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Abstract

Since the inception of non-intrusive appliance load monitoring (NILM), ex-

tensive research has focused on identifying an e↵ective set of features that allows10

to form a unique appliance signature to discriminate various loads. Although

an abundance of features are reported in literature, most works use only a lim-

ited subset of them. A systematic comparison and combination of the available

features in terms of their e↵ectiveness is still missing. This paper, as its first

contribution, o↵ers a concise and updated review of the features reported in15

literature for the purpose of load identification. As a second contribution, a

systematic feature elimination process is proposed to identify the most e↵ective

feature set. The analysis is validated on a large benchmark dataset and shows

that the proposed feature elimination process improves the appliance classifi-

cation accuracy for all the appliances in the dataset compared to using all the20

features or randomly chosen subsets of features.
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1. Introduction

A breakdown of energy consumption at the appliance level is not only an25

essential requirement for energy providers, in designing practical demand re-

sponse algorithms (e.g., taking into account human behavioral uncertainties,

or targeting specific user and appliance groups), but it also benefits residen-

tial customers by providing them the necessary information for improving their

energy consumption e�ciency [1]. Non-intrusive (appliance) load monitoring30

(NILM) techniques are cost-e↵ective solutions to obtain such information. The

general framework of NILM starts from input measurements of total electricity

consumption to eventually disaggregate it into the individual contributions of

each load.

A crucial step in NILM is feature extraction, which applies signal processing35

techniques to extract features from voltage (V) and current (I) measurements.

The ultimate goal of the feature extraction step is to derive a signature (using

a feature or combination of features) that can uniquely identify the individual

appliances. The performance of any NILM system depends on the uniqueness of

the appliance signature compared to that of other devices. Hence, identification40

of such signature is crucial in improving the load discrimination capability of a

NILM system. Although NILM has been the subject of research for over two

decades, so far a systematic selection of the various electrical features proposed

for e↵ective discrimination of loads has not yet been presented. Identifying the

most meaningful set of electrical parameters to distinguish all appliances still45

remains one of the major challenges in NILM [42]. In this paper, we tackle this

issue and contribute with:

1. A concise and up-to-date review of the features reported in recent NILM

literature (Section 2) and

2. A systematic signature identification algorithm based on a comprehensive50

dataset with diverse appliances and various households (Section 3.1).
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2. State of the art on feature extraction

The seminal work by Hart et al. [2], has inspired extensive research on ex-

tracting features and developing discriminating algorithms for NILM purposes.

Zeifman et al. [3] and Zoha et al. [4] provide an extensive overview of features55

and algorithms that were proposed before 2012. In this section, a concise and

updated review is provided that incorporates the latest developments in the

state-of-the-art on feature extraction.

The type of features that can be extracted from voltage (V ) and current

(I) measurements depends on the sampling rate [3] (e.g., step changes in power60

measured at the fundamental grid frequency, 50Hz in EU, 60Hz in US; or har-

monics and transient based features from higher sampling rates). The features

are also categorized into steady and transient state features, depending on the

state of the measured waveform they represent [4]. Table 1 gives a summary of

the proposed (combination of) features used for NILM in the literature. In this65

table, we categorize the state-of-the-art based on the combination of features

employed for load discrimination into 13 categories, listed in its first column.

Note that Table 1 does not compare their for following reasons: (1) the load

discriminating algorithms di↵er among the papers, (2) the datasets used for

performance evaluations are not the same, and (3) the performance measures70

di↵er. Below, we further comment on each category.

P-Q plane: step changes in real power (P ) and reactive power (Q) are the

first and the most commonly used steady state signatures in NILM. They can

identify ON/OFF and high power appliances. However, appliances with low

power consumptions are more challenging to discriminate using only P-Q fea-75

tures, because they exhibit overlap in the corresponding space.

P-Q plane and macroscopic transient features: this combination of features

is specifically suited to identify appliances with a relatively long transient time

[5], having significant spikes in their power draw, followed by slower changing

variations [6][7] (e.g., heat pumps, electric loads in industrial settings). Such80

transients are characterized using edges and slopes [6][7] or by their power pro-
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files [5]. Although macroscopic transient features are relatively cheaper to obtain

(using low frequency measurements), they do not allow to discriminate non-

linear1 or multi-state2 loads. Additionally, overlapping transient events could

challenge the identification.85

P as the sole feature: although real power measurements are cheaper to ob-

tain than those of reactive power, appliances with similar power consumptions

are harder to discriminate by relying solely on real power measurements. Hence,

this feature has typically been complemented by time and frequency of the appli-

ance usage. Powers et al. [8] record the time and frequency of the occurrence of90

the large changes in the power draws from a sparsely sampled (15 min) dataset.

Farinaccio et al. [9] use appliance specific decision rules, whereas Marceau et al.

[10] extend [9] and use signal filtering (smoothing) along with usage duration

statistics as the complementary information. Finally, Baranski et al. [11][12][13]

complement the real power data with a histogram of frequency of changes in95

power values and consider only the more frequent power changes thereof.

Low freq P-Q, I and V based features: combination of current and voltage

based features (i.e., I
rms

, I
max

, V
max

,V
peak

, power factor (PF), and phase shift)

with P-Q features shows good performance in identifying the ON/OFF kitchen

appliances using Real Time Recognition and Profiling of Appliances (RECAP)100

[14]. However, it was acknowledged that multi-state appliance detection re-

quires features beyond steady state and macroscopic features [14]. PF was also

combined with P-Q features in [15].

P-Q plane, macroscopic transient and harmonics: proliferation of nonlinear

loads in residential and commercial buildings has motivated the use of the har-105

monic contents of the waveforms as a discriminating feature. Sultanem [16] is

1The impedance of a nonlinear load changes with the applied voltage. The current drawn

by the nonlinear load will not be sinusoidal due to the changing impedance, even when it

is connected to a sinusoidal voltage, resulting in current harmonics. Examples are many

electronic devices such as laptops and TVs.
2multi-state loads have many distinct power consumption values depending on their states,

e.g., the various cycles in a washing machine’s program.
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the first to combine the current harmonics with low frequency based features.

The research was done in parallel, but independently of the research by Hart et

al. [2] and the subsequent extensions of his work [5]. Sultanem also proposed

similar P-Q features and macroscopic transients, however the algorithm is dif-110

ferent from Hart’s work. The paper does not provide further details regarding

the performance of the approach.

P-Q plane and harmonics : harmonic contents of current or power waveforms

(obtained by Fast Fourier Transform (FFT) of high frequency measurements)

are usually combined with P-Q features. Srinivasan et al. [17] use the magnitude115

and phase angle of the first 8 harmonics from both transient and steady state.

Laughman et al. [18] used the harmonics of the transient signal to complement

P-Q features and found that the 3rd harmonic can improve the discrimination

between computers and incandescent bulbs. Berges et al. [19][20] use the re-

gression coe�cient of the nonlinear fit to FFT to complement the P-Q features.120

Dong et al. [21] use total harmonic distortion (THD) of current waveforms along

with P and Q for load discrimination.

Spectral envelope: spectral envelopes (i.e., vectors of the first several coe�-

cients of Short Time Fourier Transform (STFT) [22]) are natural extensions to

the use of harmonics. Unlike FFT, in which the timing information is lost when125

transforming the signal into the frequency domain, STFT uses a fixed window

to transform a small section of the signal at a time, hence, preserving the timing

information by mapping the signal to a two-dimensional function of time and

frequency. Therefore, spectral envelopes pave the way for identification of non-

linear and variable-load appliances [23][24]. However, the use of a fixed window130

size for all frequencies restricts the flexibility of STFT.

Wavelets: Compared to STFT, a wavelet transform is a more flexible ap-

proach to representing a variable signal. A wavelet transform decomposes a

signal into time and scale using wavelets with adaptable scale properties. This

way, one can use longer windows where more precise low-frequency information135

is required and shorter regions where high-frequency information is needed.

Chan et al. [25] have taken the first step in constructing a load signature using
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continuous wavelet transforms (CWT) of the current waveform. The load signa-

ture is constructed using a 4 level wavelet transform and uses Daubechies (DB)

wavelet as the mother wavelet. Duarte et al. [26] compared STFT and CWT in140

decomposing switching voltage transients and recommended CWT as a promis-

ing approach to extract transient features in NILM. To avoid the computational

complexity of CWT, a discrete wavelet transform (DWT) has been used as an

alternative to extract features for NILM applications. Su et al. [27] used DWT

of the turn-on current transient as a feature set and showed its advantages over145

STFT in transient analysis of the loads. Chang et al. [28][29] complement the P-

Q features with transient energy and transient response time of power waveforms

(calculated based on the DWT coe�cients with DB3 wavelets) and demonstrate

that the combination of features improves the accuracy and the training time

of the NILM algorithm. Gray et al. [30] use the energy of the obtained wavelet150

coe�cients at the detail levels as a feature set and compared the classification

accuracy using features contracted by various orders of DB wavelets. They

showed that higher order DB wavelets (and DB5 in particular) exhibit higher

classification accuracy. Tabatabaei et al. [31] also calculate the energy of the

wavelet coe�cients in each DWT level (obtained using Haar wavelets) and use155

them as a feature set instead of the wavelet coe�cients. Finally, Gillis et al.

[32][33] propose a new wavelet specifically designed for NILM application rather

than using DB wavelets (which are designed typically for other applications such

as communications and image processing). However, the improvement achieved

by the newly designed filter is found to be small compared to DB wavelets.160

Although harmonic and wavelet coe�cients are very e↵ective in representing

nonlinear waveforms, they require a high frequency sampling rate (at least twice

the frequency of the highest harmonic intended for extraction) and complex

signal processing. Hence, features based on the shape of waveforms are also

considered in the literature since they can be obtained using relatively smaller165

sampling rates and simpler processing.

Raw waveforms: To eliminate the need for signal processing in the feature

extraction phase, Suzuki et al. [34] have proposed to use the unprocessed cur-
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rent waveforms for load discrimination. Although current waveforms of various

nonlinear appliances di↵er, the feature based approaches are still shown to be170

more robust compared to the raw waveforms [3].

VI trajectories : in order to take into account the shapes of the waveforms

in a more robust approach, Lam et al. [35] introduced shape features based on

the two-dimensional VI trajectories. These features have been used to construct

a taxonomy of household appliances. Hasan et al. [36] have illustrated further175

improvements in the load categorization by extracting additional features from

VI trajectories. To make the shape based feature extraction computationally

e�cient, Du et al. [37] first map the VI trajectories to a grid of cells, each

of which is assigned a binary value from which shape features are extracted.

Finally, Gao et al. [38] use the aforementioned binary image of VI trajectory as180

a feature set.

Inactive current : with increasing use of nonlinear loads and the non-sinusoidal

current draws thereof, more advanced power theories are considered for decom-

position of the apparent power. A well-known example is the decomposition

of current into active (i
a

(t)) and nonactive current (i
f

(t)) proposed by Fryze185

[39]. Huang et al. [40] show (using experimental results) that the similarity

between nonactive current draws of various appliances (with similar power lev-

els) are lower compared to their instantaneous current and power waveforms.

However, the e↵ectiveness of features based on nonactive current in improving

the performance of NILM algorithms has not been tested using a load discrimi-190

nating algorithm. Teshome et al. [41] leverage the dissimilarity of the nonactive

current draws of various appliances and propose voltage-nonactive current V I

f

trajectories as appliance feature. Their detailed analysis shows that the nonac-

tive current waveform and the V I

f

trajectories are more di↵erent than the VI

trajectories of individual and combined appliances.195

Unconventional features: Patel et al. [42] have used FFT of voltage noise to

define appliance signatures and later extended their work to consider Fourier

features of the electromagnetic interference signals in the 36-500 kHz range [43].

Although these features achieve high discrimination accuracy, they are sensitive
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to the electrical household wiring. Additionally, it requires the appliances to be200

equipped with switch mode power supply, which is not the case for all of the

household appliances. Kim et al. [44] combine non-electrical features such as

ON/OFF duration distribution, frequency of appliance usage, and correlation

between the usage of various appliances with the real power feature to improve

the load di↵erentiability. Wang et al. [45] represent the shape features of the205

real power using two unit shapes: rectangles and triangles. In a similar spirit,

Koutitas et al. [46] replace the time series of a continuous power signal with a

set of discrete pulses. Pulses are computed according to the first derivative of

the flattened power signal. They further add human behavior information (i.e.,

time of use probability, look-for-neighbor pulses probability, duration of a pulse,210

sequence of operation and external conditions) to the pulses. Kong et al. [47] use

the frequency and amplitude of the dominant peaks in the smoothed cepstrum

of the voltage signal as appliance features to distinguish ON/OFF appliances.

The cepstrum is defined as the inverse Fourier transform of the logarithm of the

spectrum of a signal [47].215

Combination of features: the simultaneous use of various features from afore-

mentioned categorizes was first proposed by Liang et al. [48] and more recently

by Lin et al. [49] and Gao et al. [38]. Although ad-hoc combination of features

can improve the load discrimination capability, a systematic approach of opti-

mally combining features (e.g., using the lowest possible number of features to220

obtain the best performance) has not been explored.
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Table 1: Review and catagorization of state-of-the-art on feature extraction for NILM

Feature category
References

Low frequency High frequency

Steady Transient Steady Transient

�P�Q I, V macro FFT shape STFT

FFT
WT

P-Q plane [2] [50] X
P-Q plane &

macroscopic transient
[6] [7] X Shape

P-Q plane &
macroscopic transient

& harmonics

[16] X dura-
tion Har

[5] X Shape Har

P-Q plane & harmonics

[17] X Har Har

[18] X Har

[19] [20] X Har

[21] X THD

Real power only

[8] [15]

[10] [11]

[12] [13]

�P

Low frequency P, I & V

based features

[14] �P RMS,
max

[15] XPF

Spectral envelope (SE)
[22] [23]

[24]
SE

Wavelets

[25] [26]

[30] [32]

[33]
W

coef

[31] We

P-Q plane & Wavelets

[28] X THD W
coef

,

tr,We

[29] X W
coef

,

We

[27] X
W

coef

Shape features
[35] [36]

[37]
VI–traj

Raw waveforms [34] i(t)

Nonactive current
[40] if (t)

[41] VIf–traj

Combination

[48] X Har i(t), p(t),
VI–traj

[38] X Har
i(t),

VI–traj

[49] X Icr
Har,
THD

p(t),
VI–traj

Har

�P�P�P : step changes in real power; �Q�Q�Q: step changes in reactive power; RMS: root-mean-square of current

and voltage; max: Maximum value of current and voltage waveforms; IcrIcrIcr : current crest factor; PF: power

factor, the ratio of real to apparent power (P
S

); Har: coefficients of fast Fourier transform (FFT); THD: Total

harmonic distortion; VI–traj: voltage–current trajectory; VIf–traj: voltage–nonactive current trajectory; i(t)i(t)i(t):225

instantaneous current waveform; if (t)if (t)if (t): instantaneous nonactive current waveform; p(t)p(t)p(t): instantaneous power

waveform; W
coef

W
coef

W
coef

: coefficients of wavelet transform; WeWeWe: energy of wavelet transform coefficients; trtrtr : transient

response time based on wavelet coefficients.
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3. Methodology

In this section, a systematic approach is presented to identify and combine230

features in such a way that the ability to distinguish various loads is maximized.

A comprehensive list of steady and transient state features, including refer-

ences to their extraction steps is outlined in Table 2 and the Appendix.

The feature selection process starts from all features and iteratively elimi-

nates the least important ones until a reduced subset is obtained. Note that the235

goal is not to reduce number of features to a set amount but rather, to choose

a subset of features in such a way that the discriminative performance is either

better or compared to using of all of them. In other words, the iterative feature

selection terminates once further feature elimination yields no improvements or

reduces the appliance identification accuracy.240

3.1. Feature Selection Algorithm

Feature selection is an essential step in machine learning in which a subset

of relevant features or variables is identified and selected to be used in model

construction. In contrast to other dimensionality reduction techniques, feature

selection does not change the original representation of features and therefore245

allows further interpretation by a domain expert after model construction. Fea-

ture selection methods are traditionally categorized in three types: filter meth-

ods, wrapper methods and embedded methods. Filter methods perform feature

selection by only looking at the intrinsic properties of the data, most often by

calculating a feature relevance score and removing features with low scores. Fil-250

ter methods are computationally fast but are usually less accurate because the

feature selection process is decoupled from the computational model. In wrapper

methods, feature subsets are evaluated by the accuracy that a specific model

(classifier or regression model) obtains by using them. Building a model for

each possible feature subset is often computationally intangible and therefore255

a heuristic search procedure is wrapped around the model building. Embed-

ded methods extract feature importance knowledge, obtained automatically by

11



Table 2: Notation and description of extracted features

State Notation Description

steady

P real power
Pnorm normalized real power [2]

Q reactive power
Qf reactive power based on Fryze’s formula [51]
S apparent power

I-rms current root mean square
If-rms nonactive current root mean square
I-har(j) jth current harmonic coe�cient
If-har(j) jth nonactive current harmonic coe�cient
V-har(j) jth voltage harmonic coe�cient
I-THD total harmonic distortion of current [21]
If-THD total harmonic distortion of nonactive current
V-THD total harmonic distortion of voltage

Asymmetry measure of asymmetry in VI trajectory [35]
Intersections number of intersections in VI trajectory [35]

Area enclosed area by VI trajectory with consideration of trajectory direction [35]
Net area net area enclosed by VI trajectory without consideration of its direction
Curvature measure of distortion of mean line of VI trajectory from a straight line [35]

Slope slope of the middle segment of VI trajectory [35]

transient

Wd(i) energy of detail wavelet coe�cients at ith scale [31][30] (see Appendix)
Wa energy of approximate wavelet coe�cients [31][30] (see Appendix)

W-max-idx index of the maximum energy wavelet coe�cient [27]
W-max maximum value of the wavelet coe�cient [27]
I-max-tr maximum value of the transient current

I-max-tr-idx location of maximum transient current (index)
I-min-tr minimum value of the transient current

I-min-tr-idx location of minimum transient current (index)
di↵-I-tr di↵erence between maximum and minimum values of transient current
P-max-tr maximum value of the transient power

P-max-tr-idx location of maximum transient power (index)
P-min-tr minimum value of the transient power

P-min-tr-idx location of minimum transient power (index)
I-peak-num-tr no. of local maximums of transient current
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training a model. These last type of methods have the advantage that they are

coupled to the model being used, but do not require as much computational

e↵ort as wrapper methods.260

For the remainder of this paper, a Random Forest model is used as the main

classification model. It was found that other model types gave a similar or worse

performance, which is consistent with the findings of Gao et al. [38].

In the first step of this feature selection process, a well-known method, called

Recursive Feature Elimination (RFE)[52], is explored. RFE starts by construct-265

ing a model using all features. In a second step, a ranking of the features ac-

cording to their importance is extracted from the model. The least x important

variables are then removed from the model, where x is user-defined. This pro-

cess is then repeated until a stopping criterion is reached, e.g. an increase in

validation error or a lower bound on the amount of retained features.270

Results obtained using the RFE procedure (Section 4.2) were not satisfactory

due to high correlation among features. Therefore a second approach is explored.

More concretely, a process is started that iteratively trains the random forest

algorithm using the retained features from step 1 and calculates the permutation

importance of each feature. This importance measure can be calculated for each275

feature in turn by removing the association between that feature and the target

in the validation phase. This is achieved by randomly permuting the values of

the features several times and by measuring the average increase in the relative

error of the model. Often this measure provides better results in assessing the

feature importance (than e.g., the Gini Importance [53]) in the case where the280

included features are highly correlated. Intuitively, features with lesser influence

in the load discrimination accuracy of the model will cause negligible changes

in the model performance when permuted. This procedure is repeated several

times and in each iteration the least important features are removed.

13



Table 3: List of appliances and number of retained records per appliance from PLAID dataset

Appliance No. of Records

Hairdryer 137
Microwave 136
Compact Fluorescent Lamp (CFL) 125
Fan 112
Incandescent Light Bulb 111
Air Conditioner (AC) 63
Vacuum 38
Heater 34
Fridge 26
Washing Machine 23
Laptop 16

4. Results and Discussion285

In this section, we demonstrate our systematic feature selection process and

present the per appliance based analysis using a comprehensive dataset ex-

plained next.

4.1. Dataset Description

We base our analysis on the PLAID dataset [54] consisting of 1094 current290

and voltage records from 11 di↵erent appliance types collected at 30 kHz present

in 56 households. Since we consider both transient and steady state features per

appliance, we remove the records for which transient state of the device is not

measured and hence, we are left with 821 records. Table 3 summarizes the list

of appliances and the number of retained records per appliance. These records295

are then used to calculate 55 steady and 23 transient state features as listed

in Table 2. Evaluations on this dataset commonly employ a leave-on-out cross

validation scheme using a single house as atomic unit as opposed to a single

trace [38]. The same procedure is also adopted in this paper.

4.2. Demonstration of Feature Selection Algorithm300

In this section, we demonstrate, using PLAID dataset, the process of sys-

tematic feature selection.

Figure 1 shows the performance of the random forest algorithm in terms of

cross validation score (percentage of correct classifications) vs. the number of
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Fig. 2: Heatmap indicating the correlation coe�cient values among various features for PLAID

dataset

selected features using the RFE scheme. The accuracy reaches a plateau quickly305

at around 20 features and only marginally increases in accuracy. This result

seems to indicate that RFE using the Gini Importance is not a good approach

to select an optimal subset, caused by the presence of highly correlated features

in the dataset as depicted in Fig. 2. Due to the inherent randomness of the

algorithm and small di↵erences in accuracy measured in the plateau region, the310
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(b) Algorithm trained with 30 features
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(c) Algorithm trained with 20 features

Fig. 3: Mean change in accuracy when permuting a feature at various iterations in step 2 of

the feature elimination process

choice of threshold is not clear-cut. As such we opt for a conservative approach

by only removing the last 20 features, which correspond to the model that

reached the highest accuracy in repeated runs. Amongst the eliminated features

are the higher order voltage harmonics, reactive and apparent powers from

steady state features and locational features (i.e., indexes of max/min current315

and power) from the transient state features. All of the current harmonics,

nonactive current harmonics and wavelet coe�cients energies are retained in this

step (see horizontal axis labels in Fig. 3(a) for the list of 58 retained features).

To investigate the possibility of a further reduction in the number of fea-

tures, we use the 58 remaining features from step one and retrain the random320

forest algorithm. Once trained, we randomly permute each feature at a time

during validation, and take the average accuracy (over 50 random permutation

per feature). The resulting changes in accuracy for each feature permutation are
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reported in Fig. 3(a). As seen from Fig. 3(a), less important features will have a

negligible change in the accuracy when permuted. However, for the least impor-325

tance features, no clear threshold appears as many features have approximately

the same measure. Again, using a conservative approach we reduce the amount

of features from 58 to 30. We repeat the process of feature importance ranking

using random permutation to further reduce them to 20 and 10. The impor-

tance rankings using random permutation are depicted in Fig. 3(b), (c) and (d)330

for 30, 20 and 10 retained features respectively. Also note that as the number of

the retained features decreases in each iteration, the mean change in accuracy

due to a feature permutation in a subsequent iteration increases compared to

the previous one. This indicates the e↵ectiveness of the proposed scheme in

retaining the influential features. Finally, the mean change in accuracy when335

the algorithm is trained with 10 features is significantly worse than the previous

iteration indicating that all the retained features are influential and should not

be disregarded. As for the list of retained features (indicated in the horizon-

tal axis of plots in Fig. 3), all of the voltage harmonics are eliminated after two

rounds of feature selection (from 58 to 20 features). This is because voltage vari-340

ations in the grid are minimal with connection/disconnection of loads while the

connecting loads a↵ect the current draws. All of the power based features from

transient state are also eliminated after two rounds. It is evident from Fig. 3

that wavelet coe�cient energies and values of maximum and minimum currents

are more influential than the other features. Finally, I-THD and Area from345

steady state and Wd(2) from transient state are ranked as the most important

features in all of the feature elimination rounds.

The systematic reduction of features results in a significant increase in the

classification accuracy as opposed to the model which uses all features. The

classification accuracy is maximal when the combination of 20 features are used350

as appliance signature as listed in Fig. 3(c). However, the accuracy decreases

from its peak when more features are eliminated. Additionally, systematic com-

bination of various feature categories results in higher accuracy compared to

using each category of features individually.
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0.9180.9250.9320.921

Fig. 4: Average (over all the houses) accuracy of the random forest algorithm with various

catagories of features as input

We also test the stability of the algorithm by running the same algorithm on355

the same dataset multiple times. This is to ensure the deviation caused by the

inherent randomness of the algorithm is kept within acceptable bounds. The

standard deviation of the mean and the median are 0.0007 and 0 accordingly

which ensures the algorithm’s stability.

4.3. Per Appliance Analysis360

In this section, we analyze the algorithm’s performance from per-appliance

point of view. Figure 5 indicates the F-score for each of the appliances in PLAID

dataset with retained features from each iteration of the feature elimination pro-

cess. The F-scores in Fig. 5 indicate that the algorithm’s performance globally

improves (i.e., improvement is across all appliances) after each round of feature365

elimination from its initial F-score (i.e., with all the features included as input).

Appliances with high F-scores have less improvement due to systematic feature

selection than the ones with smaller F-score. Since the small values of F-scores

are typically associated with small number of records, we conclude that feature

selection is more influential in algorithm performance when limited number of370

measurements are available.

To have further insights on which appliances are misclassified, we show the

confusion matrices in di↵erent iterations of the feature selection process in Fig. 6.

with numbers in each cell of the matrices (except diagonal elements) indicating
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Fig. 5: F-score of the appliances when using combination of retained features in each iteration

of proposed feature elimination process (numbers in legend correspond to number of retained

features in each iteration and 78 corresponds to all features)
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Fig. 6: Confusion matrix at each iteration of the proposed feature elimination process (a) All

features, (b) 58, (c) 30, (d) 20, and (e) 10 retained features

the misclassification percentages. As observed from Fig. 6, the feature elimina-375

tion process typically improves the misclassification rates and in majority of the
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appliances, does not create new misclassification. Amongst all the appliances,

‘heater’ has the highest misclassification rate (misclassified as ‘hairdryer’ 35.3%

of the time) and it is the only appliance for which misclassification does not

improve with the feature elimination process. This is mainly due to the similar-380

ities in the power levels and the electrical components in the circuitry of these

appliances. However, ‘hairdryer’ is classified correctly 100% in the improved al-

gorithm. This is partially due to the higher number of hairdryer records in the

database which makes the algorithm more biased to label the data as ‘hairdryer’

than ‘heater’.385

5. Conclusion

The e↵ectiveness of a NILM algorithm to distinguish between appliances

largely depends on determining a set of discriminative features. Various research

has focused on suggesting and extracting such features to classify appliances. As

a first contribution, we provided a systematic listing and comparison between390

features that have been proposed.

As a second contribution, we constructed and suggested an optimal subset

of features to be used in a computational model which can achieve top perfor-

mance in classifying appliances. It is well-known that the inclusion of irrelevant

or redundant features a↵ects on the accuracy of a computational model. Adding395

extra features that provide little or no extra value increases the dimensionality

and such the complexity of the model. In addition, spurious correlations be-

tween the feature and the class labels introduces extra noise and increases the

risk of overfitting. Therefore, to achieve top performance, we presented a sys-

tematic feature elimination process and have shown that by removing irrelevant400

features we were able to substantially boost model accuracy. Our approach

consisted of iteratively removing sets of features that had low feature impor-

tance scores. These scores were determined by how much the performance of

the model changed when the features values are randomly shu✏ed (permuta-

tion feature importance). Other approaches using RFE in combination with405
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the Gini importance measure, proved unsuccessful due to the large amount of

highly correlated features in the data. Lastly, we have also shown that not only

the overall model performance increased but that our feature selection process

also globally improves F-scores across all appliances.

6. Future Work410

The majority of the proposed NILM solutions are tested on private datasets

with a limited number of appliances. Additionally, the existing literature catego-

rizes appliances into three categories based on their operational characteristics:

ON/OFF appliances, multiple state appliances, and variable load appliances.

However, when it comes to identifying a unique signature for each appliance,415

such categorization is not very e↵ective because it ignores the front-end circuit

topology of the appliances which a↵ects their current draws. Since features are

extracted from current and voltage measurements, it is more practical to cate-

gorize loads considering their electrical operations and their front-end circuitry

that connects them to the power grid as elaborated by He et al. [55]. They420

categorize the appliances into seven classes: resistive loads, reactive predom-

inant loads, electronic loads with a power factor correction circuit, electronic

loads without a power factor correction circuit, linear power supply using trans-

former to boost voltage, phase angle controllable loads, and complex structures.

They further demonstrate that optimized features can be obtained from such425

categorization, which drives a much simpler and more feasible solution in di↵er-

entiating the subtle di↵erences between similar loads. However, their analyses

are done on small dataset which is not publicly available.

The currently available public datasets do not include appliances from the

aforementioned seven categories and hence, lack the required diversity. Having430

such diverse, comprehensive and publicly available NILM datasets paves the way

for comparable, practical and generalizable NILM solutions. As our next step,

we will create a comprehensive and diverse dataset (having various categories of

appliances across di↵erent households) to perform our feature selection process
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Fig. 7: Three decomposed DWT levels [29]

and identify the correlation of various appliance categories with such features.435

Appendix

In this appendix, we explain how to obtain two of the listed features in

Table 2: energy of wavelet coe�cients in i

th level and nonactive current based

on Fryze’s formula.

Energy of wavelet coe�cients: DWT is a multi-resolution analysis where a440

complex signal is decomposed into a set of approximate and detail coe�cients

using sets of high pass and low pass filters as shown in Fig. 7. Detail coe�cients

are obtained by applying a high pass filter (i.e., wavelet) to the sampled signal.

They express the higher frequency components in the signal. Approximate

coe�cients are obtained at the output of the last low pass filter. They express445

the signal at a lower resolution. Sum of the square of the coe�cients in each

level is the energy of the wavelet coe�cients.
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Nonactive current : According to Fryze [39], current waveform is decomposed

into active and nonactive components:

i(t) = i

a

(t) + i

f

(t) (1)

i

a

(t) (active current) is a current of the same wave-shape and phase angle as

the voltage. It is responsible for the transference of average energy to the load

and is obtained by:

i

a

(t) =
P

V

2
rms

v(t) (2)

where P is the active power and V

rms

is the voltage root mean square.450

i

f

(t) (nonactive current) is the orthogonal to the voltage (and hence to the

active current) and is responsible for oscillation and disturbances in the active

power without transferring any energy to the load. Due to orthogonality of

active and nonactive currents:

I

rms

= I

arms � I

frms (3)

Where I

rms

is the current root-mean-square and I

arms and I

frms are root455

mean square of the active and nonactive currents respectively.
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