.1156448 5.7128 201.7899787 75.08656376
23 118.0297 1165.921962 120.4800836 6.0512 188.5042644 55.20345256
24 156.9367 1283.895309 257.7124156 8.571 213.9550107 73.20204322
25 127.9077 1312.912154 169.7027835 7.2064 205.4601279 54.20276196
26 143.3915 1358.764606 171.2863473 9.9758 212.8036247 60.4261722
27 138.5992 1477.208742 197.6399264 6.9152 229.4761194 68.67986641
28 145.1598 1444.865672 172.8795407 7.4708 224.0002132 74.65199271
29 146.0911 1451.658209 108.260966 7.9112 216.2070362 56.64597622
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Figure C.1: Plots of times (y-axes) over each dataset with different numbers of features (x-axes).
The left plots show the original time values, while the right plots are normalized linearly between
0 and 1. The number of detectors for NSA is doubled every iteration.
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Figure C.2: Plots of precision, recall and F1 scores (y-axes) over each dataset with different num-
bers of features (x-axes). The number of detectors for NSA is doubled every iteration.
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Figure C.3: Plots of times (y-axes) over each dataset with different numbers of features (x-axes).
The left plots show the original time values, while the right plots are normalized linearly between
0 and 1. The number of detectors for NSA is tripled every iteration.
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Figure C.4: Plots of precision, recall and F1 scores (y-axes) over each dataset with different num-
bers of features (x-axes). The number of detectors for NSA is tripled every iteration.
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Figure D.1: 2 component PCA applied to the original SKAB dataset.

Figure D.2: 2 component PCA applied with 8 additional features computed as rolling average
(window size 10).
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Figure D.3: 2 component PCA applied with 8 additional features computed as rolling average
(window size 10) of discrete derivatives.

Figure D.4: 2 component PCA applied with 8 additional features computed as discrete derivatives.
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Figure D.5: 2 component PCA applied with 8 additional features computed as the absolute value
of the discrete derivatives.

Figure D.6: 2 component PCA applied with 8 additional features computed as the distance from
rolling average of window size 10.
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Figure D.7: 2 component PCA applied with 8 additional features computed as the squared distance
from rolling average of window size 10.
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Appendix E

Performance results for Normal
Classification in SKAB dataset

Table E.1: Performance results for CDCA with multiple parameters. Results are sorted by as-
cending order of normal classification cycle delay means (first column after test instance), smaller
values are better.

Classification Cycle Delay Classification Delay [ms]
Test Instance Mean Standard Deviation Mean2 Standard Deviation3

CDCA_100_1_20 19.370 15.148 4.201 3.449
CDCA_100_10_20_full 27.426 7.676 7.340 2.608

CDCA_100_10_5 32.084 12.023 8.694 3.662
CDCA_20_10_20 42.289 13.678 11.402 4.835
CDCA_100_10_20 42.416 13.815 11.754 4.326

CDCA_100_10_20_original 68.022 29.706 19.642 9.982
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Table F.1: M2M using OPC UA Dataset[5]. Remaining features can be found in Table F.2

Feature Description Data Type
src_ip Source IP address

String
src_port Source port
dst_ip Destination IP address

Integer
dst_port Destination port

flags TCP flag status
pktTotalCount Total packet count

octetTotalCount Total packet size
avg_ps Average packet size Real Valued
proto Protocol

String
service OPC UA service call type

service_errors Number of service errors in OPC UA request responses

Integer
status_errors Number of status errors in OPC UA request responses

msg_size OPC UA message transport size
min_msg_size Minimum OPC UA message size

Table F.2: Continuation of Table F.1

Feature Description Data Type
flowStart Timestamp of flow start

Real Valued
flowEnd Timestamp of flow end

flowDuration Flow duration in seconds
avg_flowDuration Average flow duration in seconds

flowInterval Time interval between flows in seconds

count
Number of connections to the same destination host as the

current connection in the past two seconds Integer

srv_count
Number of connections to the same port number as

the current connection in the past two seconds

same_srv_rate
The percentage of connections that were to the same port

number, among the connections aggregated in Count Real Valued

dst_host_same_src_port_rate
The percentage of connections that were to the same source
port, among the connections having the same port number

f_pktTotalCount Total forward packets count
Integer

f_octetTotalCount Total forward packets size
f_flowStart Timestamp of first forward packet start

Real Valued
f_rate Rate at which forward packets are transmitted

b_pktTotalCount Total backwards packets count
Integer

b_octetTotalCount Total backwards packets size
b_flowStart Timestamp of first backwards packet start Real Valued

label Binary label classification Integer
multi_label Multi classification labeling String
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