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Abstract

Large-scale transcriptomics data studies revolutionised the fields of systems biology and

medicine, allowing to generate deeper mechanistic insights into biological pathways and molec-

ular functions. However, conventional bulk RNA-sequencing results in the analysis of an av-

eraged signal of many input cells, which are homogenised during the experimental procedure.

Hence, those insights represent only a coarse-grained picture, potentially missing informa-

tion from rare or unidentified cell types. Allowing for an unprecedented level of resolution,

single-cell transcriptomics may help to identify and characterise new cell types, unravel de-

velopmental trajectories, and facilitate inference of cell type-specific networks. Besides all

these tempting promises, there is one main limitation that currently hampers many down-

stream tasks: single-cell RNA-sequencing data is characterised by a high degree of sparsity.

Due to this limitation, no reliable network inference tools allowed to disentangle the hidden

information in the single-cell data.

Single-cell correlation networks likely hold previously masked information and could allow

inferring new insights into cell type-specific networks. To harness the potential of single-cell

transcriptomics data, this dissertation sought to evaluate the influence of data dropout on

network inference and how this might be alleviated. However, two premisses must be met

to fulfil the promise of cell type-specific networks: (I) cell type annotation and (II) reliable

network inference. Since any experimentally generated scRNA-seq data is associated with an

unknown degree of dropout, a benchmarking framework was set up using a synthetic gold

data set, which was subsequently affected with different defined degrees of dropout. Aiming to

desparsify the dropout-afflicted data, the influence of various imputations tools on the network

structure was further evaluated. The results highlighted that for moderate dropout levels,

a deep count autoencoder (DCA) was able to outperform the other tools and the unimputed

data. To fulfil the premiss of cell type annotation, the impact of data imputation on cell-cell

correlations was investigated using a human retina organoid data set. The results highlighted
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that no imputation tool intervened with cell cluster annotation.

Based on the encouraging results of the benchmarking analysis, a window of opportunity was

identified, which allowed for meaningful network inference from imputed single-cell RNA-seq

data. Therefore, the inference of cell type-specific networks subsequent to DCA-imputation

was evaluated in a human retina organoid data set. To understand the differences and com-

monalities of cell type-specific networks, those were analysed for cones and rods, two closely

related photoreceptor cell types of the retina. Comparing the importance of marker genes for

rods and cones between their respective cell type-specific networks exhibited that these genes

were of high importance, i.e. had hub-gene-like properties in one module of the corresponding

network but were of less importance in the opposing network. Furthermore, it was analysed

how many hub genes in general preserved their status across cell type-specific networks and

whether they associate with similar or diverging sub-networks. While a set of preserved hub

genes was identified, a few were linked to completely different network structures. One can-

didate was EIF4EBP1, a eukaryotic translation initiation factor binding protein, which is

associated with a retinal pathology called age-related macular degeneration (AMD). These

results suggest that given very defined prerequisites, data imputation via DCA can indeed

facilitate cell type-specific network inference, delivering promising biological insights.

Referring back to AMD, a major cause for the loss of central vision in patients older than

65, neither the defined mechanisms of pathogenesis nor treatment options are at hand. How-

ever, light can be shed on this disease through the employment of organoid model systems

since they resemble the in vivo organ composition while reducing its complexity and ethical

concerns. Therefore, a recently developed human retina organoid system (HRO) was investi-

gated using the single-cell toolbox to evaluate whether it provides a useful base to study the

defined effects on the onset and progression of AMD in the future. In particular, different

workflows for a robust and in-depth annotation of cell types were used, including literature-

based and transfer learning approaches. These allowed to state that the organoid system may

reproduce hallmarks of a more central retina, which is an important determinant of AMD

pathogenesis. Also, using trajectory analysis, it could be detected that the organoids in part

reproduce major developmental hallmarks of the retina, but that different HRO samples ex-

hibited developmental differences that point at different degrees of maturation. Altogether,

this analysis allowed to deeply characterise a human retinal organoid system, which revealed

in vivo-like outcomes and features as pinpointing discrepancies. These results could be used

to refine culture conditions during the organoid differentiation to optimise its utility as a

disease model.
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In summary, this dissertation describes a workflow that, in contrast to the current state of

the art in the literature enables the inference of cell type-specific gene regulatory networks.

The thesis illustrated that such networks indeed differ even between closely related cells.

Thus, single-cell transcriptomics can yield unprecedented insights into so far not understood

cell regulatory principles, particularly rare cell types that are so far hardly reflected in bulk-

derived RNA-seq data.
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Chapter 1

Biological Introduction

1.1 Introduction into Transcriptomics

This chapter will provide and present the fundamental knowledge and theories used for this

research. Starting with the essential processes in gene expression and its regulation, which

are quantified and analysed in transcriptomic studies, the development to the most recent

technological breakthrough of single-cell analysis will be described. Spanning a range of

promising analysis tools and methods, finally, the theory of gene co-regulation networks will

be introduced. Apart from technical and theoretical aspects, the disease pattern of age-related

macular degeneration will be characterized. Since the defined pathophysiological cascades

leading to a loss of central vision remain unknown, single-cell transcriptomic approaches

might shed a light on this.

The thirst for knowledge has driven human discoveries since the earliest times. Not only

Gregor Johann Mendel has proven that the field of biology represents no exception to this

phenomenon. While the monk Mendel focussed on the inheritance of phenotypic features in

the midst of the 19th century[Miko 2008], it was not until a whole century later that scientists

were able to extract genetic information from the cell’s nucleus [Dairawan & Shetty 2020].

With the help of radiation, the deoxyribonucleic acid (DNA) was firstly ’photographed’ in 1952

by Rosalind Franklin [Franklin & Gosling 1953]. A final deciphering of the double-stranded

DNA was achieved in 1953 by Francis Crick and James Watson [Watson & Crick 1953],

which was awarded the Nobel Prize of medicine in 1962. Alongside, another genetic sequence

was discovered and characterized, which was the single-stranded messenger ribonucleic acid

(RNA)[Cobb 2015]. In 1902, scientists already discussed that proteins consist of a sequence

of amino acids that are connected via peptide bonds [Pevsner 2015].
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1. Biological Introduction

However, the clear connection between DNA, RNA, and proteins was not discussed and stated

until 1970 the central dogma of molecular biology was published by Crick [1970]. It describes

the flow of genetic information from DNA over RNA to finally protein (see Figure 1.1).

As the first step of protein-biosynthesis, the cell transcribes certain DNA sequences into RNA

molecules. Generally, two different classes of RNA’s are present: messenger RNA (mRNA)

and non-coding RNA (ncRNA). As the name implies, ncRNA’s do not contain information

about coding sequences, nevertheless, they fulfil important roles in splicing, gene expression

regulation and translation [Mattick & Makunin 2006]. Common subtypes of the ncRNA

family are for example micro RNA (miRNA), small nuclear RNA (snRNA), ribosomal RNA

(rRNA), and transfer RNA (tRNA). Both later types, tRNA and rRNA are crucial players

during the translation process [Cooper 2000]. Whereby two types of rRNA represent one

ribosome, tRNAs contain different triples of so-called anticodons. Depending on the anticodon

sequence, one amino acid is loaded per tRNA.

The mRNA is used as an intermediate product to transport coding information from the DNA

to the ribosomes. After a set of post-transcriptional modifications including polyadenylation

at the 3’ end, the mRNA serves as an input for translation.

During this process, complementary mRNA-tRNA triplets (called codons and anti-codons)

are matched, and the respective amino acids are attached via peptide bonds to finally assemble

the protein.

This well-oiled machinery is subjected to alterations in distinct developmental conditions,

tissues, or cell types, meaning that certain sets or proteins are translated at different amounts

and frequencies. However, this cascade can also be disturbed by external stimuli such as

environmental changes or exposure to toxins. The quantitative differences of this alteration

can be approximated via the amount of mRNA at a specific time point. Depending on the

relative change of the amount of mRNA of one gene, the transcription of this gene is either

up- or downregulated in comparison to normal conditions.

1.1.1 Basis of transcriptomics

Based on the aforementioned biological processes, a whole discipline in biology has evolved,

focussing on the analysis of these transcriptomic adaptions. All transcripts from one condition

or experiment, called the transcriptome, are quantified and analysed to gain a complete view.

This information can help to uncover complex developmental processes as well as disease

progressions.

2



1.1. Introduction into Transcriptomics

Figure 1.1. Central Dogma of Molecular Biology, taken from Fu et al.[Fu et al. 2014].

As stated by Francis Crick in 1970, the central dogma of molecular biology describes the

flow of genetic information from DNA over RNA to proteins. Once reaching the protein

level, the information cannot be re-translated into RNA.

The strength of a transcriptomic analysis was first demonstrated in the 1970s. There, the

full transcriptome of an MS2 bacteriophage was sequenced by Walter Fiers and his colleagues

[Fiers et al. 1976]. However, since RNA is single-stranded and a variety of RNases are present,

it is delicate to handle. With the discovery of reverse transcription∗, unstable RNA could

be converted to more stable complementary DNA, called cDNA [Perevozchikov et al. 1973].

Based on this rationale, different experimental set-ups were established over the past decades

to facilitate a broad, quick, and cost-efficient transcriptome analysis. Generally, two major

approaches are currently utilised being either hybridization- or sequence-based.

∗The principle of reverse transcription describes the transformation from the single-stranded RNA molecule

back to a double-stranded DNA molecule. Retroviruses use this approach to hijack the host cell’s transcription

machinery[JM & H 2016].
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1. Biological Introduction

Hybridization-based techniques aim at quantifying mRNA by incubating labelled cDNA on

microarrays. This approach has many advantages such as the high throughput, cost efficiency,

and the ability to customize the arrays. However, the inferred results were biased to the

limited ’search-space’ and sensitivity [Shendure 2008]. Next to this, high noise background

levels due to cross-hybridization represent another limitation.

Instead of looking for a predefined, limited set of known genes, sequence-based methods in-

fer the cDNA sequence directly. Initially, the sequencing was done via the cost-intensive

and low throughput Sanger chemistry [Sanger et al. 1977, Wang et al. 2009]. But it was

not until the development of high throughput DNA sequencing techniques, for example by

Illumina or 454, and the availability of appropriate computational methods that RNA se-

quencing (RNA-seq) became more frequently used [Ozsolak & Milos 2011]. Being able to

quantify RNA transcripts in an un-targeted and high throughput manner fueled the compre-

hensive and systematic analysis of gene expression patterns through, e.g., the identification

of single nucleotide polymorphisms (SNPs), the detection of unknown splice variants, or the

characterization of whole non-model organism transcriptomes. While short-read sequencing

techniques (such as Illuminas NovaSeq, HiSeq, NextSeq, and MiSeq instruments) generally

generate sequences of up to 600 bases, long-read sequencing techniques reach more than 10

kb [Amarasinghe et al. 2020]. Depending on the sequencing platform, different quantities

of reads can be generated per sequencing experiment. Illumina, for example, can currently

reach between 4 million and 1.1 billion reads per run∗, depending on the sequencing device

and budget.

1.1.2 Workflow and challenges of next-generation sequencing

In brief, the workflow of a next-generation sequencing experiment looks as follows: the source

material is a mixture of different RNA molecules that are extracted from a population of

lyzed cells. To increase the sensitivity of the RNA-seq experiments, mRNA molecules can

be enriched by selecting their polyadenylated tails [Lowe et al. 2017]. To allow for DNA

sequencing in a high throughput manner, fragile mRNA molecules are translated into more

stable cDNA in a reverse transcription reaction. Usually, larger cDNA strands are fragmented

into smaller ones by DNase digestion or sonication. Finally, these cDNA fragments will be

ligated to sequencing adaptor sequences which, for example, contain unique barcodes allowing

to discriminate different samples, before being amplified by PCR [Parekh et al. 2016].

Before sequencing the cDNA libraries, the input must be submitted to several ’manipulation’

∗https://emea.illumina.com/systems/sequencing-platforms.html
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1.1. Introduction into Transcriptomics

steps. Whereas smaller RNA molecules, such as microRNAs (miRNAs), Piwi-interacting

RNAs (piRNAs) and short interfering RNAs (siRNAs) can be directly sequenced, other larger

RNA strands must be fragmented [Wang et al. 2009]. Performing this step at either the RNA

or cDNA level can introduce small to stronger bias because cDNA fragmentation strongly

influences the identification of the transcript’s 3’ end. Another problem arises from the

tendency to over-amplify short cDNA sequences prior to sequencing, which can be mistaken

for highly abundant RNA.

Apart from the experimental difficulties, some challenges are faced in the bioinformatic con-

text. Since generally larger data sets are generated during RNA sequencing, it requires

efficient ways to access, retrieve, analyze, and store the data. To sort these numerous RNA

sequences, they must be either mapped to a reference sequence or can be assembled de novo.

Both tasks are especially challenging for very small reads. Other problems can arise from se-

quencing errors or repetitive sequences. However, those problems can be avoided or reduced

by using deeper coverage and better reference sequences, respectively. Defining the optimal

coverage for a sequencing experiment is a frequent problem and demands to specify a trade-

off between the insights that want to be gained and the financial costs it will raise. Being

able to detect lowly-expressed genes at a stable level or to analyse larger and more complex

transcriptomes generally requires a higher coverage, and hence result in higher sequencing

costs.

While high throughput RNA sequencing principally allowed for a deeper look into the tran-

scriptional dynamics under certain conditions, it though faces certain limitations on projecting

these results onto fine-grained contexts, like highly heterogeneous tissues or disease-related

analysis. As explained before, to be able to extract a sufficient amount of RNA, a population

of cells has to be used as an input. But this bears the risk that solely the signal from a mixed

population can be inferred, and hence rare cell types or even mutated cells are eventually

overlooked or flattened out. In general, this approach is referred to as bulk RNA-seq.

These limitations can nowadays be overcome with the possibility to extract and analyse the

transcriptional information from individual cells.

5



1. Biological Introduction

1.2 The Emergence of the Single-Cell World

With the emergence of the single-cell sequencing methodology, the previously described limi-

tations can be overcome. Instead of using a mixture of cells, solely the genetic information of

a single cell is isolated and analysed. By this experimental setup, cell(type) specific biological

insights can be gained. While being initially limited in cell throughput, the emergence of

droplet-based approaches opened the door for extensive single-cell characterization of tran-

scriptomes. Through clustering these cells by their gene expression pattern, groups of similar

cells can be identified and annotated to a specific cell type, using for example gene-of-interest

(GOI) lists or automatic pipelines [Lieberman et al. 2018, Tan & Cahan 2019]. Due to the

increased resolution, rare as well as new cell types can be identified and characterized [Plasss-

chaert et al. 2018, Keren-Shaul et al. 2017]. An extensive explanation of the methods used in

this dissertation will be provided in Chapter two.

Though single-cell transcriptomics offers solutions to several previously identified issues in

bulk RNA-seq, there are also several challenges and limitations within the method itself.

Similar to bulk RNA sequencing, large data sets are produced during the sequencing pro-

cedure, however, the dimensionality on the cell level is massively increased. Since some

high-throughput platforms allow the analysis of hundreds of thousands of cells, huge data

sets are being generated, and thus raising the bars for an efficient and optimized processing,

storage, and analysis even further. Though the resolution on cell level is increased in single-

cell RNA sequencing (scRNA-seq), only a very limited biological source material is available

which results in large amounts of zero entries in the expression matrix. Generally, two types

of zero values are encountered in scRNA-seq datasets [Lähnemann et al. 2020]. They can ei-

ther represent a truly absent count or be introduced methodologically where a transcript was

expressed but not measured. This second type of zero, referred to as sparsity, can therefore

arise from two different scenarios: either systematically, such as mRNA degradation during

cell lysis, or by chance where a barely expressed transcript is measured in one cell but not

in the other though present in both [Kharchenko et al. 2014]. The latter phenomenon is

also denoted as ’dropout’. Therefore, single-cell RNA sequencing (scRNA-seq) data is big

but sparse by definition. In addition, single-cell data owns higher degrees of variability and

technical noise compared to bulk RNA-seq data [Chen & Mar 2018].

Another major challenge in data analysis lies in the recency of this research field. Apart from

missing ’gold standard’ workflows and extensive method development, certain domains such

as gene-correlation network inference are only about to become investigated [Luecken & Theis

2019].
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1.2. The Emergence of the Single-Cell World

1.2.1 Experimental workflow

The central part in data generation represents single-cell isolation and (sufficient) mRNA

extraction. Therefore, many efforts in method development were dedicated to these aspects.

While relying on manual single-cell isolation and generation steps, only a magnitude of ten

to a hundred cells were analysable. As discussed earlier, despite the low throughput, the

data quality was generally high and less affected by dropout. Labelling individual cells and

subsequent isolation of mRNA, promoted the development of other (closed) systems [Aldridge

& Teichmann 2020]. An overview of the different methodologies can be seen in Figure 1.2.

Figure 1.2. Overview of single-cell preparation methods, taken from Aldridge & Teichmann

[2020].

While single-cells were initially extracted via manual workflows, the upcoming high

throughput systems, such as fluidic circuits or robotics, increased the throughput dras-

tically. The most recent boost in throughput was initialised by the employment of nan-

odroplets, as they are used in 10X single-cell sequencing [Zheng et al. 2017]. Other ap-

proaches such as picowells and in situ barcoding do not focus on throughput but quality

of the expression data (less sparsity). The latter and most recent approach allows adding

spatial information to the expression data.

It was not until the employment of integrated fluidic circuits and liquid handling robotics that

the throughput on cell level was increased to several thousand. Systems such as 10X [Zheng

et al. 2017] or Seq-Well [Gierahn et al. 2017] rely on nanodroplets or picowells, respectively,

increasing the throughput further. Very recent approaches such as in situ barcoding or spatial

transcriptomic methods allow analysing even more cells or retrieve additional information

about the spatial location, next to the transcriptome, respectively.
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1. Biological Introduction

Over the last decade, improving data generation methods and techniques facilitated the gen-

eration of enormous datasets, including thousands of individual cells. However, data dropout

and the sheer size highlight major deficits on the computational side.

1.2.2 Single-cell tools and applications

Pipelines. single-cell transcriptomics data offers a novel level of resolution and hence pro-

moting the development of appropriate analysis tools. By the end of 2020, 23 different tool

categories were listed on the scrna-tools∗ website, ranging from mainly data visualization

and cell clustering to imputation and simulation. Combining more than one tool or task, com-

plete data analysis pipelines, such as Seurat [Butler et al. 2018], Scater [McCarthy et al.

2017], and scanpy [Wolf et al. 2018], were developed to enable an end-to-end solution from

data preprocessing to analysis.

The first analysis pipeline, Scateris implemented in R and was originally published in 2017.

Both, Seurat and scanpy, were developed and released in 2018 while building onto the

Scaterframework. Whereby Seurat is also implemented in R, storing the data as a Seurat-

object, scanpy is up to now the only pipeline implemented in python. This mainly allows for

a speed-up in data loading, processing and visualization [Luecken & Theis 2019]. Common

steps which can be found across platforms are for example quality control, expression data nor-

malization, identification of highly variable genes, data scaling, dimensionality reduction and

an initial data visualization. For the last two steps, usually, a principal component analysis

(PCA) is conducted and the cells are either embedded in a t-distributed Stochastic Neigh-

bor Embedding (t-SNE) or a Uniform Manifold Approximation and Projection (UMAP).

Whereby both tools reliably capture the structures of the data, UMAP runs faster which is

especially useful for growing single-cell data sets [Mcinnes et al. 2020]. Though comparably

younger than t-SNE, UMAP proofed its suitability over the past years.

In the following section, an excerpt of common applications and tools in the field of single-cell

transcriptomics is introduced.

Cell clustering and annotation. To analyse the single-cell data, usually, the cells are pro-

jected into a lower dimensional space using UMAP or t-SNE. The following step, cell clusters

can be defined based on the unique gene expression pattern of the cells. Using a priori

knowledge, e.g., GOI lists or marker genes, the cell clusters can be annotated to specific cell

types [Kim et al. 2019, Cowan et al. 2020]. Since this approach involves a series of subjective,

∗https://www.scrna-tools.org/
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unreproducible decisions, other tools try to utilise the results from previously annotated, ref-

erence data sets. These transfer learning tools, try to learn patterns from a reference data

set and use these to classify the test data. SingleR[Aran et al. 2019] for example allows using

bulk information as a reference dataset. Another transfer learning tool used in this thesis is

CaSTLe which uses a random forest-based classification algorithm [Lieberman et al. 2018].

Pseudotemporal ordering. Another goal is to resolve developmental pathways, which can

elucidate when and where progenitor cells commit to defined, mature cell types [Wolf et al.

2019, Herring et al. 2018]. Since cells are disrupted during the sequencing procedure, direct

tracking over a specific time period is impossible. However, various snapshots are collected,

which differ slightly. Inferring these differences allows ordering the sequenced cells along a

pseudotime axis ranging from the earliest time point to the most mature captured in the

experiment.

One task which is related to this field is the inference and quantification of RNA velocity

[La Manno et al. 2018, Bergen et al. 2020]. Briefly, using the dynamics between spliced and

unspliced transcripts allows calculating the transition probability between two cells.

To allow for meaningful visualization of these cell developmental trajectories, many efforts

were undertaken in implementing novel tools. One of them is the partition-based graph

abstraction algorithm called PAGA, which provides a graph-like map of the single-cell data

manifold [Wolf et al. 2019]. Without prior information about the developmental tree∗, PAGA

calculates a coarse-grained single-cell embedding with connections between the cell types.

Incorporating the information from the RNA velocity analysis, also the directionality of these

connections can be stated.

Imputations. The huge fraction of data sparsity also affects the aforementioned applications

on single-cell data. One potential direction to improve the efficacy of single-cell analysis

tools, however, is to leverage the data sparsity through imputation approaches intending

to ’interpolate’ the previously missed expression. In the past years, many single-cell specific

imputation tools have already been published [Huang et al. 2018, Gong et al. 2018, Peng et al.

2019a] and their evaluation showed that denoising sparse simulated data can, for example,

help to reobtain original cell clusters and time-course patterns [Eraslan et al. 2019]. These

tools aim at inferring the zero or NA entries by using different mathematical assumptions or

paradigms, such as repeated clustering or the use of autoencoder networks.

∗The developmental tree refers to the general transitions of cell types. Based on previous experiments, this

layout is often known and can be used as input for trajectory inference.
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1. Biological Introduction

Because of the rapid increase of published imputation methods, several review articles [Lähnemann

et al. 2020, Chen et al. 2019] and benchmarking analysis [Zhang & Zhang 2018, Patruno et al.

2020] also investigated specific fields within the downstream analysis realm, such as differential

gene expression [Hou et al. 2020].

While Hou et al. focussed on the influence of imputations on differential gene expression,

unsupervised clustering and pseudotime trajectory analysis, their research highlighted that

results of imputation approaches should be regarded with caution, since the majority did not

outperform the unimputed data regarding downstream tasks. Similar results were stated by

Chen and Mar for network inference tools on sparse scRNA-seq data [Chen et al. 2019].
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1.3 From Counts to Co-regulation - Gene Networks

Using potent methods such as (single) RNA sequencing, which allows quantifying transcripts

in a high throughput manner across different conditions, developmental stages and genetic

backgrounds, can help in deciphering complex gene regulation systems. Since genes do not act

independently, it is more useful to identify larger gene regulatory networks. Pinpointing these

orchestrated expression programs or responses is a major discipline in transcriptomics. These

networks might help in deepening the understanding of gene function, biological processes

and complex disease mechanisms.

1.3.1 Gene correlation networks

One way to proxy this co-regulation is via the concept of gene expression correlation. A

schematic overview of the different steps in gene network construction is provided in Figure

1.3. Here, the main tasks include network reconstruction, gene module identification and

the assessment of biological functions or tasks. This includes for example the functional

enrichment of biological functions per module, differential network analysis and finding hub

genes. The gathered information could be used to pinpoint potential disease genes with a

module. In this dissertation, the Weighted Gene Correlation Network Analysis tool (WGCNA)

was used which will be explained in detail in Section 2.4.1 [Langfelder & Horvath 2008].

Information-theoretic models also rely on the pairwise correlation coefficients. However, they

use a generalization which is termed mutual information (MI) [Steuer et al. 2002, Bansal

et al. 2007]. The MI measures the statistical dependency between two variables. Some

representative tools using information theory are for example ARACNE [Margolin et al. 2006],

RelNet [Butte & Kohane 2000] and CLR [Faith et al. 2007]

These system-level assignments of genes via correlation networks can be useful, since they

can, for example, aid in predicting the function of unknown genes or RNA sequences.

1.3.2 Gene networks in single-cell transcriptomics

Network inference approaches, such as WGCNA already proofed their worth in various RNA-

sequencing studies [Yang et al. 2014, Kogelman et al. 2014, Lee et al. 2011]. With the ability to

infer gene expression data from single cells, also cell type-specific gene correlation networks can

be inferred, as indicated in Figure 1.4. Early WGCNA-based approaches also allowed new insights
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1. Biological Introduction

Figure 1.3. Overview of individual tasks during gene network inference, taken from van Dam

et al. [2018].

Using the gene co-expression data, pairwise gene correlation values are calculated. Trans-

forming these values into interconnectedness measures, a (weighted) network can be ex-

tracted and groups of densely connected genes, called modules, can be identified. Various

downstream tasks can be applied to this higher level assignment, such as hub gene detection

and gene set enrichment.

into genetic programs of low throughput single-cell transcriptomic approaches [Luo et al. 2015,

Xue et al. 2013]. With the emergence of higher throughput methods, these bulk-derived,

non-single-cell specific tools showed only mediocre results [Chen & Mar 2018]. Subsequent

developments of highly specific single-cell tools, however, were also not able to transform

the unique characteristics of this data into the desired outcome [Chen & Mar 2018]. More

recent work benchmarked single-cell specific tools using curated reference models [Pratapa

et al. 2020, Nguyen et al. 2020]. Including 12 algorithms as well as three different sources

of reference data sets, BEELINE, for example, offers an evaluation framework to facilitate the

development of novel tools [Pratapa et al. 2020]. While testing conditions were improved,

network inference remains a challenging problem. Although algorithms such as SCENIC or

CellOracle [Aibar et al. 2017, Kamimoto et al. 2020] have been proven to be meaningful,

they calculate the network inference on a restricted search space by subsetting the number of

investigated genes, and thus still neglect an overall and unbiased picture.
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Figure 1.4. Differences in resolution from bulk and single-cell RNA-seq data on the level of

gene networks.

Illustrating the input of sequencing experiments as various fruits (left) would result in a

homogenized, mixed source material for bulk RNA-seq data, much like a fruit smoothie

(top). Inferred networks would therefore reflect an average of all the signals detected in

the mixture of, potentially different, cells. Single-cell RNA-seq on the other hand would

preserve the information of the individual fruits, hence different cell types, and would

allow for cell type-specific gene correlation networks (bottom). Thus, similarities, as well

as differences in networks between cell types, could be carved out that would otherwise be

hidden or covered in the bulk RNA-seq derived network.

1.4 Example use case: Study of age-related macular degener-

ation using an organoid system

In the previous chapters, a variety of single-cell transcriptomic applications such as cell an-

notation and trajectory inference were introduced. Here, these potential tools were applied

in a real-world scenario, more specifically a novel human retinal organoid. The following

section will provide background information about the disease pattern of age-related macular

degeneration (AMD) as well as the history of model systems.
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1.4.1 Characteristics of AMD

Being able to receive and process visual stimuli in light and colour is one central feature

of the human eye. While visual impairments (near and farsightedness) are becoming more

common, the same trend can be stated for complete loss of vision. Apart from the formation

of cataracts or diabetic retinopathy, AMD is one major cause for the loss of central vision [Al-

Zamil & Yassin 2017]. Currently, AMD affects 10% of people older than sixty-five years, and

25% older than seventy-five. It is estimated that by 2040, more than 288 million people will

be affected by AMD [Wong et al. 2014]. Apart from age, other major risk factors are family

history and other genetic factors [Al-Zamil & Yassin 2017, Klein et al. 2004]. Caucasians,

Hispanics, and Asians are known to have the highest risk for developing AMD, while African

Americans are the least affected. Minor risk factors are lifestyle, diet, and nutrition.

Figure 1.5. Composition of the human retina, Figure taken from Kwon & Freeman [2020].

(A) A schematic overview of the cross-section of a human eye (left hand side) and the

different cell types from inner to the outer layer (right hand side). While the retinal

ganglion cells are the first ones receiving the light, it is the most inner photoreceptors which

can process its information. (B) The maintenance of those photoreceptors is operated

by the retinal pigment epithelium through continuous removal of old discs. These discs

contain phototoxically damaged opsins.

1.4.2 Composition of the human retina

The human retina is a complex system allowing for the reception of light stimuli, which are

processed into colourful pictures of our surroundings [Al-Zamil & Yassin 2017]. As depicted in
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Figure 1.5(A), many cell types are represented in the retina. While the actual light stimulus

is processed in the photoreceptors in the outer layer, the retinal neuron cells (horizontal,

amacrine and bipolar cells) are adjacent to them. In total, two different photoreceptor cell

types are represented, denoted as rods and cones, that can detect changes in light intensity

[Molday & Moritz 2015]. Whereby cones are responsible for the perception of fine-grained

details and colour, rods process information about brightness. This is due to the different

opsins contained in the photoreceptors. Whereas rods rely on rhodopsins, cones contain cone

opsins [Terakita 2005]. Both subtypes show repeated compartments, so-called discs, which

contains the cells metabolic machinery as well as the previously mentioned opsins [Besharse &

Pfenninger 1980]. The photoreceptors are embedded in the retinal pigment epithelium (RPE),

which is a non-dividing cell type. Its main function is the maintenance of the photoreceptor

cells, which is mainly facilitated by continuous disc removal since opsins are susceptible to

phototoxic damage [Kwon & Freeman 2020] (see Figure 1.5(B)).

1.4.3 Disease progression of AMD

With increasing age, an accumulation of focal, yellow, extracellular, and polymorphous mate-

rial occurs, which is called drusen. Under normal conditions, these cells would be eliminated

by the choriocapillaris. The choriocapillaris is a tissue positioned under the retina near

Bruch’s membrane. Bruch’s membrane is located close to the RPE and serves as a molecu-

lar sieve [Booij et al. 2010]. However, a dysfunction leads to changes in the permeability of

Bruch’s membrane. The presence of drusen describes a hallmark of AMD along with hypo-

and hyper-pigmentation. It is furthermore associated with a thickening of collagenous layers

in Bruch’s membrane, degeneration of elastin, and calcification. With more accumulation of

drusen, the RPE is stepwise lost, which ultimately leads to photoreceptor death and the loss

of central vision. This progression is considered a dry AMD. A visual representation is shown

in Figure 1.6(b). Oppositely, a wet AMD involves upregulation of VEGF, the vascular en-

dothelial growth factor, which promotes the abnormal growth of choroidal vessels underneath

the RPE (see Figure 1.6(c)). Upon blood vessels bursting, disc-like scars are formed, leading

to a permanent loss of vision.

Though the disease progression of AMD is roughly known, the general and individual causes

and as well as pathophysiology remains masked. Moreover, due to the human-specific char-

acteristics of AMD, animal models cannot be employed. Using a sufficiently complex yet

interpretable system, 3D cell culture models may shed a light on the mechanisms occurring

in AMD. In this approach, human cells can be used, providing a more organ-like scenario to
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Figure 1.6. Differences of a healthy eye and different AMD subtypes, taken from Acharya

et al. [2016].

(a) In a healthy eye, the macula can be identified as a dark spot in the middle of the eye,

with a slight shift to the optical disk. (b) In dry AMD, the formation of drusen, here

shown as bright yellow spots on top of the macula, resulting in a loss of central vision

due to a photoreceptor loss. (c) Though sharing the same disease outcome, wet AMD

is characterised by abnormal choroidal neovascularization and subsequent vessel bursting.

These haemorrhages ultimately lead to a loss of vision.

increase the expressiveness and scalability of the results. Alternatively, induced pluripotent

stem cells (iPSC)[Ye et al. 2013] can be used to allow organ development from scratch. Due

to the organ-like structure, the resulting cell collection is called an organoid.

In the past, these organoids proved to be useful, for example, as tubular organoids were used

to model kidney disease [Cruz et al. 2017]. With the emergence of scRNA-seq, a fine-grained

picture of these organoids systems can now be drawn [S et al. 2019].

Retinal organoids are thought to help to decipher these questions and, in the recent past,

many efforts have already been undertaken to generate explorable and meaningful organoid

systems [Kim et al. 2019, Cowan et al. 2020, Völkner et al. 2021]. Despite these compelling

prospects, it currently remains unclear whether these organoids resemble an in vivo organoid

in cell type composition and development and how much variance can be expected between

organoids.
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1.5 The Research Gap

Summing up the individual introductory chapters, the general prospects of transcriptomic

studies were introduced. The inference of gene regulatory networks from conventional bulk

RNA-seq approaches has led to important biological insights, for example, in recurrence-

associated genes of colon cancer [Zhai et al. 2017] or gene architectures associated with

Alzheimer’s disease [Acquaah-Mensah et al. 2015]. With the breakthrough of single-cell ge-

nomics, it should now be feasible to analyse an even higher resolution level and infer cell

type-specific gene correlation networks. However, limitations due to size and high data spar-

sity are currently still hampering this task. To alleviate the latter, data imputation methods

aim to replace missing entries utilising various modelling strategies.

Therefore, two main questions arise: (I) How do increasing levels of sparsity impact gene

correlation network structures, and (II) can data imputation of the sparse data aid in network

inference? To furthermore be able to infer cell type-specific gene correlation networks, two

premisses must be met such as i) the identification of cell types and (ii) the possibility to infer

gene networks.

These questions are tackled in chapter three, using a benchmarking framework, including six

different sparsity levels as well as six published imputation tools. As a proof-of-concept, the

gained insights were used on an experimentally derived data set. Chapter four evaluated the

possibility to derive meaningful cell type-specific gene correlation networks.

Besides network inference, various other tools can be used to generate valuable insights into

single-cell data sets. Such knowledge could be used, for example, to describe organoid sys-

tems and compare them to the corresponding in vivo tissues. This dissertation investigated

if a human retina organoid can be characterised via the single-cell toolbox. Ultimately, these

organoid systems could aid in deciphering the pathophysiology of age-related macular de-

generation, the major cause for loss of central vision. Here, the main questions concern the

stability of cell annotation results, the similarity of two different organoid samples, and the

correspondence to the in vivo organ development.

Chapter five will highlight the workflow as well as the results, aiming to answer the previously

mentioned aspects.
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Chapter 2

Methodology

From the previous sections, an introduction to the underlying theories and applications was

provided, which will become eminent during this dissertation. While giving a rather general

overview of state-of-the-art methods and tools, the research questions and working assump-

tions were postulated. In the following section, the employed algorithms and their imple-

mentations will be explained in more detail to provide a basis for the upcoming chapters.

Following the order of the introductory sections, single cell-specific tools and methods, such

as data imputation and pseudotime inference, will be explained at the beginning. The sec-

ond part will then deal with network inference and different measures to compare network

structures.

2.1 Single-cell data Imputation

As demonstrated in Section 1.2.2, the single-cell toolbox allows for a diverse set of appli-

cations. Though the potentially high resolution within the data, high amounts of sparsity

limit, for example, the inference of (cell type-specific) gene correlation networks. Therefore,

the question arises if data imputation could alleviate the sparsity. To perform a systematic

evaluation, well-established and representative tools were used in accordance with the four

classes defined by Lähnemann et al. [2020]: (1) deep-learning-based (DCA), (2) smoothing-

based (DrImpute), (3) model-based (SAVER), and (4) low-rank matrix-based (ENHANCE)∗. Fur-

thermore, an additional class (5) of tools that utilise gene networks (scNPF) was created. In

the following, six different, single cell-specific imputation tools will be introduced, and their

underlying mathematical formulation discussed.

∗https://github.com/yanailab/enhance-R

19



2. Methodology

DCA . Since denoising autoencoders (AE) inherently suit the problem of separating true signal

from noise, it is not surprising that they are frequently used to impute sparse scRNA-seq data.

Here, the deep count autoencoder (DCA) is introduced [Eraslan et al. 2019]. While using the

expression matrix as an input (x), a zero-inflated negative binomial (ZINB) distribution is

used to infer the dropout (π), dispersion (Θ) and the mean (µ) (see equation 2.1). Generally,

the autoencoder is based on an encoder, a bottleneck and a decoding part. The initial encoder

part condenses the input data via reduction of the number of nodes over multiple connected

layers, aiming to extract the relevant information from the noisy data. After the bottleneck

layer, which represents the narrowest part in the neural network, the decoder part is used to

reobtain the original dimensions of the input layer.

ZINB(x;π, µ,Θ) = πδ(x) + (1− µ) ∗NB(x;µ,Θ) (2.1)

DISC . Though imputation via neural networks is generally an unsupervised learning task,

another tool called DISC combines a deep learning approach with semi-supervised learning

(SSL) [He et al. 2020]. Model parameters are trained by combining an AE, a recurrent neural

network (RNN) and the SSL approach. The AE and the RNN are thereby used to extract a

low dimensional latent representation of the cell expression profiles. This compressed matrix

zt represents the basis for predicting the cell expression profile, the predictor matrix (yt).

Simultaneously, the latent space is reconstructed by the decoder layer of the AE to derive the

reconstructor (ŷt). The imputation result is inferred via a weighted average of the predictor

yt. Likewise, a weighted average of the reconstructor ŷt was calculated. Both were used to

support the SSL model, which learns the parameter specifications itself in DISC. Being able

to learn from positive- as well as zero-count genes, DISC can search for the best expression

structures to preserve the latent data manifold produced by the AE initially.

DrImpute . Apart from neural networks, other methods can be used to infer dropout entries.

DrImpute for example, uses the result from a repeated clustering C1, ..., CH and averaging

[Gong et al. 2018]. As depicted in Equation 2.2, the mean value of the (i,j)th component from

expression matrix X can be approached per clustering result Ch. Using the log-transformed

expression data, a similarity matrix among the cells is calculated using Pearson and Spearman

correlations. Extracting the first 5% of the principal components of this similarity matrix, k-

means clustering is performed using between ten and fifteen clusters. In total, twelve different

clustering results build the basis for the final imputation step, the average of the individual

clustering results.
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E(ij) = mean(E(xij |C)) =
1

H

H∑
h=1

E(xij |Ch) (2.2)

ENHANCE . Another imputation tool that relies on PCA is ENHANCE [Wagner et al. 2019].

Using the PCA on variance-stabilised data, the authors hope to separate true biological signals

from noise. To reduce the noise level in the source data prior to PCA, a k-nearest neighbour

aggregation step is included. The rationale behind this is that technical noise is more likely to

be included in higher PCs. Generally, ENHANCE can be divided into three phases. In the first

phase, the number of significant PCs is determined by calculating the background noise level

from a simulated data set owning the same dimension of the analysed data. After that, the

second phase aims in generating an aggregated expression matrix. Thereby, the subsequent

PCA steps are less biased towards highly expressed genes. Lastly, a PCA is applied to the

aggregated expression matrix from the previous step, and the signal from the first PCs is

extracted. To match the signal intensity of the input data, the expression profiles are scaled.

SAVER . Using an empirical Bayes-like approach, SAVER models the dropped out expression

values via a Poisson LASSO regression of other, predictive genes [Huang et al. 2018]. As the

first step, SAVER uses the count data and models the gene g in cell c (Ygc) using a Poisson-

gamma mixture. To estimate the posterior gamma distribution for λgc given the observed

counts Ygc, the authors adopted an empirical Bayes-like approach to estimate the prior mean

(µgc) and variance (νgc). The number of predictive genes used to infer the missing data is

reduced employing a LASSO regression. LASSO adds a penalty parameter λ to the likelihood,

controlling for predictors that have nonzero coefficients. The variance is approached assuming

a constant noise model, called dispersion (φg). Additional parameters which were used in the

noise model are a constant shape parameter α, a constant Fano factor φFgc, and a constant

rate parameter βgc. After approaching µ̂gc and ν̂gc, the posterior distribution can be stated as

seen in equation 2.3. So finally, the posterior mean (see equation 2.4) is used as the recovered,

denoised expression values.

λgc|Ygc, α̂gc, β̂gc ∼ Gamma(Ygc + α̂gc, sc + β̂gc) (2.3)

λ̂gc =
Ygc + α̂gc

sc + β̂gc
=

sc

sc + β̂gc

Ygc
sc

+
β̂gc

sc + β̂gc
µ̂gc (2.4)
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scNPF . Lastly, scNPF imputes missing entries based on a network propagation process using

a random walk with restart (RWR) [Ye et al. 2019]. Using the RWR on a gene-interaction

network allows inferring the importance of a gene-based on connectivity measures. This

tool can be run using two different modes: using a priori knowledge or extracting networks

directly from the data. While many external databases contain experimentally proven gene-

interaction data, they can be used as an input for the RWR. Alternatively, the weighted gene

correlation network analysis tool (WGCNA) is used to calculate gene networks.

In order to smooth the expression measurement across the network, an RWR is used as

described in equation 2.5. The restart vector P0 records the initial expression levels, and

W represents the degree-normalised adjacency matrix of the network. r describes the trade-

off between prior knowledge and network diffusion. This propagation function is run until

convergence is achieved.

Pt+1 = rP0 + (1− r) ∗ PtW (2.5)

2.2 Low-dimensional embedding and community detection.

In the past years, many efforts were undertaken in generating comprehensive analysis pipelines

to read-in, clean up, and visualise single-cell transcriptomics data. Though mainly three

different preprocessing pipelines exist, the general aim is shared across them, which is the

generation of a low-dimension data embedding. Based on this embedding, groups of similar

cell expression profiles should be identified, which can help to assign a biological function to

them.

In this dissertation, a principal components analysis (PCA) on the most variable genes was

used as a fundament to calculate the neighbourhood graphs. A PCA is an unsupervised

dimensionality reduction technique that aims at capturing most of the variance in the data

by linear combinations. Based on a fixed set of principal components, the neighbourhood is

calculated and embedded in a two-dimensional space. In the python-based pipeline scanpy,

the Uniform Manifold Approximation and Projection (UMAP) embedding is highly recom-

mended [Wolf et al. 2018]. The UMAP algorithm is based on three assumptions: (I) The

data is uniformly distributed on the Riemannian manifold, (II) the Riemannian metric is

locally constant, and (III) the manifold is locally connected ∗. Generally, these Riemannian

manifolds can be considered as extensions of the euclidean space [Vaugon 2006].

Alternatively, also t-Distributed Stochastic Neighbor Embedding (t-SNE) can be used. t-

SNE is again an unsupervised data reduction technique that operates non-linearly [Van Der

∗https://umap-learn.readthedocs.io/en/latest/
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Maaten & Hinton 2008]. In contrast to PCA, t-SNE mainly conserves smaller pairwise dis-

tances between cells. Briefly, the t-SNE aims at defining an embedding for the data in a

high- and low-dimensional space, while maximising their similarity. This is achieved via the

minimization of the Kullback-Liebler divergence (KL) cost function.

Based on this low-dimensional embedding, cell clusters can be inferred, grouping cells with

similar expression patterns, which might represent cells of one biological cell type. In this

dissertation, the Louvain algorithm was used [Blondel et al. 2008]. This algorithm operates

in two different phases. Generally, it aims at optimising the modularity, by maximising the

differences between the detected number of edges in a community versus the expected. While

in the first step, the Louvain algorithm locally moves the nodes, it aggregates them in the

second step. This procedure is repeated until the quality measure cannot be improved any

further.

2.3 Cell annotation via transfer learning

Based on the low-dimensional cell clustering, biologically relevant cell types could be anno-

tated. However, it is also possible to re-use the cell annotation from other reference data sets,

extract their features and classify new data. In this dissertation, the transfer learning tool

CaSTLe was used, which operates according to the previously mentioned workflow [Lieberman

et al. 2018]. As a first step, CaSTLe selects a set of features, in this case, genes, which will have

a high expression in the reference and target data and own high mutual information only in

the reference. Then, correlated genes within this subset will be removed and the entries are

binned. Finally, a pre-tuned XGBoost classifier is trained on 80% of the randomly selected

reference data and evaluated on the remaining 20%. XGBoost, short for eXtreme Gradient

Boosting, is a supervised machine learning tool, that builds on a collection of regression trees

[Chen & Guestrin 2016]. This random-forest based approach aims at minimizing the pre-

diction error and the model complexity. If the classification performance was sufficient, this

model can be used to annotate an unseen target data set, cell by cell.

2.4 Pseudotime calculation

Besides data manipulation and low dimensional embedding, other tools also allow deciphering

development aspects within the single-cell transcriptomics data. In this dissertation, RNA

velocity was used to add a pseudotime variable to the expression data, using the scVelo

package [Bergen et al. 2020]. Generally, RNA velocity is approached via the ratio between
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unspliced (new) and spliced (mature) mRNA transcripts for all genes with a splicing variant.

In equation 2.6, the splicing dynamics of the unspliced transcript u(t) with state-dependent

rate α(k) into mature mRNA s(t) with rate β is shown. Finally, the mature mRNA is degraded

via the parameter γ.

φ
α(k))−−−→ u(t)

β−→ s(t)
γ−→ φ (2.6)

To learn the transcription dynamics more adaptively, scVelo aims at inferring the vari-

ables via an Expectation-Maximation approach. The expectation step (E) estimates the

unspliced/spliced trajectory and assigns a latent time to the observed mRNA values and

transcriptional states. scVelo assumes three different states which are on, off, and a steady-

state. During the maximization step (M), the likelihoods are updated based on the parameters

inferred in the E-step. This procedure is repeated until convergence is reached.

Finally, an RNA velocity can be calculated as shown in equation 2.7. Based on these velocities,

cell transition probabilities can be calculated, which allow visualizing dynamics within the

low dimensional cell embedding.

v(t) = βu(t)− γs(t) (2.7)

Furthermore, using this information to construct developmental associations between cell-

types, PAGA, a partition-based graph abstraction, allowed to transform this information. PAGA

uses the cell cluster annotation and expression pattern to generate a connected graph between

cells. In the implementation symmetrized kNN-like graphs were used to conduct the nearest

neighbour search within the low-dimensional embedding.

In a second step, the graph is partitioned based on the number of in- and outgoing edges based

on the velocity graph that originated from the previously described RNA velocity analysis.

Subsequently, the pseudotime variable can be estimated using the extended version of diffusion

pseudotime (DPT). The basic implementation measures a progression through branching

lineages via a random-walk-based distance in the diffusion map space [Haghverdi et al. 2016].

In PAGA, the extension accounts for disconnected Eigen-subspaces in the graph adjacency.

Using this PAGA-embedding, the low-dimensional UMAP can be recalculated to fit the PAGA-

layout, facilitating improved interpretability.
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2.4. Pseudotime calculation

2.4.1 Inference of gene networks via WGCNA

While RNA velocity can infer the relationship between cells and cell types, gene network

inference can identify the relationship between genes.

There are various mathematical approaches at hand helping to identify these groups of ’con-

nected’ genes. One option is to proxy co-regulation through the concept of correlated gene

expressions. Genes that are similarly expressed will own a correlation coefficient close to one;

or minus one if they are anti-correlated. This can help to identify groups of correlated genes

instead of focusing on individual candidates.

In the following section, the concept of gene correlation will be explained using the tool WGCNA

since it is heavily used in this dissertation [Langfelder & Horvath 2008]. The ’Weighted Gene

Correlation Network Analysis’ package is implemented in R.

Network construction. To state the similarity of genes or groups of genes, a co-expression

similarity matrix is calculated. This can be done by common correlation measures like Pearson

correlation, but here a more robust∗ method is applied with the biweight midcorrelation.

As stated by Barabási & Albert [1999], biological networks own a scale-free topology, meaning

that only a few nodes will have a high connectivity whereas the majority of nodes reveal a

low connectivity. These highly connected nodes represent so-called ’hub genes’ which take a

central role in their respective gene group (gene module). To achieve this network architecture,

correlation values are transformed by increasing them to the power of a β value:

aij =

(
bicor(xi, xj) + 1

2

)β
(2.8)

where xi and xj are gene-nodes i and j, respectively. The range of i and j is equal to the

number of genes included in the data set, whereby the size of xi and xj corresponds to the

number of replicates in bulk RNA-seq or the number of cells in scRNA-seq. The optimal

β value was determined using the following criteria: First, the scale-free topology model fit

across a range of β values was plotted. Here the model fit must be at least 0.8. If that criterion

was met, the β value was chosen that lies in the ’elbow-phase’ shortly before reaching the

plateau phase. If no model fit above 0.8 was reached, the β value, which resulted in the

smallest median connectivity above one hundred was used† In cases where two networks were

compared to each other, two identical β values have been selected such that both criteria were

∗The biweight mid-correlation is more robust with respect to outliers.
†https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html
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2. Methodology

met as good as possible.

The similarity matrix a, with size |G|x|G| and G being the number of genes, that is based on

correlation across all genes raised to the power β is used as an adjacency matrix to construct

a so-called weighted gene correlation network.

Gene Module detection. After network construction, groups of densely interconnected genes

are inferred. As a basis for that, the row sum of the adjacency matrix is firstly calculated (see

equation 2.9). In an unweighted network, the gene connectivity ki is reflected by the number

of direct neighbours, whereby in weighted networks the sum of connections strengths to other

nodes is indicated. Network interconnectedness in the WGCNA implementation is approached

by the topological overlap measure (TOM) [Yip & Horvath 2007] as depicted in Equation

2.10.

Finally, these TOM values are grouped using hierarchical clustering. Depending on the im-

plementation, some post-processing steps such as tree cutting and module merging can be

applied.

ki =
∑
j∈G

aij (2.9)

TOM(i, j) =

∑
u∈ G aiuauj + aij

min(ki, kj) + 1− aij
(2.10)

Relate modules to external information. In a final step, the inferred modules can be as-

sociated to certain biological functions or clinical outcomes. If external data such as trait

associations are available, correlation to the identified modules can be calculated. Otherwise,

gene set enrichments or over-representation analysis tools can be used to identify biological

functions. Alternatively, the measure of module membership (MM) can be used to identify

genes that are important for the module. The MM of a gene i is determined based on the

correlation value of the node xi to the Eigengene vector E of the module q, which is the first

principal component of the module:

MM(q) = K
(q)
cor,i := cor(xi, E

(q)), for i ∈ {1, ..., |G|} (2.11)

Module preservation. Apart from inferring the gene correlation networks, some applications

also seek to compare module structures across data sets, for example from different genders,
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or validate the reproducibility of modules. In WGCNA, this can be achieved via a compos-

ite measure Zsummarythat combines different network connectivity and density measures Z

statistic values that result from the permutation test (Equation 2.12) [Langfelder et al. 2011].

Zsummary =
Zdensity + Zconnectivity

2
(2.12)

For this approach, a reference data set is required which allows inferring how many of its

modules are preserved within a test set. Within the density measures Zdensity, information

about the mean correlation, adjacency, module membership, and the proportion of variance

explained (PVE) is reflected (see Equation 2.13). The PVE can be considered as the mean

squared module membership, aiming to define how well an eigengene represents the whole

module.

The connectivity measure Zconnectivity include the correlation values of the intramodular con-

nectivity, the module membership, and the correlation values itself between the reference and

test set, as indicated in Equation 2.14.

Zdensity =median(Zmean correlation, Zmean adjacency,

Zproportion of variance explained, Zmean module membership)
(2.13)

Zconnectivity =median(Zcor intramodular connectivity, Zcor module membership,

Zcor correlation values)
(2.14)

Finally, modules can be assigned to be either non-preserved, moderately preserved or strongly

preserved compared to the reference [Langfelder et al. 2011].
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Chapter 3

Effects of dropout and data

imputation on single-cell correlation

networks

Single-cell transcriptomics data potentially offers a high level of resolution, however many

applications are currently hampered by the level of sparsity, or more specifically by the level

of dropout. Depending i.a. on the experimental throughput, different scRNA-seq platforms

produce different levels of dropout. In this chapter, the influence of increasing level of dropout

on gene correlation networks is therefore systematically investigated. Alleviating the limita-

tions of data sparsity, imputation approaches may help to interpolate the missed expression

values. However, it remains unclear to which extent true signals are rescued or noise being

introduced.

The inter-cellular heterogeneity in single-cell transcriptomics data furthermore promises to

uncover gene regulatory networks that are specific to a cell type or cluster of cells that so far

remain buried. However, to fulfil this promise, two things must be achieved using scRNA-

seq data: (i) the identification of cell types, and (ii) the possibility to infer gene correlation

networks. Therefore, the influence of data imputation on marker genes used to annotate a

human retina data set was additionally analysed.

In the beginning, the workflow to answer this question will be described, while the main

findings will be presented subsequently. The last part will be dedicated to discussing the

impact of the results on the scientific community.
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3. Effects of dropout and data imputation on single-cell correlation networks

3.1 Workflow

Single-cell transcriptomics may open up hidden gene correlation networks within cell subtypes.

However, due to the high level of dropout, which highly depends on the experimental setup and

sequencing technique, direct network inference remains challenging. To answer the question

raised above on how much noise is introduced and to what extent the hidden signals can

be recovered, a synthetic data set is required that i) allows for gene correlation network

inference based on its inherent correlation structure and ii) allows for precise and systematic

discrimination between signal and noise. When both criteria are met, the direct influence of

data imputations on the sparse data can be inferred (illustrated in Figure 3.1).

Sparse Data Imputed DataSparse Data

Imputation

direct 
inference

WGCNA
BEELINE

DrImpute

indirect 
inference

Gene regulatory 
networks

Figure 3.1. Overcoming sparsity via imputation approaches to allow for network inference in

single-cell transcriptomics data.

While more and more tools are designed to allow for direct network inference in sparse,

single-cell transcriptomics data, the approaches still lack robustness. One potential idea to

circumvent this problem is the application of imputation approaches, trying to de-sparsify

the data to enhance the masked signals. Finally, well-known, established network inference

tools such as WGCNA may be used to infer robust, meaningful gene correlation networks.

A visual summary of the main parts of this analysis is given in Figure 3.2: Starting with the

generation of the synthetic gold data, artificial dropout data sets were derived and used as
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3.1. Workflow

input for different imputation tools. Based on these recovered data sets, gene correlation net-

works have been calculated using WGCNA. To measure the influence of imputation approaches

on the network level, the preservation of modules and the edge recovery was quantified.

add dropout Imputation

Reference Data Set 
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Gold Data Imputed Data

DrImpute

Data Preparation

Network inference
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Figure 3.2. Workflow to investigate the impact of imputation of gene regulatory networks

(GRN) in single-cell transcriptomic data.

By downsampling a bulk RNA seq dataset, a dropout-free, single-cell like, gold dataset

was generated. Introducing increasing levels of dropout, six artificial sparse datasets were

generated, which severed as the input for six imputation tools. The ability to preserve

correlated gene groups from the gold data was inferred using the quantitative measure of

module preservation from the WGCNA package. In a second step, the ability to recover true

edges was evaluated by binarizing the weighted networks.
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3. Effects of dropout and data imputation on single-cell correlation networks

3.1.1 Data Sets

To state the influence of data imputation on single-cell transcriptomics data, two different

datasets were used in this chapter. While a synthetic dataset served as a ground-truth

reference, a human retina dataset was used to infer the impact of data imputation on cell

cluster annotatability.

Generation of synthetic reference datasets. A dropout-free gold dataset preserving an appro-

priate correlation structure needs to be generated to evaluate the ability to reconstruct gene

regulatory networks from single-cell RNA-seq data. As shown by Peng et al. [2019a], the ex-

isting correlation structure from bulk RNA-seq datasets can be used to create single-cell-like

data. The bulk dataset of mice hair follicles was taken from Wang et al. [2017]∗ and con-

tained 48795 genes across 48 conditions. Single-cell data generation was done in accordance

with the workflow by [Peng et al. 2019a] and is available on their Github page. Briefly, eight

conditions and 5000 genes were randomly selected during the downsampling procedure. Each

of these conditions was used to simulate a certain cell type. After replicating each cell type

100 times, an 800 cell data set was generated. To resemble the single-cell-like gold data, (five

times) the standard deviation of each gene in each condition was used to introduce noise via

a random normal distribution with mean zero and one hundred observations. A dropout rate

was modelled via the λ parameter (range from 0 to 1). The higher the λ, the smaller the re-

sulting sparsity. This dropout rate followed an exponential function e−λ∗mean expression2
. Zero

values representing the explicitly dropped out gene expressions, were at the end introduced

via a Bernoulli distribution defined by the dropout rate. In total, six different λ values were

used with 0.01,0.09, 0.21, 0.42, 0.7, and 0.99 to generate six different sparse datasets ranging

from 84 % to 40% dropout, respectively. All data sets were filtered for genes and samples

with missing values using the WGCNA GoodSamplesGenes function and transformed to count

values.

Retina organoid data set. To tackle the second important aspect of the preservation of cell

cluster annotatability, a human retina organoid dataset from Kim et al. [2019](GEO:GSE119343)

was used. In their original study, retina organoids were clustered and annotated according to

the major cell types in the retina: rods, cones, and Müller Glia cells. Specific marker genes

were extracted to describe each retinal cell type. This dataset contained 19426 genes across

1346 cells and included 85% zeros.

∗https://github.com/software-github/scrabble_paper
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3.1.2 Data imputation

Prior to the imputation, genes not being expressed in at least two cells were removed using

the preprocessSC function from the DrImpute package [Gong et al. 2018]. Data input was

performed as summarized in Table 3.1 and described in the section 2.1.

Table 3.1. Overview of published imputation approaches used in this thesis.

Imputation Publication Class Data input Output Code

DrImpute (v1.0) [Gong et al. 2018] (2) Log10(X+1) data Logged data R

SAVER (v1.1.2) [Huang et al. 2018] (3) Count data Count data R

DCA (v1.3.1) [Eraslan et al. 2019] (1) Count data Count data python

ENHANCE [Wagner et al. 2019] (4) Count data Both possible (Logged used) R

scNPF (v0.1.0) [Ye et al. 2019] (5) Count data + TOM data Count data R

DISC (v1.1.2) [He et al. 2020] (1) Count data Count data python

All imputation tools were run according to their recommended settings, which are described

in R-markdown files on the Github repository∗. Solely ENHANCE was applied with a fixed

knn-parameter of eight for the synthetic dataset.

The scNPF tool made use of a gene correlation network to guide the imputation process. In

its implementation, two different types of networks can be imported which are either directly

derived from the sparse data or extracted from a reference database. For the synthetic

dataset, WGCNA (v1.69) was used for both scenarios: a network based on the sparse datasets

to reflect the first case and a network of the gold data to resemble the latter case. In either

way, topological overlap measure (TOM) matrices were used as scNPF input. For the human

retina dataset, a WGCNA-derived, sparse network as well as reference data by the STRING

database, was used.

DISC required the input data in a LoomPy† format which was accomplished in accordance with

the tutorial‡. While succeeding on the synthetic data, DISC failed to operate on the larger

human retina dataset.

∗https://github.com/lisbeth-dot-95/Dissertation
†http://loompy.org/
‡https://nbviewer.jupyter.org/github/iyhaoo/DISC/blob/master/reproducibility/Data\

%20Preparation\%2C\%20Imputation\%20and\%20Computational\%20Resource\%20Evaluation/Data\

%20Pre-processing/MELANOMA.ipynb
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3.1.3 Network Analysis using WGNCA

Gene correlation networks were detected using the Weighted Gene Network Correlation Anal-

ysis (WGCNA) R-package [Langfelder & Horvath 2008] (version 1.69). The general steps were

performed according to the tutorial stated on the website ∗.

Module detection. The first step when inferring a network with WGCNA was to remove genes

and cells containing zero values utilizing the GoodSamplesGenes function. Subsequently, the

scale-free model fit was calculated. The criteria on how to choose the optimal β value were

presented in section 2.4.1.

For subsequent module detection, a minimal cluster size of 20 was used in the case of the

synthetic data set, while the remaining parameters were left with their default values.

Gene module detection in the synthetic dataset was only performed on the gold dataset

which does not contain artificial dropout. Neither in the sparse nor the imputed data a

module detection was necessary.

Investigate Module preservation statistics. The module preservation was calculated using the

provided modulePreservation function. A detailed explanation of this functionality is also

provided in Section 2.4.1 . To reduce the random reduction of modules, the maximal module

size was set to the number of genes included in the dataset. The number of permutations

was set to 100, the dataIsExpr parameter was left on default, and all other arguments were

chosen according to the tutorial. To make the results more tangible, log2 fold changes (log2-

FC) of the module-specific Zsummary scores were calculated between the gold and the test

datasets. Gold data Zsummary values were obtained by calculating the module preservation

against itself. A negative value indicates a lower Zsummary value in the test than in the gold

dataset. A value of zero corresponds to equal values.

Evaluation of edge detection. Next to module preservation, other measures were included to

assess whether true gene correlation can be inferred after imputation. Therefore, the weighted

WGCNA network was transformed to an unweighted, binarized network.

Gene modules were detected in WGCNA using the topological overlap matrix (TOM) measure.

By setting certain thresholds to the TOM values, the presence of an edge was binarized. Since

the distribution of TOM values was different before and after imputation, a distribution-

depended threshold was applied, using the following formula: e ∗ SD +mean; e = {1, 2}. To

∗https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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avoid bias in the model evaluation measures, the self-correlated gene diagonal was removed

from the subsequent analysis.

Here, the gold network was used as a true reference and the imputed networks as predictions.

Three different measures were applied to analyse the problem from different perspectives.

On the one hand, precision and recall were used to approximate the recovery of true gene-

correlations. On the other hand, Matthew’s correlation coefficient (MCC) was applied to infer

the performance of the whole edge classification task. The MCC is particularly useful since

these datasets are heavily unbalanced towards true negative entries (non-correlated genes).

The measures are defined as follows:

Precision:
True Positives(TP )

True Positives(TP ) + False Positives(FP )
(3.1)

Recall:
True Positives(TP )

True Positives(TP ) + False Negatives(FN)
(3.2)

Matthews Correlation Coefficient:

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.3)

3.1.4 Cell cluster embedding and annotation

Using a human retina organoid dataset, the influence of data imputation on cell cluster anno-

tatability is investigated. The influence on cell clustering, or more specifically on cluster sep-

arability is also analysed. Therefore, the analysis pipeline scanpy is used (version 1.6.0)[Wolf

et al. 2018] . In the original Kim et al. [2019] publication, the retina organoid data was

processed using the Seurat(version 2.3.4) workflow. To exclude misinterpretations based on

the different analysis workflows, a comparison of scanpy and Seurat has been conducted.

The cell embedding and subsequent cluster annotation with scanpy were run as follows:

Sparse and imputed data were filtered for low-quality cells and genes upon the initial data

import into scanpy. As described in the original publication, cells with less than 600 genes

and genes which do not occur in at least 5% of cells were discarded. Here, 5% account for 67

cells. This parameter was changed for ENHANCE imputed data, where genes without any count

were removed. Otherwise, the subsequent downstream tasks would not have been conductible

after imputation.

In the following step, cells expressing an aberrantly high number of genes will be detected

and removed. Since some imputation tools introduced a uniform number of expressed genes
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3. Effects of dropout and data imputation on single-cell correlation networks

across cells and to ensure comparability across imputation approaches, this threshold was set

individually per dataset to avoid excessive filtering. Those individual thresholds are given in

Table 3.2.

Table 3.2. Overview of filtering thresholds

used for data preprocessing. The table

shows the individual gene number upon

which cells were discarded in case they ex-

ceed this cutoff of expressed genes.

Imputation Number of genes

Sparse 4000

DrImpute 7900

SAVER 13369

DCA 14845

ENHANCE 14000

scNPF 13369

scNPF String-reference 13369

Using the data normalization procedure de-

scribed in the scanpy tutorial, followed by

a log10(x+1) transformation, highly variable

genes were detected and kept using default

parameters. Subsequently, unwanted varia-

tion from the total gene counts was regressed

out and data was scaled according to param-

eters given in the paper.

Finally, a dimensionality reduction using

principal component analysis (PCA) prior to

the t-SNE was done. The neighbour graph

was calculated using ten neighbours and 40

principal components. Cluster detection was

done via the Louvain algorithm using stan-

dard parameters.

Clustering performance evaluation. To in-

fer the performance of the Louvain clustering before and after the imputation, the mean

silhouette coefficient from the sk.learn package (version 0.23.2) was used [Pedregosa, F. and

Varoquaux, G. and Gramfort, A. and Michel et al. 2011]. This score helps to infer clustering

performance by investigating the tightness and separation of each cluster [Rousseeuw 1987].

Therein, the expression data and the Louvain cluster assignment was used as input. The

Euclidean distance was applied as a distance metric.

Automatic cell cluster Annotation. Based on marker genes expression, cell clusters could be

annotated to their corresponding cell type. To infer whether this was still possible after the

imputation, an automated cluster annotation pipeline was implemented.

Using the originally published marker genes for cones, rods, and Müller Glia cells [Kim et al.

2019], the mean expression per gene and Louvain cluster was calculated. To allow for a fair

comparison, the data was scaled per Louvain cluster with a min-max-normalization. In the

next step, the scaled data was binarized using a threshold of 0.5. A Louvain cluster was then

annotated if more than 75% of the marker genes were expressed above this threshold. Three
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classes of annotation results were inferred such as pure, mixed and unassigned clusters. Pure

clusters showed an assignment for exactly one cell type and mixed clusters exhibited at least

a double assignment. The third class included Louvain clusters with no successful annotation.

Their relative numbers were compared across imputation tools.
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3.2 Generation of single-cell like reference data sets

While scRNA-seq allows for unprecedented biological insights, technical as well as biological

noise produce an extremely sparse data matrix hindering current network inference methods

[Pratapa et al. 2020, Chen & Mar 2018, Nguyen et al. 2020]. Tackling how data imputation

influences gene correlation network inference, a data set is required which only holds ’true

signals’. A true signal in this chapter refers to truly measured expression values and more

specifically non-dropped out entries. Since, however, all experimentally inferred data sets

suffer from some degree of dropout, only a synthetic scenario was appropriate.

Gold data. When generating synthetic data sets, coping with reproducibility, scalability,

documentability and suitability for the particular aim is of major importance. Here, the

latter point mainly refers to a biologically meaningful correlation structure. Using a workflow

proposed by Peng et al. [2019a], an existing mouse hair follicle bulk data set by Wang et al.

[2017] was used as an input to generate a single-cell-like data set. It contained 48,795 genes

across 48 conditions (over 20 cell types). For the downsampling procedure, eight hair follicle

cell types were chosen randomly such that the synthetic gold data set owned 5000 genes across

800 cells. Since only true zeros were included in this data, it will be referred to as gold data.

After a quality filtering to remove barely expressed genes, a gold data set with 4960 genes

across 800 cells was created. In total, this data set contained 15% of true zeros. As a proof-

of-concept, WGCNA [Langfelder & Horvath 2008] was applied to the gold data set to ensure

that the natural correlation structure of the bulk RNA-seq data set was retained, see Figure

3.3. Figure 3.3a shows the R2 of a scale-free topology model fit, which represents a hallmark

of many networks, over different soft threshold β values.

Based on this plot, a β value was chosen to generate a network with approximately scale-free

topology and sufficiently high median connectivity. For the gold data, a plateau for β values

larger than eight was reached. Other simulation tools, like splatter [Zappia et al. 2017] or

GeneNetWeaver [Schaffter et al. 2011] failed in producing data sets that allowed reconstructing

approximately scale-free networks. This may be due to an insufficient ability of these tools

to correspond to real biological processes that have been previously reported [Pratapa et al.

2020]. By choosing a β of nine for the gene network inference, the gene dendrogram showed

a clear hierarchical structure within the genes (Figure 3.3b). In total, seven different gene

modules were detected, whereby the turquoise module was the largest with 2143 genes and

the black module was the smallest with only 21 genes.

38



3.2. Generation of single-cell like reference data sets

(a) Scale-free model fit and median connectivity of the gold data.

(b) Cluster dendrogram of synthetic Gold data.

Figure 3.3. Characteristics of the synthetic gold data.

(a) Development of scale-freeness and median node connectivity over twenty β values. A

plateau of R2 values was reached for β values larger than eight. (b) Cluster Dendrogram

of gold data using the WGCNA package. The gene module assignment is shown in the colour

bar below. The hierarchy of the genes is indicated on the y-axis. This result is based on a

β of nine. In total seven gene modules were defined.
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3. Effects of dropout and data imputation on single-cell correlation networks

Reference data sets. After defining the ground-truth data, different but defined levels of

dropout had to be added to mask the expression signals. As guidance, conventionally achieved

sparsity levels (here percentage of zeros) from different single-cell workbenches were used.

Based on the gold data set, six additional data sets were generated with increasing degrees

of dropout, ranging from 40% to 84%. Accounting for the 15% true zeros in the gold data,

a total of 55% to 99% zeros were included. These data sets together with the gold data

will be referred to as reference data sets. The characteristics of these reference data sets are

summarized in Figures 3.4 and 3.5. A glimpse into the influence of the dropout on the gene

expression data is given in Figure 3.4. Here one hundred genes from the gold data, as well as

one representative for the mild (40%), moderate (66%) and high (84%) dropout are shown.

Gold data 40% Dropout

66% Dropout 84% Dropout

Figure 3.4. Heatmaps of selected genes in the gold and three sparse data sets.

Heatmaps showing log10(X+1) expression of first 100 genes to demonstrate impact of

dropout in selected data sets. While the lowly expressed genes mainly dropped out in 40

and 66% dropout data sets, only a sparse gene expression is left in the 84% dropout data

set.
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3.2. Generation of single-cell like reference data sets

A

B

Figure 3.5. Reference data characteristics.

The term dropout refers to the amount of artificially introduced non-true zeros in each of

the reference data sets.(A) Distribution of logged expression values of all reference data

sets and the human retina data set. The density of expression values across eight data

sets is shown to contrast the impact of different dropout rates. The gold data is plotted in

orange, all six dropout reference data sets are shown with a grey gradient and a biological

data set is plotted in blue. Here, only an excerpt of the x-axis between 0.0 and 0.2 is shown.

(B) Boxplots showing the behaviour of module preservation across different dropout levels.

The Zsummary measure implemented in WGCNA is a composite, permutation-based metric of

various network density and connectivity measures. The blue and the green line indicate

the threshold towards moderate and strong module preservation, respectively. Colouration

of the dots corresponds to the individual modules. An increase in dropout is associated

with a decrease in module preservation.
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3. Effects of dropout and data imputation on single-cell correlation networks

While mainly lowly expressed genes were dropped out in the mild and moderate scenario, only

a minority remained detectable in the high dropout data set. With an increasing degree of

dropout, the distribution of gene expression values indicated the expected shift towards larger

proportions of lowly expressed or missing genes (see a clipped version in Figure 3.5A and the

complete graph in Supplemental Figure S-1. The gold data showed the smallest fraction

of lowly expressed genes, while the 84% dropout data set showed the opposite behaviour.

A scRNA-seq data set of human retina organoid cells [Kim et al. 2019], generated via the

10X Genomics procedure was included and plotted for comparison, exhibited a very similar

distribution as the 84% dropout data set.

The Zsummary statistic from WGCNA quantifies module preservation [Langfelder et al. 2011]

and therefore helps to investigate to what extent hallmarks of network structure can be

recovered or are lost with increasing degrees of dropout (Figure 3.5B). This measure indicates

how well a group of correlated genes (modules) from a reference data set is preserved in a

test data set. Here, all artificially dropped out data sets were compared to the gold data.

Since the Zsummary is dependent on module size, the gold data was compared to itself as a

reference. As introduced by Langfelder and colleagues, two different thresholds define the

preservation of gene modules [Langfelder et al. 2011]: modules with a Zsummary value below

two are considered to be not preserved at all, whereby values larger than ten indicate strong

preservation. Modules in between both thresholds are considered to be moderately preserved.

Within the gold data, modules showed a median Zsummary value above the strong preservation

threshold as also seen for slightly increased dropout levels (40% - 55%). Zsummary values close

to zero were detected for both high sparsity data sets containing 75% and 84% dropouts.

Moreover, no single module remained even moderately preserved in the 84% dropout reference

data set. In general, it can be stated that an increase in dropout correlates with a decrease

in module preservation. Nonetheless, correlation networks appear fairly robust for low to

intermediate levels of dropout. Up to a level of 55 % dropout, a strong preservation for the

majority of modules could be observed.

Based on those findings, a meaningful reference data sets were generated that (1) resembled

true biological data sets in their distribution of expression values, (2) retained the natural

correlation structure of its original bulk RNA-seq ancestor, and (3) were shown to have

decreasing network preservation with higher levels of dropout.
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3.3 Impacts of data imputation on network inference

Since dropout seems to compromise network inference, next it was investigated, whether

imputation methods alleviate the situation.

Five imputation tools representing different types of imputation methodologies were selected,

spanning a variety of underlying mathematical assumptions as well as implementation lan-

guages (see Table 3.1).

Module Preservation. To compare the imputation tools based on Zsummary values, a module-

wise Zsummary log-2 fold change was calculated (log2-FC) that reflects the difference in module

preservation to the gold data set before and after imputation, see Figure 3.6. A negative fold

change, therefore, represents a module preservation smaller than the gold data, and thus a

loss of network information.

The unimputed, dropout-affected reference data sets (shown in black) showed lower nega-

tive log2-FC values with an increase in dropout, reflecting the loss of module preservation

as was described above. All log2-FC in the 40% dropout data set were still close to zero,

while it decreased drastically in the 84% dropout data set. If imputation restored the corre-

lation structure, values closer to zero would be obtained. However, a rather diverse picture

was observed: For low levels of dropout, where network inference still worked robustly with-

out imputation, only DrImpute and DCA yielded a log2-FC comparable to the unimputed

data. All other tools performed considerably worse. At intermediate levels of dropout (55-

66%), where network inference without imputation was increasingly affected but still feasible,

DrImpute and DCA improved the log2-FC. SAVER, ENHANCE and DISC resulted in similar log2-

FC distributions as the unimputed data, while both variants of scNPF even diminished the

network information.

For the high dropout levels, none of the imputation tools enabled network inference concerning

the overall small log2-FC. While DCA and ENHANCE for 75% dropout and scNPF for 84%

of dropout performed substantially better than the unimputed data most of the network

structure was still lost. An overview of the individual module preservation values is presented

in Supplemental Figure S-2.

In summary, from a module preservation perspective, imputation using DrImpute and DCA fa-

cilitated network inference for data sets with low to intermediate levels of dropout, whereas

several other tools severely compromised the inference at those dropout levels. For high-level

dropout data sets, however, no imputation tool showed convincing and promising results.
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3. Effects of dropout and data imputation on single-cell correlation networks

Figure 3.6. Zsummary before and after imputation of reference data sets.

Boxplot of the Zsummary log2 fold change (log2-FC) of all reference data sets compared to

gold data before and after imputation. Zsummary was computed for gold data compared to

itself and for any reference data set, with and without imputation, compared to gold data,

respectively. Subsequently, a log2 fold change was computed between the gold versus gold

and any reference versus gold Zsummary to illustrate how well gene modules from the gold

data were preserved in the dropped out and imputed data. The dashed line indicates the

threshold for completely recovered modules. Dots represent the values of individual gene

modules. The dropout data is depicted in black. Implementation tools that employ related

methodological approaches were grouped by similar colours.

Edge recovery. By calculating module preservation scores, a similarity measure to infer the

impacts of imputation on network inference was employed. By switching the perspective, the

ability of imputation methods to recover true gold data gene-gene interactions was analysed.

Therefore, the network with continuous edge weights was transformed to an unweighted net-

work either stating that an edge is present or not. This transformation allowed the com-

putation of measures like precision, recall, and Matthews correlation coefficient (MCC) to

quantify the potential of each imputation technique to recover true edges. To account for

different data distributions and ranges, the binarization threshold was derived individually

per data set. See the workflow section for details. Initially, the precision was evaluated, which

measures the fraction of true edges over all detected edges, see Figure 3.7. The higher the

precision, the fewer false positive edges were detected. Before imputation, the reference data
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3.3. Impacts of data imputation on network inference

Figure 3.7. Edge recovery trend before and after imputation.

Trends of Precision, Recall, and Matthews correlation coefficient (MCC) over all dropout

levels indicating the ability to recover true edges after binarizing the gold data network.

The mean and standard deviation (SD) of the topological overlap matrix (TOM) per data

set were computed. Edges with a TOM greater than 1 SD + mean of the gold and

all dropped out and imputed data sets were retained. Retained edges of gold data were

considered as true edges for computing Precision, Recall, and MCC, respectively.

sets revealed moderate precision in the 40% and 46% dropout data sets. With increasing

dropout, the precision continuously decreased towards zero.

Imputation of low sparsity data sets (40-55% dropout) did not improve the precision. Whereby

some tools such as DCA, DrImpute, and ENHANCE reached precision values half as high as the

dropped out data, SAVER, and DISC revealed values close to zero. It was not possible to

calculate precision values for both scNPF approaches. Based on a high mean and a high

standard deviation in the TOM values, no edge was retained. As soon as the dropout level

exceeded 55 %, DCA retrieved a higher precision than the unimputed data with a peak of

performance at the 66% dropout data set. For both high dropout data sets, all approaches

showed low precision values. These results suggest, that independent of the method used,

imputation methods applied to high dropout data sets tend to inflict the correlation network

with large amounts of false edges.

The recall measures the fraction of true edges in the gold network that was classified as edges

in the dropout or imputed data sets. Similar to the precision, the dropout data sets revealed
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3. Effects of dropout and data imputation on single-cell correlation networks

a stepwise decrease in recall with increasing dropout levels. Overall, this trend also persisted

after data imputation. However, DCA showed increasing recall rates until a dropout level of

55% was reached. DCA, ENHANCE, and DrImpute consistently outperformed the unimputed data

sets. DISC showed a steady increase in recall starting from dropout levels of 55%, resulting

in the highest recall value at 84%. Both scNPF resulted in recall rates of zero based on the

fact that no edge was detected in those data sets.

Similar to scale-free biological networks with only a few highly connected edges, the data

set was highly unbalanced towards true negative edges. The MCC represents a more robust

evaluation of the classification for such imbalanced data sets since it makes use of all entries

in the confusion matrix. Perfectly predicted values reflect an MCC of one, whereby a random

assignment would result in values close to zero. Wrong predictions would reveal negative

values ranging up to minus one. Here, trends similar to the precision were observed. While

the dropout data sets exhibited the highest MCC values at 40 and 46% dropout, DCA and

later ENHANCE outperformed the unimputed data exceeding 46% dropout. For the highest

dropout data set, neither the sparse nor any imputation tool reached good MCC values.

Both scNPF approaches and SAVER consistently showed values close to or below zero.

Gaining a broader picture of the effect of imputation prior to network inference, the edge

recovery analysis revealed that good recall values in data imputation were mainly caused

by inflating the data with more correlation, i.e. artificial edges, compared to the gold data

as highlighted by the moderate precision values (Supplementary Figure S-3). However, as

already indicated by the module preservation analysis, overall good edge recovery values

were obtained for the unimputed data with low dropout levels. DCA revealed a moderate

performance on data sets affected with intermediate levels of dropout.
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3.4 Cell cluster annotation in human retina organoid data

Before identifying cell type-specific network properties, the respective cell type must be anno-

tated. Therefore, also the cell correlation before and after imputation was analysed. For that

reason, a human retina organoid data set that was published by Kim et al. [2019] was used.

This data set is afflicted by dropout (total percentage of zeros: 85%) and will be denoted

hereafter as sparse data set. In their study, Kim et. al clustered the cells and annotated them

as either rod, cone, or Müller Glia (MG) cells based on marker genes extracted from their

low-dimensional t- distributed stochastic neighbour embedding (t-SNE).

As many tools improve cell clustering [Hou et al. 2020], the impact of data imputation on low-

dimensional cell embedding was analysed. Here, t-SNE, as well as Louvain cluster embedding,

was used, as already performed in the original Kim et al. [2019] publication. Due to the higher

robustness of the implementation, here the python-based scanpy workflow instead of the

original R-based Seurat pipeline was used. A comparison between the two results is shown

in Figure 3.8. As depicted in (B) and (D), the shown t-SNE representations appear different,

however, the marker genes expression shown in (A) and (C) reveal similar patterns. While

six clusters were detected in the Seurat workflow, eight clusters were identified using scanpy.

Generally, the clusters from the scanpy workflow appear less distinct than the ones obtained

by Seurat. Nevertheless, distinct expression patterns of the marker genes were observable

across both pipelines. Especially focussing on the marker genes associated with rods, cones,

and MG cells, unique expression patterns per cell cluster were detected. Also, the relative

expression strength (here the colour of the heatmap) corresponds across pipelines.

Starting from this sparse data set, the impact of the previously introduced imputation meth-

ods concerning cell clustering and a subsequent marker gene-based annotation of cell types

was investigated.

The Louvain cluster detection within the t-SNE of the original sparse data set revealed eight

cell clusters, see Figure and 3.9(a). Most imputation tools produced comparable numbers of

eight to eleven clusters, Figure 3.9(b-f). Solely the imputation by ENHANCE resulted in a total

of twenty-one clusters being detected (Figure 3.9(g)). Cluster sizes were comparable between

the sparse data and most imputation methods. The largest Louvain cluster contained around

300 cells in the original organoid data, as well as for both scNPF variants, DCA, and SAVER.

Explicitly smaller sizes were obtained after ENHANCE and DrImpute imputation with 128 and

195, respectively. The smallest Louvain cluster counted between 39 to 46 cells, which was

found in the sparse data set and after both scNPF, SAVER, and DrImpute. Deviations were

detected after ENHANCE and DCA imputation with 19 and 62, respectively.
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A B

C D

Figure 3.8. Comparison of Seurat and scanpy preprocessing results.

(A) Dot plot showing the expression of marker genes across Louvain clusters using the

Seurat pipeline. Colouring corresponds to the mean gene expression and the dot size

to the percentage of cells per cluster expressing the respective gene. (B) t-SNE of Lou-

vain clusters using Seurat. (C) Dot plot showing the expression of marker genes across

Louvain clusters using the scanpy pipeline. The expression was scaled per Louvain clus-

ter. (D) t-SNE of Louvain clusters using scanpy. Colours between t-SNE plots do not

correspond.

By mere visual inspection of the cluster density for the sparse data, both scNPF alternatives

and SAVER showed clusters with intertwining boundaries. Imputation through DrImpute and

DCA resulted in slightly more dense clusters while ENHANCE led to a completely different cluster

layout with much more fine-grained clusters. To back these findings up with a statistical

measure, the mean silhouette coefficient (MSC) was calculated that allowed to quantify the

density of clusters. Clusters revealing an MSC closely to one reflect well separated, dense

cell clusters, whereas values close to zero hint towards overlapping clusters. Negative values

(lowest:-1) indicate that a cell was most likely misclassified. Before and after imputation

overall MSC values were found to be close to zero. Slightly positive values were obtained by

DCA and ENHANCE. The weakest performance was found for DrImpute. These results support

the visual observation of overlapping and not well-separated clusters. Thus, data imputation

did not improve the cluster density substantially compared to the sparse data.

Based on their original clustering, Kim et al., derived unique marker genes for the retina-

specific cell types: rods, cones, and MG cells. In the following, the reproducibility and
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3.4. Cell cluster annotation in human retina organoid data

(a) sparse (b) DrImpute (c) SAVER (d) DCA

(e) scNPF (f) scNPF String (g) ENHANCE

Figure 3.9. Louvain clusters detected in human retina organoid data before and after impu-

tation.

The sparse and imputed data sets were subjected to a standard preprocessing procedure

in scanpy and projected into a low dimensional t-SNE. The embeddings were coloured

according to the Louvain cluster detection. Colours are specific for the individual plot

and do not correspond between data sets. Eight to eleven Louvain clusters were generally

detected. Solely ENHANCE imputation resulted in twenty-one clusters. In most cases, cell

clusters were found to be overlapping on the cluster boundaries. Visually more separated

clusters were obtained after DCA and DrImpute.

consistency of these marker genes before and after imputation was investigated by comparing

quantities of annotated cell types. Therefore, an automated cluster annotation pipeline was

set up based on the expression patterns of these marker gene lists (see section 3.1.4). All dot

plots, showing the expression patterns of these marker genes before and after imputation are

provided in Supplemental Figure S-4. Briefly, a cluster was annotated as rods, cones, or MG

cells when more than 75% of the cells in this cluster expressed the respective marker genes.

A summary of this analysis is depicted in Figure 3.10(C).

To compare the results on a cluster level, three classes were generated: (i) pure clusters

represented the percentage of clusters where all cells had the same annotation either as rods,

cones, or MG cells, (ii) mixed annotation summarized clusters with at least two different

annotations, while (iii) not assignable contained clusters where a unique annotation was not
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BA

C

Figure 3.10. Effect of imputation on cell cluster annotation in human retina organoid data.

(A) The barplot shows the number of Louvain clusters for sparse and imputed data, ob-

tained as described in Figure 3.9. (B) The bar plot shows the mean silhouette coefficient

indicating the overall cluster density. (C) Result of the automated cell cluster annotation

procedure based on the expression of known marker genes. Expression values per gene and

cluster were scaled between zero and one, and binarized (threshold: 0.5). When 75% of

the marker genes representing a certain cell type were expressed in a cluster, this cluster

was annotated to the respective cell type. The barplot visualises the percentage of cells

annotated as rods, cones, or Müller Glia (MG) cells as well as the percentage of clusters

with a mixed, or without a cell type-specific annotation.
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feasible.

Generally, across all imputation tools, cells were assigned to all included retina-specific cell

types (cones, rods and MG cells). While in the sparse data 26, 22, and 24% of the cells

were annotated as cones, rods, and MG cells, respectively, most imputation tools achieved

comparable quantities. Similar ratios were detected after scNPF and scNPF-String, though

lower relative values were calculated. However, ENHANCE produced the most diverging results

concerning both the cell type ratio, and the relative abundances. Here, percentages of 44%

cones, 17% rods and 15% MG cells were calculated.

A higher percentage of MG cells, compared to the sparse data was stated after DCA-imputation

with 29% (compared to 24%). Overall, similar quantities of rods were detected across all impu-

tation tools ranging from 17% (ENHANCE) to 22%(scNPF). Concerning the other photoreceptor

cell type, the lowest cone abundance was stated after both scNPF approaches with around

20%. SAVER achieved an equal percentage of cones, compared to the sparse results.

After stating that ENHANCE produced the most divergent cell type annotation compared to the

sparse data, ENHANCE was also the only tool that led to cell clusters with mixed annotations.

Here 3.5% of the imputed human retina cells were assigned to this class.

The amount of not assignable clusters was quite different between all imputed and the unim-

puted data. Regarding this last class, ENHANCE resulted in the lowest (19%) and scNPF

String in the highest percentages (40%). In the sparse data 28 % of the cells were not

annotatable. DCA also reached a low percentage of non-annotatable cells with 22%.

Summarising the above-described results, cluster quantities, clustering performance as well as

cluster annotatability behaved comparably before and after imputation. Again, DCA improved

the results marginally regarding cluster density and the amount of annotated retina cell types.

ENHANCE, on the other hand, produced a different ratio in cones towards rods and MG cells.

3.5 Discussion

Single-cell omics approaches may provide a unique opportunity to gain unprecedented insights

into cell type-specific regulatory programs via the inference of cell type-specific networks

and the comparative analysis of these networks between cell types or states. Here, it was

investigated to what extent the sparsity or dropout observed in scRNA-seq data interferes

with correlation network inference and the identification of cell types using marker genes and

whether imputation approaches improve these tasks.

Investigating the effect of dropout on network inference in single-cell data requires reference
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data sets with defined levels of dropout. Since all experimentally generated data sets are

afflicted with certain degrees of dropout, this goal can only be achieved with a synthetic data

set. Though several single-cell data simulation tools were available at the beginning of this

thesis, none of those were specifically designed to deliver data with a proper gene correlation

structure, which is an essential requirement of correlation network inference.

Therefore, a downsampling approach was applied to a bulk RNA-seq data set [Peng et al.

2019a] to generate a non-sparse single-cell like gold data set. Based on the results, synthetic

data proofed to have suitable gene-gene correlation properties that enabled the inference of

networks with an approximately scale-free topology. This data set contains per definition

only true zeros, and hence it was feasible to subsequently produce data sets with defined

increasing degrees of dropout.

These reference data sets enabled a thorough investigation of the impact of data dropout

on vanishing network information. The module preservation measure, although dependent

on module sizes, clearly indicated a negative correlation between dropout levels and the

preservation of modules. A similar trend was stated by Zhang & Zhang [2018] where the sum

of squared errors increased while Pearson’s correlation coefficient decreased with higher ratios

of dropout.

It was demonstrated that retrieving reliable and meaningful biological gene networks from low

dropout scRNA-seq data is still maintainable (up to 55% dropout). data sets with dropout

levels beyond 75% or even 84%, which resemble, e.g., typical up-to-date 10X Genomics data

output, are fairly inappropriate for network inference analysis. An option to overcome this

situation could be to manipulate the data prior to the network inference, for example, through

data imputation. This might help to potentially lift the aforementioned restrictions to finally

take advantage of the higher resolution of the source data.

Diving deeper into the potentials of imputation approaches, seven different methods were

utilised to preprocess the six dropout-afflicted data sets. By calculating the log2-FC of the

Zsummary values, it was able to investigate the question if those methods allowed to regain at

least parts of the buried gene correlation structure, and hence enabled the usage of scRNA-seq

data for (sub)network inference.

In general, it was observable that the impact of imputation was highly dependent on the

applied method and even more so on the dropout level of the source data sets. In addition,

the results suggest that most algorithms alter the complete gene correlation structure instead

of restoring previously hidden information (see Supplementary Figure S-3).

Most imputation tools did not improve module preservation especially for low dropout lev-
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els (up to 46%) with the exceptions DCA and DrImpute which achieved comparable results.

However, for such low dropout levels, even DCA and DrImpute fell short of unimputed data

in terms of precision of edge recovery suggesting that low dropout data sets barely benefit

from imputation. Platforms such as Smart-seq2 are only moderately afflicted by dropout

[Ziegenhain et al. 2017]. Hence it is proposed to stick to the original data instead of applying

data imputation for such low-dropout data. For intermediate levels of dropout (up to 66%),

imputed data sets revealed better module preservation compared to the sparse data. While

still DCA and DrImpute appear to preserve modules best, the highest precision and recall rates

of DCA compared to all competitors highlighted that DCA might be the most suitable option

to recover hidden gene correlations in moderately sparse data sets. Beyond 75% of dropout,

none of the imputation tools was able to approximately restore the true gene correlation

structure.

Taking into consideration the results of module preservation and edge recovery, it is proposed

to infer networks directly from low dropout single-cell transcriptomics data and use DCA-

imputed data for intermediate levels of dropout. Although Andrews & Hemberg [2019] declare

SAVER as the ’safest’ option for data imputation, this statement cannot be supported based

on these findings. The results of the edge recovery analysis, for example, indicated fairly low

precision and recall values for SAVER. In the case of high dropout levels, the value and benefit

of network inference is simply not given either with the original sparse data or with current

imputation methods.

Next to reliable network inference, identification of specific cellular populations via cell clus-

tering and annotation of clusters is the other important requirement for studying cell type-

specific networks. One frequently employed approach for cluster annotation is relying on

unique expression patterns of known marker genes. After finding that imputation methods

tend to induce false positive signals into (high dropout) gene-gene correlation data, addition-

ally, the effect on the correlation between cells was investigated. Intrinsically, the unique

expression profile should prevent marker genes from being too prone to dropout, which makes

an imputation not necessarily required prior to cell type annotation. However, in case im-

putation tools have been applied, it is of major importance that the imputation methods

have no negative effect on the overall expression profiles of marker genes. Andrews and Hem-

berg already pointed out that the reproducibility of marker genes tends to be reduced upon

data imputation when extracting and comparing marker genes before and after imputation

[Andrews & Hemberg 2019]. Here, the impact of imputation on known marker genes was

investigated on a biological data set.

Clusters without clear distinctions between one another were obtained both for sparse data as
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well as most imputation tools, except for minor improvements for DCA. These findings suggest

that imputation did not strongly improve cell type separation in low dimensional space. This

is in contrast to previous findings by [Eraslan et al. 2019], who used a synthetic data set with

lower levels of dropout, which may explain the discrepancy.

Based on the tSNE and Louvain cluster detection, an automated annotation pipeline was

implemented to compare quantities of annotated retina-specific cell types before and after

imputation. All over, annotation of pure retina clusters was only marginally improved using

DCA. All remaining tools resulted in fewer retina-specific cell types compared to the unimputed

data, raising concerns about their applicability and usefulness in this respect. Looking at

this analysis part alone, the results suggest that DCA, as well as ENHANCE, allow to annotate

marginally more retina cells and can thus improve, for example, cell type quantification.

However, ENHANCE produced a distorted low dimensional cluster embedding as well as cell

type ratio compared to the other data sets.

In general, it was demonstrated that the applied imputation tools maintain the usability

of marker genes leading to comparable quantities of annotated cell clusters. Based on this

analysis, again DCA was able to slightly optimize both, cell clustering and annotatability

compared to the sparse situation. Here, no tool led to an eradication of the marker gene

profiles, but they have not been found to add certain definiteness to the problem.

Summing up all results, using a benchmarking framework based on a downsampled bulk data

set, the effects of data imputation prior to network inference was investigated over various

dropout levels. While major network structures were still preserved in the low dropout data

sets, none of the included imputation tools helped to infer gene correlation networks from

high dropout data sets. DCA outperformed the unimputed data with respect to network

preservation and edge recovery precision on both moderate dropout data sets.

These results suggest that in data sets owning a moderate range of dropout, indeed DCA may

allow to infer cell type-specific gene correlation networks.
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Chapter 4

Imputation of cell type-specific

gene regulatory networks in human

retina organoids

In this chapter, the encouraging results of the previous analysis were further investigated.

The systematic evaluation of six different imputation approaches and their effect on gene

correlation networks highlighted that DCA allowed inferring meaningful network structures

from moderately dropout affected data sets. This might represent a window of opportunity

for inferring cell type-specific gene correlation networks. DCA was therefore applied to a

human retinal data set [Kim et al. 2019] to subsequently infer gene correlation networks, and

the differences between cell type specific networks were analysed and quantified. In a final

step, selected gene networks between both photoreceptor cell types (rods and cones) were

created and compared.

4.1 Workflow

To investigate how DCA influences the inference of (cell type-specific) gene correlation net-

works, different analysis steps has to be considered. While still focussing on the whole network

topology, it was analysed in a first step, if a scale-freeness was achievable in the unimputed and

DCA-imputed data set. Diving deeper towards cell type-specific networks, the DCA-imputed

cells were annotated via the marker genes provided in the original publication by Kim et al.

[2019]. The inferred cell types were then in a final step used to derive cluster-specific networks

which were biologically characterized and compared to another. An overview of this workflow
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is depicted in Figure 4.1.
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Figure 4.1. Evaluating the influence of DCA on inferring gene correlation networks from a

human retina organoid data set [Kim et al. 2019].

After an initial data preparation and imputation step (I), the ability to infer scale-free

topology networks was investigated for both the original and DCA-imputed organoid data

set utilizing WGCNA (II). Subsequently, the cone- and rod-specific clusters were annotated,

allowing to infer and compare the cell type-specific correlation networks (III).
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4.1.1 Data preparation

As described in the workflow Figure 4.1, a human retina organoid data set by Kim et al.

[2019] was used. This data set contained 19426 genes across 1346 cells and included 85%

zeros.

As already described in section 3.1.2, DCA operated on the sparse count data directly. Again,

version 1.3.1 of the tool was used, employing the standard conditions of the implementation.

The DCA-imputed and sparse data were preprocessed and annotated subsequently.

In their original study, Kim et al. clustered and annotated the cells w.r.t. the major cell types

in the retina: rods, cones, and Müller Glia cells. This was achieved via a set of unique marker

genes, which were provided in the original publication. As neither an annotation vector nor

a script was provided by Kim et al., these marker genes were used to perform a cell cluster

annotation according to the method section described in their paper.

Seurat-preprocessing. Briefly, the retina single-cell data sets were preprocessed as indicated

in the original publication using the Seurat environment (version 3.1.5.). Upon data import,

cells with less than 600 expressed genes, and genes that were not detected in at least 67

cells were discarded. These thresholds were derived from the publication. Subsequently, the

count data was normalized, log-transformed, and variable genes were extracted, using default

parameters as indicated in the tutorial∗. Prior to running the principal component analysis

(PCA), the logged-expression data was scaled. Cells were subsequently clustered using the

Louvain algorithm on the t-distributed stochastic neighbour embedding (t-SNE). Finally, the

expression of the cone-, rod-, and Müller Glia specific marker genes was analysed across the

detected Louvain clusters. The final cell cluster assignment was based on the expression

patterns of the marker genes within the Louvain clusters. An overview of the annotation

result is depicted in Supplemental Figure S-5. All annotation results can be extracted from

the uploaded Seurat-objects. More details will be provided in Section 7.1. Here, cells were

either annotated to pure retina cell types (rods, cones, MG cells), mixed retinal signals or

unassignable clusters.

4.1.2 Network inference by means of WGCNA

In this chapter, again the network inference tool WGCNA was used. Generally, networks were

inferred for, both the complete data sets and for the respective cone and rod subclusters. Re-

∗https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

garding the cell type-specific networks, only clusters with an unambiguous cluster assignment

were used. Unambiguity here refers to pure retinal cell types.

After defining the optimal β value, gene modules were detected using a minimal cluster size of

100, while all other parameters were left on default. The defined criteria on how the variable

β should be approached were discussed in detail in section 2.4.1 of the previous chapter.

Based on the cluster annotation, cell type-specific networks were inferred using the same

WGCNA-workflow.

4.1.3 Network characterization

After inferring cell type-specific networks from the DCA-imputed data, their biological infor-

mation was extracted and evaluated. While comparing developmentally and functionally very

similar cell types, it was analysed if cone- as well as rod-specific modules could be identified.

Furthermore, it was investigated if similarity important genes across both cell type-specific

networks were associated to different correlation networks.

GOI-module detection. In order to identify modules that were highly specific for the cone or

rod networks, the GOI-genes provided in the Kim et al. publication were used. Approaching

the importance of each gene inside the modules, the module membership (MM) per subnet-

work was calculated according to the WGCNA-tutorial. An explanation of the MM can be found

in Section 2.4.1.

Subsequently, the genes per module were ranked by the absolute MM values, such that the

highest MM value got assigned the highest rank. Finally, the resulting distribution of these

GOI-ranks across all modules was used to select cone- and rod-specific modules.

Hub gene preservation. As mentioned previously, subnetworks derived from functionally

similar cell types were compared. Thus, it is expected that many regulatory components are

shared across networks. To investigate, how many signals were shared, the preservation of hub

genes was investigated. In this context, genes with the highest MM-values within a module

were referred to as hub genes. Generally, two different approaches were used. In total, 220

hub genes (20 hub genes × 11 modules) were analysed for both the rod and cone network. To

generally analyse their preservation as key regulators in the opposing network, their maximal

MM value score across all modules was derived and compared.
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4.1. Workflow

Differential network analysis. Using another approach, not only preserved hub genes were

evaluated but the networks they regulate. For this approach, the top 30 highly connected

genes per module per photoreceptor subnetwork were extracted. The number of top hub genes

was increased to enlarge the number of candidate genes. Intersecting genes were considered as

preserved. For each preserved hub gene (target), two correlation subnetworks were extracted

- one for each retinal cell type. To do so, the top 300 genes with the highest adjacency value

towards the target gene were extracted. The target gene itself was added manually.

For target-specific networks between both photoreceptor classes, the differences in connec-

tivity and shared genes were calculated. Using the intramodularConnectivity-function by

WGCNA the connectivity k within the respective module was calculated per target across both

networks. The Tanimoto similarity was used to quantify the network similarity across cell

types (see Equation 4.1). This measure calculates the ratio of common genes (intersect) and

the union of all genes in both networks.

Tanimoto similarity:
cone genes

⋂
rod genes

cone genes
⋃
rod genes

(4.1)

Network visualization. Selected gene correlation networks were also visualised in this dis-

sertation. To do so, a smaller target subnetwork was calculated as described earlier, with

the exception that only 30 genes plus target were included. The network information was

visualised via the Cytoscape (version 3.8.2) tool. There, the gene layout was generated via

the Edge-weighted Spring Embedded Layout algorithm, whereby the weight represented the

absolute adjacency values. Furthermore, the spring strength and rest length were adjusted

to 100 and 150, respectively. All other layout setting were left on default.
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

4.2 Network inference after DCA imputation

Benchmarking six different imputation algorithms highlighted, that the imputation quality is

highly dependent on the tool itself, and the level of dropout. Among the included tools, DCA

showed the overall best performance on moderately sparse synthetic data sets. Therefore,

DCA was applied on an experimentally derived retinal organoid data set by Kim et al. to infer

gene correlation networks.

4.2.1 DCA imputation allows to generate scale-free topology networks.

The development of the SFT R2 model fit over twenty β values in the whole unimputed Kim

data set is shown in Figure 4.2a. Section 2.4.1 described the workflow on how the β value

was selected. As it can be seen in 4.2a, a SFT R2 model fit over 0.8 was reached with a β

value of at least twelve. The median connectivity development is shown next to it.

Here, a β of twelve was used to construct a gene dendrogram. As depicted in Figure 4.2b, a

dendrogram with a shallow hierarchy with solely five modules was detected. Scooping the full

potential of the single-cell transcriptomics data, cell type-specific gene correlation networks

were inferred. Therefore, the marker genes derived by Kim et al. were used to annotate the

sequenced cells. In the following step, it was investigated if an SFT-model fit can be achieved

in these subnetworks.

The results are depicted in Figure 4.2c and Figure 4.2e for cones and rods, respectively. In

both cases, the overall SFT model fit proofed to be low with only a peak in the rod data

at a β of 18. Since both data sets should be compared to each other, the same β value was

used. As stated earlier, if a model fit below 0.8 was revealed, a median connectivity above

one hundred should be approached. Therefore, a β of six was used to infer both cone and rod

subnetworks. As it can be seen in Figure 4.2d as well as 4.2f, again a shallow gene hierarchy

with only two modules was detected.

After investigating the unimputed organoid data, it was analysed if and how DCA imputation

influences network inference. Therefore, the whole data set was used as an input for the DCA

pipeline. Again, it was analysed in a first step if an SFT R2 model fit can be achieved for the

whole as well as the cell type-specific networks.
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4.2. Network inference after DCA imputation

(a) SFT-model fit, whole unimputed (b) Cluster dendrogram, whole unimputed

(c) SFT-model fit, cone-subdata unimputed (d) Cluster dendrogram, cone-subdata unimputed

(e) SFT-model fit, rod-subdata unimputed (f) Cluster dendrogram, rod-subdata unimputed

Figure 4.2. Scale-free topology estimation and gene cluster dendrograms for weighted gene

correlation network analysis in the sparse organoid retina data.

(a,c,e)Scale-free topology model fit and median node connectivity over twenty β values.

(b,e,f)Gene cluster dendrograms. Data visualised corresponds to the complete data (a,b)

as well as the cone(c,d) and rod(e,f) subsets. No SFT R2 model fit value larger than

0.8 was determined for both cell type-specific networks. Besides, all resulting gene cluster

dendrograms exhibited a shallow hierarchy with only a small quantity of detected modules.
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

(a) SFT-model fit, whole DCA-imputed (b) Cluster dendrogram, whole DCA-imputed

(c) SFT-model fit, cone-subdata DCA-imputed (d) Cluster dendrogram, cone-subdata DCA-imputed

(e) SFT-model fit, rods-subdata DCA-imputed (f) Cluster dendrogram, rod-subdata DCA-imputed

Figure 4.3. Scale-free topology estimation and gene cluster dendrograms for weighted gene

correlation network analysis in DCA-imputed organoid retina data.

(a,c,e)Scale-free topology model fit and median node connectivity over twenty β values.

(b,e,f)Gene cluster dendrograms. Data visualised corresponds to the complete data (a,b)

as well as the cone(c,d) and rod(e,f) subsets. While no SFT R2 model fit larger than

0.8 was determined in the complete DCA-imputed retina organoid data set, still a deep

hierarchy was detected in the corresponding cluster dendrogram. The cone- as well as the

rod-specific gene correlation networks highlight a SFT R2 model fit above 0.8. Similar to

the complete network data, a deep hierarchy was detected.
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4.2. Network inference after DCA imputation

As it can be seen in Figure 4.3a, similar to the unimputed data, none of the included β values

reached a model fit above 0.8. Given the β-selection procedure, a median connectivity above

one hundred was aimed for. Here, a β value of 12 was selected to construct a gene cluster

dendrogram for the whole, DCA imputed data set.

Figure 4.3b illustrates the gene hierarchy within the whole DCA imputed organoid data set.

In contrast to Figure 4.2b, a deep gene structure could be uncovered, giving rise to twenty

modules with sizes ranging from 124 to 1993 genes.

This trend was even more pronounced in the cell type-specific subnetworks. Based on the

annotation via marker genes, a cone-specific subset of the imputed organoid data was gener-

ated. Figure 4.3c shows the SFT model fit of this subpopulation. Here, a β value of twelve

resulted in a sufficiently high R2 value, which was close to the plateau phase.

Based on this β value, a gene dendrogram was calculated (Figure 4.3d). As already seen

for the whole organoid data set, a deep hierarchical structure was achieved. In total eleven

modules were detected with 220 genes in the smallest and 5176 genes in the biggest module.

Consistent and comparable results could be achieved for the rod-specific subpopulation. Next

to an optimal model fit for a β value of twelve (see Figure 4.3e), a meaningful gene dendrogram

could also be constructed (Figure 4.3f). In this rod-specific subnetwork, eleven modules were

detected containing a minimum of 161 and a maximum of 4590 genes. Though the same

number of modules was detected as already highlighted in the cone subnetwork, there is no

biological connection between the module namings.

Summing this part up, it can be seen that prior to imputation, generally no optimal, consensus

SFT fit could be determined. When calculating the gene dendrograms, no hierarchy was

detected. This result was found for the whole as well as for the cell type-specific subnetworks.

After DCA imputation of the whole organoid data set, the SFT fit was better approachable.

Although no SFT model fit did exceed a value of 0.8 in the overall network, the typical plateau-

phase was observable, resulting in a deep hierarchical structure within cluster dendrogram.

Both cell type-specific subnetworks highlighted an optimal SFT fit with a β of twelve, as

well as hierarchically structured gene dendrograms revealing eleven modules. Allover no grey

module was detected which usually contains the lowly correlated genes.

4.2.2 Specific modules for rods and cones can be identified in cell type-

specific networks

After stating the influence of DCA on network topology, the following analysis steps will

evaluate whether cell type-specific networks differences were identifiable. In the first step, rod-
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

as well as cone-specific modules were identified in the respective cell type-specific networks,

again using the GOI lists that have been used previously to annotate the cell clusters.

For each gene, a module membership (MM) score was calculated, by correlating the individual

genes to the module eigengenes. MM-values range from minus one to plus one, with values

on both ends of the spectrum representing highly (anti-) correlated genes, and hence indicate

their importance for the module. It is assumed that GOI genes, which were used to annotate

the rod- and cone-specific cell clusters play a regulatory role in the respective cell type.

Therefore, these genes should have some hub gene-like properties, which would be associated

with low ranks in MM. Here, the absolute MM-values were used to calculate a ranking of the

importance of each gene in each module.

Figure 4.4 shows the distribution of ranks across all detected modules for the cone- and

rod-specific GOIs within their respective cell type-specific networks.

For the rod network (Figure 4.4(A)) as well as for the cone network (Figure 4.4(B)), one

module could be identified that accumulated GOIs with an overall lower median rank. Rod

GOIs were found to play an important role in the greenyellow module in the rod network, while

cone GOIs were found to be important in the purple module in the cone network. Although

other modules such as the pink (in the rod network) or the red (in the cone network) owned

generally low ranks as well, the variance was larger compared to the aforementioned modules.

Assuming that the greenyellow module from the rod network contained mainly rod-specific

network configurations, no similar network configuration should be detected in the cone-

specific network. The same holds true for the other direction meaning that cone-specific

genes from the purple module, should not accumulate high ranks in modules in the rod

network.

To examine the degree of truth behind this hypothesis, the MM-values of the top 20 genes from

the cell type-specific modules were compared across all modules of the opposing network. The

result is depicted in Figure 4.5. In cases where these hub genes would retain their importance

in the respective other cell type’s network, they would again accumulate high MM-values in

some modules.

Regarding the greenyellow hub genes, originating from the rod network, most MM-values were

found to be close to zero across all modules in the cone network. Solely the cone-magenta

and cone-red module showed slightly higher median MM values. However, no module was

identified that owned consistently high MM-values.

For the purple hub genes, originating from the cone network, the results were slightly different

in the rod network (see Figure 4.6b). Here, more modules revealed elevated median MM-
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4.2. Network inference after DCA imputation
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(a) Rod network
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(b) Cone network

Figure 4.4. Distribution of GOI ranks in the DCA-imputed retina sub-cell type networks.

Using the correlation of genes towards the first principal component of the modules, called

module membership (MM), the importance of the GOI can be stated across modules.

Therefore the absolute MM values were translated into ranks. Lower ranks hereby corre-

spond to higher importance or relevance. For the rod (a) as well as cone (b) sub-networks,

clearly one module can be highlighted. Whereby the greenyellow module contains the lowest

median ranks for the rod network, similar results were found for the purple module in the

cone network.
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

values. Though the rod-brown module even showed a median value of 0.65, it remained lower

than the median MM-values of inside the original cone-purple module (0.89).
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(a) Rod-module hub genes in cone network
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(b) Cone-module hub genes in rod network

Figure 4.5. Distribution of cone and rod specific module membership values in complementary

network.

After identifying the cone and rod specific modules in the respective network, the unique-

ness of the hub genes in these modules is analysed. Therefore,the top 20 MM-genes per

module are extracted and the distribution of their MM-values is compared across all other

modules in the opposite network. Both, the MM values of the rod-greenyellow hub genes

in the cone network (a), as well as the cone-purple hub genes in the rod network (b) show

no module with high MM-values but low variance.

In summary, cell type-specific networks from the rod- and cone subpopulation highlighted one

module, where the respective GOIs contained a high importance. These results were unique

for the respective network, as the hub genes of the cone-purple and the rod-greenyellow module
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4.2. Network inference after DCA imputation

were not preserved in their status in the opposite network.

After stating that cell type-specific configurations of the rod- and cone networks remain

unique, it was investigated how many hub genes preserve their hub status at all. Similar to

the previous analysis, hub genes which remain important should retain a high MM value in

any module of the opposite network. Therefore, not only the hub genes of the GOI-modules

were analysed in the opposite network, but the hub genes across all modules.

To highlight the maximal importance these hub genes can reach in the opposite network,

the highest scoring MM-value across all modules was extracted. The results are indicated in

Figure 4.6. In total 220 hub genes of each cell type-specific network were extracted. Generally,

whereby the hub genes of the blue, brown, turquoise, and yellow module from the rod network

appeared to score high MM values in the cone data, black and greenyellow hub genes showed

the opposite result. In the cone network, however, hub genes from the black, blue, greenyellow,

and turquoise modules revealed many MM values above 0.8 in the rod subnetwork. Green

and magenta hubs however indicated lower max-MM-values. In concordance to the analysis

before, the rod- and cone-specific modules indicated lower MM values across networks.
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(a) Rod-hub genes in Cone network
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(b) Cone-hub genes in Rod network

Figure 4.6. Maximal module membership values of hub genes in the complementary networks.

The distribution of module membership(MM) values from 20 hub genes per rod (A) and

cone (B) network in the opposite network. Red dots indicate a MM value above 0.8 in

the opposite network. While some hub genes were preserved across network, such as rod-

brown and cone-black, other hub genes were less preserved. Especially the cone-green and

cone-magenta hubs were more unique for the cone network.
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

After stating that some hub genes conserve their hub gene status across networks by scoring

high MM-values, it was investigated if the preserved hub genes were associated to similar gene

correlation networks. Therefore, the top 30 hub genes of each module in both photoreceptor

networks were extracted. Genes occurring in both networks were considered as preserved. In

a following step, the gene correlation networks around these hub genes were identified in each

subnetwork and compared using the Tanimoto similarity. A Tanimoto similarity close to one

indicates similar gene sets, whereby values closer to zero state the opposite. An overview of

the results is provided in Table 4.1.

In total, 35 hub genes were found to be preserved between the cone and rod subnetworks.

However, the Tanimoto similarity differed widely across the surrounding correlation networks.

RRN3P2-, ALLC-, ADAMTSL3-, and RHOF-specific networks, for example, owned a higher

Tanimoto similarity of above 0.6, indicating that these hub genes are densely connected to the

same set of genes in both networks. other gene networks TBC1D10A, PPL, and EIF4EBP1

revealed the opposite trend, since only small similarity values of 0.14, 0.09 and 0.08 were

calculated, respectively.

Moreover, larger differences within the intramodular connectivity (KIM ) values of the target

genes were detectable. The KIM values were calculated to quantify the compare the hub

gene-status of the target genes across networks, since a fixed number of high-connected genes

was extracted. Generally, the highest KIM values were identified in the cone network for

LANCL3 with 669. In the rod-specific network, MUC16 reached the highest K value with

414.4. While 23 genes revealed K values below 100 in the cone-specific data, only 8 were

detected in the rod data.

It was found that the activation of the ErbB signaling pathway was associated to an eye

disease called age-related macular degeneration [Sheu et al. 2019]. EIF4EBP1 exhibited to

be an interesting candidate for a detailed investigation, as it is a member of the ErbB-

signaling pathway, and is part of different subnetworks in rods and cones. Therefore, smaller

subnetworks of solely 30 genes plus the target EIF4EBP1 were generated, to ensure a visual

inspection of the network structure. Again, only a small intersect of three genes was detected

with a Tanimoto similarity of 0.051 within this smaller subnetworks. The resulting networks

are visualised in Figure 4.7 and Figure 4.8.

As already indicated by the small Tanimoto similarity, both EIF4EBP1-subnetworks reveal

very different layouts. Though RAD23A and ZNF146 were found in both networks, their

roles and connectivity changed exceedingly. Whereby both genes were highly connected to

the target in the cone network, they illustrate less strong interactions in the rod data. While

the target gene EIF4EBP1 pointed out a stronger relative correlation towards a group of highly
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4.2. Network inference after DCA imputation

Table 4.1. Overview of preserved hub genes.

From the cone and rods specific network, the top 30 hub genes were extracted and the in-

tersect was further investigated. Building subnetworks around these target genes (here 300

genes) from the cone and rod data, the intersect and Tanimoto similarity was calculated.

Furthermore, the intramodular connectivity (K) of the target gene from both data sets was

defined.

Gene name KIM Target Gene (Cones) KIM Target Gene (Rods) Intersect Tanimoto Similarity

EIF4EBP1 88.90 245.60 47 0.08

PPL 129.20 277.50 52 0.09

TBC1D10A 189.40 250.40 75 0.14

SOX13 132.10 252.60 109 0.22

MIR601 639.80 106.40 124 0.26

KCNA2 28.50 16.60 124 0.26

SHANK1 31.30 187.90 127 0.27

ADRA2B 29.40 197.00 128 0.27

IL17C 17.60 181.00 134 0.29

C1QTNF7 22.60 173.20 134 0.29

TMC5 30.60 16.70 135 0.29

MUC16 658.60 414.40 138 0.30

LANCL3 669.00 392.70 139 0.30

MOGAT3 39.60 18.20 139 0.30

C6orf141 18.50 183.90 139 0.30

SLC1A6 23.60 171.80 141 0.31

TCF7L1 124.80 248.10 141 0.31

NR4A1 29.00 173.00 141 0.31

CARNS1 97.60 48.30 143 0.31

KCNJ16 636.60 370.80 144 0.31

QPCT 86.90 31.60 146 0.32

TLR9 22.10 183.20 146 0.32

CNTN6 22.20 185.40 154 0.34

ASB5 27.10 183.70 156 0.35

CPT1B 36.50 16.00 170 0.39

QRFP 28.20 183.40 175 0.41

HTN1 113.40 58.60 182 0.43

GSTA7P 654.60 382.80 193 0.47

UGT8 50.10 19.70 197 0.49

HOXC11 27.60 188.20 199 0.49

RHOF 129.60 250.10 228 0.61

ADAMTSL3 21.20 171.90 235 0.64

UPB1 25.80 181.10 237 0.65

ALLC 129.70 261.10 238 0.65

RRN3P2 25.00 175.00 241 0.67

connected genes (RAD23A-EIF4EBP1-ILVBL-mir210HG-FKBP1A) in the cone subnetwork,

it appeared less connected in the rod data. There, two bigger cliques of genes (OSGEP-

SAP130-HAGHL and RGS5-PARP16-ZNF600-PSAT1-FAM162A) were detected. Generally,

many zinc-finger proteins (ZNF) were included in both networks.
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

Figure 4.7. Rod-specific subnetworks of EIF4EBP1.

Based on the correlation value, the top 30 genes around EIF4EBP1 (target) were extracted

and plotted. The width and transparency of the edges corresponds to the relative correlation

strength. All included genes were coding genes.
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4.2. Network inference after DCA imputation

Figure 4.8. Cone-specific subnetworks of EIF4EBP1.

Based on the correlation value, the top 30 genes around EIF4EBP1 (target) were extracted

and plotted. The width and transparency of the edges corresponds to the relative correlation

strength. All included genes were coding genes.
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

In order to put these networks into a biological context, the ARCHS4 was search for predicted

human phenotypes and GO-terms of retina-related results. An overview is provided in Table

4.2.

For the cone-specific subnetwork of EIF4EBP1, ILVBL and mir210HG were strongly con-

nected for example. Both genes were predicted to hemorrhage associated terms, since mir210HG

revealed connections to angiogenesis. Alongside, also FKBP1A was connected to mir210HG

revealing an association to the TGF-β signaling pathway.

In the rod-EIF4EBP1 network, PARP16 and ZNF600 for example were predicted to be in-

volved in either retinal dysplasia and abnormal rod and cone electroretinograms. Another

stronger correlation was found between the target and IFT81, which was predicted to influ-

ence retinal rod cell development. Astrocyte associated prediction were found for EIF3L and

TMEM209, which revealed a high correlation in the rod-EIF4EBP1 network.

Summing up the previous section, constructing target gene-specific networks from conserved

hub genes across rod- and cone-specific subnetworks highlighted the following: While some

target-specific networks were consistent across networks, others differed severely. One target

of the later scenario was EIF4EBP1, which is known to be associated to the ErbB signaling

cascade. By constructing smaller networks across cell types, the structure was visualised and

analysed. Indeed, many predicted human phenotypes associated to retinal abnormalities were

identified for various members of both networks.

Coming back to the initial aim of comparing rod- and cone-specific gene correlation networks

on a biological level, it can be stated that using the included analysis steps, a groundwork

was generated.
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4.2. Network inference after DCA imputation

Table 4.2. Overview of gene associations detected in the EIF4EBP1 subnetworks.

Predicted human phenotypes and GO-terms of EIF4EBP1-network genes. The results were

obtained from https: // maayanlab. cloud/ archs4 , except for entries found in ’other’.

All results were filtered for retina-associated terms. ERG refers to electroretinogram, a

diagnostic test used to measure the electrical potential of the retina.

Gene name Network origin Predicted human phenotype Predicted GO-term Other

ILVBL Cone Hemorrhage of the eye - -

mir210HG Cone - - Association to angiogenesis

FKBP1A Cone Retinal dysplasia -
Association to TGF-β

signaling pathway

RPL13A Cone
Absent rod-and cone-mediated

responses on ERG
- -

TUBD1 Cone Retinal dysplasia - -

PARP16 Rods Retinal dysplasia retinal cone cell development -

ZNF600 Rods
Abnormal rod and cone

electroretinograms
- -

RGS5 Rods Chorioretinal atrophy
retina vasculature morphogenesis

in camera-type eye
-

HAGHL Rods
Attenuation of retinal blood vessels,

Retinal dysplasia
- -

SAP130 Rods Abnormality of the astrocytes - -

OSGEP Rods

Abnormal rod and cone

electroretinograms,

Attenuation of retinal blood vessels,

Absent rod-and cone-mediated

responses on ERG,

Severe visual impairment

- -

ELK3 Rods -
retina vasculature morphogenesis

in camera-type eye
-

POLK Rods

Attenuation of retinal blood vessels,

Abnormal rod and cone

electroretinograms

positive regulation of astrocyte

differentiation
-

TMEM139 Rods
Pigmentary retinal degeneration,

Hemorrhage of the eye
- -

EIF3L Rods Abnormality of the astrocytes - -

TMEM209 Rods Abnormality of the astrocytes - -

IFT81 Rods Retinal dysplasia retinal rod cell development -
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

4.3 Discussion

Based on the encouraging results that have been discussed in the preceding chapter, it became

necessary to verify them with respect to their real world application and their biological

relevance. In this chapter it was therefore investigated whether the proposed workflow allowed

for the inference of cell type-specific gene correlation networks from real scRNA-seq data.

DCA imputation enables network inference. As the first criterion, the ability to infer scale-free

topology gene correlation networks was investigated on the complete and celltype-specific as

well as sparse and DCA-imputed retina data. After stating that indeed DCA allowed for scale-

freeness in the cell type-specific networks, gene modules were identified. The resulting cluster

dendrograms revealed a deep hierarchy of genes, which was not found in any sparse data set.

From previous studies it was stated that DCA introduces spurious correlation signals into the

data [Breda et al. 2021, Andrews & Hemberg 2019]. Here, it can be noted that no grey

module was detected after DCA-imputation. In WGCNA, the grey module usually summarizes

all lowly and uncorrelated genes within the data set. Concerning the sparse retina organoid

data, also no grey module was detected, but also no scale-free topology was determinable.

As already stated in the previous chapter, the general increase fo gene correlation values

by DCA would explain why no lowly- or uncorrelated genes were identified. However, in

contrast to conventional bulk RNA-seq analysis in WGCNA, here a highly filtered data set was

used. A large grey module could moreover hint towards an insufficient data cleaning prior to

network inference. In general, the presence or absence of a grey module does not per se define

the quality of the inferred gene correlation networks. But taking also the increased overall

correlation structure into consideration, it becomes mandatory to analyse the resulting gene

correlation networks with care and caution.

Unique celltype-specific signals can be found. After stating that DCA indeed, allowed infer-

ring a scale-free topology and deeply structured celltype-specific network, the resulting gene

modules were furthermore analysed.

By employing the set of marker genes for cones and rods, provided by Kim et al. [2019], it

was investigated if unique network configurations in certain modules could be identified. The

importance of these marker genes was therefore determined via a ranking approach. Thus,

one module per network was identified in which the celltype specific marker genes revealed

overall high low. In order to verify the uniqueness of these celltype-specific modules, the

importance of these module hub genes was checked in the opposite network based on their
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module membership, which corresponds to the intramodular connectivity.

The overall importance was very low for the rod-specific genes that were assigned to the

greenyellow module in the cone network. This outcome indicates that the rod-signatures were

very specific for the rod-network, which cannot be detected in the cone-network. Regarding

the importance of the cone-purple hub genes in the rod network, a different result was seen.

Though no module was identified, which owned similarly high MM-values than in the cone-

purple module, the rod-brown module revealed higher MM-values. This altogether indicates,

that the cone-specific hub genes own a relatively high importance in the rod-specific network.

When investigating the cell type embedding in Supplemental Figure S-5b, it can be seen that

indeed a few cone cells were detected in the rod cluster.

While celltype-specific networks mainly rely on the cell (cluster) annotation result, the purity

of the celltypes dictate the quality of the correlation network. The celltype-specific networks

could be strongly biased by impure clusters, potentially masking true or imposing false signals.

Here, marker genes provided by Kim et al. were used to examine the expression pattern of

the previously clustered, DCA-imputed data. These marker genes were, however, identified in

a data-driven approach, based on the cell clustering of the sparse data as well as external

knowledge. Therefore, these expression markers might produce diverging cluster annotation

results in the DCA-imputed data compared to the unimputed retina organoid.

Another major challenge may arise from the fact that two different celltypes were compared

which were closely related to each other. Thus, the question arises, if these marker genes

are selective enough to sufficiently separate these two related celltypes. Rods and cones both

belong to the class of photoreceptors, which are responsible for visual photo-transduction.

Perhaps, contrasting photoreceptors and MG cells would derive more distinct results.

Apart from the marker genes, also the annotation procedure itself influences the cluster pu-

rity. Depending on the annotation pipeline as well as the prior parameter choices during

data preprocessing and cell cluster detection, the annotation result can change. Annotation

procedures via marker genes often rely on an initial cell clustering, so that ultimately whole

clusters will be assigned to a respective celltype to increase the robustness of the results. Also

in this dissertation, whole cell clusters were annotated to either rods, cones , MG cells or

non-retinal groups, while only unambiguous clusters were used for network inference. Still

the choice of the low dimensional embedding, the cluster detection algorithm as well as the

resolution parameters influence the clustering and ultimately the annotation. For the retina

organoid data set, neither an annotation script nor the annotation result (in form of a vec-

tor) was provided. Therefore, the pipeline was recreated using the sparse information from

the publication. To increase reproducibility, the actual Kim-annotation results could have
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4. Imputation of cell type-specific gene regulatory networks in human retina organoids

been directly compared to the DCA-imputed and clustered data. A more in-depth discussion

regarding the reproducibility of annotation results will be presented in the end of this thesis.

Still, the acquired results indicate that cone as well as rod specific modules were detectable

in the DCA-imputed data using the set of marker genes provided by Kim et al., which were

unique for the respective network.

Inferred networks revealed biological meaningful results. Using marker genes to identify rod-

and cone-specific modules in the rod- and cone-specific networks already highlighted dif-

ferences within the celltype-specific networks. Based on this analysis, conserved hub genes

were systematically analysed for the respective gene correlation networks across celltypes.

EIF4EBP1, a translation initiation factor binding protein was identified as a conserved hub

genes, regulating different networks in cones and rods. Predicted human phenotypes as well as

GO-terms were extracted for the top 30 surrounding nodes. Though the results were filtered

for retina-associated terms, often pathology-related results were gathered. When furthermore

considering the connectivity between nodes, homogenous results were identified.

Given this data-driven approach on a DCA-imputed single cell transcriptomics data set, celltype-

specific gene correlation networks were inferable. The resulting biological analyses of one net-

work highlighted that indeed, retina associated predictions were detected. While only three

genes, including the target, were encountered in both celltype-specific networks, the incor-

poration was different. These results suggest that EIF4EBP1 plays different roles in both

photoreceptor celltype-specific networks.

While the target gene itself was less connected in the cone-specific EIF4EBP1 subnetwork

compared to the rod network, it revealed some stronger correlations towards ILVBL and

miR210HG, which were associated to hemorrhage-like terms. Additionally, FKBP1A was also

highly correlated to mir210HG in the cone-subnetwork. This gene revealed some associations

to the TGF-β signaling pathway, which itself proofed to take a significant role in so-called wet

AMD [Wang et al. 2019]. Furthermore, was miR210 described to regulate CFB, a Complement

Factor B, which is associated to AMD via a promotion of drusen accumulation in RPE cells

[Ghanbari et al. 2017, Chen et al. 2008]. In the rod-specific subnetwork, more general rod

(IFT81) and cone (PARP16) cell developmental terms showed high correlations towards the

target EIF4EBP1. As already seen for the cone-specific subnetwork, three other hemorrhage-

associated genes (TMEM139, ELK3, and OSGEP) were detected. However, all of these genes

were mainly connected via PARP16 and not EIF4EBP1. Summing this part up, though

different gene correlation subnetworks were associated to EIF4EBP1 in rods and cones, similar

biological terms and functions were discovered. In both cell type-specific subnetworks many
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4.3. Discussion

hemorrhage-like terms were highly correlated to the target EIF4EBP1 directly or via a direct

neighbor. As for example neo-vascularization represents a central characteristic of wet AMD,

these modules represent compelling candidates, which should be analysed under (wet) AMD

conditions.

Since the field of network inference is still up-and-coming in the domain of single cell tran-

scriptomics, it will demand further efforts. Though this analysis indicated a possible window

of opportunity for using data imputation prior to network inference, further evaluation is still

necessary. However, given the results presented in this chapter, DCA allowed inferring scale-

free, hierarchically structured, celltype-specific networks which revealed distinct biological

characteristics.
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Chapter 5

Characterization of human retinal

organoids

Age-related macular degeneration (AMD) is the major cause of loss of vision in industrialised

countries. However, the mechanisms of pathogenesis remains widely unknown to the current

day which still hinders an optimal therapeutic approach. With the combination of single-

cell transcriptomics and its higher resolution, it might be possible to shed some light on the

molecular characteristics of this disease. Though animal models often facilitated investigation

and deciphering disease progressions in the human system [Kim et al. 2020], they are proofed

to be unsuitable in AMD studies since the architecture of the eye severely differ across ’do-

mains’. An overview of the retina as well as AMD was already provided in Section 1.4 of the

Introduction.

Here, a novel, neo-natal, human retina organoid (HRO) system should be characterized to

infer its suitability. Therefore, two, untreated HRO organoids were subjected to a scRNA-seq

analysis. From now on, these two organoid samples will be denominated as HRO-2 for sample

two, and HRO-3 for sample three.

As of the current knowledge, AMD is understood to start in the foveal-parafoveal region of

the retina [Curcio 2001]. Therefore, the question arises whether the cellular composition of

these organoids is sufficiently close to the foveal region. Using two different approaches to

annotate the single-cell transcriptomics data of two untreated organoids, the overall cellu-

lar composition is described. In a latter step, these organoids are further characterized by

comparing the data to other (human tissue) reference data set. All previous parts aimed in

characterizing the HRO system, trying to state the suitability of the HRO system based on

cell type distribution and expression pattern correlation.
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5. Characterization of human retinal organoids

Apart from the cellular composition, another important question concerns the developmental

maturity of the organoid systems. Therefore, it was investigated to what extend known

developmental processes can be reproduced by the organoid model. Using RNA velocity,

developmental processes within the single-cell data can be visualised, potentially providing a

new analysis depth.

5.1 Workflow

Human retina organoids were established to study the defined molecular and cellular changes

upon AMD onset (Völkner et al., in revision). The general workflow of this chapter is depicted

in Figure 5.1. To characterize the HRO system, two different annotation approaches were

used. Further steps analysed if the HRO system owns expression patterns that are closer

correlated to the inner retinal region (fovea) or periphery. Using the ratio between unspliced

and spliced transcripts, a developmental trajectory was inferred to order the cells based on a

pseudotime variable.

5.1.1 HRO characterization

HRO single-cell transcriptomics data preprocessing, visualization, and most of the down-

stream analysis were conducted in scanpy (version 1.3.1). Two untreated HRO samples were

used for the characterization and annotation procedure.

Data preprocessing. All steps were adapted from the scanpy-tutorial webpage. Cells with

less than 200 expressed genes and genes which were not expressed in at least three cells

were discarded immediately. Based on the distribution of gene counts and the percentage of

mitochondrial genes, cells with less than 2500 genes and four per cent mitochondrial genes

were kept. The count data was normalised according to the tutorial, highly variable genes were

detected using the standard parameters and kept for downstream analysis. Finally, the data

was log-transformed, variation factors were regressed out (number of genes and percentage of

mitochondrial genes) and scaled in accordance to the scanpy tutorial.

Cluster detection. Dimensionality reduction was done using principal component analysis

(PCA). Therefore, a neighbourhood graph was calculated using ten neighbours and 40 prin-

cipal components. Following a Uniform Manifold Approximation and Projection (UMAP)

embedding, cell clusters were detected based on the Louvain clustering implementation of

scanpy using a resolution parameter of two, to detect smaller clusters.
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Figure 5.1. Analysing and characterising the HRO systems.

In a first step, the single-cell HRO transcription data was analysed and annotated using

two approaches: (1) a manual annotation using unique expression pattern of marker genes

and (2) a machine learning approach, which uses transfer learning. After identifying

retinal cell populations, the correlation towards foveal or peripheral tissue single-cell data

was analysed. Finally, developmental trajectories within the HRO system were calculated

and investigated via RNA velocity.

Cluster annotation

In order to annotate the HRO cells, two different approaches were used. While one approach

requires external gene of interest (GOI) lists, that are based on published knowledge, and

compares the expression pattern of predefined clusters, the other approach uses a transfer

learning algorithm, which depends on an annotated reference data set to learn from.

Manual annotation. GOI lists were assembled of known marker genes aiming to discriminate

the following cell types: cones, rods, Müller Glia (MG) cells, bipolar cells and Amacrine-

Horizontal-Ganglion (AHG) cells. These genes were derived using expert knowledge via per-
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sonal communication with Mike Karl. The overlap of genes between GOI lists and single-cell

data was taken as input for a dot plot representation in scanpy where the expression of the

selected marker genes across all Louvain clusters was analysed. All dot plots were generated

using scanpy version 1.4.1. Different scanpy versions were used, since the initial manual clus-

ter annotation was performed using the older version. To avoid differences in the cell cluster

embedding and therefore a re-evaluation of the GOI expression patterns, preprocessing was

performed using version 1.3.1. The local expression pattern of these markers was addition-

ally plotted onto the UMAP embedding. Generally, if the majority of the cell type-specific

marker genes were uniquely expressed in one Louvain cluster, this cluster was assigned the

respective cell type. Finally, all the Louvain clusters were manually annotated to one of the

five previously mentioned cell types adding one premature photoreceptor cluster.

Transfer Learning using CaSTLe. In opposite to manual annotation, a machine learning tool

called CaSTLe was applied which learns expression profiles from a reference data set and

transfers that knowledge to an un-annotated data set [Lieberman et al. 2018].

Here, three different reference data sets were used: a fully developed human retina organoid,

an adult periphery data set, and an adult fovea data set (all taken by Cowan et al. [2020]).

While 37 different retinal sub-cell types across 44 000 cells were detected in the Cowan de-

velopmental organoid data set, 41 and 53 cell types were annotated in the adult foveal and

peripheral data, respectively. While the adult foveal data set includes 20 000 cells, the pe-

ripheral counterpart contains 35 000 cells collected from three donors. An overview of the

condensed cell counts is represented in Table 5.1. All three Cowan et al. [2020] data sets were

retrieved from the iob-webpage∗.

Though a high resolution of retinal sub-cell types was provided by all Cowan et al. [2020] data

sets, the sub-cell types were compressed into major groups to increase the training perfor-

mance. Initially, the Cowan data sets contained a rather fine-grained cell type classification.

For example, MC (Müller Glia) cells were split into three distinct subtypes with only a few

dozen annotated cells in one of those subtypes.

The annotation procedure was run in accordance with the tutorial of the CaSTLe github

page†. CaSTLe requires both, the reference as well as the unannotated data set to be in a

SingleCellExperiment format. From here on those data sets will be referred to as source

and target. After identifying the set of common genes between source and target, both data

sets were subsetted on those. Then, 100 genes with the highest mean expression in the source

∗https://data.iob.ch/
†https://github.com/yuvallb/CaSTLe/blob/master/CaSTLeMultiClass.R
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Table 5.1. Overview of cell types and amounts of the Cowan et al. [2020] data sets.

In the original data, more numerous cell types were found. To increase classification

performance, the annotation data by Cowan was condensed. An overview of the whole

data is depicted in Supplementary Table S-2 and Table S-3. Legend: AC - Amacrines,

Ast - Astrocytes, CdBC/ChBC - Bipolars, CM - Choroidal melanocyte, END - Endothelial

cells, FB - Fibroblasts, GC - Ganglions, HC - Horizontals, MC - Müller Glia, PER -

Pericytes, RBC - Rod bipolar cell, RPE - Retinal pigment epithelium, uG - Mircoglia

Cellcount
Cell type

Organoid Foveal Peripheral

AC B 1230 192 417

AC Y 81 123 330

Ast - 149 172

CdBC 1700 2058 2418

ChBC 658 398 1182

CM - - 157

cones 12973 1375 1202

END - 368 208

FB 02 - 252 1355

GC - 6086 35

HC 1762 1037 844

MC 10542 3886 8207

PER - 75 85

RBC 461 1016 4191

rod 13913 1894 13029

RPE 130 84 186

uG - 172 171

and target were identified. Additionally, the top 100 genes with the highest mutual infor-

mation from the source data were extracted. The union of these gene sets were furthermore

preprocessed by removing high inter-feature correlations. Finally, the logged expression en-
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tries were converted into four ordinal bins [0], (0, 1], (1, 6], (6,∞), as described in the tutorial

and original publication [Lieberman et al. 2018]. Prior to training the classification model,

genes were removed for which all values fell in the same bin. The cell type annotation of

the source data was transformed into numerical entries, starting at zero. In CaSTLe, an xg-

boost classifier was trained on 80% of the source data which was randomly sub-sampled. All

model parameters were elected following the original publication. The model performance

was evaluated on the remaining 20% of the source data, using sensitivity (Equation 5.1) and

specificity (Equation 5.2).

Sensitivity =
True positives

False negatives+ True positives
(5.1)

Specificity =
True negatives

False positives+ True negatives
(5.2)

Afterwards, the target data was fed to the classification model. In this dissertation, the multi-

class implementation was used. Finally, the CaSTLe-classified HRO data was re-translated

from numerical entries into the respective cell type levels.

Merging both HRO data sets. After annotating both untreated HRO systems via the manual

marker gene expression and machine learning workflow, both data sets were merged on top of

each other. Here, the low dimensional UMAP embedding of HRO-2 was used as a basis. In

a first step, both data sets were filtered on the set of common genes. Then, a PCA, neighbor

detection, and UMAP embedding was perfomed on the filtered HRO-2. The ingest function

from the scanpy tool was used for mapping labels from HRO-2 to HRO-3. Subsequently,

both data sets were concatenated. To infer the consistency of rods, cones and MG cells, a

PCA was performed on those three cell types.

5.1.2 Correlating HRO system to foveal and peripheral data sets

In the previous approach, the HRO cells were annotated manually or via a transfer learning

tool. To infer whether HRO photoreceptors and MG cells are closer to a foveal or peripheral

expression pattern, the correlation between three reference single-cell data sets and HRO

photoreceptors and MG cells were calculated.

Here, three different adult reference data sets were used: two human data sets by Cowan et al.

[2020] and Voigt et al. [2019], as well as a macaque experiment by Peng et al. [2019b]. All

human data sets contained information from three different donors. Each reference data set

84



5.1. Workflow

as well as the HRO single-cell data was subsetted to rods, cones, and MG cells, respectively,

to compare their expression patterns. For the HRO samples, the CaSTLe cell annotation was

used. For each specific cell type, the gene intersect between the reference and the HRO data

was identified. Afterwards, a mean gene expression vector of the reference rods, cones and

MG cells was calculated using the log10(x+1) transformed count data. In cases where more

than one donor was present, one mean vector per donor was calculated. The HRO single-cell

data was also log10(x+1) transformed to match the reference data.

Finally, the Pearson correlation was calculated for each selected HRO cell against all previ-

ously derived mean expression vectors of the reference data sets.

5.1.3 Approach developmental dynamics via RNA velocity

During the experimental workflow, cells are disrupted to extract the RNA. Therefore, any

developmental information is theoretically lost. However, the ratio between unspliced and

spliced transcripts can be used to infer a pseudotemporal variable, called RNA velocity.

Inferring developmental dynamics in form of the RNA velocity required a few preprocessing

steps, which are stated on the github page∗. First, samtools(version 1.6.) was used to sort

the input BAM files by position. Second, velocyto(version 0.17.17) was used to calculate

the RNA velocity [La Manno et al. 2018] on both HRO samples. Therefore, the sorted

BAM-files, the cell-barcodes, and the genome annotation file was required. Finally, the tool

scVelo (version 0.2.3)[Bergen et al. 2020] was used to translate the RNA velocity into cellular

dynamics. scVelo is embedded in the scanpy framework.

The RNA velocity analysis pipeline was taken from the example analysis of the endocrine

pancreas, provided on the github page†. Briefly, the filtered, normalised, scaled and annotated

expression data and the scVelo output file were merged. For this analysis, the CaSTLe-

annotation was used. Before the velocity was calculated, the first- and second-order moments

‡ were computed using the PCA space. Afterwards, the velocity was calculated by fitting

the ratios between unspliced and spliced mRNA abundances. Additionally, scVelo allows

calculating the pseudotime, as well as root and endpoints of the input data. Local dynamics

identified by this analysis can then be plotted on top of the UMAP embedding.

Though this high resolution is very useful for some analysis aspects, it does not allow to

compare general developmental trajectories. Therefore, a partition-based graph abstracting

∗https://scvelo.readthedocs.io/getting_started/
†https://scvelo.readthedocs.io/Pancreas/
‡According to the tutorial, first and second order moments correspond to the mean and uncentered variance

computed among nearest neighbors in the PCA space.
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(PAGA) tool was used which produces a coarse-grained representation of the single-cell cluster

data. Similar to scVelo, PAGA itself is embedded in the scanpy-environment (version 1.7.1).

Starting from the preprocessed and CaSTLe-annotated data, the PAGA-graph was calculated

using the grouping from the CaSTLe-annotation under model v1.0, and the calculated RNA-

velocity. For visualization of the graph, the Fruchterman-Reingold (fr) layout, as well as

a threshold of 0.15, was used. Based on this cell type graph, the UMAP embedding was

recalculated to allow for better interpretation. Finally, the RNA velocity stream embeddings

were projected onto this new embedding. Using other internal functions, the pseudotime, and

the root and endpoints were highlighted in a heatmap.
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5.2 Annotation of neonatal human retina organoids

As previously described, different approaches should be utilised to investigate the composi-

tion and characteristics of a human retina organoid. In a first attempt to characterize the

organoids, individual cells in each of the two organoid samples must be annotated to a spe-

cific retinal cell type, such as cones, rods, Müller-Glia, or bipolar cells. Here, two different

approaches were used with a manual annotation relying on genes-of-interest (GOI) lists and

a machine learning approach using transfer learning. The detailed workflows are described in

section 5.1.

Both HRO single-cell transcriptomics data sets were initially subjected to the scanpy prepro-

cessing pipeline, including the removal of lowly expressed and non-variable genes, as well as

a data transformation to scaled, normalised log-values. In total, 4031 genes across 6665 cells

remained after filtering in HRO-2, while 3771 genes across 5370 cells were kept for HRO-3.

Subsequently, the dimensionality reduction and UMAP embedding were calculated for both

samples and similar cell clusters (based on expression values) were detected via the Louvain

algorithm. As indicated in Figures 5.2a and 5.3a, 22 and 20 clusters were detected in HRO-2

and HRO-3, respectively. Using Louvain clustering, cluster ’0’ always represents the largest

cluster with 665 (HRO-2) and 556 (HRO-3) cells. The smallest clusters were cluster ’21’ with

10 cells (HRO-2) and cluster ’19’ with 13 cells (HRO-3). After identifying groups of cells

owning similar gene expression patterns, these clusters can be annotated. But assigning cell

clusters as certain cell types allows inferring for example the cell type distribution of the data

set or developmental processes.

Manual annotation. One possibility to annotate specific cell types is to use their expression

’behaviour’ across genes-of-interest (GOIs) sets. This collection of marker genes are based on

literature and expert knowledge. In Figures 5.2 and 5.3, the expression pattern of selected

marker genes that are specific for photoreceptors (b) and MG cells (c) is shown for HRO-2

and HRO-3, respectively. Through a comparison of those specific expression patterns across

all Louvain clusters in each HRO sample, it becomes feasible to distinguish different cell types

manually.

In the given examples, Louvain clusters 0, 2, 3, 6, 7, 9, 11, 12, and 14 showed expression

for photoreceptor-specific genes in HRO-2 (Figure 5.2b), clusters 1, 5, 15, 16, 18, 20, and 21

revealed MG cell-specific expression patterns (Figure 5.2c). In HRO-3, photoreceptor genes

were uniquely expressed in clusters 1, 2, 5, 7, 9, 13, 15, and 16 (Figure 5.3b), while MG-cell

specific genes were specific for clusters 0, 3, 17, and 18, see Figure 5.3c.
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5. Characterization of human retinal organoids

(a) UMAP of HRO-2 with Louvain clusters

(b) Dot plot of photoreceptor-associated genes (c) Dot plot of MG-associated genes

Figure 5.2. UMAP embedding of HRO sample 2 and expression pattern of selected marker

genes.

(a) UMAP of preprocessed HRO sample 2. In total, 21 different cell clusters were detected

via the Louvain community detection algorithm. Expression of selected photoreceptor (b)

and MG cell-associated genes(c) across 21 different Louvain clusters. The mean expres-

sion is indicated in the heatmap legend. The dot size corresponds to the percentage of cells

expressing the gene inside the Louvain cluster.
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5.2. Annotation of neonatal human retina organoids

(a) UMAP of HRO-3 with Louvain clusters

(b) Dot plot of photoreceptor-associated genes (c) Dot plot of MG-associated genes

Figure 5.3. UMAP embedding of HRO sample 3 and expression pattern of selected marker

genes.

(a) UMAP of preprocessed HRO sample 3. In total, 20 different cell clusters were detected

via the Louvain community detection algorithm. Expression of selected photoreceptor (b)

and MG cell-associated genes (c) across 20 different Louvain clusters. The mean expres-

sion is indicated in the heatmap legend. The dot size corresponds to the percentage of cells

expressing the gene inside the Louvain cluster.
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5. Characterization of human retinal organoids

Apart from photoreceptors and MG cells, dot plot expression profiles were also calculated

for bipolar cells, amacrine cells, horizontal cells, and photoreceptor progenitor cells. The

latter cell type summarized a group of not yet fully developed photoreceptor cells. The

corresponding illustrations can be found in the supplement for HRO-2 (Figure S-7) and HRO-

3 (Figure S-8). For a better visibility, only a selected gene set per cell type was used, since the

GOI lists contained more than 100 entries for certain cell types, which cannot be visualised.

Also, cones and rods were compressed to the group of photoreceptors in the dot plots. As

Amacrines, Horizontal and Ganglion cells were compressed into one annotation group, they

were shown in one dot plot. So finally five different dot plots were included in this dissertation

giving rise to six cell type annotations that were considered for annotation.

Using the information of the GOI-dot plot and expert knowledge, the Louvain clusters of both

HRO samples were assigned to six different retinal cell types as depicted in Figure 5.4a(I)

and 5.4b(I). Whereby photoreceptors (rods and cones) were located on the right-hand side in

the Uniform Manifold Approximation and Projection (UMAP) embeddings, MG cells were

found on the opposite. Amacrines, horizontal, and ganglion cells were assigned to the AHG

group and were found on the bottom of the UMAP. The group of photoreceptors progenitor

cells were detected between both photoreceptor subtypes of rods and cones. Those finding

were comparable across both HRO samples.

Apart from the general arrangement inside the low dimensional embedding, also the relative

cell type abundances were comparable across HRO-2 and HRO-3. An overview of these results

is depicted in Figure 5.4a(II) and 5.4b(II). While cones represented the largest subgroup within

the organoid system with 28% and 23%, respectively for HRO-2 and HRO-3, AHG were the

smallest with around 3% in both data sets. Other larger cell groups were rods (25%, 22%)

and MG cells (25%, 21%). The relative amount of premature photoreceptors largely varied

between both organoid samples with 6% in HRO-2 and 16% in HRO-3. It should be noted

that 8% more mature photoreceptors were annotated in HRO-2 than HRO-3, which might

account to some extent for the nearly 10% fewer premature photoreceptors. Bipolar cells

accounted for 12% (HRO-2) and 15% (HRO-3).
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5.2. Annotation of neonatal human retina organoids

(a) HRO-2 cell-type composition

(I) (II)

(b) HRO-3 cell-type composition

Figure 5.4. HRO cell-type compositions.

UMAP embeddings(I) and distribution of relative cell type quantities(II) in HRO-2 (a)

and HRO-3 (b). (a) Using sets of GOI lists and comparing their expression pattern

across 22 Louvain clusters, all 6665 cells were annotated to six retinal cell. Whereby

cones represented the biggest subgroup in HRO-2, similar quantities were detected for rods

and MG cells. AHG were the smallest organoid subgroup. (b) For HRO-3, six retinal

cell types across 20 Louvain clusters (n=5730 cells) were annotated. Similar to HRO-

2, comparable quantities of cones, rods, and MG cells were detected. In HRO-3, more

premature photoreceptors than bipolar cells were found. Again the smallest cluster was

represented by the AHG group.
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5. Characterization of human retinal organoids

Transfer learning annotation. While the previous cell annotation relied on expert knowledge

as well as subjective decisions on the interpretation of the GOI expression, other cell annota-

tion tools try to learn annotation patterns from alternative reference data sets. Classification

of single cells by transfer learning (CaSTLe) is such a tool [Lieberman et al. 2018]. Briefly, it

defines a set of informative genes in a reference data set which allows for the classification of

a new data set using a reference data set. The whole approach is based on a random forest

architecture.

As annotation reference, three different retinal data sets by Cowan et al. [2020] were used:

one fully developed organoid and two adult, human tissue samples of the fovea and periphery.

An overview of the data sets is provided in the workflow description in section 5.1.1 and the

Supplementary Tables S-2 and S-3.

In order to assess how well the model can learn the features and predict the cell type, each

reference data set was randomly split into a training and test set. While the classifier was

trained on 80% of the data, the model was evaluated on the remaining 20%. In total, 3790,

3822, and 8733 cells were utilised in the foveal, peripheral, and organoid test sets. An overview

of the sensitivity and specificity is given in Figure 5.5. Using the sensitivity measure, the

number of false negatives can be quantified, while the specificity aims for the false positives.

Across all reference data sets, the specificity remained close to one, corresponding to a low

number of false positive classifications. The sensitivity values did vary strongly across the

reference data sets and cell types. Generally, cell types with larger quantities, reached higher

sensitivity values, such as rods, cones, and MG cells for the developed organoid data (Figure

5.5(A)). The overall lowest sensitivity values were reached for glycinergic amacrine cells (AC-

Y) in the organoid data. Both adult Cowan data sets reached on average higher sensitivity

values compared to the organoid data. Summing up these results, the classifier was able to

reach overall high specificity values, and, except for two cell types, sensitivity values above

0.5.

Using these pre-trained classifiers, both HRO samples were classified using the CaSTLe frame-

work. The CaSTLe-annotation was then projected onto the low-dimensional UMAP repre-

sentation derived by the scanpy pipeline described earlier. An overview of these results is

shown in Figure 5.6. Using the classifier trained with the organoid data, depicted in Figures

5.5a and 5.5b, regionally defined cell clusters were found. Similar to the manual annotation

results (Figure 5.4a and Figure 5.4b), photoreceptor cells were detected on the right-hand side

of the UMAP plot, while MG cells were found on the opposite. Based on the fact, that more

distinct cell types were present in the reference annotation, a higher resolution was gained for

the cells located on the lower part of the UMAP compared to the manual annotation (HC,
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5.2. Annotation of neonatal human retina organoids

AC, CdBC and ChBC). However, since no photoreceptor progenitor cells were annotated in

the Cowan reference, this cell type could not be detected in the CaSTLe-derived annotation.

A different picture was observable for both classifiers trained on the adult data sets. Figures

5.5(c-f) reveal less distinct cluster annotation. Generally, the coarse-grained arrangement of

photoreceptors and MG cells was found for the foveal data (see Figure 5.6c and 5.6d). While

cones and rods were located on the right-hand side, MG cells were located on the opposite

site. However, far more rods were detected in originally bipolar (BC) and RPE cell locations.

A completely novel cell class of micro-glia (uG) were found close to the MG cells.

Using the adult periphery data classifier, a different annotation scheme was observed ((see

Figure 5.6e and 5.6f)). Generally, the cell types were more scattered across the whole UMAP,

and many RPEs were detected. In original MG cell locations, many horizontal cells (HC)

were annotated. Overall, nearly no cones were detected.

In summary, using a transfer learning tool called CaSTLe and three different retina reference

data sets, both HRO samples were annotated. While the annotation via the Cowan organoid

data largely corresponds to the manual annotation, both adult data classifiers revealed scat-

tered celltype locations. These results highlight the need of a suitable reference data set to

generate meaningful annotations via machine learning tools. Due to the high correspondence

between the annotation results and the developmental status of the data, the organoid data

trained annotation was used for further downstream analysis and will be referred to as the

CaSTLe-annotation.

After describing the general spatial arrangement of both CaSTLe-annotated HRO samples,

Figure 5.7 highlights the relative cell type abundances. Across both HRO samples, cones

represented the bigger cell class with more than 30%, followed by MG cells (MC). Rods

accounted for around 10% of the cells in both HRO samples. While slightly more CdBC and

CdBC were annotated in HRO-3, the remaining cell types (AC-B, AC-Y, HC-02, RBC, and

RPE) owned similar percentages across both HRO samples. Solely astrocytes (Ast) were only

detected in small quantities in the HRO-2 sample.
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(a) Organoid data in HRO-2
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(b) Organoid data in HRO-3
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(c) Foveal data in HRO-2
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(d) Foveal data in HRO-3
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(e) Peripheral data in HRO-2
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(f) Peripheral data in HRO-3

Figure 5.5. Evaluation of CaSTLe-classification model for both HRO control samples across

all reference data sets.

Sensitivity and specificity values using 20% of the subsetted Cowan-reference data sets

during the classification of the HRO-2 (I) and HRO-3 (II). The result of the developed

human retina organoid is shown in (a+b), the adult foveal data in (c+d) and the adult

peripheral data in (e+f). While the specificity was constantly close to one, the sensitivity

varied over the different data sets and HRO samples. However, the majority of cells

reached a sensitivity value larger than 0.5. The lowest sensitivity was detected for AC-Y

in both CaSTLe-classifiers trained with the organoid data.
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5.2. Annotation of neonatal human retina organoids

(a) Organoid data in HRO-2 (b) Organoid data in HRO-3

(c) Foveal data in HRO-2 (d) Foveal data in HRO-3

(e) Peripheral data in HRO-2 (f) Peripheral data in HRO-3

Figure 5.6. Evaluation of CaSTLe-annotation for both HRO control samples across all refer-

ence data sets.

(a+b) Annotation using the developed organoid data for training resulted in quite defined

cell type locations. While photoreceptors were located on the right-hand side, MCs were

located on the opposite side. (c+d) Less defined cell clusters were detected using the adult,

foveal data for training CaSTLe. Still, the coarse-grained distribution of photoreceptors,

MCs and remaining cells was similar to (a+b). Here, more rods were detected. (e+f)

A scattered annotation was found for the adult periphery training data. In this case, a

completely different spatial location was encountered. While mainly RBCs were detected

on the right-hand side, HCs were found on the left-hand side.
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5. Characterization of human retinal organoids

A B

Figure 5.7. Relative composition of both HRO samples using the Cowan organoid trained

CaSTLe classifier.

The percentage of CaSTLe-annotated cell types in HRO-2(A) and HRO-3(B) is shown.

While cones were the biggest class of cell types across both samples, MC and rods were

the second and third largest groups, respectively. Slightly more CdBCs than ChBCs were

annotated in HRO-3. AC-B,AC-Y, HC-02, RBC, and RPE showed equal quantities across

both samples. Astrocytes were unique for HRO-2, though low in abundance.
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5.2. Annotation of neonatal human retina organoids

5.2.1 Comparison of manual and machine learning annotations

In the previous parts, two untreated, single-cell HRO systems were annotated using two

different approaches. Using a manual annotation and transfer learning approach, various

retinal cell types were identified. Here, both annotation results are compared to each other

focussing on three major cell types: cones, rods and MG cells, since they represent the

largest cell population within the HRO system. Figure 5.8 summarizes the consistency of

these retinal cell types. In general, nearly all MG cells were similarly annotated via the

CaSTLe pipeline and manual approach for both HRO-2(A) and HRO-3(B). Major differences

of both annotation techniques can be seen for photoreceptor subtypes of rods and cones.

When looking at the cell counts, there is already a rather large discrepancy between both

annotation approaches: whereby in the manual annotation comparable quantities of cells were

annotated as cones and rods, respectively, the CaSTLe-annotation yielded nearly more than

three times more cones than rods. Cells being classified as cones in the manual approach were

also mainly annotated as cones with CaSTLe. Only a small percentage was annotated as rods

in the CaSTLe-annotation. However, nearly one-third of cells being classified as rods in the

manual annotation were annotated as cones with CaSTLe, which largely explains the shift in

the cone-ratio from 30% to 40%. From the premature photoreceptor population, also more

cells were annotated as cones using CaSTLe.

An overall similar trend can be seen for HRO-3. Again, all manually annotated MG cells were

also annotated as MG cells in the CaSTLe-workflow. The same was found for manual cones,

which generally remained cones using the CaSTLe-annotation. Solely a small population was

identified as rods in CaSTLe. As already stated for HRO-2, the manual-rods part nearly

equally divide into CaSTLe-rods and cones. In HRO-3, the premature photoreceptor cluster

contained more cells than in HRO-2 but the ratio migrating into CaSTLe-rods and cones

remained comparable.
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Figure 5.8. Consistency of three major retina cell types across both annotation approaches.

Per CaSTLe-annotated cone, rod, and MG cell the corresponding manual annotation re-

sult was extracted in HRO-2(a) and HRO-3(b). While CaSTLe-MG cells were also anno-

tated as MG cells using the manual annotation, the CaSTLe-annotations for both, cones

and rods were less consistent. Especially concerning the annotation results from HRO-3,

many CaSTLe-cones were detected as premature photoreceptors and rods in the GOI-based

annotation.
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5.2. Annotation of neonatal human retina organoids

5.2.2 Comparison of HRO sample variance

Apart from the consistency of retinal cell types across annotation workflows, the cell cluster

embedding of the two different HRO samples can be compared to each other. Therefore,

both HRO samples were merged on top of each other, and the variance of cones, rods and

MG cells was calculated. For this comparison, the CaSTLe-annotation was used. The results

were summarized in Figure 5.9. Merging the HRO-3 sample on top of the HRO-2 UMAP

embedding (Figure 5.9a and Figure 5.9b) revealed a general correspondence on sample and

cell type level. Furthermore, a PCA of cones, rods, and MG cells for both HRO samples was

calculated (Figure 5.9c-e).

As shown in Figure 5.9c, both HRO samples revealed two slightly separated cone clusters.

In HRO-2, however, both clusters seemingly contained a comparable amount of cells, which

probably resembled the two cone clusters in the original UMAP embedding, cf. Figure 5.9b.

In the control sample HRO-3, a larger discrepancy between both cone distributions was

found, since most cones were located on the left part of the PCA and formed a rather sharply

separated cluster.

Regarding rods, both HRO showed a very homogenous low dimensional embedding. This

finding could also be supported by the embedding by sample origin (Figure 5.9a) and CaSTLe-

annotation (Figure 5.9b).

Again a larger discrepancy between both samples was detected for MG cells (see Figure 5.9e).

While HRO-2 MG cells were slightly more scattered, the HRO-3 appeared more compact in

the centre. Comparing this result with the UMAP plots of the sample origin and CaSTLe-

annotation, indeed HRO-3 MG-cells were more compact.
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5. Characterization of human retinal organoids

(a) UMAP of merged HRO samples (b) UMAP of merged CaSTLe-annotations

(c) PCA of cones (d) PCA of rods (e) PCA of Müller Glia

Figure 5.9. Merged HRO controls data sets.

UMAP embedding of merged HRO controls, coloured according to the sample origin (a) and

the CaSTLe cell types (b). (c-e) PCA of three major retinal cell types coloured according

to the batch origin. HRO-3 was merged onto the low dimensional embedding of UMAP-2.

The first and second principal components indicate the percentage of variance explained.

After merging both data sets, the results indicate a large correspondence on the levels

of CaSTLe-annotations and HRO sample. While a larger discrepancy across both HRO

samples was detected for cones (c), rods(d) and MG cells(e) show a similar distribution

on the PCA plot.
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5.3 Ambiguous correlation results of HRO towards fovea and

periphery

Using two different cell annotation approaches, two untreated HRO samples were quantita-

tively analysed. Though all major cell types were present in both HRO samples, it remained

unclear if the organoid system is closer to the fovea or periphery of the retina. As a proxy, the

number of rods and cones can be used, since the fovea has been described to be cone-rich and

rod-sparse [Sakurai 2015]. Tackling this question, three different data sets were used. Again,

the adult Cowan et al. [2020] single-cell data sets were included. Another human reference

was used taken from Peng et al. [2019a], whereas a macaque data set was taken from Voigt

et al. [2019]. All reference samples were collected from actual adult organs of the fovea and

periphery. Focussing on photoreceptors and MG cells, the reference mean expression vectors

from all three reference data sets were calculated for each cell type and both retinal regions.

Therefore, the cell annotations provided in the respective Cowan et al., Voigt et al., and Peng

et al. publications were used. In a further step, the CaSTLe-identified HRO photoreceptors

and MG cells were correlated to these mean expression vectors. The reference data sets were

not combined to infer the data set specific influence on the result.

Calculating the Pearson correlation of HRO photoreceptors and MG cells towards their pe-

ripheral and foveal counterparts of the Peng et al. [2019a] macaque reference data set, Figure

5.10 depicts the result of this analysis. Overall, HRO-2 (Figure 5.10a) and HRO-3 (Figure

5.10b) revealed comparable distributions of correlation values between foveal and peripheral

comparisons. HRO-rods showed nearly identical median correlation values with 0.507 vs.

0.507 (HRO-2) and 0.528 vs. 0.529 (HRO3) to the foveal and peripheral reference samples,

respectively. A minimal increase in correlation values towards fovea was detectable for cones

in both HRO samples (HRO2: 0.500 vs. 0.466, HRO3: 0.487 vs. 0.453). The biggest differ-

ence in the mean correlation was observed for HRO-MG cells. Here, a larger trend towards

the periphery was found with 0.528 versus 0.621 in HRO2 and 0.537 versus 0.635 in HRO3.

Switching from the macaque data to human reference samples, the results using the Voigt et al.

[2019] data is depicted in Figure 5.11. This data set contained three individual human tissue

samples. To derive better visibility, the results of the three human donors were combined.

The expanded results are provided in Supplementary Figure S-9 and Figure S-10. Generally,

the distribution of correlation values between foveal and peripheral rods as well as foveal and

peripheral MG cells appeared more similar, while a larger difference was detected between

both cone distributions. Again, HRO-cones revealed a higher median correlation of 0.597 in

HRO-2 (Figure 5.11a) and 0.563 in HRO-3 (Figure 5.11b) towards fovea, while peripheral
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cones were found to have a lower median correlation of 0.283 and 0.267 in HRO2 and HRO3,

respectively. A small difference in the distribution of correlation values can be found for MG

cells. Reference foveal MG cells were found to have a minimally higher median correlation

towards HRO-MG cells (HRO2: 0.617, HRO3: 0.514) than their peripheral counterparts

(HRO2:0.583, HRO3: 0.473). The HRO-rods, however, have a comparable median correlation

towards both foveal and peripheral rods with 0.505 and 0.488 in HRO2, and 0.476 and 0.458

in HRO3.

Regarding the individual donor results, generally similar correlation distributions were de-

tected. Only slight differences were observable for donor-1, especially in the photoreceptors.

Finally, Figure 5.12 summarizes the result of the human retina tissue reference data set by

Cowan et al. [2020]. Similar to the Voigt data, the result of all three donors are included in

Supplementary Figures S-11 and S-12. In contrast to both other data sets, neither of the three

cell types revealed a trend towards fovea or periphery. The highest overall mean correlation

values were detected for HRO-cones in HRO2 (Figure 5.12a) with 0.561 towards fovea and

0.550 towards the periphery. The lowest values were revealed by HRO-MG cells in HR03

(Figure 5.12b) with 0.545 towards fovea and 0.539 towards the periphery. Both HRO-rods

owned median correlations of 0.506 to 0.507 for fovea or periphery in HRO-2, and 0.508 and

0.509 in HRO-3. Here, no difference across all individual donors was detected.

Summing up, the previously described results indicate that trends towards foveal or peripheral

expression patterns largely depend on the reference data set and cell types. While nearly no

difference in mean correlation values was observable for the Cowan et al. [2020] reference data,

a strong trend of HRO-cones towards fovea was detected for the Voigt et al. [2019] data. The

Peng et al. [2019a] data showed also a trend towards fovea, although far less pronounced.

Regarding HRO-MG cells, a trend towards peripheral localisation was noticeable when using

the macaque reference data set. This trend was, however, not observable in both human data

sets. No difference in mean correlation values was detected for HRO-rods across all three

reference data sets.
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(a) HRO-2 using CaSTLe-annotation

(b) HRO-3 using CaSTLe-annotation

Figure 5.10. Distribution of Pearson correlation of HRO-cells and human tissue reference

data taken from Peng et al. [2019a].

Results of HRO-2 are shown in (a), whereby sample HRO-3 are shown in (b). Across

samples, cells were annotated via the CaSTLe-annotation pipeline. The violin plot shows

the Pearson correlation of organoid cones, rods and Müller Glia cells against the human

reference vectors of foveal and peripheral cells. Correlation distributions were compara-

ble between foveal and peripheral expressions for both HRO-photoreceptors, though cones

revealed a higher mean value towards fovea. A higher median correlation towards the

periphery was detected for HRO-MG cells. These results were detected across both HRO

samples.
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5. Characterization of human retinal organoids

(a) HRO-2 using CaSTLe-annotation

(b) HRO-3 using CaSTLe-annotation

Figure 5.11. Distribution of Pearson correlation of HRO-cells and human tissue reference

data taken from Voigt et al. [2019].

Results of HRO-2 are shown in A, whereby sample HRO-3 are shown in B. Across sam-

ples, cells were annotated via the CaSTLe-annotation pipeline The violin plot shows the

Pearson correlation of organoid cones, rods and Müller Glia cells against the human ref-

erence vectors of foveal and peripheral cells. Whereby HRO-cones owned higher mean

correlation values towards fovea, HRO-rods again showed comparable values. Müller Glia

cells revealed similar mean correlation values, with a slight trend towards the fovea. These

results were detected across both HRO samples.
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5.3. Ambiguous correlation results of HRO towards fovea and periphery

(a) HRO-2 using CaSTLe-annotation

(b) HRO-3 using CaSTLe-annotation

Figure 5.12. Distribution of Pearson correlation of HRO-cells and human tissue reference

data taken from Cowan et al. [2020].

Results of HRO-2 are shown in A, whereby sample HRO-3 are shown in B. Across sam-

ples, cells were annotated via the CaSTLe-annotation pipeline The violin plot shows the

Pearson correlation of HRO cones, rods and Müller Glia cells against the human reference

vectors of foveal and peripheral cells. Correlation distributions were highly similar between

foveal and peripheral expressions for all three analysed HRO cell types. These results were

detected across both HRO samples.
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5. Characterization of human retinal organoids

5.4 RNA velocity analysis revealed dynamics within retina

organoid systems

After characterising the cellular composition of the organoids, it should be furthermore inves-

tigated if developmental maturity of the organoids can be inferred. This maturity could also

help to assess how well known developmental processes can be reproduced by the organoid

systems. Using RNA velocity as a proxy for pseudotemporal ordering, the unsynchronized

scRNA-seq data can be ordered by maturity. Together with a graph abstraction tool called

PAGA, dynamics between cell types were investigated and visualised.

Briefly, the CaSTLe-annotated HRO samples were used as input for the PAGA algorithm, which

detected cell clusters and calculated the connectivity between them. Based on this, a new

UMAP embedding was calculated. Using the information of the RNA velocity analysis via

scVelo, dynamics within and across the cell clusters were visualised. Additionally, the pseu-

dotime, as well as the root and endpoint were calculated and indicated. The bolder the

calculated edge, the stronger the connectivity between the two cell types.

The result of HRO-2 can be seen in Figure 5.13. For this analysis, the low dimensional UMAP

embedding was recalculated based on the PAGA graph shown in Figure 5.13a. The original

UMAP embedding results using the manual annotation are depicted in Supplementary Figure

S-13. Using the RNA velocity information, and the CaSTLe cell annotation, the PAGA graph

with directions was calculated. Generally, most trajectories ended in cones and rods. No

connection ended in retinal pigment epithelium (RPE) and GABAergic amacine cells (AC-

B). The reordered UMAP embedding resembled in general the original UMAP plot 5.13b.

The inner retinal neurons (AC, BC and HC), photoreceptors (rods and cones), and MG cells

were separated from each other. Revealing the dynamics within the HRO-2 samples, Figure

5.13c illustrates the regional development directions. Figure 5.13d shows the pseudotime∗

result of HRO2. Inferring the RNA velocities allowed to order the HRO cells based on their

relative development. While the inner retinal neurons were overall earlier, rods appeared to

be the most recent cell type. This finding was supported by the results from 5.13e and 5.13f,

where the root and end point† of the data was identified, respectively. With AC, HC and

some parts of the MC cluster were detected as the root cells, mature cones and rods indicated

∗Velocity pseudotime is a random-walk based distance measure on the velocity graph. After computing

a distribution over root cells obtained from the velocity-inferred transition matrix, it measures the average

number of steps it takes to reach a cell after start walking from one of the root cells. citation APIs
†The end points and root cells are obtained as stationary states of the velocity-inferred transition matrix

and its transposed, respectively, which is given by left eigenvectors corresponding to an eigenvalue of 1, citation

of tutorial
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5.4. RNA velocity analysis revealed dynamics within retina organoid systems

the end points. No endpoint was detected for the MC cluster.

Similar results were detected for HRO-3 as depicted in Figure 5.14. Focussing first on the

PAGA-graph shown in Figure 5.14a, again the boldest and most numerous connections ended

in cones and bipolar cells (BC). No connection ended in RPE and MC cells. The recalculated

UMAP embedding (Figure 5.14b), as well as the regional dynamics (Figure 5.14c), revealed

one obvious difference to HRO-2. In HRO-3, both the PAGA-graph and the RNA-velocity

streams indicated that the population of rods own a trajectory into the cone cluster. Here,

the pseudotime analysis highlighted MG cells as the earliest and most cones as the latest cell

type. Generally, there was a sharper distribution between early and late time points with

only a few cells being somewhere in transition than in HRO-2. The root cell analysis however

showed that the inner retinal neurons were earlier, similar to HRO2. Still, the most recent

cells were within the photoreceptor cluster.
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5. Characterization of human retinal organoids

(a) PAGA coarse-grained trajectory (b) UMAP using PAGA embedding

(c) RNA velocity streams (d) Pseudotime

(e) Root cell visualization (f) Endpoint visualization

Figure 5.13. Trajectory inference of HRO-2 using RNA velocity and PAGA.

(a) Using the RNA velocity dynamics, PAGA calculated a coarse-grained developmental

trajectory using the CaSTLe-annotation. (b) Based on this embedding, the UMAP was

recalculated. (c) Regional developmental dynamics were visualised onto the UMAP em-

bedding. (d) Ordering the HRO-2 cells via the RNA velocity calculations allowed to infer

a pseudotime-variable. Dark violet indicated early whereby yellow represented late cells.

(e+f) Using the pseudotime, root (e), as well as endpoints (f) in the data, were identified

in HRO-2. Dark blue here indicated the root or endpoints, respectively.
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5.4. RNA velocity analysis revealed dynamics within retina organoid systems

(a) PAGA coarse-grained trajectory (b) UMAP using PAGA embedding

(c) RNA velocity streams (d) Pseudotime

(e) Root visualization (f) Endpoint visualization

Figure 5.14. Trajectory inference of HRO-3 using RNA velocity and PAGA.

(a) Using the RNA velocity dynamics, PAGA calculated a coarse-grained developmental

trajectory using the CaSTLe-annotation. (b) Based on this embedding, the UMAP was

recalculated. (c) Regional developmental dynamics were visualised onto the UMAP em-

bedding. (d) Ordering the HRO-3 cells via the RNA velocity calculations allowed to infer

a pseudotime-variable. Dark violet indicated early whereby yellow represented late cells.

(e+f) Using the pseudotime, root (e), as well as endpoints (f) in the data, were identified

in HRO-3. Dark blue here indicated the root or endpoints, respectively.
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5.5 Discussion

To decipher the molecular pathways involved in AMD, a novel human retina organoid system

called HRO was established. Here, several analysis steps have been applied on the single-

cell level to initially prove the stability and validity of the organoid system to be adequate

and effective for this task. Using two different cell cluster annotation approaches, and cell

trajectory inference, the HRO composition and developmental status was highlighted.

Reliable cell type annotation requires meaningful external knowledge. In this dissertation,

two annotation approaches were applied comparatively. In a first attempt, cell clusters in

the HRO single-cell data were detected. Employing a collection of known marker genes, their

expression pattern was compared across these cell clusters and expert knowledge was used to

annotate these clusters based on their expression. Secondly, a transfer learning tool, called

CaSTLe was employed which extracts useful features from a reference data set and uses them

to train a random forest model. Finally, this classifier was used to annotate the HRO cells.

One advantage of the manual annotation workflow is its adaptability and flexibility. While

machine learning tools heavily rely on suitable reference data sets, the analysis of marker genes

can integrate the knowledge from many studies and previous experiments. As of for the HRO

system, some cell clusters did reveal both, cone and rod specific expression patterns. Instead

of forcing the assignment into fixed groups, an additional class of premature photoreceptors

was created to suit the problem. Since the HRO system is still not fully mature, it appears

more reasonable to not finally decide on the final entity of these premature cells.

Though the manual annotation approach appears to be uncomplicated, it harbours some lim-

itations. Most prominently the manual annotation depends on the current state of knowledge

and often (external) expert knowledge. Another problem arises from some discrepancies be-

tween protein level detection and gene expression [Liu et al. 2016]. While many marker genes

were often defined on protein level, for example using antibody staining, the transcriptional

signal must not be equally prominent. With more datasets being produced and analysed,

more knowledge is gathered, which allows extracting marker genes for specific cells more

rapidly and widely. However, the interpretation of the resulting expression patterns across

cell clusters is not only time-consuming but also often not reproducible. As also visible in

this dissertation, some marker genes for example show a very uniform expression across all

clusters, which suggest that those may not be suitable for annotation on the RNA level (see

Supplemental Figure S-7c). Moreover, the decision on whether a gene is considered to be

expressed high enough, often underlies subjective, arbitrary thresholds. A marker gene-based
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annotation can also become very challenging when using very similar (sub)cell types. Like

for the human retina organoid, rods and cones for example belong both to the class of pho-

toreceptors. Therefore, marker genes for these cell types often contain re-occurring genes.

Both, the decision to exclude all non-unique genes or leave them in, influences the final cell

annotation.

Though it is more robust to annotate whole clusters instead of individual cells, the annotation

result is highly dependent on the clustering itself. This problem becomes already prominent

when switching either the clustering algorithm, the version of the analysis pipeline, or even

switching the whole analysis tool. Due to this reason, the older version of scanpy was used

for cell type annotation to ensure reproducibility of the cell clusters. Therefore, the transfer

learning approach is less susceptible to these changes in cell clustering.

Being more robust in terms of low dimensional embedding, the performance of CaSTLe was

highly dependent on the used reference dataset. In this dissertation, three different reference

datasets by [Cowan et al. 2020] were used which mainly differed in the tissue maturity, origin,

and sample site. While the developed organoid data revealed very similar annotation results

as the manual workflow, no premature photoreceptor cluster was encountered since it was

not included in the reference data set. Referring to the classification performance during

training, very high specificity values were obtained, especially regarding rods, cones, and

MCs. However, comparing the developmental status of the reference data sets to the HRO

system, the Cowan et al. organoids were older with 30 and 38 weeks versus 28.5 weeks

(200 days). Using two other reference data sets, more diverging annotation results were

obtained. These data sets were taken from the fovea and periphery of an adult tissue sample,

respectively. While the very general cell cluster layout detected in the manual approach was

roughly maintained using the foveal data set, nearly no photoreceptor cells were annotated

employing the peripheral reference data set. These results indicate that the choice of a

suitable reference data set is the most critical step for this machine-learning based annotations.

While the developed organoid data revealed very similar annotation results as the manual

workflow, the results from both adult reference datasets were very different. To promote the

availability of high-quality reference data sets, not exclusively limited to single-cell annotation,

many efforts were undertaken in generating so-called atlases [Papatheodorou et al. 2020,

Travaglini et al. 2020]. These databases contain next to expression data also high-quality

annotation results, for example from Fluorescence Activated Cell Sorting (FACS). Yet these

atlases must be filtered for certain variables such as developmental time points or target

organisms. Depending on the size of these atlases, the resulting dataset might be very small,

deducing the classification performance of CaSTLe, or other machine learning annotation tools.
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5. Characterization of human retinal organoids

Regarding this dissertation, no suitable atlas-data set was available by that time.

These reference data-sensitive results of the CaSTLe workflow do furthermore emphasize the

usefulness of using two independent annotation approaches. Though the restriction to current

knowledge was listed as a disadvantage of the manual annotation workflow, in-depth research

on consensus and well-known marker genes could help to assess the quality of the annotation

results derived from machine learning-based approaches. Altogether, it can be summarized

that both, the manual annotation and the machine learning-based CaSTLe-workflow revealed

overlapping results. Solely the ratio of rods and cones was changed, mainly due to the

missing premature photoreceptor cluster. Due to its advantages towards reproducibility and

the higher resolution in cell types, the CaSTLeannotation was used for all downstream tasks.

Premature photoreceptors appear to be mostly cones resulting in a cone-rich organoid system.

As already stated in the previous part, different quantities of photoreceptors were detected

after the manual annotation and CaSTLe. Whereby very similar quantities (HRO2: 28%

cones, 25% rods, HRO-3: 23% cones, 22% rods) were detected for each photoreceptor cell-

type using the manual annotation, 41% (HRO-2) and 37% (HRO-3) of HRO cells were labelled

as cones via CaSTLe. Thereby, the amount of rods was reduced to 12% (HRO-2) and 15%

(HRO-3). The main reason for this shift is the missing class of premature photoreceptors

in the CaSTLe-reference data. Previously described results indicate that most cells from this

manually assigned premature cluster shifted towards cones and only a smaller part towards

rods. The largest discrepancies, however, could be observed for the manually assigned rod

cells, where equal parts were assigned to rods and cones with CaSTLe. Although these differ-

ences might sound irritating at first, their low dimensional embedding revealed a convincing

result: both previous cone sub-clusters were combined into a larger cone cluster that left a

smaller rod population in proximity but still separated. Taking into consideration the RNA

velocity streams of the original UMAP embedding and the manual annotation results, the

CaSTLe-annotation can be supported. Especially for HRO-2, the velocity streams from the

lower manual-cone cluster move upwards, over the premature cluster towards the upper cone

location.

Regarding HRO-3, the interpretation of the velocity streams on the CaSTLe as well as manual

annotation was less obvious. As indicated by the PAGA-graph, the rod population transitions

into the cone cluster. Regarding the manual annotation embedding, the RNA velocity also

highlighted a trajectory from rods to cones, spanning over the premature photoreceptor clus-

ter. These results might indicate that perhaps more manually annotated rods belong to the

premature photoreceptor cluster. In the case of the CaSTLe-annotation, perhaps only the
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outermost tip of the UMAP embedding (see Figure 5.14c) represents fully differentiated rods.

Together with the different amounts of premature photoreceptors from the manual annotation,

one might suggest that the maturity between HRO-2 and HRO-3 was different. Whereby more

premature photoreceptors were initially annotated in HRO-3, also developmental differences

were highlighted by the RNA velocity analysis. As HRO-2 owned two end-points in cones and

rods each, HRO-3 only revealed one which largely mapped to the CaSTLe-cone population.

HRO system may represent parafovea. Since AMD is understood to start in the parafoveal

region of the retina, it was investigated if these organoids sufficiently resemble this foveal

region. After annotating the HRO systems via the CaSTLe workflow, the expression of rods,

cones, and MG cells was correlated to three adult human and macaque reference data sets.

There, tissue samples from the foveal and peripheral regions of the retina were extracted and

analysed via a single-cell transcriptomics platform. Using the provided annotation, mean

expression vectors of cones, rods, and MG cells were calculated and correlated to CaSTLe-

annotated photoreceptors and MG cells.

Generally, no clear and coherent trend across all reference datasets was observable. Whereas

cones owned higher mean correlation values towards the foveal region in the human Voigt et

al. data set [Voigt et al. 2021], no clear difference was observable for the other two data sets.

One possible explanation is that the HRO systems exhibit so-called parafoveal characteristics

(see Figure 5.15). This could partly be explained by the used sample size of the reference data

sets. While Voigt et al. sampled a 2 mm area of fovea and periphery, both other datasets

used only a 1.5 mm tissue sample. Due to the larger sample size of the Voigt data, parts

of the parafoveal region might also have been extracted and analysed. The presence of this

parafoveal area could explain the large differences in correlation distributions for cones in the

Voigt data, which was not observable for both other datasets.

Opposing trends however were detected for MG cells. Whereas a higher median correlation

towards the periphery was found in the macaque data, the Voigt et al. [2019] data suggests

a foveal localisation. For the Cowan et al. [2020] reference data set, no difference could be

found. This finding could be explained by the primate origin of the retina tissue in the

Peng data, which ultimately leads to the question of how well findings between primates and

humans can be extrapolated, even more so in MG cells. In the publication by Syrbe et al.

[2017], a unique MG cell type of the primate inner fovea was described which is called the

Müller cell cone. The dataset by Peng et al. did not explicitly discuss or annotate this special

MG sub-cell type. Due to this primate-specific cell type located in the fovea, the Pearson

correlation values might have revealed a periphery-like trend in MG cells.
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5. Characterization of human retinal organoids

Figure 5.15. The spatial location of the

parafovea in the eye taken from Tsang &

Sharma [2018].

The peripheral region lies approximately

9mm away from the foveal centre.

While some trends were stated for cones and

MG cells, the CaSTLe-annotated rod cells did

not show any trend across all included refer-

ence expression vectors. A possible expla-

nation may be given by the cell type com-

positions of the retinal sample sites. Gen-

erally, the fovea is a cone-rich, rod-sparse

(nearly absent) region, located four degrees

from the central fixation point [Sakurai 2015]

(see Figure 5.15). With increasing distance

from the fovea, rod cell counts become more

prominent, whereas the cone density de-

clines. Therefore, just by cell type distribu-

tions of the HRO-system after the CaSTLe-

annotation, the data suggest a more para-

foveal characteristic.

Other problems of course may arise from the

initial annotation of the reference datasets.

As already described for the Cowan data, the

authors also used a manual annotation based on marker gene expression. A similar workflow

was performed for the primate data by Peng et al.. Voigt et al. used a combination of

previous knowledge and the relation between cell clusters via a dendrogram∗. The decisions

on meaningful marker genes, thresholds of expression values and cluster algorithms heavily

affect the final annotation result as it was already discussed in detail in the previous section.

Therefore, the presented correlation analysis is biased from both sides: the HRO cell type

annotation that was done with CaSTLe, and the predominantly expert knowledge-based cell

type annotation that was done in the reference data.

Trajectory inference revealed overlapping results to literature. Diving deeper into develop-

mental processes inside the retinal organoids, RNA velocity delivered interesting insights into

major cell trajectories and temporal aspects. Using the ratio between unspliced and spliced

transcripts, RNA velocity aids in ordering single cells along an artificial pseudotime axis, and

hence helps to infer knowledge of developmental trajectories and timing within the organoid.

Via this approach, information about cell developmental trajectories and timing could be ex-

∗Based on transcriptional similarity
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tracted. Due to the age of the HRO-system, mainly the concept of developmental trajectories

was used to infer maturity, not cell transitions.

Figure 5.16. Development of retinal cells taken

from Sridhar et al. [2020]. T1, T2, and T3

describe three different transitional states

of retinal cell populations. The circle repre-

sents the cell cycle stages of DNA synthesis

(S) and Mitosis (M).

Within the HRO system, the graph abstrac-

tion algorithm PAGA and the information

from RNA velocity highlighted a pseudotem-

poral ordering of the cells. Across both HRO

samples, horizontal (HC) and amacrine cells

(AC) were detected as early cells. While no

incoming edges were detected for those two

cell types, also the root cell visualization sup-

ported those findings. These findings corre-

spond to findings by Sridhar et al. [2020] and

Quinn & Wijnholds [2019] about the gen-

eral developmental projection of human fe-

tal retinal cells, see Figure 5.16. Starting

from an initial progenitor population of T1

cells, two major transitions were identified.

While ganglion cells originate from the T1

cell group, amacrine and horizontal cells de-

rived from the T2 progenitor. Lastly, bipolar

cells and photoreceptors derive from the T3 cluster. Considering the temporal aspect, Quinn

& Wijnholds [2019] reported that amacrine and horizontal cells are both amongst the earliest

cell types within the retina cell genesis( see Figure 5.17). Similar results were stated by Cowan

et al. [2020], who sequenced retinal organoids across seven time points. Also, horizontal and

amacrine cells were present in the youngest organoids, followed by bipolar cells and cones.

As highlighted by the RNA velocity results of HRO-2, both photoreceptor cells represent the

most recent cell types. However, in HRO-3 solely endpoints were calculated for the cone cell

cluster, and a transition from the rod towards the cone population was identified via PAGA.

As already mentioned in this discussion, differences in the velocity streams and quantities of

premature photoreceptors, which were annotated in the manual approach, indicated different

degrees of maturity in organoid development. Figure 5.17 also indicates that cones develop

prior to rods, furthermore strengthening the indication that HRO-3 is less developed than

HRO-2.

Generally, diverging results were obtained regarding the origin and timing of bipolar cells.

While Quinn & Wijnholds [2019] indicated a rather late development, Cowan et al. [2020]
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showed that bipolars emerged in the organoids at the same time point as cones. Moreover,

the trajectory from which it originated was different across data sets. As indicated in Figure

5.16, bipolar cells were found close to the photoreceptor transition, whereas Cowan et al.

[2020] revealed that they develop from the amacrine-horizontal-ganglion-axis.

Figure 5.17. The genesis of retinal cell types taken from

Quinn & Wijnholds [2019]. Generally, two phases

during cell genesis can be identified: Early phase

(ganglion cells, cone photoreceptors, horizontal cells,

and amacrine cells) and an overlapping late phase

(rod photoreceptors, Müller glia cells, and bipolar

cells. FWK stads for fetal week.

Adding to the previous point,

though all cell types were anno-

tated in the HRO-system, no MG

cells were identified as most recent,

since they evolve slightly later than

cones, according to Quinn & Wi-

jnholds [2019]. Indeed, a few MG

cells in HRO-2 revealed a rather

early pseudotime point as calcu-

lated by RNA velocity. Though not

included in Figure 5.16, other low

dimensional embeddings of later

fetal time points in the Sridhar

et al. [2020], indicate a proximity

to the progenitor cell cluster up-

stream of T1. This may indicate

a rather early development of MG

cells, with is contradicting to the

results shown by Quinn & Wijn-

holds [2019]. These findings already point out the differences in organ development between

the in vivo and in vitro tissues, as it was also indicated by Cowan et al. [2020]. Despite some

discrepancies, the comparable results that have been described in the literature promote the

usefulness of this data-driven analysis.

In general, it was demonstrated that using different annotation workflows, very comparable

results can be achieved to characterize a neo-natal human retina organoid. While increasing

the reproducibility of the annotation results via the machine learning tool CaSTLe, the manual

cell assignments already provided some valuable information about the quantity of not yet

fully developed photoreceptors. Solely relying on CaSTLe would not deliver this information.

On cell cluster level, both HRO samples were very similar, however, differences on the de-

velopmental level between both samples were detected. Still, it remains unclear if the HRO

systems resemble the para-foveal region of the retina, or not. Together with the RNA velocity
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analysis, general developmental trajectories of the retina were verified, which proposes the

suitability of the HRO system to study AMD. To furthermore confirm its suitability, the dif-

ferences between the organoid and adult retina should be overcome by for example improving

the culture conditions.
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Chapter 6

Conclusion

After the identification of the DNA structure in the ’50s by Watson and Crick, it was not until

the establishment of sequencing workflows by Frederick Sanger in the late ’70s that the very

basic structure of life was deciphered. While huge costs were faced on the computational as

well as experimental side when sequencing the first human genome, published in 2001 [Lander

et al. 2001], the emergence of so-called next-generation sequencing methods paved the way

for excessive, cost-efficient, and quick sequencing. This novel, global DNA and RNA analysis

allowed gaining major insights, revolutionising not only the fields of biology and medicine. A

new era emerged with the establishment of single-cell-based assays. The combination of both

the single-cell resolution and the general sequence analysis opened up another era in systems

biology. In this final chapter, the previously demonstrated results will be briefly summarised

and their novelty discussed. As already indicated throughout the whole dissertation, current

challenges and limitations with respect to reproducibility will be pointed out, while proposing

possible solutions. In the end, an outlook will be provided, suggesting potential starting points

for follow-up projects.

Recapitulation of the results. To infer the influence of various levels of dropout and subse-

quent data imputation with respect to network inference on single-cell transcriptomics data,

a synthetic data set generated and used. Starting from a downsampled bulk RNA-seq data

set, the true correlation signals were identified via WGCNA, and subsequently masked by six

artificial levels of dropout. The increase in dropout was associated with a stepwise eradication

of the correlation structure until no preservation could be identified in the highest dropout

level. By applying six different data imputation tools to the artificial dropout data sets,

three major insights could be distilled: (1) Within low dropout scenarios, major correlation

structures were still preserved, and hence allowing for direct network inference. (2) On the
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opposite side, all imputation tools failed to recover the original correlation structures but

introduced large amounts of false correlation signals in the high dropout data sets and (3)

in moderately sparse data sets, data imputation techniques proved beneficial to recover the

correlation structure. In those moderately sparse data sets, the tool called DCA, a deep count

autoencoder, revealed a peak of performance. These results highlighted a small window of

opportunity for network inference after data imputation. Moreover, it was investigated if the

set of imputation tools influenced cell clusters’ annotation via marker genes. Using a human

retina organoid data set by Kim et al. [2019], none of the included imputation tools interfered

with cell cluster annotation.

DCA was applied to a human retina organoid based on these encouraging results to analyse the

gene correlation networks in a biological context. Focussing on the complete as well as cell

type-specific networks, DCA allowed fulfilling the scale-free topology criterion used by WGCNA

which is a hallmark of biological networks. The derived cone- and rod-specific correlation

networks were furthermore characterised and compared. Using the respective marker genes

for these two cell types, unique cell type-specific gene modules could be identified for both

subnetworks, indicating that DCA indeed enhanced the true cell type-specific expression signals

buried within the dropped-out single-cell data. Additionally, hub genes were identified across

modules and networks, preserving their hub gene status and regulating different correlation

networks. One of them was EIF4EBP1, a eukaryotic translation initiation factor binding

protein associated with the ErbB-signaling pathway. Upon the onset of age-related macular

degeneration, a major cause of blindness in developed countries, ErbB was associated with

causing cell death in retinal cells [Sheu et al. 2019].

Alongside a technical evaluation of data imputation and their benefits for deriving deeper

resolution in network inference, the toolbox of the single-cell realm was also used to charac-

terize a novel human retina organoid system called HRO. Two organoids were characterized,

by employing two different cell annotation procedures based on a manual marker gene ex-

pression analysis or a transfer learning pipeline. Overall, the results were comparable, though

the transfer learning tool CaSTLe revealed a cone-rich cell composition, while the manual

annotation returned equal amounts of rods and cones. Both HRO samples indicated a good

correspondence after merging both data sets, though slight shifts in cell embeddings were

observable for Müller glia cells and cones.

Since many macular diseases are known to set off in the foveal-parafoveal region of the retina,

it was investigated if the HRO-system exhibited a foveal or peripheral expression pattern

within photoreceptor and Müller glia cells. Using reference samples of primate and human
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origin did not indicate a consistent trend in correlation towards either a foveal or a peripheral

region.

Finally, the calculation of developmental trajectories within the HRO samples and the com-

pression of the cell clusters into abstracted graphs helped to compare the HRO samples with

respect to their developmental status. This analysis indeed highlighted differences between

both control samples. While already more premature photoreceptors were annotated in HRO-

3 using the manual cell annotation, the developmental transitions between retinal cell types

identified different pseudotemporal characteristics. As rods and cones were detected as being

the most mature cell type in HRO-2, solely cones were pinpointed in HRO-3, alongside an

unusual trajectory from the rod into the cone populations. These results display differences

within the developmental status-quo, which were not visible initially.

Novelty of this work. In this dissertation, a human retina organoid was analysed, provid-

ing a basis to study the disease mechanisms associated to age-related macular degeneration

(AMD). The identified cell type quantities in the untreated organoids can also enlighten more

subtle changes after the initialisation of the disease. Moreover, using RNA velocity, baseline

developmental trajectories were inferred, which could serve as a reference.

Due to the many promises and possible applications in single-cell transcriptomics, many

efforts were undertaken concerning method development, particularly to adjust and adapt

to the specific sparse data characteristics. With more knowledge of the data characteristics,

more efforts were undertaken for the identification of best-practice workflows.

Aside from plentiful prospects of single-cell transcriptomics, also many challenges and limita-

tions arose. As gene correlation networks proved useful for conventional bulk RNA-seq data

analysis, it was initially unfeasible on the single-cell data based on a lack of performance of the

inference tools [Chen & Mar 2018]. Due to the huge amount of sparseness alongside the large

data sets, well-established tools were not applicable anymore, while new algorithms lacked re-

producibility and robustness. Based on these prerequisites, this dissertation sought to answer

how different degrees of sparseness affect network inference if data imputation could facilitate

network inference, and what useful insights can be gained from cell type-specific gene net-

works. Providing a robust benchmarking framework, various sparsity levels and imputation

tools were applied on a reference data set, identifying a window of opportunity for low and

moderate levels of dropout. Transferring these insights to a biological context, DCA-imputation

of a retina organoid allowed to infer biologically meaningful cell type-specific gene correlation

networks. However, also data imputation did not allow for correlation network inference from

high dropout data sets, still retaining the potential of the data. These restrictions may be
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alleviated with technical improvements such as capturing the mRNA more efficiently and

advanced method development in both, direct network inference and data imputation. With

growing knowledge about the data structure, more suitable assumptions and models can be

used. More recent advancements, for example, propose to step away from the dropout model

and move towards a probabilistic model in which all transcripts within a cell are equally likely

to be captured and sequenced [Breda et al. 2021].

Reproducibility of single-cell results. Though the many possibilities of single-cell transcrip-

tomics and continuous tool development, one major constraint concerns the reproducibility

of the results. As a disclaimer, this topic is not exclusive to the single-cell omics field; how-

ever, due to its recency, it becomes very eminent. In this section, general limitations will

be discussed, finishing with a few suggestions on ensuring reproducibility in the context of

single-cell transcriptomics.

With respect to this dissertation, concerns were encountered in the general reproducibility of

results across pipelines and versions. For example, in the HRO analysis, the manual annota-

tion pipeline was run using an older version of scanpy. The reason for this was a different

number of detected clusters when rerunning the analysis in a higher version pipeline, which

would have resulted in a complete revision of the annotation results used for downstream

analysis. As already mentioned in the respective discussion, an annotation procedure not

relying on a previous cell clustering would be more reproducible and robust. The obvious

reasons lie in the recency of this field and the rapidly growing insights, which cause a frequent

version update of single-cell workflows. This recency was moreover observable since, generally

different pipelines and coding environments were used. While python and R are predominantly

used in the single-cell transcriptomic universe, also two different preprocessing workflows were

established, namely scanpy and Seurat. Though technically no restriction in the interoper-

ability between these pipelines can be stated, it is more time-consuming to ensure proper data

ex- and import. To ensure reproducibility of the results, it is more consistent to stay within

the same analysis pipeline. However, exceeding the steps of basic data preprocessing and

clustering to employ more downstream analysis, two different scenarios were equally likely:

(1) Sticking to the same analysis pipeline for a tool with weaker performance reducing the

expressiveness of the inferred result, or (2) switching the pipeline for a tool with the best per-

formance but simultaneously sacrificing reproducibility. In the context of this dissertation, a

trajectory inference method, PAGA was used, which was embedded in the scanpy-environment.

While this specific tool revealed good performance in a benchmarking publication [Saelens

et al. 2019], no generalisation can be implicated regarding other downstream tasks or tools.
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Due to an initial absence of tools that could adapt for the specific single-cell characteristics,

such as size and sparsity, a huge increase was met in method development. Now, systematic

studies aim at comparing a subset of these tools as well as the parameter choices, helping to

establish recommendations depending on the data structure and supplementary information

[Wang et al. 2020, Soneson et al. 2021].

Adherence to FAIR principles. After stating concerns regarding the reproducibility of analy-

sis workflows in the field of single-cell transcriptomics, data and script provision could alleviate

these limitations. Generally, transcriptomics data aims to provide an untargeted and compre-

hensive picture of the gene expression pattern of a certain organism at a certain time point

or treatment. No measurement is truly unbiased. Since these studies are both cost- and

work-intensive, researchers tried to establish public databases, where other researchers could

access and analyse the data without the need to re-generate it for themselves. Likewise, public

code and workflow repositories such as Github and Gitlab were founded to allow easy code

and script sharing, since bioinformatic analysis grew over the last decades. These databases

should adhere to the FAIR principles, which state that data should be stored findable, ac-

cessible, interoperable, and reusable [Wilkinson et al. 2016]. However, during the course of

this dissertation, major difficulties with at least one of these principles were encountered, or

(sub-)results were not provided at all.

Regarding the latter point, often, the cell annotation results derived within the publications

themselves were not published. That became most prominent when researching single-cell

transcriptomics data sets for the annotation of the HRO system. In the Kim et al. [2019]

publication moreover, solely a rough annotation workflow was provided instead of the actual

script. The combination of incomplete data provision and script allocation severely reduces

the reproducibility of the results. Moreover, a significant amount of time must be spent on re-

generating the described annotation results. Oppositely, an optimal data supply was provided

by Cowan et al. [2020]. Next to the expression data, the annotation and a visualisation

platform were also published.

However, some of these limitations could be diminished by establishing gold standard data and

code sharing workflows. Similar efforts were already undertaken regarding public databases

by defining best-practice workflows or checklists to increase reproducibility and transparency

of the results [Kolker et al. 2014, Kenneth M. Merz et al. 2020, Chervitz et al. 2011]. Apart

from the (un-)processed expression data itself, which is already frequently hosted on Gene

Expression Omnibus (GEO), also the corresponding Seurat, or scanpy-objects should be sup-

plied, as all required information will be included at their correct position. To further increase
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the interoperability, the cell annotation should either be published alongside the expression

data as a simple csv file or should directly be included within the scanpy- or Seurat-objects.

The provision of the annotation data serves two important issues: (1) spare a lot of time

when the original researcher or any other has to re-use the annotation and (2) ensures the

same starting point for the follow-up analysis. Similar efforts were undertaken in the gen-

eration of so-called cell type atlases such as the single-cell Expression Atlas [Papatheodorou

et al. 2020]. These databases seek to provide a collection of high-quality data sets that can

be used to learn cell type annotation patterns. Alongside, it should become conventional to

provide the bioinformatic analysis scripts on a public repository. While many publications

already provide all scripts underlying the generated results in Github or Gitlab, some others

do not provide them at all or only upon request. More common rules and requirements would

drastically increase the reproducibility of the results.

In summary, due to the recency of single-cell transcriptomics, missing standard workflows

raise major concerns in reproducibility. Though non-standard workflows could theoretically

be backed up with script provision and building a respective container, it is rarely encoun-

tered. Comprehensive benchmarking of the implemented tools will reduce these concerns

to strengthen the inferred results. Furthermore, expanding Minimum Information About

Sequencing or Microarray Experiments (MINSEQE/ MIAME)∗ for data upload and code

sharing will increase the studies’ transparency and allow for effortless follow-up analysis by

the single-cell community.

Outlook and perspectives. In this dissertation, the defined influence of data sparsity and

imputation with respect to the inference of cell type-specific networks from single-cell tran-

scriptomics data was stated, as well as providing an in-depth characterisation of a human

retinal organoid model system.

Apart from the technical aspects, like reproducibility and data provision, which were already

discussed before, the mindful biological interpretation represents another central challenge in

single-cell data analysis. As for the DCA-imputed networks, a more in-depth analysis of the

gene correlation networks is required. Besides the very variable cell type-specific networks

derived from EIF4EBP1, also other more consensus networks should be characterised, for

example, based on common photoreceptor regulators or housekeeping genes. Following this

careful evaluation, other gene networks of interest should be investigated to decipher more

subtle differences between rods and cones.

The same careful evaluation was applied to the HRO system. An initial analysis, given the

∗https://www.ncbi.nlm.nih.gov/geo/info/MIAME.html
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possible analysis tools already provided high-resolution insights into the cell type quantities

and developmental trajectories of the organoid system. Based on these trajectories, it was

possible to approach developmental processes within the organoid model, highlighting overlaps

to in vivo organ development. Likewise, differences were also identified, which may aid

in improving the experimental conditions and differentiation protocols when culturing the

organoids to resemble the human eye fully. Then, these organoids can be used to derive

useful insights into the progression of AMD or other similar macular diseases.
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7.1 Data and Code availability

All R-markdown files, jupyter notebooks, Helper-functions and conda-environments used in

this dissertation are deposited on Github (https://github.com/lisbeth-dot-95/Dissertation).

In this repository, the scripts were ordered according to the structure presented in this dis-

sertation. The gold data, as well as corresponding dropout data sets, are included in the R-

package scorrgoldnet on Github (https://github.com/lisbeth-dot-95/scorrgoldnet)

All single-cell-objects and annotation results were uploaded to zenodo∗. Both Seurat-objects

used in Chapter 4, can be found under this doi:https://doi.org/10.5281/zenodo.5519574.

The use of publicly available data sets was indicated in the respective workflow section of the

chapters. Since both HRO data sets have not been published, their access is embargoed

but will be released upon publishing. The preprocessed and annotated results can be found

here:https://doi.org/10.5281/zenodo.5519551. The RNA velocity analysis results were

deposited under the following doi:https://doi.org/10.5281/zenodo.5525816.

7.2 Chapter 3

To evaluate the effect of different levels of dropout on gene network inference, a benchmarking

framework was established spanning six levels of dropout and seven imputation methods. In

this section, supplementary information corresponding to Chapter three was included.

While analysing the reference data set, comprising the gold and six dropped-out data sets,

the distribution of expression values was investigated. Figure S-1 depicts the full distribution

pattern of logged expression values.

After proofing the suitability of the synthetic reference data set, seven imputation tools were

applied to each dropout level and the effect on the correlation network preservation was

analysed. Using the module preservation statistics, established by [Langfelder et al. 2011],

two different thresholds of preservation were used. Values exceeding the threshold of ten

were considered to be strongly preserved, whereby values below two represent non-preserved

correlated gene groups. In between both thresholds, modules were considered moderately

preserved. Here, Figure S-2 highlights the distribution of module preservation scores over

different dropout levels and imputation tools. A compressed version using a log2-FC was

used in the main part (see Figure 3.6).

Apart from the composite measure of the module preservation, also the distributions of the

∗https://zenodo.org/
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Figure S-1. Distribution of logged expression values of all reference data sets and a human

retina data set.

The density of expression values across eight data sets is shown to contrast the impact of

different dropout rates. The gold data is plotted in orange, all six dropout reference data

sets are shown with a grey gradient and a biological data set is plotted in blue.
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Figure S-2. Box plots showing the behavior of module preservation across different dropout

levels.

The Zsummary measure implemented in WGCNA is a composite, permutation-based metric of

various network density and connectivity measures. The blue and the green line indicate

the threshold towards moderate and strong module preservation, respectively. Coloura-

tion of the dots corresponds to the individual modules. Dropout refers to the amount of

artificially introduced non-true zeros in each of the reference data sets.

topological overlap measured (TOM) values before and after imputation were analysed since

other publications indicated a systematic increase in correlation values Andrews & Hemberg

130



7.2. Chapter 3

[2019]. A summary is provided in Figure S-3.

While initially focussing on the effect of imputations on the gene-gene correlation, a human

retina organoid data set by [Kim et al. 2019] was applied to investigate the effect on cell-

cell correlations. Here, more specifically the annotatability using known marker genes before

and after imputation was highlighted. Therefore, an automatic annotation pipeline was es-

tablished which was described in section 3.1. The individual dot plots used for cell cluster

annotations are depicted in Figure S-4.

Next to the percentages of annotated retinal cell types, here rods, cones, and Müller glia cells,

also unambiguous clusters (mixed) and un-annotatable clusters were quantified. Previous

work mentioned that imputations helped to reobtain original cell clusters [Eraslan et al.

2019]. Therefore, also the number of cell clusters after the Louvain community detection and

the mean silhouette coefficient was included. An overview of the results is indicated in Table

S-1.

Table S-1. Results of retina annotation pipeline before and after imputation. The table shows

the percentages of retina-specific cell types as well as not assignable and mixed clusters.

MSC Clusters Cones Rods MG cells Not assignable Mixed annotation

sparse -0,01 8 26,03 21,60 24,34 28,04 0,00

DrImpute -0,18 11 24,29 21,10 18,05 6,55 0,00

SAVER -0,03 8 26,08 18,05 19,76 36,11 0,00

DCA 0,14 8 28,75 20,28 29,12 21,84 0,00

scNPF -0,03 9 20,43 21,77 23,25 34,55 0,00

scNPFString -0,02 8 20,65 21,03 18,50 39,82 0,00

ENHANCE 0,02 21 44,28 17,09 15,82 19,32 3,49
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure S-3. Density of TOM values before and after imputation of the synthetic data set.

After transforming expression data before and after imputation to TOM values via the gold

data β value, positive edges were detected and compared during the edge recovery analysis.

Colours correspond to the original information content of data (lightest blue - less information,

highest dropout level). (a) Dropout data, (b) DrImpute, (c) SAVER, (d) ENHANCE, (e) DCA, (f)

DISC, (g) scNPF, (h) scNPF Gold. Whereby some tools, such as DrImpute (b) and both

scNPF approaches (g+h) produce high TOM values compared to the gold data, DCA (e) and

ENHANCE (d) TOM densities were close to gold.
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(a) Sparse human retina organoids

(b) DrImputed imputed human retina organoids

(c) SAVER imputed human retina organoids

(d) DCA imputed human retina organoids
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(e) scNPF imputed human retina organoids

(f) scNPF String imputed human retina organoids

(g) ENHANCE imputed human retina organoids

Figure S-4. Dot plot of marker gene expression in human retina organoids.

All dot plots show the expression values of marker genes across Louvain clusters using the

scanpy workflow before and after imputation. Colouring corresponds to the mean gene ex-

pression and the dot size to the percentage of cells per cluster expressing the respective gene.

Expression values were scaled per Louvain cluster.
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7.3 Chapter 4

Based on the results of Chapter three, it was evaluated if indeed cell type-specific gene cor-

relation networks were inferable after DCA-imputation of an experimentally derived data set.

Therefore, the human retina organoid data set by Kim et al. [2019] was used. Via the pro-

vided set of marker genes, cell clusters were annotated to either rod, cone, or Müller glia cell.

An overview of the annotation results in the sparse and imputed data is provided in Figure

S-5. Additionally, both Seurat-objects were made publicly available (see Section 7.1).

(a) Unimputed data. (b) DCA-imputed data.

Figure S-5. Annotation result of human retina data set.

The raw and DCA-imputed data was preprocessed and visualized via the Seurat-pipeline.

Using the set of provided marker genes, the expression pattern across Louvain clusters

was analysed. Unclear clustering results correspond to the set of marker genes that were

not specific for cones, rods and Müller Glia cells. If no expression signal was detected,

cells were assigned to the NA cluster.

After stating that indeed scale-free gene correlation networks were inferred after DCA-imputation,

the biological information of the modules was analysed. Hypothesising that the GOIs fulfil

a central role within the respective cell type-specific networks, they should own a hub gene-

like status. Clearly, one module in the rod- and cone-specific network revealed a low rank,

corresponding to a high absolute MM-value. Assuming that these network configurations are

cell type-specific, they should not be detected in the respective other network. In the main

part of the thesis, the distribution of MM-values of the top20 hub genes from these modules

was investigated. Figure S-6 shows an alternative representation, using the same ranking
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procedure used for Figure 4.4 These trends were in concordance with the insights gained in

the main part.
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(a) Rod-module hub genes in cone network
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(b) Cone-module hub genes in rod network

Figure S-6. Distribution of cone- and rod-specific module membership ranks in complemen-

tary network.

After identifying the cone- and rod-specific modules in the respective network, the unique-

ness of the hub genes in these modules is analysed. Therefore, the top 20 MM-genes per

module are extracted and the distribution of their MM-ranks is compared across all other

modules in the opposite network. Both, the MM values of the rod-greenyellow hub genes

in the cone network (a), as well as the cone-purple hub genes in the rod network (b) show

no module with high MM-values but low variance.
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7.4 Chapter 5

Age-related macular degeneration represents a major cause of blindness in developed coun-

tries and to date, neither the defined molecular pathway of the disease is known nor an

efficient treatment option at hand. Using reprogrammed stem cells, organ-like structures,

called organoids can be generated which own a sufficient cellular complexity and avoid ani-

mal testing. Here, a novel human retinal organoid system, named HRO was developed, which

should ultimately allow to illuminate the defined disease progressions of AMD. Using the

toolbox of single-cell transcriptomics, two untreated HRO controls were characterized. In a

first step, the individual cells were annotated to retinal cell types. Here, a manual, as well as

a machine learning pipeline, was applied. Figure S-7 and S-8 summarize the additional dot

plots which were used in the manual approach to annotate Louvain clusters, detected in the

low dimensional data.

Additionally, a transfer-learning tool called CaSTLe was used, which learns cell type charac-

teristics from a reference data set to annotate unseen data. Three different reference data sets

by [Cowan et al. 2020] were used spanning a developed organoid and two adult tissue samples.

Regarding both adult tissue samples, regions of the fovea and periphery were extracted. A

defined overview of the full Cowan-organoid data set is provided in Supplementary Table S-2.

Likewise, the cell type counts regarding both adult samples is depicted in Supplementary

Table S-3. For the main part, these high-resolution data sets were compressed to increase the

classification performance. Therefore, the cell subgroup resolution was sacrificed, while larger

superior groups were gathered. As an example, all cells belonging to the subgroup AC B 0X

were compressed to AC B. Moreover, were all annotation artefacts (5-, 37-, and 38-) removed

before training CaSTLe. Regarding the adult data sets shown in Supplementary Table S-3, all

immune cells (MAST, MO, and NK) were also withdrawn from the training data. The final

compressed overview is depicted in Table 5.1.

137



7. Supporting material

Amacrine Horizontal Ganglion

(a) AHG cells HRO3 (b) Bipolar cells HRO3

(c) Photoreceptor progenitor cells

HRO3

Figure S-7. Dot plot of marker gene expression in HRO2.

Expression of selected Amacrine-Horizontal-Ganglion (AHG) (a), Bipolar (b), and pho-

toreceptor progenitor cell-associated genes (c) across 21 different Louvain clusters. The

mean expression is indicated in the heatmap legend. The dot size corresponds to the per-

centage of cells expressing the gene inside the Louvain cluster.
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Amacrine Horizontal Ganglion

(a) AHG cells HRO3 (b) Bipolar cells HRO3

(c) Photoreceptor progenitor cells HRO3

Figure S-8. Dot plot of marker gene expression in HRO3.

Expression of selected Amacrine-Horizontal-Ganglion (AHG) (a), Bipolar (b), and pho-

toreceptor progenitor cell-associated genes (c) across 20 different Louvain clusters. The

mean expression is indicated in the heatmap legend. The dot size corresponds to the per-

centage of cells expressing the gene inside the Louvain cluster.
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Table S-2. Overview of cell types and amounts of the Cowan et al. [2020] organoid data set.

Legend: AC - Amacrines, Ast - Astrocytes, CdBC/ChBC - Bipolars, CM - Choroidal

melanocyte, END - Endothelial cells, FB - Fibroblasts, GC - Ganglions, HC - Horizontals,

MC - Müller Glia, PER - Pericytes, RBC - Rod bipolar cell, RPE - Retinal pigment

epithelium, uG - Mircoglia

Compressed Original

Cell type Count Cell type Count

37- 78 37- 78

38- 58 38- 58

5- 216 5- 216

AC B 1230

AC B 01 141

AC B 02 29

AC B 04 88

AC B 05 59

AC B 06 167

AC B 07 17

AC B 08 32

AC B 09 13

AC B 10 142

AC B 11 11

AC B 12 253

AC B 13 33

AC B 15 51

AC B 16 20

AC B 17 107

AC B 18 67

AC Y 81
AC Y 01 58

AC Y 03 23

Ast 55 Ast 55

CdBC 1700

CdBC 01 283

CdBC 02 1235

CdBC 03 123

CdBC 04 28

CdBC 05 31

ChBC 658

ChBC 01 235

ChBC 02 66

ChBC 03 204

ChBC 04 153

HC 02 1762 HC 02 1762

cones 12973
L/M cone 12892

S cone 81

MC
10542

MC 01 10341

MC 02 112

MC 03 89

RBC 461 RBC 461

rod 13913 rod 13913

RPE 130 RPE 130
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Table S-3. Overview of cell types and amounts of the Cowan et al. [2020] adult data sets.

Legend: AC - Amacrines, Ast - Astrocytes, CdBC/ChBC - Bipolars, CM - Choroidal

melanocyte, END - Endothelial cells, FB - Fibroblasts, GC - Ganglions, HC - Horizontals,

MC - Müller Glia, PER - Pericytes, RBC - Rod bipolar cell, RPE - Retinal pigment

epithelium, uG - Mircoglia. Continued on next page.

Foveal Peripheral

Compressed Original Compressed Original

Cell type Count Cell type Count Cell type Count Cell type Count

AC B 192

AC B 01 29

AC B 417

AC B 01 30

AC B 08 39 AC B 08 40

AC B 10 16 AC B 10 17

AC B 11 43 AC B 11 12

AC B 15 16 AC B 15 32

AC B 16 17 AC B 16 33

AC B 18 32 AC B 18 99

AC Y 123 AC Y 330

AC Y 01 130

AC Y 02 44

AC Y 03 123 AC Y 03 156

Ast 149 Ast 149 Ast 172 Ast 172

CdBC 2058

CdBC 01 93

CdBC 2418

CdBC 01 416

CdBC 02 364 CdBC 02 524

CdBC 03 1247 CdBC 03 1070

CdBC 04 354 CdBC 04 288

CdBC 05 120

ChBC 398

ChBC 02 50

ChBC 1182

ChBC 02 440

ChBC 03 14 ChBC 03 75

ChBC 04 334 ChBC 04 564

ChBC 01 103

END 368

END 01 204

END 208

END 01 102

END 02 82 END 02 52

END 03 82 END 03 54

FB 02 252 FB 02 252 FB 02 579 FB 02 579

GC 6086
GC 01 4338

GC 35
GC 01 23

GC 04 232 GC 04 12

HC 1037
HC 01 144

HC 844
HC 01 261

HC 02 893 HC 02 583

cone 1375
L/M cone 1339

cone 1202
L/M cone 1149

S cone 36 S cone 53

MC 3886

MC 01 3886

MC 8207

MO 01 6536

MO 02 1491

MO 03 180

MO 137

MO 01 32

MO 300

MO 01 220

MO 02 40 MO 02 57

MO 03 65 MO 03 23

NK 130 NK 130 NK 44 NK 44
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Foveal Peripheral

Compressed Original Compressed Original

PER 75 PER 75 PER 85 PER 85

RBC 1016 RBC 1016 RBC 4191 RBC 4191

rod 1894 rod 1894 rod 13029 rod 13029

RPE 84 RPE 84 RPE 186 RPE 186

TCell 299 TCell 299 TCell 160 TCell 160

CM 157 CM 157

uG 172 uG 172 uG 171 uG 171

After identifying retinal cell types using these two pipelines, the CaSTLe-annotation was used

to correlate HRO-photoreceptors and Müller glia cells to adult foveal and peripheral reference

samples. In the course of this dissertation, three reference data sets were used including

primate and human data. As both human reference data sets by [Cowan et al. 2020] and

[Voigt et al. 2019] contained the information of three different donors, the distributions of

the correlation values were illustrated individually. The results of the Voigt et al. data are

depicted in Figure S-9 and Figure S-10. Similarly, all Cowan et al. related data results are

shown in Figure S-11 and Figure S-12.

Though a temporal aspect of the data is lost while tissue preparation, RNA velocity allows

approaching a so-called pseudotime. This information may help to order cells relative to

this measure. Here, RNA velocity was used to compare the developmental status of both

untreated HRO systems. In the main part of this dissertation, the CaSTLe-annotation was

used to analyse the developmental trajectory across cell types. Additionally, Figure S-13

summarizes the RNA velocity streams using the manual annotation result.
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Figure S-9. Distribution of Pearson correlation of HRO-2 cells and human tissue reference

data taken from Voigt et al. [2019] per donor.

Cells are annotated via the CaSTLe-annotation pipeline The violin plot shows the Pearson

correlation of organoid cones, rods and Müller Glia cells against the human reference

vectors of foveal and peripheral cells.
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Figure S-10. Distribution of Pearson correlation of HRO-3 cells and human tissue reference

data taken from Voigt et al. [2019] per donor.

Cells are annotated via the CaSTLe-annotation pipeline The violin plot shows the Pearson

correlation of organoid cones, rods and Müller Glia cells against the human reference

vectors of foveal and peripheral cells.

144



7.4. Chapter 5

Figure S-11. Distribution of Pearson correlation of HRO-2 cells and human tissue reference

data taken from Cowan et al. [2020] per donor.

Cells are annotated via the CaSTLe-annotation pipeline The violin plot shows the Pearson

correlation of organoid cones, rods and Müller Glia cells against the human reference

vectors of foveal and peripheral cells.
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Figure S-12. Distribution of Pearson correlation of HRO-3 cells and human tissue reference

data taken from Cowan et al. [2020] per donor.

Cells are annotated via the CaSTLe-annotation pipeline The violin plot shows the Pearson

correlation of organoid cones, rods and Müller Glia cells against the human reference

vectors of foveal and peripheral cells.
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(a) RNA velocity streams manual annotation of HRO-2

(b) RNA velocity streams manual annotation of HRO-3

Figure S-13. RNA velocity streams of manual annotation results.

Using the calculated RNA velocity streams, the development of the premature photoreceptor

cell type can be traced. Similar to the results of the CaSTLe-annotation, differences across

both HRO-samples were detected.
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