10 research outputs found

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir tĂ€glich verwenden, ĂŒbernommen. Es bringt mehrere inhĂ€rente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der BitĂŒbertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher MobilitĂ€t stark beeintrĂ€chtigt. In dieser Arbeit untersuchen wir die Auswirkungen der MobilitĂ€t auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschĂ€tzen und seine Auswirkungen am EmpfĂ€nger zu kompensieren. Auf Compressed Sensing (CS) basierende KanalschĂ€tzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal prĂ€zise, robust und rechnerisch effizient abzuschĂ€tzen. DarĂŒber hinaus wird ein Cognitive Framework entwickelt und getestet, das die MobilitĂ€t im Kanal erkennt und ein optimales SchĂ€tzungsschema konfiguriert. Das Cognitive Framework gewĂ€hrleistet ein rechnerisch optimales KanalschĂ€tzungsschema fĂŒr alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung fĂŒr drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgefĂŒhrt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher MobilitĂ€t in OFDM-basierten drahtlosen Kommunikationssystemen

    Mixed-numerology for radio access network slicing

    Get PDF
    Network slicing is a sustainable solution to support the various service types in future networks. In general, network slicing is composed of core network slicing and radio access network (RAN) slicing. The former can be realized by allocating dedicated virtualized core network functionalities to specific slices. Similarly, RAN slicing includes the virtualization and allocation of the limited RAN resources. From the physical layer perspective, supporting RAN slicing implies the need of unique radio-frequency (RF) and baseband (BB) configurations, i.e., numerology, for each slice to fulfil its quality of service requirements. To support such a heterogeneous mixed-numerology (MN) system, the transceiver architecture and widely used signal processing algorithms in the traditional single-service system need to be significantly changed. A clear understanding of mixed-numerology signals multiplexing and isolation is of importance to enable spectrum and computation efficient RAN slicing. Meanwhile, an effective channel estimation is the guarantee of performing almost all receiver signal processing. Fundamental channel estimation investigations also constitute a crucial piece of MN study. This thesis aims to systematically investigate the OFDM-based MN wireless communication systems in terms of system modeling, channel equalization/ estimation, and power allocation. First, a comprehensive mixed-numerology framework with two numerologies is proposed and characterized by physical layer parameters. According to the BB and RF configurations imparities among numerologies, four scenarios are categorized and elaborated on the configuration relationships of different numerologies. System models considering the most generic scenario are established for both uplink and downlink transmissions. Two theorems are proposed as the basis of MN algorithms design, which generalize the original circular convolution property of the discrete Fourier transform. The proposed theorems verifies the feasibility of the one-tap channel equalization in MN systems. However, they also indicate that both BB and RF configuration differences result in inter-numerology-interference (INI). Besides, severe signal distortion may occur when the transmitter and receiver numerologies are different. Therefore, a pre-coding algorithm is designed by utilizing the theorems to compensate the system degradation resulting from the signal distortion. INI cancellation algorithms are proposed based on collaboration detection scheme and joint numerologies signal models for downlink and uplink, respectively. Numerical results shows that the proposed algorithms are able to significantly improve the system performance. Another objective of this thesis is to verify the effectiveness of the existing channel estimation algorithms and to develop new ones in the presence of MN. To achieve these goals, three channel estimation methods, i.e., least-square linear interpolation, least-square ‘sinc’ interpolation, and minimum mean square error ‘sinc’ interpolation are implemented and theoretically analyzed in both single-user and multi-user scenarios. The analysis reveals that the pilot signal to noise ratio, pilot distance, and position of pilot signals jointly affect the channel estimation. In particular, a signal distortion factor caused by the RF configuration difference is spotted to seriously affect the channel estimation performance, whose values are mainly decided by the degree of configuration mismatch. On the other hand, INI also degrades the channel estimation in the MN system. The existence of interference-free subcarriers is demonstrated based on the derived closed-form expression of the INI. Pilot design principles in terms of pilot signal placement are developed according to the analyses. Numerical results shows that minimum mean square error based channel estimation has the best performance and robustness to the configuration mismatch. In addition, the proposed pilot design principles could produce comparable channel estimation results with the legacy OFDM systems where no INI and signal distortion exist. The two problems associated with the MN system, i.e., signal distortion and INI, could negatively affect the power distribution of the received MN signals, and the system performance in terms of spectrum efficiency may be seriously degraded. Consequently, it becomes outstandingly important to introduce an efficient subcarrier-level power allocation scheme in such kinds of systems to counter the performance degradation caused by the configuration mismatch. As such, this thesis makes the attempt to extend the two-numerology model to contain ‘M’ different numerologies. Based on the model, closed-form expressions of desired signal, interference, and noise are derived. The derivation shows that interference generated from different numeroloies are linearly superimposed in the frequency domain. The distribution of signal-to-interference-plus-noiseratio (SINR) is analyzed theoretically. An iterative convex approximation power allocation algorithm is proposed by applying the derived SINR. Results show that the power allocation algorithm contributes to remarkable spectrum efficiency improvement compare to the other schemes, and an extra subband filtering process could bring about even higher performance. The work presented in this thesis provides guidance for multi-numerology system design in terms of parameter selection, and the frame structure and algorithms design. Moreover, it presents a solution as to how the radio access network slicing can be underpinned in the physical layer in a spectrum efficient way

    Integration of hybrid networks, AI, Ultra Massive-MIMO, THz frequency, and FBMC modulation toward 6g requirements : A Review

    Get PDF
    The fifth-generation (5G) wireless communications have been deployed in many countries with the following features: wireless networks at 20 Gbps as peak data rate, a latency of 1-ms, reliability of 99.999%, maximum mobility of 500 km/h, a bandwidth of 1-GHz, and a capacity of 106 up to Mbps/m2. Nonetheless, the rapid growth of applications, such as extended/virtual reality (XR/VR), online gaming, telemedicine, cloud computing, smart cities, the Internet of Everything (IoE), and others, demand lower latency, higher data rates, ubiquitous coverage, and better reliability. These higher requirements are the main problems that have challenged 5G while concurrently encouraging researchers and practitioners to introduce viable solutions. In this review paper, the sixth-generation (6G) technology could solve the 5G limitations, achieve higher requirements, and support future applications. The integration of multiple access techniques, terahertz (THz), visible light communications (VLC), ultra-massive multiple-input multiple-output ( ÎŒm -MIMO), hybrid networks, cell-free massive MIMO, and artificial intelligence (AI)/machine learning (ML) have been proposed for 6G. The main contributions of this paper are a comprehensive review of the 6G vision, KPIs (key performance indicators), and advanced potential technologies proposed with operation principles. Besides, this paper reviewed multiple access and modulation techniques, concentrating on Filter-Bank Multicarrier (FBMC) as a potential technology for 6G. This paper ends by discussing potential applications with challenges and lessons identified from prior studies to pave the path for future research

    Nonlinear Distortion in Wideband Radio Receivers and Analog-to-Digital Converters: Modeling and Digital Suppression

    Get PDF
    Emerging wireless communications systems aim to flexible and efficient usage of radio spectrum in order to increase data rates. The ultimate goal in this field is a cognitive radio. It employs spectrum sensing in order to locate spatially and temporally vacant spectrum chunks that can be used for communications. In order to achieve that, flexible and reconfigurable transceivers are needed. A software-defined radio can provide these features by having a highly-integrated wideband transceiver with minimum analog components and mostly relying on digital signal processing. This is also desired from size, cost, and power consumption point of view. However, several challenges arise, from which dynamic range is one of the most important. This is especially true on receiver side where several signals can be received simultaneously through a single receiver chain. In extreme cases the weakest signal can be almost 100 dB weaker than the strongest one. Due to the limited dynamic range of the receiver, the strongest signals may cause nonlinear distortion which deteriorates spectrum sensing capabilities and also reception of the weakest signals. The nonlinearities are stemming from the analog receiver components and also from analog-to-digital converters (ADCs). This is a performance bottleneck in many wideband communications and also radar receivers. The dynamic range challenges are already encountered in current devices, such as in wideband multi-operator receiver scenarios in mobile networks, and the challenges will have even more essential role in the future.This thesis focuses on aforementioned receiver scenarios and contributes to modeling and digital suppression of nonlinear distortion. A behavioral model for direct-conversion receiver nonlinearities is derived and it jointly takes into account RF, mixer, and baseband nonlinearities together with I/Q imbalance. The model is then exploited in suppression of receiver nonlinearities. The considered method is based on adaptive digital post-processing and does not require any analog hardware modification. It is able to extract all the necessary information directly from the received waveform in order to suppress the nonlinear distortion caused by the strongest blocker signals inside the reception band.In addition, the nonlinearities of ADCs are considered. Even if the dynamic range of the analog receiver components is not limiting the performance, ADCs may cause considerable amount of nonlinear distortion. It can originate, e.g., from undeliberate variations of quantization levels. Furthermore, the received waveform may exceed the nominal voltage range of the ADC due to signal power variations. This causes unintentional signal clipping which creates severe nonlinear distortion. In this thesis, a Fourier series based model is derived for the signal clipping caused by ADCs. Furthermore, four different methods are considered for suppressing ADC nonlinearities, especially unintentional signal clipping. The methods exploit polynomial modeling, interpolation, or symbol decisions for suppressing the distortion. The common factor is that all the methods are based on digital post-processing and are able to continuously adapt to variations in the received waveform and in the receiver itself. This is a very important aspect in wideband receivers, especially in cognitive radios, when the flexibility and state-of-the-art performance is required

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book
    corecore