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Abstract 

Monitoring and Control Framework for Power Plant Using Artificial 
Intelligence Techniques 

Ghassan Al-Sinbol 

This dissertation presents the design, development, and simulation testing of a 
monitoring and control framework for dynamic systems using artificial intelligence 
techniques. A comprehensive monitoring and control system capable of detecting, 
identifying, evaluating, and accommodating various subsystem failures and upset 
conditions is presented. The system is developed by synergistically merging concepts 
inspired from the biological immune system with evolutionary optimization algorithms 
and adaptive control techniques. 

The proposed methodology provides the tools for addressing the complexity and 
multi-dimensionality of the modern power plants in a comprehensive and integrated 
manner that classical approaches cannot achieve. Current approaches typically address 
abnormal condition (AC) detection of isolated subsystems of low complexity, affected by 
specific AC involving few features with limited identification capability. They do not 
attempt AC evaluation and mostly rely on control system robustness for accommodation. 
Addressing the problem of power plant monitoring and control under AC at this level of 
completeness has not yet been attempted. 

Within the proposed framework, a novel algorithm, namely the partition of the 
universe, was developed for building the artificial immune system self. As compared to 
the clustering approach, the proposed approach is less computationally intensive and 
facilitates the use of full-dimensional self for system AC detection, identification, and 
evaluation. The approach is implemented in conjunction with a modified and improved 
dendritic cell algorithm. It allows for identifying the failed subsystems without previous 
training and is extended to address the AC evaluation using a novel approach. 

The adaptive control laws are designed to augment the performance and 
robustness of baseline control laws under normal and abnormal operating conditions. 
Artificial neural network-based and artificial immune system-based approaches are 
developed and investigated for an advanced power plant through numerical simulation.  

This dissertation also presents the development of an interactive computational 
environment for the optimization of power plant control system using evolutionary 
techniques with immunity-inspired enhancements. Several algorithms mimicking 
mechanisms of the immune system of superior organisms, such as cloning, affinity-based 
selection, seeding, and vaccination are used. These algorithms are expected to enhance 
the computational effectiveness, improve convergence, and be more efficient in handling 
multiple local extrema, through an adequate balance between exploration and 
exploitation. 

The monitoring and control framework formulated in this dissertation applies to a 
wide range of technical problems. The proposed methodology is demonstrated with 
promising results using a high validity Dynsim® model of the acid gas removal unit that 
is part of the integrated gasification combined cycle power plant available at West Virginia 



University AVESTAR Center. The obtained results show that the proposed system is an 
efficient and valuable technique to be applied to a real world application. The 
implementation of this methodology can potentially have significant impacts on the 
operational safety of many complex systems. 
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Chapter 1. Introduction 

1.1. Background 

Increasingly strict environmental regulations, safety concerns, and economic 

objectives significantly expand modern power plants complexity and multi-

dimensionality [1]. These plants are expected to function at maximum efficiency under 

both normal and abnormal operational conditions. Handling such a challenging task 

requires advanced intelligent monitoring and decision-making capabilities as part of a 

plant-wide control strategy [2]-[4]. Faults occurrence in power plants can cause losses in 

efficiency, equipment damage, and unsafe operation conditions. It is important to 

diagnose these faults so that necessary actions for mitigation can be taken and/or 

maintenance can be accordingly planned in advance. Power plant subsystem faults could 

result from various sources such as stuck control valve, malfunctioning sensors, solid 

deposits, structural damage, etc.  

Detection of process specific abnormal conditions has been addressed in the 

literature [5]-[7], typically for low complexity systems, and low-order abnormal 

conditions that only require few features for their detection. Most of the fault detection 

algorithms require a process model. A process model consists of mathematical equations 

that represent the system’s physical phenomena. It is worth mentioning that formulation 

of process models can be very difficult and time consuming. Various abnormal condition 

detection approaches have been proposed, such as artificial neural networks [8], [9], 

support vector machines classifiers [10], [11], sensitive principal component analysis [12], 

Kalman filters [13], self-organizing maps [14], and others [15]. The selection of minimal 

sets of sensors as a pre-requisite for fault detection has also been investigated [16], [17]. 

Some of the techniques can detect faults very quickly, but cause high number of false 

alarms because of their high sensitivity to changes in the system. Some of the approaches 

are robust to noise and uncertainties in the system, but have lower detection rate for 

certain faults. For a comprehensive and integrated solution covering the extreme diversity 

of possible abnormal conditions, more powerful tools are needed. 

The terms “failure” and “fault” are broadly used in the literature to indicate that a 

system is working outside the intended operating conditions. In this dissertation, the 

generic term of abnormal conditions (AC) will be used to refer to any departure from 
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a reference or normal condition due to any subsystem faults or any other situation that 

requires particular attention for safety purposes. The process of acknowledging the 

presence of the AC, isolating the primarily affected subsystem(s) or the source of the AC, 

and assessing the nature and severity of the AC will be referred to as abnormal 

conditions detection, identification, and evaluation (ACDIE). 

Finding a comprehensive solution to the ACDIE problem is an exceptionally 

complex, multidimensional task that requires appropriate tools, high-level accuracy, and 

extensive robustness, while performed in a timely manner. The ACDIE performance 

assessment must consider minimum false alarms under normal operating conditions and 

reduced detection time, high detection rate, identification rate, and evaluation rate under 

AC. Unreasonable delays in detecting failures, usually lead to undesired consequences 

such as stall events, loss of control, and severe vibrations. The ideal ACDIE process must 

also be capable of detecting unknown failures and not misclassifying them as one of the 

known faults or as normal operation. It should also be adaptive to system changes, robust 

to system disturbances and uncertainties, and scalable to dimensionality changes of the 

system. In addition, an ideal ACDIE should be able to detect and correctly identify 

multiple failures when they coexist in the system.  

Engineers sought outside of the standard framework of control systems for ideas 

to address such complicated problem. Biologically-inspired methodologies have recently 

become very popular among researchers, and various approaches have been successfully 

developed and implemented. Immunity-based techniques are extremely promising 

candidates for solving the ACDIE problem. The biological immune system exhibits every 

requirement that ACDIE problem is restrained to: the capability of detecting any harmful 

intruders, identifying the attacker, assessing the level of danger, accommodating by 

generating antibodies to fight the intruders, and memorizing the attacker for much faster 

and more efficient defense in future encounters. 

The artificial immune system (AIS) [18] has emerged in recent years as a new 

artificial intelligence computational paradigm. The concept has shown a very promising 

potential for a variety of applications including ACDIE. Immunity inspired methodologies 

have shown to provide the intelligent tools capable of gathering the information about the 

existence of a failed subsystem, the nature of the current fault, and the severity of the fault 



Chapter 1  Al-Sinbol 

Page | 3 

as soon as it takes place such that an accommodation strategy by the control laws could 

be triggered. In fact, this information is highly relevant to the operators as well, increasing 

their situational awareness. 

1.2. Research Objectives 

The objective of this research aims at designing an intelligent monitoring system 

powered with cognition and decision capabilities that mimic the artificial immune system. 

The abnormal conditions management (ACM) process presented in this 

dissertation is composed of four steps: detection, identification, evaluation, and 

accommodation. The AC detection is the process of detecting the failure in the targeted 

system (i.e. power plant) as soon as it takes place. The AC identification is the process of 

isolating the failed subsystem. The AC evaluation can be of a qualitative or quantitative 

nature. The qualitative evaluation is the assessment of the failure type. The quantitative 

evaluation assesses the AC severity and its impact on the system. The AC accommodation 

and controller optimization is the process of adapting the system controllers to the 

current AC. The methodologies and algorithms developed in this research are tested in 

the plant-wide model of the acid gas removal unit as part of the integrated 

gasification combined cycle (IGCC) that is available in the Advanced Virtual 

Energy Simulation Training and Research Center (AVESTAR) [19] at West 

Virginia University (WVU). 

1.3. Contributions 

The main contribution of this research effort is the extensive use, for the first time, 

of immunity-inspired techniques to address advanced power plant operations. This was 

achieved by bringing the following major contributions: 

 formulation of immunity inspired techniques to address advanced power plant 
health monitoring and control problem 

 design and implementation of the partition of the universe approach as a novel 
data clustering approach for self/non-self generation 

 modifying an artificial DC algorithm for AC detection, identification, and 
evaluation and applying it to power plants 

 extending the partition of the universe approach concept to address the AC 
evaluation problem  

 the development of a novel biomimetic adaptive approaches to augment 
baseline power plant control laws for increased robustness under ACs 
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 developing immunity based optimization enhancements for genetic algorithms 

The work related to the research effort presented in this study has resulted in the 

following publications: 

Journals papers 

1. Perhinschi, M., Al-Sinbol, G., Bhattacharyya, D., Lima, F., Mirlekar, G., Turton, R. 
Development of an Immunity-based Framework for Power Plant Monitoring and 
Control. Advanced Chemical Engineering Research, 4(1), 2015 

2. Al-Sinbol, G., Perhinschi, M. Generation of power plant artificial immune system 
using the partition of the universe approach. International Review of Automatic 
Control (IREACO) 9(1), 2016 

3. Perhinschi, M., Al-Sinbol, G. Artificial dendritic cell algorithm for advanced power 
system monitoring. International Review of Automatic Control (IREACO) 9(5), 2016 

4. Al-Sinbol, G., Perhinschi, M., Bhattacharyya, D., Evolutionary Optimization of 
Power Plant Control System Using Immunity-inspired Algorithms. International 
Review of Chemical Engineering (I.RE.CH.E.), 9(1), 2017 

5. Al-Sinbol, G., Perhinschi, M., Development of an Artificial Immune System for 
Power Plant Abnormal Condition Detection, Identification, and Evaluation, submitted 
to International Review of Automatic Control (I.RE.A.CO.), Feb 2017 

6. Al-Sinbol, G., Perhinschi, M., Pezzini, P., Bryden, K., Tucker, D., Investigation of 
Biomimetic Adaptive Mechanisms for Hybrid Power Plant Control, to be submitted to 
International Review of Automatic Control (I.RE.A.CO.), May 2017 

Conference papers, presentations, and posters 

1. Bhattacharyya D., Turton R., Lima F., Perhinschi M.G., Bankole T., Mirlekar G., Al-
Sinbol G., Gebreslassie B. H.,Diwekar U., Development of Integrated Biomimetic 
Framework with Intelligent Monitoring, Cognition, and Decision Capabilities for 
Control of Advanced Energy Plants, Presented at 2015 NETL Crosscutting Research 
Review Meeting, Pittsburgh, PA, April 27-30, 2015 

2. Bhattacharyya D., Turton R., Lima F., Perhinschi M.G., Bankole T., Mirlekar G., Al-
Sinbol G., Gebreslassie B. H.,Diwekar U., Development of Integrated Biomimetic 
Framework with Intelligent Monitoring, Cognition, and Decision Capabilities for 
Control of Advanced Energy Plants, Presented at 2016 NETL Crosscutting Research 
& Rare Earth Elements Portfolios Review Meeting, Pittsburgh, PA, April 18-22, 2016 

3. Al-Sinbol, G., Perhinschi, M., Bhattacharyya, D., Evolutionary Optimization 
Environment for Power Plant Control with Dynsim® Interface. Presented at 2016 
AIChE  Annual Meeting, San Francisco, CA, November 13-18, 2016 

4. Al-Sinbol, G., Perhinschi, M., Bhattacharyya, D., Power Plant Abnormal Condition 
Detection Using the Artificial Immune System Paradigm. Poster Presented at 2016 
AIChE  Annual Meeting, San Francisco, CA, November 13-18, 2016 

5. Bhattacharyya D., Turton R., Lima F., Perhinschi M.G., Bankole T., Mirlekar G., Al-
Sinbol G., Gebreslassie B. H.,Diwekar U., Development of Integrated Biomimetic 
Framework with Intelligent Monitoring, Cognition, and Decision Capabilities for 
Control of Advanced Energy Plants, Presented at 2017 NETL Project Review Meeting 
for Crosscutting Research, Gasification Systems, and Rare Earth Elements Research 
Portfolios, Pittsburgh, PA, March 20-23, 2017 
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1.4. Dissertation Outline 

This dissertation is organized as follows. An overview of the biological and artificial 

immunity is introduced in Chapter 2 with a survey of research efforts in the area of 

AIS. Chapter 3 describes the general immunity-based framework for health monitoring, 

control, and optimization. Chapter 4 introduces a novel approach for generating the 

technical system self using the partition of the universe. The immunity-based abnormal 

conditions detection, identification, and evaluation are presented in Chapter 5. Chapter 6 

introduces different abnormal condition accommodation approaches. Evolutionary and 

immunity based optimization algorithms are introduced in Chapter 7. The acid gas 

removal unit is presented in Chapter 8. The results and discussion are presented 

in Chapter 9. Chapter 10 presents interactive software tools that were developed as part 

this research. Future research work and recommendations are offered in Chapter 11. 
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Chapter 2. Literature Review 

Artificial intelligence algorithms were developed to obtain solutions to a broad 

class of complex problems, which could not be solved by traditional methods. The AIS is 

a relatively new paradigm in the field of computational artificial intelligence inspired by 

the biological immune system. This chapter provides an overview of the biological 

immune system, AIS, and some areas of relevant application of the AIS. 

2.1. An Overview of the Biological Immune System 

The biological immune system consists of organs, cells, and molecules responsible 

for protecting the organism from the potentially harmful antigens, such as viruses, 

bacteria, and other intruders. It has the ability to detect foreign substances, respond 

adequately to the danger, and keep memory of previous invasions. 

The biological immune system defends the living organism from the antigens using 

different layers of defense. The anatomic barrier makes the body first line of defense 

against intruders. It prevents the potential invaders from entering using both physical 

barriers and chemical substances. Skin, saliva, mucous, and tears are considered part of 

the anatomic barriers [20]. The innate immune system, which is inherited from the 

ancestors, is the second line of defense against invading pathogens. The innate immune 

system cells are always active and quickly react in a non-specific way to any class of 

recognized pathogens. Jawed vertebrates developed a third layer of protection called the 

adaptive immune system. The adaptive immune is usually inactive, and it is activated by 

the innate immune system cells. Its response is built through previous exposures to 

infections. It reacts specifically to pathogens and antigens and possesses immunological 

memory that allows a quicker response each time a pathogen is subsequently encountered 

[21]. 

The biological immune system organs can be classified into central lymphoid 

organs and peripheral lymphoid organs. The role of central lymphoid organs, which 

include the bone marrow and the thymus, is to generate and aid mature immune cells. On 

the other hand, the peripheral lymphoid organs further the interaction between 

lymphocytes, the white blood cells, and antigens. Peripheral lymphoid organs include 

lymph nodes, the spleen, and mucosal and submucosal tissues [22]. 
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The biological immune system is made up of a mixture of specialized cells, which 

interact among themselves to accomplish appropriate immunological responses. 

Phagocytes are specialized innate immune system cells that capture and process antigens. 

Macrophages (MΦs) and dendritic cells (DCs) are the dominant phagocytes in the 

immune system. On the other hand, lymphocytes are specialized adaptive immune system 

cells that are produced in the bone marrow and circulate through the blood and lymph 

system. T-cells and B-cells form the majority population of lymphocytes [21]. 

Phagocytes are presented in the peripheral tissues that are in contact with the 

external environment, such as skin, the inner covering of nose, lungs, stomach, and 

intestines [20]. Phagocytes have receptors on their surfaces that can detect harmful 

pathogens. As soon as a pathogen is detected, the phagocyte expands itself around the 

pathogen and engulfs it. After engulfment, DCs and MΦs are capable of breaking down 

the pathogen into its constituent molecules or peptides. These peptides are then attached 

to the cell's major histocompatibility complex class II (MHC-II) special complex 

protein, which moves the peptides back to the phagocyte's surface where they can be 

presented to T-cells [23]. Therefore, DCs, MΦs, and other similar immunity cells are 

called antigen presenting cells (APCs). Figure 2-1 presents a DC and its interaction with 

T-cells.  

 

Figure 2-1. Antigen Presenting Cells 
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The DCs developed from the stem cells in the bone marrow are initially immature 

cells. Immature DCs move through the blood stream to the peripheral tissues where they 

can interact with antigens. Immature DCs are good at engulfing antigens; however, they 

are poor APCs. Once they become mature, DCs become more efficient APCs and begin to 

migrate to the lymph nodes where they activate T-cells by the antigen presenting process 

[24]. 

T-cells are created by the bone marrow and mature in the thymus. In the 

maturation process, T-cells undergo a two-step maturation process referred to as the 

positive selection and the negative selection. In the positive selection process, only T-cells 

that recognize the self-MHC molecules are kept, while those T-cells who fail to recognize 

the self MHC molecules are eliminated. In the negative selection process, on the other 

hand, T-cells that bind to the MHC and self-peptide are removed because those T cells 

might cause a detrimental autoimmune response and only T-cells that do not bind to 

MHC and self-peptide are kept [22], [25]. A schematic drawing of the positive and 

negative selection process is presented in Figure 2-2 and Figure 2-3, respectively. In the 

drawing, the T-Cell body is represented with the bigger circular shape, the MHC pattern 

is represented by the two outside shapes, and the peptide pattern by the hollow shape in 

the middle. In the positive selection process a match or a mismatch is considered only for 

the MHC pattern, as shown using circles in Figure 2-2. The T-cells that mismatch all the 

MHC patterns are rejected, while those that match undergo the negative selection 

process. In the negative selection process, a match or mismatch is considered based on 

both the MHC and the self peptide patterns as shown using circles in Figure 2-3. This 

time, only T-cells mismatching all available patterns are selected to survive and mature.  

 

Figure 2-2. Positive Selection Process 

http://en.wikipedia.org/wiki/Lymph_node
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Figure 2-3. Negative Selection Process 

There exist different types of T-cells, each having a specific role. The important 

types are Helper T-cells, Cytotoxic T-cells, Memory T-cells, and Suppressor T-cells. 

Helper T-cells become activated when they are presented with their specific MHC II-

peptide complex by an APC. Once activated, helper T-cells continuously differentiate into 

memory T-cells and effector T-cells. Memory T-cells stay in the body for decades to help 

provide a faster response if the same antigen is ever encountered again. Effector T-cells 

release chemical alarm signals called interleukin-12 that cause particular types of 

cytotoxic T-cells and B-cells to proliferate [21]. Cytotoxic T-cells, on the other hand, are 

responsible for eliminating the infected body cells. Once infected by an antigen, cells can 

also digest and present the antigen peptides on the cell surface using MHC I complex 

protein. The cytotoxic T-cells that able are to recognize the MHC I-peptide combination 

displayed by an infected cell, bind to the infected cell and produce chemicals that kill the 

infected cell and therefore the intruder [20]. The adaptive immune response using the 

cytotoxic T-cells is called cell-mediated response. The role of the suppressor T-cells is to 

shut down helper T-cell-mediated immunity toward the end of an immune reaction and 

to suppress the generation of the cytotoxic T-cells and the antibodies [22]. This is meant 

to prevent over-reaction and save resources and can be viewed as a regulatory feedback 

mechanism. 

As mentioned earlier, B-cells are another type of primarily specialized lymphocytes 

immune cells, which were produced and matured in the bone marrow. They are 

responsible for producing and secreting Y-shaped antibodies, which bind to antigens and 

mark them for destruction by phagocytes. It is worth mentioning that each B-cell 

produces multiple duplicates of only one type of antibody which can bind to only one type 
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of antigen. Once activated by a helper T-cell, B-cells differentiate into memory B-cells and 

plasma B-cells. Memory B-cells may survive in the body for several decades to provide a 

stronger and quicker immune response to a future infection by the same intruder. Plasma 

B-cells become antibodies producing cells, supplying the bloodstream with antibodies 

unique to the antigen involved in the current infection [21]. B-cells are also APCs; 

however, B-cell ability to recognize only one type of antigens makes DCs and MΦs more 

efficient and more generalized APCs. Furthermore, an antigen presenting process to a 

helper T-cell is still necessary to activate the B-cells [22]. The adaptive immune response 

using the B-cells is called humoral response. 

2.2. An Overview of the Artificial Immune System 

AIS has recently become a diverse area of research that attempts to take inspiration 

from immunology for solving engineering problems. AIS paradigm has first emerged 

within computer science and engineering. Over the past years, several classes of AIS-

based algorithms have been developed. The AIS application included robotics and control 

[26]-[29], anomaly detection[30]-[34], data mining [35]-[37], optimization [38]-[40], 

machine learning [41], [42], network and computer security [43]-[45], pattern 

recognition [46]-[48], and image processing [49], [50]. 

2.2.1. AIS for Abnormal Conditions Management  

Failure or anomaly detection has been an area of significant interest in AIS 

application. Typically, the goal of these immunity-based approaches is to decide whether 

a test sample was produced by a system under normal or abnormal operation. The early 

work of Forrest et al.[51], [52] led to the early immunity-inspired failure detection 

systems. In these works, a general method for distinguishing between self (i.e. normal 

operation) and non-self (i.e. abnormal operation) was proposed inspired by negative 

selection. The approach was applied for virus detection in a computer system. The 

reported results indicated the possibility to use immunity-based algorithms for intrusion 

detection. 

Kim and Bentley investigated different evolutionary stages of AIS and applied it to 

network intrusion detection: negative selection [53], negative selection and static clonal 

selection [54], and dynamic clonal selection [55]. In [54] a combination of the static clonal 

selection algorithm with the negative selection algorithm used to select the detector 

sample size and the antigen sample size to lower the false alarm rate. In [55] the authors 
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proposed a dynamic clonal selection approach which dynamically adapts to continuously 

changing system behavior by allowing changes to self-clusters and predicting new 

patterns of non-self; however, human confirmation (co-stimulation) is necessary, which 

makes the approach dependent on human interaction. 

An artificial immune regulation (AIR) approach was introduced and integrated 

into an immune model-based fault detection scheme for fault diagnosis in.[33]. The 

model-based fault detection system generated residuals that contained information about 

the faults. The AIR approach, inspired from the biological immune regulation process and 

numerical clustering techniques, is used to classify the residuals into a number of distinct 

patterns corresponding to different faulty situations. Various disturbances and errors 

were found to cause residuals to become nonzero, thus interfering with detection and 

identification of faults. 

Guzella et al. proposed an immunity inspired approach for fault detection called 

dynamic effector regulatory algorithm (DERA) [56]. The approach integrates 

immunological regulatory T cells function in the control of various aspects of the immune 

system and includes a mechanism for signaling between cells. DERA uses a population of 

regulatory and effector T-cells, combining both positive and negative detection; it also 

keeps track of the concentration of two cytokines in the environment. The primary 

concept behind DERA is that there must be an interaction between the cells in the 

environment before deciding if an antigen is a self or non-self. DERA possesses a memory 

that is represented by the two cytokine concentrations; therefore, the classification of an 

antigen depends on the responses against recently classified instances. The DERA 

approach was tested on the DAMADICS fault-detection benchmark problem, and it was 

able to attain considerably lower false-positives than other approaches evaluated. One 

drawback of the approach is that a slowly growing fault could take a long time before being 

detected. 

Recent research efforts are examining the interaction of the innate and adaptive 

immune system, rather than focusing on algorithms purely inspired from one or the other 

alone. For instance, the dendritic cell algorithm (DCA) [57] was proposed by Greensmith 

et al. to mimic the functionality of the dendritic cell of the biological immune system based 

on Matzinger’s danger theory [58]. The danger theory proposes that the biological 
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immune system response is initiated by a detection of the body cell damage rather than 

the detection of the antigen structure. Since then, several modifications were applied to 

the original DCA [59], [60].Pinto et al. also used the danger theory concept to design a 

fault detection system for telephone system [61]. Each call in this fault detection system 

is represented by an antigen composed of the following features: call origin, call 

destination, duration of calls, and a nominal attribute. Two signal levels were identified: 

signal 1 for perceiving the presence of the antigen and signal 2 for co-stimulation by using 

the non-completed call rate. Signal 2 was responsible for alarming a danger situation.  

Shu and Zhao [62] presented an immunity based fault detection and diagnosis 

approach for diagnosing faults in the chemical processes. The proposed approach mimics 

the immunity vaccination. Fault samples collected from other chemical processes of the 

same type are used to generate “vaccines” to help construct fault reference libraries for 

the fault detection purpose. Results show that the vaccines generated from similar 

processes can successfully diagnose different types of faults. Despite the successful 

results, the approach fails to identify the mean of “similar” processes and fails to use the 

AIS as a promising fault diagnosis approach that relies on the definition of the normal 

operations rather than the abnormal conditions. Zhao et al.[63] presented an online fault 

diagnosis system for a lab-scale distillation process. The proposed approach combines the 

artificial neural networks (ANNs) which are used for fault detection in the steady state, 

and dynamic artificial immune system (DAIS) which is used for fault detection in the 

startup phase and then for fault identification. Both ANNS and DAIS are trained offline 

for the purpose of known faults detection and identification. Unknown faults can also be 

detected by the system, and a user feedback is allowing operators to manually input the 

results to re-train the framework and include the new faults. 

Remarkable research efforts at West Virginia University (WVU) have been focused 

on immunity-inspired aircraft abnormal condition detection, identification, evaluation, 

and accommodation (ACDIEA). Perhinschi et al. proposed a conceptually integrated 

framework for detection, identification, and evaluation of actuator, sensor, engine, and 

structural failures/damages [64], [65]. The detection phase represents the capability to 

declare failure occurrence within any of the aircraft subsystems. The identification phase 

defines the failed subsystem element. The evaluation phase addresses the type of the 

failure, its magnitude, and the reassessment of the generalized flight envelope. Moncayo 
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et al. proposed an immunity inspired aircraft failure detection and identification scheme 

[66]. The proposed framework has been successfully investigated and proved to work with 

a broad range of aircraft subsystem failures/damages. Moncayo et al. also proposed an 

immunological hierarchical multi-self (HMS) strategy in which they used an integrated 

multiple-self approach instead of considering the one single multi-dimensional self-

configuration [67]. The proposed approach improves the detection performance 

significantly while maintaining the multidimensionality of the identifier space 

manageable. Al-azzawi et al. proposed a dendritic cell inspired mechanism for aircraft 

abnormal condition detection, identification, and evaluation [68], [69]. In the detection 

phase, the DC mechanism processes the outcomes of the self/non-self within the HMS 

strategy into the final detection outcome. In both identification and evaluation phases, 

the DC mechanism converts the identification or evaluation into a pattern recognition 

problem in which the failed subsystem is identified or evaluated based on pre-defined 

(trained) identification or evaluation patterns. 

2.2.2. AIS for Control 

The immunity-based methodology for control problems has been approached 

based on different abstractions. The first concept is the biological feedback that 

establishes the balance between the activation and suppression of antibodies generation. 

The idea was first proposed by Takahashi and Yamada [70] by modeling the production 

of T and B cells. Wantanabe et al. [29] proposed a decentralized adaptive control 

mechanism for a six-legged robot. By combining the idea of B-cells and immune 

networks, where a B-cell is considered to be a leg in the robot and the immune network a 

mechanism by which legs communicate with each other, they proposed a system that can 

learn how to control the walking motion of the robot. Lee et al. [71] used clonal selection 

algorithm to tune control parameters 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 of proportional integral derivative 

(PID) controller. The proposed approach was found more efficient than Ziegler–Nichols 

technique in terms of settling time, overshoot, and turning the yaw angle through 

simulation. Krishnakumar et al. [72] and Krishnakumar & Neidhoefer [73], [74] proposed 

an immunized computational system (ICS) that used the immune system metaphor along 

with computational (both hard and soft computing) techniques to attempt to reproduce 

the robustness and adaptability of a biological immune system. The strategy was tested 

on an autonomous aircraft control problem. 
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Moncayo et al. [75] proposed a novel adaptive flight control system designed to 

handle aircraft sub-systems AC as well as upset environmental conditions. The proposed 

control system uses a non-linear dynamic inversion control augmented with an 

immunity-inspired mechanism. The simulation analysis shows that the proposed control 

laws increase the performance of tracking pre-defined trajectories at normal and AC flight 

conditions. Perez et al. [76] presented a novel humoral response inspired adaptive control 

law designed to maintain the performance of an aircraft under the existence of AC. The 

controller’s parameters were optimized offline for multiple sets of AC using a genetic 

optimization algorithm. The presented results revealed that the proposed adaptive law 

reduced tracking errors and improved the pilot response required to maintain control of 

the aircraft under AC. 

The second approach is based on the assumption that the classification capabilities 

of the AIS can be extended and used not only to detect, identify, and evaluate, but also to 

provide some solution that would minimize or exclude the AC effects. Karr et al. [77] 

proposed an adaptive, model-following flight control system based on AIS. The control 

system monitors the aircraft model for any change from the predefined reference “self” 

and then used an optimization algorithm to optimize the controller parameter for the 

current conditions. A database is used to store previous optimization results for a faster 

solution in similar conditions. The approach was demonstrated in the simulation of a 

Boeing 747 aircraft in the presence of atmospheric roughness and degradations in the 

performance characteristics of actuators used to manipulate various control surfaces. 

Research effort at WVU extended the aircraft ACDIE for solving the AC 

accommodation problem [78]. The main objective of the research was to investigate the 

possibility of extracting compensatory commands from the AIS to address the 

accommodation problem. The idea relies on generating artificial memory cells, which 

represent the self (nominal conditions) and the non-self (AC). The self and non-self 

memory cells consist of measurement strings over a pre-defined time window. Each string 

is a set of features, which capture the dynamic fingerprint of the aircraft operation at 

nominal and AC, values at each sample time of the flight. The accommodation process 

then works as follows: the collections of data over several time samples of current flight 

are compared to the self and non-self memory cells. Once the best match is found, a pre-
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defined control command corresponding to the current conditions is extracted from the 

memory cells and used for control purposes. 

2.2.3. AIS for Optimization 

Optimization has received a great attention as a promising application for 

immunity inspired algorithms. Several research efforts reported favorable outcomes 

when comparing immunity-based algorithms against other state of the art optimization 

algorithms. Most of the AIS optimization algorithms are built upon the clonal selection 

theory. In the cell-mediated immune response, B-cells are exposed to antigens. The B-cell 

that bind to the antigen receives a signal from the helper T-cells to proliferate (clone) and 

mature into plasma cells, which divide rapidly to generate the antibodies and memory B-

cells, which serves as immunity memory. The biological immune system can be viewed as 

having multiple and possibly overlapping and contradictory goals. It improves its own 

response towards particular goal(s) as the result of feedback [79]. In general, the immune 

response goals reflect a compromise between the strategy of the immune system and the 

physiologic function of the tissues at the infection site.  

The majority of current publications in the immunity optimization area are based 

on the application of the clonal selection principle, resulting in a number of algorithms 

such as Clonalg algorithm [80], opt-AINET [81], and the B-Cell algorithm [82]. All of 

these algorithms essentially evolve solutions to problems via repeated application of 

cloning, mutation, and selection cycle to a population of candidate solutions (B Cells). A 

single antigen represents some function to be optimized, and good solutions are allowed 

to remain in the population, mimicking the memory cell mechanisms believed to exists in 

the natural immune system. Freschi and Repetto [83] provided wide-ranging analysis of 

opt-IA and Clonalg algorithms using a robust test-bed that includes multiple optimization 

problems such as max-1s, trap functions and 23 numerical optimization problems from 

reference [84] and find that immune algorithms are comparable to some of the most 

effective methods in the evolutionary algorithm literature such as fast evolutionary 

programming (FEP). Timmis et al. [82] compared versions of opt-AINET and the B-Cell 

algorithm to a variety of optimization problems of various dimensions found in the 

literature, and [85] applied Clonalg to a range of constrained optimization problems. 
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Wojdan et al. [86] presented an optimization method of a combustion process in a 

power boiler using immunity-inspired optimizer namely SILO. The main goal of SILO is 

optimization of power station’s variable costs, achieved by minimization of CO and NOx 

emissions. The approach was shown to decrease implementation costs and adapt to new 

operation environments, be usable in practice, and be a good alternative to MPC 

controllers. 
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Chapter 3. AIS-Based Framework for Monitoring and Control 

This chapter presents an immunity-based framework for the power plant 

abnormal conditions detection, identification, evaluation, and accommodation (ACDIEA) 

problem. It starts with the definitions of the various terms and components used in 

designing the framework, then introduces the general architecture of the ACM process. It 

should be noted that the targeted system in this work is the IGCC power plant, mainly the 

acid gas removal (AGR) unit, which will be later used for demonstration. Reference to this 

specific system will be made throughout the document. However, the framework is 

formulated such that it can be applied to any other complex dynamic system.  

3.1. General Architecture of the AIS-Based Monitoring and Control 
Framework 

Online ACDIEA system for chemical processes should at least meet the following 

requirements: 

1. The online monitoring and control framework should have an integrated 

structure, in order to address the complexity and multi-dimensionality of the chemical 

process in a coherent and consistent manner. 

2. The framework should be comprehensive and capable of addressing all 

scenarios involving all relevant subsystems and the possible, known and unknown, ACs. 

3. The set of ACDIE algorithms should be fast enough to detect, identify, and 

evaluate the AC, ideally in one single time step. The control framework should be fast 

enough to provide adequate AC accommodation. 

4. The system should have online-learning capability to adapt to new 

conditions. Due to the complexity of the chemical process, equipment may not be able to 

maintain an exact operation state throughout the entire equipment service life cycle. 

5. The development and use of all tools and mechanisms within the framework 

must be straightforward, simple, and affordable. 

The immunity-based power system monitoring and control process considered in 

this research includes the development and implementation of three principal 

components functionally connected in a closed loop as presented in Figure 3-1 below.  
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Figure 3-1. Power System Biomimetic Monitoring and Control Process 

The biomimetic monitoring and control (BMC) system design, 

implementation, and update represents the initial development of an integrated and 

comprehensive ACDIE scheme, control system scheme (baseline and adaptive 

components), and evolutionary optimization modules. Then, during operation of the 

system it may use newly acquired data to update the AIS and the scheme. 

The on-line ACDIEA process implies the real time operation of the ACDIEA 

scheme. Sets of current values of the features measured during current system operation 

at a certain sampling rate are compared against the self and/or non-self using various 

algorithms to generate the final ACDIE outcomes. These results are transferred to the 

supervising/operating personnel and the automatic fault tolerant control laws. 

The processing of operation data and ACDIEA outcomes involves 

analyzing the false alarms and failed detections in conjunction with current measured 

values of the features for modifying/extending the self/non-self and improving the overall 

performance of future operations. This process is also envisioned to re-assess the 

operational conditions, re-optimize parameters, and/or trigger switching between 

different operational modes. 

The power system BMC process is accomplished through the development and 

implementation of three principal components as illustrated in Figure 3-2: 

 AIS-based ACDIE 

 Control System: Baseline + Adaptive Component 

 Evolutionary Optimization Module 
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Figure 3-2. General Framework Architecture 

The ACDIE scheme along with the baseline controller mimics the innate immune 

system as the first line of defense against external intrusion. The design of the ACDIE 

scheme requires a clear definition of the targeted system subsystems and components 

that are targeted, the types of AC (including known and unknown ones), the AC severity 

scale, the operational envelope variables, and the nature and level of passive and active 

accommodation. The development of the immunity-based ACDIE scheme also requires 

the availability of large amounts of measured data that must be pre-processed for 

self/non-self generation. The design of the baseline controller requires a clear definition 

of the control system objectives and the proper selection of the control system algorithms 

and parameters. The baseline control parameters are optimized using the evolutionary 

algorithms to ensure optimum normal operation. Similarly to the baseline control system, 

the design of the adaptive controller requires the definition of the system objectives, the 

control system algorithm, and parameters. The adaptive control parameters are 

optimized using the evolutionary algorithms to ensure minimal interference with the 

baseline controller under normal conditions, while ensuring needed accommodation 

under different AC. The design of the evolutionary optimization algorithms requires an 

accurate system model, optimization objectives, and definition of targeted parameters.  
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3.2. AIS – Definitions and Concepts 

The feature variables or simply features are the set of variables 𝜑𝑖 that 

completely define the targeted system and are expected to capture the fingerprints of all 

considered AC, regarding occurrence, presence, and severity. They can be system states, 

inputs, control variables, parameters, estimated values, etc. The set of all features ℱ: 

 ℱ = {𝜑𝑖 |𝑖 = 1,2, … ,𝑁} (3-1) 

defines a feature point as a set of simultaneous values of all features 𝜑𝑖  that can be 

obtained through measurements or simulation, at normal or abnormal conditions. The 

set of all possible feature points defines an N-dimensional hyperspace 𝑈, which will be 

referred to as the universe. The self , 𝑆 , is defined as the set of all possible feature points 

under normal operation conditions. Therefore, all other points in the universe are 

considered non-self  Ŝ. 

Features selection is one of the most critical steps in the design of the immunity 

based ACM system. The selected features must be relevant to all four components of the 

ACDIEA process. Their number and nature depend on the targeted system and its 

components, the types of the AC, the severity scales of the AC, and the nature and level of 

the passive and active accommodation. 

3.3. ACDIE Problem Formulation 

Let the targeted system be composed of a number 𝑁𝑆 of subsystems, possibly 

nested, such that each subsystem 𝑙 may be composed of 𝑁𝑐𝑙 sub-subsystems or 

components. Since the targeted system in this work is a power plant, the subsystems 

include all the power plant hardware, measurement and control devices, such as 

actuators, sensors, automation devices, and others. Human operators and the 

environment may also be considered part of the targeted system. In general, within a 

subsystem, a component may interact both ways (input/output) with one or more other 

components creating internal loops. Similarly, subsystems may interact with one or more 

other subsystems. This structure is illustrated in Figure 3-3. 

The system input refers to those variables that are generated outside the system 

(for example, they can be dynamically varied by the user for control purposes), while the 

system parameters are considered internal features, constant during system operation, 
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which characterize the system. The system output consists of variables produced by the 

system (controlled variables and others). These variables may be used in the calculation 

of the optimization criteria, for control and/or monitoring purposes. 

 

Figure 3-3. Targeted System and Its Components 

The term abnormal conditions (AC) refers to situations that are outside the 

general design framework and require specific attention and/or action for system 

performance and safety purposes. AC include hardware faults and failures, exceedance of 

nominal operational ranges, human operator related abnormal situations, operational 

upset conditions, and extreme environmental conditions. 

The AC detection process is the recognition of the presence of an abnormal 

condition in at least one of the subsystems or components. The detection outcome, 𝐷𝑒𝑡, is 

binary and can be express as: 

 𝐷𝑒𝑡 =  {
0 𝑛𝑜 𝐴𝐶          
1 𝐴𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

 (3-2) 

The AC identification or isolation process determines which subsystem has 

failed. Depending on the complexity of the targeted system, the AC identification can be 

performed in several phases. For example, a first identification phase could determine 
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that a certain subsystem such as an absorber or turbine has been affected by an AC. A 

second phase could determine which specific component has failed, such as a valve or a 

pressure sensor. The outcome of the subsystem identification process, 𝐼𝑑𝑡,  can be 

formulated as an 𝑁𝑠-dimensional vector with binary components or as a set of integers 

labeling only the failed subsystems. The outcome of the identification process is 

formulated in equation (3-3). An extension to address component isolation can be easily 

produced. 

 𝐼𝑑𝑡 = [𝑖𝑑1,  𝑖𝑑2, … ,  𝑖𝑑𝑁𝑠
], 𝑖𝑑𝑘 = {

0 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑚 𝑘 𝑖𝑠 𝐴𝐶 𝑓𝑟𝑒𝑒     
1 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑘 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝐴𝐶

 (3-3) 

The AC evaluation process addresses three different aspects. The AC 

qualitative evaluation (QE) is the determination of the failure type. The outcome of 

the qualitative evaluation, 𝐸𝑣𝑄,  is an integer labeling the type of failure out of a list of 𝐹𝑁𝐾 

failure types associated with each component or subsystem 𝑘 =  1, 2, … ,𝑁𝑠, such that: 

 𝐸𝑣𝑄 = 𝑓𝑖 ∶  𝑓𝑖 ∈  {1, 2, … , 𝐹𝑁𝐾} (3-4) 

The AC direct quantitative evaluation step is the estimation of the failure 

severity. The outcome of the direct evaluation (𝐸𝑣𝐷𝑄), can be represented in two different 

ways. Using a numerical approach, 𝐸𝑣𝐷𝑄 can take a value between 0 and 1, where 0 

represents no failure, and 1 represents the highest severity of the failure. An example for 

the numerical approach is: 

 𝐸𝑣𝐷𝑄 = 0.36 (3-5) 

On the other hand, 𝐸𝑣𝐷𝑄 can take pre-defined interval range values to represent 

the failure severity. The pre-defined ranges can be represented as discreet values, such 

that: 

 𝐸𝑣𝐷𝑄 ∈  {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ } (3-6) 

where 𝑙𝑜𝑤 may represent a severity value between 0 and 0.33, 𝑚𝑒𝑑𝑖𝑢𝑚 represent a 

severity value between 0.34 and 0.66, and ℎ𝑖𝑔ℎ represent a severity value higher than 

0.67. 

The AC indirect quantitative evaluation is the assessment of the AC effect on the 

power plant performance and constraints. The outcome of the indirect quantitative 
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evaluation (𝐸𝑣𝐼𝑄 )process typically represents a set of new ranges at post failure 

conditions of the variables that define the system operational envelope. 

3.4. Accommodation Problem Formulation 

The AC accommodation process can take two forms: passive 

accommodation through delivering ACDIE outcomes and other warnings and 

information to the supervising personnel and active accommodation through direct 

compensation as an integral part of the system control laws. A simplified block of AC 

active accommodation is shown in Figure 3-4. 

 

Figure 3-4. AC Active Accommodation 

In order to accomplish the active accommodation problem successfully, the three 

components of the ACDIE must deliver accurate and timely outcomes. In other words, 

the existence of an AC, the failed subsystem failed, and AC type and severity, must be 

provided with high reliability rate. This is needed for the fault-tolerant control system to 

provide a timely accommodation. The ultimate step of the AC active accommodation is 

accommodating the control system to the existent AC. It represents the actual reaction of 

the control system to compensate the AC by generating appropriate control commands. 

The first scenario assumes that substantial information about the AC and its 

compensation are available and stored within the framework. The second one involves an 

unknown AC that requires a specific new compensation. In this case, the control 
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command may be calculated using online learning capable adaptive control or using an 

optimization algorithm. The newly calculated control commands are then saved for faster 

future accommodation. 

3.5. Evolutionary Optimization Problem Formulation 

Within the evolutionary algorithms (EA), an individual is a potential solution 

to the optimization problem, which is, in this context, a single set of control system 

parameters or gains. An individual 𝐼 can be represented as: 

 𝐼 = [𝑔𝑞] , 𝑞 = 1,2, … ,𝑁𝑔  (3-7) 

where 𝑔𝑞 represent the 𝑞 
𝑡ℎ parameter value of the total number of parameters 𝑁𝑔. 

The optimization problem solution space is defined as the set of all possible 

individuals. The size of the solution space is calculated using the combination formula. In 

other words, the size of the solution space 𝑆𝑆 equals to: 

 𝑆𝑆 =  ∏𝑔𝑣𝑞

𝑁𝑔

𝑞=1

 (3-8) 

where 𝑔𝑣𝑞 is the number of all possible values for 𝑔𝑞. The value of 𝑔𝑣𝑞 can be calculated 

by defining minimum value 𝑔𝑞𝑚𝑖𝑛, maximum value 𝑔𝑞𝑚𝑎𝑥, and a uniform resolution 

𝑔𝑞𝑟𝑒𝑠 to each parameter 𝑔𝑞. The resolution 𝑔𝑞𝑟𝑒𝑠 represents the smallest difference 

between two parameters 𝑔𝑞. 𝑔𝑣𝑞then defined as: 

 𝑔𝑣𝑞 = 
|𝑔𝑞𝑚𝑎𝑥 −  𝑔𝑞𝑚𝑖𝑛|

𝑔𝑞𝑟𝑒𝑠
+ 1 (3-9) 

The fitness function is used by the EA to evaluate the performance of a given 

individual (i.e. solution) with respect to the optimization problem. The fitness function 

rewards desired performance and penalizes undesired performance or constraints 

violations. The fitness function 𝐹𝐹 relies on the establishment of a set of 𝑁𝑝 performance 

criteria 𝑝𝑒 and associated numerical metrics to form a performance vector 𝑃𝐸 such that: 

 𝑃𝐸 = [𝑝𝑒1 𝑝𝑒2  … 𝑝𝑒𝑁𝑝
] (3-10) 
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The normalized performance vector 𝑃𝐸 is a scaled version of the performance 

vector 𝑃𝐸. The values of 𝑃𝐸 vector may be scaled based on user-specified lower and upper 

limits to take values within a range between zero and one by using linear function, 

trapezoidal function, or even fuzzy logic such that: 

 𝑃𝐸 = [𝑝𝑒
1
 𝑝𝑒

2
…𝑝𝑒

𝑁𝑝
] (3-11) 

where, ideally, the best individual is expected to have 𝑃𝐸 as a vector of ones. 

A set of 𝑁𝑝 weights 𝑃𝑊 are established to reflect the relative importance of the 

evaluation criteria and/or to accelerate improvement along specific directions of the 

overall fitness. The set of weights is defined as: 

 𝑃𝑊 = [𝑝𝑤1 𝑝𝑤2  … 𝑝𝑤𝑁𝑝
] (3-12) 

The overall fitness 𝐹𝐹 of a potential solution is then defined as the weighted 

average of all elementary performance evaluations: 

 𝐹𝐹 = 𝑃𝑊𝑇 . 𝑃𝐸   (3-13) 

The EA is ran until 𝐹𝐹 converges to 1 or a pre-defined number of individuals have 

been evaluated. The EA is explained in details in Chapter 7. 
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Chapter 4. The Partition of the Universe Approach 

Within the AIS paradigm, a critical element is the representation of the system 

under normal conditions (self) and under AC (non-self). The typical approach relies on a 

negative selection-type of technique [87], [88] consisting of clustering self-data and then 

covering the non-self with similar clusters, which are viewed as detectors. In this chapter, 

an alternative to the data clustering approach (DCA) is introduced that avoids the 

computational burden of clustering and covering of the non-self, while allowing using the 

entire multi-dimensional self. 

4.1. Self / Non-self Discrimination 

The discrimination between self and non-self is the fundamental concept based on 

which the AIS paradigm is constructed. Therefore, generating an AIS for a technological 

system is centered around the definition of the regions in the feature hyperspace that 

corresponds to the normal operation (self) and regions that correspond to abnormal 

operation (non-self). Generating the self, 𝑆, requires collecting significant amounts of 

measured feature values at normal conditions, ideally covering the entire operational 

envelope. These measurements can be gathered from the actual functioning plant, from 

simulation, or a combination of the two. 

4.2. Preliminary Data Preparation 

Once the normal operation of the system is defined and the operation data is 

collected, the quality of the normal operation plant data must be verified to prevent 

corruption from hardware malfunction, operational constraint violation, and other 

perturbations. Next, the data must be organized according to the structure of the AIS, 

which can consist of a single multi-dimensional entity or multiple lower dimensional 

projections of the feature hyperspace, within the HMS strategy [67]. Data is then 

normalized between 0 and 1, using normalization factors for each feature determined as 

the span of the feature data plus a percentage margin. Note that if data is collected in 

multiple sessions, consistency of the normalization factors must be ensured. Duplicate 

points of the normalized data are eliminated to reduce the size of storage memory and 

computing resources. Figure 4-1 summarizes the preliminary data processing for AIS 

generation. 
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Figure 4-1. Data Preparation for Self Generation 

4.3. The Self Generation Using Data Clustering Approach 

Clustering self data requires defining several parameters depending on the 

algorithm used. In general, the clusters’ shape, size, and number are essential. When 

using the clustering approach, the N-dimensional feature points are clustered using 

algorithms such as K-means. K –means [89] is a popular approach used to partition any 

given set of data into k clusters, such that each point from the data set will belong to the 

nearest cluster. The algorithm starts by setting k number of initial clusters’ centroids 

called seed-points. K-means then calculate the distances between the input data points 

and the centroids and assign each point to the nearest centroid. The new clusters’ 

centroids are then calculated by using the data points that belongs to each cluster. The 

process then repeated until the clusters’ centroid have converged. Figure 4-2 summarizes 

the K-means algorithm. 

As a result of the K-means clustering, the self is represented as a set of geometrical 

hyper-bodies, such as hyper-spheres, hyper- rectangles, or hyper-ellipsoids [90]. An 

optimization process is typically used to minimize the empty space and the overlapping 

between self-clusters, and minimize the number of clusters. Once the self is generated, 

similar hyper-bodies are used to cover all the non-self areas, which are referred to as 

antibodies or detectors. When generating the non-self, the following optimization process 

is typically applied to minimize self-clusters and detectors overlapping, reduce 

overlapping among the detectors, and minimize the number of detectors. Previous studies 
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in the areas of AIS chose circles as a shape and the K-means algorithm for clustering, 

resulting in 2-dimensional self projections, such as illustrated as in Figure 4-3. 

 

Figure 4-2. K-means Algorithm for Data Clustering 

 

Figure 4-3. Sample 2-D Self Projection Generated Using K-means [91] 
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The processes of clustering self-data and covering the non-self are computationally 

intensive. The average time needed to produce one two-dimensional self reported by 

previous dissertation [91] was 4450 sec using clusters set union method. In that research, 

uniform 2- dimensional projections were used to represent a technical system self. In 

other words, the estimated time needed to generate the total number of 469 projections 

for a system with 32 features in the previous research was (2087050 sec) or 

approximately 24 days. The total number of the uniform projections 𝑈𝑃 is calculated 

based on the number of features 𝑁 and the projection dimensionality 𝐷 using the 

following combination formula: 

 𝑈𝑃 =  
𝑁!

𝐷! (𝑁 − 𝐷)!
 (4-1) 

It is clear that the number of uniform projections grows exponentially with the 

increase in the number of features. For example, a system with 100 features, the number 

of 2-dimensional uniform projections needed is 4950 projections, which translate to 253 

days of continuously running DCA. The DCA becomes impractical to use for a system with 

a high number of features, and an alternative approach must be adopted. 

4.4. The Self Generation Using Partition of Universe Approach 

When using the partition of the universe approach (PUA) [92] , the universe is 

divided into partition clusters with predefined shape and resolution. The raw self data 

points are then tested against partition clusters, and self clusters are identified and 

labeled. As a result, the self is represented by strings of integers identifying the self 

partition clusters. The detection can be performed using the entire high dimensional self 

through a positive selection-type of logic without significant computational issues. Since 

the partition of the universe is already defined, the non-self results implicitly. 

After the preliminary data processing, the self could be generated by using the 

PUA. Let the self be defined by a set of features ℱ such that: 

 ℱ = {𝜑𝑖| 𝑖 = 1,2, … , 𝑁} (4-2) 

where 𝑁 is the number of features in a selected subsystem or component. Firstly, for each 

normalized feature (𝜑𝑖) a partition resolution must be chosen based on a proper balance 

between computational effort and accuracy in capturing the system dynamics. The 



Chapter 4  Al-Sinbol 

Page | 30 

partition resolution consists of an integer 𝜋𝑖 representing the number of intervals in which 

the unit side 𝑖 of the universe hyper- rectangles is divided. The resolution set is thus 

defined as: 

 П = {𝜋𝑖 | 𝑖 = 1,2, … ,𝑁}  (4-3) 

Uniform partition, which will be referred to as the uniform universe grid, could be 

used, where the resolution along all axes is the same. In this case, the universe will be 

partitioned into a set of N N-dimensional hyper- rectangles, where П: 

 П = {𝜋, 𝜋, … , 𝜋} , 𝑙𝑒𝑛𝑔𝑡ℎ (П) = 𝑁 (4-4) 

If the sampling rate of the measured data is determined properly, such that it 

allows for capturing the dynamics of the system under normal and abnormal conditions, 

then the partition size can be selected such that: 

 𝜋𝑖 =  𝑟𝑜𝑢𝑛𝑑 (
1

𝑚𝑒𝑎𝑛(∆𝜎𝑖)
) (4-5) 

where ∆𝜎𝑖 is the normalized difference between two consecutive measured samples of 

feature 𝜑𝑖. 

Generating the self with PUA consists of comparing the self-data points against the 

universe grid, and whenever a feature point falls inside a partition, that partition is labeled 

as self. The value of each feature is positioned within the partition of the corresponding 

axis, and the partition label is recorded. Let us assume that a raw self-data point is 

represented as: 

 𝑃𝑘 = {𝜑1(𝑘), 𝜑2(𝑘),… , 𝜑𝑁(𝑘)} (4-6) 

After normalization, this point is represented as: 

 𝑃̅𝑘 = {𝜑̅1(𝑘), 𝜑̅2(𝑘),… , 𝜑̅𝑁(𝑘)} ∶  𝜑̅𝑖(𝑘)  ∈ [0,1] (4-7) 

Each raw self-data point generates a self-partition cluster 𝐶𝑘 such that: 

 𝐶𝑘 = {𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑁} ∶  𝑝𝑘𝑖 > 0 𝑎𝑛𝑑 𝑝𝑘𝑖  ∈  ℤ (4-8) 

and 



Chapter 4  Al-Sinbol 

Page | 31 

 
𝑝𝑘𝑖 − 1

𝜋𝑖
≤ 𝜑̅𝑖(𝑘) <

𝑝𝑘𝑖

𝜋𝑖
 (4-9) 

In case of hyper- rectangles, the self partition cluster 𝐶𝑘 becomes: 

 𝐶𝑘 = {
𝜑̅1(𝑘)

𝜋1
+ 1,

 𝜑̅2(𝑘)

𝜋2
+ 1,… ,

𝜑̅𝑁(𝑘)

𝜋𝑁
+ 1} (4-10) 

In case of 2-dimensional uniform hexagons, the self partition cluster 𝐶𝑘 becomes: 

 𝐶𝑘 =

[
 
 
 
 

[
 
 
 √3

3
−

1

3

0
2

3 ]
 
 
 

∗  [
𝜑̅1(𝑘)

𝜑̅2(𝑘)
]  ÷  𝜋

]
 
 
 
 
𝑇

 (4-11) 

The PUA algorithm is presented in Figure 4-4. Note that any possible duplication 

of self feature points is removed by completing the definition of the self process. 

Eventually, the self will consist of 𝑁𝑐 hyper-rectangles similar to the self clusters obtained 

using DCA, but with much less computational effort. Each self hyper-rectangle 𝑗, 𝑗 =

1,2, … ,𝑁𝑐  is now represented by a string of 𝑁 elements, with each element 𝑝𝑗𝑖 being the 

partition label, an integer between 1 and 
1

𝜋
+ 1. Self is an array of size 𝑁𝑐 × 𝑁 as illustrated 

in Figure 4-5. This is equivalent to a database of biological markers of the self that are 

used in the process of generating antibodies through negative selection. However, they 

will be used as detectors later in a process which is a rather positive selection-type of 

approach. 

 

Figure 4-4. The Partition of Universe Approach Algorithm 
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Figure 4-5. Self Representation for PUA 

Within the PUA, the generation of the non-self is implicit [93], since the universe 

grid has a finite number of non-overlapping clusters already covering the non-self. For 

high resolution partitions, the size of the non-self may become impractical and require 

additional processing such as reducing the usable domain of non-self and/or varying 

partition resolution. Figure 4-6 and Figure 4-7 present sample 2-dimensional self 

generated using PUA with different shape partitions.  

 

Figure 4-6. Sample 2-D Self Generated Using PUA (Uniform Square Grid) 
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Figure 4-7. Sample 2-D Self Generated Using PUA (Uniform Hexagon Grid) 

4.5. PUA vs. DCA 

This section is intended to compare the proposed PUA and DCA in the context of 

building the AIS self/non-self in terms of algorithm parameters and computational 

issues. 

4.5.1. Algorithm Parameters 

The PUA algorithm requires the selection of the universe partition shape and size. 

The two possible selections in which the entire universe is covered without overlapping 

between partitions are hyper-rectangles and hyper-hexagons. Hyper-rectangles are the 

generalization of a rectangle in higher dimensions, while a hyper-hexagon represents a 

set of uniformly distributed points in the N-dimensional space, such that each point has 

a distance equal to twice as the size of the hexagon from the neighborhood points. In this 

research, only hyper-rectangles have been considered. Further studies are needed to 

determine the effect of the shape selection on the final generated self and therefore the 

ACDIE performance. The selection of the partition size for the PUA could be calculated 

using Eq. (4-5) or selected heuristically. It is critical to select the right partition size. 

Selecting a smaller partition size could cause discontinuities in self and therefore causing 
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a higher rate of false alarms. On the other hand, selecting a larger partition size could 

include areas from the non-self region into the self causing missed detections. 

The DCA algorithm requires the selection of the cluster numbers, shapes, and sizes. 

It is very critical to select the right number of clusters. Selecting a higher number of 

clusters could yield slower algorithm and might cause discontinuities in self and, as a 

consequence higher rate of false alarms. Selecting a lower number of clusters may result 

in covering areas from the non-self, causing missed detections. DCA allows for more 

flexibility in term of shape selection, since spherical or ellipsoidal shapes may also be 

considered; however, overlapping between detectors or uncovered self/non-self areas will 

occur. 

At first sight, it seems that the selection of partitions size for the PUA is an 

equivalent issue to selecting the number of clusters using DCA. However, the partition 

size for each feature could be either calculated using Eq. (4-5) or fine-tuned using 

different partitions size and then analyzing the continuity of the resulted selves. The fine-

tuning process could be easily achieved because of the PUA speed and the possibility to 

mathematically test selves’ continuity. On the other hand, there is no easy way to calculate 

the required number of clusters and fine tuning could be time-consuming due to DCA 

algorithm computational time requirement and the difficulty to mathematically test 

selves’ continuity. 

4.5.2. Computational Issues 

The PUA algorithm is not iterative, which means that each point is only processed 

once to determine its corresponding partition. The PUA processing time depends only on 

the size of raw self data point count. The PUA does not require any pre -duplicate data 

removal to accelerate its convergence. In fact, the approach implicitly removes duplicate 

points much faster than typical duplicates point removal approaches. The small 

processing time of the PUA allows the use of high-dimensional selves without posing any 

significant computational issues. 

The DCA approach, on the contrary, uses a slow iterative process. The DCA 

processing time depends on the number of raw self data points counts, selected number 

of clusters, and the clusters dimensionality. Duplicate data points removal is essential to 

enhance DCA convergence time. In this process, the distance between each two data 
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points are compared to a pre-define threshold, and one of the data points is deleted when 

the distance is smaller than the threshold. Using a high number of clusters and higher 

dimensional clusters could exponentially slow the algorithm, which forces to use a limited 

number of clusters at lower dimensions.  

Table 4-1 presents time needed for each of the methods to process three sets of 2-

dimensional data points into self. The computational time is calculated for the algorithm 

only, it excludes the normalization process needed for both algorithm, and the duplicated 

data removal needed for the DCA.  

Table 4-1. Sample Computational Time for PUA and DCA 

Computer Specifications Intel Core i7 @2.93, 16 GB RAM 

Operating System Windows 7 Enterprise 64-bit 

Development Environment Matlab® 2014a 

Clustering Method PUA DCA (K-means) 

Computational Time 
(seconds) 

rand(6000,2) 0.0043 3.1763 

rand(60000,2) 0.0211 55.9379 

rand(600000,2) 0.1713 1056.222 

Another aspect of the computational time comparison between PUA and DCA is 

the discrimination time. The discrimination time is the time needed to detect whether a 

given feature point belongs to the self or the non-self. It is worth mentioning that each 

coming feature point should be normalized using the exact ranges used to normalize the 

raw self data before any testing.  

The PUA is associated with the positive selection approach. In this approach, the 

normalized feature point is first converted to the corresponding partition. Then, the 

partition is checked to determine whether it belongs to the self. If the partition is 

determined to belong to self, then the point is considered a self-point; otherwise, the point 

is considered a non-self point. The discrimination time using the PUA and the positive 

selection is very small, and a minimum number of partitions are checked in the process.  

The DCA could be associated with both positive of negative selection approach. In 

the positive selection approach, the self clusters are iterated to check whether the given 

point belongs to one of them. If the point is found to belong to a cluster, the process is 

stopped, and the point is judged to be a self-point; otherwise, the point is considered to 

belong to the non-self. In the negative selection approach, the non-self detectors are 

iterated to check whether the given point belongs to one of them. If the point is found to 
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belong to a detector, the process is stopped, and the point is said to be a non-self point; 

otherwise, the point is said to belong to the self. It is clear that the discrimination time 

using DCA depends on the number of clusters and detectors in the self/non-self, 

respectively.  

The last aspect of the comparison is the amount of memory needed to store the 

self/non-self data using PUA and DCA, assuming both approaches are used to build selves 

of the same dimensionality. PUA yielded number of partitions depends on the selected 

resolution, while DCA yields the selected clusters numbers. At first, DCA seems to offer 

more flexibility regarding the memory needed to store the self/non-self data when a 

limited-size memory is available; however, because of the use of a pre-defined universe 

in PUA, memory encoding (i.e. conversion to binary) could be used to compress the self 

data.  

4.5.3. Comparison Summary  

In summary, the proposed PUA is superior when compared to DCA in the context 

of building the self/non-self. The PUA parameters are more intuitive to the designer; the 

approach is much faster than DCA; does not require non-self building, provides faster 

self/non-self discrimination results, and has better potential to generate a self for limited 

memory applications. 
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Chapter 5. AIS-based Abnormal Condition Detection, 
Identification, and Evaluation 

Detecting the presence of an AC, identifying the most affected subsystem, and 

evaluating its severity are critical steps in the ACM process. A reliable and fast ACDIE 

scheme is required, such that the AC accommodation schemes can provide timely and 

accurate compensation. This chapter introduces the basic concept of self/non-self 

discrimination and discusses its general applicability to the ACDIE. Due to the 

computational issues involved in generating the self and non-self (i.e. collecting all 

possible normal operation data, selecting the right partition size, noisy data etc.) a perfect 

definition of the self/non-self is hard to achieve in practice. Using solely direct self/non-

self discrimination at each instant may lead to false alarms and/or missed detections; 

however, previous investigations [91], [94] have shown that false alarms and missed 

detections can be reduced by properly processing the instantaneous outcomes of the 

self/non-self discrimination using an artificial dendritic cell algorithm. 

5.1. Self / Non-self Discrimination 

Using the PUA, the discrimination outcome is obtained by first locating the feature 

point on the universe grid using each feature defined resolution. 

Assume that the current feature point value at time sample 𝑡 is ℱ𝑡 such that: 

 ℱ𝑡 = {𝜑𝑖𝑡| 𝑖 = 1,2, … ,𝑁}  (5-1) 

where 𝜑𝑖𝑡 is the feature 𝑖 values at time sample 𝑡. The normalized current feature point ℱ𝑡 

is the current feature point ℱ𝑡 normalized using each feature span value calculated and 

used in the self building phase: 

 ℱ𝑡 = {𝜑
𝑖𝑡
| 𝑖 = 1,2, … ,𝑁} | 𝜑

𝑖𝑡
∈ [0,1] (5-2) 

The feature point location on the universe grid vector ℱ𝑃𝑡 can be expressed as: 

 ℱ𝑃𝑡 =  {𝑓𝑝𝑖𝑡| 𝑖 = 1,2, … ,𝑁} (5-3) 

Note that the feature point location on the hyper-rectangles universe grid ℱ𝑃𝑡 is 

calculated using the partition resolution set defined in Eq. (4-3) and selected in the self 

building phase, such that:  
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 ℱ𝑃𝑡 = {
𝜑

𝑖𝑡

𝜋𝑖
+ 1| 𝑖 = 1,2, … ,𝑁} (5-4) 

where 𝜋𝑖 is feature 𝑖 partition resolution selected in self building phase. On the other 

hand, the feature point location on a uniform 2-dimensional hexagon universe grid can 

be calculated using: 

 ℱ𝑃𝑡 = 

[
 
 
 
 

[
 
 
 √3

3
−

1

3

0     
2

3]
 
 
 

∗  [
𝜑̅1𝑡

𝜑̅2𝑡
]  ÷  𝜋

]
 
 
 
 
𝑇

 (5-5) 

Using the HMS strategy, the targeted system self 𝑆 may consist of a number 𝑁𝑝 of 

lower-dimensional self projections. These self projections may have homogenous or non-

homogeneous dimensions, such that: 

 𝑆 =  {𝑆𝑙| 𝑙 = 1,2, … , 𝑁𝑝}   (5-6) 

A self projections-features mapping matrix (𝑆𝐹) can be constructed in which the 

membership of each feature is mapped to the corresponding self projection such that: 

 𝑆𝐹 =

𝑆1 𝑆2  … 𝑆𝑁𝑝  

[
 
 
 
𝛼11 𝛼12

𝛼21 𝛼22
⋯

𝛼1𝑁𝑝

𝛼2𝑁𝑝

⋮ ⋱ ⋮
𝛼𝑁1 𝛼𝑁2 ⋯ 𝛼𝑁𝑁𝑝 ]

 
 
 

𝜑1

𝜑2

⋮
𝜑𝑁

 (5-7) 

where: 

 α𝑖𝑙 = {
1 𝜑𝑖 ∈ 𝑆𝑙

0 𝜑𝑖 ∉ 𝑆𝑙
 (5-8) 

Note that the dimension of the 𝑙𝑡ℎ self projection represents the number of features used 

to build that projection; therefore, the dimension of  𝑙𝑡ℎ self projection is equal to the sum 

of the 𝑙𝑡ℎ column elements of the 𝑆𝐹 matrix. 

To obtain the self/non-self discrimination outcome for each self projection, the 

feature point location on the universe grid ℱ𝑃𝑡 is reorganized into 𝑁𝑝 vectors. Each vector 

ℱ𝑃𝑡𝑙 has the elements of the feature that belongs to the 𝑙𝑡ℎ self projection such that:  
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 ℱ𝑃𝑡𝑙 = {𝑓𝑝𝑖𝑡|∀α𝑖𝑙 = 1} (5-9) 

note that the order of 𝑓𝑝𝑖𝑡 elements should match the order of the features in the 

corresponding sub-self and the size of ℱ𝑃𝑡𝑙 should match the 𝑙𝑡ℎself projection size.  

Finally, the self/non-self discrimination outcome 𝑄𝑡𝑙  outcome for each self 

projection 𝑙 is then calculated using the following formula: 

 𝑄𝑡𝑙 = {
0 𝑖𝑓 ℱ𝑃𝑡𝑙  ∈ 𝑆𝑙

1 𝑖𝑓 ℱ𝑃𝑡𝑙  ∉ 𝑆𝑙
 (5-10) 

and the complementary self/non-self discrimination outcome 𝑄𝑡𝑙  outcome for each self 

projection 𝑙 is calculated using the following formula: 

 𝑄𝑡𝑙 = {
0 𝑖𝑓 ℱ𝑃𝑡𝑙  ∉ 𝑆𝑙

1 𝑖𝑓 ℱ𝑃𝑡𝑙  ∈ 𝑆𝑙
 (5-11) 

If the self and non-self were perfectly defined, the discrimination results would 

provide accurate detection outcomes each time step. However, a perfect definition of the 

self/non-self is unattainable, which may cause false alarms and/or missed detections. 

Therefore, the self/non-self discrimination should be processed in a certain way before 

providing the detection outcome to eliminate false alarms, while maintaining a high 

detection rate. The strategy of attempting the elimination of false alarms at the possible 

expense of detection rate, instead of just reducing the false alarms, is justified by the fact 

that the system typically operates most of the time at normal conditions and even low 

number of false alarms may impact performance significantly. This can be achieved by 

incorporating an additional detection logic, such as the artificial DC, to provide the 

detection outcome as a function of current and past discrimination outcomes within the 

HMS strategy. 

5.2. The Artificial Dendritic Cell Mechanism 

The artificial DC mechanism presented in this section is a modified version of the 

one proposed in [94]. The algorithm is a novel computational approach inspired by the 

functionality of the biological DCs and their role in adaptive immune system activation. 

The main modifications to the original algorithm are: 
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1. Introducing the partition tracking matrix to address the evaluation 

problem. In the previous version of the DC, the evaluation of AC severity was based on 

the pattern of the triggered/non-triggered self projections. Using the PUA, the evaluation 

process could be performed by tracking the subsystem feature movement in the non-self 

region. The new approach uses fewer features and therefore provides outcomes much 

faster. 

2. Updating the DC 𝐼𝐿10 and 𝐼𝐿12 functions. In the previous artificial DC 

algorithm, the self projections are assumed to be homogenous and 2-dimensional. Using 

the PUA allowed the use of higher and non-homogeneous self projections; therefore, 𝐼𝐿10 

and 𝐼𝐿12 functions are updated to address more general self structures.  

3. Introducing a training-free AC identification. In the previous artificial DC 

algorithm, the AC identification is carried out by establishing a number of different 

reference patterns, one associated to each subsystem. The failed subsystem is then 

identified as the one for which the reference pattern best matches the current pattern. 

Using PUA allows identifying the failed subsystem without previous training. 

5.2.1. The Artificial DC Inputs 

The inputs to the DC algorithm are the outcomes of the self/non-self 

discrimination over a moving time window of size 𝛵. Let the discrimination outcomes be 

defined as 𝑄𝜏𝑙 and 𝑄𝜏𝑙, where 𝜏 = 𝑡 − 𝑇, 𝑡 − 𝑇 + 1,… . , 𝑡 and 𝑙 = 1, 2, … ,𝑁𝑝, and let the 

current sample 𝑡 discrimination matrix 𝐷𝑡 and the complementary discrimination matrix 

𝐷𝑡 be defined by: 

 𝐷𝑡 =

𝑆1 𝑆2  … 𝑆𝑁𝑝 

[
 
 
 
 𝑄11 𝑄12

𝑄21 𝑄22
⋯

𝑄1𝑁𝑝

𝑄2𝑁𝑝

⋮ ⋱ ⋮
𝑄𝑡1 𝑄𝑡2 ⋯ 𝑄𝑡𝑁𝑝 ]

 
 
 
 𝑡 − 𝑇         

𝑡 − 𝑇 + 1 

⋮
𝑡                 

 (5-12) 

 𝐷𝑡 =

𝑆1 𝑆2   … 𝑆𝑁𝑝 

[
 
 
 
 
 𝑄11 𝑄12

𝑄21 𝑄22

⋯
𝑄1𝑁𝑝

𝑄2𝑁𝑝

⋮ ⋱ ⋮

𝑄𝑡1 𝑄𝑡2
⋯ 𝑄𝑡𝑁𝑝 ]

 
 
 
 
 𝑡 − 𝑇         

𝑡 − 𝑇 + 1 

⋮
𝑡                 

 (5-13) 
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where 𝑄𝜏𝑙 and 𝑄𝜏𝑙 are calculated using Eq. (5-10) and Eq. (5-11) respectively. 

To address the AC evaluation problem, a new partition tracking matrix 𝑃𝑇𝑡 is 

introduced here. At each time sample 𝑡, the movement of the features over neighboring 

partition clusters is recorded over previous time window such that: 

 𝑃𝑇𝑡 =

𝜑1 𝜑2  … 𝜑 𝑁

[

𝑃11 𝑃12

𝑃21 𝑃22
⋯

𝑃1𝑁

𝑃2𝑁

⋮ ⋱ ⋮
𝑃𝑡1 𝑃𝑡2 ⋯ 𝑃𝑡𝑁

]

𝑡 − 𝑇         
𝑡 − 𝑇 + 1 

⋮
𝑡                 

 (5-14) 

where the row corresponding to feature 𝑖 at time step 𝑡 is defined as: 

 𝑃𝑡𝑖 = 𝑃(𝑡−1)𝑖 +  Δ𝑝𝑖 (5-15) 

where Δ𝑝𝑖 represents the change of feature 𝑖 partition location. In other words, Δ𝑝𝑖 can be 

calculated as: 

 Δ𝑝𝑖 = 
𝜑

𝑖𝑡
− 𝜑

𝑖(𝑡−1)

𝜋𝑒𝑖
  (5-16) 

where 𝜑
𝑖𝑡

 is the normalized value of the current feature 𝑖, 𝜑
𝑖(𝑡−1)

 is the normalized value 

of feature 𝑖 at previous step, and 𝜋𝑒𝑖 is the partition resolution of feature 𝑖 for evaluation. 

Note that 𝜋𝑒𝑖 does not necessarily have to, but could, be equal to 𝜋𝑖. 

5.2.2. The Artificial DC Components 

The artificial DC [95] is a computational unit represented as a vector with eight 

components (Figure 5-1), as described next. 

1. The selection flag (λs) represents the DC selection status, selected vs. not 

selected. A random number 𝜌 is generated for each DC at each time step. Based on a 

prescribed selection rate 𝜎 between 0 and 1, the selection status of each DC is updated as: 

 λs = {
1 𝑖𝑓 𝜌 ≤  𝜎 
0 𝑖𝑓 𝜌 >  𝜎 

 (5-17) 

where λs = 1 means that the DC is selected to process the self/non-self discrimination of 

the current time step.  
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Figure 5-1. The Artificial DC Data Structure 

2. Co-stimulatory Molecules (CSM) are proteins on the biological DC 

surface whose concentration increases whenever the DC processes a suspected antigen, 

regardless of the outcome. The corresponding first element of the artificial DC is a counter 

for the number of times a DC is selected from the pool and activated. The parameter is 

initialized as 0 and then updated as: 

 𝐶𝑆𝑀𝑡 = {
𝐶𝑆𝑀𝑡−1 + 1 λs = 1
𝐶𝑆𝑀𝑡−1        λs = 0

 (5-18) 

3. Interleukin-10 (IL10) is a special compound produced by the biological 

DC when the tested entity is suspected to be part of the self. This parameter is initialized 

as 0 and updated whenever the DC is activated based on the complementary 

discrimination matrix: 

 𝐼𝐿10𝑡 = {
𝐼𝐿10𝑡−1 + Γ10(𝑊𝑠

𝑇, 𝐷𝑡 , 𝑊0) λs = 1
𝐼𝐿10𝑡−1                                     λs = 0

  (5-19) 

where: 

 𝑊0 = [𝑤01 𝑤02 ⋯ 𝑤0𝑁𝑝]𝑇 (5-20) 

and: 

 𝑊𝑠 = [𝑤𝑠1 𝑤𝑠2 ⋯ 𝑤𝑠𝑇]𝑇 (5-21) 
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𝑊0 and 𝑊𝑠 are weighting factors; they allow considering potentially different sensitivity of 

the subsystems in capturing the fingerprint of the normal condition (𝑊0) and to assign 

different levels of priority to more recent data as opposed to older data (𝑊𝑡). Γ10 is the 

interleukin-10 accumulation function.  

For systems for which the AIS self is built as a set of homogenous dimensionality 

projections, with reduced hidden non-self regions, and with balanced distribution of 

projection discrimination capability [91], the interleukin-10 accumulation functions was 

defined as: 

 Γ10(𝑊𝑠
𝑇 , 𝐷𝑡 , 𝑊0) =  𝑊𝑠

𝑇𝐷𝑡𝑊0 (5-22) 

For the power system in this research effort, where the AIS self is built as a set of 

diverse dimensionality projections, the interleukin-10 accumulation functions was 

defined as: 

 Γ10(𝑊𝑠
𝑇 , 𝐷𝑡  ,𝑊0) =  ⌊

∑(𝑊𝑠
𝑇𝐷𝑡𝑊0)

𝑁𝑝
⌋  (5-23) 

4. Interleukin-12 (IL12) is a special compound produced by the biological 

DC when the tested entity is suspected to be an antigen. This parameter is initialized as 0 

and updated whenever the DC is activated based on the discrimination matrix: 

 𝐼𝐿12𝑡 = {
𝐼𝐿12𝑡−1 + Γ12(𝑊𝑠

𝑇 , 𝐷𝑡  ,𝑊1) λs = 1
𝐼𝐿12𝑡−1                                    λs = 0

 (5-24) 

where: 

 𝑊1 = [𝑤11 𝑤12 ⋯ 𝑤1𝑁𝑝]𝑇 (5-25) 

𝑊1 is a weighting vector that puts different levels of confidence for each subsystem 

regarding its capability in capturing the fingerprint of the abnormal condition. The Γ12 is 

the interleukin-12 accumulation function.  

For systems for which the AIS self is built as a set of uniform dimensionality 

projections, with reduced hidden non-self regions, and with balanced distribution of 

projection discrimination capability [91], the interleukin-12 accumulation functions can 

be defined as: 
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 Γ12(𝑊𝑠
𝑇 , 𝐷𝑡  ,𝑊1) =  𝑊𝑠

𝑇𝐷𝑡𝑊1 (5-26) 

For the power system in this research effort, where the AIS self is built as a set of 

diverse dimensionality projections, the interleukin-12 accumulation functions was 

defined as: 

 Γ12(𝑊𝑠
𝑇 , 𝐷𝑡 ,𝑊1) =  ⌈

∑(𝑊𝑠
𝑇𝐷𝑡𝑊1)

𝑁𝑝
⌉ (5-27) 

5. Cell life (𝓛) is a parameter reflecting the fact that cells experience a healthy 

programmed cell death. It is initialized as a random integer representing the total number 

of activations that the cell can support before re-initialization/replacement. In other 

words, an artificial DC is considered dead when its CSM exceeds ℒ.Each DC updates its 

life property according to: 

 ℒ𝑡 = ℒ𝑡−1 − 1 (5-28) 

The cell life parameter allows only recently generated/processed cells to stay in the 

pool and, therefore; it eliminates old information. 

6. Migration threshold (𝓜) represents the duration of the process of 

acquiring antigen information before transferring it for further processing. For the 

biological cells, maturity is reached when the 𝐶𝑆𝑀 achieves a certain level. In the artificial 

DC, this parameter is initialized as a random integer. The migration threshold is 

initialized to a random integer and updated as following:  

 ℳ𝑡 = {
ℳ𝑡−1 − 1 Ω = 1
ℳ𝑡−1        Ω = 0

 (5-29) 

where Ω = 1 when the current sample indicates change in operational condition. In other 

words, Ω = 1 if the current detection status is normal, while the current sample indicates 

abnormal condition, or the current detection status is abnormal and the current sample 

indicates normal conditions. If the current detection status and the current sample 

indicate the same status, then Ω = 0. The update of migration threshold allows a shorter 

detection time and lower false alarms when the system transits between normal and 

abnormal conditions and vice versa. An artificial DC is said to be mature when its 𝐶𝑆𝑀 

reaches the migration threshold. 
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7. Triggered and Non-triggered Features Matrices. A biological DC is 

capable of engulfing an intruding entity and breaking it up into constituent components. 

Upon maturity, this information is transferred to the adaptive immune system and used 

for counter-action. Similarly, an artificial DC presents information about the processed 

input by constructing the triggered features matrix 𝐹1. Unlike the previous version of the 

DC algorithm, the 𝐹1 matrix consist of two layers. The first layer of the triggered feature 

matrix (𝐹1
1) is used to record the number of times subsystem 𝑆𝑙 is triggered and is defined 

as: 

 𝐹1
1 =

𝑆1 𝑆2  … 𝑆𝑁𝑝 

[
 
 
 
 𝜓11

1 𝜓12
1

𝜓21
1 𝜓22

1 ⋯
𝜓1𝑁𝑝

1

𝜓2𝑁𝑝

1

⋮ ⋱ ⋮
𝜓𝑁1

1 𝜓𝑁2
1 ⋯ 𝜓𝑁𝑁𝑝

1
]
 
 
 
 𝜑1

𝜑2

⋮
𝜑𝑁

 (5-30) 

where the matrix elements 𝜓𝑖𝑙
1  are initialized to zeros and updated if 𝜑𝑖is one of the feature 

coordinates of the triggered subsystem 𝑆𝑙. In other words: 

 𝜓𝑖𝑙
1 = {

𝜓𝑖𝑙
1 + 1 𝑖𝑓 𝑆𝑙 𝑖𝑠 𝑡𝑟𝑖𝑔𝑔𝑟𝑒𝑑 𝑎𝑛𝑑 𝛼𝑖𝑙 = 1

𝜓𝑖𝑙
1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

  (5-31) 

The second layer of the triggered feature matrix (𝐹1
2) captures the number of 

partitions over which each feature has moved. This second layer is defined as: 

 𝐹1
2 =

𝑆1 𝑆2  … 𝑆𝑁𝑝 

[
 
 
 
 𝜓11

2 𝜓12
2

𝜓21
2 𝜓22

2 ⋯
𝜓1𝑁𝑝

2

𝜓2𝑁𝑝

2

⋮ ⋱ ⋮
𝜓𝑁1

2 𝜓𝑁2
2 ⋯ 𝜓𝑁𝑁𝑝

2
]
 
 
 
 𝜑1

𝜑2

⋮
𝜑𝑁

 (5-32) 

where the matrix elements 𝜓𝑖𝑙
2  are initialized to zeros and updated with the partition 

tracking matrix elements if 𝜑𝑖 is one of the feature coordinates of the triggered subsystem 

𝑆𝑙. In other words: 

 𝜓𝑖𝑙
2 = {

𝜓𝑖𝑙
2 + 𝑃𝑡𝑖 𝑖𝑓 𝑆𝑙 𝑖𝑠 𝑡𝑟𝑖𝑔𝑔𝑟𝑒𝑑 𝑎𝑛𝑑 𝛼𝑖𝑙 = 1

𝜓𝑖𝑙
2           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

 (5-33) 
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The non-triggered features matrix (𝐹0
 ) is recording the number of times 

subsystem 𝑆𝑙 is not triggered. The matrix is defined as: 

 𝐹0
 =

𝑆1 𝑆2  … 𝑆𝑁𝑝 

[
 
 
 
 𝜓11

0 𝜓12
0

𝜓21
0 𝜓22

0 ⋯
𝜓1𝑁𝑝

0

𝜓2𝑁𝑝

0

⋮ ⋱ ⋮
𝜓𝑁1

0 𝜓𝑁2
0 ⋯ 𝜓𝑁𝑁𝑝

0
]
 
 
 
 𝜑1

𝜑2

⋮
𝜑𝑁

 (5-34) 

where the matrix elements are initialized to zeros and updated if 𝜑𝑖is one of the feature 

coordinates of the non-triggered subsystem 𝑆𝑙. In other words: 

 𝜓𝑖𝑙
0 = {

𝜓𝑖𝑙
0 + 1 𝑖𝑓 𝑆𝑙 𝑖𝑠 𝑛𝑜𝑛𝑡𝑟𝑖𝑔𝑔𝑟𝑒𝑑 𝑎𝑛𝑑 𝛼𝑖𝑙 = 1

𝜓𝑖𝑙
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

 (5-35) 

5.2.3. The Artificial DC Algorithm 

The algorithm starts by initializing a set ℂ of a pre-defined number 𝑁𝐷𝐶 of 

immature DCs with default properties. It is worth mentioning that the algorithm starts 

after the first time window of size 𝑇 has passed. At each time step, the current measured 

features point undergoes the self/non-self discrimination process to update the 

discrimination and partition tracking matrices (𝐷𝑡,𝐷𝑡 and 𝑃𝑇𝑡). At the same time, a 

random number of DCs is selected from the pool and each selected DC processes the 

discrimination and partition tracking matrices and updates its components. The term 

mature DCs indicates that the selected DCs co-stimulatory molecules (𝐶𝑆𝑀) parameter 

has reached the migration threshold ℳ. The collection of mature DCs is processed 

through the ACDIE logic to determine the system status. The term dead DCs refers to all 

DCs with a life parameter ℒ equal to zero. Any mature or dead DCs are replaced in the set 

ℂ by new DCs with default properties. The flow chart of the artificial DC algorithm for 

ACDIE is presented in Figure 5-2.  

5.3. Abnormal Conditions Detection 

Detecting the presence of an AC is a critical step in the ACM process. A reliable and 

fast detection scheme is required for the AC identification, evaluation, and 

accommodation schemes to provide timely and accurate outcomes. The AC detection logic 

starts by processing the collection of mature DCs. Any migrated DC with 𝐼𝐿12 ≥  𝐼𝐿10 is 

called stimulatory DC, since it activates the production of cytotoxic T-cells.  
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Figure 5-2. The Artificial DC Algorithm 

The set of activated stimulatory T-cells 𝐾 can be expressed as: 

 𝐾 = {𝐾𝑖 ∈ ℕ | 𝑖 = 1,2, … ,𝑁} (5-36) 

 𝐾𝑖 = ∑ ∑𝜓𝑖𝑙
1

𝑁𝑠

𝑙=1

𝑁𝑠𝑑𝑐

𝑛=1

 (5-37) 

where ℕ is the set of natural numbers, 𝑁𝑠𝑑𝑐 is the number of stimulatory DCs and 𝐾𝑖 is the 

number of stimulatory T-cells corresponding to feature 𝜑𝑖. 

Any migrated DC with 𝐼𝐿12 <  𝐼𝐿10 is called regulatory DC since it activates the 

production of suppressor T-cells. The set of activated suppressor T-cells 𝑅 can be 

expressed as: 

 𝑅 = {𝑅𝑖 ∈  ℕ | 𝑖 = 1,2, … ,𝑁} (5-38) 

 𝑅𝑖 = ∑ ∑𝜓𝑖𝑙
0

𝑁𝑠

𝑙=1

𝑁𝑟𝑑𝑐

𝑚=1

 (5-39) 

where 𝑁𝑟𝑑𝑐 is the number of regulatory DCs and 𝑅𝑖 is the number of suppressor T-cells 

corresponding to feature 𝜑𝑖.  
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The role of the suppressor T-cells is to regulate the adaptive immune response by 

suppressing an equal number of activated cytotoxic T-cells, which results in a set of 

residual cytotoxic T-cells given by: 

 𝐾̃ = {𝐾̃𝑖 = 𝐾𝑖 − 𝑅𝑖 | 𝑖 = 1,2, … ,𝑁} (5-40) 

This stimulation/suppression of the adaptive immune system as determined by the 

production of cytotoxic and suppressor T-cells indicates whether the system is under 

normal or abnormal conditions. Therefore, the overall detection outcome at any sample 

time 𝑡 can be calculated using the following equation: 

 𝐷𝑒𝑡𝑡 = {0 ∑𝐾̃𝑖  ≤ 0

𝑁

𝑖=1

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-41) 

The DC algorithm for AC detection is illustrated in Figure 5-3.  

 

Figure 5-3. The Artificial DC Algorithm for AC Detection 

If the detection outcome is zero, the algorithm proceeds to the next time sample; 

otherwise, the algorithm determines the identification and evaluation outcome before 

proceeding to the next time step. 
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5.4. The Naïve Bayes Classifier 

Some of the approaches described below require a pattern recognition algorithm 

to determine the best match to the current patterns produced by the migrated DCs. The 

naïve Bayes classifier [96] is one of the most popular pattern recognition algorithms. 

Naïve Bayes classifier is a probabilistic supervised learning algorithm which provides very 

high classification rate with very fast training and validation phases. These advantages of 

the classifier make it the most suitable algorithm for the purpose of pattern recognition 

for the AC identification and evaluation problem.  

Let 𝑅 = [𝑟𝑠 | 𝑠 = 1,2, …  𝑎]𝑇 be an 𝑎 ×  1 vector of continuous values of 𝑎 attributes 

to be classified into a class variable 𝑀 = {𝑚𝑐 |  𝑐 = 1,2, … , 𝑏}.  

For each class 𝑚𝑐 the sample mean vector 𝜇𝑐 and the sample covariance matrix Σ𝑐 

can be calculated from a given sample attribute vectors. Assume the vectors 𝑅𝑐
(𝑛)

=

[𝑟𝑠𝑐
(𝑛) | 𝑠 = 1,2, …  𝑎] is the 𝑛𝑡ℎ sample vector and it belongs to class 𝑚𝑐, then: 

 𝜇𝑐 = 
1

𝑛𝑡𝑐
 ∑ 𝑟𝑠𝑐

(𝑛)

𝑛𝑡𝑐

𝑛=1

 (5-42) 

 𝛴𝑐 =  
1

𝑛𝑡𝑐 − 1
 ∑(𝑟𝑠𝑐

(𝑛) − 𝜇𝑐)(𝑟𝑠𝑐
(𝑛) − 𝜇𝑐)

𝑇

𝑛𝑡𝑐

𝑛=1

 (5-43) 

where 𝑛𝑡𝑐 the number of samples in class 𝑚𝑐.  

Once the mean vectors and covariance matrices for all classes are calculated, the 

next equation can be used to calculate the quadratic discriminant function Δ𝑐 such that: 

 𝛥𝑐(𝑅̃) = 𝑙𝑛(𝑛𝑡𝑐) −
1

2
𝑙𝑛|𝛴𝑐| −

1

2
(𝑅̃ − 𝜇𝑐)

𝑇
𝛴𝑐

−1 (𝑅̃ − 𝜇𝑐) (5-44) 

where 𝑅̃ =  [𝑟̃𝑠 | 𝑠 = 1,2, …  𝑎]𝑇is the vector of continuous values of 𝑎 attributes to be 

classified into 𝑏 classes  

Once the quadratic discriminant function Δ𝑐 is calculated for all the 𝑏 classes, the 

class 𝑐̃ of the current attributes vector 𝑅̃ can then be identified using: 

 𝑐̃ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐=1,2,…,𝑏

(𝛥𝑐(𝑅̃ )) (5-45) 
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5.5. Abnormal Conditions Identification 

The AC identification is the process that isolates the subsystem that is mostly 

affected by or is the source of the detected AC. The identification process is a critical step 

in ACM for an accurate and reliable evaluation and accommodation. The migrated DCs in 

the artificial DC mechanism presented in section 5.2.3 carry information that is useful in 

identifying the failed subsystem. This information is summarized by the triggered-

features matrix (𝐹1
 ) defined in Eq.(5-30). Different patterns can be extracted from the 

𝐹1
  matrices of the migrated DCs, depending on how the matrices are viewed. The next 

sections present two different approaches to address the AC identification problem. 

5.5.1. The Subsystem Pattern Approach 

In this approach [97], features that represent one subsystem are grouped together 

to form the self of that subsystem. In other word, each self projection represents an actual 

subsystem such that 𝑁𝑝 = 𝑁𝑠, where 𝑁𝑝 is number of self projections and 𝑁𝑠 is the number 

of targeted subsystems. Features could belong to one or more subsystems at the same 

time; however, the approach best applies to systems that exhibit minimum features 

overlapping as possible. Ideally, the sum of self projections-features mapping matrix 

𝑆𝐹 rows (Eq. (5-7)) is equal to a column unit vector. 

Let 𝑁 be the total number of selected features, and 𝑁𝑠 be the total number of 

subsystems. The size of subsystem 𝑘, 𝑧𝑘 represents the number of features in that 

subsystem or the sum of the 𝑘𝑡ℎ column in subsystem feature mapping matrix 𝑆𝐹 (Eq. 

(5-7)). The construction of the subsystem pattern starts by defining the elements of the 

subsystem pattern such that: 

 𝑆𝑃 =  {𝑠𝑝𝑘 | 𝑘 = 1,2, 𝑁𝑝} (5-46) 

where 𝑆𝑃 elements are calculated by summing the elements of the first layer of the 

triggered matrix 𝐹1
1 rows, such that: 

 𝑆𝑃 =  {∑ ∑ 𝜓𝑖𝑘
1𝑁

𝑖=1
𝑁𝑚𝑑𝑐
𝑎=1 |𝑘 = 1,2, 𝑁𝑝} (5-47) 

where 𝑁𝑚𝑑𝑐 is the number of migrated DCs. The normalized subsystem pattern 𝑆𝑃 is 

calculated by dividing the subsystem pattern element by the corresponding subsystem 

size such that: 
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 𝑆𝑃 =  {
𝑠𝑝𝑘

𝑧𝑘
⁄ | 𝑙 = 1,2, 𝑁𝑝} (5-48) 

The failed subsystem index 𝑘 at each time sample 𝑡 (𝑘𝑡̃) is then identified by 

locating the index of maximum normalized subsystem pattern 𝑆𝑃 such that: 

 𝑘𝑡̃ =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑘=1,2,…,𝑁𝑠

(𝑆𝑃) (5-49) 

If more than one 𝑘 satisfies the above equation, previous time sample results may 

be used to determine 𝑘𝑡̃. Once 𝑘𝑡̃ is calculated, the outcome of the AC identification 𝐼𝑑𝑛𝑡 

is obtained as: 

 𝐼𝑑𝑛𝑡 = {𝑖𝑑𝑘| 𝑘 = 1,2, 𝑁𝑠} (5-50) 

where: 

 𝑖𝑑𝑘 = {1 𝑘 = 𝑘𝑡̃        
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-51) 

The subsystem pattern approach does not require training or the use of pattern 

matching algorithm, if the features are carefully organized into the different subsystems 

and a minimal feature overlapping was ensured. If the subsystem pattern is not 

applicable, then the feature pattern approach could be used to address the AC 

identification problem. 

5.5.2. The Features Pattern Approach 

In this approach [91] 𝑁𝑠 different reference patterns, one associated to each 

subsystem, must be generated offline using training test data. Current patterns are 

generated online either during a simulation test or from recorded validation tests. 

Therefore, AC identification process can be seen as a pattern recognition problem in 

which the failed subsystem is identified as the one for which the reference pattern best 

matches the current pattern. 

At each sample time, after an AC is detected, the features pattern can be obtained 

from the triggered-feature matrices of all migrated DCs. The construction of the feature 

pattern starts defining the elements of the subsystem pattern such that: 

 𝐹𝑃 =  {𝑓𝑝𝑖 | 𝑖 = 1,2, 𝑁} (5-52) 



Chapter 5  Al-Sinbol 

Page | 52 

where 𝐹𝑃 element are calculated by summing the elements of the first layer of the 

triggered matrix 𝐹1
1 columns such that: 

 𝐹𝑃 =  {∑ ∑ 𝜓𝑖𝑘
1𝑁𝑠

𝑘=1
𝑁𝑚𝑑𝑐
𝑎=1 | 𝑖 = 1,2, 𝑁} (5-53) 

where 𝑁𝑚𝑑𝑐 is the number of migrated DCs. The normalized feature pattern 𝐹𝑃 is 

calculated by dividing the features pattern element by the corresponding subsystem size 

such that: 

 𝐹𝑃  =  
𝐹𝑃

||𝐹𝑃||
 (5-54) 

where the norm in the denominator is the Euclidean norm. At this point, the naïve Bayes 

classifier algorithm is required in order to determine which of the 𝑁𝑠 reference patterns.is 

the closest to the current pattern and ultimately constitute the outcome of the AC 

identification process as: 

 𝐼𝑑𝑛𝑡 = {𝑖𝑑𝑘| 𝑘 = 1,2, 𝑁𝑠} (5-55) 

where: 

 𝑖𝑑𝑘 = {1 𝐹𝑃 𝑏𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑘𝑡ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 (5-56) 

The reference patterns, in this case the mean vectors and covariance matrices, are 

obtained by training the classifier offline against samples from a set of training tests as 

presented in Figure 5-4. The training phase is achieved by completing the following steps: 

1. For each subsystem 𝑘, prepare a set of training tests where the subsystem is 

affected by one AC.  

2. For each training test, run the DC algorithm for detection until the AC is 

detected, then calculate 𝑅 =  𝐹𝑃 using Eq. (5-54) 

3. Denote the number of 𝑅 vectors for all training tests by 𝑛𝑡𝑘 , use 𝑐 = 𝑘, and 

compute the mean vector 𝜇𝑘, 𝛴𝑘 and sample covariance matrix using Eq. (5-42) and 

Eq.(5-43) respectively. 

4. Save the 𝑛𝑡𝑘, 𝜇𝑘, 𝛴𝑘 as to the identification library of reference patterns 
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Figure 5-4. Training the Naïve Bayes for AC Identification 

After calculating all the 𝑁𝑠 reference patterns, the Naïve Bayes classifier can be 

used online to identify the failed subsystem from using current feature patterns in a given 

AC test as presented in Figure 5-5. 

1. Once an AC has been detected, use Eq. (5-54) to calculated the current 

feature pattern 𝑅̃ = 𝐹𝑃 

2. For each subsystem 𝑘, calculate Δ𝑘 using Eq. (5-44) using the mean 

vectors 𝜇𝑘, and sample covariance matrices 𝛴𝑘 calculated in the training phase. 

3. Determine the failed subsystem using Eq. (5-45). 

 

Figure 5-5. Online AC Identification Using Features Pattern Approach 

5.6. Abnormal Conditions Evaluation 

AC evaluation consists of determining the type of failure (i.e. qualitative 

evaluation), estimating the severity of the failure (i.e. direct quantitative evaluation), and 
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assessing the effects of the AC on the plant operation constraints (i.e. indirect quantitative 

evaluation). In general, the outcome of the evaluation process 𝐸𝑂 can be formulated as:  

 𝐸𝑂 = {𝐸𝑣𝑄 𝐸𝑣𝐷𝑄 𝐸𝑣𝐼𝑄} (5-57) 

In this research, only direct evaluation was performed relative to AC type and 

severity based on categorical metrics. In the past, the approach using the DC mechanism 

for identification using features pattern approach presented in 5.5.2 was extended [98] to 

address the AC qualitative and direct quantitative evaluation. A different approach for 

building the pattern is introduced here to address the evaluation problem while taking 

advantages of the high dimensional self built with the PUA. 

5.6.1. The Partition Tracking Pattern Approach 

The first AC evaluation logic using this approach assumes accurate identification 

outcome and uses only the features associated with the failed subsystem to determine the 

AC type and severity. Using this approach minimizes the computational issues associated 

with generating and saving the evaluation reference patterns. However, since the 

approach uses the features associated with the failed subsystem, incorrect identification 

outcome will mean incorrect evaluation results. Alternative approach is presented at the 

end of this section to overcome this problem. 

Let the number of the targeted subsystem be 𝑁𝑠 such that 𝑘 = 1,2, … ,𝑁𝑠, and let the 

number of AC types affecting the 𝑘𝑡ℎ subsystem be 𝐴𝐶𝑡𝑘 such that 𝑛𝑘 = 1,2, … , 𝐴𝐶𝑡𝑘, and 

let the severity scale of the 𝑛𝑡ℎ AC type of the 𝑘𝑡ℎ subsystem be 𝐴𝐶𝑠𝑘𝑛 such that 𝑠𝑘𝑛 =

1,2, … , 𝐴𝐶𝑠𝑘𝑛. The total number of reference evaluation patterns 𝐸𝑃 required to address 

all the AC types and severities are: 

 𝐸𝑃 = ∑ ∑ 𝑛 ∗ 𝐴𝐶𝑠𝑘𝑛

𝐴𝐶𝑡𝑘

𝑛=1

𝑁𝑠

𝑘=1

 (5-58) 

Once the AC detection and identification outcomes have been determined, the 

partition tracking pattern (𝑃𝑇𝑃) is constructed using the second layer of the triggered 

feature matrix 𝐹1
2 and the features of the failed subsystem 𝑘 such that: 

 𝑃𝑇𝑃 = {∑ 𝜓𝑖𝑘
2𝑁𝑚𝑑𝑐

𝑎=1 | 𝑖 = 1,2, 𝑁 𝑎𝑛𝑑 α𝑖𝑘 = 1} (5-59) 
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where 𝑁𝑚𝑑𝑐 is the number of migrated DCs. The normalized partition tracking pattern 

𝑃𝑇𝑃 is calculated using: 

 𝑃𝑇𝑃 =  
𝑃𝑇𝑃 

𝑁𝑚𝑑𝑐
 (5-60) 

At this point, the naïve Bayes classifier algorithm is required in order to determine 

the class in which the current pattern best matches one of the 𝐸𝑃 evaluation reference 

patterns. Ultimately, the outcome of the AC evaluation is: 

 𝐸𝑣𝑄 = {𝑡ℎ𝑒 𝐴𝐶 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑎𝑡𝑐ℎ} (5-61) 

and: 

 𝐸𝑣𝐷𝑄 = {𝑡ℎ𝑒 𝐴𝐶 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑎𝑡𝑐ℎ} (5-62) 

The evaluation reference patterns are obtained by training the classifier offline 

against samples from a set of training tests as presented in Figure 5-6.  

 

Figure 5-6. Training the Naïve Bayes for AC Evaluation 

The training phase is achieved by completing the following steps: 

1. For each subsystem 𝑘, prepare a set of ∑ 𝑛 ∗ 𝐴𝐶𝑠𝑘𝑛
𝐴𝐶𝑡𝑘
𝑛=1  set training tests. In 

each test, subsystem 𝑘 is affected by one AC type and severity. Identify the AC type and 

severity combinations by a unique index 𝑑. 

2. For each training test, run the DC algorithm for detection until the AC is 

detected and identified then calculate 𝑅 =  𝑃𝑇𝑃 using Eq. (5-60). 
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3. Denote the number of 𝑅 vectors for all training tests by 𝑛𝑡𝑑 , use 𝑐 = 𝑑, and 

compute the mean vector 𝜇𝑑 and covariance matrix 𝛴𝑑 using Eq. (5-42) and Eq.(5-43), 

respectively. 

4. Save the computed 𝑛𝑡𝑑, 𝜇𝑑, 𝛴𝑑 to the evaluation library of reference 

patterns. 

After saving all the 𝐸𝑃 reference patterns, the naïve Bayes classifier can be used 

online to identify the AC type and severity using the partition tracking patterns in a given 

AC test, as presented in Figure 5-7. 

1. Once an AC have been detected and the affected subsystem identified, use 

Eq. (5-60)to calculated the current feature pattern 𝑅̃ = 𝑃𝑇𝑃 

2. For each type and severity index 𝑑, calculate Δ𝑑 using Eq. (5-44) with the 

mean vectors 𝜇𝑑, and sample covariance matrices 𝛴𝑑 calculated in the training phase. 

3. Determine the AC type and severity class using Eq. (5-45). 

 

Figure 5-7. Online AC Evaluation Using Partition Tracking Pattern Approach 

5.6.2. The Feature Pattern Approach 

A similar approach to the one used for the AC identification problem can be applied 

for AC qualitative and direct evaluation purposes. 𝐸𝑃 patterns, each corresponding to an 

AC type and severity of the affected subsystem, are established using Eq. (5-54). The 

patterns are to be defined based on the detection outcomes of all self projections, which 

are summarized by the first layer of the triggered matrix 𝐹1
1 matrix provided by the 

migrated DCs. Readers are referred to references [91], [99] for more information 
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regarding this approach and other approaches to address the AC identification and 

evaluation problem using AIS. 

5.7. One Step AC Identification and Evaluation 

The one step AC identification and evaluation approach establishes 𝐸𝑃 patterns 

using all available features or projections. At each time step, the current pattern is 

compared against all the 𝐸𝑃 patterns and the identification and evaluation outcomes are 

extracted from the best match. In this case, the 𝑃𝑇𝑃 becomes: 

 𝑃𝑇𝑃 = {∑ ∑ 𝜓𝑖𝑘
2𝑁

𝑘=1
𝑁𝑚𝑑𝑐
𝑎=1 | 𝑖 = 1,2, 𝑁 } (5-63) 

All other aspects of the identification and evaluation processes will be the same. 

However, closer attention should be paid to the computational issues associated with 

pattern construction, saving, and matching, especially with a system with a high number 

of features. 

The training phase is achieved by completing the following steps, as presented in 

Figure 5-8: 

 

Figure 5-8. Training the Naïve Bayes for One Step AC Identification and Evaluation 

1. For each subsystem 𝑘, prepare a set of ∑ 𝑛 ∗ 𝐴𝐶𝑠𝑘𝑛
𝐴𝐶𝑡𝑘
𝑛=1  set training tests. In 

each test, subsystem 𝑘 is affected by one AC type and severity. Identify the failed 

subsystem 𝑘, AC type, and severity combinations by a unique index 𝑒. 

2. For each training test, run the DC algorithm for detection until the AC is 

detected then calculate 𝑅 =  𝑃𝑇𝑃 using Eq. (5-63). 
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3. Denote the number of 𝑅 vectors for all training tests by 𝑛𝑡𝑒 , use 𝑐 = 𝑒, and 

compute the mean vector 𝜇𝑒 and covariance matrix 𝛴𝑒 using Eq. (5-42) and Eq.(5-43) 

respectively. 

4. Save the computed 𝑛𝑡𝑒, 𝜇𝑒, 𝛴𝑒 to the evaluation library of one step 

identification and evaluation reference patterns. 

After saving all the 𝐸𝑃 reference patterns, the naïve Bayes classifier can be used 

online to identify the failed subsystem, the AC type and severity using the partition 

tracking patterns in a given AC test using the following steps as presented in Figure 5-9: 

1. Once an AC has been detected, use Eq. (5-64) to calculate the current 

feature pattern 𝑅̃ = 𝑃𝑇𝑃 

2. For each subsystem, AC type and severity index 𝑒, calculate Δ𝑒 using Eq. 

(5-44) with the mean vectors 𝜇𝑒, and sample covariance matrices 𝛴𝑒 calculated in the 

training phase. 

3. Determine the unique subsystem, and AC type and severity index using Eq. 

(5-45). 

 

Figure 5-9. Online One Step AC Identification and Evaluation 

5.8. ACDIE Performance Indices 

The performance of the ACDIE scheme is evaluated using six indices: false alarm 

rate (𝐹𝐴), detection time (𝐷𝑇), detection rate (𝐷𝑅), identification rate (𝐼𝑅), type 

evaluation rate (𝑇𝐸𝑅), and severity evaluation rate (𝑆𝐸𝑅). 
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In a normal test, assume the number of samples in which detection outcome 𝐷𝑒𝑡𝑡 

has a value equal to zero (true negatives) to be 𝑁𝑆𝑇, and let the total number of samples 

in which detection outcome 𝐷𝑒𝑡𝑡 has a value equal to one (false positives) to be 𝑁𝑆𝐹. The 

𝐹𝐴 is then calculated using: 

 𝐹𝐴 =  
𝑁𝑆𝐹

𝑁𝑆𝐹 + 𝑁𝑆𝑇 
× 100 (5-64) 

the 𝐹𝐴 is obviously calculated only in tests under normal operations. Ideally, the FA 

should be zero. Non-zero 𝐹𝐴 might indicate incomplete self data, selection of small 

partitioning size, or selection of small time window size in the DC algorithm parameters.  

𝐷𝑇 is the time difference in seconds between the time of the AC occurrence and the 

time of its successful detection. Assuming 𝑇𝑂𝐶 is the AC time of occurrence, and 𝑇𝑂𝐷 is 

the AC time of detection, then 𝐷𝑇 is calculated using: 

 𝐷𝑇 = 𝑇𝑂𝐷 − 𝑇𝑂𝐶 (5-65) 

Small 𝐷𝑇 indicates good detection performance. Larger 𝐷𝑇 might indicate 

selection of large partitioning size, or selection of large time window size in the DC 

algorithm parameters, or improper features selection.  

𝐷𝑅 is defined as the percentage ratio between the number of samples detected as 

abnormal and the total number of samples in a validation test under abnormal conditions 

calculated after first successful detection. In an abnormal test, assume the number of 

samples calculated after 𝐷𝑇 in which detection outcome 𝐷𝑒𝑡𝑡 has a value equal to one to 

(true positives) be 𝐹𝑆𝑇, and let the total number of samples calculated after 𝐷𝑇 in which 

detection outcome 𝐷𝑒𝑡𝑡 has a value equal to zero (false negatives) to be 𝐹𝑆𝐹. The 𝐷𝑅 is 

then calculated using: 

 𝐷𝑅 =  
 𝐹𝑆𝑇

 𝐹𝑆𝑇 + 𝐹𝑆𝐹 
× 100 (5-66) 

𝐼𝑅 is the ratio between the number of samples in which the algorithm correctly 

identified the subsystem under AC and the total number of samples in the test after a 

successful detection. In an abnormal test, assume  𝐹𝑆𝐼𝑇 is the number of samples 
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calculated after 𝑇𝑂𝐷 in which detection outcome 𝐷𝑒𝑡𝑡 has a value equal to one and the 

identification algorithm provided correct outcomes. Let  𝐹𝑆𝐼𝐹 to be the total number of 

samples calculated after 𝑇𝑂𝐷 in which detection outcome 𝐷𝑒𝑡𝑡 has a value equal to one 

and the identification algorithm provided incorrect outcomes. The 𝐼𝑅 is then calculated 

using: 

 𝐼𝑅 =  
 𝐹𝑆𝐼𝑇

 𝐹𝑆𝐼𝑇 +  𝐹𝑆𝐼𝐹 
× 100 (5-67) 

𝑇𝐸𝑅 is the ratio between the number of samples in which the evaluation algorithm 

correctly evaluated the AC type and the total number of samples in the test calculated 

after 𝑇𝑂𝐷 given correct detection and identification outcomes. In an abnormal test, 

assume  𝐹𝑆𝑇𝑇 is the number of samples calculated after 𝑇𝑂𝐷 in which detection outcome 

𝐷𝑒𝑡𝑡 has a value equal to one, the identification algorithm provided correct outcomes, and 

the evaluation algorithm provided correct AC type estimation. Let  𝐹𝑆𝑇𝐹  be the total 

number of samples calculated after 𝑇𝑂𝐷 in which detection outcome 𝐷𝑒𝑡𝑡 has a value 

equal to one, the identification algorithm provided correct outcomes, and the evaluation 

algorithm provided incorrect AC type estimation The 𝑇𝐸𝑅 is then calculated using: 

 𝑇𝐸𝑅 = 
𝐹𝑆𝑇𝑇

 𝐹𝑆𝑇𝑇 +  𝐹𝑆𝑇𝐹 
× 100 (5-68) 

Finally, 𝑆𝐸𝑅 is the ratio between the number of samples in which the algorithm 

correctly evaluated the AC severity to the total number of samples in the test in which all 

preceding algorithms provided correct outcomes. In an abnormal test, assume  𝐹𝑆𝑆𝑇 is the 

number of samples calculated after 𝑇𝑂𝐷 in which detection outcome 𝐷𝑒𝑡𝑡 has a value 

equal to one, the identification algorithm provided correct outcomes, and the evaluation 

algorithm provided correct AC type and severity estimation. Let  𝐹𝑆𝑆𝐹  be the total number 

of samples calculated after 𝑇𝑂𝐷 in which detection outcome 𝐷𝑒𝑡𝑡 has a value equal to one, 

the identification algorithm provided correct outcomes, and the evaluation algorithm 

provided correct AC type, but incorrect severity estimation The 𝑆𝐸𝑅 is then calculated 

using: 

 𝑆𝐸𝑅 = 
𝐹𝑆𝑆𝑇

 𝐹𝑆𝑆𝑇 +  𝐹𝑆𝑆𝐹 
× 100 (5-69) 
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Ideally, all of IR, TER, and SER should be 100%. Small rates might indicate the 

improper selection of subsystem features, or incomplete reference patterns. 

For a high performance ACDIE algorithm, all 𝐷𝑅, 𝐼𝑅, 𝑇𝐸𝑅, and 𝑆𝐸𝑅 values should 

be 100%. Smaller values might indicate improper selection of features, or selection of 

wrong partitioning size, or incorrect DC parameters settings. 
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Chapter 6. Abnormal Conditions Accommodation 

This chapter introduces the use of the AIS paradigm in conjunction with other 

artificial intelligence techniques, such as neural networks and fuzzy logic, to develop 

adaptive control mechanisms that are expected to enhance the performance of a baseline 

controller for normal and abnormal operational conditions.  

The operational strategy and the architecture of the biomimetic adaptive controller 

are envisioned to rely on close interaction with the immunity-based ACDIE. It is expected 

that the performance of the system will be enhanced by combining an analytical adaptive 

component based on the immune humoral feedback mechanism with the information 

stored in the artificial immune system, which is primarily used for abnormal condition 

detection and identification. Figure 6-1 provides a high level insight into the architecture 

and operation of the biomimetic adaptive control laws.  

 

Figure 6-1. Architecture of the Biomimetic Adaptive Control Laws 

The on-line ACDIE should provide timely and accurate outcomes for an effective 

accommodation process. Once an AC has been diagnosed successfully, the control system 

utilizes that information to determine the best accommodation strategy. If the AC has 

never been encountered before, the control system uses an adaptive control augmentation 

inspired from the humoral feedback mechanism and updates the artificial immune 

system framework with the accommodation parameters and the system response for 
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future optimization and uses. If the AC has been encountered before, then the control 

system uses a pre-defined and optimized control strategy and parameters to 

accommodate the AC.  In this research, two main solutions for the adaptive biomimetic 

mechanism have been investigated: the artificial neural network (ANN) mechanism and 

the immunity humoral feedback mechanism. 

6.1. The Artificial Neural Net Adaptive Controller  

The artificial neural net (ANN)-based adaptive mechanism [100], [101] relies on 

the capability of the ANNs to model/approximate functions.  In this case, the function 

approximated is the modification of the system due to the abnormal condition. A single-

hidden-layer ANN with on-line training was considered. The architecture of the adaptive 

control laws using ANN to augment a baseline controller is presented in Figure 6-2. 

 

Figure 6-2. Adaptive Control Based on an Artificial Neural Network Mechanism 

The following derivation assumes a PID controller as a baseline controller. Let us 

consider the system to be controlled expressed as: 

 {

𝑥̇1 = 𝑥2

𝑥̇2 = 𝑓(𝑥, 𝑢)
𝑥̇3 = 𝑔(𝑥, 𝑢)

 (6-1) 

where 𝑥 = [𝑥1
𝑇 𝑥2

𝑇 𝑥3
𝑇]𝑇 is the state vector, 𝑢 is the input vector, 𝑥2 is the controlled state 

vector, 𝑥1 is the integral of the controlled states, and 𝑓 and 𝑔 are non-linear functions. 

Under AC, it can be assumed that the system becomes: 
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 {

𝑥̇1 = 𝑥2

𝑥̇2 = 𝑓(𝑥, 𝑢) + ∆

𝑥̇3 = 𝑔(𝑥, 𝑢) + ∆̅

 (6-2) 

where 𝑓 and 𝑔 may now be regarded as approximations of the systems under ACs. Let the 

setpoint be expressed as 𝑥2𝑟𝑒𝑓. Then, a baseline PID controller will produce a command 

𝑢𝑐𝑚𝑑 such that: 

 𝑢 = 𝑓(𝑥, 𝑢) = 𝑢𝑐𝑚𝑑 + 𝑥̇2𝑟𝑒𝑓 (6-3) 

therefore: 

 𝑓(𝑥, 𝑢) = 𝐾𝑃(𝑥2𝑟𝑒𝑓 − 𝑥2) + 𝐾𝐼 ∫(𝑥2𝑟𝑒𝑓 − 𝑥2)𝑑𝑡 + 𝐾𝐷(𝑥̇2𝑟𝑒𝑓 − 𝑥̇2) + 𝑥̇2𝑟𝑒𝑓 (6-4) 

The tracking error can now be defined as: 

 𝑒 = [
𝑥1𝑟𝑒𝑓 − 𝑥1

𝑥2𝑟𝑒𝑓 − 𝑥2
] (6-5) 

moreover, the tracking error dynamics are: 

 𝑒̇ = [
𝑥̇1𝑟𝑒𝑓 − 𝑥̇1

𝑥̇2𝑟𝑒𝑓 − 𝑥̇2
] (6-6) 

It can be immediately noted that: 

 𝑥̇1𝑟𝑒𝑓 − 𝑥̇1 = 𝑥2𝑟𝑒𝑓 − 𝑥2 (6-7) 

For the second element of the error dynamics, let us consider the following: 

 𝑥̇2 − ∆= 𝑓(𝑥, 𝑢) (6-8) 

then according to (6-4): 

 𝐾𝑃(𝑥2𝑟𝑒𝑓 − 𝑥2) + 𝐾𝐼 ∫(𝑥2𝑟𝑒𝑓 − 𝑥2)𝑑𝑡 + 𝐾𝐷(𝑥̇2𝑟𝑒𝑓 − 𝑥̇2) + 𝑥̇2𝑟𝑒𝑓 − 𝑥̇2 + ∆= 0 (6-9) 

or:  

 𝐾𝐼(𝑥1𝑟𝑒𝑓 − 𝑥1) + 𝐾𝑃(𝑥2𝑟𝑒𝑓 − 𝑥2) + (𝐾𝐷 + 𝐼)(𝑥̇2𝑟𝑒𝑓 − 𝑥̇2) + ∆ = 0 (6-10) 

and: 
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 𝑥̇2𝑟𝑒𝑓 − 𝑥̇2 = −(𝐾𝐷 + 𝐼)−1[𝐾𝐼(𝑥1𝑟𝑒𝑓 − 𝑥1) + 𝐾𝑃(𝑥2𝑟𝑒𝑓 − 𝑥2) + ∆] (6-11) 

Therefore, the error dynamics can now be expressed as: 

 𝑒̇ = [
𝑥2𝑟𝑒𝑓 − 𝑥2

−(𝐾𝐷 + 𝐼)−1𝐾𝐼(𝑥1𝑟𝑒𝑓 − 𝑥1) − (𝐾𝐷 + 𝐼)−1𝐾𝑃(𝑥2𝑟𝑒𝑓 − 𝑥2) − (𝐾𝐷 + 𝐼)−1∆
] (6-12) 

 𝑒̇ = [
0 𝐼

−(𝐾𝐷 + 𝐼)−1𝐾𝐼 −(𝐾𝐷 + 𝐼)−1𝐾𝑃
] [

𝑥1𝑟𝑒𝑓 − 𝑥1

𝑥2𝑟𝑒𝑓 − 𝑥2
] + [

0
−(𝐾𝐷 + 𝐼)−1] ∆ (6-13) 

 𝑒̇ = [
0 𝐼

−(𝐾𝐷 + 𝐼)−1𝐾𝐼 −(𝐾𝐷 + 𝐼)−1𝐾𝑃
] 𝑒 + [

0
−(𝐾𝐷 + 𝐼)−1] ∆ (6-14) 

Under nominal conditions ∆ = 0 and 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 can be obtained to ensure 

asymptotic stability for the error dynamics. For example, to control one state, 𝑥1 and 𝑥2 

are scalars and so are 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷. Therefore: 

 𝑒̇ = [

0 𝐼

−
𝐾𝐼

𝐾𝐷 + 𝐼
−

𝐾𝑃

𝐾𝐷 + 𝐼
] 𝑒 (6-15) 

The characteristic equation is: 

 |

𝑠 1

−
𝐾𝐼

𝐾𝐷 + 𝐼
𝑠 +

𝐾𝑃

𝐾𝐷 + 𝐼
| = 0 (6-16) 

or: 

 𝑠2 +
𝐾𝑃

𝐾𝐷 + 𝐼
𝑠 +

𝐾𝐼

𝐾𝐷 + 𝐼
= 0 (6-17) 

 𝑠1,2 =
1

2
(−

𝐾𝑃

𝐾𝐷 + 𝐼
± √(

𝐾𝑃

𝐾𝐷 + 𝐼
)
2

− 4
𝐾𝐼

𝐾𝐷 + 𝐼
) (6-18) 

For stability: (𝑅𝑒(𝑠1,2) < 0. Also note that: 2𝜁𝜔𝑛 =
𝐾𝑃

𝐾𝐷+𝐼
 and 𝜔𝑛

2 =
𝐾𝐼

𝐾𝐷+𝐼
. For 

desirable values of 𝜁 and 𝜔𝑛 one can solve for 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷. 

The ANN output is produced such that: 

 𝑢 = 𝑢𝑐𝑚𝑑 − 𝑢𝐴𝑁𝑁 (6-19) 

therefore: 
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 𝑒̇ = [
0 𝐼

−(𝐾𝐷 + 𝐼)−1𝐾𝐼 −(𝐾𝐷 + 𝐼)−1𝐾𝑃
] 𝑒 + [

0
−(𝐾𝐷 + 𝐼)−1] (∆ − 𝑢𝐴𝑁𝑁) (6-20) 

An on-line learning single hidden layer (SHL) ANN is selected due to its simple 

structure and demonstrated potential [101]. Figure 6-3 presents a schematic 

implementation of the SHL NN adaptive control mechanism. 

 

Figure 6-3. Single Hidden Layer ANN 

Let us assume a general structure where we have n 𝑥𝐴𝑁𝑁 inputs, p neurons in the 

hidden layer, and m outputs of the ANN. Any ANN output 𝑢𝐴𝑁𝑁𝑖, 𝑖 = 1,2, … ,𝑚 is computed 

using the following relationship: 

 𝑢𝐴𝑁𝑁𝑖 = ∑[𝑤𝑖𝑗𝜎 (∑ 𝑣𝑗𝑘𝑥𝐴𝑁𝑁𝑘 + 𝜃𝑣𝑗

𝑛

𝑘=1

) + 𝜃𝑤𝑖]

𝑝

𝑗=1

 (6-21) 

where 𝑤𝑖𝑗 are the interconnection weights between the hidden layer and the output layer, 

𝑣𝑗𝑘 are the interconnection weights between the input layer and the hidden layer, and 𝜃𝑣𝑗  

and 𝜃𝑤𝑖 are bias terms. The activation function is: 

 𝜎(𝜉) =
1

1 + 𝑒−𝑎𝜉
 (6-22) 

where the activation potential 𝑎 is a design parameter. Note that the derivative 𝜎̇ of the 

activation function is: 
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 𝜎̇(𝜉) =
𝑑𝜎

𝑑𝜉
= 𝑎 ∗ 𝜎(1 − 𝜎) (6-23) 

The weights are updated according to the following update laws: 

 {
𝑤̇ = −𝛾𝑤[(𝜎 − 𝜎̇ ∗ 𝑣𝑇𝑥𝐴𝑁𝑁)𝑒𝑇 + 𝜆𝑤 ∗ ‖𝑒‖ 𝑤]

𝑣̇ = −𝛾𝑣[𝑥𝐴𝑁𝑁 ∗ 𝑒𝑇 ∗ 𝑤𝑇 ∗ 𝜎 + 𝜆𝑣 ∗ ‖𝑒‖ 𝑣]
 (6-24) 

where 𝑒 are state tracking errors and 𝛾𝑤, 𝛾𝑣, 𝜆𝑤, 𝜆𝑣 are learning rates (design parameters).  

6.2. AIS-Based Adaptive Controller  

The immunity-based adaptive mechanism mimics the humoral immune system 

feedback response. This represents the regulatory action of immunity specialized cells on 

the generation of antibodies [21]. The balance between the number and virulence of 

antigens, on the one hand, and the number and effectiveness of antibodies, on the other, 

is assessed by immunity cells and the generation of antibodies is accelerated or 

suppressed accordingly [22]. A simplified model of this process is implemented as an 

additional compensatory layer that increases or reduces the commands produced by 

baseline control laws with fixed parameters. The mechanism is equivalent to an adaptive 

modification of the controller gains when the operation of the system departs from 

nominal conditions. The architecture of the adaptive control laws using the immunity-

based mechanism [102] to augment a baseline controller is presented in Figure 6-4. 

 

Figure 6-4. Adaptive Control Based on an AIS Mechanism 

The antigens 𝛼𝑎 active in triggering the immunity reaction are the result of the 

antiseptic action 𝛼𝑑 of the antibodies on the invading antigens 𝛼. Therefore: 



Chapter 6  Al-Sinbol 

Page | 68 

 𝛼𝑎 = 𝛼 − 𝛼𝑑 (6-25) 

The antibodies 𝑢, which are the main product of the immune system, are released 

in the blood stream and some of them (𝑢𝑎) take an active role in locating destroying 

antigens, such that: 

 𝑢𝑎 = 𝐹6(𝑢) (6-26) 

and: 

 𝛼𝑑 = 𝐹7(𝑢𝑎) (6-27) 

The active antigens trigger the excitation 𝜏𝑒 of mechanisms that produce helper T-

cell 𝜏𝐻, such that: 

 𝜏𝑒 = 𝐹1(𝛼𝑎) (6-28) 

and: 

 𝜏𝐻 = 𝐹2(𝜏𝑒) (6-29) 

The number of helper T-cells reflects the number and virulence of the antigens in 

the organism and hence helper T-cells favor the generation of B-cells, which in turn 

accelerate the production of antibodies. Suppressor T-cells 𝜏𝑆 reflect the level of success 

of the immune system in counteracting the antigens. They are produced depending on the 

current amount of antibodies and the current amount and virulence of antigens: 

 𝜏𝑆 = 𝐹5(𝜏𝑒, 𝑢) (6-30) 

Suppressor T-cells are supposed to inhibit the production of B-cells and hence the 

production of antibodies such that a proper balance between the exogenous attack by 

antigens and the organism reaction is reached. In other words, the production of 

antibodies must be at the necessary level to defend the organisms but must not be 

excessive, such that resources are not wasted and other negative effects on the organism 

are avoided. Therefore, the production and activation of B-cell 𝛽 is regulated by the 

balance between helper and suppressor T-cells: 

 𝛽 = 𝐹3(𝜏𝐵) (6-31) 
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where: 

 𝜏𝐵 = 𝜏𝐻 − 𝜏𝑆 (6-32) 

The block diagram of this immunity mechanism is presented in Figure 6-5. It 

should be noted that the function 𝐹1 may be interpreted as the action of the innate 

immune system (first line of defense, more or less indiscriminate destruction of outside 

invaders), while the rest of the block diagram may be interpreted as the action of the 

adaptive immune system. 

 

Figure 6-5. Humoral Immune System Feedback Mechanism 

The biological immune system humoral feedback mechanism is a very complex 

process and all the actual mechanisms represented by 𝐹1 through 𝐹7 are not fully 

understood. Therefore there is still a lot of work to be done to come up with pertinent 

formulation of all these blocks. However, attempts have been made and what follows is a 

summary of what can be found in the literature. 

𝐹1 is considered to be the identity function, for the biological system: 

 𝑦 = 𝐹1(𝑥) = 𝑥 (6-33) 

If 𝐹1 is interpreted as the action of the innate immune system (although previous 

researchers have not done that explicitly [76], [103]), when converting the biological 

mechanism to solve technical problems, this function becomes a PID (or P or PI) control 

law. 
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𝐹2 is considered to be the identity function [76], [103].  However, there are 

technical applications where 𝐹2 is considered a different function [104]-[106], without 

clear justification: 

 𝐹2(𝑥) = 𝑥 (6-34) 

 𝐹2(𝑥) =
1

1 + 𝑒−𝑘𝑥
 (6-35) 

 𝐹2(𝑥) = fuzzy logic function (6-36) 

𝐹3 is considered to be an integral function on most of the reviewed papers [76], 

[103], [105] based on the idea that the activity of B-cells is the result of summing up the 

action of all B-cells produced. 

𝐹4 is considered to be a derivative function [76], [103], [105] based on the idea that 

the production of antibodies is the result of the rate at which B-cells are generated. 

Therefore, for technical applications, the combined effect of 𝐹3 and 𝐹4 is considered to be 

just a gain, which results when the integral and derivative functions cancel each other. 

𝐹5 is considered to have the following general form: 

 𝐹5(𝜏𝑒, 𝑢) = 𝑘𝜏𝑒𝑓(𝑢) (6-37) 

where f(x) used in ref [103], [76], [104] and [105] in this order are: 

 𝑓(𝑥) = 1 − 𝑒−
𝑥2

𝑎 ∶;  𝑥 = 𝑢̇(𝑡 − ∆𝑡) (6-38) 

 𝑓(𝑥) = 1 −
2

𝑒𝑎𝑥2
+ 𝑒−𝑎𝑥2 ∶;  𝑥 = 𝑢̇(𝑡 − ∆𝑡) (6-39) 

 𝑓(𝑥) = 1 −
2

𝑒𝑎𝑥 + 𝑒−𝑎𝑥
∶;  𝑥 = 𝑢̇(𝑡 − ∆𝑡) (6-40) 

 𝑓(𝑥) = 𝐹𝐿[𝑢(𝑡 − ∆𝑡), 𝑢̇(𝑡 − ∆𝑡)] (6-41) 

where 𝐹𝐿 is a fuzzy logic function and 𝑢(𝑡 − ∆𝑡) and 𝑢̇(𝑡 − ∆𝑡) are fuzzy inputs. It can be 

argued that this formulation captures the idea that suppressor T-cell will counteract 

helper T-cell when the predicted antibody generation is “large” and allow them to trigger 

antibody generation otherwise. The predicted antibody generation is represented by the 

rate at which u is produced, that is 𝑢̇. A delay ∆𝑡 is considered to count for the material 
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time needed for these processes to take place. When the rate of antibody generation is 

large, f(x) goes to 1 and the suppression action becomes maximum based on the 

assumption that enough antibodies will be generated. However, the same effect occurs if 

the rate of antibody generation is large negative. When the number of antibodies reaches 

some constant value (rate goes to zero), f(x) and the suppression action go to 0, allowing 

the generation of antibodies to be controlled mostly by the helper T-cells. 

For a technical implementation, the invading antigens may be considered to be 

equivalent to the input to the system or the setpoint. This is based on the idea that the 

plant (assimilated to the organism or the blood stream in Figure 6-5 must “match” the 

setpoint with the actual value of the controlled variable. Therefore: 

 𝐹6(𝑢) = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑝𝑙𝑎𝑛𝑡 (6-42) 

To include the material time necessary for the antibodies to locate and actually 

destroy antigens, 𝐹7 represents a time delay and a proportionality factor: 

 𝐹7(𝑢𝑎) = 𝑘𝑢𝑎(𝑡 − ∆𝑡) (6-43) 

Note that the delay in (6-43) and/or in (6-38)-(6-41) is often neglected in practical 

implementations. 

The functions considered are presented next and the final immunity based 

adaptive controller architecture is presented in Figure 6-6. FB is the function f in 

equations (6-38)-(6-41) above or Eqn. (37) from the paper by Perez et al [76]. This is 

equivalent to: 

 𝐹1 = 𝑃𝐼𝐷 (6-44) 

 𝐹2 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (6-45) 

 𝐹3𝐹4 = 𝐾 (6-46) 

 𝐹5 = 𝑘𝜂𝑓(𝑢) (6-47) 

 𝐹6(𝑢𝑡) = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑝𝑙𝑎𝑛𝑡 (6-48) 

 𝐹7 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (6-49) 
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Figure 6-6. AIS-based Adaptive Mechanism 
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Chapter 7. AIS Based Evolutionary Optimization 

Power plant control requires proper control system architecture, possibly 

variable/adaptive setpoints (i.e. setpoint optimization), and adequate control system 

parameters (i.e. controller gain optimization) for optimal operation. Once the control 

system architecture is established, the remaining two problems are generally 

characterized by strong nonlinearities, multi-dimensionality, the existence of multiple 

local extrema, and various constraints. Evolutionary optimization algorithms have been 

demonstrated to provide the needed capabilities for solving such problems. This chapter 

presents the development of an interactive computational environment for the 

optimization of power plant control using evolutionary techniques with immunity-

inspired enhancements. 

7.1. The Genetic Algorithm 

Genetic algorithms (GA) are artificial intelligence techniques inspired by the 

biological species evolution theory [107], [108] that are implemented for parameter or 

function optimization. In biological evolution theory, individuals within a population that 

are more fit to a given environment are more likely to survive long enough to produce 

offspring, while unfit individuals are more likely to die off before they produce offspring. 

When an individual produces offspring, many of the characteristic that facilitated its 

survival are passed down to its offspring. Thus, over many generations, through the 

mechanism of natural selection, the fitness of the individuals within a population is 

expected to increase, eventually reaching an optimum. 

In biological organisms, deoxyribonucleic acid (DNA) serves as a type of map that 

defines the traits, characteristics, and inner workings of the organism. Within DNA, genes 

contain instructions used for organisms’ development and reproduction. A chromosome 

is a threadlike linear strand of genetic material, or genes. When two organisms produce 

an offspring, each parent passes on a portion of their DNA to the child; the DNA of the 

offspring is a combination of parent’s DNA. During cell division, sections of genes from 

one chromosome may be swapped with sections of genes from another chromosome; this 

is referred to as crossover. In addition to crossover, random mutations may also occur 

and alter individual genes. Through the processes of crossover and mutation, the 

offspring’s genetic material may differ from that of either parent, and thus will express 

different character traits which may make the individual more or less suited to a given 
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environment. Over many generations, the random variations in offspring and natural 

selection mechanisms lead to individuals better suited for survival in a given environment 

than were originally present in earlier populations. 

7.2. The Genetic Algorithm Description 

When applying the GA to solve an optimization problem, an individual is defined 

as a potential solution. Within an individual, a gene is used to refer to a particular solution 

parameter. The population is defined as a collection of individuals. A genetic operator is 

an action that results in a modification to an existing individual's gene configuration. 

A summary of the evolutionary optimization process is as follows. As in the 

biological analogy, an initial population must exist. The initial population is generated 

randomly within pre-determined bounds. The initial population is then rated using a 

performance index function, which serves the purpose of the environment. A new 

population is generated based on the fitness of the individuals in a process that mimics 

natural selection. The individuals in the new population are subjected to random 

mutations and crossover operations. The evolutionary operations repeat until a 

convergence criterion is met, generally until a performance index has met or until a 

predefined number of generations reached. The distinct stages of this algorithm will be 

explained in more detail in the following section. An overview of the GA optimization 

algorithm is presented in Figure 7-1. 

7.2.1. Initial Population 

An integer representation of candidate solutions, as a variation of the binary 

representation, has been adopted. This solution allows for a more localized mutation 

operator, which is expected to provide a better balance between exploration and 

exploitation within the cloning process described later in this chapter. 

For the controller gain optimization, a candidate solution or a chromosome 

consists of a set of values for the gains, which may be regarded as genes. A total number 

𝑁𝑔 of real-valued gains (𝑔𝑞 ∈ ℛ, 𝑞 = 1,2, … ,𝑁𝑔) must be specified. Other required 

parameters are the ranges of the gains such that: 

 𝑔𝑞 ∈ [𝑔𝑞𝑚𝑖𝑛, 𝑔𝑞𝑚𝑎𝑥], 𝑞 = 1,2, … ,𝑁𝑔 (7-1) 
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Figure 7-1. Overview of the GA 

Moreover, the integer resolution 𝑔𝑟𝑒𝑠𝑞 ∈ 𝐼 of the gain search space, representing 

the size of the gain range partition. The topology of the representation is illustrated in 

Figure 7-2. Note that the integers representing the genes are defined as: 

 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 #𝑞 = ⌈ 
𝑔𝑞 − 𝑔𝑞𝑚𝑖𝑛

𝑔𝑞𝑚𝑎𝑥 − 𝑔𝑞𝑚𝑖𝑛
∗ 𝑔𝑟𝑒𝑠𝑞⌉ (7-2) 

 

Figure 7-2. Chromosome Structure for Gain Optimization 

For the setpoint optimization problem, a solution represents a set of setpoint 

values maintained constant over time intervals of various duration. For this case, the 
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required parameters include: input cycle duration (𝑡𝑐), maximum number of setpoint 

intervals (𝑁𝑠𝑚𝑎𝑥), setpoint range, and setpoint resolution. Note that the number of 

setpoint intervals 𝑁𝑠 for each individual and the start time 𝑡𝑠𝑗 of each interval 𝑗 are 

optimization objectives, such that: 

 1 ≤  𝑁𝑠  ≤  𝑁𝑠𝑚𝑎𝑥 (7-3) 

and: 

 𝑡𝑠1 ≤ 𝑡𝑠2  ≤  ⋯  ≤  𝑡𝑠𝑁𝑠
 ≤  𝑡𝑐 (7-4) 

The structure of the chromosome for this optimization problem is illustrated in 

Figure 7-3. A total number 𝑁𝑔 of real-valued setpoints (𝑠𝑝𝑞 ∈ ℛ, 𝑞 = 1,2, … ,𝑁𝑔) must be 

specified. Other required parameters are the ranges of the setpoints such that: 

 𝑠𝑝𝑞 ∈ [𝑠𝑝𝑞𝑚𝑖𝑛, 𝑠𝑝𝑞𝑚𝑎𝑥], 𝑞 = 1,2, … , 𝑁𝑔 (7-5) 

Moreover, the integer resolution 𝑠𝑝𝑟𝑒𝑠𝑞 ∈ 𝐼 of the gain search space, representing 

the size of the setpoint range partition. Note that the integers representing setpoint 

integers are defined such that:  

 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 #2𝑞 = ⌈ 
𝑠𝑝𝑞 − 𝑠𝑝𝑞𝑚𝑖𝑛

𝑠𝑝𝑞𝑚𝑎𝑥 − 𝑠𝑝𝑞𝑚𝑖𝑛
∗ 𝑠𝑝𝑟𝑒𝑠𝑞⌉ (7-6) 

 

Figure 7-3. Chromosome Structure for Setpoint Optimization 

The initial population is defined as a 𝑁𝐼 by 𝑁𝑔 matrix of 𝑁𝐼  individuals containing 

𝑁𝑔 genes. There exit different approaches to generate the initial population; however, only 

two approaches are covered here. The first method is to generate random values for each 

gain/parameter that lie between the pre-defined lower and upper bounds. This approach 

has the benefit of providing more variety to the population, which leads to a more 

thoroughly explored solution space. The disadvantage of this method is that the high 
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dimensionality of the chromosomes and the complexity of the controller could lead to 

very poor starting parameters; thus the GA will take much longer to converge. 

7.2.2. Fitness Function 

The fitness function is used by the GA to evaluate how well a given individual (i.e. 

solution) archives the optimization criteria. Any evaluating metric can be utilized as long 

as it rewards desired performance. The fitness function relies on the establishment of a 

set of 𝑁𝑝 performance criteria and associated numerical metrics. The level of attainment 

of each criterion in terms of the associated metrics must be determined through 

simulation. These values are scaled between 0 and 1 (with 1 being the best and 0 the worst) 

to produce elementary performance or fitness evaluations 𝑝𝑒𝑖, 𝑖 = 1,2, … , 𝑁𝑝. The overall 

fitness function 𝐹𝐹 of a potential solution is then defined as the weighted average of all 

elementary performance evaluations as described in section 3.5.  

For the controller optimization problem, the set of a possible performance criteria 

used for the numerical example presented in this dissertation includes the following: 

 Rise time, the time required for the process controlled variable to go from 10% 
to 90% of the desired steady-state set point 

 The maximum of the absolute value of the tracking error calculated after rise 
time 

 The mean of the tracking error 

 The standard deviation of the tracking error 

 The integral of the absolute value of the tracking error 

For the setpoint optimization problem, general process performance criteria may 

be considered such as maximum or imposed amount of H2S and CO2, minimum amount 

of solvent, minimum total cost, and minimum environmental impact. 

7.2.3. Parent Population Selection 

Selection of the parent population for the next generation is performed using the 

roulette-wheel selection approach [109]. In this approach, each individual is given a 

survival rate based on its performance relative to the total performance of the population. 

The total performance index 𝑇𝐹 is the sum of all of the performance indices for all 

individuals in the current population, such that: 



Chapter 7  Al-Sinbol 

Page | 78 

 𝑇𝐹 =  ∑𝑃𝐼𝑖

𝑁𝐼

𝑖=1

 (7-7) 

The performance index of each individual is then divided by the total performance 

index 𝑇𝐹 of the current population to obtain the probability of selection for each 

individual 𝑃𝐼𝑖, such that: 

  𝑃𝐼𝑖 = 
𝑃𝐼𝑖
𝑇𝐹

 , 𝑖 = 1,2, … , 𝑁𝐼 (7-8) 

Finally, the cumulative probability 𝑄𝑃𝑖 is calculated next for each of the individuals, 

as the sum of the probabilities of all precedent individuals such that: 

 𝑄𝑃𝑖 = ∑ 𝑃𝐼𝑖

𝑖

𝑗=1

 (7-9) 

Each available spot in the new population is filled by generating a random number 

in the close interval [0, 1] and selecting an individual in which the random number is less 

than its cumulative probability, but greater than the cumulative probability of the 

preceding individual. Individuals with higher performance indices will get larger 

cumulative probability intervals and therefore more chances for survival and multiple 

copies in the parent generation. Since the population size is maintained constant 

throughout the algorithm, the population in each generation can only contain the same 

number of individuals as in the initial population. The algorithm continues until the next 

generation is fully populated. Figure 7-4 present a flowchart of the roulette-wheel 

selection approach. 

 

Figure 7-4. Roulette-Wheel Selection Approach 



Chapter 7  Al-Sinbol 

Page | 79 

It is worth mentioning that the elitist strategy has been used after the parent 

population has been selected. The strategy ensures the best current solution is not lost in 

the selection process. The elitist strategy is performed by replacing a randomly selected 

individual in the newly generated population with the best current solution available from 

the previous generation. 

7.2.4. Mutation  

The first genetic operation performed on the population is mutation. First, the 

mutation rate (𝜈) is defined as the percentage of the genes in the population that should 

statistically be subjected to a mutation operation. Next, a random decision matrix (Λ) is 

defined in Eq. (7-10). In this equation, the rand operator produces a 𝑁𝐼  by 𝑁𝑔 matrix of 

uniformly-distributed random numbers in the closed interval from 0 to 1. 

 Λ = 𝑟𝑎𝑛𝑑(𝑁𝐼 , 𝑁𝑔) (7-10) 

Next, an 𝑁𝐼  by 𝑁𝑔 matrix of genes (Χ) are chosen for mutation is generated by: 

 Χ𝑖𝑞 = {
1 𝑖𝑓 Λ𝑖𝑞 ≤  𝜈 

0 𝑖𝑓 Λ𝑖𝑞 >  𝜈
 (7-11) 

In this equation, the subscript 𝑖 represents the index of individual in the population, and 

subscript 𝑞 represents the index of the gene.  

An 𝑁𝐼  by 𝑁𝑔 chromosomal modification limit matrix Ψ is defined next: 

 Ψ =  ones(𝑁𝐼 , 1)  ∗  σ (7-12) 

In the above equation, the ones operator is an 𝑁𝐼  by 1 vector where each element is equal 

to 1. The chromosomal modification limit (𝜎) is defined as a 1 by 𝑁𝑔 vector. The indices 

of the modification limit vector define the maximum absolute value by which a gene 

selected for mutation can mutate. 

Finally the mutation modification matrix (Υ) is defined as: 

 Υ = −Ψ + 2 ∗ r𝑎𝑛𝑑(𝑁𝐼 , 𝑁𝑔) ⊗  Ψ (7-13) 

where ⊗ is used to indicate a piecewise matrix multiplication.  
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Once the potential modification matrix is calculated, it can be used to produce the 

new mutated population Ρ𝑚 from the current population Ρ𝑐, such that: 

 Ρ𝑚 = ⌈Ρ𝑐 +  Υ ⊗  Χ⌉  (7-14) 

A flowchart of the mutation process is presented in Figure 7-5. 

 

Figure 7-5. The Mutation Operation 

7.2.5. Crossover  

To perform the crossover operation, the crossover rate (𝑐) must be defined. The 

crossover rate represents half of the probabilistic percentage of the population that should 

be subjected to a crossover operation in one generation. Note that this is defined as half 

because each crossover operation affects two individuals. For each individual in the 

population, a random number in the range [0, 1] is chosen. If 𝑐 is larger than this random 

number, then a crossover operation is performed on the current individual.  

To perform a single point crossover operation on the current individual 𝐼𝑐, a single 

crossover point integer index (𝑎) is generated in the range(1, 𝑁𝑔 − 1), where 𝑁𝑔 is the 

chromosome gene length. A second individual  𝐼𝑟 is randomly selected from the 

population for crossover. The genes separated by the single crossover point are swapped 

among the two chromosomes as presented in Eq.(7-15), where the notation  𝐼(𝑒: 𝑓) is used 

to define a vector consisting of elements 𝑒 through and including element 𝑓  for the 

vector 𝐼. An illustration of the single point crossover operation is presented in Figure 7-6. 

The flowchart of the single point crossover algorithm is presented in Figure 7-7. 

  𝐼𝑐 = [ 𝐼𝑐(1: 𝑎)  𝐼𝑟(𝑎 + 1:  𝑁𝑔)] (7-15) 
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 𝐼𝑟 = [ 𝐼𝑟(1: 𝑎)  𝐼𝑐(𝑎 + 1:  𝑁𝑔)] 

 

Figure 7-6. The Single Point Cross Operation 

 

Figure 7-7. The Single Point Cross Algorithm 

7.3. Immunity-Enhanced Genetic Algorithm 

Immunity-inspired enhancements (Figure 7-8) include seeding and vaccination of 

initial population, clonal selection loop, and population diversification and selection 

based on affinity to self/nonself. Seeding and vaccination are expected to enhance the 

initial population fitness, the clonal loop is expected to enhance exploitation, while 

affinity-based selection is designed to improve exploration. Overall, these algorithms are 

expected to enhance the computational effectiveness, improve convergence, be more 

efficient in handling multiple local extrema, and achieve adequate balance between 

exploration and exploitation [110]. An interactive computational environment has been 

developed to facilitate the test and future development as descried in section 10.3.  
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Figure 7-8. Immunity-Enhanced Genetic Algorithm Implementation 

7.3.1. Seeding and Vaccination 

The immunity-based enhanced algorithm uses seeding and/or vaccination in the 

generation of the initial population. They rely on previous knowledge on “good” solutions 

and are similar to the more rapid defense reaction of the immune system in response to 

previously experienced attacks. Seeding consists of introducing in the initial population 

complete pre-determined solutions, while vaccination consists of introducing partial 

solutions expected to achieve a high performance index. The block diagram of this process 

is presented in Figure 7-9. In this approach, certain percentage of the initial population is 

randomly generated, while the remaining percentage is introduced using the seeding 

and/or vaccination. The ratio of the number of the individuals introduced using the 

seeding and/or vaccination to the number of randomly generated individuals is very 

important. For instant, a higher ratio will emphasize the seeding and vaccination 

generated individuals and therefore enhance exploitation. A smaller ratio will be 
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providing more variety to the initial population rather than relying on already acquired 

information and thus enhancing exploration.  

 

Figure 7-9. Seeding and Vaccination of Initial Population 

7.3.2. Clonal Selection Loop 

The clonal selection loop is inspired by the biological immune system T and B-cells. 

When receptors on the surface of a T-cell or a B-cell bind to an antigen, this cell gets 

stimulated to undergo proliferation and differentiation in a process that is called clonal 

selection. In the clonal selection loop, presented in Figure 7-10, exploitation is enhanced 

by producing multiple copies of each individual and exposing them to a hyper-mutation 

operator for several iterations at the end of which the best clone is selected into the parent 

set for the next generation. 

The clonal selection loop is inserted after the current population evaluation and 

new generation selection in the standard genetic algorithm. Below is a description of the 

clonal loop functions and parameters. 

1. The Triggering Mechanism: The clonal loop could be triggered using 

different mechanisms. For instant, a generation based triggering algorithm could be used 

to go through the loop after a certain number of generations. On the other hand, 

improvement-based triggering mechanism could be used to run the loop when the GA has 

a slow improvement rates over a pre-defined numbers of generations. 

2. The Cloning: The cloning consist of generating a number of copies of each 

individual in the current population. The number of clones per individual or the total 
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number of clones must be specified. Each individual could get a constant number of 

clones or a number of clones relative to its performance index. 

 

Figure 7-10. Clonal Selection Loop 

3. The Hyper-mutation: The hyper-mutation consists of mutating the 

generated clones using a high mutation rate. The mutation algorithm described for the 

GA algorithm could be used for this purpose.  

4. Clones Fitness Evaluation: Each generated clone must be evaluated 

using the GA fitness function. 

5. Convergence Criterion: Two convergence criteria could be used to exit 

the clonal loop. The improvement-based approach will stop the algorithm when the 

percentage improvement in the best clones over a pre-defined number of iterations has 
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been reached. An imposed maximum number of iterations could also be used to exit the 

loop. A combination of two approaches is also possible.  

6. Candidate Antibodies: Once the convergence criterion has been met, the 

best clone form each individual set of clones is kept to form the new population. 

7.3.3. New Individuals Addition 

For an adequate balance between exploitation and exploration through individual 

diversity, a number of new solutions may be introduced into the population based on their 

low affinity to the self. Vaccination and/or seeding algorithms, similar to those used for 

the initial population may be used in the construction of these new individuals. 

Within the negative selection concept, cells that recognize the intruders are entities 

expected to “solve the problem”. Therefore, the candidate solutions that achieve high 

performance indexes are assimilated to antibodies and will be referred to as “non-self”. 

The individuals that do not achieve high performance indices are eventually undesirable 

and will be assimilated to the “self”. During the evolutionary process, libraries of 

candidate solutions Ω𝑖 and Ω𝑖 that belong to the self (𝐿𝑠) and the non-self (𝐿𝑠), 

respectively, are recorded and stored such that: 

 𝐿𝑠 = [Ω1  Ω2  … Ω𝑛𝑠 ] (7-16) 

 𝐿𝑠 = [Ω1  Ω2  … Ω𝑛𝑠 ] (7-17) 

For two individuals 𝐶1 and 𝐶2 of the same size 𝑁𝑔, their relative affinity Α (𝐶1, 𝐶2) is 

defined as: 

 𝐴(𝐶1, 𝐶2) = [𝑜𝑛𝑒𝑠] . [|𝐶1 − 𝐶2|]
𝑇 (7-18) 

where [𝑜𝑛𝑒𝑠] represents a row vector with all  𝑁𝑔, components equal to 1. For a candidate 

solution 𝐶𝑖 , the affinity to the self is defined as: 

 𝐴(𝐶𝑖, 𝐿𝑠) =  min
𝑗

[𝐴(𝐶𝑖 , Ω𝑗)] (7-19) 

On the other hand, the affinity to the non-self is defined as: 

 𝐴(𝐶𝑖, 𝐿𝑠) =  min
𝑗

[𝐴(𝐶𝑖, Ω𝑗)] (7-20) 
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Figure 7-11. New Individual Generation Based on Low Affinity to Self 

7.3.4. Affinity-based Selection Algorithm 

An affinity-based selection algorithm is formulated as a modified roulette selection 

technique. The premise is that high performance solutions that have low affinity with 

respect to both the self and non-self should be investigated with priority. A fitness 

alteration factor Φ𝑖 is defined as: 

 Φ𝑖  = 𝔉 (𝐴(𝐶𝑖, 𝐿𝑠), 𝐴(𝐶𝑖, 𝐿𝑠)) (7-21) 

such that the fitness of each solution can be expressed as: 

 𝐹𝐹𝑖 = Φ𝑖 . 𝑃𝑊𝑇 .  𝑃𝑃𝑖 (7-22) 

For this investigation, the function 𝔉 is defined as: 

 𝔉 =  {

0.9 𝑖𝑓 𝐴(𝐶𝑖, 𝐿𝑠) >  𝐴𝑚𝑎𝑥 𝑎𝑛𝑑 𝐴(𝐶𝑖, 𝐿𝑠) >  𝐴𝑚𝑎𝑥 

1.2 𝑖𝑓 𝐴(𝐶𝑖, 𝐿𝑠) <  𝐴𝑚𝑎𝑥 𝑎𝑛𝑑 𝐴(𝐶𝑖, 𝐿𝑠) <  𝐴𝑚𝑎𝑥

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              

 (7-23) 

The flowchart of the proposed affinity-based selection algorithm is presented in 

Figure 7-12. New individuals can be generated at each iteration to enhance exploration 

and ensure diversity of the population as described in the previous section. It is desirable 

that these new solutions have low affinity to the self. In other words, they are located in 

regions other than those that have already been tested to produce low performance 

individuals. It should be noted that the non-self library can be used to produce vaccines 
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by identifying strings of genes that occur more frequently and are likely to lead to good 

performance individuals. 

 

Figure 7-12. Affinity-based Individual Selection 
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Chapter 8. The Acid Gas Removal Unit 

The acid gas removal (AGR) [111] unit is the targeted demonstration system in this 

study. The unit is part of the integrated gasification combined cycle (IGCC) power plant. 

IGCC is emerging as an attractive technology option for providing clean, low-cost energy 

with lowest carbon dioxide emissions among other coal power plants. The unit is highly 

non-linear, has thousands of features, tens of baseline controllers and could undergo 

several ACs, which make the unit a perfect candidate to test all the proposed framework 

algorithms.  

8.1. The Acid Gas Removal Unit Description 

The unit is expected to selectively remove hydrogen sulfides (H2S) and carbon 

dioxide (CO2) from the raw syngas using the physical solvent SELEXOL. SELEXOL 

solvent has an affinity to absorb both H2S and CO2 at high partial pressures and low 

temperatures and will release those gases when the solvent is depressurized and heated. 

The AGR is designed to produce clean syngas with less than 1 ppm H2S in it and capture 

at least 95% of CO2 to produce three products streams: clean syngas (to be used by the 

combustion turbine), H2S gas (to be used in Clause Plant), and CO2 gas (for compression 

and storage). 

For the purpose of this study, the AGR unit has been divided into 22 subsystems 

and components listed in Table 8-1 including trayed and packed distillation columns, 

pressure vessels, heat exchangers, pumps, compressors, and strainers.  

Table 8-1. The AGR Unit Subsystems 

# Subsystem Name # Subsystem Name 

1 H2S Absorber 12 Stripped Gas Knock Out Drum 

2 CO2 Absorber 13 Acid Gas Knock Out Drum 

3 H2S Concentrator 14 High Pressure Flash Drum 

4 SELEXOL Stripper 15 Medium Pressure Flash Drum 

5 Lean/Rich Solvent Heat Exchanger 16 Low Pressure Flash Drum 

6 Lean Solvent Cooler 17 Stripped Gas Compressor 

7 Loaded Solvent Cooler 
 

18 Loaded Solvent Pumps 

8 H2 Recovery System 19 Lean Solvent Pumps 

9 Reboiler 20 Semi-lean Solvent Pumps 

10 Stripped Gas Cooler 21 Rich Solvent Strainer 
 11 Acid Gas Cooler 22 Lean Solvent Strainer 
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A schematic drawing of the AGR unit is presented in Figure 8-1 [112]. Section 8.1.1 

through section 8.1.4 describe the major processes in the AGR unit: the H2S absorber, 

CO2 absorber, H2S concentrator and H2S stripper.  
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Figure 8-1. Schematic of the AGR Unit [112] 

8.1.1. The H2S Absorber 

The raw syngas is cooled in the H2S absorber feed cooler before it is fed into the 

lower section of the H2S absorber along with the stripped gas coming from the stripped 

gas compressor. The semi-clean syngas leaves the top of the H2S absorber toward the 

bottom of the CO2 absorber. “Loaded” solvent pumped from the lower part of the CO2 

absorber is cooled to about 40°F in the loaded solvent coolers and fed to the upper section 

of the H2S absorber. The loaded solvent flows downward across random packing and 

absorbs H2S in the syngas and becomes “rich” solvent and flows from the bottom of the 

H2S absorber. The rich solvent is then heated by lean solvent coming from the SELEXOL 

stripper as it flows through the lean/rich heat exchanger. The hot rich solvent then flows 
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to the upper of the H2S concentrator, where it is first partially flashed via depressurization 

and then back-stripped with a slipstream of treated syngas. This step enriches the 

concentration of the H2S in the H2S stream going to the Claus Plant for further processing. 

The stripped gases from the H2S concentrator are cooled in the stripped gas cooler, dried 

in the stripped gas knock out drum, compressed in the stripped gas compressor and sent 

back to the raw syngas inlet of the H2S absorber. The solvent leaving the bottom of the 

H2S concentrator is forwarded to the H2S stripper to further free the remaining gases in 

the rich solvent. 

8.1.2. The H2S Stripper 

Rich solvent from the H2S concentrator enters the upper quadrant of the H2S 

stripper at the top. The separated H2S vaporizes and goes through the reflux trays and off 

the top the H2S stripper, along with the stripping steam and a small portion of the solvent. 

This acid gas stream is then air cooled in the acid gas cooler, condensed liquids are 

removed from the acid gas stream, then collected in the acid gas knock out drum and 

pumped back to the H2S stripper again as reflux and flown downward across the reflux 

trays to minimize SELEXOL solvent entrainment. A small portion of the reflux flow will 

be optionally required as blown down to keep the water content of the solvent constant. 

The acid gas exits from the acid gas knock out drum and leaves the AGR unit for 

processing in the Claus Plant. The solvent in the H2S stripper is heated in the reboiler. 

The reboiler uses medium pressure steam to heat the solvent as it proceeds down the 

column, to generate stripping steam, and to provide the heat of desorption for H2S and 

CO2 from the solvent. The stripping steam rises in the column and aids in the separation 

of the incoming rich solvent until the H2S exits at the top.  

The lean solvent leaving at the bottom of the H2S stripper is discharged using lean 

solvent pumps. The lean solvent is then cooled in lean/rich heat exchanger, as it heats the 

rich solvent flowing to the H2S concentrator. The lean solvent then flows through the lean 

solvent cooler where it is further cooled before entering the CO2 absorber. 

8.1.3. The CO2 Absorber 

The syngas leaving the top of the H2S absorber is fed to the bottom of the CO2 

absorber. At the same time, the lean solvent is fed to the upper quadrant of the CO2 

absorber, while the semi-lean solvent is fed in the middle of the absorber. Both lean and 

semi-lean solvents flow down over the top random packing and absorb the CO2 in the 
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syngas. The clean syngas, which contains less than 1 ppm H2S and some CO2, leaves from 

the CO2 absorber top. 

The loaded solvent flows from the bottom of the CO2 absorber and is separated into 

two streams: a significant portion is routed to the process of isolation of the captured CO2 

and the solvent. The reminder of the loaded solvent is pumped through loaded solvent 

pumps and cooled in loaded solvent coolers before it is used in the H2S absorber. 

The loaded solvent routed for captured CO2 isolation passes through three series 

of flash drums that operate at descending pressure. The high pressure drum recovers the 

H2 by flashing the loaded solvent. The recovered H2 is then compressed in H2 recovery 

compressor and cooled through H2 recovery coolers and returned to the CO2 absorber 

syngas inlet. The medium pressure drum and low pressure drum recover the CO2, while 

flashing the solvent out. The recovered CO2 is then sent out the AGR unit to the CO2 

compression unit. 

8.1.4. The SELEXOL Makeup Flow 

SELEXOL makeup flow is provided from a constant solvent makeup inventory 

through the solvent makeup pump. Makeup flow is provided to the AGR unit through a 

connection to the inlet of the lean solvent pumps. 

8.2. The Acid Gas Removal Unit Model 

A high validity, non-linear model of the IGCC power plant including the AGR unit 

is available at AVESTAR center at WVU [113]. The model is implemented in a process 

modeling software called Dynsim®. Dynsim® is a process simulation environment [114], 

[115] designed for operator training and process design and research support. It features 

the ability to run a single process model across multiple machines up to 100 times faster 

than real time depending on the model complexity and computer configuration. 

Interested reader are referred to reference [111] for more detailed unit description and 

modeling.  

An engine link developed by Schneider Electric was used to facilitate variable 

exchange between Matlab® and Dynsim® using the object linking and embedding for 

process control (OPC) data access protocol. The engine link utilizes a data mapping file, 

which assigns each desired Dynsim® point to an OPC data point and organizes them into 

OPC groups, based on user selection. Matlab® code must take into account the data 
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mapping file naming convention in order to access the values of the point. The Dynsim® 

- Matlab® engine link diagram is presented in Figure 8-2. 

 

Figure 8-2. Dynsim®-Matlab® Engine Link Diagram 

8.3. The Acid Gas Removal Unit Nominal Operations  

The normal operation was defined using 10 operational constraints, as listed in 

Table 8-3. A sensitivity analysis was performed to determine all the controlled features 

that could affect the constraints. The analysis was performed by varying one controlled 

variabled at a time in heuristically pre-defined ranges and monitoring the constraints. 

The variable which had an impact on one or more constrains was recorded and used later 

to generate the self data. 

Table 8-2. AGR Unit Normal Operational Constraints [116] 

Operational Constraint Value 

Percentage CO2 capture 95% of inlet CO2 

Percentage H2S capture 99.95% of inlet H2S 

Solvent temperature at the outlet of the refrigeration coolers 4 ◦C 

Solvent temperature at the outlet of the water coolers 21 ◦C 

Maximum compressor power +20% of nominal 

Maximum heat exchanger duty +50% of nominal 

Maximum allowable solvent temperature 175 ◦C 

Maximum allowable water content of solvent 6% 

Minimum stripper pressure 276 kPa 

Minimum Claus feed purity 25% H2S 

 

8.4. The Acid Gas Removal Unit Abnormal Conditions 

The AGR unit could suffer several ACs. The distillation columns could accumulate 

solids deposits. The heat exchangers tubes could have leakage that results in 

contamination and hazardous situation. A list of such AC in the AGR unit considered in 

this study is presented in Table 8-3. 
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Table 8-3. AGR Unit ACs List  

# AC Name Severity # AC Name Severity 

1 
Reduction in the area 
of the 13th tray of the 

CO2 absorber 

15% 

8 
Leakage in the H2 

recovery compressor 
suction line 

1% 

20% 2% 

25% 3% 

2 
Reduction in the area 
of the 15th tray of the 

CO2 absorber 

15% 

9 
Leakage in the H2 

recovery flash drum 
liquid phase 

1% 

20% 2% 

25% 3% 

3 
Reduction in the area 
of the 23rd tray of the 

H2S absorber 

15% 

10 
Leakage in the H2S 
acid gas knock-out 
drum liquid phase 

1% 

20% 2% 

25% 3% 

4 
Reduction in the area 
of the 26th tray of the 

H2S absorber 

15% 

11 
Leakage in the CO2 low 

pressure flash drum 
vapor phase 

1% 

20% 2% 

25% 3% 

5 
Reduction in the area 
of the 4th tray of the 

H2S concentrator 

15% 

12 
Leakage in the CO2 

medium pressure flash 
drum vapor phase 

1% 

20% 2% 

25% 3% 

6 
Reduction in the area 
of the 6th tray of the 

H2S concentrator 

15% 

13 
Reduction in the area 
of  the 8th tray of the 
SELEXOL stripper 

15% 

20% 20% 

25% 25% 

7 
Reduction in the heat 
transfer coefficient of 

lean/rich H.E 

15% 

14 
Reduction in the area 
of  the 11th tray of the 
SELEXOL stripper 

15% 

20% 20% 

25% 25% 

 

Reduction in heat transfer coefficient was simulated by reducing the heat transfer 

coefficient in the simulation by the percentage amount of the AC severity. Solids deposit 

on the trays of the distillation towers is simulated in Dynsim® by reducing the flow area 

of the affected tray by the percentage of the AC severity. Finally, leakages are simulated 

by modifying the affected flow line by splitting it into two streams - one continues to the 

original destination, while the other stream, representing the AC severity leakage, is 

routed to a sink. 
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Chapter 9. Results and Discussions 

This chapter present the results of implementation of the proposed monitoring and 

control methodology for advanced power plant. The chapter is organized in three main 

sections. The first section demonstrates the immunity based ACDIC scheme as described 

in Chapter 5.  The second section presents the use of the adaptive controllers described 

in Chapter 6 to augment different baseline controllers to ensure safer operation under AC. 

The final section demonstrates the use of evolutionary optimization algorithm described 

in Chapter 7 to optimize a PID parameters. These analyses were performed in Matlab® 

and Dynsim®. A series of Matlab® tools were developed to demonstrate the effectiveness 

of the proposed approach and allow future use and improvement. Those tools are 

presented in Chapter 10. 

9.1. Demonstration of ACDIE Scheme 

Features Selection: A total of 164 features for the entire 22 unit subsystems 

were selected to build the self of the AGR unit. The features included pressure, 

temperature, flow rate, and composition measurements across the unit. Those features 

were selected from an existing process and piping diagram of the unit [111].  

Preliminary Self Data Preparation: The high fidelity Dynsim® model of the 

AGR was used for data collection. First, normal operation was defined using the 10 

operational constraints, as listed in 8-2. A total of 729 tests, each lasting 4.5 hours were 

performed. In each test, all controlled features known to affect the constraints were varied 

in heuristically pre-defined ranges and the values of the selected features were recorded. 

The tests for which all constraints were met were used in building the self. The ranges of 

each feature in the normal test data were used to linearly normalize the feature values 

between 0 and 1. 

HMS Strategy: Using the HMS strategy, the features were distributed in groups 

that completely defined one actual subsystem. Using this configuration also allows for AC 

identification without training, as described in section 5.5.1. Due to the computational 

limitations in Matlab®-Dynsim® engine caused by exchanging too many variables, only 

subsystems associated with one or more AC (as listed in Table 8-3) were considred. The 

list of the implemented subsystems, along with their features, are presented in Table 9-1. 
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Table 9-1. The AGR Selected Features 

Subsystem # Tag Feature Description 

The H2S 
Absorber 

1 PT020 H2S Absorber Sump Pressure 

2 FT010 Syngas Flow Rate from H2S Absorber Feed Cooler 

3 FT001 Loaded Solvent Coolers to H2S Absorber Reflux Flow Rate 

4 AT006A Syngas CO2 Composition to H2S Absorber 

5 AT006B Syngas H2S Composition to H2S Absorber 

6 PT006 Loaded Solvent Pressure from Loaded Solvent Cooler 

7 AT002A Syngas CO2 Composition to CO2 Absorber 

8 AT002B Syngas H2S Composition to CO2 Absorber 

9 FT003 Rich Solvent Flow Rate to Lean/Rich Heat Exchanger 

10 PDT002 H2S Absorber Differential Pressure 

The CO2 
Absorber 

11 PT001 CO2 Absorber Sump Pressure 

12 FT046 LP Flash Drum Solvent Flow Rate 

13 PT022 H2S Absorber to CO2 Absorber Pressure 

14 AT002A Syngas CO2 Composition from H2S Absorber 

15 AT002B Syngas H2S Composition from H2S Absorber 

16 FT020 CO2 Reflux Flow from Lean Solvent Coolers 

17 PT003 Lean Solvent Pressure from Lean Solvent Cooler 

18 AT001A Treated Syngas CO2 Composition  

19 AT001B Treated Syngas H2S Composition  

20 PT021 CO2 Absorber Overhead Pressure 

21 PT027 Solvent Pressure from Solvent Chiller 

The H2S 
Concentrator 

22 FT004 Solvent Flow Rate from H2S Concentrator to H2S Stripper 

23 AT004 Stripped Gas CO2 Composition to Stripped Gas Cooler 

24 PDT004 H2S Concentrator Differential Pressure 

25 ST16P Pressure to the Stripped Gas Coolers 

26 ST16W Flow Rate to the Stripped Gas Coolers 

27 ST15P Pressure from Lean/Rich Solvent Heat Exchanger 

28 ST15W Flow Rate from Lean/Rich Solvent Heat Exchanger 

29 ST21P Reheated Syngas Pressure 

30 ST21W Reheated Syngas Flow 

31 ST18P Pressure to H2S Absorber  

32 ST18W Flow Rate to H2S Absorber 

The 
Lean/Rich 

Solvent Heat 
Exchanger 

33 FT003 Rich Solvent Flow Rate from H2S Absorber 

34 PT040 Rich Solvent Pressure to H2S Concentrator 

35 TT040 Rich Solvent Temperature H2S Concentrator 

36 TT035 Lean Solvent Temperature to Lean Solvent Coolers 

37 PT002 Pressure to Lean Solvent Cooler (AA) 

38 TT002 Temperature to Lean Solvent Cooler(AA) 

39 TT004 Temperature to Lean Solvent Cooler(AB) 

40 PT004 Pressure to Lean Solvent Cooler (AB) 

41 FT012 Lean Solvent Flow Rate to Lean Solvent Coolers 
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Table 9-1. The AGR Selected Features (cont.) 

Subsystem # Tag Feature Description 

The 
SELEXOL 
Stripper 

42 PT030 H2S Stripper Sump Pressure 

43 FT005 H2S Stripper Reflux Flow Rate 

44 FT011 Acid Gas Vapor Flow Rate to the Acid Gas Coolers 

45 PDT003 H2S Stripper Differential Pressure 

46 ST32P Pressure from the Reboiler 

47 ST32W Flow Rate from the Reboiler 

48 ST04W Pressure to the Acid Gas Coolers 

49 ST51P Pressure from the Reflux Pumps 

50 ST51W Flow Rate from the Reflux Pumps 

51 ST64P Pressure from the H2S Concentrator 

52 ST64W Flow Rate from the H2S Concentrator 

The H2 
Recovery 
System 

53  ST015 H2 Recovery Compressor Speed 

54 PT015 H2 Recovery Compressor  Inlet Pressure  

55 PT016 H2 Recovery Compressor Outlet Pressure 

56 PT010 H2 Recovery Pressure to H2 Recovery Cooler (AA) 

57 PT012 H2 Recovery Pressure to H2 Recovery Cooler (BA) 

58 D1001P H2 Recovery Drum Pressure 

59 D1001T H2 Recovery Drum Temperature 

60 PT011 H2 Recovery Pressure from H2 Recovery Cooler (AB) 

61 PT013 H2 Recovery Pressure from H2 Recovery Cooler (BB) 

The Acid Gas 
Knock Out 

Drum 

62 PT060 Acid Gas Knock Out Drum Pressure 

63 FT013 Makeup Water Flow Rate to Acid Gas Knock Out Drum 

64 TT043 Acid Gas Temperature Entering from the Acid Gas Coolers 

65 AT003 Acid Gas Composition to Claus Plant 

66 FT014 Reflux Bleed Flow Rate from Acid Gas Knock Out Drum 

The Medium 
Pressure 

Flash Drum 

67 D1003P Medium Pressure Flash Drum Pressure 

68 D1003T Medium Pressure Flash Drum Temperature 

69 PT033 Pressure of Exiting Gas to Acid Gas Knock Out Drum 

70 TT023 Temperature of Exiting Gas to Acid Gas Knock Out Drum 

The Low 
Pressure 

Flash Drum 

71 D1004P Low Pressure Flash Drum Pressure 

72 D1004T Low Pressure Flash Drum Temperature 

73 PT034 Pressure of Exiting Gas to CO2 Compressor 

74 TT024 Temperature of Exiting Gas to CO2 Compressor 

75 PT026 Solvent Pressure from LP Flash Drum to Solvent Chillers (AA) 

76 PT028 Solvent Pressure from LP Flash Drum to Solvent Chillers (BA) 

 

Self Generation Using the PUA: A universe of hyper cubes with size equal to 

0.025 and dimensionality equal to each subsystem feature number was generated. The 

data were compared against the universe grid producing the self, as described in Chapter 

4. Table 9-2 presents the subsystem name, the number of features, and the number of 

resulted partition clusters. 



Chapter 9  Al-Sinbol 

Page | 97 

Table 9-2. The Targeted Subsystems and Resulted Selves Dimensions 

Subsystem 
Number of 

Features 
Number of Self Partitions 

The H2S Absorber 10 21248 

The CO2 Absorber 11 67381 

The H2S Concentrator 11 55575 

Lean/Rich Solvent Heat Exchanger 9 420795 

The SELEXOL Stripper 11 1217921 

The H2 Recovery System 9 18100 

The Acid Gas Knock Out Drum 5 390281 

The Medium Pressure Flash Drum 4 10735 

The Low Pressure Flash Drum 6 93360 

 

The Artificial DC Algorithm: The Artificial DC algorithm described in 

section 5.2 was implemented in Matlab®. The following parameters were used: the 

number of immature DCs 𝑁𝐷𝐶 = 100, the time window size 𝑇 = 15 samples, the selection 

rate 𝜎 = 0.65, all initial DCs life ℒ = 15 samples, and all initial DCs migration threshold 

ℳ = 5 samples. The interleukin 10 and 12 update functions used are described in Eq. 

(5-23) and Eq.(5-27) respectively.  

9.1.1. AC Detection Performance 

The performance of the detection scheme is evaluated using three metrics, the false 

alarm rate (𝐹𝐴), detection time (𝐷𝑇), and detection rate (𝐷𝑅) as described in section 5.8.  

 Three different validation tests under nominal conditions were obtained in a 

similar manner as for the data used for building the self. These validation tests were only 

used to calculate the false alarm rate.  0% 𝐹𝐴 was obtained from all the validation tests. 

The ACs summarized in Table 8-3 were implemented in Dynsim®. Each AC were 

run three time each starting from a different initial conditions for a total of 126 tests. The 

AC occurrence time was randomly selected and each test lasted for 20 minutes simulation 

time. It is worth mentioning that process model sample time was 0.25 seconds, while the 

ACDIE algorithms sample time was 5 seconds. The reason for this setting is to speed up 

the simulation and reduce the Dynsim®-Matlab® engine computational overhead. 

Table 9-3 summarizes the average detection outcomes for all targeted AC. 
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Table 9-3. AC Detection Performance 

# AC Name Severity DT (sec) DR (%) 

1 
Reduction in the area of the 13th 

tray of the CO2 absorber 

15% 220.75 100 

20% 229.08 100 

25% 134.33 100 

2 
Reduction in the area of the 15th 

tray of the CO2 absorber 

15% 225.75 100 

20% 215.75 100 

25% 127.42 100 

3 
Reduction in the area of the 23rd 

tray of the H2S absorber 

15% 57.42 100 

20% 60.75 100 

25% 57.42 100 

4 
Reduction in the area of the 26th 

tray of the H2S absorber 

15% 59.08 100 

20% 57.42 100 

25% 57.42 100 

5 
Reduction in the area of the 4th 

tray of the H2S concentrator 

15% 57.75 100 

20% 54.08 100 

25% 52.42 100 

6 
Reduction in the area of the 6th 

tray of the H2S concentrator 

15% 55.75 100 

20% 50.75 100 

25% 50.75 100 

7 
Reduction in the heat transfer 

coefficient of lean/rich H.E 

15% 65.75 100 

20% 62.50 100 

25% 59.08 100 

8 
Leakage in the H2 recovery 

compressor suction line 

1% 85.75 100 

2% 80.75 100 

3% 79.08 100 

9 
Leakage in the H2 recovery flash 

drum liquid phase 

1% 65.75 100 

2% 62.42 100 

3% 65.75 100 

10 
Leakage in the H2S acid gas knock-

out drum liquid phase 

1% 670.75 100 

2% 484.75 100 

3% 402.5 100 

11 
Leakage in the CO2 low pressure 

flash drum vapor phase 

1% 180.75 100 

2% 190.75 100 

3% 130.75 100 

12 
Leakage in the CO2 medium 

pressure flash drum  vapor phase 

1% 110.75 100 

2% 89.08 100 

3% 70.75 100 

13 
Reduction in the area of the 8th 
tray of the SELEXOL stripper 

15% 90.75 87.09 

20% 55.75 100 

25% 57.42 100 

14 
Reduction in the area of  the 11th 

tray of the SELEXOL stripper 

15% 60.75 100 

20% 57.42 100 

25% 57.42 100 
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Detection performance is excellent with detection time ranging between 50.75 and 

670 seconds. The average of the detection time is 122 seconds and may be rated as 

excellent, considering the time scale of the targeted system. The larger 𝐷𝑇 recorded for 

AC9 is attributed to the slow reaction of selected features and may be improved by 

including additional features. The monitoring scheme achieves 100% 𝐷𝑅 for almost all 

cases. It should be noted that for low severity of AC14, the lower 𝐷𝑅 is due to a minimal 

overlap between self/non-self. Addition of more features or selection of higher partition 

resolution is expected to improve this evaluation parameter in this case. In summary, the 

proposed DC algorithm for AC detection provided excellent false alarms, detection rates, 

and detection times for all the targeted ACs. 

9.1.2. AC Identification Performance 

The result for all AC identification are presented in Table 9-4.  

Table 9-4. AC Identification Performance 

# AC Name Severity IR # AC Name Severity IR 

1 
Reduction in the area 
of the 13th tray of the 

CO2 absorber 

15% 100 

8 
Leakage in the H2 

recovery compressor 
suction line 

1% 100 

20% 100 2% 100 

25% 100 3% 100 

2 
Reduction in the area 
of the 15th tray of the 

CO2 absorber 

15% 100 

9 
Leakage in the H2 

recovery flash drum 
liquid phase 

1% 100 

20% 100 2% 100 

25% 100 3% 94.41 

3 
Reduction in the area 
of the 23rd tray of the 

H2S absorber 

15% 100 

10 
Leakage in the H2S acid 

gas knock-out drum 
liquid phase 

1% 100 

20% 100 2% 100 

25% 100 3% 100 

4 
Reduction in the area 
of the 26th tray of the 

H2S absorber 

15% 100 

11 
Leakage in the CO2 low 

pressure flash drum 
vapor phase 

1% 100 

20% 100 2% 100 

25% 100 3% 99.4 

5 
Reduction in the area 
of the 4th tray of the 

H2S concentrator 

15% 94.0
0 12 

Leakage in the CO2 
medium pressure flash 

drum vapor phase 

1% 100 

20% 92.85 2% 100 

25% 92.27 3% 100 

6 
Reduction in the area 
of the 6th tray of the 

H2S concentrator 

15% 93.42 

13 
Reduction in the area 
of  the 8th tray of the 
SELEXOL stripper 

15% 100 

20% 92.14 20% 100 

25% 91.70 25% 100 

7 
Reduction in the heat 
transfer coefficient of 

lean/rich H.E 

15% 100 

14 
Reduction in the area 
of  the 11th tray of the 
SELEXOL stripper 

15% 100 

20% 100 20% 100 

25% 100 25% 100 

The goal of the AC identification is to isolate the most affected subsystem. The 

subsystem pattern approach described in section 5.5.1 was used for the AC identification 

purpose. The subsystem features are grouped as shown in Table 8-1. The number of self 
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projections 𝑁𝑝 is equal to the number of targeted subsystems, that is 9. Once a self 

projection is triggered, the algorithm identifies the corresponding subsystem. In some 

instances, more than one self projections are triggered; therefore, previous time sample 

identification outcomes were used to solve the conflict.  

The monitoring scheme achieves excellent 𝐼𝑅. In only 8 cases IR is less than 100%, 

but not less than 91%. It proves that the training-free subsystem pattern approach 

proposed in this research is an excellent approach to address the AC identification 

problem. It eliminates the need for training of the pattern matching algorithm and the 

computational issues of the on-line matching process, while still providing excellent IR 

outcomes.  

9.1.3. AC Evaluation Performance 

The partition tracking approach described in section 5.6.1 was used to address the 

AC evaluation problem. The naïve Bayes classifier was trained using a set of training AC 

tests to define the reference partition tracking patterns for each failure type and severity. 

Figure 9-1 to Figure 9-10 present the reference partition tracking patterns for selected 

subsystems AC types and severities. Note that the AC evaluation approach scheme was 

tested for the scenario when only one subsystem is under a single AC with specific type 

and severity. Table -9-5 shows the AC 𝑇𝐸𝑅 and 𝑆𝐸𝑅 rates for the all targeted AGR ACs. 

The 𝑇𝐸𝑅 and 𝑆𝐸𝑅 are calculated as presented in Eq.(5-68) and Eq. (5-69) respectively. 

 

Figure 9-1. Reference Partition Tracking Pattern for AC1 and AC2 
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Figure 9-2. Reference Partition Tracking Pattern for AC3 and AC4 

 

Figure 9-3. Reference Partition Tracking Pattern for AC5 and AC6 

 

Figure 9-4. Reference Partition Tracking Pattern for AC7 
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Figure 9-5. Reference Partition Tracking Pattern for AC8 

 

Figure 9-6. Reference Partition Tracking Pattern for AC9 

 

Figure 9-7. Reference Partition Tracking Pattern for AC10 
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Figure 9-8. Reference Partition Tracking Pattern for AC11 

 

Figure 9-9. Reference Partition Tracking Pattern for AC12 

 

Figure 9-10. Reference Partition Tracking Pattern for AC13 and AC14 
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Table -9-5. AC Evaluation Performance 

# AC Name Severity TER (%) SER (%) 

1 
Reduction in the area of the 13th 

tray of the CO2 absorber 

15% 100 100 

20% 100 78.28 

25% 100 95.13 

2 
Reduction in the area of the 15th 

tray of the CO2 absorber 

15% 100 89.00 

20% 100 81.29 

25% 100 94.85 

3 
Reduction in the area of the 23rd 

tray of the H2S absorber 

15% 100 100 

20% 100 83.70 

25% 100 82.28 

4 
Reduction in the area of the 26th 

tray of the H2S absorber 

15% 100 100.00 

20% 100 80.81 

25% 100 82.27 

5 
Reduction in the area of the 4th 

tray of the H2S concentrator 

15% 100 100 

20% 100 96.86 

25% 100 98.58 

6 
Reduction in the area of the 6th 

tray of the H2S concentrator 

15% 100 86.85 

20% 100 78.67 

25% 100 100 

 
Reduction in the heat transfer 

coefficient of lean/rich H.E 

15% 100 100 

20% 100 94.84 

25% 100 83.72 

8 
Leakage in the H2 recovery 

compressor suction line 

1% 98.65 100 

2% 98.21 100 

3% 97.76 89.01 

9 
Leakage in the H2 recovery flash 

drum liquid phase 

1% 100 92.77 

2% 100 87.79 

3% 100 56.34 

10 
Leakage in the H2S acid gas knock-

out drum liquid phase 

1% 100 91.43 

2% 100 40.05 

3% 100 54.62 

11 
Leakage in the CO2 low pressure 

flash drum vapor phase 

1% 100 100 

2% 100 78.61 

3% 100 72.14 

12 
Leakage in the CO2 medium 

pressure flash drum  vapor phase 

1% 100 88.94 

2% 100 99.55 

3% 100 97.47 

13 
Reduction in the area of the 8th 
tray of the SELEXOL stripper 

15% 100 100 

20% 100 98.25 

25% 100 44.93 

14 
Reduction in the area of  the 11th 

tray of the SELEXOL stripper 

15% 100 83.70 

20% 100 52.85 

25% 100 96.49 
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The obtained AC evaluation results show the capability of the proposed partition 

pattern tracking approach in isolating the AC type with very high success rates. The 

performance of the monitoring scheme in terms of AC severity evaluation may appear 

lower due to a typical underestimation of higher severity levels. It should be noted that 

the average SER for low severity ACs is 96%. The performance for more severe ACs 

declines because the feature points migrate first from self regions into non-self region that 

correspond to low severity regions, hence the initial severity underestimation. This 

feature point migration under ACs reflects the accumulation over time of AC effects on 

the system. 

9.2. Demonstration of Adaptive Control Mechanisms 

The adaptive mechanisms presented in Chapter 6 are tested using different 

baseline controllers under different configurations. The next sections describe the 

baseline controllers and the configuration used to test adaptive mechanism performance. 

9.2.1. Demonstration Using Linearized Model 

The CO2 absorption process unit of the IGCC-AGR process is selected as a 

subsystem for the primary case study. This unit is of most importance because it facilitates 

the capture of CO2 generated in the coal gasification unit of the IGCC process. A 2-input-

2-output sub-system is selected from the CO2 absorption process unit as a case study. It 

is observed that the flow rate and the temperature of the incoming recycled solvent stream 

greatly affect the CO2 capture from the CO2 absorber process unit. Therefore, the 

percentage CO2 present in the outlet stream from the CO2 absorber unit and the 

temperature of the recycled solvent stream feeding into the CO2 absorber unit are selected 

as desired output variables, while the flow rate of the recycled solvent stream coming in 

and the flow rate of the refrigerant required to cool down this stream are defined as the 

input or manipulated variables. Using data collected from the Dynsim® model of the AGR, 

a linearized 2-inputs/2-outputs/4-states model of this process was obtained by Mirlekar 

et al. [117], [118]. The state space representation of the linearized models are considered 

to be the controlled plant (see Figure 9-11). Two main verification scenarios (VS) have 

been considered:  

VS#1: Commanded trajectories defined as constant setpoints in terms of the 

percentage CO2 present in the outgoing stream from the absorber and the temperature of 

the recycled solvent stream going into the absorber were considered. The commanded 
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trajectories were tracked using: PID controller, PID augmented with ANN-based adaptive 

mechanism, and PID augmented with immunity-based mechanism. Note that two 

versions of the ANN-augmented control laws were considered. One uses as ANN inputs 

all the states of the plant, while the other uses outputs of the plant instead. The general 

block diagram of the testing configuration is illustrated in Figure 9-11. Testing under both 

normal and abnormal conditions were performed. The integral of the absolute values of 

the tracking error was used as a performance metric. U notation was used to indicate 

unstable responses. 

 

Figure 9-11. Adaptive Control Testing Using PID Controller and a Linearized Model 

The results are listed in Table 9-6. The baseline controller (i.e. PID) gains were 

optimized for nominal operation to ensure minimum tracking errors using the linearized 

model of the plant. Therefore, the performance of the baseline controller under normal 

condition is very good, as expected. The PID controller was then augmented with the 

adaptive elements and tested at normal conditions. The adaptive elements are expected 

to enhance or at least maintain the baseline controller performance under normal 

conditions. The results show that the combination of the baseline controller with all of the 

adaptive elements provided very good performance under nominal conditions. 

The performance of the stand-alone baseline controller was then assessed under 

the occurrence of abnormal conditions. The abnormal conditions are simulated by the 

alteration of the non-zero elements of A and B matrices in the state space representation 

of the linearized model. The results confirm the expectation that the baseline controller 

features limited robustness and its performance degrades under abnormal conditions up 

to the point of losing stability. However, the adaptive augmentation, in all cases, increases 

robustness resulting in maintaining stability and improving tracking performance. It is 

worth mentioning that the immunity ACDIE may allow for a systematic selection for the 

best adaptive controller under different AC operations.  
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Table 9-6. Tracking Performance of PID and Different Adaptive Controllers  

System Condition 
System 
Modes 
(*10-3) 

Damp 
Ratio 

Nat. Freq. 
(*10-3) 

PID 
PID + 
ANN 

States 

PID + 
ANN 

Outputs 

PID + 
AIS 

Nominal 
{-0.7 ± i, 

-13.6, -0.6} 
{0.59, 
1 , 1 } 

{1.3, 
13.6, 0.6} 

143.68 33.08 84.45 15.80 

Actuator 
Failure 

B(1,1)*2 = = = 79.45 25.04 47.65 9.78 

B(1,1)/2 = = = 143.68 33.08 84.45 15.80 

B(2,1)*2 = = = 144.06 33.18 84.90 15.81 

B(2,1)/2 = = = 143.68 33.08 84.45 15.80 

Plant 
Failure 

A(1,1)*1.5 
{-17.9, 7.7 
-13.6,-0.6} 

{1, -1, 
1, -1} 

{17.9, 7.7, 
13.6, 0.6} 

U 33.76 650.84 674.79 

A(1,1)/1.5 
{2.2±9.4i, 

-13.6, -0.6} 
{-0.22 

1, 1} 
{9.7, 

13.6, 0.6} 
U 29.53 188.15 563.30 

A(1,2)*2 
{-0.7±16.7i, 
-13.6, -0.6} 

{0.05, 
1, 1} 

{16.7, 
13.6, 0.6} 

U 20.64 186.23 560.66 

A(1,2)/1.25 
{-8.1, 6.6, 

-13.6, -0.6} 
{1, -1, 
1, 1} 

{8.1, 6.6, 
13.6, 0.6} 

U 32.36 353.07 463.63 

A(2,1)*1.5 
{-0.7±11.8i, 
-13.6, -0.6} 

{0.06, 
1, 1} 

{11.9, 
13.6, 0.6} 

U 20.32 187.33 563.80 

A(2,1)/1.5 
{-10.3, 8.8, 
-13.6, -0.6} 

{1, -1, 
1, 1} 

{10.3, 8.8, 
13.6, 0.6} 

U 36.30 875.67 674.70 

A(2,2)*2 
{-7.1, 9.6, 

-13.6, -0.6} 
{1, -1, 
1, 1} 

{7.1, 9.6, 
13.6, 0.6} 

U 38.90 1.32e+3 664.55 

A(2,2)/3 
{-6.0±12.2i, 
-13.6, -0.6} 

{0.44, 
1, 1} 

{13.6, 
13.6, 0.6} 

U 15.18 157.79 473.10 

A(3,3)*1.5 
{-0.7±i, 

-30.4, 3.9} 
{0.6, 
1, -1} 

{1.3, 
30.4, 3.9} 

143.66 33.07 84.45 15.81 

A(3,3)/1.5 
{-0.7±i, 

-3.0±9.2i} 
{0.59, 
0.31} 

{1.3, 
9.7} 

143.71 33.08 84.46 15.81 

A(3,4)*3 
{-0.7±i, 

-7.1±22.0i} 
{0.60, 
0.31} 

{1.3, 
23.2} 

143.76 33.08 84.52 15.73 

A(3,4)/1.1 
{-0.7±i, 
-15.2, 1} 

{0.60, 
1, -1} 

{1.3, 
15.2, 1} 

U 33.15 85.95 17.38 

A(4,3)*1.5 
{-0.7±i, 

-7.1±9.5i} 
{0.60, 
0.60} 

{1.3, 
11.8} 

143.70 33.08 84.45 15.81 

A(4,3)/1.5 
{-0.7±i, 

-18.5, 4.3} 
{0.60, 
1, -1} 

{1.3, 
18.5, 4.3} 

143.67 33.08 84.45 15.80 

A(4,4)*1.1 
{-0.7±i, 

-14.4, 1.2} 
{0.60, 
1, -1} 

{1.3, 
14.4, 1.2} 

U 33.48 90.58 27.62 

 A(4,4)/1.5 
{-0.7±i, 

-8.8±3.9i} 
{0.60, 
0.91} 

{1.3, 
9.7} 

143.71 33.07 84.46 15.76 
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VS#2: Optimal commanded trajectories were obtained defined as variable 

setpoints in terms of the flow rate of the recycled solvent stream into the absorber and the 

flow rate of the refrigerant in the heat exchanger using a multi-agent-based algorithm that 

combines the ants’ rule of pursuit idea with optimal control concepts for the calculation 

of optimal trajectories of individual agents [117]. These optimal trajectories were tested 

open loop with no adaptive augmentation (Figure 9-12), with ANN-based augmentation 

(Figure 9-13 and Figure 9-14), and immunity-based augmentation (Figure 9-15). Note 

that two versions of the ANN-augmented control laws were considered again: using all 

the states of the plant as ANN inputs (Figure 9-13) and using outputs of the plant instead 

(Figure 9-14). Testing under both normal and abnormal conditions were performed.  

 

Figure 9-12. Optimal Trajectory Test with No Adaptive Augmentation 

 

Figure 9-13. Optimal Trajectory Test with ANN-Plant-State-based Augmentation 
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Figure 9-14. Optimal Trajectory Test with ANN-Plant Output-based Augmentation 

 

Figure 9-15. Optimal Trajectory Test with Immunity-based Augmentation 

The results for VS#2 are listed in Table 9-7. The integral of the absolute values of 

the tracking error was used as a performance metric. U notation was used to indicate 

unstable responses. The baseline controller now consists of the trajectory generated 

through the biomimetic approach. Since this commanded trajectory was optimized under 

nominal conditions using the linearized plant model, the performance is very good at 

nominal conditions, as expected. All adaptive mechanisms typically maintain or slightly 

improve this performance under nominal conditions. When abnormal conditions are 

considered (simulated in a similar manner as for VS#1), the performance of the baseline 

controller output degrades. The adaptive augmentation, in all cases considered, is capable 

of increasing system robustness and maintains system stability with good tracking 

performance. 
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Table 9-7. Tracking Performance of Biomimetic and Different Adaptive Controllers 

System Condition 
System 
Modes 
(*10-3) 

Damp 
Ratio 

Nat. Freq. 
(*10-3) 

Traj 
Traj + 
ANN 

States 

Traj + 
ANN 

Outputs 

Traj + 
AIS 

Nominal 
{-0.7 ± i, 

-13.6, -0.6} 
{0.59, 
1 , 1 } 

{1.3, 
13.6, 0.6} 

198.58 44.37 446.32 10.39 

Actuator 
Failure 

B(1,1)*2 = = = 1.0*104 42.07 658.86 11.30 

B(1,1)/2 = = = 3.4*103 50.24 312.58 18.19 

B(2,1)*2 = = = 1.9*103 44.70 484.37 10.40 

B(2,1)/2 = = = 1.9*103 43.84 413.18 10.36 

Plant 
Failure 

A(1,1)*1.5 
{-17.9, 7.7 
-13.6,-0.6} 

{1, -1, 
1, -1} 

{17.9, 7.7, 
13.6, 0.6} 

U 39.60 146.01 536.83 

A(1,1)/1.5 
{2.2±9.4i, 

-13.6, -0.6} 
{-0.22 

1, 1} 
{9.7, 

13.6, 0.6} 
U 41.44 169.86 410.70 

A(1,2)*2 
{-0.7±16.7i, 
-13.6, -0.6} 

{0.05, 
1, 1} 

{16.7, 
13.6, 0.6} 

7.7*103 29.30 100.25 410.60 

A(1,2)/1.25 
{-8.1, 6.6, 

-13.6, -0.6} 
{1, -1, 
1, 1} 

{8.1, 6.6, 
13.6, 0.6} 

U 39.14 139.74 368.86 

A(2,1)*1.5 
{-0.7±11.8i, 
-13.6, -0.6} 

{0.06, 
1, 1} 

{11.9, 
13.6, 0.6} 

7.7*103 27.96 77.41 412.26 

A(2,1)/1.5 
{-10.3, 8.8, 
-13.6, -0.6} 

{1, -1, 
1, 1} 

{10.3, 8.8, 
13.6, 0.6} 

U 43.05 197.54 537.81 

A(2,2)*2 
{-7.1, 9.6, 

-13.6, -0.6} 
{1, -1, 
1, 1} 

{7.1, 9.6, 
13.6, 0.6} 

U 96.58 830.90 5.6*103 

A(2,2)/3 
{-6.0±12.2i, 
-13.6, -0.6} 

{0.44, 
1, 1} 

{13.6, 
13.6, 0.6} 

7.7*103 21.85 48.74 346.87 

A(3,3)*1.5 
{-0.7±i, 

-30.4, 3.9} 
{0.6, 
1, -1} 

{1.3, 
30.4, 3.9} 

1.9*103 44.37 444.74 10.39 

A(3,3)/1.5 
{-0.7±i, 

-3.0±9.2i} 
{0.59, 
0.31} 

{1.3, 
9.7} 

1.9*103 44.39 448.24 10.39 

A(3,4)*3 
{-0.7±i, 

-7.1±22.0i} 
{0.60, 
0.31} 

{1.3, 
23.2} 

1.9*103 44.35 446.75 10.38 

A(3,4)/1.1 
{-0.7±i, 
-15.2, 1} 

{0.60, 
1, -1} 

{1.3, 
15.2, 1} 

1.9*103 44.38 447.27 10.62 

A(4,3)*1.5 
{-0.7±i, 

-7.1±9.5i} 
{0.60, 
0.60} 

{1.3, 
11.8} 

1.9*103 44.39 448.65 10.39 

A(4,3)/1.5 
{-0.7±i, 

-18.5, 4.3} 
{0.60, 
1, -1} 

{1.3, 
18.5, 4.3} 

1.9*103 44.37 444.72 10.39 

A(4,4)*1.1 
{-0.7±i, 

-14.4, 1.2} 
{0.60, 
1, -1} 

{1.3, 
14.4, 1.2} 

1.9*103 44.39 447.47 10.78 

 A(4,4)/1.5 
{-0.7±i, 

-8.8±3.9i} 
{0.60, 
0.91} 

{1.3, 
9.7} 

1.9*103 44.36 446.03 10.36 
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9.2.2. Demonstration Using Non-Linear Model 

In this demonstration, the non-linear model of the subsystem described in 

section 9.2.1 was used. The baseline controller consists of a biologically inspired optimal 

control strategy (BIOCS) [117]. The BIOCS controller considered here mimics the ants’ 

rule of pursuit in combination with optimal and agent based control concepts. The BIOCS 

is implemented to solve an optimal control problem associated with a multiple input 

multiple output system. The optimal control problem involves minimizing an objective 

function, while satisfying all constraint functions. In this case, the objective function 

consists of minimizing the error between multiple outputs and their desired setpoints. 

The commanded trajectories considered were defined as constant setpoints in 

terms of the percentage CO2 present in the outgoing stream from the absorber and the 

temperature of the recycled solvent stream going into the absorber were considered. The 

commanded trajectories were tracked using: BIOCS alone and the BIOCS augmented with 

ANN-based adaptive mechanism, as presented in Figure 9-16 and Figure 9-17. 

 

Figure 9-16. Standalone BIOCS Configuration 

 

Figure 9-17. BIOCS and Adaptive Control Configuration 

The objective of the BIOCS was to simultaneously track the CO2 percentage in the 

outgoing stream and temperature of the recycled solvent. The BIOCS utilizes a linearized 

model to solve the optimal control objective and constraint functions. Therefore, a 

mismatch is expected to be present when using the non-linear model as a plant. The 

standalone BIOCS tracking results for the CO2 percentage in the outgoing stream and the 

temperature of the recycled solvent are presented in Figure 9-18 and Figure 9-19, 

respectively.  
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Figure 9-18. CO2 Percentage in Outgoing Stream Tracking Using BIOCS 

 

Figure 9-19. Temperature of Recycled Solvent Tracking Using BIOCS 

The BIOCS is then augmented with ANN adaptive controller as shown in 

Figure 9-17. The results of the ANN augmented BIOCS are presented in Figure 9-20 and 

Figure 9-21. It can be noted that the augmented controller has a better tracking error 

profile than the standalone version. The CO2 percentage in the outgoing stream reaches 

the setpoint with zero tracking error. The temperature of the recycled solvent has a 

smaller tracking error with smaller variation. This confirms the analysis carried out using 

the linearized model. More tests are being carried out to further confirm the trend and 

will be reported in future publications. 
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Figure 9-20. CO2 Percentage in Outgoing Stream Tracking Using BIOCS and ANN 

 

Figure 9-21. Temperature of Recycled Solvent Tracking Using BIOCS and ANN 

9.2.3. Demonstration Using the Hyper System 

The fuel cell/gas turbine hybrid system considered in this demonstration is a 

promising technology for the future power generation. The hybrid system is characterized 

by a high theoretical efficiency as compared to traditional stand-alone turbine or fuel cells 

configurations. The hybrid system has strongly coupled components, which can lead to 

control difficulties. Traditional control methods could not provide adequate performance 

for setpoint tracking and disturbance rejection for such coupled systems [119]. 

The system presented here is a linear model for the Hyper project [120], [121] 

managed and run by the National Energy Technology Laboratory (NETL). The project 

aims at evaluating the dynamic coupling between different fuel cell/gas turbine 
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configurations. The configuration of the hybrid system used in this study is presented in 

Figure 9-22. 

 

Figure 9-22. Fuel Cells/Gas Turbine Hyper System [119] 

The Hyper system uses a combination of software and hardware in order to 

evaluate the dynamics of a fully integrated system. An online simulation model for the 

solid oxide fuel cell system, gasifier, and thermal energy storage is coupled to an actual 

turbine and heat exchangers. The use of the online simulation in the loop facilitates the 

evaluation of dynamic performance during transient operation, avoiding the destruction 

of expensive fuel cell equipment. Interested readers are referred to references [121] and 

[119] for more information about the Hyper project. 

A linear multivariable model for the hybrid system was experimentally developed 

[122]. The model is only representative of the hardware components of the hybrid cycle 

presented in Figure 9-22. Specifically, only the gas turbine recuperated cycle including 

the big size volumes of the hybrid configuration was considered during the generation of 

this model. The modeling process yielded eight transfer functions: turbine speed/electric 

load (TS/EL), cathode airflow/electric load (CA/EL), turbine speed/cold-air bypass 

(TS/CAB), cathode airflow/cold-air bypass (CA/CAB), turbine speed/fuel valve (TS/FV), 
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cathode airflow/fuel valve (CA/FV), turbine speed/hot-air bypass (TS/HAB), and cathode 

airflow/hot-air bypass (CA/HAB). All these linear transfer functions (as shown in Eq. 

(9-1)) are first order with delay, with the three defining parameters as listed in Table 9-8. 

 𝑇𝐹(𝑠) =  
𝑔

𝑠 −  𝜆
 𝑒𝜏𝑠 (9-1) 

Table 9-8. Hybrid System Linear Transfer Functions Parameters 

Transfer Function Gain (g) Pole (𝝀) Delay (𝝉) 

TS/EL -0.25 -0.225 0.1 

CA/EL -0.22 -0.69 0.56 

TS/CAB -0.065 -0.125 0.5 

CA/CAB -1.43 -1.43 0.7 

TS/FV 0.17 -0.125 0.1 

CA/FV 0.06 -0.16 0.56 

TS/HAB 0.03 -0.46 0 

CA/HAB -1.23 -1.43 0.64 

A multi-input multi-output state-space controller was previously designed and 

experimentally tested with promising results [119]. The objective of the controller is to 

maintain the turbine speed (TS) and the fuel cell cathode airflow (CA) through 

manipulating the cold air bypass valve and the electric load as presented in Figure 9-23. 

 

Figure 9-23. Hyper System Baseline Control Laws 

In the baseline controller, cross-channel interaction (K23 and K14) between 

actuators was included to support reducing the hardware coupling effects. The controller 

was specifically designed to provide desirable performance at nominal conditions around 
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a fairly linear region of operation. During the experimental implementation, some 

inconsistency was noticed between simulation results and the hardware performance 

attributed primarily to modeling uncertainties. It appears that the interaction between 

system components produces conflicting dynamics for pressure and thermal transients 

that are difficult to capture using linear system identification techniques. This provided 

one of the main reasons for investigating the potential of adaptive biomimetic 

mechanisms for increasing the robustness and the adaptability of baseline control laws. 

Both NN-based and AIS-based adaptive control mechanisms presented in Chapter 

6 were implemented and tested using the linear hybrid plant models presented Table 9-8. 

The internal parameters of the adaptive mechanisms were determined heuristically to 

ensure that baseline performance at nominal conditions is preserved. The testing 

scenarios include command tracking and disturbance rejection. The commanded inputs 

are steps of turbine speed and cathode airflow. The disturbances are steps in fuel valve 

and hot air valve opening. 

For all 4 testing scenarios, normal and abnormal conditions were considered. The 

operation point was considered for a turbine speed (TS) of 40,500 rpm, cathode airflow 

(CA) of 1 kg/s, with the fuel valve (FV) half-open, and the hot air valve at 40%. The input 

tracking scenarios consisted of separate step inputs in TS and CA of 500 rpm and 0.2 

kg/s, respectively, between t = 50 sec and t = 170 sec. The disturbance rejection tests 

involved 4% perturbation of FV or HAB valve opening, starting at t = 50 sec for 120 sec. 

Plant alterations consist of variations of the 3 parameters of the 8 transfer functions. 

Table 9-9 presents the range of parameters under normal and abnormal conditions. 

Table 9-9. Parameter Range for Abnormal Condition Simulation 

Transfer Function Parameter Range 

Delay  [𝜏, 45𝜏] 

Gain [0.0125𝑔, 8𝑔] 

Time Constant [0.125𝜏𝑐 , 80𝜏𝑐] 

For the evaluation and comparison of alternative control laws, three individual 

metrics 𝓂 have been considered: percentage overshoot or maximum tracking error (𝑒𝑚), 

mean of the absolute value of tracking errors (𝑒), and integral of the absolute value of the 

tracking error (𝑒). For each metric, individual normalized performance indices were 

defined as: 
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 ℮𝓂 = max[(1 − 
𝓂

𝓂𝑐𝑜
) , 0] ,𝓂 =  𝑒𝑚, 𝑒, 𝑜𝑟 𝑒 (9-2) 

where 𝓂𝑐𝑜 is a pre-defined cut-off value. A composite performance vector (𝓅) was defined 

as the weighted average of the individual performance indices. If the individual 

performance vector is defined as: 

 ℮ = [℮𝑒𝑚
℮𝑒 ℮𝑒] (9-3) 

and the weight vector is expressed as: 

 𝒲 = [𝓌𝑒𝑚
𝓌𝑒 𝓌𝑒]𝑇 (9-4) 

the performance of the controller 𝓅 is defined as: 

 𝓅 =  𝒲.℮ (9-5) 

Equal weights were assigned to all three metrics in this study. The performance index was 

calculated separately for TS and CA errors. A total of 824 cases were simulated equally 

distributed among TS tracking, CA tracking, FV disturbance rejection, and HAB 

disturbance rejection. The abnormal condition cases include both individual transfer 

function parameter alteration as well as multiple alterations. 

The results show that the ANN-based adaptive mechanism improves performance 

at nominal conditions and exhibits superior robustness as compared to the baseline in 

85% of cases, on both TS and CA channels. The AIS-based adaptive mechanism exhibits 

similar performance under nominal conditions and outperforms the baseline in 88% of 

the cases on the CA channel. Example performance evaluations of the three sets of control 

laws under nominal conditions are presented in Table 9-10. 

Table 9-10. Composite Performance Index (PI) Under Nominal Conditions 

Test Case 
Baseline Baseline + ANN Baseline + AIS 

TS 
Channel 

CA 
Channel 

TS 
Channel 

CA 
Channel 

TS 
Channel 

CA 
Channel 

TS Tracking 0.84 0.82 0.86 0.85 0.77 0.87 

CA Tracking 0.79 0.21 0.80 0.23 0.72 0.48 

FV Disturbance 0.24 0.68 0.25 0.74 0.24 0.70 

HAB Disturbance 0.91 0.77 0.92 0.80 0.91 0.88 

The responses to TS and CA step inputs of the three sets of control laws are 

presented in Figure 9-24 and Figure 9-25, respectively. The FV and HAB disturbance 
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rejection capabilities are illustrated in Figure 9-26 and Figure 9-27, respectively. 

Figure 9-28 presents an example of system response to TS step under increased delay 

conditions. 

 

Figure 9-24. Response to TS Step Input Under Nominal Conditions 

 

Figure 9-25. Response to CA Step Input Under Nominal Conditions 



Chapter 9  Al-Sinbol 

Page | 119 

 

Figure 9-26. TS Response to FV Disturbance Under Nominal Conditions 

 

Figure 9-27. CA Response to HAB Disturbance Under Nominal Conditions 

 

Figure 9-28. Response to TS Step Input Under Abnormal Conditions 
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9.3. Demonstration of Optimization Scheme 

The genetic algorithms described in Chapter 7 were implemented in Matlab® and 

interfaced with Dynsim® and used to optimize the PID gains of a controller that maintains 

solvent temperature by manipulating the refrigerant flowrate to the solvent chillers. This 

is a highly nonlinear problem with large delay due to the large solvent inventory of the 

system while the rate of change of the refrigeration duty is constrained due to the vapor-

compression system. As the solvent becomes colder, more CO2 is absorbed in the process. 

As CO2 is released in the flash vessels, solvent temperature keeps decreasing thus leading 

to a delayed secondary effect. The process gain of the refrigeration system also changes 

strongly depending on the operating conditions. Thus oscillatory response is typically 

observed using non optimal PID control. A five component fitness function was used 

including rise time (the time required for the process controlled variable to go from 10% 

to 90% of the desired steady state set point), the maximum of the absolute value of the 

tracking error calculated after rise time, the mean of the tracking error, standard 

deviation, and the integral of the absolute value of the tracking error. The overall 

performance index was computed as the average of these individual performance metrics. 

The resolution selected for the three gains was 500, which resulted in a search 

space of 1.25x108 potential solutions. The population consisted of 20 individuals. For the 

standard algorithm, one point cross-over rate with 30% probability and mutation rate of 

60% probability were used. Standard roulette wheel selection approach was adopted for 

new generation selection. With the stand-alone genetic algorithm, the performance index 

of the best solution reached 0.94 after 200 generations. The total number of solution 

explored was 5000.  

Within the immunity based enhanced genetic algorithm, the clonal loop was added 

to the standard algorithm. The loop was performed every generation of 3 times per 

generation with 6 clones for each individual. The best clone from each individual was then 

kept to keep the number of individual per generation. Since the clonal loop enhance 

exploitation, the genetic algorithm cross over rate upped to 70% probability and mutation 

rate was lowered to 10% probability. Standard roulette wheel selection approach was still 

used for the new generation selection. The performance index of the best solution reached 

0.96 after 75 generations. The total number of solution explored was 3575.  
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The variation of the overall performance index of the best individual and the 

average of the population for the standard genetic algorithm is presented in Figure 9-29, 

and for the clonal loop enhanced algorithm is presented in Figure 9-30. All results 

represent averages over three different runs. In all runs, the trends were consistent with 

the averages and the differences between best solutions were not significant. While a 

complete statistical investigation is still needed, these results from multiple runs provide 

promise regarding the consistency and relevance of the approach. 

 

Figure 9-29. Standard Genetic Algorithm - Variation of Performance Index of the Best 

Individual and the Population Average 

 

Figure 9-30. Evolutionary Optimization Algorithm with Clonal Loop - Performance 

Index of the Best Individual and the Population Average 
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The immunity based enhanced genetic algorithm with clonal loop was tested with 

added vaccination operator. The operator consists of imposing some gain limits that were 

expected to induce higher performance index values. As expected, the vaccination 

operator boosted the performance index of the best individual in the initial population 

from 0.69 to 0.775. The variation of the overall performance index of the best individual 

and the average of the population for the enhanced algorithm with vaccination presented 

in Figure 9-31. 

 

Figure 9-31. Evolutionary Optimization Algorithm with Vaccination - Performance 

Index of the Best Individual and the Population Average 

The immunity based enhanced genetic algorithm with clonal loop was also tested 

with added seeding operator. The seeding operator consisted of introducing the default 

PID gains of the targeted controller as well as gains from similar PID controllers from 

other sections of the plant to form up to 50% of the initial population. The variation of the 

overall performance index of the best individual and the average of the population for the 

enhanced algorithm with seeding is presented in Figure 9-32. All results represent 

averages over three different runs. It is worth mentioning that all other immunity 

enhanced parameters are similar as before. Figure 9-33 presents the variation of the 

solvent temperature using the best set of gains. It should be noted that in this example 

the best individual from all runs was used. 
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Figure 9-32. Evolutionary Optimization Algorithm with Seeding - Performance Index of 

the Best Individual and the Population Average 

 

Figure 9-33. Variation of the Solvent Temperature Using the Best Solution 
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Chapter 10. Developed Tools 

This chapter presents a set of tools that have been developed as part of this 

research effort. These tools were used to implement, test, and modify the proposed 

algorithms. The tools are designed to provide the future researchers with the means to 

further test, use, and modify the proposed algorithms with interactive graphical user 

interfaces and well-documented codes. 

10.1. The Self/Non-self Visualization Tool 

Visualizing the 2-dimensional sub-selves or projections is very helpful in analyzing 

how well the selves are generated using the PUA. A simple interactive tool shown in 

Figure 10-1 was developed to analyze all the generated selves by visualizing the 2-D sub-

selves of the AIS for the AGR unit. Test data obtained from simulation within Dynsim® 

can be projected on these sub-selves to analyze and validate them. 

 

Figure 10-1. AIS Selves and Non – Selves 2-D Projections Viewer 

The tool has the following main components as illustrated in Figure 10-1: 

1. The main toolbar: contains the options to save, print, zoom, pan, and view 

the grid 

2. The data directory: contains a push button to navigate to the data location 

and a text box to display the current directory. 
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3. The projection type radio buttons: are used to switch between squares 

projections type and hexagons projection type. 

4. The subsystem menu: contains the list of 22 subsystems of the AGR unit.  

5. The horizontal axis menu: each subsystem contains a certain number of 

selected features associated with that subsystem. Use this menu to select the feature that 

will be plotted on the horizontal axis. 

6. The horizontal axis menu: each subsystem contains a certain number of 

selected features associated with that subsystem. Use this menu to select the feature that 

will be plotted on the horizontal axis. 

7. Display test data checkbox: once this checkbox is selected, the selected data 

set will be displayed on the plot.  

8. The test case data menu: the data is organized into four sets: 

 Nominal (Validation): This set of data was collected under nominal condition 
and used to validate the created projections.  

 Nominal (Development Data): This set of data was collected under nominal 
conditions and used to build the self-clusters. 

 Failure (System Malfunction): This set of data was collected in the presence of 
several system malfunctions. 

 Abnormal Condition (Constrained Violation): This set of data was collected for 
the purpose of self building; however, they violate one or more nominal 
conditions constraints.  

9. The test number menu: in each data group, there are many tests. Each test 

is numbered or named differently, the content of this menu is dynamically changed based 

on the test case selection.  

10. The data limit: (not operational)  

11. The plot legend. 

12. The primary horizontal axis: this axis displays the horizontal selected 

feature. The default limits are zero and one. Use the pan feature to drag the figure and see 

data beyond those limits. 

13. The secondary horizontal axis: this axis displays the actual scale for the 

selected horizontal feature along with its units.  
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14. The primary vertical axis: this axis displays the vertical selected feature. The 

default limits are zero and one. Use the pan feature to drag the figure and see data beyond 

those limits. 

15. The secondary horizontal axis: this axis displays the actual scale for the 

selected horizontal feature along with its units. 

The tool uses a Microsoft excel file to populate the GUI menus, axis labels, feature 

minimum and maximum values, and feature units, which make the tool easy to modified 

and used for future research without modifying the tool Matlab® code. 

10.2. The ACDIE Interface 

WVU ACDIE is an interactive simulation environment that was developed to 

integrate the ACDIE algorithms coded in Matlab® and the AGR unit model in Dynsim®. 

The purpose of this environment is to provide a user-friendly interface to test and 

demonstrate the effectiveness of the ACDIE scheme presented in Chapter 5. This 

improves the generality and flexibility of the environment by easily allowing for tuning of 

the DC algorithm parameters and allowing the selection of various AC types and 

severities.  

The GUI is automatically launched once the AGR simulation model is loaded in 

Dynsim®. Once launched, Matlab® opens the interface for the configuration of DC 

mechanism parameters, which is presented in Figure 10-2. It contains the parameters 

settings for the algorithm. This graphical user interface (GUI) is designed to accept only 

valid parameter settings. 

 

Figure 10-2. GUI for Parameter Setting of the DC Mechanism 
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After pressing OK, two message boxes will appear (Figure 10-3 and Figure 10-4) to 

remind the user to use the “Load Full” (LF) command and to load a set of “Initial 

Conditions” (IC) after selecting a simulation scenario. Those steps are necessary to apply 

the selected abnormal conditions and to start the simulation from an initial conditions 

known to belong to the self.  

 

Figure 10-3. Load Full Command Request Message Box 

 

Figure 10-4. Load Initial Conditions Request Message Box 

After pressing “OK” to both messages, an interactive GUI will appear as showed in 

Figure 10-5. The GUI allows the user to select the AC type and severity using two drop-

down menus. All the AC and severities listed in Table 8-3 were implemented and tested 

using this interface.  

 

Figure 10-5. ACDIE Interactive GUI 
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The following steps are necessary to run a scenario using the ACDIE: 

1. Use the “ACs menu” to select an AC to simulate 

2. Use the “Severity” menu to select the severity of the simulated AC 

3. Use load full function from Dynsim® software 

4. Load an IC (Note: the IC data should be included in the self)  

5. Run the simulation 

Once the simulation is ran, the GUI displays the artificial DC algorithm outcomes 

for all detection, identification, and evaluation phases as follows:  

1. The “System Status” indicates the algorithm detection outcome for the 

mode of operation. It displays “Normal Operation” or “Abnormal Operation”. 

2. The “Detection Time” text box displays 𝐷𝑇 

3. The “Detection Rate” text box displays 𝐷𝑅 

4. The “False Alarm Rate” text box displays 𝐹𝐴 

5. The “Subsystem Under AC” displays the name of the subsystem primarily 

affected by the detected AC. 

6. The “Identification Rate” text box displays 𝐼𝑅 

7. The “AC Type” displays the type of the detected AC 

8. The “Type Evaluation Rate” displays 𝑇𝐸𝑅 

9. The “AC Severity” displays the estimated AC severity level 

10. The “Severity Evaluation Rate” displays 𝑆𝐸𝑅 

10.3. The Evolutionary Optimization Environment Interface 

WVU evolutionary optimization environment is an interactive simulation 

environment that was developed to integrate the optimization algorithms built in 

Matlab® with the AGR unit model in Dynsim®. The purpose of this environment is to 

provide a user-friendly interface between the simulation environment and the 

optimization algorithms. This improves the generality and flexibility of the environment 

as well as the GA by easily allowing for tuning of gains of controllers with various 

structures in response to different scenarios. The general optimization scenario and 
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specific algorithms and parameters are setup by the user through a series of Matlab® GUI 

menus.  

Once the optimization-enabled AGR Dynsim® model is loaded, it launches 

Matlab® and a series of Matlab® GUI. The GUI allow the user to select the optimization 

problem and set the selected optimization parameters as follows: 

The first GUI (Figure 10-6) contains two menus. The first menu contains the 

options to select the optimization problem type, control system parameters vs. control 

system setpoints optimization. The second menu contains the options to select the 

algorithm type, standard GA vs. immunity enhanced algorithm.  

 

Figure 10-6. GUI for Control System Optimization Problem and Algorithm Selection 

The second GUI (Figure 10-7) is for setting the initial population and convergence 

parameters. The “Initial population options” drop-down menu allows for new population 

generation or loading an existence population data file. The codes verify the loaded data 

and only allow compatible data to be loaded. The rest of GUI is self-explanatory. 

If the immunity enhanced algorithm option is selected, the next GUI will serve for 

the clonal loop parameters setting (Figure 10-8). The GUI allows the selection of the 

clonal loop mutation algorithm, the number of the clones per individual, and the hyper-

mutation rate. The GUI also allows for the setting of the iteration based convergence 

algorithm.  

The next GUI (Figure 10-9) is for the selection algorithm, mutation rate, and cross 

over rate setting. The GUI also contains the setting to alter the simulation time of each 

individual for fitness function evolution.  
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Figure 10-7. GUI for GA Initial Population and Convergence Parameter Setting 

 

Figure 10-8. GUI for Setup of Parameter of Clonal Selection Loop 

The final GUI (Figure 10-10) is for display purposes. It allows the user to select 

what Matlab® displays during running the algorithm as well as the plot displayed after 

one or more convergence criteria have been met. 
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Figure 10-9. GUI for Setup of GA Selection Method and Alteration Parameters 

 

Figure 10-10. GUI for Output Display 
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Chapter 11. Conclusion and Future Work 

The dissertation presented a comprehensive monitoring and control methodology 

for advanced power plant using artificial intelligence techniques. The methodology is 

comprehensive in the sense that it offers the framework for addressing all system 

components, all AC (including known and unknown ones), and all major components of 

the system monitoring and control process (AC detection, identification, evaluation, and 

accommodation). 

The proposed methodology is highly integrated because one single package relying 

on few shared concepts and mechanisms can solve all components of the system 

monitoring and control process. Conceptually, the methodology is data-driven, which 

makes it easy to develop, implement, and operate. Unlike alternative approaches, it does 

not require a sophisticated mathematical apparatus prone to difficult development and 

computational and numerical issues. The methodology provides robustness and 

adaptability because it allows for relatively simple updating, extension, and re-structuring 

of the self/non-self throughout the life cycle of the system. 

Within this research, the PUA was formulated as an alternative approach for 

self/non-self generation within the AIS paradigm. Generating the self with the proposed 

approach is less computationally expensive than clustering for the same number of 

features and with similar resolution. The generation of the non-self is implicit and the 

computationally intensive effort through clustering algorithms is no longer necessary. 

The PUA allows for higher – dimensional self projection use, which results in a minimal 

overlapping between self and non-self and therefore better detection results. The use of 

higher dimensional self projects also facilitated the introduction of training-free AC 

identification using the subsystem pattern approach.  

A modified artificial DC algorithm has been formulated and successfully tested 

within the AIS paradigm to address the specific characteristics of power plant health 

monitoring using the HMS strategy. The modified algorithm is capable of addressing 

specific issues related to the application of AIS to modern power plants, including non-

uniform dimensionality of the self/non-self projections, extended hidden non-self regions 

within lower order projections, and unbalanced distribution of projections that capture 

the occurrence of ACs.  
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Two different adaptive mechanisms have been presented in this study, namely the 

ANN-based and AIS-based mechanisms. These novel biomimetic adaptive approaches 

have been implemented to augment baseline power plant control laws for increased 

robustness under ACs. Testing with different baseline control laws and different plant 

models has demonstrated the promising capabilities of the proposed adaptive 

mechanisms. 

Several immunity-inspired mechanisms have been proposed to enhance the 

performance of standard genetic algorithms. The immunity based mechanisms show the 

capability to accelerate the search and fine-tune high performance solutions. An 

interactive framework that interfaces Matlab® and Dynsim® to provide a powerful 

computational environment for power plant control optimization using evolutionary 

techniques has also been developed.  

All the proposed algorithms were successfully illustrated using the AGR unit high 

fidelity model built in Dynsim®. The implementation results of the proposed DC 

mechanism for ACDIE show the high capability of the approach in in detecting, 

identifying, and evaluating all AC considered while minimizing the false alarms rate to 

0% for all tested nominal conditions.  

In considering future research for the monitoring and control framework 

improvements and extension, some recommendations are proposed as following: 

 Using the PUA for self representation, only hyper-rectangles and hyper-hexagons 

were considered. The use of other shapes are still possible and it should be considered.  

 The current framework provides excellent ACDIE outcomes; however, it would be 

interesting to investigate the possibility of building and using an AIS capable of 

predicting AC occurrences. 

 The current DC algorithm is only used for ACDIE, but the algorithm has the 

potential to address the AC accommodation as well. 

 The analysis presented in this research was carried out using simulation tests. The 

results obtained are encouraging to continue this research effort by implementing the 

proposed methodology on an actual system. 
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