22 research outputs found

    Residential load event detection in NILM using robust cepstrum smoothing based method

    Get PDF
    Event detection has an important role in detecting the switching of the state of the appliance in the residential environment. This paper proposed a robust smoothing method for cepstrum estimation using double smoothing i.e. the cepstrum smoothing and local linear regression method. The main problem is to reduce the variance of the home appliance peak signal. In the first step, the cepstrum smoothing method removed the unnecessary quefrency by applying a rectangular window to the cepstrum of the current signal. In the next step, the local regression smoothing weighted data points to be smoothed using robust least squares regression. The result of this research shows the variance of the peak signal is decreased and has a good performance with better accuracy. In noise enviromment, performance prediction quite good with values greater than 0.6 and relatively stable at values above 0.9 on SNR> 25 for single appliances. Furthermore, in multiple appliances, performance prediction quite good at SNR> 20 and begins to decrease in SNR <20 and SNR> 25

    Comprehensive feature selection for appliance classification in NILM

    Get PDF
    Since the inception of non-intrusive appliance load monitoring (NILM), extensive research has focused on identifying an effective set of features that allows to form a unique appliance signature to discriminate various loads. Although an abundance of features are reported in literature, most works use only a limited subset of them. A systematic comparison and combination of the available features in terms of their effectiveness is still missing. This paper, as its first contribution, offers a concise and updated review of the features reported in literature for the purpose of load identification. As a second contribution, a systematic feature elimination process is proposed to identify the most effective feature set. The analysis is validated on a large benchmark dataset and shows that the proposed feature elimination process improves the appliance classification accuracy for all the appliances in the dataset compared to using all the features or randomly chosen subsets of features. (C) 2017 Elsevier B.V. All rights reserved

    Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis

    Get PDF
    The useful planning and operation of the energy system requires a sustainability assessment of the system, in which the load model adopted is the most important factor in sustainability assessment. Having information about energy consumption patterns of the appliances allows consumers to manage their energy consumption efficiently. Non-intrusive load monitoring (NILM) is an effective tool to recognize power consumption patterns from the measured data in meters. In this paper, an unsupervised approach based on dimensionality reduction is applied to identify power consumption patterns of home electrical appliances. This approach can be utilized to classify household activities of daily life using data measured from home electrical smart meters. In the proposed method, the power consumption curves of the electrical appliances, as high-dimensional data, are mapped to a low-dimensional space by preserving the highest data variance via principal component analysis (PCA). In this paper, the reference energy disaggregation dataset (REDD) has been used to verify the proposed method. REDD is related to real-world measurements recorded at low-frequency. The presented results reveal the accuracy and efficiency of the proposed method in comparison to conventional procedures of NILM

    A Scoping Review of Energy Load Disaggregation

    Full text link
    Energy load disaggregation can contribute to balancing power grids by enhancing the effectiveness of demand-side management and promoting electricity-saving behavior through increased consumer awareness. However, the field currently lacks a comprehensive overview. To address this gap, this paper con-ducts a scoping review of load disaggregation domains, data types, and methods, by assessing 72 full-text journal articles. The findings reveal that domestic electricity consumption is the most researched area, while others, such as industrial load disaggregation, are rarely discussed. The majority of research uses relatively low-frequency data, sampled between 1 and 60 seconds. A wide variety of methods are used, and artificial neural networks are the most common, followed by optimization strategies, Hidden Markov Models, and Graph Signal Processing approaches

    A Cloud-based On-line Disaggregation Algorithm for Home Appliance Loads

    Get PDF
    In this work, we address the problem of providing fast and on-line households appliance load detection in a non-intrusive way from aggregate electric energy consumption data. Enabling on-line load detection is a relevant research problem as it can unlock new grid services such as demand-side management and raises interactivity in energy awareness possibly leading to more green behaviours. To this purpose, we propose an On-line-NILM (Non-Intrusive Load Monitoring) machine learning algorithm combining two methodologies: i) Unsupervised event-based profiling and ii) Markov chain appliance load modelling. The event-based part performs event detection through contiguous and transient data segments, events clustering and matching. The resulting features are used to build household-specific appliance models from generic appliance models. Disaggregation is then performed on-line using an Additive Factorial Hidden Markov Model from the generated appliance model parameters. Our solution is implemented on the cloud and tested with public benchmark datasets. Accuracy results are presented and compared with literature solutions, showing that the proposed solution achieves on-line detection with comparable detection performance with respect to non on-line approaches

    Event Detection for Non-intrusive Load Monitoring using Tukey s Fences

    Full text link
    The primary objective of non-intrusive load monitoring (NILM) techniques is to monitor and track power consumption within residential buildings. This is achieved by approximating the consumption of each individual appliance from the aggregate energy measurements. Event-based NILM solutions are generally more accurate than other methods. Our paper introduces a novel event detection algorithm called Tukey's Fences-based event detector (TFED). This algorithm uses the fast Fourier transform in conjunction with the Tukey fences rule to detect variations in the aggregated current signal. The primary benefit of TFED is its superior ability to accurately pinpoint the start times of events, as demonstrated through simulations. Our findings reveal that the proposed algorithm boasts an impressive 99% accuracy rate, surpassing the accuracy of other recent works in the literature such as the Cepstrum and χ2\chi ^2 GOF statistic-based analyses, which only achieved 98% accuracy
    corecore