144 research outputs found

    Automatic detection of expressed emotion from Five-Minute Speech Samples:Challenges and opportunities

    Get PDF
    Research into clinical applications of speech-based emotion recognition (SER)technologies has been steadily increasing over the past few years. One such potential application is the automatic recognition of expressed emotion (EE) components within family environments. The identification of EE is highly important as they have been linked with a range of adverse life events. Manual coding of these events requires time-consuming specialist training, amplifying the need for automated approaches. Herein we describe an automated machine learning approach for determining the degree of warmth, a key component of EE, from acoustic and text natural language features. Our dataset of 52 recorded interviews is taken from recordings, collected over 20 years ago, from a nationally representative birth cohort of British twin children, and was manually coded for EE by two researchers (inter-rater reliability 0.84–0.90). We demonstrate that the degree of warmth can be predicted with an F1-score of 64.7% despite working with audio recordings of highly variable quality. Our highly promising results suggest that machine learning may be able to assist in the coding of EE in the near future

    Voice analysis for neurological disorder recognition – a systematic review and perspective on emerging trends

    Get PDF
    Quantifying neurological disorders from voice is a rapidly growing field of research and holds promise for unobtrusive and large-scale disorder monitoring. The data recording setup and data analysis pipelines are both crucial aspects to effectively obtain relevant information from participants. Therefore, we performed a systematic review to provide a high-level overview of practices across various neurological disorders and highlight emerging trends. PRISMA-based literature searches were conducted through PubMed, Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly recorded) datasets were collected. Disorders of interest were psychiatric as well as neurodegenerative disorders, such as bipolar disorder, depression, and stress, as well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease, and speech impairments (aphasia, dysarthria, and dysphonia). Of the 43 retrieved studies, Parkinson's disease is represented most prominently with 19 discovered datasets. Free speech and read speech tasks are most commonly used across disorders. Besides popular feature extraction toolkits, many studies utilise custom-built feature sets. Correlations of acoustic features with psychiatric and neurodegenerative disorders are presented. In terms of analysis, statistical analysis for significance of individual features is commonly used, as well as predictive modeling approaches, especially with support vector machines and a small number of artificial neural networks. An emerging trend and recommendation for future studies is to collect data in everyday life to facilitate longitudinal data collection and to capture the behavior of participants more naturally. Another emerging trend is to record additional modalities to voice, which can potentially increase analytical performance

    An Overview of Affective Speech Synthesis and Conversion in the Deep Learning Era

    Get PDF
    Speech is the fundamental mode of human communication, and its synthesis has long been a core priority in human-computer interaction research. In recent years, machines have managed to master the art of generating speech that is understandable by humans. But the linguistic content of an utterance encompasses only a part of its meaning. Affect, or expressivity, has the capacity to turn speech into a medium capable of conveying intimate thoughts, feelings, and emotions -- aspects that are essential for engaging and naturalistic interpersonal communication. While the goal of imparting expressivity to synthesised utterances has so far remained elusive, following recent advances in text-to-speech synthesis, a paradigm shift is well under way in the fields of affective speech synthesis and conversion as well. Deep learning, as the technology which underlies most of the recent advances in artificial intelligence, is spearheading these efforts. In the present overview, we outline ongoing trends and summarise state-of-the-art approaches in an attempt to provide a comprehensive overview of this exciting field.Comment: Submitted to the Proceedings of IEE

    Controllable Accented Text-to-Speech Synthesis

    Full text link
    Accented text-to-speech (TTS) synthesis seeks to generate speech with an accent (L2) as a variant of the standard version (L1). Accented TTS synthesis is challenging as L2 is different from L1 in both in terms of phonetic rendering and prosody pattern. Furthermore, there is no easy solution to the control of the accent intensity in an utterance. In this work, we propose a neural TTS architecture, that allows us to control the accent and its intensity during inference. This is achieved through three novel mechanisms, 1) an accent variance adaptor to model the complex accent variance with three prosody controlling factors, namely pitch, energy and duration; 2) an accent intensity modeling strategy to quantify the accent intensity; 3) a consistency constraint module to encourage the TTS system to render the expected accent intensity at a fine level. Experiments show that the proposed system attains superior performance to the baseline models in terms of accent rendering and intensity control. To our best knowledge, this is the first study of accented TTS synthesis with explicit intensity control.Comment: To be submitted for possible journal publicatio

    Computer audition for emotional wellbeing

    Get PDF
    This thesis is focused on the application of computer audition (i. e., machine listening) methodologies for monitoring states of emotional wellbeing. Computer audition is a growing field and has been successfully applied to an array of use cases in recent years. There are several advantages to audio-based computational analysis; for example, audio can be recorded non-invasively, stored economically, and can capture rich information on happenings in a given environment, e. g., human behaviour. With this in mind, maintaining emotional wellbeing is a challenge for humans and emotion-altering conditions, including stress and anxiety, have become increasingly common in recent years. Such conditions manifest in the body, inherently changing how we express ourselves. Research shows these alterations are perceivable within vocalisation, suggesting that speech-based audio monitoring may be valuable for developing artificially intelligent systems that target improved wellbeing. Furthermore, computer audition applies machine learning and other computational techniques to audio understanding, and so by combining computer audition with applications in the domain of computational paralinguistics and emotional wellbeing, this research concerns the broader field of empathy for Artificial Intelligence (AI). To this end, speech-based audio modelling that incorporates and understands paralinguistic wellbeing-related states may be a vital cornerstone for improving the degree of empathy that an artificial intelligence has. To summarise, this thesis investigates the extent to which speech-based computer audition methodologies can be utilised to understand human emotional wellbeing. A fundamental background on the fields in question as they pertain to emotional wellbeing is first presented, followed by an outline of the applied audio-based methodologies. Next, detail is provided for several machine learning experiments focused on emotional wellbeing applications, including analysis and recognition of under-researched phenomena in speech, e. g., anxiety, and markers of stress. Core contributions from this thesis include the collection of several related datasets, hybrid fusion strategies for an emotional gold standard, novel machine learning strategies for data interpretation, and an in-depth acoustic-based computational evaluation of several human states. All of these contributions focus on ascertaining the advantage of audio in the context of modelling emotional wellbeing. Given the sensitive nature of human wellbeing, the ethical implications involved with developing and applying such systems are discussed throughout

    Specific Language Impairments and Possibilities of Classification and Detection from Children's Speech

    Get PDF
    Many young children have speech disorders. My research focused on one such disorder, known as specific language impairment or developmental dysphasia. A major problem in treating this disorder is the fact that specific language impairment is detected in children at a relatively late age. For successful speech therapy, early diagnosis is critical. I present two different approaches to this issue using a very simple test that I have devised for diagnosing this disorder. In this thesis, I describe a new method for detecting specific language impairment based on the number of pronunciation errors in utterances. An advantage of this method is its simplicity; anyone can use it, including parents. The second method is based on the acoustic features of the speech signal. An advantage of this method is that it could be used to develop an automatic detection system. KeyKatedra teorie obvod

    Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge

    Get PDF
    More than a decade has passed since research on automatic recognition of emotion from speech has become a new field of research in line with its 'big brothers' speech and speaker recognition. This article attempts to provide a short overview on where we are today, how we got there and what this can reveal us on where to go next and how we could arrive there. In a first part, we address the basic phenomenon reflecting the last fifteen years, commenting on databases, modelling and annotation, the unit of analysis and prototypicality. We then shift to automatic processing including discussions on features, classification, robustness, evaluation, and implementation and system integration. From there we go to the first comparative challenge on emotion recognition from speech-the INTERSPEECH 2009 Emotion Challenge, organised by (part of) the authors, including the description of the Challenge's database, Sub-Challenges, participants and their approaches, the winners, and the fusion of results to the actual learnt lessons before we finally address the ever-lasting problems and future promising attempts. (C) 2011 Elsevier B.V. All rights reserved.Schuller B., Batliner A., Steidl S., Seppi D., ''Recognising realistic emotions and affect in speech: state of the art and lessons learnt from the first challenge'', Speech communication, vol. 53, no. 9-10, pp. 1062-1087, November 2011.status: publishe
    corecore