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Samenvatting

Stel jezelf een wereld voor waarin je nooit de lampen vergeet uit te doen, waarin
je wordt gewaarschuwd als huishoudelijke toestellen het einde van hun leven heb-
ben bereikt en dringend vervangen moeten worden. Stel jezelf een wereld voor
waarin de door jou geproduceerde groene energie efficiënt gebruikt wordt in een
slim elektriciteitsnetwerk in plaats van gewoon gedumpt te worden. Deze schijn-
baar kleine winsten zullen ons niet alleen geld besparen, maar ze zullen ons ook in
staat stellen om de opwarming van de Aarde tegen te gaan, de grootste uitdaging
van onze planeet en haar inwoners. Een hulpmiddel om deze wereld te bereiken is
NILM, wat de Engelse afkorting is voor het niet-invasief opmeten van het stroom-
verbruik in een woning, het onderwerp van mijn onderzoek. NILM meet het totale
energieverbruik van een huishouden zonder invasief te zijn: het gebruikt slechts
één sensor. De verzamelde data wordt vervolgens gebruikt om te bepalen welke
huishoudelijke toestellen aanwezig zijn, welke al dan niet actief zijn en voor hoe
lang. Het omzetten van deze data naar kennis, resulteert in bruikbare inzichten
in uw elektriciteitsrekening. Zo kunnen bijvoorbeeld flexibele toestellen gedetec-
teerd worden. Dit zijn toestellen waarbij alleen de eindtijd van belang is en die dus
kan starten wanneer groene energie beschikbaar is. Een voorbeeld van zo een toe-
stel is de vaatwasser. Als deze apparaten gedetecteerd worden in uw huishouden,
dan kan dit leiden tot een goedkopere en schonere energierekening.

Er bestaan verschillende soorten NILM. Mijn proefschrift concentreert zich
op de op gebeurtenis gebaseerde methoden, die de volgende stappen omvatten:
(1) data verzamelen, (2) activering of deactivering van toestellen (gebeurtenissen)
detecteren, (3) kenmerken extraheren, en (4) classificeren van huishoudelijke toe-
stellen.

Om gegevens te verzamelen, worden twee manieren toegepast: het gebruik van
publieke datasets en het opmeten van onze eigen data. Publieke datasets kunnen
in twee groepen onderverdeeld worden: degene met lage en degene met hoge fre-
quentie, waarbij de eerste minder informatie bevat dan de laatste. Voorzover ons
bekend is, heeft geen enkele huidige dataset zowel toestel afzonderlijk als geaggre-
geerde data opgemeten met een hoge frequentie. Om een waardevolle bijdrage te
leveren aan de NILM-gemeenschap, hebben we zowel toestel afzonderlijke als
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geaggregeerde data opgemeten met een hoge frequentie en publiek beschik-
baar gemaakt. Daarnaast geven we ook een systematische beschrijving van de
meetopstelling, zodat deze dataset eenvoudig en consistent uitgebreid kan worden.

In deze datasets worden houshoudelijke toestellen geactiveerd en gedeacti-
veerd. Telkens wanneer dit gebeurt, noemen we dit een gebeurtenis in de data.
Men zou verwachten dat de detectie van deze gebeurtenissen onafhankelijk zou
zijn van de andere actieve toestellen. Eerder ontwikkelde methoden lijken echter
gevoelig te zijn voor de verandering in het basisverbuik veroorzaakt door het ac-
tief zijn van geen of meerdere toestellen en falen om sommige gebeurtenissen te
detecteren wanneer andere toestellen actief zijn. We stellen twee methoden voor
die beter in staat zijn om gebeurtenissen te detecteren, ongeacht het feit of
andere apparaten actief zijn.

In op gebeurtenis gebaseerde NILM-methoden verstaat men onder classificatie
het toewijzen van een toestelnaam aan een nieuwe gebeurtenis, op basis van eer-
der verkregen data bestaande uit gebeurtenissen geassocieerd met toestelnamen.
Deze gebeurtenissen hebben kenmerken, die op verschillende manieren afgeleid
kunnen worden. In dit proefschrift hebben we als kenmerken gekozen voor VI-
afbeeldingen, die of binaire waarden of waarden tussen 0 en 1 bevatten. Deze
VI-afbeelding wordt gemaakt door een tweedimensionale grafiek te maken van de
stroom en de spanning, en deze vervolgens te bedekken met een gemaasd netwerk.
Verschillende toestellen produceren verschillende VI-afbeeldingen.

Om de toestellen die de afbeeldingen produceren correct te classificeren, ge-
bruiken we twee klassieke beeldverwerkingmethoden. De eerste methode creëert
nieuwe karakteristieken van de VI-afbeelding door contouren in de afbeel-
ding te vinden en de elliptische Fourierdescriptoren (EFD’s) daarvan te be-
rekenen. Deze nieuwe karakteristieken, EFD’s, worden vervolgens gebruikt als
invoer voor klassieke machinaal leermethoden. Deze methode presteert vergelijk-
baar met de methoden uit de literatuur, maar in vergelijking met deze methoden
heeft het aanzienlijk minder opslagruimte nodig. De tweede methode maakt ge-
bruik van de totale VI-afbeelding als invoer voor een convolutioneel neuraal
netwerk en presteert beter dan methoden uit de literatuur, maar in vergelijking met
deze methoden vereist het meer opslagruimte. Het toevoegen van het stroomver-
bruik als karakteristiek verbetert de prestatie. De beste prestatie wordt verkregen
door het stroomverbruik als enige invoer te nemen.

Het is bekend dat classificatiemethoden gevoelig zijn aan niet-gebalanceerde
data. In mijn onderzoek is de data niet gebalanceerd door het feit dat sommige
toestellen meer gemeten worden (de meerderheid) dan andere (de minderheid).
Als gevolg worden fouten in de meerderheid vaker meegeteld dan fouten in de
minderheid, wat hoogst ongewenst is. In dit werk worden verschillende metho-
den geprobeerd om de data gebalanceerd te maken. We hebben vastgesteld dat
bij gebruik van de juiste classificatiemethode die de VI-afbeelding als invoer
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gebruikt, deze methoden niet leiden tot een aanzienlijke verbetering van de
prestaties in vergelijking met wanneer de classificatiemethode wordt toegepast
op de originele dataset. Bovendien hebben we geconstateerd dat voor toestelclas-
sificatie die VI-afbeeldingen als invoer nemen meer metingen dan noodzakelijk
aanwezig zijn in de publiek beschikbare dataset PLAID.

Nieuwe/niet-geı̈dentificeerde toestellen hebben de neiging om in huishoudens
te verschijnen, maar voor zover wij weten, zijn geen van de huidige NILM-methoden
in staat om deze niet-geı̈dentificeerde toestellen te detecteren. De meeste classi-
ficatiemethoden zullen aan de bijbehorende gebeurtenissen een label toewijzen
dat overeenkomt met het toestel met de meest vergelijkbare kenmerken. Clus-
termethoden zoals DBSCAN, die gebruik maken van de dichtheid van de data
om clusters te creëeren, kunnnen deze niet-geı̈dentificeerde toestellen aanwijzen
als uitschieters die niet tot een bepaalde cluster behoren. Dit kan enkel gebeu-
ren op voorwaarde dat de toestellen voldoende verschillend zijn in hun karak-
teristieken. We stellen voor deze karakteristieken te leren door een siamese
neurale netwerk te trainen. We laten zien dat deze methode wel in staat is om
niet-geı̈dentificeerde toestellen te detecteren. Wanneer echter nieuwe metingen
van eerder geı̈dentificeerde toestellen worden geclassificeerd, wordt een aanzien-
lijk deel ook als niet-geı̈dentificeerd gemarkeerd maar ligt het meetpunt wel in de
buurt van de juiste cluster.

Als conclusie geldt dat dit werk innovatief onderzoek verricht in elk van de
eerder genoemde stappen in op gebeurtenis gebaseerde NILM methoden: we ver-
zamelen data, detecteren gebeurtenissen op een robuuste manier, extraheren karak-
teristieken uit afbeeldingen en voeren beeldclassificatie uit, met de mogelijkheid
om eerder niet-geı̈dentificeerde toestellen te kunnen detecteren.





Summary

Imagine a world where you never forget to switch off the lights, where you are
alerted when appliances within your household have reached the end of their life
and need to be replaced. Imagine a world where your renewable energy is used
efficiently within a smart grid instead of being dumped. Aggregating these seem-
ingly marginal gains will not only save you money, it will also allow you to actively
battle global warming, the major challenge confronting planet earth and its inhab-
itants. A helpful tool to assist us in reaching this world is called NILM, short for
non-intrusive load monitoring, the topic of my research. NILM measures the
total power consumption of a household without being intrusive, using only one
sensor. The data captured this way is used to deduce which appliances are present,
which are on/off and for how long. Transforming this information into knowledge
will allow you to gain actionable insights into your electricity bills. To give a
specific example, flexible appliances can be detected. These are appliances where
only the finishing time matters and which thus can start whenever green energy
becomes available. An example of such an appliance is the dishwasher. Detecting
these appliances within your household allows you to change your life nudging
you towards a cheaper and cleaner energy bill.

NILM comes in different flavours. My dissertation focuses on the event-based
approach, which takes the following steps: (1) gathering data, (2) detecting acti-
vation or deactivation of appliances (events), (3) extracting features, and (4) clas-
sifying appliances.

In these datasets, appliances are activated and deactivated. Every time this hap-
pens an event occurs in the data. One would expect this detection to be the same
when none or several appliances are active. However, previous methods seem
to be sensitive to this change in base load consumption, and miss some events
when other appliances are active. We propose two methods capable of detecting
events regardless of the activation of other appliances, the voting χ2 and cep-
strum method.

Classification within event-based NILM consists of assigning an appliance
type to a new event, based on training data consisting of events with known appli-
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ance type. These events are characterised using features. Choosing these features
can be done in multiple ways. In this thesis, we have chosen for pixelated and
weighted pixelated VI images, containing binary values and values between 0
and 1 respectively. This VI image is created by first building the two dimensional
graph of the VI trajectory (plotting the current against the voltage in steady state
after the event) and then overlaying it with a pixel mesh. Different appliances will
exhibit different VI images.

To correctly classify the observed images into the appliance types producing
them, we use two classic methods from the image classification field. The first
method creates new features from the pixelated VI image by finding contours
within the image and calculating the elliptical Fourier descriptors (EFDs)
from them. These new features, EFDs, are then used as input for classic ma-
chine learning methods, namely logistic regression, random forests, and neural
networks. This method obtains performance comparable to state-of-the-art. How-
ever, it leads to a significant reduction in needed storage space when compared
to the state-of-the-art. The second method uses the total image as input for a
convolutional neural network and outperforms the state-of-the-art but requires
more storage space than the state-of-the-art. Adding the current consumption as
an extra feature, improves the performance. The best performance is obtained
when using the current consumption as only input.

It is well-known that classification methods are sensitive to imbalanced data.
In my research, this imbalance is caused by the fact that some appliance types are
more measured (the majority), than others (the minority). As a consequence, the
cost of misclassification depends on the frequency of appliances in the dataset,
which is highly undesirable. Several approaches have been tried to counteract this
imbalance: over- and under sampling, synthesising samples, balanced bootstrap-
ping, and adjusting the error function. We found that when using the correct
classifier and the pixelated VI image as input, these methods do not lead to
a significant improvement in performance compared to when the classifier is
applied onto the imbalanced dataset. Moreover, we found that for the task of ap-
pliance identification and when the VI image is used as input, more measurements
than necessary are present in PLAID, a publicly available dataset.

New/unidentified appliances have a tendency to show up in households, but
to our knowledge, none of the current NILM methods are capable of detecting
these unidentified appliances. Most classification methods will assign the corre-
sponding events a label corresponding to the appliance type with the most similar
features. Density-based clustering algorithms like DBSCAN would be able to la-
bel the unidentified appliances as outliers provided that the different appliances
are clearly separated in the feature space. We propose to learn this feature space
by training a siamese neural network. We show that this method is capable
of detecting unidentified appliances. However, when new samples of previously
identified appliances are classified, a significant part is also labeled as unidentified
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but lies in the proximity of the correct cluster.

To conclude, this research covers innovative research in each of the afore men-
tioned steps in event-based NILM: we gather data, detect events in a robust man-
ner, extract features from images, and perform image classification, allowing for
the detection of previously unidentified appliances.





1
Introduction

“My mind rebels at stagnation, give me problems, give me work!”

– Sherlock Holmes, The Sign of Four

My research can be found at the intersection of two fields: non-intrusive load
monitoring and machine learning. After a concise introduction to these fields in
Sections 1.1 and 1.2 respectively, the research goals and outline of this thesis are
discussed in Section 1.3. To conclude, the resulting publications are listed in Sec-
tion 1.4.

1.1 Non-intrusive load monitoring

Non-Intrusive Load Monitoring (NILM) identifies the per-appliance energy con-
sumption by first measuring the aggregated energy trace at a single, centralized
point in a home and then disaggregating this power consumption into individual
devices using machine learning techniques. An example is shown in Figure 1.1.

The next subsection motivates the deployment of NILM. Afterwards, different
flavors of the input data are listed with their advantages and disadvantages. To
conclude, the necessary steps to obtain the final result are discussed.
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Figure 1.1: An example of an aggregated energy trace disaggregated into the power con-
sumption for individual devices.

1.1.1 Motivation

A major, if not the most important, motivation for NILM is that it facilitates energy
monitoring, and thus ultimately contributes to realizing climate targets. As of
October 2014, EU leaders agreed upon the following three key targets for 2030 [1]:
at least

• 40% cuts in greenhouse gas emissions,

• 27% share for renewable energy, and

• 27% improvement in energy efficiency.

Energy monitoring proves an useful aid for reaching these targets by providing
consumers an accurate and detailed view of their energy consumption:

• providing power consumption information to households has been shown to
save up to 12% of electrical energy, thereby reducing emissions [2] (note
that this also applies to non-residential buildings [3]),

• knowledge concerning present appliances and their usages in the households
allow us to assess and exploit flexible power consumption, which is essen-
tial for the construction of demand response systems that can increase the
penetration of distributed renewable energy sources,

• energy monitoring is a major prerequisite for energy efficiency measures [4].

NILM offers us an elegant way to monitor energy use in a cost-effective way, with-
out the need to rely on expensive per-device monitoring equipment.

Different companies, e.g., Smappee (Belgium) and Verv (UK), have been cre-
ated around this need for personalized eco-feedback. They have designed a power
meter that is easily installable at the main power plug. Statistical insights based on
this meter data is presented to the end-user via an application in an online fashion.
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Figure 1.2: An example of a voltage signal captured for one second with a sampling fre-
quency of 5 kHz on a power line with frequency 5 Hz resulting in 1000 samples per cycle.

Online as in if a lamp is turned on, this is immediately detected. Besides ecolog-
ical motivations, these applications also intend to make the life of the consumer
easier, e.g., they can notify her when one forgets to switch off the coffeemaker
while leaving the house for work, or when a machine is worn out. Though these
tools are already on the market, there is ample room for improvement. Some of
the challenges to be tackled in order to make NILM more complete are explained
in Section 1.3.

Moreover, the information obtained through NILM can also be valuable for
health care applications [5]. Daily habits of the elderly can be defined using a
list of devices active during an ordinary day. This allows for the quick detection
of aberrant behaviour. For example, if an elderly person switches on the oven in
the middle of the night, this might point to the onset of dementia. Using NILM
provides a less intrusive solution than body sensor networks, as only one sensor
present in the house is necessary instead of multiple sensors on the body.

1.1.2 Data

NILM relies on the aggregated energy trace measured at a single and centralized
point in the home. This aggregated energy trace can be measured at different fre-
quencies and consists of several metrics. All these metrics can be obtained from
two signals, or waveforms: the instantaneous current (i) and voltage (v) signal.
These signals are continuous time series build up by repeating the same form (a
cycle) and has a sampling frequency which determines the number of samples per
second. The number of cycles per second is determined by the power line fre-
quency. Across the world this is 50 Hz, except for the America and large parts of
Asia, where it is 60 Hz. An example of all these variables is given in Figure 1.2.

Different metrics can be calculated from i and v, such as instantaneous, active,
and reactive power. In this work, besides i and v, the active power p is mainly
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used. One sample pj is calculated as follows:

pj =
1

n

n∑
k=1

ij,kvj,k (1.1)

where ij,k and vj,k are respectively the kthe sample of the jth cycle of current and
voltage, and n is the number of samples in a cycle. As the active power is calcu-
lated from cycles, the maximal sampling frequency is 50 or 60 Hz, depending on
the region of capturing.

Typically, two classes of NILM data are considered:

High-frequency data, data sampled at a high frequency, consist of i and v
signals sampled at a frequency of more than 1 kHz. An advantage of this
high frequency data is its capture of a lot of information pertaining to active
appliances, making it ideal for appliance detection. Unfortunately, the use
of high-resolution data leads to excessive storage requirements, leading to a
significant increase in the processing time of the algorithms.

Low-frequency data, data sampled at a low frequency, can consist of one
or more metrics as explained above (e.g., active power p), or of current
and voltage signals sampled at a frequency lower than 1 kHz. Advantages
of low-frequency data are its limited storage requirements and processing
time compared to when using high-frequency data. Furthermore, it still
contains enough information to detect activation and deactivation of ap-
pliances. Considering the exact sampling frequency is important as for ex-
ample two appliances are activated within 10 seconds from each other, then
this will result in two events happening at the same time in a power trace
sampled at 0.1 Hz or lower.

Besides the aggregated data, public data sets often offer the ground truth, the so-
called labelled data. This can consist of power consumption signals or metrics of
all active appliances separately (the submetered data) or labels indicating the acti-
vation and deactivation of appliances. Often, the data sets contain data pertaining
to one or more houses.

1.1.3 Required steps in NILM

NILM has two possible outcomes : (1) a list of appliances and their timestamped
activation or deactivation, or (2) a power consumption estimation which can be
expressed, a.o., as an individual power consumption profile for each appliance or
as a cumulative power use over a certain period of time (e.g., kWh). The first
output can be derived from the second, or the other way around, provided that the
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Figure 1.3: A schematic overview of the steps in NILM and the corresponding chapters.

average power drawn from the appliances are known. However, it is not necessary
to calculate them both. These outputs allow us to answer meaningful questions,
a.o., ‘Which appliances are active now?’, ‘How much power does it take to make
this delicious toast?’, etc.

The approaches to obtain these outcomes can be divided in two categories:
event and non-event based methods. The event based ones are only capable of
producing the first type of output, while the non-event based ones can output both
types. A schematic overview is given in Figure 1.3. In the following paragraphs,
these two approaches are explained in more detail.

Event based methods

In 1992, Hart was the first to describe an event based workflow for NILM [6].
First, it detects state transitions (events) and then it extracts features. Finally it
matches these features with unique signatures of appliances using machine learn-
ing techniques, i.e., appliance classification.

Event detection Each time a device is activated, power is drawn from the net,
while power drawing stops when the device is deactivated. As a result, both ac-
tivation and deactivation of an appliance are visible within the current and power
signal. For some appliances, more specifically those containing a powerful motor
(e.g., a vacuum cleaner), activation will also be visible in the voltage signal: its
magnitude is smaller for a few cycles. This is illustrated in Figure 1.4. After acti-
vation/deactivation of an appliance, current cycles have a higher/lower maximum,
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Figure 1.4: An event caused by activating the vacuum cleaner in (a) the high frequent
current signal, (b) the high frequent voltage signal and (c) the low frequent power signal.

and a step/event can be detected in the power signal.

Feature extraction Once the event is detected, features can be extracted. These
are properties of the appliances causing the events and must be chosen in such
a way that different appliances will exhibit different features. Each appliance is
made up of different electrical components such as transistors, capacitors, and
resistors. Switching on the appliance creates a unique transient signature. As
a consequence, features based on this transient signature can be used to separate
different appliances. A prerequisite is that high frequency data is needed to capture
this transient behavior. These are features that describe the temporal behaviour
of the transient (e.g. the transition spike, the length of the transient), or contain
frequency-domain characteristics (e.g. harmonics information obtained from a fast
Fourier transform, coefficients that can be extracted from the spectral envelope or a
wavelet transform on the raw current signal). In addition, features from the steady-
state behaviour of the appliance can be extracted. This extraction can be done on
high frequency data, but also on low frequency data, e.g., the change in active and
reactive power, noise level characteristics, and other statistical features [7].

Appliance classification In order to automatically label the features extracted
from an event, we need to construct a classification model. Such models are ex-
plained in the next section. A property of these methods is the need to determine
unambiguously which appliance has triggered an event, based upon the values of
the extracted features. Moreover, they also must be parsimonious and showcase
good generalization capabilities (i.e., low misclassification rates) over previously
unseen examples not used during model building. In our case, these generalization
capabilities take on two forms: unseen samples from the same house containing
the same appliances, or unseen samples from another house.

It is reported [8] that each link in the chain of power measurements, event
detection and feature extraction can introduce a certain number of error and in-
accuracy, so it is important that the classifier showcases robustness against noisy
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data.

Non-event based methods

If the goal is to output the power consumption estimation for each individual ap-
pliance, the non-event based methods disaggregate the power consumption of dif-
ferent appliances using techniques such as latent variable model, time series motif
mining, and blind source separation. In essence, they try to match a pattern. A
limitation of these methods is their high resource demand, especially for usage on
embedded devices.

Non-event based methods are also able to classify active appliances in a given
input. Given a window of several minutes or hours, it determines which appliances
are active by comparing this current window with known patterns of appliances.
The big difference with event-based methods is that now also a negative output is
possible in the scenario where nothing is active. These non-event based methods
also prove more suitable to detect complex multi-state (mostly wet) appliances,
such as washing machines, tumble dryers, dishwashers, etc. These follow certain
long running programs whereby a sequence of subsystems with various loads are
switched on and off over time during its operation. By focusing on a window
of multiple hours instead of a couple of seconds (as is the case in event based
methods), it can detect that appliances of a similar nature follow a similar, yet
unique pattern and thus construct an alike power consumption.

1.2 Machine learning

Previous section made clear that a lot of data is produced in NILM. To efficiently
analyze this data, machine learning can be used. Tom M. Mitchell [9] offers a clear
and concise definition of machine learning: “A computer program is said to learn
from experienceE with respect to some class of tasks T and performance measure
P , if its performance at tasks in T , as measured by P , improves with experience
E ”.

Subsection 1.2.1 presents a machine learning taxonomy containing the differ-
ent flavours of the task T . Once a task is chosen, the need arises for performance
measures P such that future evaluation and comparison is possible, see Subsection
1.2.2. Subsection 1.2.3 explains an important property of machine learning pro-
grams, i.e., generalization and Subsection 1.2.4 shows how program parameters
can be optimized.
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1.2.1 Machine learning taxonomy

Different types of machine learning techniques exist, organizable into a taxonomy
based on the type of data available during training. This results in three main types:
supervised, unsupervised, and reinforcement learning. Though several other types
exist, such as semi-supervised and active learning, we focus on supervised and
unsupervised methods in this thesis.

Supervised learning Supervised learning uses labelled training data consisting
of input vectors and their corresponding target vectors. After training, the learned
model tries to predict the target vectors of new input vectors. Depending on
whether the target vectors are classes or floating point numbers, the supervised
learning task is a classification or a regression. For example, assume one wants
to predict the presence of active appliances by modelling the relationship between
active and reactive power, see Figure 1.5a. Based on this artificial data, a clas-
sification can be made by determining boundaries between different appliances,
making it possible to predict the appliance name of a new sample. An example
of regression can be found in Figure 1.5b, where one wants to predict the power
consumption of a washing machine by modelling the aggregated power consump-
tion. On this data, regression can be performed allowing for power consumption
prediction of the washing machine in a new aggregated signal.

Unsupervised learning Unsupervised learning uses training data consisting only
of input vectors. The corresponding target vectors are unknown. From this unla-
belled data we automatically extract structure. For example, assume one wants
to know whether there are different appliances present given a certain active and
reactive power. In the artificial case of data depicted in Figure 1.5c, one would
conclude that there are three types of appliances present.

Reinforcement learning Sometimes gathering and labelling training data is prac-
tically impossible. Just think of teaching a helicopter how to fly. In the scenario
where labelled or unlabelled training data is needed, an almost infinite number of
possible actions (lifting off, turning left, etc) can be recorded, which would prove
impossible in practice. Moreover, it is hard to decide which data is essential in
learning how to fly. Instead of relying on faulty human judgment, a reward can
be defined for the helicopter when it performs something good (like flying) and
a discount when it does something bad (think crashing). This kind of learning is
called reinforcement learning.
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(a)

(b)

(c)

Figure 1.5: An example of (a) classification, (b) regression, and (c) clustering.
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Figure 1.6: An example when generalization decreases with increasing model complexity.

1.2.2 Performance metric

In order to evaluate the developed methods and allow for the comparison of mul-
tiple models, a performance metric needs to be defined. The choice of metric(s)
depends on the applied machine learning technique and desired outcome. When
classes are predicted, the metric will depend on the number of correctly classified
samples. For example, the accuracy and the F-measure can be used. When re-
gression is performed and the output is continuous, the metric can depend on the
difference between predicted and real value. When no labels are available to calcu-
late this performance metric, the verdict can be based on the shape of the solution,
e.g. the closeness of the detected clusters.

If multiple classes are present in the data, the performance metric can be ex-
pressed for all classes combined, or for each class separately. It is also possible to
give more importance to one of the classes, such that mistakes in predicting one
class are more heavily penalized than others.

On a final important note, when comparing two models, the same performance
metric needs to be used while making sure they are tested on the same unseen
samples.

1.2.3 Generalization and model complexity

Generalization is the ultimate outcome of successful learning [10, 11]. This con-
sists of the ability to accurately perform a task T on a new experience E′ while
achieving a certain level of performance (measured by a given metric P ) after be-
ing trained with experience E. The learner does not have to know all the possible
experience E in order to perform well. Machine learning techniques prove most
powerful in situations where they can shed light on new problems, never encoun-
tered before and produce testable predictions.

Complex models are not necessarily better than simple ones. Figure 1.6 plots
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the error on the experienceE used for training (training error) and the error on new
experienceE′ (test error) against the complexity of the learned model. The training
error decreases with increasing model complexity. Initially this is accompanied by
a decrease in test error. However, when our model becomes overly complex, it
overfits the training experienceE, which essentially means it follows the errors, or
noise, in the training experience E too closely, leading to an increase in test error.
Ultimately, we want to find the optimal level of model complexity in order to avoid
overfitting.

1.2.4 Parameter optimization

A model, and its complexity, are determined by the number of used parameters.
Optimizing those values is needed in order to avoid overfitting and thus obtain the
best possible model. This problem is also known as parameter optimization.

One approach for testing different parameter configurations uses grid search,
which is simply an iteration over all possible value combinations. Quite often,
the curse of dimensionality is unavoidable while optimizing the parameters. To
illustrate, if only 3 parameters need to be optimized, each taking on n values,
this explodes to n3 possibilities. Another approach, Surragote-Based Optimiza-
tion (SBO), tackles this issue and constructs a compact model (a surrogate) for the
evaluation metric that is locally accurate in the regions of interest (the optimum)
trying out a limited number of values for the parameters.

To detect the best parameter configuration, one can perform cross-validation
on the training experience E whereby one part is used for building the model
and the other part for evaluation, or one can evaluate using a new experience E′′

(different from the experience E′) for the ultimate testing, this is the so-called
held-out validation set. The parameter configuration leading to the highest value
of the performance metric P on this validation set is chosen.

1.3 Research goals and outline

A major problem with existing publicly available data sets in NILM is that all of
them showcase major limitations, a.o., incorrect event annotations, undocumented
preprocessing applied to the data, unavailability of submetered or contextual data,
different power line frequency, inadequate sampling resolution, etc. Can data be
collected in a consistent way, and in addition be easily extendable? In Chap-
ter 2, we describe the collection process of a high frequency data set with accurate
annotations of the ground truth. Appliances representing different types and cat-
egories (e.g., resistive, reactive, inductive loads or a combination thereof) are used.
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In the present thesis, the focus lies on event based methods. The first step
consists of finding the events, often by using the power signal. Event detection
methods for this signal are usually based on fast edge detection algorithms. Well-
known statistical methods are, e.g., Generalized Likelihood Ratio (GLR), where
the statistical distribution of samples in 2 adjacent sliding windows is compared.
Although these algorithms have shown to result in good overall performance, it
was also found that these methods are rather sensitive to specific parameter settings
within the algorithm, such as the threshold of the test statistic, the sliding window
size, the power base load, the noise level of the data, and settings of the noise
filter. How can we develop event detection methods that are robust against
parameter changes? Chapter 3 clarifies this problem and offers two event detec-
tion methods that are robust against these parameter settings: the voting χ2 method
and the cepstrum method.

After the detection of events, these are characterized by features and the ap-
pliances responsible for the events are identified. A general overview of different
features can be found in [12], showcasing the ongoing difficulties and challenges
in distinguishing household appliances with similar electrical characteristics. The
question which features are best to characterize the appliances remains. In
Chapter 4, the VI trajectory is used for describing the post event steady-state be-
haviour. Instead of extracting features, such as asymmetry, and looping direction
from this trajectory (as in [13]), the image itself is used as a feature. To this end,
we first use a classic object recognition method based on contours and elliptical
Fourier descriptors. Second, the image is classified using convolutional neural net-
works. In many cases, this classification task is complicated by data imbalances
caused by differences in the total number of measurements per individual appli-
ance type. How does this appliance imbalance influence the performance of
the classifier and do approaches that address the imbalance improve the per-
formance? Several approaches will be discussed in Chapter 4 and benchmarked
in a systematic way.

A lot of classification algorithms described in literature, and the ones presented
in Chapter 3, are unable to handle unlabelled data corresponding to previously un-
seen appliances. In practice, such events will be assigned a label and a power
consumption corresponding to the appliance with the most similar features. Meth-
ods capable of handling unseen appliances (corresponding to unlabelled classes)
are related to unsupervised methods. In clustering, for example, one could argue
that points assigned to a cluster correspond to the appliance label of that clus-
ter, whereas outliers represent novel categories of appliances, not observed before.
None of the present clustering algorithms described in NILM research exploit this
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capability to detect previously unseen appliances, and none are capable of cluster-
ing with high accuracy on appliance-level. For the latter, it is necessary for features
to occur in clearly separated groups. How can a feature space be learned in such
a way that different appliance types form different clusters? Chapter 5 presents
the use of siamese neural networks that are capable of learning a new feature space
wherein different appliances are clearly clustered. Additionally, a workflow is pre-
sented that is capable of recognizing an unseen appliance when it is projected onto
the newly learned feature space.

1.4 Publications

1.4.1 Journal papers

• De Baets, L., Ruyssinck, J., Develder, C., Dhaene, T., & Deschrijver, D.
(2017). “On the Bayesian optimization and robustness of event detection
methods in NILM”. Energy and Buildings, 145, 57-66.

• De Baets, L., Ruyssinck, J., Develder, C., Dhaene, T., & Deschrijver, D.
(2018). “Appliance classification using VI trajectories and convolutional
neural networks”. Energy and Buildings, 158, 32-36.

• De Baets, L., Develder, C., Dhaene, T., & Deschrijver, D. “Detection of
unidentified appliances in non-intrusive load monitoring using siamese neu-
ral networks”. submitted to International Journal of Electrical Power &
Energy Systems.

• De Baets, L., Jingkun, G., Develder, C., Dhaene, T., Berges, M., & Deschri-
jver, D. “PLAID: Plug Load Appliance Identification Dataset”. submitted to
Scientific Data.

• Vansteenkiste*, T., Ruyssinck*, J., De Baets, L., Decruyenaere, J., De Turck,
F., Ongenae, F., & Dhaene, T. “Early detection of sepsis through the pre-
diction of positive blood cultures using long short-term memory neural net-
works”. Submitted to Artificial Intelligence in Medicine, (*Contributed equally)

1.4.2 Conference papers

• De Baets, L., Van Gassen, S., Dhaene, T., & Saeys, Y. (2015). “Unsuper-
vised trajectory inference using graph mining”. In the proceedings of the
International Meeting on Computational Intelligence Methods for Bioinfor-
matics and Biostatistics, Naples (Italy), Springer International Publishing,
pp. 84–97.
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Monitoring”. In the proceedings of the IEEE International Conference on
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• De Baets, L., Develder, C., Deschrijver, D., & Dhaene, T. (2017). “Auto-
mated classification of appliances using elliptical fourier descriptors”. In the
proceedings of the IEEE International Conference on Smart Grid Commu-
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2
Datasets

“It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.”

– Sherlock Holmes, A Scandal in Bohemia

De Baets, L., Jingkun, G., Develder, C., Dhaene, T., Berges, M., & Deschrijver,
D. “PLAID: Plug Load Appliance Identification Dataset”, submitted to Scientific
Data.

2.1 Introduction

The first step in NILM is gathering the data, see Figure 2.1. Data can be gathered
by (1) consulting public datasets, or (2) measuring and annotating it yourself. A
major problem with existing publicly available datasets in NILM is that all of them
showcase limitations, a.o., incorrect event annotations, undocumented preprocess-
ing applied to the data, unavailability of submetered or contextual data, different
power line frequency, inadequate sampling resolution, etc. This chapter presents
new data that diminish some limitations.

The Plug-Level Appliance Identification Dataset (PLAID) is a public dataset
consisting of voltage and current measurements from different electrical household
appliances sampled at 30 kHz. All appliances are monitored individually: they are
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Figure 2.1: A schematic overview of the steps in NILM, situating this chapter.

submetered and the data traces captured over a few seconds include the activa-
tion of the appliances. Additionally, some of them are also monitored when active
simultaneously: their aggregated consumption is measured and the data captured
over a few minutes contains the activation and deactivation of a subset of the ap-
pliances. Activations and deactivations are characterized by events in the current
and voltage signals.

In total, 17 different appliance types (e.g., refrigerators, microwave ovens, etc.)
are measured in 65 different locations for the submetered data, and 13 different ap-
pliance types (a subset from those used for the submetered data) are measured at
one single location for the aggregated data. Not all appliance types are available
in all different locations. In total, the dataset contains 330 different appliances
(i.e., different appliance models for each of the 17 different appliance types). For
some appliances (approximately 10% of them), multiple operating modes were
monitored.

The dataset has grown over the years: [1] published in 2014 and [2] published
in 2017 contain, respectively, 71% and 25% of the currently available submetered
data. This paper compiles all of the previous PLAID publications and presents
some additional data comprising another 4% of submetered data, as well as extra
aggregated data. The added appliances and location are different as compared to
previous versions, and include new appliance types. Our goal is to continuously
expand this dataset by incorporating additional measurements of appliances at dif-
ferent locations. To facilitate this goal, this paper describes the technical procedure
to consistently replicate the setup.
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PLAID can be used in two ways. First, the high resolution submetered appli-
ance measurements (30 kHz) can be used to automate the labelling of submetered
data, enabling the possibility for appliance classification (i.e., being able to classify
appliance types from just voltage and current measurements). This knowledge is
interesting for smart plugs [3] that are used for smart grid and building-level energy
management applications such as automated load control [4] and load schedul-
ing [5]. In addition to appliance classification, this data can also be used to create
an appliance power consumption inventory. As the submetered data is captured in
different houses, the generalization of the labelling methods across houses can be
tested. Second, the high resolution aggregated appliance measurements (30 kHz)
can be used to learn how to dissagregate the total current consumption measured
at the main feed of a household at high frequency. This is known as non-intrusive
load monitoring (NILM) [6]. Two important steps in NILM are event detection [7]
and load identification [8]. This dataset provides the means to learn and implement
both tasks on high frequency data. The obtained information can also be used to
identify energy consumption and to monitor the deterioration of appliances.

Table 2.1 shows similar datasets that are publicly available. PLAID is dis-
tinct because it contains submetered and aggregated data sampled at a frequency
higher than 1Hz. Only two other datasets (WHITED [9] and COOLL [10]) con-
tain submetered data sampled at a frequency higher than 1Hz. All the others, like
ACS-F2 [11] and Tracebase [12], contain submetered data sampled at a frequency
lower than 1Hz. From these last datasets, only two, i.e., REDD [13], and UK-
DALE [14], contain aggregated data sampled at a frequency higher than 1Hz. All
the others, i.e. DRED [15], Dataport [16], REFIT [17] and AMPds2 [18] contain
aggregated data sampled at a frequency lower than 1Hz.

2.2 Methods

First, the hardware used to monitor the appliances is described. Next, we describe
the selected appliances and their occurrence in the different households. The last
two subsections explain how the appliances are submetered and aggregated.

2.2.1 Monitoring set-up

All electrical measurements were was collected using a National Instruments (NI-
9215) data acquisition card [19]. The NI-9215 includes four simultaneously sam-
pled analog input channels paired with a 16-bit analog-to-digital converter (ADC)
that we use to collect voltage and current measurements. These are stored in a
computer via a USB connection, as shown in Figure 2.2.
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Figure 2.2: The measurement set-up for capturing the data.

To measure the different appliances, these were connected to the power strip.
This power strip has a negligible amount of power consumption as a small lamp
was burning indicating the activity of the power strip. As a consequence, this small
load is measured during the data collection. From this power strip, the current and
voltage are measured.

Current is measured with a Fluke i200 AC current clamp [20] that has a cut-
off frequency of 10 kHz, allowing us to sample signals with frequency content up
to 5 kHz according to the Nyquist-Shannon sampling theorem [21]. It is impor-
tant to note that if the current is sampled at a high frequency, it is necessary to
have a clamp with a high cut-off frequency. Some of the existing datasets with
high sampling frequency did not account for this (e.g., BLUED [22] used a current
transformer with a cut-off frequency of ∼ 300Hz). The Fluke i200 is connected
to the NI-9215, see Figure 2.2.

Voltage is measured with a Pico-TA041 Oscilloscope probe [23]. The TA041 is
an active differential probe suitable for high common-mode voltage measurement
applications up to ±700 V (DC + peak AC). It can be used with signal frequencies
of up to 25 MHz [23]. As it is an active probe, it requires power. Because the active
probes significantly reduce capacitive loading, they are able to achieve fast signal
measurements with much better signal fidelity making them well suited for high
frequency measurements. As with the current clamp, the Pico-TA041 is connected
to the NI-9215, see Figure 2.2.
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The NI-9215 converts the analog voltage and current signals into digital sig-
nals and sends them via an USB-connection to a computer. Libraries for different
programming languages (e.g., Python, C++, MATLAB, and LabVIEW) can be
used to communicate with the NI-9215 under the condition that the correct drivers
are installed. We used MATLAB and LabVIEW and stored the data in comma-
separated values (CSV) files. Reference scripts for replicating this process are also
made available as part of the dataset.

2.2.2 Selected homes and appliances

In total, 17 appliance types were measured at 65 locations. These include one lab
environment and 64 households. These households were recruited via an email
campaign and mainly consist of graduate student homes. All the households are
located in Pittsburgh, Pennsylvania, USA.

Table 2.2 gives an overview of the 17 appliance types, their occurrence in the
65 locations (number of appliances) and the number of times these were mon-
itored/activated (number of instances), both for the submetered and aggregated
case. For example, for the refrigerator appliance type, 28 physically different re-
frigerators are monitored separately multiple times, leading to 100 instances of this
appliance type. One of these refrigerators is monitored 79 times when other appli-
ances were active or were turned on. For six appliances types that were located in
the lab environment, only one appliance is monitored. Those appliances were also
used to generate the aggregate measurements. Note, that there is less data of the
blender appliance type compared to the other appliance types, as it broke down in
the middle of the experiment.

All the appliances were activated by connecting them to the power strip and
turning on the switch if present. However, the following remarks need to be given
concerning activation assumptions:

• The blender was kept empty during the experiments.

• The refrigerator was activated after it warmed up by opening the door. This
ensured the motor would activate.

• An unknown mode of the refrigerator was activated by plugging in the re-
frigerator twice shortly after each other. The second time, the unknown
mode is activated.

• The soldering iron has a two-phase activation process: around 6 seconds
after activation, there is an increase in power consumption. The two events
are stored in two separate files, both with the label ‘soldering iron’.
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2.2.3 Submetered appliances

Each time an appliance is activated, a state transition (event) will happen [7]. When
the appliances are monitored individually, i.e., submetered, the activation is mea-
sured together with some seconds of the steady state following this activation. This
measurement captures the transient start-up containing information of the present
electrical components and possible present inertia. The deactivation of the ap-
pliances is not measured because then the electrical circuit is disconnected and
appliance specific information is no longer present. The recorded steady state du-
ration ranges from 1 to 20 seconds.

Besides monitoring the activation of the appliances, the following meta-data is
stored, when available:

• Manufacturing data of the appliance: the brand, manufacturing year, model
number, appliance type (first column of Table 2.2), load type, and the rated
current, voltage and power consumption values.

• Information concerning the data capturing process: the time of data collec-
tion expressed in month and year, the sampling frequency, the total measure-
ment duration, and the specific operating mode that was measured.

• The location identifier, which is a string (e.g., ‘house5’ or ‘CMU lab’).

The current and voltage measurements themselves are stored in separate CSV files.
The measurement is stored in two columns, one for the the current expressed in
ampere and the other one for the voltage expressed in volt. The precision of the
numbers is three decimals. As the sampling rate was kept constant, there was no
need to associate each measurement with a timestamp. The time that has passed
relative to the beginning of the file can be calculated using the sampling frequency
(e.g., for a frequency of 30 kHz, the 30000th point occurs one second after the
start).

The meta-data is stored in one big JavaScript Object Notation (json) file which
contains for each measurement an attribute-value pair with the CSV file name of
the measurement file, as attribute and the meta-data of the measurement in question
as the value. The meta-data itself is also structured as attribute-value pairs, namely:

‘appliance’: {
‘brand’: ‘’,
‘current’: ‘’,
‘load’:‘’,
‘manufacture_year’: ‘’,
‘model_number’: ‘’,
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‘notes’: ‘’,
‘type’: ‘’
‘voltage’: ‘’,
‘wattage’: ‘’},

‘header’: {
‘collection_time’: ‘’,
‘notes’: ‘’,
‘sampling_frequency’: ‘’},

‘instances’: {
‘length’: ‘’,
‘status’: ‘’},

‘location’: ‘’}

2.2.4 Aggregated appliances

To measure the aggregated signals, several appliances are activated one after an-
other. Different from the submetered case, the deactivation is also monitored. This
is done because other appliances may still be running after deactivation. The 13
appliances that were present in the lab environment were used to create the ag-
gregated data (see Table 2.2). The goal of this dataset is to capture the signal
characteristics for combined operation of appliances. Full coverage of all the com-
binatorial possibilities would have been impractical. For instance, there are 312
combinations of two appliances that can be made from these 131. Activating more
than two appliances each in turn, becomes intractable as the number of combina-
tions grows exponentially with the number of appliances.

To make the amount of combinations more tractable, the following division is
used: appliance types can be linear (L) or non-linear (NL) loads. A load is linear
if there is a linear relationship between its current drawn and the supplied voltage.
Some loads, such as these containing transistors and other electronics, do not be-
have in this way and are called non-linear loads. The linear loads can be resistive
(R), capacitive (C) or inductive (I). Examples of a resistive, capacitive, and induc-
tive loads are respectively a light bulb, a battery, and a motor. An example of a
non-linear load is a computer. The grouping for the appliances present in the lab
are given in the first column of Table 2.2 between brackets. As can be seen, there
are no purely capacitive loads available, leaving the following groups: R, I and
NL. The following combinations in and between the groups are measured:

• Two different appliances of the same group are selected (e.g., A and B) and

1(4 ·
(13
2

)
) combinations. The multiplication factor 4 refers to the different order in which 2 appli-

ances can be activated and deactivated under the condition that first the 2 appliances must be activated
before one can be deactivated.
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Figure 2.3: (a) The current consumption of an AC is shown (submetered/9.csv). (b)
The CFL is activated during the transient of the AC (aggregated/558.csv). (c) The
CFL is deactivated in the transient behaviour of the AC (aggregated/559.csv).

combined in all possible ways under the condition that first the two appli-
ances must be activated before one can be deactivated. All possible selec-
tions of appliances A and B for each group are measured. For example, for
the resistive group consisting of 4 appliances, there are 6 different selections
of two appliances A and B, and each is combined in 4 ways, leading to
24 (= 6 · 4) measurements.

• Two different appliances, each of a different group, are selected and com-
bined in all possible ways under the condition that first the two appliances
must be activated before one can be deactivated (see above). All possible
selections of two different appliances, each of a different group are mea-
sured. As the resistive, inductive and non-linear group consists of 4, 5, and
4 appliances respectively, this leads to 56 (= 4 · 5 + 4 · 4 + 5 · 4) selections
of two different appliances. As each selection is combined in four possible
ways, in total there are 224 (= 56 · 4) measurements. Note that some of the
combinations with the blender are missing because it broke down before the
end of the experiments.

• Three different appliances, each from one group, are selected and combined
in a random way under the conditions that three appliances must be all acti-
vated before one is deactivated and that the order of activation is the same as
deactivation. As the number of possible appliance selections and combina-
tions is too large to cover exhaustively, a random generator is used to select
the three appliances and their order. This is repeated 60 times.

Combining the appliances in this way allows us to investigate the influence that
appliances of the same or different groups have on each other. Investigation of this
data will point out if further elaborating this dataset is necessary. Each of these
measurements is only done once.

A special case of aggregating appliances is when an appliance is (de)activated
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Figure 2.4: (a) The current consumption of the soldering iron (SI) is shown
(submetered/12.csv). (b) The CFL is activated during the first phase of activation
of the SI (aggregated/484.csv). (c) The CFL is deactivated during the first phase of
activation of the SI. (aggregated/485.csv).

during the transient behavior of another appliance. In Figure 2.3a, an example
is given of the transient behavior of the air conditioner. When an appliance is
(de)activated during the transient phase, it is seen that its behavior before/after the
event is different. The AC is the only appliance in PLAID with a sufficiently large
and slow transient behavior that makes it possible to simultaneously (de)activate
appliances. The other appliances (except for the blender, laptop charger, refriger-
ator and refrigerator defroster) were either activated or deactivated at 5 different
random time instances during the transient of the AC. An illustration is shown
in Figure 2.3b and 2.3c. In the end, 80 (= 8 · 5 + 8 · 5) measurements for this
special case are captured. This was not done for the blender as it already broke
down and not for the laptop charger, refrigerator and refrigerator defroster as these
appliances are activated by connecting the plug to the power line, and it was not
feasible to accomplish this within the time frame wherein the transient behavior
takes place.

Another special case is when the soldering iron with the two-phase activa-
tion process is used (see Figure 2.4a). In the previously described measurements,
other appliances are only (de)activated when the soldering iron reached the second
step of its activation. To complete the dataset, we also captured data where appli-
ances are (de)activated during the first step of the soldering iron’s activation. More
specifically for an appliance A two measurements are captured in the following
manner:

• Appliance A is activated between the first and second step of the soldering
iron’s activation. Once the activation of both appliances is complete, the
soldering iron and A are deactivated each in turn, as shown in Figure 2.4b.

• Appliance A and the soldering iron are activated each in turn. Then, ap-
pliance A deactivated in between the first and second step of the soldering
iron’s activation, as shown in Figure 2.4c.
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For each appliance type, the above measurements are only done once, as repeat-
ing the experiments would result in almost identical events, since the time and the
current consumption between the two activation steps is always the same. This is
done for every other appliance, resulting in 24 (= 2 · 12) measurements.

As mentioned earlier, the measurements are stored in CSV files. Table 2.3
gives an overview of the files corresponding to each experiment. The meta-data
follows the same structure as for the submetered data and extends it by adding an
array of appliances monitored in the file. Each appliance is characterized by its
manufacturing data (see meta-data of submetered data), and timestamps of activa-
tion and deactivation. The timestamps are expressed using indices from which the
time passed since the start of the file can be calculated using the known sampling
frequency of 30 kHz. The index represents the moment the appliance is activated
and not the moment the appliance reaches steady state. Note that the soldering
iron induces two events when it is activated, one for each activation phase, and
both are labelled. Just as for the meta-data of the submetered data, the meta-data
of the aggregated data is structured as attribute-value pairs. The additions are put
in italic:

‘appliances’: [{
‘brand’: ‘’,
‘current’: ‘’,
‘load’: ‘’,
‘manufacture_year’: ‘’,
‘model_number’: ‘’,
‘notes’: ‘’,
‘on’: ‘’,
‘off’: ‘’,
‘type’: ‘’,
‘voltage’: ‘’,
‘wattage’: ‘’}, ... ],

‘header’: {
‘collection_time’: ‘’,
‘notes’: ‘’,
‘sampling_frequency’: ‘’},

‘instances’: {
‘length’: ‘’,
‘status’: ‘’},

‘location’: ‘’}
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files experiment

1 - 474 2 or 3 appliances active,

on/off outside transient,

on/off in second activation phase of soldering iron

475 - 554 AC and other appliance,

on/off during AC transient,

on/off in second activation phase of soldering iron

555 - 576 Soldering iron and other appliance,

on/off outside transient,

on/off in first activation phase of soldering iron

Table 2.3: An overview of which files correspond to which experiment.

2.2.5 Known issues

Some issues are present in PLAID. When monitoring the appliances individually
in the 2014 version (the submetered files with identifiers going from 1 to 1074),
the calibration was not checked every time when the set-up changed places. As
an example, the histogram in Figure 2.5 shows the distribution of maximal current
and voltage values for the vacuum appliance type, indicating a great variation in
the values as the maximal current values range from 0.54 A to 34.65 A and the
maximal voltage values range from 9.14 V to 171.8 1V. Some of the variance in
the values can be explained by the fact that there are 15 different vacuum cleaners,
but the smallest values suggest a calibration error. As a consequence, a data nor-
malization step is needed for further processing. This must be done by the user.
Two possibilities to normalize the data are rescaling and standardization. The last
one is more appropriate when there are outliers in the data.

Table 2.2 also shows that the data is very imbalanced (e.g., 85 instances for
the heater appliance type compared to the 230 instances for the compact fluores-
cent lamp appliance type). This imbalance needs to be considered in evaluation of,
e.g., automatic classification [2].

An additional minor issue is that the meta-data concerning the manufacturing
of the appliances is quite often left blank by the measurer, as can been seen in
Table 2.4. Having this information could be valuable for comparing the power
consumption between different generations of appliances or different brands.
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Figure 2.5: The histograms of maximal current and voltage values for the measured vacuum
cleaners in steady state.

Meta-data Submetered Aggregated

#/Total (%) #/Total (%)

brand 824/1925 (42.81%) 1254/1305 (96.09%)

current consumption 450/1925 (23.38%) 759/1305 (58.16%)

manufacturing year 24/1925 (1.25%) 0/1305 (0.00%)

model number 582/1925 (30.23%) 90/1305 (6.9%)

on N.A. 1305/1305 (100%)

off N.A. 1305/1305 (100%)

voltage consumption 655/1925 (34.03%) 1087/1305 (83.30%)

wattage 453/1925 (23.53%) 700/1305 (53.64%)

capturing moment 1925/1925 (100%) 576/576 (100%)

sampling frequency 1925/1925 (100%) 576/576 (100%)

total time 1925/1925 (100%) 576/576 (100%)

measured mode 1925/1925 (100%) 576/576 (100%)

location identifier 1925/1925 (100%) 576/576 (100%)

appliance type 1925/1925 (100%) 1305/1305 (100%)

Table 2.4: The number of instances for which the metadata fields are completed. Note that
for the aggregated data, the total number of instances for the manufacturing meta-data is
larger than for the other meta-data, this because multiple appliances can be activated at
the same time.
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Figure 2.6: The power draw (W) of the appliances present in the dataset. Per appliance
type, a boxplot of the power consumption is shown.

2.3 Technical validation

PLAID can be used for different use cases that involve appliance recognition from
electrical data. An advantage of this dataset is that the same appliance type is
measured in different houses. In this section, we check if different appliances of
the same type have a similar power profile, using the submetered data that was
correctly calibrated. This can give insight whether or not it is justified to combine
data from different brands within the same appliance type.

In Figure 2.6, the active power consumption for the appliance types is shown.
The active power for one cycle is calculated from the current and voltage signal in
the following manner:

P =
1

n

k∑
i=1

IiVi (2.1)

where Ii and Vi are respectively the ith sample of current and voltage of a steady
state cycle of respectively the current and voltage. Figure 2.6 shows that the power
draw of same type appliances between different brands can vary significantly. For
example, the power consumption of the microwave oven varies from around 500 W
to 1000 W. This implies that the appliance recognition generalization on different
houses will not be straightforward and other features must be examined as well.
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2.4 Usage notes
The PLAID data is provided in CSV files and can be extracted using the common
programming languages and software packages (e.g., Python, MATLAB).

As mentioned earlier, the dataset concerning the submetered data has grown
over time. The data of [1, 24] corresponds to file identifiers 1-1074, while [2] uses
1-1793. For this paper, additional submetered data is captured, which is stored in
files 1794-1925. Note that only for the files 1075-1793, multiple operating modes
are considered (not only binary on/off).
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Event Detection
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Figure 3.1: A schematic overview of the steps in NILM, situating this chapter.

3.1 Introduction

This chapter focuses on the development of event detection methods in NILM, see
Figure 3.1. An important property of these methods is their robustness against
differences in the base load (i.e., the background consumption of devices already
consuming power when the event to be detected occurs): performance decay if
high power consuming devices are on is unwanted. To the best of our knowledge,
this property has not yet been thoroughly investigated. This chapter shows that one
of the most commonly used event detection method, chi-squared goodness-of-fit
(χ2 GOF), lacks this robustness. Two alternative methods robust to changes in the
base load are proposed. The first method is an adapted version of the standard χ2

GOF method [1], which is extended with a voting mechanism [2]. The second ro-
bust method is a new method that uses smoothed frequency components to detect
events.

A second contribution of this chapter concerns parameter optimization of event
detection methods. A standard but slow approach is a brute-force exhaustive search
that tries out all the possible parameter configurations and selects the best one. In
this chapter, this process is optimized by introducing Surrogate-Based Optimiza-
tion (SBO) [3].

The remainder of the chapter is structured as follows: Section 3.2 introduces
a brief overview of related work, Section 3.3 specifies the preprocessing of the
input. Section 3.4 describes the state-of-the art NILM event detection method, dis-
cusses its lack of robustness towards base load power differences and proposes a
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robust adaptation, the voting χ2 GOF method. Section 3.5 discusses the newly pro-
posed robust event detection method. In Section 3.6, a SBO algorithm is proposed
to identify optimal model parameter configurations for the statistical tests and in
Section 3.7, the performance of the newly presented methods is benchmarked. A
conclusion is presented in Section 3.8.

3.2 Related work

Event detection methods In 1992, together with the first event-based work-flow
for NILM, Hart described an event detection method that relied on monitoring
changes in active and reactive power [4]. A better method to detect events in the
active power is the Generalized Likelihood Ratio Test (GLRT) [2, 5], which tests if
two neighboring windows representing consecutive time frames share a common
distribution. The possible presence of an event in two neighboring windows is de-
termined by calculating a decision statistic from the natural log of a ratio of prob-
ability density functions in those neighbouring windows. Another method is the
χ2 GOF test. It detects events by assuming, like the GLRT, that two neighbouring
windows share a common distribution. A χ2 test statistic is applied on two neigh-
bouring windows and an event is assumed if the null hypothesis is rejected [1].
This χ2 GOF test is widely used [1, 5–7] and reasons to adopt this method are its
simplicity and improved performance as reported in other studies [1, 6–8].

In addition to these heuristics, more computationally expensive machine learn-
ing algorithms are available. Hidden Markov Models (HMMs) [9] formulate the
problem of detecting events as finding an ideal set of non-overlapping intervals
in which the observations are as heterogeneous as possible. These unknown in-
tervals are the hidden states of the HMM. A disadvantage is that the number of
states needs be given or must be predicted. Support vector machines (SVMs) [10]
fit models on short segments of the signal, all learned simultaneously using a cou-
pling term that forces neighbouring models to be similar. Bayesian methods [11]
work by estimating the run length at every data point. The run length represents
the time since the last event. The run length can be inferred given (1) an under-
lying predictive model whose parameters change when an event occurs, and (2)
a hazard function which describes how likely an event is, given an observed run
length. This hazard function needs to be given, but the model can be created if it
is assumed that the data in each segment is independent and identically distributed
(i.i.d.) with respect to some distribution. It must be noted that for HMMs and
SVMs, the event detection is a side effect of the approach, and not a separate mod-
ule in the algorithm itself.

This chapter focuses on the χ2 GOF method as event detection method as it is
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widely used, simple, and has good performance [1, 5–8].

Benchmark dataset The most commonly used benchmark for event detection
is the BLUED dataset, consisting of the aggregated active power signal from a
family residence in the United States for a whole week [12]. In this dataset the
steady-state power consumption never exceeds 500W for phase A and 1500W for
phase B. However, it is likely that much higher power values occur in households,
e.g., when electrical heaters (easily consuming 1500W) are used. This chapter will
show that the performance of the χ2 GOF method decreases rapidly if a base load
is added to the power consumption, while the performance of the proposed voting
χ2 GOF and cepstrum method remains the same under similar conditions.

Parameter optimisation The χ2 GOF method, the proposed voting χ2 GOF
method and the cepstrum method are parametric and require an optimization step
to tune the parameters in order to minimize misdetection rates. This tuning can be
done in a supervised way provided that enough data is available. Tuning can also
be done in an unsupervised manner requiring a cost function such that the algo-
rithm with the optimal model parameters has the lowest cost [13]. Either way, all
model parameter configurations need to be checked (brute force approach) and the
number of possibilities grows with the number of model parameters and the size of
their ranges. A computationally efficient procedure will be introduced in Section
3.6 to optimize the model parameters in a reduced amount of time compared to the
traditional brute force approach.

3.3 Denoising power signals using median filter
As input for the χ2 GOF method, the power signal of a household is taken. This
section explains the preprocessing needed before for this signal can be used by
the event detection method. This preprocessing will also be done for the proposed
voting χ2 GOF and cepstrum method.

Definition of the power signal A power signal measures the amount of energy
consumed per unit time. Thus if an appliance is turned on or off (i.e., an event
occurs), the power signal will either increase or decrease. In the Americas and
parts of Asia, the maximal power frequency is set to 60 Hz and in the rest of the
world it is set to 50 Hz. Note that event detection can also be applied on other
signals characterising the events defined by the turning on and off an appliance,
e.g., the voltage/current measurements.

Denoising In [14] it is reported that noise or spikes in the power signal can trig-
ger false detection of transitions, which can significantly hamper the performance
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(a) (b)

Figure 3.2: An example power trace [12] with noise is given in (a). The noise is falsely
detected as an event. Figure (b) shows the power trace after applying the median filter with
m = 30 samples.

of the event detection and thus successful load disambiguation of individual appli-
ances. Therefore, it is important to remove the noise by preprocessing the data.
In digital image processing, a similar preprocessing step is also needed and quite
often this is done by the median filter, as it can remove impulsive noise while pre-
serving sharpness of the edges [15]. Each sample in the power signal pi is replaced
by the median of its m neighbours:

pi = median(pi−m/2 + pi−m/2+1 + ...+ pi+m/2−1 + pi+m/2) (3.1)

As an example, Figure 3.2 shows that the standard χ2 GOF event detection method
identifies noise as an event if the signal is not filtered. It is found that the effective-
ness of the median filter depends on the choice of its window size m. Therefore,
this model parameter must be optimized (preferable in an efficient manner), as
discussed further in Section 3.6.

3.4 Voting χ2 GOF method
The standard χ2 GOF method [1] detects events by relying on the fact that the dis-
tribution of power values before/after the occurrence of an event are different. To
assess this difference, a probabilistic χ2 test can be used. Assume two consecutive
non-overlapping windows q = (q1, q2, · · · , qn) and p = (p1, p2, · · · , pn), each
containing n data samples from the power signal. Then, an event occurs at the end
of window q with a confidence level of 100(1−α)% and n−1 degrees of freedom,
if

lGOF =

n∑
i=1

(qi − pi)2
pi

> χ2
α,n−1. (3.2)

The values of the χ2
α,n−1 distribution can be looked up in a table1 .

1http://sites.stat.psu.edu/˜mga/401/tables/Chi-square-table.pdf
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Base line robustness Although this χ2 GOF method has been shown to be effec-
tive, it is not robust against base load changes, as illustrated in Figure 3.3. When
the power base level is around 600W, and an appliance using 50W is switched on
(as in Figure 3.3a), the event is correctly detected (see Figure 3.3c). However, the
event would have been missed if a base load of 1500W was added (see Figure 3.3b
and 3.3d). It is seen from equation (3.2) that events are characterized as a change
in power (qi− pi) relative to the power signal itself (pi). Therefore, the method is
prone to miss smaller events when the base load of the signal is high. This can lead
to poor results, as shown in Figure 3.3b. As a solution, a voting mechanism (based
on the idea presented in [2]) is proposed in this chapter to solve the problem.

Improved method In the voting χ2 GOF method, the GOF is calculated for each
sample in the power signal as given by equation (3.2). A voting window of length
w slides over the resulting time-series of GOF-values and a sample gets a vote if
its GOF-value is the highest among all points in the voting window. This results
in a maximum of w votes. Each sample receiving at least vthr votes is flagged as
an event. As illustrated in the example in Figure 3.3e and 3.3f, the voting χ2 GOF
method is able to improve the detection ratios compared to the standard approach.
The results section (Section 3.7) shows the robustness of the voting method against
changes in base load in more detail.

Parameter configurations Both the normal and voting χ2 GOF method are sen-
sitive to model parameter configurations, i.e., the confidence level α, the window
size n, and extra for the voting method: the voting window size w and voting
threshold vthr. In [1] a suggestion is given for determining the window size n.
However, small changes in the model parameter configurations can lead to missed
events. Figure 3.4 shows an example for the normal χ2 GOF method where three
events are detected when the window size n = 40, but only two events are detected
when the window size n = 20. It is thus beneficial to optimize the model parame-
ters in an efficient way, which can be done using surrogate based optimization, see
Section 3.6.

3.5 Cepstrum method

The previous sections investigated the power signal in the time domain. Alterna-
tively, an analysis can be performed in the frequency domain using, e.g., cepstrum
analysis. Cepstrum analysis was first introduced in 1963 to analyze the echoes
within seismic signals produced by earthquakes [16]. Since then, it has proven
to be a potent technique in several domains. One application is passive sonar,
which involves listening to the environment without sending signals in order to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.3: (a) A sample power trace from [12] and its detected events using the standard
χ2 GOF method with n = 40. (c) The corresponding lgof values. (e) The detected events
using the voting χ2 GOF method with w = 30 and vthr = 25. (g) The corresponding
votes. Figures (b), (d), (f) and (h) show the same information for cases where a base load
of 1500W is added.
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(a) (b)

Figure 3.4: A sample power trace from the BLUED dataset [12], after applying a median
filter with m = 30, with events detected by the standard χ2 GOF method with α = 90%
for different window sizes: (a) n = 20, (b) n = 40. In the first case, only two events are
detected, while three events are detected when n = 40 .

Figure 3.5: A schematic overview of the transformation from a time signal to spectral
smoothed dB-scaled frequency components.

detect objects [17]. Another application is speech recognition [18], where cep-
strum analysis has been successfully applied to increase the robustness of various
algorithms. In the context of NILM, recent work has demonstrated the usefulness
of cepstrum analysis for appliance recognition [19], especially when multiple de-
vices are (de)activated simultaneously. Here, cepstrum analysis is used for event
detection, rather than for appliance recognition.

Robust Cepstrum Method When using the cepstrum method, events are de-
tected in the frequency domain where smoothing occurs in the quefrency domain,
rather than the time domain. The different steps are outlined in Figure 3.5. Con-
sider a window x of length n from a power signal p,

p = (pi, pi+1, ..., pi+n) (3.3)

where events need to be detected. First, this window will be converted from the
time to the frequency domain, by using the Fourier transform:

P (k) =

n∑
j=1

p(j) e−2πikj/n , 0 ≤ k < n. (3.4)

Then, the inverse Fourier transform is applied to the logarithm of |P |, leading
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Figure 3.6: The response of the filter z.

to the cepstrum components in the so-called quefrency domain:

c(j) =
1

n

n−1∑
k=0

log10( |P (k)| )e2πijk/N , 0 ≤ j < n. (3.5)

These cepstrum components are smoothed by means of a filter z, after which they
are transformed back to frequency components by applying the Fourier transfor-
mation:

P̂ (k) =

n∑
j=1

z(j) c(j) e−2πikj/n , 0 ≤ k < n. (3.6)

The filter z is defined as one minus the Hann window, with a response as visualised
in Figure 3.6:

z(j) = 1− 0.5 (1− cos(2πj/n)) , 0 ≤ j ≤ n. (3.7)

Because the relative difference in values of the components is more informative
than the absolute difference, the frequency components are converted to a decibel
(dB) scale:

P̂dB(k) = 20 log10(P̂ (k)). (3.8)

These components are an informative indicator for the absence or presence of
events in the time window. This is illustrated in Figure 3.7: if an event is present,
all the cepstrum smoothed dB scaled frequency components have higher values
(see Figure 3.7b) than when no event is present (see Figure 3.7d). Finally, it is
checked whether all frequency components exceed a chosen threshold τ , and de-
clare an event if the following condition holds:

min
0≤k<N

(P̂dB(k)) > τ (3.9)

Note that the threshold τ needs to be optimized in order to achieve high event
detection ratios. The efficient optimization of this parameter τ (and others indi-
cated previously) is discussed next, in Section 3.6. The results section (Section
3.7) shows that this method, just like the voting χ2 GOF method, is robust against
changes in the base load.
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(a) (b)

(c) (d)

Figure 3.7: An example of a window with size n = 40 of a power trace and the corre-
sponding smoothed frequency components P̂ of an event, respectively (a) and (b), and a
non-event, respectively (c) and (d).

3.6 Efficient surrogate-based model parameter opti-
mization

All the methods described in the previous sections have parameters that need to
be optimized in order to achieve high event detection ratios. The total number
of model parameter configurations that must be evaluated is very high, see Sec-
tion 3.7 for the specific numbers. Rather than reducing the granularity of the model
parameter ranges, surrogate-based optimization is proposed, which can signifi-
cantly speed up the process. It is chosen to adopt Surrogate-Based Optimization
(SBO) [3], which assumes that smooth changes in the model parameter configu-
rations will lead to smooth changes in detection ratios. Under that condition, an
exhaustive search of the overall model parameter space is not required to find the
optimum solution. Rather than computing the results for all possible model param-
eters, a surrogate model of the optimization objective function (the utility function)
is generated that is locally accurate in the regions of interest (the optimum). SBO
makes use of one of the most popular sequential sampling concepts, namely, the
Expected Improvement (EI) measure for optimization with locally accurate surro-
gate models [3]. The EI measure aims to maximize the utility function by guiding
the sequential selection of appropriate model parameter configurations into the di-
rection where the optimum solution is most likely to be found, using Bayesian
methods. Once the algorithm discovers a configuration that is sufficiently close to
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Figure 3.8: A flow chart explaining SBO.

the optimum, the optimization terminates and the final solution is returned. As a
result, only part of all model parameter configurations need to be tested to obtain
the optimal solution. SBO has already been applied successfully in other research
areas, like e.g., wireless communication [20], electromagnetics [3], and microwave
filter design [21].

The different steps of the algorithm are summarized in Figure 3.8. SBO re-
quires a unified utility function that needs to be maximized (i.e., the F-measure as
explained further). First, a limited set of calculations are performed on this utility
function such that the model parameter space is well sampled to create the initial
design. Then, a Kriging surrogate model is built that is sequentially updated with
additional configurations as suggested by the EI infill criterion. The EI infill crite-
rion effectively balances between enhancing the global accuracy of the surrogate
model (exploration) and improving its accuracy near the optimal solution found so
far (exploitation). As the algorithm proceeds, the search is guided towards the op-
timal solution while limiting the number of possible configurations for the model
parameters. As soon as a satisfactory result is found, the optimization is terminated
and the best solution is returned.

Definition of the utility function To quantify the performance of event detection
methods, the harmonic mean of precision and recall (also known as the F-measure)
is used as suggested in [22]. If the considered model parameters are g, it is defined
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as:

F (g) = 2 · precision(g) · recall(g)
precision(g) + recall(g)

(3.10)

precision(g) =
TP(g)

TP(g) + FP(g)
(3.11)

recall(g) =
TP(g)

TP (g) + FN(g)
(3.12)

where precision is the fraction of detected events that are true and recall is the frac-
tion of true events that are detected, TP are the true-positives (correctly predicted
events), FP are the false-positives (incorrectly predicted events), FN are the false-
negatives (undetected events). The goal of the optimization procedure is to choose
the model parameters g in such a way that the utility function is maximized.

Evaluation of the initial configurations for model parameters First, a limited
number of configurations K for model parameter g are evaluated using Equation
(3.11) and (3.12) to determine corresponding values of precision and recall. To
this end, an optimized Latin Hypercube Design (LHD) was used because of its
space-filling properties [23]. Next, the corresponding F measures are calculated.
This leads to the configurations:

S = {(gk, F (gk)), k = 1 . . .K}. (3.13)

Generation of a Kriging surrogate model With the calculated F -measures, a
Kriging model is built. Kriging models are part of a broader class of approxima-
tion methods, called Gaussian Processes (GP), and have a particular importance
in SBO. While traditional approximation methods predict only a single function
value, GP methods can predict the uncertainty of a function value as the realiza-
tion of a normally distributed random variable Y (g) ∼ N(µ(g), σ(g)) where µ(g)
denotes the predicted value (µ(g) = F (g) ) and σ(g) denotes the prediction vari-
ance. This property is exploited by the EI infill criterion to guide the sequential
sampling, as shown in the next section. More details about Kriging can be found
in literature, e.g., [24].

Expected Improvement infill criteria Once a Kriging model is built, the EI
measure determines the optimum location of the next infill point g that contains
the parameter configurations used to configure the event detection method. First,
the EI quantifies the Probability of Improvement (PoI), the amount of improvement
that is expected to occur when a certain configuration is explored as compared to
the optimal value found so far. The EI is calculated by considering every possi-
ble improvement over the current best value Fmax, multiplied with the associated
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Figure 3.9: A graphical illustration of expected improvement: a surrogate model (dashed
line) is constructed based on some data points (circles) of an unknown function F (g). For
each point the surrogate model predicts a Gaussian probability density function (PDF). An
example of such a PDF is drawn at g = 0.5.

likelihood. If φ(.) denotes the probability density function of a random variable,
then the EI can be written in integral form as follows [25]:

E(I(g)) =
∫ ∞
Fmax

I(g) · φ(Y (g)) dY, (3.14)

where the improvement I(g) of Y (g) over Fmax is defined as

I(g) = max(Y (g)− Fmax, 0). (3.15)

A graphical illustration of the EI concept is given in Figure 3.9 where one model
parameter is optimized. Note that the EI function (3.14) corresponds to the first
moment of the shaded area in Figure 3.9. Once a configuration of g is found
for which the E(I(g)) is maximal, its corresponding F -measure is calculated and
added as a new data sample to the set S. Based on the additional information, the
Kriging model is rebuilt and the process is repeated until a satisfactory solution
is found, i.e., until the maximum is reached (in our case F = 1), or when the
maximum number of iterations is exceeded.

An implementation of the SBO routine is available in the Surrogate Mod-
elling (SUMO) Toolbox [26, 27] (available online on http://sumo.intec.
ugent.be).
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Figure 3.10: A schematic overview of the optimization procedure.

3.7 Results and discussion

Dataset In this section, the robustness of the proposed methods against different
baseload levels is tested on the BLUED dataset [12]. The aggregated power signal
sampled at 60Hz from a family residence in the United States for a whole week is
considered. Every state transition of each appliance is manually labeled, provid-
ing the ground truth. The considered house has a two-phase power consumption,
where 904 transitions are recorded in phase A and 1578 in phase B. Each phase
has its own properties, e.g., phase B is more noisy than phase A. For that reason,
phase A and B are optimized and tested separately. For each method, the data is
passed through a median filter, as explained in Section 3.3.

Cross validation Performance is evaluated on 20% of the data, whereas the re-
maining 80% is used for training. Performance is reported averaged over 10 runs
(each with a random 20% test split). For training, 5-fold cross validation is used on
the other 80% to set the optimal parameter values. The overall set-up is summa-
rized in Figure 3.10. Note that for the division, the trace of an entire day is taken
as a whole unit.

Trained model parameters The model parameters and the ranges under con-
sideration are listed in Tables 3.1, 3.2, and 3.3 for the standard χ2 GOF method,
the voting χ2 GOF method and the cepstrum method respectively. As the power
frequency is 60 Hz, this means there is a sample every 0.02 seconds. Conse-
quently, when the window size n varies from 1 to 100, it covers a time window
from 0.02 seconds to 2 seconds. The total number of model parameter configu-
rations to be evaluated is very high: the choices listed in Table 3.1-3.3 amount to
50000 (= 100 ∗ 100 ∗ 5), 10000000 (= 100 ∗ 100 ∗ 100 ∗ 10), and 500000 (=

100 ∗ 100 ∗ 50) for the standard χ2 GOF method, the voting χ2 GOF method,
and the cepstrum method respectively. Since the approximate running time of the
algorithms is 214, 1.635, and 529 seconds, this results in an overall optimization
time of 124, 189.236, and 3.061 days respectively on a modern dual core machine.
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standard χ2 GOF

name range optimization time / configurations

window median filter m [1, 100] brute force 124 days / 50000

window event detection n [1, 100] SBO 5.9 hours / 100

confidence level α {90, 95,
97.5, 99,

99.9}

Table 3.1: On the left are the present model parameters g and range for the standard χ2

GOF event detection. On the right are the optimization time for the model parameters and
the number of parameter configurations needed to be checked.

voting χ2 GOF

name range optimization time / configurations

window median filter m [1, 100] brute force 189.2 days / 107

window event detection n [1, 100] SBO 45 hours / 100

window voting system w [1, 100]

voting threshold vthr w ∗ [0.1, 1]

Table 3.2: On the left are the present model parameters g and range for the voting χ2 GOF
event detection. On the right are the optimization time for the model parameters and the
number of parameter configurations needed to be checked.

This makes a brute-force optimization of the model parameters practically infeasi-
ble. Therefore, training is done using SBO, as explained in Section 3.6. To begin
with, K = 10 configurations for the model parameters are evaluated and used
to build the Kriging model. Based on this model, one new configuration for the
parameters is proposed and evaluated with the F -measure. The result is used to
update the Kriging model. This is done 90 times, resulting in 100 evaluated con-
figurations. Adding more iterations did not prove to be useful in practice, as the
F-measure did not significantly improve and the suggested parameter configura-
tions were all in the same neighbourhood. A good (but possibly local) optimum is
thus found.

Test use cases To find out if each method is robust against changes in the base
load of the power signal, the three methods are applied in three different use cases.
In all cases, the data is preprocessed with a median filter, and a base load of re-
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cepstrum

name range optimization time / configurations

window median filter m [1, 100] brute force 3.1 days / 500000

window event detection n [1, 100] SBO 14 hours / 100

threshold τ [1, 50]

Table 3.3: On the left are the present model parameters g with their respective abbreviation
and range for the cepstrum method. On the right are the optimization time for the model
parameters and the number of parameter configurations needed to be checked.

spectively 0W, 1500W, and 3000W is added to the power signal. In practice, such
high base load conditions arise when multiple high-power devices are operating
in the background, such as electrical heaters (that can easily consume 1500W).
Considering the results of these use cases, a conclusion can be made about each
method’s robustness.

Robustness of standard χ2 GOF method The results of the standard χ2 GOF
method when applied on the first three use cases are given in Figure 3.11, show-
ing the spread of the F-measure caused by running the 5-fold cross validation ten
times. When no offset is added, the performance for phase A is almost perfect
(F ≈ 0.98) and for phase B the performance is F ≈ 0.80. However, this changes
when the base load is increased by adding an offset to the signal. The F-measure
keeps dropping as the offset increases, indicating that the method is not robust
against higher base loads.

Robustness of voting χ2 GOF method The results of the voting χ2 GOF method
when applied on the first three use cases are given in Figure 3.11. As can be
seen, the voting χ2 GOF method gives comparable results to the standard χ2 GOF
method for phase A and B when no offset is added. When offsets are added to the
signal, the F-measure remains the same, indicating the robustness of the voting χ2

GOF method. This in contrast to the standard χ2 GOF method.

Robustness of cepstrum method The results of the cepstrum method when ap-
plied on the first three use cases can be found in Figure 3.11. The F-measure for
phase A when no offset is added to the base load, is the same as the previous
methods (F ≈ 0.98). For phase B, it is F ≈ 0.81, which is a bit higher than
the previous methods. When an offset is added to the base load, the F-measure
remains the same (F ≈ 0.81), just like the voting χ2 GOF method, indicating the
robustness of the cepstrum method.
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Figure 3.11: The F -measure when detecting events with the standard χ2 GOF, voting χ2

GOF, and cepstrum method.

Timing improvement due to SBO Comparing the running time of SBO and the
brute-force approach, it is found that for the standard χ2 GOF method it is reduced
from approximately 124 days to 5.9 hours, for the voting χ2 GOF method from
189.2 days to 45 hours, and for the cepstrum method from 3.1 days to 14 hours,
resulting in a speed up factor of approximately 500, 100000, and 5000 respectively.
This is caused by the fact that the number of evaluated parameter configurations
is reduced from 5000, 10000000, and 500000 (for the standard χ2 GOF method,
the voting χ2 GOF method, and the cepstrum method respectively) to 100 for
all methods while maintaining a good F -measure. This timing analysis assumes
that the method to which we compare (here, the brute-force approach) includes no
background information. Other smarter methods, like random sampling, will lead
to a smaller timing improvement due to SBO.

3.8 Conclusion
Two event detection methods have been proposed, namely (1) the voting χ2 GOF
method, and (2) the cepstrum method. Each method is robust against base load
differences compared to the standard χ2 GOF method. For example, when a base
load of 3000W (which corresponds to the power consumption of two typical elec-
trical heaters) is added to the power signal, the voting χ2 GOF method leads to a
performance increase of 7− 12% in terms of F -measure, while Cepstrum reaches
7− 15% larger F -measure values, in comparison to the standard χ2 GOF method.

In order to obtain optimal parameter configurations for these methods, a work-
flow using surrogate-based optimization is proposed. Timing results confirm that
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the parameter optimization process can be sped up: in our experiments there is
a speed up with a factor up to 100000 between the standard brute force and the
surrogate-based optimization.
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4
Appliance Identification

“You know my methods. Apply them.”
– Sherlock Holmes, The Sign of Four

De Baets, L., Develder, C., Deschrijver, D., & Dhaene, T. (2017). “Automated
classification of appliances using elliptical fourier descriptors”. In the proceed-
ings of the IEEE International Conference on Smart Grid Communications, Dres-
den (Germany), pp. 1–6.
The published method and results are presented in Sections 4.2, and 4.3. Subsection 4.3.5
discusses novel results.

De Baets, L., Ruyssinck, J., Develder, C., Dhaene, T., & Deschrijver, D. (2018).
“Appliance classification using VI trajectories and convolutional neural networks”.
Energy and Buildings, 158, 32-36.
The published method and results are presented in Sections 4.2, and 4.4. Subsection 4.4.4
discusses novel results.

De Baets, L., Jingkun, G., Develder, C., Dhaene, T., Berges, M., & Deschrijver, D.
(2017). “Handling imbalance in an extended PLAID”. In the proceedings of the
5th IFIP Conference on Sustainable Internet and ICT for Sustainability, Funchal
(Portugal), pp. 1–5.
The published method and results are presented in Sections 4.6.

Section 4.5 presents a novel method and the corresponding results.
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Figure 4.1: A schematic overview of the steps in NILM, situating this chapter.

4.1 Introduction

In the previous chapter, we detected events using a robust method. In the next
step, we extract features from steady state behaviour after the event and use them
to classify the appliances responsible for the events, see Figure 4.1.

The type of extracted features heavily depends on the sampling rate of the mea-
surements. When using low frequency data (6 1 Hz), the most common features
are the power levels and the on/off durations [1]. A drawback of this approach
is that only energy-intensive appliances can be detected. This can be alleviated
by performing fine-grained measurements at the cost of an increased data stor-
age rate and more complex data analytics, i.e., the voltage and current signals are
measured. From these signals, features like the harmonics [2] and the frequency
components [3] from the steady-state and transient behavior can be calculated.
More recently, the possibility to consider voltage-current (VI) trajectories has also
been considered [4–6]. Once the features are extracted, they can be fed into dif-
ferent classification methods, like support vector machines (SVM) [7], decision
trees [8], or nearest neighbors [9]. In order to distinguish appliances based on their
VI trajectories, powerful measuring devices must be used that are able to sample
high frequency data.

In this chapter, the problem of classifying appliances based on their VI tra-
jectories is addressed as an image recognition problem. Section 4.2 explains the
two possibilities to represent the trajectory as an image resulting in an pixelated
and weighted pixelated VI image. Section 4.3 describes a classical method for
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image recognition that: (1) finds the contours, (2) calculates the elliptic Fourier
descriptors of the contours, and (3) trains machine learning methods using these
elliptical Fourier descriptors. Section 4.4 solves the image recognition problem
using convolutional neural networks (CNNs). Such networks are often used for
classification tasks in computer vision, due to their excellent discriminative power
in classifying images [10]. It is shown that a CNN approach can also be valuable in
a NILM context to discriminate active appliances based on the weighted pixelated
VI image. Section 4.5 explains how the current consumption can be added as an
extra feature, or used as only feature.

Ideally, to test the proposed methods, a dataset having high frequency aggre-
gated and high frequency sub-metered v and i signals should be used. However,
when these methods were developed, no public dataset in existence included both.
For this reason, both the 2014 version of PLAID [11] and WHITED [12] are con-
sidered as datasets to benchmark the methods as they both contain high frequency
sub-metered data. This research on appliance classification was a first step towards
a more realistic NILM setting starting from the aggregated power measurements. It
was a very meaningful step, as typically appliances are turned on/off one at a time,
and the single appliance current (and thus VI trajectory) can be extracted from the
aggregated measurements by considering the difference in current before and after
the event. Later, we extended PLAID with high frequency aggregated data and the
results on this data confirms the practical feasibility of extracting measurements.
In addition, also other recent work [13] has validated this idea.

An additional problem for appliance classification is the imbalance present in
the available datasets: some appliance types are represented by more measure-
ments (the majority classes) than others (the minority classes), as can be seen in
Table 4.1. This can influence the performance achieved by a particular classifier
trained using this data. Section 4.6 investigates and handles this imbalance in
PLAID.

4.2 VI image

The VI trajectory of an appliance is obtained by plotting the voltage against the
current for a defined time period when the appliance is turned on and in steady
state. It is shown in [4] that manually extracted features from the VI trajectory
such as the enclosed area, slope of the middle segment, etc., can be used to clas-
sify appliances. However, extracting features from the VI trajectory proved not to
be straightforward.

As an alternative, the VI trajectory can be converted into a pixelated VI im-
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appliance type PLAID WHITED COOLL

AC 66 10

CFL 175 20

Fan 115 60 40

Hairdryer 156 60 80

ILB 114 60 80

Vacuum 38 40 140

Washing Machine 26 10

Router 20

Table 4.1: The number of instances for some selected appliances in the 2017 version of
PLAID, WHITED, and COOLL.

age (n × n matrix) by meshing the VI trajectory. In [5, 6], each cell of the mesh
is assigned a binary value that denotes whether or not it is traversed by the tra-
jectory, see Figure 4.2d. Based on this pixelated VI image, several features can
be extracted and used to classify different power loads [5]. Examples of features
are the number of continuums of occupied cells, and the binary value of the left
horizontal and central cell. In [6], the pixelated VI image is re-arranged into an
input vector that can be fed directly into a classifier, such as logistic regression or
random forests, to classify different appliances. Section 4.3 builds further upon
these methods by using the pixelated VI image to perform object recognition.

One limit of these features is the compression of the information contained in
the VI trajectory into a limited number of correlated summary statistics. As an
alternative, this chapter also proposes to represent the VI trajectory as a weighted
pixelated image. The necessary processing steps are:

1. Taking the voltage v and the current i when the appliance is active over a
certain number of times (the steady-state behaviour),

2. Normalizing such that [v, i] ∈ [−1, 1]2,

3. Creating the continuous VI trajectory,

4. Overlaying it with a n× n mesh,

5. Counting for each cell in the mesh the number of trajectory points it con-
tains,

6. Normalizing the values of the cells such that the maximum value of the cells
is one.
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Figure 4.2: The transformation from the continuous VI trajectory of a CFL (c) into the
pixelated (d) and weighted pixelated (e) VI image (right) for n = 15.

Figure 4.2 illustrates the transformation from the continuous VI trajectory into the
pixelated and weighted pixelated VI image. Note that instead of creating an image
of the VI trajectory, it is also possible to create an image of a current cycle.

4.3 Object recognition

Object recognition is a fundamental problem in computer vision and the underly-
ing concepts have been applied in multiple fields, such as distinguishing biological
species [14], optical character recognition [15], and face recognition [16]. In ob-
ject recognition, the contours of an object are identified from the image, character-
ized by elliptic Fourier descriptors and then classified with a label. In this section,
object recognition is used to recognize the contours of a VI trajectory in the pix-
elated image, see Subsection 4.3.1, and to describe them using elliptical Fourier
descriptors, see Subsection 4.3.2. Machine learning methods use these descrip-
tors to classify the objects, see Subsection 4.3.3. Subsection 4.3.4 benchmarks the
method on the 2014 version of PLAID consisting of high frequency submetered
data and Subsection 4.3.5 benchmarks it on the aggregated data of the 2018 version
of PLAID. The different steps are visualized in Figure 4.3.
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Figure 4.3: The classification workflow.

Figure 4.4: The lookup table consisting of sixteen different cases in which parts of the
contour are formed.

4.3.1 Contours

The contour of an object in an image is a closed curve that forms the boundary of
that object. The marching squares algorithm [17] can be used to find all contours in
an image. The basic idea is that every pixel of the image is examined and matched
with one of the sixteen cases shown in Figure 4.4. Each case creates at most two
edges. Similar results can be obtained using other contour algorithms [18].

Figure 4.5 shows the detected contours of the VI trajectory of a compact fluo-
rescent lamp. This example has three contours. To avoid that the trajectory touches
the border, extra pixel rows and columns are added to the sides. Otherwise this
would result in two separate outside contours instead of one. Only one contour
can be used to classify the appliances because not all appliances have the same
number of contours, while this is required for the use of machine learning meth-
ods. For that reason, the outer counter is chosen as this contour is a closed curve
that resembles the shape of a smoothed VI trajectory. In contrast to the original
VI trajectory, all points on the contour are separated uniformly, such that the Eu-
clidean distance between neighbouring points on the contour is the same.

4.3.2 Elliptic Fourier descriptors

Once the contour is identified, elliptical Fourier descriptors (EFD) are used to char-
acterize the corresponding appliance. A brief outline on how to calculate these
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Figure 4.5: The identification of the VI trajectory contours of a CFL. Only the outer contour
is used for object classification.

EFDs is given in this section and the reader is referred to [19, 20] for mathemati-
cal details.

EFDs define the contour as the sum of a certain number of ellipses (e) required
to mimic the shape. Each ellipse is formed by two sets of partial differential equa-
tions, each having sine and cosine terms. One set of equations is defined along the
x-axis and the other one along the y-axis:

x(t) = A0 +

e−1∑
i=1

Aicos(it) +B0 +

e−1∑
i=1

Bisin(it) (4.1)

y(t) = C0 +

e−1∑
i=1

Cicos(it) +D0 +

e−1∑
i=1

Disin(it) (4.2)

where A0, B0, C0, and D0 are the constants, Ai, Bi, Ci, and Di are the harmonic
coefficients of the ith order, and e represents the points sampled from the time axis
given by the period 2π. B0 and D0 are zero and can be omitted from the formula.
This is a transformation from the spatial to the frequency domain.

Each harmonic is thus described by four Fourier coefficients, two each for
the x- and y-axis, generating a total of 4 · e coefficients. The first harmonic de-
scribes the overall shape, location, size, and rotational orientation of the contour.
Additionally, consecutive harmonics can be included to capture more detailed in-
formation about the contour’s complexity. Figure 4.6 shows the reconstruction of
the contour when using up to e = 10 harmonics. The approximated contour bet-
ter resembles the original contour when more harmonics are included. Using 3 or
more EFDs, it is possible to recreate the contour without requiring prior expertise
on the important features to represent it.
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Figure 4.6: The original (orange) contour of the VI trajectory of a CFL together with the
approximated (blue) contour of the VI trajectory with increasing number of coefficients.
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4.3.3 Object classification

The object recognition results in a vector of size 4 · e. This vector can be used as
input for classification algorithms. This chapter focuses on three methods: logistic
regression, random forests, and a simple neural network.

Logistic Regression For a binary problem, logistic regression (LR) predicts the
probability that a sample belongs to the ‘1’ class versus the probability it belongs
to the ‘0’ class, given one or more independent input variables. For the multi-class
problem, a binary logistic regression is fitted for each label, creating a one-versus-
all solution. The error function for a binary problem with n samples is:

L = −C
n

n∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) +
m∑
i=1

w2
i (4.3)

where yi and ŷi are respectively the real and predicted output of sample i, and C is
a trained regularization parameter that controls the model complexity. When C is
small, the first sum in the error function is smaller, implying slower learning and
stronger regularization. The second sum consists of the trainable squared weights
wi, one for each input feature m. This sum forms an additional method to pre-
vent overfitting, called L2 regularization, whereby a solution with small weights is
preferred over a solution with large weights.

Random Forest A random forest (RF) is an ensemble technique that classifies
the data using a collection of decision trees. Each decision tree is trained on a sub-
set of the dataset that has the same size as the original training set, but samples are
drawn with replacement. At each node of the decision tree, a feature is selected
and the tree is traversed downward (either following left/right branch) by compar-
ing its value to a threshold. Given a new sample, the output of each decision tree
is averaged to obtain the final prediction.

The parameters to be trained, are the number of trees t and the maximal number
of features f that are considered in each node to decide upon what the optimal split
is. In our case, f is at most 4 · e, the total number of coefficients representing the
contour.

Neural Networks The architecture of a neural network (NN) consists of differ-
ent layers, see Figure 4.7. The first layer is the input layer containing as many
nodes as the dimension of a sample (here, 4 · e). This is followed by one (or
more) fully connected layers which are hidden. Each of these layers contains a
certain number of nodes that have learnable weights and biases, which define a
linear transformation of the node’s inputs, after which a non-linearity is optionally
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Figure 4.7: A neural network consisting of an input layer, two fully connected layers, and
an output layer.

performed. This non-linearity is often obtained by using a rectified linear unit that
replaces all negative values by zero. At the end, the output of the last fully con-
nected layer is fed into the output layer. Since the NN is used for classification, the
output layer has k nodes, with k equal to the number of classes. The values of the
output nodes are chosen between 0 and 1 and sum up to 1, which is achieved by
applying the softmax function. In other words, each node represents the probabil-
ity that the EFDs corresponds to a given label. The output node with the maximal
value represents the predicted class.

By providing training data, the weights of the network can be learned in such
a way that the predicted output is close to the real output. The learning rate α con-
trols the speed of learning and is a parameter that needs to be trained. A smaller
value reduces the risk of overfitting, at the cost of slower learning.

The parameters that are trained for a neural network are the learning rate α,
the number of dense hidden layers and the number of nodes in each layer. The last
parameters are symbolized by (h1, h2, ..., hn), where hi represents the number of
nodes in the hidden layer i, and n is the number of hidden layers.

4.3.4 Results on submetered data

Benchmark datasets To benchmark the proposed method on submetered data,
the 2014 version of PLAID is used, see Chapter 2 and [11].

Evaluation criteria The generalization properties of the model are validated us-
ing leave-one-house-out cross-validation as recommended in [6]. Each training
set contains data from 54 houses and the test set consists of data from the remain-
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Method Parameter Range

LR C [109, 107, 105, 103, 102, 1, 0.01]

NN α [10−5, 10−3, 1, 10]

[h1, ..., hn] [(10), (50), (100),

(10, 10), (50, 50), (100, 100)]

RF t [10, 20, 30, 50, 100, 200]

f [4 : 4 : 4 · e]

Table 4.2: The considered parameter ranges.

ing house. This is repeated 55 times. Using leave-one-house-out cross-validation
allows us to validate the generalization between different appliances of the same
type, as different houses, e.g., contain air conditioners but from different brands.

In order to train the parameters of the machine learning algorithms, grid search
is performed. The ranges of the trained parameters are shown in Table 4.2. In
order to avoid overfitting while training these parameters, 10-fold cross-validation
is performed. The 54 houses are partitioned into 10 equally sized subsets. Each
time, 9 of those subsets are used for training and the remaining one is used for
model validation. This process is repeated 10 times, with each of the 10 subsets
used exactly once as the validation set. The 10 results can then be averaged to
obtain a single prediction. The parameters resulting in the best validation score are
selected and used on the single test house that was left out in the beginning.

As proposed in [21], the F -measure is used to evaluate the classification per-
formance and as PLAID is imbalanced, this is done for each appliance type sepa-
rately.

Fi = 2 · precisioni · recalli
precisioni + recalli

, ∀i ∈ [1, . . . , a] (4.4)

precisioni =
TPi

TPi + FPi
(4.5)

recalli =
TPi

TPi + FNi
(4.6)

where TPi, TNi, FPi, and FNi are respectively the true positives, true negatives,
false positives, and false negatives for appliance type i. The number of different
appliance types is a. The F -measure for a perfect classifier is 1, whereas a random
classifier yields an FF -measure of 0.25. This measure provides more information
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about the confusion between instances. Its magnitude is mainly determined by the
number of correctly labelled samples, but tells us nothing about the instances that
are correctly labelled with a 0 (the true negatives). In other words, the precision
and recall only focus on the positive class [22]. The TPi, FPi and FNi per
appliance type i, are summed for each of 55 test set. In the end, the average of
all the F -measures is taken, leading to the so-called macro-average.

Fmacro =
1

a

a∑
i=1

Fi (4.7)

where a is the total number of different appliance types. In addition, the accuracy
metric is also reported.

Accuracy =
#correct predictions
#total predictions

(4.8)

The accuracy for a perfect classifier is 1, whereas a random classifier with k possi-
ble classes yields an expected accuracy of 1/k. This measure does not reveal any
insights about the confusion between instances, but captures the information about
all classes in one metric. Furthermore, the confusion matrix is plotted showing the
correct predictions (the diagonal) and the types of incorrect predictions (the rows
represent the predicted class and the columns the real class). This matrix gives a
clear view on which appliances are confused with each other. Both the accuracy
and the F -measure can be calculated from the confusion matrix.

Classification results In order to obtain the pixelated VI images from the 2014
version of PLAID, the voltage and current are collected over a time interval of 0.33
seconds, resulting in 10000 samples. In these images, the outer contour is detected
from which the EFDs are calculated using a varying number of harmonics e. These
components are used as input for three classification algorithms: logistic regres-
sion, random forests, and neural networks. Figure 4.8 shows the Fmacro-measure
and accuracy when using the different machine learning methods and a varying
number of EFDs. The EFDs are calculated from contours that were extracted from
16 × 16 sized pixelated VI images. Using three or more EFDs does not signifi-
canty impact the accuracy for logistic regression and random forests in terms of the
Fmacro-measure and accuracy. In the case of neural networks, the accuracy drops
when more than 4 EFDs are used.

The F -measure per appliance and confusion matrix when classifying the ap-
pliances using logistic regression, random forests, and neural networks using 3

EFDs, are shown in Figure 4.9. The values in the confusion matrix represent the
absolute number of detected appliances. The color represents per appliance (per
row) the relative number of detected appliances with respect to the total number
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Figure 4.8: The Fmacro and accuracy of the three classifiers using an increasing number of
EFDs e.

of that appliance. The Fmacro is respectively 60.78%, 66.20%, and 65.83%. For
all appliances except the washing machine (when classified by the random forest
or neural network), fan, air conditioner (AC), fridge, and heater, the F -measure
is higher than Fmacro. When investigating the confusion matrix in Figure 4.9, it
is clear that the washing machine, AC, and fridge are confused with the fan, the
fan and AC with the ILB, and the AC, and heater with the hairdryer. Common
electrical components can explain some of the confusion: the AC also has a fan,
the hairdryer and heater both contain a heating element, and the washing machine,
fridge, and fan all have a motor. For all three methods, the same appliance types
are difficult to classify. However, for random forest and neural network, the num-
ber of correctly classified appliances is higher. The low performing classes are
heater, fridge, and AC.

The results for a random forest are comparable to those reported in [6], where
16× 16 pixelated VI images were used as plain input for a random forest, see Fig-
ure 4.10. Originally, only the confusion matrix was reported. We added the Fmacro

for each appliance. The reported accuracy is 81.75%, and Fmacro = 70.41%. The
obtained accuracy by the random forest using 3 EFDs is 78.49% and Fmacro =

66.20%. For both classifiers, the same appliances cause confusion. A key advan-
tage of the reported approach over [6] is that the required storage for the features is
far less, albeit at a small additional cost for computing the contours. Only 12 val-
ues per sample need to be stored, compared to 256 values for the original 16× 16

pixelated image.

4.3.5 Results on aggregated data

In the previous subsection, the proposed method was benchmarked on high fre-
quency submetered data. The obtained appliance classification results were a first
step towards a more realistic NILM setting starting from the aggregated power
measurements. It was a very meaningful step, as typically appliances are turned
on/off one at a time, and the single appliance current (and thus VI trajectory) can
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Figure 4.9: The F -measure per appliance and confusion matrix for the 2014 version of
PLAID when using 3 EFDs and applying (a) logistic regression, (b) random forest, and
(c) neural networks. The number of samples per appliance type is mentioned between the
brackets. AC = air conditioning, CFL = compact fluorescent lamp, ILB = incandescent
light bulb
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Figure 4.10: The F -measure per appliance and confusion matrix for the PLAID dataset
when the random forest trained on the 16 × 16 pixelated VI images, is used [11]. The
number of samples per appliance type is mentioned between the brackets.

be extracted from the aggregated measurements by considering the difference in
current before and after the event. This subsection discusses that this was indeed
the correct assumption to take. First, it is explained how submetered current and
voltage signals can be obtained from the aggregated data. Then, the results of the
method on aggregated data are presented. It is investigated if submetered data is
necessary for training the algorithms or if aggregated data is sufficient. In addition,
it is also investigated what the importance of the image size is.

Obtaining submetered current and voltage signal In order to obtain the pix-
elated VI images from aggregated data, the current and voltage before and after
all events are selected. If the event is caused by the activation of an appliance and
only one appliance is activated, then the current i and voltage v of the activated
appliance is obtained by:

i = iafter − ibefore (4.9)

v = vafter (4.10)

where iafter is one current cycle when the appliance reaches steady state behavior
after the event (here, this is set to occur 1 second after the event), iafter is one
current cycle before the event, and vafter is one voltage cycle after the event. The
current cycles iafter and ibefore are aligned in such a way that the first point of the
corresponding voltage cycles vafter and vbefore is zero, see Figure 4.11. If the event
is caused by the deactivation of an appliance and only one appliance is deactivated,
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then the current i and voltage v of the deactivated appliance is obtained by:

i = ibefore − iafter (4.11)

v = vbefore (4.12)

From the obtained per-appliance/submetered i and v signals, the pixelated VI im-
age is created.

Benchmark datasets To benchmark the proposed method on aggregated data,
the data added to the 2018 version of PLAID is used, see Chapter 2. For this
dataset, it holds that only one appliance is turned on/off at a time. In addition, the
events are labelled making it straightforward to extract the per-appliance v and i.

Evaluation criteria Evaluating the results is done using the per-appliance F -
measure, Fmacro-measure, and the confusion matrix. To investigate if submetered
data is necessary for training the algorithm, two scenarios are considered: the train-
ing of the classification algorithms uses (1) the corresponding submetered data,
and (2) a random part of the aggregated data. For the first scenario, all the ag-
gregated data is used for testing and for the second one, 4-fold cross validation
is performed, ensuring us that every sample was used once for testing. This ap-
proach guarantees a fair comparison between the two approaches. The accuracy is
not mentioned as the same conclusion as when using the F -measure can be made
concerning the best method, the number of EFDs to use, and the most informative
image size.

Classification results In the obtained single appliance pixelated VI images with
varying image sizes, the outer contour is detected from which the EFDs are calcu-
lated using a varying number of harmonics e. These components are used as input
for three classification algorithms: logistic regression, random forests, and neural
networks (as before, see Figure 4.8). Figure 4.12 show the Fmacro of the three clas-
sifiers trained on submetered and aggregated data for different image sizes.

It is clear that training on the aggregated data leads to higher Fmacro than train-
ing on the submetered data. This can be explained intuitively by the fact that when
training uses aggregated data, the training data contains the same noise (caused by
other active appliances) as present in the test data. This is important for practical
reasons, as in a household, the users will try to avoid the labor of submetering
different appliances. Using three or more EFDs does not significanty impact the
accuracy for logistic regression and random forest in terms of the Fmacro-measure.
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Figure 4.11: The aggregated current and voltage when an appliance is (a) activated and
(c) deactivated, together with the current and voltage of the appliance causing the event (b)
and (d).
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Figure 4.12: The Fmacro of the three classifiers using an increasing number of EFDs e for
different image sizes and when trained on submetered data (left column) or aggregated data
(right column).

In the case of neural networks, no clear improvement can be seen in the Fmacro-
measure when using more EFDs, except when trained on aggregated data and us-
ing an image of size 30 × 30 to calculate the contours and corresponding EFDs.
The pixelated image size is altered between [16, 20, 30, 40, 50, 60]. As shown, in-
creasing the image size does not lead to an improvement in the Fmacro when using
EFDs as input for the classifiers. When trained on submetered data, the EFDs
calculated from the contours from the smallest image (16 × 16) lead to the best
Fmacro, and those from the largest (60×60) to the worst. The best Fmacro is obtained
when the random forest is trained on aggregated data and the 3 EFDs are calculated
form images of the size 30×30. Further research is needed to explain these results.

The F -measure per appliance and the confusion matrix when the number of
EFDs is 3, the image size is 30 × 30 and a random forest is trained using subme-
tered and aggregated data are shown in Figure 4.13. When using submetered data
for training (Figure 4.13 a)), the water kettle and coffeemaker are confused with
each other (both resistive heaters). Additionally, some other confusion exists: the
CFL is confused with the laptop charger (both non-linear loads) and the AC with
the soldering iron. When training uses aggregated data (Figure 4.13 b)), a lot of
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Figure 4.13: The F -measure per appliance and confusion matrix for the aggregated data
in the 2018 version of PLAID with e = 3 EFD components, the image size is 30 × 30
and the random forest is trained using (a) submetered, and (b) aggregated data. AC = air
conditioning, CFL = compact fluorescent lamp, ILB = incandescent light bulb
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Figure 4.14: A convolutional layer.

confusion is resolved. Now only the water kettle and the coffeemaker are confused
with each other, and the CFL with the laptop charger.

4.4 Convolutional neural networks

Instead of converting the VI trajectory into a pixelated image, it can also be con-
verted into a weighted pixelated image. A CNN can then be applied in order to
classify the samples. CNNs are a type of neural network (NN) that are often used in
computer vision because they are highly suitable for classifying images [10]. The
(C)NN takes training samples as input and classifies them by automatically extract-
ing informative features from the data. To this end, an architecture and training
procedure is needed, described in Subsection 4.4.1 and 4.4.2 respectively. Subsec-
tion 4.4.3 benchmarks this method on the 2014 version of PLAID and WHITED,
and Subsection 4.4.4 benchmarks it on the aggregated data added to the 2018 ver-
sion of PLAID.

4.4.1 Architecture

In Section 4.3.3, the architecture of a NN is explained. When using a n × n

weighted pixelated image as input, the input layer contains n2 nodes. The output
layer has k nodes with k equal to the number of classes.

To create a CNN from a NN, convolutional layers are added. These are placed
between the input and output layers as desired and are consequently hidden. The
main difference between a convolutional and fully connected layer is that each
node in a convolutional layer is connected to a small region of the input matrix
exploiting local correlation, see Figure 4.14. In each node, a convolution is per-
formed by adding each element of the input image to its local neighbours, weighted
by a matrix called a filter. After the convolutional layer, it is common to implement
a pooling layer to downsample the convolved matrix. This reduces the spatial size
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Figure 4.15: The architecture of the implemented CNN taking as input the VI image.

of the representation and the number of parameters, and hence also manages over-
fitting. This downsampling is achieved by sliding a d × d window over the input
(here, with d = 2) and each time outputting the largest element of the window.
Different flavor exist for pooling layers, e.g., a max pooling layer will maintain
the maximal value of the original window, and the min pooling layer the minimal
value.

The CNN implemented in this chapter has the following structure, see Fig-
ure 4.15: it takes as input the weighted pixelated VI image (a n × n matrix, with
n = 50), and has the following hidden layers: a convolutional layer with f filters
of size 5, a max pooling layer, another convolutional layer with f filters of size 5,
another max pooling layer, a fully connected layer with n2 nodes and an output
layer with k nodes. The number of filters f is set to 50. The number of output
nodes k is determined by the number of different appliances present in the dataset
(i.e., the number of classes). An analysis of alternative parameter settings for n
and f showcased no significant changes in the results. The activation function of
the hidden layers and output layer are respectively the rectified linear, and softmax
function.

4.4.2 Model training

Once the architecture is specified, a training procedure is initiated so that the CNN
learns to classify the different classes. To this end, multiple training examples
are needed. These are images X = (X1, X2, . . . , Xn) labelled with their corre-
sponding class t = (t1, t2, . . . , tn) where ti is a 1-of-k coding of the classes. The
aim of the training is to find weights and biases such that a cost function is min-
imized. Since the class labels are categorical, the cost function is defined as the
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cross-entropy function [23]:

L = −
n∑
i=1

k∑
j=1

ti,j log(yi,j) (4.13)

where the predicted outputs yi depend on all the weights and biases in the CNN.
The cost function L is minimized using gradient descent, and decreases as the
predicted output yi approximates the real output ti for all n training samples. As
such, the whole CNN learns its weights and biases in such a way that the filters are
able to represent spatial connections and features in the data. The reader is referred
to the online book ‘Neural Networks and Deep Learning’ [23] to learn more about
(C)NNs and their training.

4.4.3 Results on submetered data

Benchmark dataset The proposed method is benchmarked on the 2014 version
of PLAID (see Chapter 2, and [11]) and WHITED [12]. WHITED [12] is a pub-
lic dataset including submetered v and i measurements sampled at 44kHz for 46
different appliance types. For each appliance type, 1 to 9 different appliances are
available. For each appliance, 10 start-up events are measured, resulting in a total
of 1100 measurements.

Evaluation criteria As done in Section 4.3.4, the generalization properties of
the classifier are validated using leave-one-house-out cross-validation, as recom-
mended in [6]. For the PLAID dataset, this can be done straightforwardly as the
data is divided per house (55 houses in total). In the WHITED dataset, the an-
notation of measurement locations is not available. Houses are created artificially
by assigning each appliance of each appliance type randomly to one house. The
total number of houses is set at 9, which corresponds to the maximum number of
appliances per appliance type. As a consequence, appliance types with only one
appliance are left out. The final dataset for the experiment contains 22 appliance
types.

Again, the Fmacro, accuracy, and confusion matrix are used to express the per-
formance of the classifier.

Classification results on PLAID In order to obtain the weighted pixelated VI
images for the 2014 version of PLAID, the voltage and current are measured over
20 cycles of the voltage signal, resulting in 10000 samples. In PLAID, there are
K = 11 appliance types. The F -measure per appliance and the confusion matrix
for PLAID is shown in Figure 4.16. The Fmacro = 77.60%. For all appliances
except the washing machine, fan, fridge and air conditioner (AC), the F -measure
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Figure 4.16: The F -measure per appliance, and confusion matrix for the 2014 version
of PLAID when the CNN for n = 50 and f = 50 is used. The number of samples per
appliance type is mentioned between the brackets. AC = air conditioning, CFL = compact
fluorescent lamp, ILB = incandescent light bulb

is higher than Fmacro. When investigating the confusion matrix, it is clear that the
lower F -measure obtained for the washing machine, fan, fridge and AC is caused
by confusion among them. Common electrical components can explain this phe-
nomenon: the AC also has a fan, and both the washing machine and fridge have a
motor. The accuracy for the 2014 version of PLAID is 83.24%.

In [24], some F -measure results on the 2014 version of PLAID are given,
however, the train-test split approach is not done in a leave-one-house-out manner,
making comparison pointless. In Figure 4.10, the results reported in [6] are shown
where 16 × 16 pixelated VI images are used as plain input for a random forest.
Originally, only the confusion matrix was reported. We added the Fmacro for each
appliance. The reported accuracy (81.75%) and Fmacro (70.41%) are lower than
those achieved by using the method presented in this section which are respectively
83.24% and 77.60%. Also the accuracy (78.49%) and Fmacro (66.20%) obtained
by the previous presented method, are lower. This gain in performance can be
explained by the fact that the new classifier is more capable of classifying heaters,
as can be seen by comparing their respective confusion matrices.

Classification results on WHITED In order to obtain the weighted pixelated
VI images for the WHITED dataset, the voltage and current are measured over
a time interval of 20 cycles of the voltage signal, resulting in 17600 samples. In
WHITED, there areK = 22 appliance types. The F -measure per appliance for the
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Figure 4.17: The F -measure per appliance, and confusion matrix for WHITED when the
CNN for n = 50 and f = 50 is used. The number of samples per appliance type is
mentioned between the brackets.

WHITED dataset is shown in Figure 4.17. The Fmacro equals 75.46%. For the sol-
dering iron, flat iron, and compact fluorescent lamp (CFL), the method performs
poorly. When investigating the confusion matrix, it is clear that the soldering iron
is confused with the light bulb and the shoe warmers (all having resistive heat-
ing and more measurements of the light bulbs are present), the flat iron with the
shredder (no common electrical components but both only have 20 examples) and
the CFL mainly with the charger (both having an element limiting the voltage and
more measurements of the chargers are present). This confusion caused by the
FNs explains the low F -measure. The FPs for these classes are quite low.

In [24], some F -measure results on the WHITED dataset are given, however
the train-test split approach is not done in a leave-one-house-out manner, making
comparison pointless.

4.4.4 Results on aggregated data

In the previous subsection, the proposed method was benchmarked on high fre-
quency submetered data. Just like the results of Subsection 4.3.4, the obtained ap-
pliance classification results were a first, meaningful step towards a more realistic
NILM setting starting from the aggregated power measurements. This subsection,
like Subsection 4.3.5, discusses the results obtained in this realistic setting. It is
investigated if submetered data is necessary for training the algorithms or if aggre-
gated data is sufficient. In addition, it is also investigated what the importance of
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the image size is.

Benchmark datasets To benchmark the proposed method on aggregated data,
the data added to the 2018 version of PLAID is used, see Chapter 2. For this
dataset, it holds that only one appliance is turned on/off at a time. In addition, the
events are labelled making it straightforward to extract the per-appliance v and i,
as explained in Subsection 4.3.5.

Evaluation criteria Evaluating the results is done using the per-appliance F -
measure, Fmacro-measure, and the confusion matrix. As for the approach in Sub-
section 4.3.5, two scenarios are considered to investigate if submetered data is
necessary for training: the training of the classification algorithms uses (1) the cor-
responding submetered data, and (2) a random part of the aggregated data. For the
first scenario, all the aggregated data is used for testing and for the second one, 4-
fold cross validation is performed, ensuring us that every sample was used once for
testing. This approach guarantees a fair comparison between the two approaches.
This approach guarantees a fair comparison between the two approaches. The ac-
curacy is not mentioned as the same conclusion as when using the F -measure can
be made.

Classification results The pixelated VI images from the aggregated data added
to the 2018 version of PLAID are obtained in the same wasy as explained in Sub-
section 4.3.5. The Fmacro for varying image sizes, and using aggregated and sub-
metered data for training is shown in Figure 4.18. Training on the aggregated data
leads to higher performance than when training is done on submetered data, just
like was the case when EFDs are used as input (see Section 4.3). This can be ex-
plained intuitively by the fact that when training uses aggregated data, the training
data contains the same noise (caused by other active appliances) as present in the
test data. This is important for practical reasons, as in a household, the users will
try to avoid the labor of submetering different appliances. Using image sizes larger
than 30× 30 does not considerably improve the Fmacro-measure.

The F -measure per appliance and the confusion matrix when the image size
is 30 × 30, and using submetered and aggregated data for training, are shown in
Figure 4.19. When using aggregated data for training (Figure 4.19b), only the
the water kettle and the coffeemaker are confused with each other (both resistive
heaters) in respectively 45.31% and 31.90% of the samples. When using subme-
tered data (Figure 4.19a)), 46.55% of the coffeemaker samples are confused with
the water kettle and 13.28% the other way around. Additionally, also the ILB
and AC are confused sometimes with the coffeemaker (respectively 15.71% and
9.65%). Further research is necessary to explain why there is an asymmetry in the
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Figure 4.18: The Fmacro for the aggregated data of the 2018 version of PLAID when CNN
for f = 50 and varying image size n is used. The training is done using submetered or
aggregated data.

confusion and why the confusion is less present when using aggregated data for
training than when using submetered data.

When using submetered data for training, the Fmacro of this method using
CNNs (80.38%) is significantly higher than the one obtained by the previous
method based on EFDs (72.47%). The method using CNNs is better in classi-
fying the AC and there is less confusion between the water kettle and the coffee
maker. When using aggregated data for training, the Fmacro of this method using
CNNs (87.95%) is slightly higher than the one obtained by the previous method
based on EFDs (85.31%). Both the method using CNNs and based on EFDs, con-
fuse the water kettle and coffee maker with each other, but the method using CNNs
is better in classifying the CFL.

4.5 Current as feature

The two methods presented before do not include any information concerning the
current peaks as both the binary and pixelated VI image are normalized. Con-
sequently, two appliance types having the same electrical components will be
classified as the same nevertheless there is a difference in the absolute value of
the current peak or absolute power consumption. The approach in this section
adds this information as an additional input feature for the previous methods, see
Subsection 4.5.1. Another possibility is presented in Subsection 4.5.2, where the
current is used as only feature. The results on aggregated data are presented in
Subsection 4.5.3. No results are shown on submetered data as the submetered
data exhibited calibration problems, comprising the maximal (peak) values of the
measurements, see Chapter 2.
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Figure 4.19: The F -measure per appliance and confusion matrix for the aggregated data
in the 2018 version of PLAID when the CNN for n = 30 and f = 50 is used, and is trained
using (a) submetered, and (b) aggregated data . The number of samples per appliance type
is mentioned between the brackets. AC = air conditioning, CFL = compact fluorescent
lamp, ILB = incandescent light bulb



4-28 CHAPTER 4

Figure 4.20: The architecture of the implemented CNN taking as input the VI image and the
current consumption.

4.5.1 Current peak as extra feature

The current peak is the maximal value in a cycle of the current signal once the
appliance reaches steady state behaviour, imax.

Object recognition For the object recognition method presented in Section 4.3,
four features per EFD coefficient are used. Adding the current consumption as an
extra feature, can be done as simple as adding imax to the vector of 4 · e features
(for e EFD components).

Convolutional neural networks For the convolutional neural network, the input
is represented as an n × n image. Adding a single value (imax) to this input is not
meaningful as the CNN assumes that neighboring values are correlated. Instead,
an extra layer is added between the last hidden and output layer taking as input the
output of the last hidden layer and imax, see Figure 4.20.

4.5.2 Current as only feature

Instead of using the current peak values as an extra feature, it can also be used
as only feature. Then one cycle of the current signal when the appliance reaches
steady state behaviour, is used as input. Note, that this current cycle is aligned with
the voltage cycle in such a way that the first point of voltage cycle is zero. This
is necessary as otherwise the information concerning a possible phase shift is lost.
Every sample of the cycle is seen as a separate feature. So when normalization is
performed, every feature is scaled separately. If the sampling frequency is 30 kHz
and the power line frequency is 50Hz, then the number of samples/features in a
cycle is 500. The cycles are used as input for the same classifiers presented in
Section 4.3: logistic regression, random forest, and neural network with two fully
connected layers and an output layer having as non-linearity function respectively



APPLIANCE IDENTIFICATION 4-29

the rectified linear unit and softmax function. Additional parameters are optimized,
see Table 4.2.

4.5.3 Results on aggregated data

Benchmark dataset To benchmark the proposed method on aggregated data,
the data added to the 2018 version of PLAID is used, see Chapter 2.

Evaluation metric Evaluating the results is done using the per-appliance F -
measure, Fmacro-measure, and the confusion matrix. In contrast to previous sec-
tions, only one scenario is considered: the training of the classification algorithms
uses a random part of the aggregated data. 4-fold cross validation is performed, en-
suring us that every sample was used once for testing. As previous sections (Sub-
section 4.3.5 and 4.4.4) made clear that training using aggregated data is better, the
scenario where the training uses the corresponding submetered data is omitted.

Classification results The results when the current consumption is used as extra
feature is shown in Figure 4.21. Only the result for an image size of 30×30 is pre-
sented as previous sections shows that this image size leads to the best result. Also,
for the object recognition method using the EFDs as features, only the result for
the random forest is presented as Section 4.3 shows this method achieves the best
result. The Fmacro obtained by when using the current as an extra feature (94.21%
for the object recognition method and 88.22% for the CNN) is higher when the cur-
rent is not used as extra feature (respectively 85.31% and 87.95%). The increase in
the Fmacro-measure is much higher for the object recognition method than for the
CNN: the random forest is more capable than the CNN to extract extra information
from imax. For the object recognition almost no confusion exists. For the CNN, it
is again the case that the water kettle and the coffeemaker are confused with each
other.

The result when the current consumption is used as only feature is shown in
Figure 4.22. An Fmacro of 96.69% is obtained. This is the highest Fmacro obtained
when compared to the previous presented method. Only the AC is confused with
the fan, which is stems from the fact that the AC contains a fan.
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Figure 4.21: The results for the aggregated data of the 2018 version of PLAID for (a) the
random forest using 3 EFDs (calculated from an image of size 30 × 30) and imax as input,
and (b) the CNN using f = 50 and as input an image of size 30× 30 and imax.
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Figure 4.22: The results for the aggregated data of the 2018 version of PLAID for when
current cycles of steady state behaviour are used as input for a random forest.
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4.6 Handling imbalance

When a dataset is imbalanced, there are minority and majority appliance types,
with the first represented by more samples. Due to the class imbalance, it is pos-
sible that the classifier focuses too strongly on the majority types during training,
thereby ignoring the minority types. Subsection 4.6.1 gives an overview of rel-
evant previous research. Next two types of methods to deal with an imbalanced
dataset are examined: resampling the dataset (Subsection 4.6.2 ) and reweighing
the error function (Subsection 4.6.3). The results on the 2017 version of PLAID
are presented in Subsection 4.6.4 when using the pixelated VI image as input for
multiple classifiers. It is important to note that these methods influence the train
phase of the machine learning methods, while leaving the test phase intact, i.e.,
the approaches respectively modify the train set and the error function used for
training the classifier’s parameters.

4.6.1 Related work

In the NILM literature, no previous work can be found for handling the appliance
type imbalance. However, research exists that deals with the imbalance caused by
the difference in active and idle time of appliances. This occurs in NILM datasets
containing consumption patterns over time. In [25], which determines how much
energy a specific appliance consumes at any given moment using regression, the
imbalance caused by the difference in activation and idle time of appliances is
present. To handle it, they propose the usage of the target-weighted root mean
squared error as an alternative error metric for optimizing the regression. In [26]
where temporal sequence classification algorithms are researched, the same im-
balance is counteracted with under-sampling: reducing the number of majority
samples (the idle samples) so that it equals the number of minority samples (the
active samples). It is qualitatively mentioned that this approach is preferred to
over-sampling (increasing the number of samples of the minority till it equals the
number of the majority) or leaving the data as-is, however no quantitative compar-
ison of the results is shown.

Although no literature can be found where these methods are applied on NILM
data to solve the appliance type imbalance, these methods are well investigated for
classical machine learning methods. These methods can change the distribution
in the dataset by resampling the classes. Some methods oversample the dataset,
like in [27] where they want to predict age and gender from images. Simple over-
sampling (increasing the number of samples in the minority classes by duplicating
samples) is effective, but one should be aware of overfitting [28]. To avoid over-
fitting, more advanced oversampling can be used, like SMOTE [28] where new
samples are synthesized. For this latter, one could also use a smart home sim-
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ulator like SmartSim [29] or AMBAL [30]. However, it must be mentioned that
these are two frameworks for low frequency data concerning consumption patterns
over time and not for high frequency data concerning the activation of appliances.
Therefore, these simulators can not be used to generate PLAID-like data. An-
other possibility to change the distribution in the dataset is to undersample the
dataset as in [31] where samples of the majority class are randomly deleted. In
the case of [32] where a decision tree learner is used, undersampling is preferred
over oversampling. But in [33] where convolutional neural networks are used for
classifying imbalanced classes, it is found that oversampling performs better than
undersampling. In [34], the undersampling is done multiple times and an ensemble
of classifiers is trained upon them. Another way to handle imbalance is to change
the classifier so that different misclassification errors incur different penalties [35].
In this chapter over- and under-sampling, synthesizing samples, balanced bagging,
and altering the weight function will be researched in a NILM context.

4.6.2 Modifying the dataset

Changing the dataset so that it becomes balanced can be done in several ways:

• Over-sampling: adjust the distribution of the dataset by replicating samples
of the minority types till the number of the majority types is reached [36].
For PLAID, this results in a train set of 2673 samples on average. This is
a significant increase when compared to the size of the normal train set of
1769 samples.

• Under-sampling: adjust the distribution of the dataset by reducing the num-
ber of samples in the majority types to the number of the minority types [36].
For PLAID, this results in a train set of 803 samples on average. This is a
significant decrease when compared to the size of the normal train set of
1769 samples.

• Synthesizing samples: instead of replicating samples from the minority
types, artificial samples are created. In this chapter, the synthetic minority
oversampling technique (SMOTE) [28] is used, where the artificial samples
are formed by interpolating two neighbouring samples of a minority type.
For example, having samples A and B with n features, then the new inter-
polated sample C is constructed by:

C[i] = A[i] + gap× diff,∀i ∈ [1, n]

diff = B[i]−A[i]
gap = random number between 0 and 1
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The formula can be easily extended for multi-dimensional features by ap-
plying the formula in each dimension. For PLAID, this procedure results in
a train set of 2673 samples on average, just as in the case of over-sampling.

• Balanced bootstrapping (BB): is based on a probabilistic approach allow-
ing for identification of dataset characteristics (such as dimensionality, spar-
sity, etc.) that exacerbate the problem [34]. It goes as follows:

1. randomly select instances from the train set with replacement (boot-
strap the dataset). Do this multiple times, each resulting dataset is
called a bootstrap.

2. under-sample each bootstrap, like explained above.

3. train a classifier on each bootstrap.

4. when classifying the test instances, the majority vote of the classifica-
tion of all separate classifiers is taken as outcome.

For this dataset 10 bootstraps are created, each with size equal to the original
train set, but now with the difference that some samples can be present more
than once.

4.6.3 Adaptation of the classifier

The error function of the classifier can be changed such that misclassification of
the minority types is penalized more strongly than misclassification of the ma-
jority types. One way to achieve this, is by assigning a weight to each instance.
In this chapter, weights wi are defined per appliance type i corresponding to the
imbalance (minority types will get a higher weight) using the following equation:

wi =
n

a×# samples of type i
, ∀i ∈ [1, . . . , a]

where n is the number of samples, and a the number of appliance types. This
definition is standard in the Python’s sklearn library and is based on [37]. It must
be noted that this approach is only valid for classifiers whose error function is
dependent on hyperparameters that can be tuned in order to minimize the error. For
example, if the k-nearest-neighbors classifier is used with k = 5, giving weights
to the instances does not impact the outcome as the error function is not dependent
on any hyperparameter.

4.6.4 Results

Benchmark dataset For the discussion concerning methods handling imbal-
anced datasets, the 2017 version of PLAID is used, see Chapter 2 and [11]. The



APPLIANCE IDENTIFICATION 4-35

16× 16 pixelated VI image is used as a feature because this was the most promis-
ing feature extracted from the study performed on PLAID [6]. Multiple classi-
fiers are used: k-nearest-neighbors (kNN), Gaussian naive Bayes (GNB), logis-
tic regression classifier (LR), support vector machines (SVM), linear discriminant
analysis (LDA), decision tree (dTree), random forest (RF), and adaptive boosting
(adaBoost). These classifiers were also applied to PLAID in the previous study on
PLAID [6].

Evaluation criteria Like done in Section 4.3.3 and 4.4.3, the generalization
properties of the classifier are validated using leave-one-house-out cross-validation,
as recommended in [6]. Also, the Fmacro is used to express the performance of the
classifier and not the accuracy, as the accuracy should be used with caution in the
scenario where some appliances are rarely used [21].

Handling imbalance Table 4.3 shows the relative gain/loss for the different
methods when comparing them to the standard approach, when the imbalance
is not counteracted. Three things can be noted from the results. First, applying
over-, and under-sampling, smote or adapting the error function, does not lead to
an improved Fmacro-measure when applied to PLAID if the pixelated VI image is
used as input for the previously mentioned classifiers. Second, the improvement
is significant for balanced bootstrapping when used with adaBoost. However, in
this case, the standard performance is well below the Fmacro result of a RF (Fmacro

= 68.62%). Even when handling data imbalance, none of these classifiers outper-
form the RF method when the pixelated VI image is used as input. Third, when
considering the best classifiers kNN, RF, and SVM, none of the methods handling
the data imbalance lead to a significant improvement when the pixelated VI image
is used as input. This shows that kNN, RF, and SVM are quite robust in learning
the appliances types, even when the data is imbalanced. The confusion matrix con-
structed from the results when RF is applied on the pixelated VI image of PLAID
is shown in Figure 4.23. The values in the matrix represent the absolute number
of appliance instances detected. The color represents per appliance (per row) the
relative number of detected appliances with respect to the total number of that ap-
pliance. The air conditioner (AC), fan, and fridge get confused with each other,
as well as the heater and the hairdryer. This is due to the fact that the intermixed
appliances contain similar electrical components: the AC and fridge are mostly
compressors, and both the heater and hairdryer consist of a heating element.

Reduce redundancy From the results in Table 4.3, one can also conclude that
the dataset contains redundancy and more measurements were performed than
necessary as synthesizing and over-sampling do not offer a performance increase
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method standard over under smote BB weighted

kNN 66.39 −1.00 −5.09 −0.47 −2.54 +0.00

GNB 46.65 +0.82 +1.64 +0.69 −5.96 +0.00

LR 59.27 −2.54 −4.37 −2.92 +5.84 +0.35

LDA 63.23 +0.30 −3.46 −0.16 −2.47 +0.00

dTree 58.89 +2.50 −1.16 −0.37 +4.82 +0.14

RF 68.62 −2.88 −2.73 −1.1 −0.44 −1.26
SVM 66.89 −3.51 −2.78 −4.04 −4.43 −3.39
adaBoost 27.97 −2.83 −1.62 −3.32 +36.04 +0.00

Table 4.3: The gain/loss in the Fmacro-measure (in %) when handling data imbalance com-
pared to the case when using the standard classifier.
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Figure 4.23: The F -measure per appliance and confusion matrix for the 2014 version of
PLAID when the RF is used. The number of samples per appliance type is mentioned
between the brackets.
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method standard over under smote BB weighted

kNN 63.35 +0.30 −9.11 +1.44 −5.22 +0.00

GNB 52.42 −1.03 +0.23 −0.71 −6.39 +0.00

LR 59.26 −0.11 −3.35 −0.80 +1.65 +0.43

LDA 60.32 −0.51 −3.92 −0.85 −6.40 +0.00

dTree 56.52 −3.66 −10.06 −3.55 +1.85 −0.63
RF 63.08 +0.08 −7.68 −1.4 −0.77 +0.14

SVM 63.01 −0.59 −5.20 −2.10 −1.73 −2.87
adaBoost 19.62 +2.96 +2.19 +8.96 +25.95 +0.00

Table 4.4: The gain/loss in the Fmacro-measure (in %) when handling data imbalance com-
pared to the case when using the standard classifier using less training data.

when the pixelated VI image is used as input. To reinforce this statement, the ex-
periments are repeated in the same manner but each training set is reduced such
that each appliance is measured only once in each house (so some data remained
unused). It is important to note that the test set remained the same. Based on the
results in Table 4.4, similar conclusions can be made as above, and the standard
Fmacro-measure for each classifier is about the same as when trained with more
data. This corroborates the statement that for appliance identification, more mea-
surements than necessary are present in the PLAID dataset when the pixelated VI
image is used as input.

4.7 Conclusion

In this chapter, the steady state behaviour of appliances after the events were char-
acterized using pixelated or weighted pixelated VI images. These were in turn
used for classifying the appliance responsible for the event.

The first proposed method uses the contours of the pixelated VI image to char-
acterize appliances in NILM. From these contours, the elliptic Fourier descriptors
are calculated and used as input for logistic regression, random forests, and neural
networks. The results show that twelve components per sample (i.e., three times
four harmonic coefficients) as input for a random forest are sufficient to obtain
a prediction accuracy of 78.49% and Fmacro = 66.20% for the 2014 version of
PLAID, which is comparable to the results reported in [6]. This leads to signifi-
cant (> 20×) storage savings when compared to the original VI image comprising
16 × 16 = 256 values. If testing is performed on the aggregated data of the 2018
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version of PLAID, the Fmacro = 72.47% and Fmacro = 85.31% when training uses
respectively submetered and aggregated data. High frequency submetered data is
thus not necessary for training.

The second proposed method uses the weighted pixelated images as input for
a deep learning method: a CNN that can automatically extract relevant spatial
features from the VI trajectories. The method is applied on the 2014 version of
PLAID and WHITED resulting in a Fmacro-measure of respectively 77.60% and
75.46%. The F -measure per appliance shows that the method gives good results
for a large number of appliances. The confusion between appliances can be ex-
plained by common electrical components or the small number of appliance in-
stances. This method outperforms the previous method and [6] for PLAID, the
gain in performance is obtained mainly by the ability to accurately classify the
heaters. If testing is performed on the aggregated data of the 2018 version of
PLAID, the Fmacro = 80.38% and Fmacro = 87.95% when training uses respec-
tively submetered and aggregated data. Again, this method outperforms the previ-
ous method and the same conclusion concerning the redundancy of high frequency
submetered data can be made.

Adding the current peak values as an extra feature to the input of the previous
methods increases the Fmacro. However, the highest Fmacro (96.69% for the 2018
version of PLAID) is obtained when current cycles of steady state behaviour are
used as input for a random forest.

Furthermore, it was shown that applying methods handling imbalance on PLAID
like over-, and under-sampling, synthesizing samples, balanced bootstrapping and
adjusting the error function do not lead to any improvements in terms of the Fmacro-
measure in the scenario where the right classifier is used and when the pixelated
VI image is used as input. If a sub-optimal choice of classifier is made, balanced
bootstrapping can increase performance. The results also indicate that for appli-
ance identification purposes, more measurements than necessary are present in
PLAID. This was confirmed by the fact that results when training with less data
(only one measurement per appliance type in a house) are comparable when all the
pixelated VI images are used as input.
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5
Unidentified Appliance Detection

“How often have I said to you that when you have eliminated the impos-
sible, whatever remains, however improbable, must be the truth?”

– Sherlock Holmes, The Adventure of the Copper Beeches

De Baets, L., Develder, C., Dhaene, T., & Deschrijver, D. “Detection of unidenti-
fied appliances in non-intrusive load monitoring using siamese neural networks”.
submitted to International Journal of Electrical Power & Energy Systems.

5.1 Introduction
The previous chapter proposed supervised methods to classify appliances. Several
other supervised and unsupervised methods have been developed to recognise the
appliances and to compute the total power consumption [1–3]. However, to our
knowledge, nearly all classification algorithms described in the literature are un-
able to handle unidentified appliances. These will be assigned a label and power
consumption that corresponds to the appliance having the most similar features.
This chapter suggest a method that is capable of classifying and detecting uniden-
tified appliances, which are labeled as ‘unidentified’, see Figure 5.1. When such
an appliance is detected, the user can be queried for information about the appli-
ance (i.e., the class label). In this chapter, appliances are characterised by their
pixelated VI image [4, 5], although other representations can also be considered.
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Figure 5.1: A schematic overview of the steps in NILM, situating this chapter.

Figure 5.2: The work flow of the proposed method that is able to detect unidentified appli-
ances.

The proposed method has a training and a test phase, as shown in Figure 5.2.
In the training phase, a new, lower dimensional feature space is computed from
the pixelated VI images by training a siamese neural network. The pixelated VI
images must be paired and labelled respectively as must- or cannot-links, depend-
ing on if the images belong to the same appliance type or not. The exact appliance
type does not matter. On the transformed input, DBSCAN is performed to group
samples with similar feature vectors in the new space. DBSCAN is a state-of-the-
art clustering method that does not require prior knowledge about the number of
clusters and that is capable of detecting outliers. In the test phase, a pixelated VI
image is transformed to the new feature space. If this point does not belong to a
cluster, it is labelled as ‘unidentified’. If it belongs to a clusters, and labels are
available, then it gets the label of the cluster.

The outline of the chapter is as follows: Section 5.2 describes the related work
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concerning NILM classification algorithms. Section 5.3 explains the concept of
siamese neural networks and how they can be used to learn a new feature space.
Section 5.4 explains the DBSCAN clustering algorithm. Section 5.5 benchmarks
the quality of the clustering, the capability of detecting unidentified appliances
and the generalization property of the method. Finally, Section 5.6 concludes this
chapter.

5.2 Related work
After measuring the aggregated power consumption and detecting the events using
a robust statistical test [6] (see Chapter 3), the events must be characterized, see
Figure 5.1. The proposed method describes the transitions of the signals using
pixelated VI images that are explained in Section 4.2 of Chapter 4. The next
paragraph describes how the state-of-the-art methods that recognize appliances are
incapable to cope with unseen appliances. The proposed method poses a solution
to detect these unidentified appliances. This solution includes clustering. The last
paragraph discusses how clustering is already used in NILM, their low accuracy
and their lack of exploiting their ability of detecting unidentified appliances.

Recognizing appliances and monitoring power consumption Once the fea-
tures are extracted, they can be fed into different classification methods, like sup-
port vector machines (SVM) [7, 8], neural networks [9], decision trees [10], or
nearest neighbors [11], see Chapter 4. For these methods, labelled training data
is necessary. In literature, three groups of unsupervised methods are proposed to
circumvent this issue [12]:

• In the first group, unlabelled aggregated training data from the same house
is required to build appliance models. Like in [13], where individual appli-
ances are iteratively separated from an aggregate load by tuning prior models
of general appliance instances to specific appliance instances using only sig-
natures extracted from the aggregate load. The more training data available,
the better the results. However, this approach has not yet been shown to be
generalizable across different houses.

• In the second group, submetered data is collected in some houses to build
models for appliance classification, which are validated in other (unknown/pre-
viously unseen) houses. Like in [14], where a neural network (NN) is con-
structed for each submetered appliance and used to disaggregate the total
power consumption of an unseen house or like in [15], where classifiers are
trained on the submetered data of 55 houses and used for classifying data
from another house. These methods do not work for unidentified appliances,
and require a large number of submetered houses.
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• In the third group, no training at all is necessary. In [12], power disaggrega-
tion is done using graph signal processing performing adaptive thresholding,
signal clustering, and pattern matching. In [16], non-parametric factorial
hidden Markov models are used to disaggregate per-load power consump-
tions from the aggregated signal with minimum prerequisite. The methods
in this third group only perform power disaggregation, no appliance names
are present.

The majority of the NILM approaches, supervised or unsupervised, are sensi-
tive to appliance changes in the house, and thus require regular re-training. In this
chapter, the focus lies on creating a classification algorithm that is able to detect
unidentified appliances and is thus resilient against appliance changes in the house.
If an unidentified appliance is detected, labeling and retraining is requested. The
proposed method fits partly in the second group of the unsupervised methods, as
training relies on known houses where submetering is done for building a new ap-
pliance feature space and where this space is used to classify appliances in other
houses. Moreover, for the proposed method it suffices to know if two appliances
belong to the same class or not, independently of their exact label.

Clustering In order to detect unidentified appliances, clustering must be per-
formed. The idea is that samples originating from the same appliances will appear
as clusters in the feature space and samples originating from unidentified appli-
ances will appear as outliers indicating the need to create a new cluster. The use
of clustering methods has previously been explored in NILM. When Hart [17]
described the different steps of the NILM process, a simple clustering algorithm
was mentioned where the appliances are grouped using the active - reactive power
(P -Q) plane as feature representation space. When an event occurs, the change
in the electricity signal is mapped to the plane and a cluster algorithm determines
if this two dimensional vector belongs to an existing cluster. If the clusters are
labeled, assigning a sample to a cluster leads to classification. Despite its sim-
plicity, this method is incapable of recognizing appliances with overlapping P and
Q consumption. In [18], the P -Q plane is also used for genetic k-means and ag-
glomerative clustering. This approach clusters steady-state changes and employs
a matching pursuit algorithm to reconstruct the original power signals. This is
done using the detected clusters as the sources in a linear blind source separation
strategy. However, this method has problems in distinguishing appliances with
small P and Q consumptions as their steady-state changes tend to cluster together.
In [19], mean-shift clustering is proposed on features that are extracted from the
power signal. The resulting clusters are classified into different appliance classes.
None of these clustering algorithms exploit their capability to detect unidentified
appliances, and none are capable of clustering on appliance-level with high accu-
racy. The proposed method uses a novel clustering work flow to cope with these
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two shortcomings. Section 5.3 explains how a higher accuracy can be obtained by
learning a new feature space using siamese neural networks. Section 5.4 explains
how unidentified appliances can be detected using DBSCAN.

5.3 Siamese neural network

The ability of clustering algorithms to detect small power consuming appliances
can be improved by adding more features. However, clustering is sensitive to the
curse of dimensionality as it relies on the computation of a distance function like
the Euclidean distance. In a high-dimensional case, the differences in distance
become less apparent, making the clustering method unusable. For clustering to
work, it is thus key to find a low dimensional feature space where the clusters are
well separated. To this end, a special kind of NNs called siamese neural networks
can be used. Subsection 4.3.3 in Chapter 4 explains NN.

A siamese network consists of two identical NN, meaning that each of them
has the same architecture, parameter values and weights. When updating the pa-
rameters and weights in one network, the same updates are applied to the other
twin network. As input, two feature vectors must be given and as label, a binary
value indicating whether or not the feature vectors belong to the same class. The
output of the siamese network are two vectors, forming a lower-dimensional rep-
resentation of the two input vectors. The idea is to learn the representation in such
a way, that the distance between these two vectors will be smaller than a given
threshold if the two belong to the same class and larger if not. This leads to the use
of the so-called contrastive loss function:

L(y, d) =
1

2

(
y × d+ (1− y)×max{m− d, 0}

)
(5.1)

where y is the binary output, d is the distance between the two input feature vec-
tors, and m is the margin determining when samples are dissimilar: dissimilar
input vectors only contribute to the loss function if their distance is smaller than
the margin.

Siamese networks are ideally suited to find a relationship between two com-
parable samples. This is the case in one-shot learning [20], where classification
needs to be done with only one example of each class or signature verification [21],
where the authenticity of a signature is checked. In this chapter, the siamese neu-
ral network is used for dimensionality reduction, like in [22]. This method of
dimension reduction is different from classical approaches, such as local linear
embedding (LLE) and principal component analysis (PCA), as the siamese neural
network learns a function that is capable of consistently mapping unseen samples
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Figure 5.3: The architecture of the siamese network.

to the learned feature space and as the siamese neural network is not constrained
by a simple distance function like the Euclidean distance to create the new feature
space. This function is one of the trained NN. The resulting representation has the
following properties [22]:

1. Simple distance functions, like the Euclidean distance, in the output feature
space represent the neighborhood relationships from the input.

2. The learned mapping function needs to be capable to learn invariances to
complex transformations.

3. The output for an unseen sample (whose neigborhood relations are unknown)
must be reliable.

In this work, the input of the siamese networks consists of pixelated VI im-
ages. The architecture of the siamese network is shown in Figure 5.3. For the
siamese neural network, the proposed method uses two convolutional neural net-
work (CNN). CNNs are a type of neural networks (NNs) that are often used in
computer vision because they are highly suitable to classify images [23]. For an
explanation, see Section 4.4 in Chapter 4. The used CNN is depicted in Figure 5.4
and takes as input an n × n pixelated VI image. This is transformed by a convo-
lutional layer which uses 20 filters each considering regions of 5× 5 pixels. After
the convolutional layer, there is a pooling layer with a sliding window of 2 × 2.
This combination of a convolutional layer followed by a pooling layer is repeated,
and finally, a dense layer is added with nout nodes. The margin m used in the loss
function is set to 50. Changing this value does not significantly influence the re-
sults.

After the training phase, the siamese neural network can be used to calculate a
nout-dimensional representation of new VI binary images. These are obtained by
using the output of just one trained CNN.
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Figure 5.4: The architecture of the cNN that is used in the siamese network.

5.4 DBSCAN

After learning the feature space, unidentified appliances can be detected by per-
forming clustering. Namely, if a new sample is too distant from present clusters
(representing known appliances), then it is considered as unidentified.

Density-based spatial clustering of applications with noise (DBSCAN) is a
data clustering algorithm [24] that will partition a given set of points into non-
overlapping clusters as well as outliers. It is a density-based clustering algorithm:
points forming a cluster will be close together, whereas the outliers will only have
relatively far away neighbors. The algorithm starts with picking one random sam-
ple. If not enough close by neighbours are present, the point will be labeled as
an outlier and the process continues by selecting a new sample. If there is a suffi-
cient number of close by neighbours, they are all added to the same cluster. The
algorithm continues by iterating over all new added points, if these have sufficient
close by neighbours, these are also added to the same cluster. This continues until
no more samples are added to this cluster. Then a new unvisited random sample is
selected and the process is iterated until all points belong to a cluster or are labeled
as outliers (noise). Three types of samples can be distinguished:

1. core samples, which are sufficiently close to other samples,

2. non-core samples, which are close by to some core samples but are insuffi-
ciently close to other samples (these form border),

3. noisy samples, which have not sufficient close by samples.

Three elements needs to be defined for DBSCAN: (1) the number of sufficient
close by points, mintPts, (2) the distance function, and (3) the maximal distance to
a close by sample, ε. These last two points define if a sample is close by or not.
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The advantages of DBSCAN are that the number of clusters does not need to
be specified by the user (unlike, e.g., for K-means clustering), clusters can be of
any shape (not just circular ones), and outliers are not forced to belong to a cluster
but are identified as such. The algorithm is also robust against an imbalance in the
occurrence of samples from different clusters. DBSCAN is one of the most com-
mon clustering algorithms and was awarded the test of time award at the leading
data mining conference, KDD [25].

In this chapter, the transformed input samples are clustered with DBSCAN. As
the learned feature space has the property that simple distance functions represent
the neighborhood relationships from the original input, the Euclidean distance is
used. The parameters mintPts and ε are not trained but heuristically set to respec-
tively 5 and 0.2.

To determine which cluster a new sample belongs to (if any), its feature vector
is first transformed to the calculated lower-dimensional space. Next, the Euclidean
distance is calculated to all core samples and the minimal distance is selected. If
this distance is smaller than threshold ε, then the sample belongs to the same cluster
as the closest core sample. Otherwise, it will be assigned the label ‘unidentified’,
see Figure 5.2.

5.5 Results

To benchmark the described method, several checks must be performed. First, it
must be examined if the learned feature space separates the different classes well.
Second, the capability of detecting unidentified appliances is tested by using data
of an unidentified appliance as test data. Lastly, the generalization property of the
method is checked by using data from other (unseen) houses as test data.

Benchmark dataset The performance of the proposed algorithm is validated on
the 2014 version of PLAID, see Chapter 2 and [15]. PLAID is a public dataset in-
cluding sub-metered current and voltage measurements sampled at 30 kHz for 11
different appliance types. More than 200 individual appliances are available, cap-
tured in 55 households. For each appliance, at least 5 start-up events are measured,
resulting in a total of 1074 measurements.

Scenario 1 To determine if the learned feature space from the siamese neural
network separates the classes well, the rand index (RI) of the clusters found by the
DBSCAN algorithm is calculated. The RI is a measure of similarity between two
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Figure 5.5: The rand index when all data is used to learn the feature space with dimension
nout

data clusterings X and Y :

R =
a+ b

a+ b+ c+ d
(5.2)

where a and b are respectively the number of pairs of elements that are in the
same/different cluster(s) in both clusterings X and Y , and c and d are respectively
the number of pairs that are in the same cluster for X/Y , but in a different one for
Y /X . Higher values of R (max. value 1) indicate a better match of clusterings.

Figure 5.5 shows the RI for different parameter configurations of the siamese
neural network that learns the representation from pixelated VI images. The input
size of the pixelated VI image (n× n) and the dimension nout of the learned rep-
resentation are altered. For this, all data samples of the PLAID dataset are fed into
the siamese neural network to calculate the mapping function. Increasing nout (for
fixed values of n) has little impact on the RI values. In contrast, changes in the
value of n (for fixed values of nout) have a strong impact. The best RI values are
obtained for n ≥ 30 with a maximum of 0.996. The high RI values confirm the
capability of the siamese neural network to learn a feature space where the clusters
are well separated and confirm the ability of the DBSCAN algorithm to find these
clusters. Figure 5.6 shows an example of the learned three dimensional feature
space (for the ease of visualization) and the corresponding clustering.

Scenario 2 To define how well the method can identify unidentified appliances,
training is done on 10 appliances and testing on 1 hold out appliance. It is validated
whether (1) the 10 selected appliances are properly separated in individual clusters,
and (2) the 11th appliance has its data points classified as ‘unidentified’. The
first criterion is validated by calculating the RI, like done above, and the second
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Figure 5.6: The clusters found by DBSCAN in the learned feature space.

criterion by calculating the accuracy of the ‘unidentified’ labels:

Accuracy =
nun11
n11

(5.3)

with n11 the number of samples from the 11th appliance, and nun11 the number
thereof that is labeled as ‘unidentified’. This procedure is performed in a leave-
one-appliance-out cross-validation. As the PLAID dataset contains 11 appliances,
the training and testing is repeated 11 times, resulting in 11 accuracy values. To
obtain the final test result, these values are averaged.

Figure 5.7a and 5.7b display the RI values and accuracy for different nout and
n values. Increasing nout and keeping n fixed does not change the values much.
This in contrast to changing n and keeping nout fixed, which has a bigger influ-
ence. The best RI values and accuracy are obtained for n ≥ 30, the maximum is
respectively 0.994 and 86.67%. The high RI values confirm the capability of the
siamese neural network to learn a feature space where the 10 clusters are well sep-
arated and the high accuracies confirm the capability to detect new (unidentified)
appliances.

Figure 5.8 shows an example of the learned three dimensional feature space
when using ten appliances (nout = 3 for the sake of easy plotting), the corre-
sponding ten clusters, and the mapping of the unseen samples of the test set. In
this example, the samples in the test set originate from a microwave. To know
which appliances are mixed up, a confusion matrix is created: Figure 5.9 reports
for each appliance type (row index) the number of labels that were correctly pre-
dicted as ‘unidentified’ or confused with other appliances (column index). The
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Figure 5.7: The RI values and accuracy for different nout and n values when leave-one-
appliance-out cross-validation is used.

Figure 5.8: The 10 clusters and unidentified points found by DBSCAN in the learned feature
space representing respectively the 10 seen appliances and the 1 hold out appliance.

values in the matrix are absolute and the colors represent the relative value per row
(thus per appliance). It can be seen that if the laptop is not used for training it is
put in the cluster containing the compact fluorescent lamp (CFL) examples and the
other way around.

Scenario 3 To test whether the method generalizes well, training and testing
is performed on different houses. As recommended in [4], leave-one-house-out
cross-validation is used. For the PLAID dataset, this means that 54 houses are
used for the training set and 1 for test set. The method works if (1) the learned fea-
ture space using the 54 houses separates the appliance clusters sufficiently, and (2)
the appliances of the test set are projected on the correct cluster. The first criterion
is validated by calculating the RI and the second by counting the number of test
samples that are assigned to the correct cluster, to a wrong cluster or get the label
unidentified. Three accuracy measures are defined: (1) the positive rate defined
as the percentage of samples assigned to the correct cluster, (2) the negative rate
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Figure 5.9: The confusion matrix when leave-one-appliance-out cross-validation is used.

defined as the percentage of samples assigned to the wrong cluster, and (3) the
unidentified rate defined as the percentage of samples labelled as ‘unidentified’.
These quantities add up to 100%.

To be able to calculate the first and second rates, the appliances labeling pro-
vided in the PLAID dataset is used. It must be noted that these labels are only
used to validate the model predictions: they are not used for training the method.
As leave-one-house-out cross-validation is performed on 55 houses, there are 55

test scores (one for each house). To obtain the final test result, these values are
averaged.

Figure 5.10a shows the RI values for different nout and n values. It can be
concluded that the clusters are separated sufficiently for higher n values. Chang-
ing nout does not influence the result. Figure 5.10b, 5.10c and 5.10d show the
three accuracies defining how much test samples are respectively assigned to the
correct, incorrect or no cluster. Again, changing nout does not change the re-
sults significantly. When using n = 16, a large part of the test samples (> 50%)
are assigned to the correct cluster, but also a significant part of them (v 22.5%)
are classified incorrectly. When using a larger n = 50, the number of correctly
assigned test samples is much smaller, namely around 38.7%, but so are the in-
correctly assigned samples (∼ 1.3%). As a consequence, the number of samples
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Figure 5.10: The RI values, and the positive, negative and unidentified rate for different
nout and n values when leave-one-house-out cross-validation is used.

labeled as unidentified is larger (around 60%). The method avoids the risk of be-
ing too certain. Most likely, this is caused by test samples lying just outside the
cluster, but still in its proximity. This can be checked by calculating the rank of
the correct cluster for each test sample labeled as unidentified. First, all clusters
are ranked by calculating the distance dij from the given sample i to each of the
clusters j, and sorting these distances in ascending order. Ideally, the test sample’s
appliance cluster should be on the first position. Figure 5.11a shows the rank that
is averaged over the 55 folds. For all the different parameter combinations, this
result shows that the correct cluster is the closest or second closest cluster. Figure
5.11b shows the box plot of the rank of the correct cluster for all the test samples
labeled as ‘unidentified’ in all the test houses (1074 ranks) when n = 50. As these
box plots show, their is very little variance on the rank of the correct cluster, mak-
ing the average a valid measure. This result is important because it implies that if
the method labels a sample as unidentified, it can query the user to confirm if it
is a new appliances or not, while immediately suggesting a label (e.g., listing the
top-3 of the ranked list). If the sample originates from an existing appliance, the
correct appliance (cluster) will be in this top.

5.6 Conclusion
This chapter presents a novel method for appliance classification and detection of
unidentified appliances in non-intrusive load monitoring. Both rely on a learned
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Figure 5.11: (a) The average rank of the correct cluster for the samples labeled as ‘uniden-
tified’ for different nout and n values when using leave-one-house-out cross-validation. (b)
The box plots of the rank of the correct cluster for all samples labeled as ‘unidentified’ for
n = 50 and different nout values.

vector representation function (a trained CNN), which takes as input a pixelated
VI image. To learn this representation, training data in the form of such VI images,
in labeled pairs of the same/different appliance types is needed. A siamese neu-
ral network is trained on these pairs outputting a pair of lower-dimensional vector
representations, such that the distance between these two vectors is lower or higher
than a threshold for respectively same/different appliance. In this newly learned
feature space, DBSCAN is performed, allowing us to assign test samples to clus-
ters or label them as unidentified. Benchmarking on the PLAID dataset shows
that 87% of the unknown appliances are labelled as unidentified. Furthermore, if
unseen instances of known appliance types are given as input 39% is classified
correctly, 1% incorrectly and 60% as unidentified. However for the appliances
classified as unidentified, good suggestions can be made concerning the cluster it
belongs to as the correct cluster is on average the 1.75 closest cluster.

Future work includes the incorporation of domain knowledge into the error
function. For example, appliances belonging to the same type (resistive, reactive
or capacitive) may correspond to clusters that are nearby in the feature space.
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6
Conclusion

“Education never ends, Watson. It is a series of lessons, with the greatest
for the last.”

– Sherlock Holmes, His Last Bow: 8 Stories

6.1 Summary

In this thesis, we cover the different steps comprising event-based NILM, see Fig-
ure 6.1, answering the different research questions posed in Chapter 1:

• Can data be collected in a consistent way, and in addition be easily ex-
tendable?

To answer this question, we extended PLAID with submetered and aggre-
gated voltage and current measurements from different household appli-
ances sampled at 30 kHz, making it the first dataset to contain both subme-
tered and aggregated data at high frequency. Furthermore, it is collected in
a consistent way: there are no calibration errors and no labels are missing.
A systematic description of the measurement set-up and dataset is given,
providing the means to consistently extend this dataset is presented.

• How can we develop event detection methods that are robust against
parameter changes?
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Figure 6.1: A schematic overview of the steps in NILM.

Two event detection methods, the voting χ2 GOF and cepstrum method, are
presented in Chapter 3 that are robust against base load differences. This in
contrast to the standard χ2 GOF method. For example, when a base load
of 3000W (which corresponds to the power consumption of two typical
electrical heaters) is added to the power signal, compared to the standard χ2

GOF method, the voting χ2 GOF method leads to a performance increase
of 7− 12% in terms of F -measure, while Cepstrum reaches 7− 15% larger
F -measure values.

Other parameters were optimized in an efficient way by presenting surrogate-
based optimization, resulting in a speed up in computation time with a factor
up to 100000 when compared to the standard brute force method.

• Which features are best to characterize the appliances?

We tried three different features. First, the contours of the pixelated VI
image to characterize appliances in NILM are used as input for logistic re-
gression, random forests, and neural networks. The results show that twelve
components per sample (i.e., three times four harmonic coefficients) are suf-
ficient to obtain a prediction accuracy of 78.49% and Fmacro = 66.20% for
the 2014 version of PLAID, which is comparable to the results reported
in [1]. This leads to significant (> 20×) storage savings when compared to
the original VI image comprising 16× 16 = 256 values.

Second, weighted pixelated images are used as input for a CNN. The method
is applied on the 2014 version of PLAID and WHITED dataset resulting in
a Fmacro-measure of respectively 77.60% and 75.46%. The F -measure per
appliance shows that the method gives good results for a large number of
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appliances. The confusion between appliances can be explained by com-
mon electrical components or the small number of appliance instances. This
method outperforms the previous method and [1] for PLAID, the gain in per-
formance is obtained mainly by the ability to accurately classify the heaters.

Third, the current peak values are used as a feature. When added as an
extra feature to previous methods, the Fmacro increases. However, the highest
Fmacro (96.69% for the 2018 version of PLAID) is obtained when current
cycles of steady state behaviour are used as input for a random forest.

However, as the performance is not perfect, the question remains which fea-
tures are the best to characterize the appliances.

• How does the appliance imbalance influence the performance of the
classifier and do approaches that address the imbalance improve the
performance?

In chapter 4, it is demonstrated that applying methods to deal with this im-
balance on PLAID does not lead to any improvements in terms of the Fmacro-
measure in the scenario where the right classifier is used and the pixelated
VI image is used as input. For the 2017 version of PLAID, the right classi-
fier is a random forest, kNN or SVM. If a suboptimal choice of classifier is
made, like adaBoost, dTree, or logistic regression, balanced bootstrapping
can increase performance.

An additional study on other datasets is necesarry before general conclus-
tions can be made.

• How can a feature space be learned in such a way that different appli-
ance types form different clusters?

In order to create clearly separated clusters, we learn a new feature space
using siamese neural networks. For this we need training data in the form
of weighted pixelated images, in labelled pairs of same/different appliance
types. Training makes sure that instances of same/different appliance types
lie closer/farther from each other.

In this newly learned feature space, the density based clustering method DB-
SCAN is performed, allowing us to assign test samples to clusters or label
them as unidentified. Benchmarking on the 2014 version of PLAID shows
that 87% of the unknown appliances are labelled as unidentified. Further-
more, if unseen instances of known appliance types are given as input 39%
is classified correctly, 1% incorrectly and 60% as unidentified. For the appli-
ances classified as unidentified, good suggestions can be made concerning
the correct label, because when ranking the clusters on their closeness to the
sample, the cluster having the correct label has on average rank 1.75.
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In the course of the research, additional questions were answered:

• Is high frequency submetered data necessary?

If the EFD’s of the countours of pixelated VI images are used as input for
random forest and testing is performed on the aggregated data of the 2018
version of PLAID, the Fmacro = 72.47% and Fmacro = 85.31% when training
uses respectively submetered and aggregated data. If weighted VI images
are used as input for a CNN and testing is performed on the aggregated data
of the 2018 version of PLAID, the Fmacro = 80.38% and Fmacro = 87.95%

when training uses respectively submetered and aggregated data. For the
aggregated data of the 2018 version of PLAID, it holds that high frequency
submetered data is not necessary for training.

• Are there sufficient different samples available in public datastes?

We found that there is an overabundance of submetered measurements within
the 2014 version of PLAID for the task of identifying appliances. It would
be interesting to investigating if this the case for all datasets, and thus if
classifiers can perform as good if there are less measurements available.

In summary, the work presented in this thesis comprises robust and effi-
cient methods for each of the steps involved in event-based NILM.

6.2 Future work
Future work can develop along two lines: the accuracy of the NILM can be im-
proved and/or new use cases using NILM data can be developed.

6.2.1 Improving the accuracy

The accuracy of appliance classification or power consumption estimation is still
not perfect. One possible explanation for this is that event based methods excel
in detecting single state appliances, think a lamp, but get confused when detecting
program-based appliances such as washing machine, where several events belong
to one appliance. For non-event based methods, it is the other way around, they
excel at detecting program based appliances but get confused by the unpredictable
active time of single state appliances. Running these methods in parallel would
be beneficial. The biggest unsolved difficulty for this approach will be to decide
which method to believe at what moment.

Improving the accuracy of NILM for industrial buildings remains mainly un-
adressed. Most NILM algorithms have been developed for residential households.
This is mostly due to the high availability of NILM data sets pertaining to these
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households. However, energy consumption of commercial, public, and industrial
buildings (think schools, hospital, stores, offices, etc.) is also significant making
it an interesting use case. However, these settings prove more challenging, as as-
sumptions with regard to the temporal dependencies between appliance usage, and
the activation of only one appliance at at time, no longer hold [2]. Some prelimi-
nary results have been reported in the literature [3].

Another reason for the imperfect accuracy is the inability to detect variable
power draw appliances correctly. Variable power appliances (VPA) prove more
difficult to monitor as they have a continuous range of power consumption val-
ues while operating [4]. Since VPA appliances do not exhibit a clear event-based
signature, many methods for load disaggregate become inadequate due to their re-
liance on the identification of steady states and/or switching events of individual
appliances. Nevertheless, VPA appliances are abundant within households (e.g., a
TV, desktop computer, HVAC installations). If these devices cannot be properly
disambiguated from other appliances, a portion of the power remains unassigned,
lowering the obtained accuracy [5]. If ultimately a perfect accuracy is desired,
research on how to detect these VPA appliances is required.

6.2.2 Developing new use cases

Using the data obtained from NILM, new use cases can be developed. For exam-
ple from the active appliances, one could determine the occupancy of a house and
several energy-efficiency optimizations could be performed, such as automatically
turning appliances on/off, gaining actionable insights about slumber power con-
sumption or burglary detection. Determining the occupancy of a house has been
analyzed in [6]. However, only two houses were taken into account and events
were not always available (for example when only 1 Hz or lower frequency data
is available). The authors also explicitly assumed the home owners were asleep
between 1 and 4 am. Research needs to be conducted to check whether the house
occupancy can be determined by the active appliances and if the energy-efficiency
optimizations are practical and meaningful.

Using the active appliance, one could also construct behavioural profiles in
terms of energy consumption. This can be useful to compare different users in or-
der to detect abnormal or illegal activity. This kind of information would not only
benefit the end user, but could also be valuable for third parties, e.g., insurance
companies could charge a flexible premium based on your profile. Research must
be performed to validate the idea that illegal or strange behaviour can be detected
in energy consumption having as challenge to obtain the relevant data.
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Using the active time and estimated energy consumption of a fridge or freezer
obtained from NILM, we can analyze the performance and age of these appli-
ances. This knowledge can result in several actionable insights, such as defrosting
is necessary, or the device is no longer energy efficient and needs to be replaced.
Knowing that a large proportion of total energy within households is consumed by
fridges and freezers, this can lead to large savings. The same approach can also
be adopted for less frequently used appliances such as water and heat pumps, or
battery chargers for electric cars. The biggest research challenge for this use case
is the gathering of data of older/newer, badly/well maintained fridges or freezers.

Combining NILM data with various internet-of-things (IoT) sensors such as
gas, water, and temperature meters, or all round smart thermostats creates a wealth
of new use cases, e.g.:

• besides reporting energy consumption of wet appliances, we can also obtain
the corresponding water consumption,

• detecting the presence in the home by using the gas consumption,

• generation of alarm messages, for example when high water use in the ab-
sence of active wet appliances indicate a leak.

Research needs to be conducted to find out, a.o., if the addition of water consump-
tion is really informative and if high water use consumption can not be caused by
other usages like opening a kitchen faucet.
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