
Computer Audition for Emotional Wellbeing

Inaugural-Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)

an der
Fakultät für Angewandte Informatik

der Universität Augsburg

vorgelegt von

Alice Baird

2021





Erstgutachter: Prof. Dr. Björn Schuller
Zweitgutachter: Prof. Dr. Elisabeth André
Drittgutachter: PD Dr.- Ing. habil. Ronald Böck
Tag der mündlichen Prüfung: 20.10.2022





Acknowledgements

Throughout my doctoral research, I have been fortunate to work with many talented re-
searchers from various scientific disciplines. As such, there is a long list of individuals that
I am grateful to for their positive impact on this thesis. Firstly, I would like to thank my
supervisor, Dr. Björn Schuller, for his support and guidance. The opportunities I have had
throughout my time in Germany, under his supervision, have been inspiring and allowed
me to develop a research practice that I am excited to continue to grow. I would also like to
thank my co-authors and collaborators with whom I have had many knowledge exchanges,
discussing strategies that have greatly benefited this research. I am particularly grateful to
my colleague Lukas Stappen for his collaboration over the years and for taking the time
to comment on this thesis. Further thanks also go to Dr. Shahin Amiriparian and Manuel
Milling, who have both been great collaborators and offered meaningful feedback on this
work. Furthermore, a great deal of gratitude goes to Dr. Anton Batliner, Dr. Emilia Parada-
Cabalerio, Dr. Eduardo Coutinho, Dr. Nicholas Cummins, Dr. Julia Hirshberg, Dr. Stina
Jørgensen, Dr. Gil Keren, Dr. Eva-Maria Meßner, Dr. Panagiotis Tzirakis, Dr. Kun Qian,
Lukas Christ, Alexander Gebhard, Shuo Liu, Adria Mallol-Ragolta, Silvan Mertes, Zhao Ren,
Georgios Rizos, Maximilian Schmitt, Meishu Song, Andreas Triantafyllopoulos, Thomas
Wiest, and Sandra Zänkert.

I have been fortunate to have received funding to complete my doctoral research from
numerous sources. These include the EU Horizon 2020 DE-ENIGMA project, the Centre of
Digitisation Bavaria, and the Reinhart Konsolleck DFG AUDION0MOUS project.

Lastly, I would like to highlight the personal support I have received from my loving
family and friends throughout the development of this research. I am fully aware that I would
not have reached this point without them and am enormously grateful. Thank you.

Alice Baird

October 2021





Abstract

This thesis is focused on the application of computer audition (i. e., machine listening)
methodologies for monitoring states of emotional wellbeing. Computer audition is a growing
field and has been successfully applied to an array of use cases in recent years. There
are several advantages to audio-based computational analysis; for example, audio can be
recorded non-invasively, stored economically, and can capture rich information on happenings
in a given environment, e. g., human behaviour. With this in mind, maintaining emotional
wellbeing is a challenge for humans and emotion-altering conditions, including stress and
anxiety, have become increasingly common in recent years. Such conditions manifest in
the body, inherently changing how we express ourselves. Research shows these alterations
are perceivable within vocalisation, suggesting that speech-based audio monitoring may
be valuable for developing artificially intelligent systems that target improved wellbeing.
Furthermore, computer audition applies machine learning and other computational techniques
to audio understanding, and so by combining computer audition with applications in the
domain of computational paralinguistics and emotional wellbeing, this research concerns
the broader field of empathy for Artificial Intelligence (AI). To this end, speech-based audio
modelling that incorporates and understands paralinguistic wellbeing-related states may be a
vital cornerstone for improving the degree of empathy that an artificial intelligence has.

To summarise, this thesis investigates the extent to which speech-based computer audition
methodologies can be utilised to understand human emotional wellbeing. A fundamental
background on the fields in question as they pertain to emotional wellbeing is first presented,
followed by an outline of the applied audio-based methodologies. Next, detail is provided
for several machine learning experiments focused on emotional wellbeing applications,
including analysis and recognition of under-researched phenomena in speech, e. g., anxiety,
and markers of stress. Core contributions from this thesis include the collection of several
related datasets, hybrid fusion strategies for an emotional gold standard, novel machine
learning strategies for data interpretation, and an in-depth acoustic-based computational
evaluation of several human states. All of these contributions focus on ascertaining the
advantage of audio in the context of modelling emotional wellbeing. Given the sensitive
nature of human wellbeing, the ethical implications involved with developing and applying
such systems are discussed throughout.
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Introduction

1.1 Motivation

Sound is an immersive, continuous, complex array of pressure waves. From speech alone,
a deep understanding of a human’s current state of being can be understood [1]. The field
of acoustics is a branch of science that is concerned with the production, transmission, and
effects of sound. Consistent with Lindsay’s Wheel of Acoustics1, this thesis focuses on the
acoustic targets related to human-audible information. These are associated with the acoustic
domains of the life sciences and the arts, i. e., speech, physiology, and psychology.

Computer (or machine) audition is a field of research focused on the understanding
of audio by machines [2]. Research in computer audition applies methods from areas
including signal processing, machine learning, and psychology. More specific technical
topics of interest within computer audition include automatic speech recognition [3], speech
enhancement [4], and acoustic event detection [5]. The field has continued to grow over many
years and has been advanced by the rise in deep learning [6]. Furthermore, there are now
several well-established methods and openly available toolkits which allow for the analysis
and recognition of a variety of human states from representations of speech [7].

At a subconscious level, humans have a remarkable ability to interpret and process fine-
grained and subtle changes in information transmitted via sound, including mood, intention,
and type of activity [8]. This is a phenomenon that computer audition researchers have been
attempting to replicate computationally with machine learning and signal processing tech-
niques for many years [1, 8]. Within the machine learning community, various modalities can
be modelled, including video, text, and biological signals. In comparison to these, audio has
shown to be particularly dominant in regards to human behaviour modelling, e. g., concerning
speech emotion recognition, where emotional activation is far better modelled with audio [9].
As such, audio is particularly suited to in-the-wild and non-invasive monitoring use cases, as
occlusions that would be typical from the video modality are avoidable [10]. Specifically,
throughout the last decade, the field of computational paralinguistics has shown great promise
for robustly recognising several human states and focusing on how an individual speaks

1R. Bruce Lindsey, "Lindsay’s Wheel of Acoustics", Journal of the Acoustical Society of America (1964).
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Figure 1.1: An adaptation of the “new definition for wellbeing” proposed by [12]. The figure
illustrates how wellbeing is managed via the balancing act between the psychological, social
or physical resources available and the challenges faced.

rather than explicitly what the individual has said. With this in mind, managing states of
human wellbeing has vast benefits [11] for which speech-based approaches may be suited.

Wellbeing is a universal term that is complex to define but essentially refers to life
satisfaction. A positive state of wellbeing can be said to be an equilibrium between current
psychological, social and physical challenges and available resources [12] (see Figure 1.1
for a depiction). Managing the psychological aspect of wellbeing, described as emotional
wellbeing, can be difficult for many individuals in modern society [13] due to unexpected
challenges which exceed the limited resources available. This can result in negative emotional
responses caused by conditions such as stress and anxiety. It is well established in research
that the speech signal is affected directly by several physical and environmental changes [7],
suggesting again that computational speech analysis frameworks can aid in the detection of
key markers of emotional wellbeing, specifically as it pertains to stress and anxiety. Such
conditions are currently under researched from a computational analysis perspective.

As well as audio, there have been many recent advancements for the computational
analysis and representation of human wellbeing by machines coming from the computer
vision domain [14]. Such progress is promising as combining modalities has shown to
have great benefits [15]. As well as improving understanding of emotional wellbeing, the
development of more empathic AI in general may be advanced. Typically within media,
empathy in AI pertains to improving the degree of empathy which is present in human-
centred AI interactions, e. g., by companion robotics or assistants. However, AI empathy is
not limited to robotics and there is much discussion relating to higher-level design choices
and lower-level machine reasoning being made with more consideration towards a user’s
emotional state and current needs, e. g., the time for which a notification is pushed on a smart
device. As AI is becoming an integrated part of human life, reasoning with empathy along
with consideration to the ethical concerns of this, should all be incorporated into a more
positive AI ecosystem. In this regard, if computational audio approaches can be applied to
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understand emotional wellbeing, this can also assist machine self-awareness and, in turn, the
ability for an AI to respond with empathy.

With these aspects in mind, the core aim of this thesis is to facilitate research in computer
audition on aspects of emotional wellbeing, particularly concerning paralinguistic speech. To
summarise the key points from the above passage, the motivation for this thesis is four-fold:

1. The ubiquitous and non-invasive nature of audio. Audio is an immersive signal
which allows for holistic recognition and analysis of several human states [8]. The
advantages from a technical perspective include i) continuous real-time monitoring
ii) pseudo-anonymous storage iii) low-resource computational expense .

2. The advancements in machine learning for which audio can be applied. Advance-
ments in machine learning research mean that several open-source and highly relevant
resources are available to build upon for computer audition [16] from neighbouring
fields, e. g., natural language processing [17] and computer vision [18].

3. The limited prior research and literature. When it comes to the application of state-
of-the-art computer audition-based machine learning methods for states of emotional
wellbeing, there is limited previous research to build upon, particularly for mental
health conditions such as anxiety [19]. This is particularly motivating given the drive
for more empathic AI. A meaningful aspect of improving the ability for AI to develop
empathy is understanding the current mood of the person interacting with the AI.

4. The continued decrease in general wellbeing in modern societies. Several aspects
of daily life contribute to lower wellbeing, e. g., loneliness [20] or connection to
nature [21], and it is estimated that one in five individuals may have a mental disorder.
English-speaking regions have the highest lifetime prevalence [22]. Such a decline
suggests that more research into assistive technologies is needed to aid individuals in
retaining the balance between resources and challenges.

1.2 Research Questions

As described, the core focus of this thesis is to apply computational audio-based methodolo-
gies to a variety of novel applications targeted at monitoring emotional wellbeing. With this
in mind, some formulated research questions (RQ) which this thesis explores include:

RQ-1: To what extent can computer audition methodologies be harnessed to mon-
itor states of emotional wellbeing? Furthermore, which aspects of emotional
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wellbeing can not be suitably modelled by audio? To explore this, a number
of audio-based experiments are outlined which apply machine learning methodolo-
gies and acoustic analysis to several datasets including those which are based on the
well-established Trier Social Stress Test (TSST).

RQ-2: How does audio perform as a uni-modal signal compared with other modalities
and multimodal fusion? Additionally, which feature representations of audio are
useful for monitoring emotional wellbeing? To evaluate this, a multimodal dataset
that includes the modalities of audio, video, text, and physiological signals is utilised,
and a series of experiments on individual and combined modalities will focus on the
recognition of markers of stress. Within this context, a number of hand-crafted vs
image-based audio features, which are known to be strong in the area of computational
paralinguistics, are applied throughout all experiments.

RQ-3: What data is available for academic research into the computational analysis
of states of emotional wellbeing from audio-based signals, and how can concerns
relating to data scarcity be tackled? To gain an understanding of this, an overview
of related datasets will be given in Chapter 2, as well as details for a number of datasets
that have been collected in the context of this thesis Chapter 3. Furthermore, generative
approaches and other conventional data augmentation is explored in the context of
emotional speech.

RQ-4: How can computational approaches, when applied to emotional wellbeing,
benefit from interdisciplinary collaboration? Furthermore, how can outcomes
be better understood (interpretable AI) and utilised by those working in related
fields of research? Given the sensitive nature of states of emotional wellbeing, the
majority of conducted experiments were made in collaboration with the data owner, or
with guidance from researchers with expert knowledge of the domains. Accordingly,
communication within a number of experiments is made in an open manner with
interpretations of specific results provided based on the literature from adjacent fields.

1.3 Contributions

This thesis provides many contributions and findings to the community. At a high-level, the
main contributions include:

• A rigorous computational evaluation of under-researched areas of speech-based states
of individual emotional wellbeing, e. g., anxiety [19], stress [23], and dimensions of
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emotion in stress-induced scenarios [24, 25] – providing several novel findings, which
are applicable to researchers in computational paralinguistics, affective computing,
machine learning as well as the broader research community.

• The development of novel strategies for methodologies within computer audition
applicable to the machine learning domain, including data interpretation [26] and
fusion and adaptation of subjective signals [24, 27] - with frameworks made open-
source to the community where appropriate.

• A series of interdisciplinary collaborations have been conducted, which support ac-
cessibility and the application of computer science methods in the area of human
emotional wellbeing – validating a number of machine learning approaches with
strong psychological backing and motivation on the experimental design, for example,
in [19, 23, 24].

• Several (more than five) uni- and multi-modal datasets in the domain of individual
emotional wellbeing have been acquired, processed, and evaluated during the period of
this doctoral research, with many available in the public research domain [28, 25, 29–
32]. An overview of these, as they pertain to the thesis, is given in Chapter 3, Table 3.1.

1.4 Thesis Structure

This thesis is structured as follows:

• Chapter 2 (Background): This chapter will offer a general introduction and overview
for several fields of research that relate to the topics of this thesis, namely, computer
audition, computational paralinguistics, and an overview of modelling emotion from
speech as it pertains to both empathy in artificial intelligence and the field of speech
emotion recognition in general.

• Chapter 3 (Methodology): In this chapter, more specific detail is given for the
methodologies which are applied in Chapter 4 for the understanding of emotional
wellbeing. This chapter gives detail on the data acquisition process for the datasets
utilised, the theoretical detail for audio representations, and the applied machine
learning architectures for both recognition and generation of audio.

• Chapter 4 (Experiments): This chapter will offer a series of experiments that evaluate
computer audition’s efficacy in the context of emotional wellbeing. The experiments
within this chapter address each of the above-mentioned research questions in various
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ways, and the methodologies described in Chapter 3 will be proposed for application
in several emotional wellbeing-related targets. In general, these experiments should be
considered an anchor for any conclusions made from this thesis.

• Chapter 5 (Concluding remarks): This chapter will summarise the findings on the
main topics explored within this thesis, relating particular findings to each of the core
research questions. Furthermore, a discussion is provided for the ethical aspects that
are found to be relevant and essential for this area of research, with detail on the
limitations of the current work and an outlook for this area of research in general.



Background
This chapter introduces the higher-level background and essential concepts for the core topics
of this thesis, namely, Computer Audition, Computational Paralinguistics and Empathy in
Artificial Intelligence as it relates to Speech Emotion Recognition. The deeper theoretical
background and more technical aspects will be introduced in the preceding section (see Chap-
ter 3) as it pertains to the conducted experiments of Chapter 4. As the literature in these areas
is extensive, in the following section – unless discussing fundamentals – the scope of all
discussion is limited to works which relate only to emotional wellbeing adjacent applications.
With this in mind, a brief definition of the topic will be given at the beginning of each section.

2.1 Computer Audition in General

Computer audition is a discipline of computer science and engineering that has been gaining
in popularity throughout the last couple of decades [33, 34]. Where Audition refers to the
Latin verb audire, meaning ‘to hear’, essentially, Computer Audition is the computational
understanding of acoustic information by machines and can cover a wide range of compu-
tational tasks, to both analyse a human phenomenon in nature as well generate human or
natural audio expression. As with many fields which are inherently interdisciplinary and
less deeply established, computer audition has several alternative names, including Machine
Audition [35], Intelligent Audio Analysis [36], and Audio Information Retrieval [37]. With
the idea that computer audition can be concerned with any acoustic signal, as mentioned
earlier based on the breakdown provided by Lindsey’s Wheel of Acoustics, this thesis is
concerned primarily with the acoustics derived from vocalisations, and in that regard crosses
between the life sciences and the arts.
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Figure 2.1: An overview of the topics in the field of computer audition, and how they are
related to one another within a research pipeline. Where the topic is highlighted in blue, this
represents computer audition problems discussed and tackled within this thesis.
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There are several sub-problems that researchers are interested in for the field of computer
audition, as shown in Figure 2.1, these include auditory cognition [38], audio separation and
enhancement [39], audio representations [40], audio sequence modelling [41], and audio
generation [42]. At the earliest point in a computer audition pipeline, a fundamental under-
standing of aspects of auditory cognition for a particular phenomenon is needed. Auditory
cognition refers to the human brain’s process of determining meaning and deciding upon
action based on the current soundscape, i. e., how is a sound perceived and the mechanical
process performed by the auditory cortex of the brain.

Auditory cognition is meaningful to computer audition as through understanding how
sound is perceived. Engineers and computer scientists can – particularly now with machine
learning – be more mindful and fine-tune specific parameters based on this. Current computer
audition researchers continue to utilise the already extremely well-established research in
this area, particularly as it pertains to the mechanics of the human ear [43], and percep-
tion, e. g., perception of loudness [44]. However, research for the more subjective sonic
interactions, e. g., emotion in speech, and how the brain understands this, continues to be
researched, e. g., how emotional state can effect loudness [45].

With this in mind, applying the cognitive sciences to specific phenomena in audio during
computational analysis and generation may assist in ethical developmental choices. For
example, in relation to bias, a higher-pitched voice is often perceived to have less authority
and therefore lower-pitched more masculine voices are often more successfully able to convey
a message [46]. Selection bias (i. e., unbalanced population demographics) then also becomes
a risk in the context of machine learning as models may learn to bias underrepresented vocal
characteristics in this same way, and researchers must be aware of such cognitive-derived
imbalances [47]. Furthermore, cognition is extremely subject-dependent, and it is known that
several environmental aspects e. g., degree of noise, will affect how an individual perceives
the emotion speech [48].

2.1.1 Computer Audition and Machine Learning

In today’s computer audition landscape, machine learning is a core resource, and is applied
for the analysis and generation of various human phenomena in the experiments conducted
within this thesis. With this in mind, it is essential to give a fundamental description of the
typical audio-based machine learning pipeline. In Figure 2.2, an illustration of a feature-based
machine learning pipeline is depicted (above) along with an end-to-end approach where
feature extraction is omitted, and data processing is less extensive (below). It is important
to note that although fruitful, the end-to-end approach can be a challenge when data is
sparse [49]. For analysis of speech-driven computer audition aspects, feature-based machine
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Figure 2.2: An overview of a feature-based machine learning pipeline (above) and an
end-to-end deep learning pipeline (below), applicable but not exclusive to audio-driven tasks.

learning approaches often offer a more interpretable outcome as they have been derived from
expert-driven domain knowledge, which may be more suited to sensitive targets such as
emotional wellbeing analysis.

From left to right of the Figure 2.2, at first, the raw audio representation is seen as an
input to the system. Ideally, with supervised approaches, the dataset from which the audio
is taken will include extensive annotations in order for the machine learning model to learn
representative patterns within the data. Such labels will be given directly to the machine
learning algorithm unless a fusion of subjective labels is needed, or an imbalance in class
distribution is likely to cause a bias.

Several tasks are performed during the data processing step. These include, but are not
limited to, filtering e. g., noise removal, loudness normalisation, removal of silence, Voice
Activity Detection (VAD), knowledge-based segmentation, and partitioning. For such data,
fixed partitions are common, mostly as it is vital that partitions are speaker-independent and
that no development is based on mixing speakers across the partitions due to the unique
representation of individual voices. With that in mind, labelled meta-information may also be
utilised for condition-specific partitioning strategies and ensure a balance of demographics
such as sex and age (which are prominent in the voice [50]).

Once data is processed, numerous feature types can be extracted from the signal, where
the particular audio target is essential to consider. For example, for environmental audio
data, features derived from spectrogram images, or spectral derived acoustic Low-Level
Descriptors (LLDs) such as Mel-Frequency Cepstral Coefficients (MFCCs) may be of use
as they offer a more general overview of the acoustic environment. However, for speech,
much of the acoustic environment should be ignored, and so LLDs which relate to speech
characteristics, e. g., prosody and voice quality, may be more applicable. With this in mind,
hand-crafted sets are also available, such as the extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) [51], which has been designed explicitly to capture emotional
speech characteristics.

The next step in the pipeline is training the machine learning algorithm. In this thesis,
primarily predictive models will be discussed, where the goal of the model is to learn a
function f which can determine the label value y of an input x, as y = f (x). This function
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can be learnt in several ways, but two primary approaches are ‘classification’, or ‘regression’,
where a classification algorithm attempts to learn categorical values, e. g., happy or sad, and
a regression algorithm learns a dimensional value, often time-dependent in nature. However,
the choice of model is not based on a static rule, and optimisation during the experimental
development is vital to explore to find the best method for modelling and discussing the
phenomena in question. For classification, in the computer audition field, researchers will
apply both classical machine learning algorithms as well as deep learning networks. It may
be that a less complex algorithm, e. g., Support Vector Machine (SVM) [52], is applied as a
more interpretable tool for initial exploration where analysis of the phenomena is more of a
priority. Deep learning, on the other hand, may be more suitable for larger-scale experiments,
which are focused only on the accuracy to which a target can be recognised computationally,
in this case, as well as the more straight-forward Feed-Forward Neural Network (F-FNN)
the Convolutional Neural Network (CNN) has been successfully applied in the context of
large-scale audio classification [53]. When it comes to regression tasks, the practice is similar,
with SVM based regression algorithms being commonly applied at earlier stages due to
their robust nature on smaller quantities of data. However, in this case, great strides are
being made which are more specifically applicable to the audio signal, e. g., the Recurrent
Neural Network (RNN), which can capture more fine-grained time-dependent relationships
in audio [54], and results in this area continue to improve, particularly in relation to speech
emotion recognition [55].

After a model is trained, it can then predict with a certain degree of accuracy values for
unknown audio data. There are several ways to evaluate model performance. For classifi-
cation, evaluation can be made with the ‘accuracy’ metric where a percentage is obtained
based on the total correct instances overall observations. However, this can misrepresent
the data, mainly if the classes are imbalanced. Therefore to consider the performance on a
single class, the ‘precision’ and ‘recall’ can be calculated and combinations of this can give
finer grained understanding i. e., the F1-score, or the Unweighted Average Recall (UAR)
(which is commonly applied to imbalanced speech datasets). For regression tasks, correlation
(e. g., Pearson’s correlation coefficient (r)) or error-based metrics (e. g., Mean Absolute
Error (MAE)) can be applied to observe the relationship between two continuous streams of
data (actual values vs predicted values). As with the model selection, the evaluation metric is
also crucial to ensure that model performance is fairly reported – often, best practice, at least
when tuning a model, is to observe multiple metrics simultaneously.

As mentioned above, a crucial part of the computer audition machine learning pipeline is
appropriate data processing, and there are several computer audition sub-domains which are
focusing only on data processing, as this can not only improve machine learning results but
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also be applied as standalone models to improve user experience, e. g., speech enhancement
technologies can, on the fly, improve the clarity of speech, primarily via background de-
noising [56] or packet loss concealment approaches [57]. Denoising is a commonly applied
process in computer audition, as the complex nature of audio means that it is not uncommon
to have disturbances such as traffic noise or recording artefacts. Concerning this, VAD is also
applied to detect who is speaking and for how long. However, separating speakers on the
fly remains a challenge, and for many years the computer audition community was tackling
these problems via a combination of filters and classical algorithms e. g., hidden Markov
models (HMMs) [58]; however recently end-to-end approaches show promising results [59].
In sterile settings, such as the office or home, these approaches are much more successful.
However, where actual advancements continue to be needed is concerning in-the-wild data,
and a number of machine learning challenges (i. e., competitions) are currently focusing
on this as it pertains to emotion [60]. This is mainly a problem when analysing states of
wellbeing, as truly spontaneous interactions are more accessible via in-the-wild data sources.

2.2 Computational Paralinguistics and Wellbeing

Computational paralinguistics is a sub-field of computer audition and speech processing
in general, which applies computational approaches to the analysis and reconstruction of
‘paralinguistic’ phenomena. The field of paralinguistics is defined adjacent to ‘linguistics’
and does not necessarily include conventional linguistics, such as the structure of a language
or phonetics [1]. Essentially, paralinguistics is concerned with how something is said and not
with what is said.

This field began to gain broader attention as approaches for automatic prediction of
affect in speech with machine learning become valid, and competitive challenges within the
machine learning community began to focus on this topic. The first of its kind in this regard
was the 2009 Computational Paralinguistics Challenge (ComParE) [61]. This challenge
focused entirely on emotion data, and later iterations of ComParE included more extensive
paralinguistic states and also traits [62]. In their book [1], Schuller and Batliner describe
traits as being distinguishing qualities and inherited characteristics, essentially long-term
aspects of an individual which are to an extent, fixed, e. g., age, or native language. However,
a state is described as a short-term condition of being e. g., emotion or degree of stress. The
authors also describe mid-term states, which are partly self-induced, and can be seen as traits
for a period of time e. g., speaking style in a given social situation or intoxication.

Computational paralinguistics is particularly suited to the analysis of emotional wellbe-
ing, due in part to the role which physiological and cognitive systems play during speech
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Figure 2.3: An illustration adapted based on [64], of the anatomical structures and organs
involved in the mechanics of speech. The figure depicts the overall complexity of speech
production, which supports the findings that specific conditions can alter vocal qualities by a
substantial amount.

production – in other words, subtle changes in a speaker’s mental state can subconsciously
change the mechanics of our vocal apparatus, altering acoustic characteristics which can then
be measured [7]. To detail this, in Figure 2.3 an anatomical representation of organs involved
in speech production is given, and it is clear from the point of vocal production (the vocal
folds) that there are several physical organs to which the signal should pass, and some will
alter due to mental changes e. g., tension in the jaw during stress [63].

As already mentioned, the ComParE challenge is one such testing bed for exploration
into these paralinguistic states and traits of speech, with a vast number of phenomena
explored to a high degree over the years. Given the nature of ComParE, numerous machine
learning approaches have been explored, with many more applying now deep learning-driven
approaches when data quantities allow [7]. In Table 2.1, an overview of datasets which
have been explored within the ComParE paradigm, concerning short to mid-term states of
wellbeing, is given. As can be seen, many state-based tasks apply classification as either the
absence or presence of a specific phenomenon. Although in many cases this may be suitable,
finer-grained regression-based learning is becoming more of a standard for modelling states
of speech [65], and a combination of the two is showing to be even more valuable when it
comes to in-the-wild recognition [66].

The datasets listed are mainly containing a single native language, e. g., English or
German. It is, of course, meaningful to maintain balance over such variables; however,
particularly for traits, e. g., sex or states, e. g., of intoxication, language does not play a
substantial role in recognising the phenomena. Although native language can be reasonably
recognised with current computational methods [76], it is rather cultural groupings, which
change how states of emotion are perceived in a vocalisation [77]. This may become more
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Table 2.1: An overview of available datasets which target short to mid-term states of wellbeing
and have a benchmarkable baseline provided by the Computational Paralinguistics Challenge
(ComParE). Table includes, detail of the sub-challenge task itself, spoken-language, number
of participants (#), gender (f)emale, and mean (µ) and standard deviation (σ ) of age in years.

Dataset Year Task Demographics Language

SLC 2011 [67] 2-class, presence vs absence
of fatigue.

# 99 (56 f), age µ 24.9 (σ 4.2)
years.

German

ALC [68] 2011 [67] 2-class, presence vs absence
of intoxication.

# 162 (78 f), age µ 31 (σ 9.5)
years.

German

GEMEP [69]. 2013 [70] 12-class, emotion see [70]. # 10 actors (5 f), –, –. German

MBC [71] 2014 [72] 2-class, low vs high physical
load.

# 19, (4 f), –, –. German

CSLE [73] 2014 [72] 3-class, 1,2,3 degree of cogni-
tive load.

# 26 (6 f), –, –. English

URTI [74] 2017 [75] 2-class, presence vs absence
of cold symptoms.

# 630, (248 f), age µ 29.5 (σ
12.1) years.

German

USoMS 2018 [29] 3-class, low, mid. and high
valence.

# 100 (85 f), age µ 22.3 (σ
3.6) years.

German

SLEEP 2019 [30] Karolinska Sleepiness Scale
(KSS) 1-9 see [30]

# 915 (364 f), age µ 27.6 (σ
11) years.

German

USOMS-e 2020 [9] 3-class, low, mid. and high
arousal or valence.

# 87 (55 f) age µ 71.01 (σ
9.14) years.

German

UCL-SBM 2020 [9] Continuous breath rate. # 49 (29 f), age µ 24 (σ 10)
years.

English

complex when considering para-language i. e., laughter, screaming or crying, which can
express a variety of emotions and meaning [78] but acoustically appear similar.

2.2.1 A Baseline for Computational Paralinguistic

In most cases, the baseline for speech-based challenges, such as the one provided in the
context of Computational Paralinguistics Challenge (ComParE), would be set based on
extraction of hand-crafted features, and a supervised (labels are provided) machine-learning
algorithm e. g., an SVM (see Chapter 3). This method is a particularly suitable set-up for
smaller sized datasets, partially as meaningful and robust insights can be obtained quickly.
However end-to-end approaches, e. g., utility of the End2You toolkit [79]1 or similar, are
becoming more common, and baselines have been release with end-to-end methods since

1github.com/end2you/end2you, accessed on: 09.2021

https://github.com/end2you/end2you
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the 2018 ComParE challenge [29]. End-to-end methods are shown to be meaningful for
continuous tasks, applying a CNN to extract spatial features, and an RNN-block architecture
to model the time-dependencies of the audio data [79]. However, given the limited data
available, robust performance can be difficult to obtain, and optimisation can be slower
compared to traditional machine learning methods, never-mind the computational expense
which can be limiting for some academic groups.

In regards to available features, there are several hand-crafted feature sets which have
become standard for paralinguistics recognition, and remain a solid approach. Such feature
sets are derived from LLDs which were selected in collaboration with experts, particularly
those who have a phonetics or linguistics background. A very prominent hand-crafted
feature set is the ComParE set [80], which is known as a brute-force approaches as it
consists of 6 373 functionals, which are the result of computations over 65 LLDs contours,
and has been successfully applied in a wide range of paralinguistic tasks. Other sets, as
mentioned earlier, include eGeMAPS [51], and the openSMILE toolkit can be used to extract
these configurations and more and is still popularly used 2. openXBOW [81] is another
popular feature extraction toolkit 3, which generates a bag-of-words representation from
acoustic LLDs, and often within the context of ComParE, this feature quantisation method
has achieved the strongest baseline result, likley as it retains only the most meaningful
information. It is also worth noting that similar to openSMILE, is the python native audio
processing toolkit Librosa4, which can be applied for extraction of many acoustic LLDs, and
much more, e. g., audio plotting and audio conversion.

Deep learning approaches are also being applied to extract features from paralinguistic
phenomena with some great success [82]. One prominent feature set popularly applied for
speech-based tasks, and now paralinguistics is VGGish [53], which is an audio adaptation
of the vision-based VGG16 with some layer pruning to reduce the number of parameters.
For VGGish was initially presented as the embeddings for the large-scale AudioSet [83]
dataset, and the network was initially pre-trained on audio from the YouTube 8M dataset [84],
making this set suited to environmental audio use cases, and it has recently been found to
be suitable for Speech Emotion Recognition (SER) tasks [60]. Similarly to the VGGish
approach, several researchers have also been utilising image-based pre-trained CNNs to
extract activations from audio plots, e. g., spectrograms. One popular toolkit available for
this is DeepSpectrum [85], which essentially feeds spectrograms images to a pre-trained
CNN, e. g., AlexNet, and then extracts features from the fully-connected layers of the CNN.
Further details on these approaches will be given in Chapter 3.

2github.com/audeering/opensmile, accessed on: 09.2021
3github.com/openxbow/openxbow, accessed on: 09.2021
4github.com/librosa/librosa, accessed on: 09.2021

https://github.com/audeering/opensmile
https://github.com/openxbow/openxbow
https://github.com/librosa/librosa
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When discussing computational paralinguistics baselines, it is essential also to note that
in recent years, many approaches are derived from multimodal data, often with a substantial
improvement found for specific targets. This is particularly true when it comes to emotional
targets, where linguistic features have been found to model positivity (i. e., emotional valence)
better than the audio signal. In ComParE 2020 for the first time, a language transcription
feature extractors was provided with the baseline and reported a substantial improvement
over audio-only for classification of mood in elderly speech [9]. Furthermore, through fusion
with video-based features, paralinguistic targets are finding marginal improvement in the
area of stress [15]. These multimodal approaches do all show great promise, however, such
methods tend to lean away from pure-paralinguistic research, and become more brute-force
in nature, leading to less interpretation.

2.3 Emotional Speech and Empathy in AI

This thesis is concerned with computational audio-based methods for analysing and under-
standing emotional wellbeing, and although it is not the core focus, it would be a natural
fit to discuss that a use case for this research is to support development into the empathy of
AI systems. Empathy, has been discussed in the AI related literature for quite some time,
particularly as it pertain to the adaption of pedagogical agents [86], however as AI become
more embedded in daily life the discussion of empathy is becoming more prominent [87, 88].
Empathy is often included as part of the next evolution in AI, Artificial General Intelligence
(AGI) [89] – i. e., the ability for an AI to perform human intellectual activities. Along with
being able to perceive, access, and decipher reality, AGI, should be emotionally aware and
consider ‘emotional grading’, i. e., the emotionality of its given ‘reality’, and behave with
empathy towards emotion as needed. This does not only pertain to human interactions with
physical AIs, e. g., robotics; this can also mean that the AI system within a smart-device
for example, is more considerate of a given human state and designed sensitively, e. g., un-
derstanding general digital wellbeing. In this way, empathy and AI is informed and slightly
adjacent to the well-established area of affective computing [90], which focuses specifically
on intelligent methods to interpret and understand affective states. The empathy of AI in a
way extends on this, in that it is aimed at developing more harmonious interactions, informed
by researchers from both technical and non-technical background, e. g., Googles Empathy
Lab. AI empathy includes more than states of mood and feeling, but also current activity,
interpersonal relationships, and objective truths e. g., how full an individuals calendar might
be that day. Such aspects may be having an impact on an individual’s wellbeing at a given
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time, and therefore responding with empathy may be a better long-term solution for our
interactions with AI technology.

The criticism for empathy and AI should also be noted here, mainly as it concerns
healthcare. Several experts in the health domain consider that empathic human behaviours
are both unethical and impossible to replicate [91]. With this in mind, it is essential to
define the scope of empathy in AI within the context of this thesis, and when considering
human emotional wellbeing, the benefit for this as well as the true technical meaning should
be clear. One area highlighted for concern relates to the definition of empathy itself, for
which there are three core descriptions, affective (emotional) empathy, cognitive empathy, or
motivational empathy. Emotional and motivational empathy are types of empathy that elicit
a visceral feeling. In contrast, cognitive empathy can be somewhat more of a means to an
end, acting on what is seen and not based on emotional understanding; as the authors in [91]
mention, this can be a manipulative trait, and therefore avoiding this type of empathy which
may respond to a reward cycle could be critical. In general, however, in the context of this
thesis, when discussing empathy and AI this is not focused on applications that are for human
replacement, but instead resources for human support, which of course can still be questioned
for it ethical implementation, however this is why interdisciplinary with the field is crucial, as
it pertains to the RQ-4 (see Chapter 1), and later discussed again in Section 5.2. In the sense
of aiding and not replacing, by understanding a state of emotional wellbeing from audio, this
information can be a tool for improving empathic responses, which in turn aids individuals
during the challenges of modern life, and therefore facilitates agency for improved emotional
wellbeing – in other words, when considering the earlier definition of wellbeing detailed
in Figure 1.1, suppose that an empathic AI state is an additional resource which is available
during a short-term increase in challenges, restoring the balance of wellbeing.

2.3.1 Modelling Emotion from Speech

With the above passages in mind, understanding emotion is a core component of an AIs
ability to reason with emotional empathy, and Speech Emotion Recognition (SER) as a
research area would be a vital aspect of this. SER is an adjacent area of machine learning to
computational paralinguistics, which targets either categorical (i. e., discrete), or continuous
states of emotion from the speech signal. This section is an extension to many of the
points already discussed in Section 2.2, with a focus on, and introduction to speech emotion
modelling. In Figure 2.4, a step-by-step outline for a SER pipeline is shown.

As a first step when targeting emotion, a model for emotion should be found; this
is typically a selection categorical emotion classes or a dimensional representation of an
emotions’ activation. There are a number of models, which are continually discussed in-depth
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Figure 2.4: Components for the development of an SER system. Adapted based on the
overview presented in [92].

for their relevance by the emotion community [93], however for the purpose of this thesis,
those which are currently being regularly applied within SER and affective computing in
general will be discussed in the proceeding section. Furthermore, the methods for rating
an utterance are also continually discussed, i. e., self-assessment of one’s emotion vs the
perceived emotion from others, and there is debate on the validity of models based on
perceived emotions, particularly as ones true feelings can often be masked [94]. However,
given that perception is essentially what a machine is attempting to imitate several researchers
continue with this line of thinking and utilise the perceived emotion ratings, yet many datasets
(including several described in this work) will attempt to include various ratings for which a
model can be tuned too.

As it pertains to categorical emotions, Ekman’s, so-called ‘basic six emotions’ [95],
continue to be used and includes the emotions of, anger, disgust, fear, joy, sadness, surprise.
Such emotion models from a machine learning perspective result in quite course outcomes
which may only be applicable for specific use cases. To overcome this affective computing
researchers began to apply dimensional models such as the Russel’s Circumplex model of
affect [96], which considers the activation (arousal) of the emotion on the vertical axis, and
the positivity (valence) of the emotion on the horizontal axis (see Figure 2.5). This model
allows for a fine-grained approach to emotion modelling, which might be more intuitive for
time dependent audio and the fluctuations in emotion that occur during speech. Russell’s
model has been widely adopted in SER, with speech having particular success at modelling
arousal [1]. However, this model for emotion is widely discussed for its validity [97] with
researchers in emotion continuing to develop various other models such as Cambria’s Hour
Glass of Emotions [98], a biologically-inspired and psychologically-motivated model which
incorporates ideas from established discrete and dimensional models.

Once a model for emotion is selected, a dataset should be acquired (or collected) with
these ratings associated to the data. In Table 2.2, an overview of a selection of datasets that
can be used for SER is given. Typically, the speech within such datasets would be gathered
in three ways, i) spontaneously (or in-the-wild), ii) via an elicitation method iii) acted . Most
researchers consider that spontaneous vocalisations which have been gathered in-the-wild are
a better representation of true emotion. However, spontaneous recordings are challenging to
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Figure 2.5: An illustration of Russel’s Circumplex model for Affect, adapted based on the
model described in [96]. In this figure, the emotional valence (e. g., positivity) is represented
along the horizontal axis, and the emotional arousal (e. g., activation) is along the vertical.

Table 2.2: A selection of SER dataset for academic research. Including, number (#) of
speakers, emotion type (Spont)aneous or (Elic)ited, the (Emo)tion model as (Dim)ensional or
(Cat)ergorical, the (Modal)ities available, (A)udio, (V)ideo, (T)ext, and the spoken-languages.

Dataset # Type Emo Modal Language

MuSe-CaR [32] 70 Spont. Dim. A, V, T English
MSP-Podcast [99] 100 Spont. Dim., Cat. A Multi
SEWA [100] 398 Spont. Dim. A, V Multi
DEMoS [101] 68 Elic. Cat. A Italian
RAVDESS [102] 24 Acted Cat. A, V English
CMU-MOSEI [103] 1000 Spont. Cat. A, V English
RECOLA [104] 46 Elic. Dim. A, V French
GEMEP [69] 10 Acted Cat. A French
IEMOCAP [105] 10 Acted Cat. A, V English
EMO-DB [106] 10 Acted Cat. A German

obtain; even with the advent of social media, which offers huge quantities of video and audio
data, annotating data remains a time-consuming effort. Spontaneous data may also come with
additional data processing requirements, such as denoising or source separation. On the other
hand, elicited emotional datasets are typically gathered in a lab setting, with participants
given tasks to perform, such as reading a book or observing images that are designed to elicit
a particular emotion. This style of speech collection is often criticised for being somewhat
mild in nature due to the ethical limitations of researchers provoking strong negative emotions.
Actors, however, are much more versed with a wide variety of emotions, and particularly in
earlier stages of SER and computational paralinguistic research, such datasets allowed for
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very stable and interesting insights into the manifestation of emotion in speech [106]. With
time, the field has moved away from acted speech to more spontaneous, in-the-wild sources.
Acted speech may be less representative of true emotion, and particularly when considering
empathy and AI this may bias the model towards strong emotional responses, which are less
likely to occur in daily-life.

Despite this demand for more spontaneous, and natural speech, in regard to academic
purposes at least, the available data is limited. This is due to a number of the factors
already mentioned, but primarily the time expense that is associated to audio data collection
and annotation. One method which can be applied to capitalise on the already gathered
smaller datasets, are transfer learning methods, which learn and combine multi-domain
representations of multiple datasets. In [107], the authors do just this, by combining a total of
26 SER datasets they propose EmoNET, which is based on a vision derived approach, where
a combination of a deep ResNet architecture and residual-adaptors [108], are used to learn
representations. Within this work [108], the authors combine the various emotion-model
classes within each of the individual datasets by mapping them to the classes derived from
the dimensional models of emotion (arousal and valence), i. e., low or high arousal, and
negative or positive valence, and neutral. Results obtained via this approach are consistently
above chance-level for each of the paradigms explored, showing that this may be a promising
strategy to allow for broader representation to be learnt, however language and cultural
dependencies as well as differences in the perception of the raters of each dataset, which
would be fruitful next steps.

For recognition of emotional states in general the state-of-the-art is continuing to evolve,
but primarily the focus in recent years has been inclusion of deep learning, particularly
attention-based Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) mod-
els [109]. In this regard, in [109], the authors propose a dual-attention based Bidirectional
Long Short-Term Memory (B-LSTM), with mel-spectrogram as input, and obtain a strong
accuracy up to 2% over next best approach from [110] (also an attention-based LSTM-RNN
architecture), on the well-known IEMOCAP dataset. However, that is not to say that mean-
ingful results can not be obtained utilising more conventional machine learning approaches,
e. g., the SVM, and for wellbeing-based application where data is even more scarce than
general speech emotion datasets such algorithms may allow for more interpretability, which
may be needed given a specific task focus.





Methodology
In the proceeding chapter, details are given for the fundamental aspects of methodologies
applied in the experiments of Chapter 4. The order of sections follows the typical machine
learning pipeline from acquiring data to evaluating the model performance, see Figure 3.1.
As with Chapter 2 a description will be given at the start of each section for the term itself.

Data Processing RecognitionRepresentationData

Data > Representation > 
Recognition > Interpretation 

Generation

Figure 3.1: An illustrated overview of the outline for the proceeding sections as it relates to
the components of machine learning pipeline.

3.1 Data

Acquiring data is a crucial aspect for any machine learning and Artificial Intelligence (AI)
system, and in relation to modelling human states, this can include textual, video (or image),
and in the case of this thesis, audio of any human phenomena. From a philosophical
perspective, data can be considered to be assumed facts which are the basis of future
reasoning, and so when applying this to machine learning the quality of data – in terms
of how well does it represent the population or how noisy is it - is an important aspect to
consider. In the following, first, a selection of datasets that have been collected in the context
of this thesis will be detailed, followed by a description of methods for annotation as they
relate to the experiments of this thesis, and then as data scarcity is a common bottleneck in
the domain of computer audition, computational paralinguistics, and particularly emotional
wellbeing from speech, a description of popular data augmentation methods is given.

3.1.1 Acquired and Applied Data

Throughout the development of this thesis, numerous speech and multimodal datasets have
been sourced and collected within the theme of emotional wellbeing. In this section, a brief
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Table 3.1: An overview of the datasets gathered during the time of this doctoral research.
Detail is given for, type (spont)aneous or elicited, number of participants (#), mean (µ)
and standard deviation (σ ) for age in years, labels (targets), (Modal)ities available, (A)udio,
(V)ideo, (T)ext, or (Ph)ysiological signals, and spoken-(lang)uage. * indicates a focus on
states of emotional wellbeing, and † indicates its utility for experiments in Chapter 4.

Corpus Type Demographics Targets Modal Lang.

SinS-DB [28] Acted # 32 (17 f), age µ 29.8
(σ 9.9) years.

Perceived sincerity A English

BioS-DB [23] ∗† Spont. # 55 (22 f), age µ 28.9
(σ 10.5) years.

Continuous arousal and
valence.

A, Ph English, German

USoMS [29] ∗ Spont. # 100 (85 f), age µ 22.3,
(σ 3.6) years

Self-assessed, categori-
cal arousal.

A German

USOMS-e [9] ∗ Spont. # 87 (55 f), age µ 71.01
(σ 9.14) years.

Self-assessed, categori-
cal arousal and valence.

A,T German

FAU-TSST [23] ∗† Elicited # 43 (29 f), age µ 24.26
(σ 4.97) years.

Sequential saliva-based
cortisol samples.

A,Ph German

Reg-TSST [31] ∗† Elicited # 27 (14 f), age µ 22.74
(σ 2.96) years.

Sequential saliva-based
cortisol samples, and
continuous heart rate.

A, Ph German

Ulm-TSST [60] ∗† Elicted # 69 (49 f), age µ 25.06
(σ 4.48) years.

Sequential saliva-based
cortisol samples, contin-
uous emotion (arousal,
and valence), and con-
tinuous heart rate, respi-
ration rate, and Electro-
dermal Activity (EDA).

A, V, L, Ph German

MuSe-CaR [60] Spont. # 350 reviews from 70
host speakers

Continuous arousal, va-
lence, and trustworthi-
ness.

A,V,T English

DAC [19] ∗† Spont. # 252 (48 f), age µ 31.5
(σ 12.3) years.

Beck Anxiety Inventory
(BAI)

A German

overview of each dataset that is used in the proceeding chapters will be given. As a more
general overview, in Table 3.1 all datasets collected during the time of the thesis are detailed.
It is also important to note that all the datasets that have been used within experiments
described in this thesis received ethical approval from their respective universities, and all
participants gave informed consent.

3.1.1.1 Trier Social Stress Test Data

During this doctoral thesis, three German-speaking datasets were gathered under the
renowned Trier Social Stress Test (TSST) [111], namely, the Friedrich-Alexander-Universität-
Trier Social Stress Test (FAU-TSST), the Regensburg University-Trier Social Stress Test
(Reg-TSST), and the Ulm University-Trier Social Stress Test (Ulm-TSST). In order to avoid
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Figure 3.2: An overview of the typical TSST paradigm, applied in FAU-TSST, and Reg-TSST,
where Ulm-TSST excludes the arithmetic task.

repetition, the general procedure for the TSST study will be described once, and where
needed, general details about each of the three datasets will be highlighted. The experiments
performed for these datasets will be detailed in Chapter 4 Section 4.1, based on previously
published works, where the FAU-TSST dataset was first introduced in [112], and the Ulm-
TSST dataset in [15], with the Reg-TSST first introduced in [31]. In [31], for the first time
the three datasets were combined for cross-corpus analysis.

The TSST is a renowned and highly standardised test used (amongst other things) for the
analysis of emotional stress [113]. The test at its core includes a speaking task and typically
several physiological signals e. g., saliva-based cortisol samples, will also be captured,
making it a beneficial testing paradigm in the context of computational analysis of states of
emotional wellbeing.

In Figure 3.2 an overview is provided for the typical TSST testing paradigm. Before
arrival at the TSST site, instructions for the subjects included refraining from exercise, eating,
and drinking anything except water before arrival. Verbal and written instructions are given
to the subject when they arrive at the test site, followed by a resting period. During this
time, for the FAU-TSST and Reg-TSST a saliva sample (S0 45 minutes before TSST) was
collected as the participant’s cortisol baseline. The subjects are then guided to the test room
and introduced to observers wearing white lab coats, and instructed to prepare to speak for
five minutes, presenting themselves as the best candidate for a vacant job. One minute before
the interview task begins, another saliva sample is taken (S1 -1minute), and recording begins
when they enter the room. After this, for a further 5minutes in the FAU-TSST and Reg-TSST
datasets, subjects are given a mental arithmetic task, where they should serially subtract 17
from 2 043. After completing the TSST speaking tasks, six more saliva-based samples are
taken from the subjects (S2-S7).

The saliva-based cortisol samples are measured in nanomoles per litre (nmol /L). The
immunoassay (i. e., biochemical analysis procedure) applied to extract cortisol from the
saliva samples varied, where FAU-TSST utilised the Chemiluminescence Immunoassay
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(CLIA), and Reg-TSST the Dissociation-Enhanced Lanthanide Fluorescence Immunoassay
(DELFIA). This means that the derived cortisol values are not entirely comparable, for further
detail on the difference in these procedures, the interested reader is directed to [114]. For the
Ulm-TSST and Reg-TSST datasets, there is also continuous physiological signals available,
heart rate as Beats per Minute (BPM) from both, and for the Ulm-TSST dataset only, there is
EDA, and respiration (based on chest displacement). Further to this, the Ulm-TSST dataset
includes continuous emotion ratings, which were rated by three annotators for the dimensions
of arousal and valence, at a 2 Hz sampling rate.

3.1.1.2 Düsseldorf Anxiety Corpus

The Düsseldorf Anxiety Corpus (DAC) was collected by members of the Institute of Exper-
imental Psychophysiology, Düsseldorf, Germany, and was first introduced in [19], and in
Chapter 4 Section 4.2, these experiments will be detailed. The dataset includes 252 speakers
aged 18 to 68 years old (average of 31.5 years, standard deviation of 12.3 years) performing
various vocal exercises. The files are categorised into different phonations, including sus-
tained vowels, read, and free speech. 239 of the speakers in DAC were evaluated under the
Beck Anxiety Inventory (BAI) questionnaire [115]. During the BAI, individuals answer a
series of questions relating to their wellbeing in the last 30 days, on a scale from 0–3. A total
of under 21 indicates anxiety, and above 36 indicates potentially concerning anxiety levels.

Table 3.2: Overview of the DAC, including gender distribution, BAI class (Low, High),
feeling of choking (No) or (Has) symptoms, difficulty in breathing (No) or (Has) symptoms.

BAI Breathing Choking
Male:Female Low: High No: Has No: Has

69:170 191:43 193:46 209:30

In relation to speech, there are two questions within the BAI which specifically relate or
may effect vocalisation, e. g., “Have you experienced feelings of choking?” and “Have you
experienced a difficulty in breathing?”. With this in mind, groupings in the data have been
prepared, for subject which do have and do not have such symptoms, as well as those above
(high) and below (low) the 21 point threshold for anxiety presence (see Table 3.2 for detail).

3.1.1.3 The BioSpeech Database

The BioSpeech Database (BioS-DB) was first introduced in [23], and later updated in [25],
and the experiments of [25], will be described in Chapter 4 Section 4.3. The BioS-DB was
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collected at the University of Augsburg, Germany and obtained full ethical approval 1, and
the latest version of the data is available for research by restricted access 2. Essentially, the
initial aim of the BioS-DB was to explore physiological and speech signals during states of
performance anxiety, which occur when speaking aloud in front of others. Version 2, will
be utilised within this thesis and includes 42 participants (17 female), with a µ age of 26.76
years (σ of 6.62 years), speaking publicly in front of a group of observers (minimum 4). Of
all of the participants, 30 of the 42 are native German, and 12 are from foreign countries.

Each participant was asked to speak the text (“The North Wind and the Sun”) aloud in
German and then in English. During their speech, three of the observers in the room were
using joysticks to continually rate the emotion of the speakers (2 Hz sampling rate), where
the vertical axis of the joystick relates to the emotion activation (arousal), and the horizontal
axis is the positivity or valence of the emotion. The raters were students who had undergone
an introduction training session on core concepts of the dimensions of arousal and valence.
The original gold-standard for the ratings was calculated with Evaluator Weighted Estimator
(EWE) (see Section 3.1.3.1) and the mean inter-rater agreement across all speakers in the
BioS-DB, was .47 and .36 arousal and valence respectively, (based on a range of [0,1]).
In Figure 3.3, the distribution of the gold-standard ratings for both emotional dimensions,
across all speakers used in our experiments is given.
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Figure 3.3: The distribution (and normalised distribution curve) of the gold-standard ratings
for arousal (left) and valence (right) across all speakers in the BioS-DB.

During their speech, two audio channels were captured, one from a lapel microphone
(AKG C417 L) and one from a room microphone (C562 BL) placed on the table in front of
the speaker. Furthermore, two sensors were placed on the fingers of the participants to capture
Blood Volume Pulse (BVP) as a % of blood volume pressure, and Skin Conductance (SC)
measured in microSiemens (µS), at a sampling rate of 2 048 Hz and 256 Hz, respectively.

1Ethical approval obtained in 2018 from the University of Augsburg’s ethics commission under the project
title ‘Multimodal Signal Recording Techniques and Emotional Analysis’.

210.5281/zenodo.4281253 access on: 09.2021

http://10.5281/zenodo.4281253
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3.1.1.4 The Geneva Multimodal Emotion Portrayals Corpus

Of all the datasets described here, the was not gathered or processed by the authors but has
been utilised with the experiements of Chapter 4. Geneva Multimodal Emotion Portrayals
Corpus (GEMEP) [69] was first utilised in the 2013 Computational Paralinguistics Challenge
(ComParE) [70], and includes ten native French actors (five female) speaking nonsense
utterances to avoid cultural, and lexical bias. Given well established use for emotion recog-
nition tasks, this dataset was used for in a previous publication by the author [26], and the
experiments for this will be described in Chapter 4 Section 4.4. For those experiments a
subset was created, and includes only four of the available emotional classes, Hot-Anger
(referred to as Anger), Elation, Sadness, and Pleasure. Those emotions were selected to cover
the four quadrants of Russel’s circumplex for affect [116] (e. g., Elation = High Arousal,
High Valence, and Sadness = Low Arousal, Low Valence), offering a more distinct emotional
setting, with potentially more perceivable diversity in the classes. The rating of the GEMEP
dataset were obtained from 57 participants who rated the media from a combination of audio
and/or video perception, and in [69] this explained in more detail.

3.1.2 Data Augmentation

Data augmentation methods are mainly focused on increasing the overall quantity of data
available. This is particularly meaningful for audio, given its time-dependent nature, which
means acquiring such data manually is time-consuming and costly, typically resulting in
smaller scale datasets than other areas of machine learning research e. g., vision and text,
which can more effectively be scrapped from in-the-wild sources e. g., the internet, and social
media. There is however the AudioSet database, which has been collected in this manner, and
is one audio-specific resource targeted primarily at acoustic even detection tasks, given the
categorical labelling provided [83]. Despite the major benefits of audio, the sparsity of data
when it comes to emotional wellbeing targets, means that many deep learning methods are
not suitable, and robust results are a challenge to obtain on the raw data alone. Furthermore,
imbalance across classes can be common, particularly in regards to demographics, e. g., male
vs female, where students are the primary target. As well as this certain classes can be in a
minority e. g., highly emotional states, which are more of a challenge to obtain.

As well as increasing overall size of a dataset, when classes within a dataset are imbal-
anced, several conventional approaches can be applied to the training set independent of
the modality to either upsample the minority class or downsample the majority class, these
include: i) Random re-sampling, a standard and easily implemented method, where the data
points from the minority class are duplicated (upsample) or from the majority, class are
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Figure 3.4: Example spectrogram representations of audio-based augmentation. a) The
original source audio, b) pitch shifted by +10 Hz, c) SNR of 10dB, d) time-shifted by 0.2
seconds, e) time-stretched by a factor of 3, f) SpecAugment randomly generated sample.

removed (downsample). ii) Synthetic Minority Oversampling Technique (SMOTE), a more
targeted approach for upsampling [117] which artificially produces instances of the minority
class based on the clusters which exist. SMOTE is selecting class data points and calculating
the k-Nearest Neighbours (kNN) for this point, and synthetically adding points between the
neighbouring classes. iii) Tomek links, a method to mitigate the inherent randomness from
the other approaches which may not reflect the original distribution, which searches and
removes pairs of data points based on their euclidean distance from one another.

3.1.2.1 Audio-Specific Data Augmentation

There are several common methods for data augmentation which are specific to audio
(see Figure 3.4), these include (but are not limited too):

Pitch shifting is the process of altering the pitch of the sound without altering the speed of
the sound and without consideration to the fundamental pitch (F0) of the voice. This
should be applied sparingly in the context of speech as it may be destructive.

Additive noise, is typically the addition of white noise (e. g., random frequencies with regular
distribution at the same volume intensity), is added to the signal at a set loudness. In a
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similar way real-life ’background’ noise, e. g., from an office environment, could also
be added to the signal at a given Signal-to-Noise Ratio (SNR).

Time-shifting is the process of moving the signal by a set amount either forwards or
backwards in time. Of all those described herein, this is typically the least destructive,
and most similar to the original sample.

Time-stretching is the process of speeding up or slowing down the signal,without affecting
the pitch of sound but altering the duration, this process can destructive in a similar
way to pitch shifting, as it may alter natural aspects of the speech phenomena.

When applying manipulation to the audio signal as an augmentation approach, the choice
should be based on the audio phenomena being targeted, as it will impact the machine
learning models’ ability to learn the nature of the embedding space in regards to a given
phenomena. For example, applying a degree of pitch shifting when utilising the speech signal
can alter the perceived state, particularly when it comes to emotion. Time-shifting is also a
minimal alteration and may, in some cases, not improve the results, as no diversity is added
to the embedding space, where more diversity is needed, additive noise may be more suited
as this is subjectively very different to the source data [26].

When utilising spectrogram images for training, there is also the SpecAugment ap-
proach [118], which applies masking to the spectrogram images on the frequency and
time-axis at random positions, as well as warping the image horizontally or vertically. This
method has shown to be promising for several audio tasks, including for SER [25].

3.1.3 Gold Standards for Emotion

As discussed in Chapter 2 obtaining label information for computational paralinguistic and
Speech Emotion Recognition (SER) tasks is a time-consuming task which requires in most
cases a substantial amount of human-effort for reliable results. Within the above datasets,
numerous labelling strategies have be applied in the case of subjective data. These are either
categorical (e. g., the GEMEP) or continuous (e. g., BioS-DB), and for perceived emotion
it is vital to consider the opinion of at the very least three external raters, depending on
the task and the level of experience [119]. In some cases, self-assessed emotional values
can also be utilised, however in the psychology literature, some findings suggest that self-
reported dimensions of arousal do not correlate highly with physiological responses [120],
and therefore are a challenge for audio [29].

In regards to subjective targets, a gold standard is the agreed upon signal and can be
considered as a pseudo-ground-truth. When creating a gold standard, the aim is to build
a consensus from several individual annotations. The methods for this is different for
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categorical or continuous ratings, with some methods developed with subjective labelling
in mind and other more standardised time-series-based approaches applied successfully to
subjective-based tasks. The process can be relatively straightforward for categorical labels,
and it is common to use a majority-voting approach, where the most commonly occurring
values are considered, mainly when the values are not ordinal. For an ordinal discrete value,
it may be more meaningful to calculate the mean across all raters. Various clustering methods
can also be applied for discrete gold standard creation, and an approach for this was described
as part of the 2021 Multimodal Sentiment Analysis in Real-life Media Challenge (MuSe)
baseline [15], and made available with the release of the MuSe-Toolbox [27]. However, the
effectiveness of any approach will depend on the number of and agreement between raters.
Agreement (referred to as inter-rater reliability) is, therefore, a meaningful value to report,
and in the case of multiple raters, one metric for categorical labels is Fleiss’ Kappa [121].

For a dimensional (continuous) rating, there are several methods to create a gold standard.
Some include weighting based on the agreement, and others provide compensation based
on an annotator delay [122]. To calculate agreement between continuous ratings typically,
researchers will apply a correlation metric such as Pearsons Correlation, however as emotion
is highly subjective, considering the scaling variance between ratings is meaningful, and so
the Concordance Correlation Coefficient (CCC) can also be reported. In general, the methods
for gold standard creation are slightly more complex for continuous rating, and so methods
applied to data utilised in the experiments of Chapter 4 will be described herein with detail.

3.1.3.1 Evaluator Weighted Estimator

The Evaluator Weighted Estimator (EWE) [123] is one method which is very applicable
for subjective rating as it is based on a reliability evaluation of the raters, as presented
in [36]. EWE has been utilised for the ratings of the BioS-DB [25], and the Ulm-TSST [24],
as well as the initial release of MuSe-CaR [32]. EWE essentially is a weighted mean
of all rater-dependent annotations, sometimes interpreted as the weighted mean of raters’
similarity [123]. To compute the weights, the cross-correlations of an annotation to the mean
of all other annotations is calculated for each annotation. It can be formally expressed by:

x̂EWE
n =

1

∑
K
k=1 rk

K

∑
k=1

rkx̂n,k, (3.1)

and then rk is the similarity of the k-th annotator to all other continuous ratings.
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3.1.3.2 Rater-Aligned Annotation Weighting

To extend on the benefits of EWE, in the context of emotion, the Rater-Aligned Annotation
Weighting (RAAW) approach was first proposed by the author and colleagues in [15], and
is included as part of the MuSe-Toolbox [27], which provides a number continuous and
discrete gold standard methods. This approach was utilised for experiments which apply
the Ulm-TSST datasets [24]. The RAAW method essentially targets two core issues within
emotional gold-standard creation, i) the alignment of ratings based on the delay which is
common for continuous annotation, by up to 6-seconds [124] ii) the disagreement or poor
quality of a single rating .

This first issue is tackled by a calculation of Generalised Canonical Time Warping
(GCTW), which is an extension of the well-known Dynamic Time Warping (DTW) method.
DTW is an alignment approach which implements a distance metric to add elastic properties,
computing the best global alignment between signals based on a one-to-many mapping
from data points. An extension of DTW is Canonical Time Warping (CTW) [125], which
in addition to DTW integrates Canonical Correlation Analysis (CCA) [126], a method
for extracting shared features from two multivariate data points. CTW was first applied
in the context of computational analysis of human behaviour as a method to align human
motion from a multimodal time series [125]. Combining CCA with DTW allows for a more
flexible time-warping that handles local spatial deformations of a time series. The CTW was
further extended in [127] to GCTW, and this enables multiple sequences (CTW should be
done in a pair-wise fashion) to be fused in a computationally efficient way via a reduction
of the quadratic to linear complexity. Essentially, RAAW calculates both the alignment,
with GCTW and the annotator weighting, with EWE. First, the alignment with GCTW is
performed, and then within the RAAW calculation, the similarity (or agreement) is also
reported utilising CCC. If in the case of a negative correlation, the signal is excluded from
the final step, which is the weighted EWE fusion.
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3.2 Representations of Audio

In a machine learning paradigm, there are several ways in which the audio signal can be
represented. Although great strides have been made, the problem of representation is an
ongoing area of research that remains a challenge in the computer audition community. This
is particularly relevant as computational capacity becomes a crucial aspect of embedded
intelligent systems.

It is important to note, that end-to-end methods will typically bypass the need for feature-
based representations and learn directly from the raw audio signal, however depending on the
task itself, it may be fruitful to explore lower-level representations which are tailored to the
domain. To obtain these lower-level feature-based representations of audio, a transformation
of the audio-signal into the frequency domain must first be performed commonly via the
calculation of an Fast Fourier Transform (FFT) over the given sequence (for further detail
on the process for applying the mathematical function of an FFT see [128]. As audio is a
time-dependent modality, and an FFT will not give information on how frequency is changing
over time, only its magnitude, and so the Short-time Fourier transform (STFT) is then applied
to obtain frequency magnitude information over time, where a frame (or window), and degree
of overlap is set statically, moving forward through the signal at a hop size (step to next FFT).

Lower-level representations can then be extracted from this frequency over time repre-
sentation either over the entire sequence or again by applying a sliding-window at a static
hop size. As with all other aspects of the machine learning pipeline, the optimisation of
frame and hop size at this point is a critical aspect to consider. It is also worth noting that
for speech-driven tasks, the frame-size can be based on the length of an utterance or with
consideration to speech pauses or voiced activations of speech (by applying a Voice Activity
Detection (VAD) algorithm). This type of segmentation may be particularly relevant and
more meaningful to the phenomena in question, as this process reduces the impact of other
acoustic activity in the environment.

3.2.1 Acoustic Low-Level Descriptors

Acoustic Low-Level Descriptors (LLDs) are, as the name suggests, low-level (i. e., close
to the signal) representations of the audio signal extracted at discrete intervals over time.
There are several LLDs which are commonly used in the context of speech, particularly
computational paralinguistics analysis and recognition, namely prosodic-based features
e. g., speech rate, and acoustic-based, e. g., cepstral or spectral derived features [1].
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In Chapter 4, a number of the experiments utilise feature sets based on extracted LLDs,
and it is also common for LLDs to be used directly with great success [9]. Prosodic features
are the core of speech-based tasks and include features that are aimed at modelling the
suprasegmental aspects of speech, and from a linguistic and phonetics perspective, this
includes; pitch (F0), loudness and rhythm. However, several acoustic LLDs, not rooted in
the etymology of linguistics or phonetics, have been found also to model suprasegmental
properties of speech and most computational paralinguistics literature will also include these
within the prosodic feature grouping [129]. Here a description of four of the more common
LLDs is given, particularly those which are referenced in the acoustic analysis conducted in
Chapter 4 Section 4.2:

Pitch (F0): F0 measured in Hertz (Hz), describes the pitch contour of the fundamental
frequency (the lowest frequency in the harmonics of speech). Extracting F0 from the
speech signal can be performed utilising a pitch detection algorithm, and several well
established methods can be applied for this [130]. Due to its lower computational
capacity, the Average Magnitude Difference Function (AMDF) [131] is a standard
method for many applications, with several extensions of AMDF being published
which aim to improve on what is referred to as the ‘falling tendency’ [132]. When
utilising the F0 contours, it is common to calculate segmental based difference in
distribution of the signal,s e. g., the mean, median or skewness. Concerning pitch
are the formants of speech, which represent frequency peaks within the frequency
spectrum, and it is considered that each formant refers to a resonant activation in the
vocal tract, particularly the tongue (F1-F2) and lips (F3) [133]. Pitch is known to alter
when a number of states of wellbeing being are influx, particularly conditions such as
depression which is known to have a lower F0 during periods of depressions [134].

Intensity / Loudness: As with pitch, the intensity contour can be extracted directly from the
audio signal. Loudness, i. e., sound intensity, is the degree of sound pressure intensity
which is being sensed, and the relative logarithmic measure for this is known as Sound
Pressure Level (SPL) [135], however, this should be considered as a looser proxy
for speech intensity, as the intensity would be proportionally impacted by all other
acoustic events. As with pitch, lower intensity is also known to be linked to poorer
states of wellbeing including general sadness and depression [136].

Duration: The rhythm or duration of a speech utterance can be automatically calculated
in based on a summation of intensity and refers to the activation of speech, including
voiced, unvoiced and silent segments [137]. From this descriptor, aspects such as



3.2 Representations of Audio 33

speech rate can also be observed. Speech rate is beneficial in the context of emotional
wellbeing states, as it is known to alter, particularly during emotional expression [138].

Harmonic-to-Noise Ratio (HNR): The HNR is metric for the ratio between periodic and
non-periodic components with a segment of voiced speech [139]. The overall HNR
value for a given signal will vary as different vocal tract activations effect the amplitude
of each of the harmonics. There are two components, the vibration of the vocal cords
and the glottal noise expressed in decibels (dB), it is the relationship between these
components which denotes the speech quality. HNR is discussed in the literature as an
indication of dysphonia i. e., disorder of the voice [140].

Considered as part of general acoustic LLDs [80], and probably the most well-establish
method for representing the audio signal are the Mel-Frequency Cepstral Coefficients
(MFCCs). Proposed initially in 1976 [141], MFCCs are still applied for state-of-the-art mod-
elling today and remain a robust baseline for many computer audition tasks. The MFCCs are
highly motivated by human-hearing and are based on the extraction of cepstral coefficients
from a given number of filter banks, spaced based on the mel-scale [142]. As with most
other approaches, the speech signal is first transformed to the frequency domain, and filter
banks of a set amount of frequency bands are applied. These filter banks are based on the
logarithmically spaced mel-scale, with an intensity weighting of the frequencies to represent
the perceptual nature of audio better. As with the purely prosodic features typically, the
zero-coefficient (log power) and segmental based difference e. g., delta, and delta-delta, will
be calculated for MFCCs.

3.2.1.1 Hand-Crafted Features Sets

Based on a number of the aforementioned LLDs, hand-crafted feature sets have been compiled
to ‘brute-force’ the representation of the target phenomena, with particular success for
computational paralinguistics targets [76, 49]. Such sets can be generated in a pseudo-
manual way with python-based toolkits such as Librosa [143], or several established features
sets can be extracted with the well-known openSMILE toolkit [144]. The ComParE set
is a widely used hand-crafted set that can be extracted with openSMILE, and remains
competitive for SER based tasks [145]. The latest ComParE set from 2016 [76] consists of
6 373 functionals which have been calculated based on a set 65 LLDs from 4 core groups
of acoustic LLDs, prosodic, spectral, cepstral and voice quality. An overview of the LLDs
for this set is given in Table 3.4, with further details for spectral and voice quality LLDs, or
other which have not been described herein given in [142].
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Table 3.3: The 65 LLDs for the 6 373
derived functionals of the ComParE set.

4 Energy-based LLDs Group

Sum of spectrum (loudness) Prosodic
Sum of RASTA-filtered spectrum Prosodic
RMS Energy, Zero-Crossing Rate Prosodic

55 Spectral LLDs Group

RASTA-filtered spectrum bands. 1–26 Spectral
MFCCs 1–14 Cepstral
Spectral energy 250–650 Hz, 1-4 kHz Spectral
Spectral Roll-Off {0.25, 0.5, 0.75, 0.9} Spectral
Spectral Flux, Centroid, Entropy, Slope Spectral
Psychoacoustic Sharpness, Harmonicity Spectral
Spectral Variance, Skewness, Kurtosis Spectral

6 Voicing-related LLDs Group

F0 (SHS & Viterbi smoothing) Prosodic
Probability of voicing Voice Quality
log. HNR, Jitter (local & δ ), Shimmer (local) Voice Quality

Table 3.4: The 25 LLDs for the 88 de-
rived functionals of the eGeMAPS set.

3 Energy / Amplitude-related LLDs Group

Sum of spectrum (loudness) Prosodic
logarithmic HNR, shimmer (local) Voice Quality

15 Spectral LLDs Group

α ratio, 50-1000 Hz, 1-5 kHz Spectral
Hammarberg index [146] Spectral
Spectral slop, 0-500 Hz, 0-1 kHz, Flux Spectral
Formant 1, 2, 3 relative energy Voice Quality
MFCCs 1-4 Spectral
Harmonic difference H1-H2, H1-A3 Cepstral

8 Frequency-related LLDs Group

F0 (semi-tone) Prosodic
Formants 1,2,3 (frequency) Voice Quality
Formants 1,2,3 (bandwidth) Voice Quality
Jitter (local) Voice Quality

As well as the ComParE set and a number of others, there is also the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) set [51], which was specifically designed
with emotional speech in mind. The LLDs that are selected for the eGeMAPS set were chosen
by the authors through a discussion with interdisciplinary speech scientists and is justified by
three core criteria i) the ability of a particular LLDs to model a physiological change in vocal
production during an emotional state ii) the success that the particular parameter had in the
context of machine learning from speech iii) and the theoretical significance of that feature
as it pertains to alternative research in the acoustics of emotional speech . The eGeMAPS set
is much smaller than ComParE and consists of 88 functionals, which are derived from 25
LLDs (see Table 3.4, for an overview).

3.2.2 Image-Based Learnt Representations

Although remaining robust and competitive for many computational paralinguistics-based
machine learning tasks, the hand-crafted sets are, in modern machine learning, often criticised
due to their heavy need for human intervention [40]. An alternative method for extracting
audio representations is via image-based pre-trained networks and audio plots. Commonly
spectrograms are used, but depending on the task there are a number of alternative audio
plots which can be extracted (see Figure 3.5). As with the hand-crafted feature sets, several
image derived feature sets are extracted and compared in the experiments of Chapter 4,
particularly in relation to anxiety in speech, via a comparison of effect size between grouped
speech-classes in Section 4.2.
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Figure 3.5: A selection of audio plots from a sample vocalisation of a sustained vowel
[‘a’]. Of note, it can be seen that selecting the most appropriate audio plot can be extremely
meaningful for highlighting certain aspects of a speech signal, e. g., the harmonics of speech.

To learn meaningful representation from audio plots, several unsupervised strategies
which utilise deep learning have been developed which essentially mimic well-established
methods in the vision domain. For audio specifically these include, VGGish [53] DeepSpec-
trum [85] and auDeep [147]. At a first step, these approaches require an audio plot and this
is highly dependent on the given task, how in Figure 3.5, those which may applicable for
speech-based tasks are shown.

The DeepSpectrum toolkit is one method which has been utilised for several compu-
tational paralinguistics tasks [28, 19] and applies an image-based deep learning approach
(see Figure 3.6 for an overview of this method). This method essentially has three core-
processes i) the extraction of two-dimensional representations of the audio signal, namely
the most meaningful audio plot for the tasks ii) audio plots are then sent to a pre-trained
Convolutional Neural Network (CNN), with options including, AlexNet [148] iii) after the
plots have been fed through the CNN, activations from the fully-connected layers they are
then extracted as feature vectors . Given the inherent visual dominance of this method, it has
been noted by the toolkit authors themselves [149] that the convolutional layers of the CNN
can provide a strong indication of the locality of pixel dependencies, and so in the context of
the speech, the more prominent a specific phenomena is visually within the audio plot, the
more applicable the DeepSpectrum representation would be.

Similarly to DeepSpectrum, is the VGGish model for audio feature extraction [53].
VGGish is an audio adaption of the vision focused VGG16 architecture which is applied
to image-based tasks [150], and was first introduced as a baseline for the aforementioned
AudioSet. The framework provided for extracting VGGish features, first extracts spectrogram-
based representations which are then fed to a CNN which was pre-trained on clips from the
large-scale YouTube 8M dataset [84]. The core nature of these features is more focused on
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Features

Fully-connected Layers

Pre-trained CNNSpectrogram

Raw Audio

Figure 3.6: An illustrated (adapted from [149]) overview of the DeepSpectrum method
for a pre-trained CNN-bassed feature extraction from audio plots. Where the raw audio is
first transformed to an audio plot, which is then fed to a pre-trained CNN and features are
extracted from the activations of the networks fully-connected layers.

audio event detection, however, there have been a number of successful application for these
features in the domain of SER [15].

3.2.3 Fusion Strategies

Early Fusion

Late Fusion

 

Early Fusion

Figure 3.7: An illustration of the two-types of the fusion strategy applied in this thesis. Figure
is an adaption of the illustration given in [151].

In many cases for computational paralinguistics tasks it is beneficial to explore the
fusion of several feature sets [49], either other acoustics sets, or for exploring the benefit of
audio plus other modalities (i. e., multimodal), as well as multiple modelling approaches.
There have been a number of works which have found that fusing audio with video-derived
features can be very beneficial [15], and this is further explored in the experiments of
Chapter 4 Section 4.1. This is particularly the case for in-the-wild scenarios, as the individual
modalities may be at times obscured, and fusing feature representations allows for an
improved overall representation of the given phenomena. Applied within this in this thesis,
are two typical approaches for fusion (see Figure 3.7):

Early fusion: Also known as feature-level fusion, early fusion refers to the concatenation of
the individuals features sets into a single large feature set prior to model training [25].
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In this scenario it is important that the individual feature sets relate to each other,
i. e., the sampling rate, and to adjust this interpolation, or downsampling can be
applied, to increase or decrease the data frequency [30].

Late fusion: Also referred to as decision-level fusion, late fusion is the process of combining
predictions from the output of multiple models, one for each feature type. The approach
for this is based on a defined rule, which can differ depending on the output as either a
regression or classification task. Where majority vote is common for classification, and
a weighted average of the best performing predictions can be taken for regression [19].
However, for regression-based tasks, late fusion can also include an additional linear
regression model trained on the predictions of each model to learn the weights which
would then be combined by the weighted average [15, 24].

3.3 Machine Learning

Within machine learning applying the most appropriate algorithm to model a given phe-
nomena – based on a training set of examples – is a critical decision, and as described
earlier in Chapter 2 this will mostly depend on the nature of the task as either a classification
or regression problem. However, within this there are either supervised or unsupervised
algorithms [152].

• A supervised algorithm is as the name may suggest, an algorithm which has been
provided information on the values of their training input and are essentially trying
to finding a mapping between this input x and a given set of labels y, typically by
estimating the probability p(y|x) [152].

• An unsupervised algorithm has no prior information about its input x and will attempt to
learn patterns within the embeddings space. In this case the algorithm is attempting to
learn the probability distribution p(x). Clustering algorithms are a form of unsupervised
learning, which attempt to build clusters of similar examples.

The experiments described in Chapter 4 are primarily applying supervised algorithms
and in that sense tackling either classification or regression based problems. Herein, the
fundamentals for all technical strategies applied to the emotional wellbeing targets is given.

3.3.1 Recognition

In the following, a series of algorithms are introduced which have been applied within the
context of the following experiments and proposed as suitable strategies for audio-based
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recognition of states of emotional wellbeing. The algorithms discussed can be applied to
learn patterns within the audio data in either a supervised or unsupervised way, and so the
use of the term recognition in this context relates to learning patterns within a data input.

3.3.1.1 Support Vector Machines

The Support Vector Machine (SVM) is a supervised machine learning algorithm [153] which
has been found to be a versatile and robust baseline algorithm for an array of computational
paralinguistic tasks [1], and remains a standard for a number of challenge baselines where
reproducibility is vital or the dataset size is not extensive (see Chapter 2). This algorithm is
proposed for use in a number of the experiments in Chapter 4, and performance for the SVM
is compared to deeper machine learning algorithms in Chapter 4 Section 4.1.

An SVM is a decision machine, or maximum-margin classifier and does not provide
probabilities, but rather a class-decision on a given sample. The SVM essentially functions
by calculating what is known as a hyperplane between the classes of a given training set. To
do this the SVM attempts to find the maximum margin between the closest vectors of a given
class (known as the support vectors), then calculates decision boundaries based on this. In
its native state the SVM can only be applied to binary-class problems, however to apply an
SVM to a multi-class problem, there are two methods known as one-versus-all, in which
each class is classified against all other classes, or alternatively, the one-versus-one strategy
in which pairs are classified against one another. The SVM can also be adapted to function
as a regressor, where the target is a real numbers, and is known as Support Vector Regression
(SVR) in that case. Unlike traditional linear regression, an SVR allows for more margin
of error, as it introduces an ε-insensitive region, which is calculated by the application of
a symmetrical loss function (commonly, ε-insensitive loss [154]) which equally penalises
values which are to low or too high outside of what is described as an ε-tube around the
estimated function [155]. In both cases for either regression or classification, the value of
cost C should be optimised, which essentially refers to the tolerance for values to be excluded
or included within the decision boundaries ε .

3.3.1.2 Artificial Neural Networks

A core part of state-of-the-art machine learning is the Artificial Neural Network (ANN). An
ANN is commonly described as being inspired by the workings of the human-brain and is
essentially based upon a complex set of neurons which receive a set of inputs, and outputs
a single value [156]. The Feed-Forward Neural Network (F-FNN) is a starting point for
understanding this concept (see Figure 3.8). The F-FNN is a type of ANN and refers to
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Input layer

Hidden layers

Output layer

Figure 3.8: A simple illustration of a F-FNN with an input layer, which feeds into two
fully-connected hidden layers, and an output layer which provides the target prediction.

a network in which the input data moves forward in one way, through what are known as
hidden layers. Where this becomes a Deep Neural Network (DNN) or deep learning, in
general, is when there is more than one hidden layer, in other words, more depth to the
structure. Essentially, any ANN is performing a step-based optimisation and consists of
several layers of nodes (i. e., perceptrons), with summation of weights and a bias passed to
the input of an activation function which manages the final output. In other words, a given
input node has a weight w which is optimised during the training process, representing the
importance of that node, and the bias b is a constant value applied to shift the output before
the activation function. Once the input reaches the last layer, the final prediction is made, and
a loss function will calculate the error between the predicted values ŷ and the true value y.

A loss function essentially calculated the error between ŷ and y, and minimising the
loss value is a core aspect of the ANN. Many loss functions can be applied during training
and are reduced to obtain what is known as the local minimum of the function. Common
loss functions include, Cross-Entropy (CE) in the case of classification, and Mean Absolute
Error (MAE) for regression, although this can be adjusted depending on the task itself,
with Concordance Correlation Coefficient (CCC) commonly applied for emotion-based
targets [60]. The loss is minimised via the optimisation method, gradient descent. For this, the
differentiation algorithm backward propagation of the errors (back-propagation) is performed
to calculate the gradient of the loss function, applying the chain rule to adjust weights and
bias for the model by iteratively going forward and then back through the network. To reduce
computational expense of this, the processes of gradient descent is performed iteratively on
stochastic batches of a given number of samples from the training set, therefore known as
stochastic gradient descent. One option is the extension of stochastic gradient descent known



40 Methodology

as the Adam optimiser [157], which is commonly applied in deep learning, and is essentially
combining the advantages of other stochastic gradient descent extensions, e. g., the Adaptive
Gradient Algorithm (AdaGrad) or Root Mean Square Propagation (RMSProp).

The activation function is a crucial aspect of any ANN and refers to the function which
can be applied to obtain the precise output of a given node (or perceptron). There are a
number of both linear and non-linear activation functions which should be selected based on
the hidden and output layers. Depending on the type of target, commonly applied activations
functions include:

Sigmoid, or the logistic sigmoid function, would typically be used only for the very last
layer to predict the final value of y. The function is limited to the range of [0, 1]:

Sigmoid(x) =
1

1+ e−x . (3.2)

Hyperbolic tangent function (tanh) is an extension of sigmoid, and allows for negative
values, scaling and shifting the sigmoid function within the range of [-1, 1]:

tanh(x) =
2

1+ e−2x −1. (3.3)

Rectified linear unit (ReLU) is a very popularly applied activation function for a number of
reasons including it efficient computing ability:

ReLU(x) = max(0,x). (3.4)

The output of ReLU is positively unbounded, which means the output can grow
exponentially, and an additional regularisation of the weights may be beneficial.

Softmax is a well-known activation function which was developed for multiclass classifica-
tion. All neurons K of the final layer are transformed into probabilities between [0, 1]
for each class:

Softmax(x) =
ex

∑
K
k=1 exk

. (3.5)

Activation functions can be applied to different layers within a network to optimise
performance, and as well as this there are a number of methods which can be utilised to
optimise a network known as hyperparameters. These include but are not limited to:

• The number of epochs refers to the number of iterations for which the data should be
passed through the network. In other words a forward and backward pass through all
of the data.
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• The learning rate controls the number of updates to the weights at each iteration,
i. e., the rate to which a DNN adapts to the task and reaches global minimum. A lower
learning rate will require more epochs to reach the global minimum, as more slight
adaptations are made.

• The batch size refers to the number of samples from the training set which will be
propagated through the network in a given iteration. The size of the batch will effect
the training time, and the overall memory allocation required.

Given the exponentially large size of a DNN the network can become uncontrollable, and
what is known as overfitting i. e., where a network learns the data in a completely unrealistic
way, can occur quickly. Given the small amount of data which is typical for computational
paralinguistic tasks, the phenomena of overfitting is even more likely, so as well as having
more data, there are many specific methods in deep learning, known as regularisation
strategies, which attempt to produce more robust results including:

• Dropout is a standard method applied to a ANN [158], and performs model averaging,
aiming to prevent complex co-adaptations in a network. Essentially it does this by
thinning the network and dropping neurons from within a hidden layer.

• Early stopping, is both a regularisation and efficiency step, which can be put in place to
stop the training process once the model is no longer improving (i. e., able to minimise
the loss) [159]. Typically, what is known as patience would be set in this case to ensure
that the model is not stopped too early as sometimes may recover.

3.3.1.3 Recurrent Neural Networks
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Figure 3.9: A depiction of an Recurrent Neural Network (RNN) (left side), where the input x
passes to the RNN cell h and the output is given as y. The right side of the figure, shows an
example of the RNN unrolled, in relation to BPTT process.

Unlike the F-FNN which is primarily aimed at a static inputs and spatial tasks, the RNN
has an internal memory, which allows for the output to be used again as the input, and is,
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therefore, able to capture temporal dependencies. In other words, where the F-FNN can
only map a one-to-one sequence, the RNN is able to map one-to-many, many-to-one, and
many-to-many. Consequently, it is instrumental in the context of time-dependent audio tasks,
and has been successfully applied to an array of speech-based tasks including, language
understanding [160], and speech emotion recognition [161]. In the context of these this thesis
the RNN is the basis for many of the experiments described in Chapter 4, and as mentioned
earlier and LSTM-based RNN is explicitly compared to the performance of the traditional
SVR for its ability to recognise markers of stress in the experiments of Section 4.1.

The RNN, consists of a set of recurrent layers, which contain recurrent perceptrons.
The core difference between a feed-forward perceptron and a recurrent perceptron is that
the output is again fed as an input, this is known as a feed-back connection which, when
combined with several other recurrent perceptrons, makes up an RNN. An RNN is able to
handle sequential data of a given length, in what is referred to as segments, this is particularly
suitable for speech data, as words of a sentence within a particular context can be processed
together, allowing for a deeper more context-driven learning by the network. Given this
sequential nature, for a RNN the process of back-propagation is extended to Back-propagation
Through Time (BPTT) [162], which is a slight alteration, and essentially means unfolding the
RNN and for each input step there is one copy of the network and one output, the gradient is
then calculated at each step and summed, (see Figure 3.9 for an illustration of this concept).
The network is then folded up again, and weights are updated. This is the process that can
make the RNN computationally expensive, particularly when larger segments are being
processed, and for this a truncated BPTT can be applied, which only performs the BPTT
periodically and on a selection of input steps and not all.

The problem with the RNN on its own is that as weights are updated using BPTT, the
gradient can decrease exponentially as back-propagation continues, meaning that the weight
is then not updated, and the effect of earlier inputs is not learnt. This is known as the
vanishing gradient problem, and to address this, two strategies can be applied, e. g., Long
Short-Term Memory (LSTM) or Gated Recurrent unit (GRU) cells. The LSTM, is seemly
more popular for computer audition tasks, and is proposed for all of the experiments in which
an RNN-based network is utilised in Chapter 4 – for this reason, only the LSTM will be
described herein, although the GRU is only a slight adaption and in many cases the two can
be used interchangeably with minimal effect on results.

The LSTM cell consists of a series of additional gates (i. e., independent units with their
own weights and bias); these include the forget, input, and output gates (see Figure 3.10).
Sequential data is passed through each of the gates, and the state of the previous time-step
and current input are used as input to each gate, which contain an activation function σ .
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Figure 3.10: An overview of an LSTM cell. Where the input x is passing through each
the three gates, forget, input and output. The state of the cell is indicated as Ct , in which
a point-wise multiplication or addition with the output of each gate σ is calculated. The
previous state is as st − 1, which is concatenated to x, and the output to the next layer is
indicated as st .

Essentially the forget gate controls which information from the previous state should be
forgotten or kept from the initial units state, the input gate decided if the last cell state is to be
stored, and output gate controls how much of the input should be outputted to the new state.

3.3.1.4 Attention Mechanisms

Attention mechanisms can be integrated with an architecture such as an Long Short-Term
Memory Recurrent Neural Network (LSTM-RNN), and are named based on the idea of
e. g., cognitive attention. The attention mechanism was initially introduced to improve
sequence-to-sequence modelling in the area of Natural Language Processing (NLP) [163],
and are therefore inherently applicable to time-dependent tasks. There have since been
several alternative attention methods proposed, which can be utilised in either a shallow or
deep way in a deep learning architecture e. g., an LSTM-based network [164]. In general,
attention mechanisms allow for a broader consideration of past and future data points within
a sequence. Further, given that attention is calculated based on the weighting of the input
against all others in the sequence, the activations from an attention layer can be extracted to
provide an understanding of the more meaningful aspects learnt by the network [165].

As mentioned, attention mechanisms are prevalent for sequential based tasks as they
allow for a consideration of the larger context. In the experiments of Chapter 4 Section 4.3.1,
self-attention is integrated with the LSTM-RNN architecture for a SER task, as it has been
found to be applicable for this [66]. Occasionally self-attention is referred to as intra-
attention, and this is one type of attention that is the building block for the recently popular
Transformers network [17]. Further details of the self-attention mechanism are given in [17],
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but fundamentally, the self-attention functions by calculating a dot product of a given vector
xi against its neighbouring vectors x1...xn, with each xi given three times each with a differing
weight, either as query (the previous compressed output), or key, value pairs, combined via a
softmax function to ensure positive weights for each vector.

3.3.1.5 Convolutional Neural Networks

ConvolutionInput Pooling Output

Feature Extraction Classification

Fully
Connected

Figure 3.11: An overview of CNN architecture. Where a spectrogram image is inputted to
the convolutional layers, which perform an abstraction of the input, and then the pooling
layers downsample the representations further, and finally those activations are passed to a
classification algorithm in this case F-FNN.

The Convolutional Neural Network (CNN) is a type of ANN which has become one of
the most common deep learning networks for classification tasks. Typically a CNN takes
a two-dimensional image as input and has found great prominence, where reduction of the
complex spatial relationships is needed. In recent years the CNN has been successfully
applied in general for two-dimensional audio tasks, where the input is an audio plot, which
represents the time and frequency domain of audio. In this way, the CNN is applied as part
of the feature extraction process described for the aforementioned image-based methods
in Section 3.2.2, and is also applied as part of the architecture proposed for interpreting
generated audio in Chapter 4 Section 4.4. The CNN consists of a set of convolutional
layers and pooling layers to extract features from the input image, and a fully-connected
output layer which will classify the extracted activations (see Figure 3.11). Although there
are additionally one or three-dimensional CNN methods [166], here the two-dimensional
approach is described, as would be applicable for audio-plots.

A convolutional layer consists of a kernel or filters that slide over the input image at a
given dimension, calculates an element-wise multiplication at each step, and reduces that
kernel to a single output, resulting in an abstracted representation of the original input image.
Proceeding this, an activation function (e. g., ReLu) applies element-wise non-linearity, and
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then a pooling layer (either average or max pooling), is placed after the convolutional layers.
This layer is applied to reduce the dimensionality of the representations progressively, and
additional pooling layers can be used as a regularisation method [166]. The output from the
pooling layer is then passed to a fully connected F-FNN to perform the final classification.

3.3.1.6 Prototypical Networks
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Figure 3.12: An illustrative example (adapted from [167]) of a prototypical embedding space
in a few-shot learning scenario. Where a class prototype ck is computed from the mean of
the examples within the embedding space of that class, and the distance of the input x is
measured to assign a class prediction.

The prototypical network is a network which was introduced by [167], and essentially
works on the assumption that there exists a prototypical representation of a given class
(see Figure 3.12). The network is primarily applied to few-shot and zero-shot learning
classification of images [167], text [168], and audio [169]. This network is proposed as a
strategy for assisting in the interpretation of generation audio as it pertains to the source
training data, for which the experiments are details in Chapter 4 Section 4.4.

The terminology utilised for the prototypical network differs slightly, and as mentioned,
a prototypical network is searching for a prototypical (or stereotypical) class k within an
embedding space, from data points provided as a support set Sk – an input xi and labels yi for
each class k, function as an anchor for the class-prototypes ck – and the distance of these is
compared to a query set – as with Sk, excluding yi. Essentially, a prototypical network learns
an embedding function fφ , which maps the input to a N-dimensional embedding space. The
prototype for k is calculated from the average of the support set embedding as:

ck =
1
|Sk| ∑

(xi,yi)∈Sk

fφ (xi). (3.6)

Further, the euclidean distance d between a class-prototype and the embedding of a query
is input to a softmax function, allowing the network to additionally serve as a classifier. For
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the embedding function ( fφ ), which learns data representations based on the classes, in [167]
the authors initially apply CNN-based architecture. There were also a set of design choices
introduce by [167], including the episodic training style, which is essentially mini-batch of a
sub-sampled number of classes and data points, and insures balance across the classes.

3.3.1.7 Evaluation Metrics

Several metrics can be applied to evaluate the performance of a recognition model, by
comparing the final predicted labels in a discrete or continuous state to an actual label for the
same input taken from the testing partitions. Usually, it depends on the nature of the task,
either classification or regression, subjective or objective, as to why a suitable evaluation
metric would be chosen.

For a classification paradigm, one way to interpret class-based tasks is through visual-
isation of the individual class recall via a confusion matrix. A confusion matrix typically
depicts a binary task, however, it can be extended to observe multi-class performance. The
confusion matrix, reports accuracy of a given class it pertains to the rate of True Positive (TP),
False Positive (FP), False Negative (FN), and True Negative (TN) for that given class. In the
case of a multi-class problem, the FP and FN would be extended across the other classes.
These concepts are essential when calculating a given evaluation metric in the context of
classification, where the prediction is either correct or not.

Accuracy is a fundamental and common metric which can be calculated as:

Accuracy =
∑ correct

∑ observations
=

T P+T N
T P+T N +FN +FN

. (3.7)

Accuracy is brute-force, and as discussed earlier in Chapter 2 class imbalance in com-
mon in this domain and so reporting accuracy alone can misrepresent true performance.

Precision and recall can be applied to consider performance of a single class as:

Precision =
T P

T P+FP
, (3.8)

Recall =
T P

T P+FN
. (3.9)

F-score (F1), is the harmonic mean of precision and recall:

F1 = 2× Precision×Recall
Precision+Recall

=
2×T P

2×T P+FP+FN
. (3.10)
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Unweighted Average Recall (UAR) is applied to computational paralinguistic tasks as this
does not consider the frequency of each class and is therefore handling the problem of
class imbalance. Essentially UAR is the sum of individual recalls for each class n and
a calculation of the average for the total number of classes, denoted as:

UAR =
1
N

N

∑
i=1

T Pn

T Pn +FNn
. (3.11)

For regression tasks, there are many ways to evaluate the relationship between the actual
value y and the predicted value ŷ, commonly via correlation, or an error-based metric. The
choice of either a correlation or an error-based metric depends on the task itself, however the
latter is typically applied to objective tasks e. g., heartbeats per minute, and correlation is
more suitable for subjective tasks, e. g., emotion recognition.

Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error
(RMSE) are all error rates that can be commonly applied to evaluate a regression model.
Often reporting all will allow for more insight, however RMSE is common for linear
regression based tasks as its gradient is linear.

MAE =
1
N

N

∑
i=1

|yi − ŷ|, (3.12)

MSE =
1
N

N

∑
i=1

(yi − ŷ)2, (3.13)

RMSE =

√
1
N

N

∑
i=1

(yi − ŷ)2. (3.14)

The Pearson correlation coefficient (r) is a metric used to observe the linear correlation
between two continuous arrays. Pearson correlation (r) is expressed as:

r =
∑(xi − x̂)(yi − ŷ)√

∑(xi − x̂)2 ∑(yi − ŷ)2
, (3.15)

where in this case x refers to the actual label value and y the prediction and x̂, and ŷ are
the mean of the values for that array.

The Spearman’s rank correlation coefficient (ρ) , is essentially the ranked version of the
Pearson coefficient, and is more common for values derived from an ordinal value.
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First, the two arrays being compared are ranked as rx and ry, and the standard deviations
σ of the ranked data is then divided by its covariance:

ρrx,ry =
cov(rx,ry)

σ rxσ ry
. (3.16)

The Concordance Correlation Coefficient (CCC) is another evaluation metric which is
commonly used in emotion recognition due to the implicit scaling variance between
these subjective rating. CCC can be which can be expressed as:

CCC =
2σ12

(µ1 −µ2)2 +σ21 +σ22
, (3.17)

it is assumed here that the two variables follow a normal distribution with the mean µ1

µ2 and standard deviation σ1 σ2 over the covariance of the two signals as 2σ12.

3.3.2 Generation

Generating artificial audio based on a set of conditions defined by the training set has become
a more needed aspect for computer audition, particularly computational paralinguistic focused
tasks, as data is sparse and expensive to gather. However, a number of the methods described
herein are also applicable to the field of Text-to-Speech (TTS), although in this case, speech
intelligibility is naturally the first priority. Unlike TTS, when utilising generation methods
to tackle data scarcity via data augmentation of existing data, especially in regards to
paralinguistics, intelligibility is less critical, as the machine is the only one listening, and
the phenomena is less related to lexical meaning. There are a number of machine learning
strategies which can be applied to generate audio data. Most prominently those known as deep
generative models, which essentially provide a representation of a probability distributions
over multiple variables [152]. Such networks include Variational Autoencoders (VAE)
Generative Adversarial Network (GAN), and Deep Auto-regressive Networks (DARN), and
in this section a description of only GANs and DARNs is given, as these have been applied in
works by the author, namely [170] and [26] with further detail given in Chapter 4 Section 4.4.
For an overview of core aspects of deep learning-based generative models (see [152, 171]).

3.3.2.1 Generative Adversarial Networks

The GAN was first introduced in [156], and has been extensively applied to a vast number
of tasks across modalities, with some great success in recent years when adapted to the
task of generating raw audio [172]. Essentially, a GAN is based on a differential generation
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a network, and the core idea of a GAN is to pit two networks against each other in an
endeavour to repetitively improve the results (see Figure 3.13). The first network is known
as the generator and learns to transform any vector that follows a given distribution function,
e. g., a uniform distribution, to an output sample that follows the distribution of a given
training domain. The second network (the adversary of the generator) is known as the
discriminator and is essentially a classifier which learns to distinguish between real training
data and the samples produced by the generator [156].

Machine 
Learning

G

Real/Fake

 z

X

G(z) D Real/Fake

Figure 3.13: An overview of a GAN, where a noise sample z is fed as an input to the Generator
G, and an real sample x is pit against the generated sample G(z), by the discriminator D. The
discriminator then classifies the sample as real or fake, and the weights for the generator and
discriminator are then updated accordingly.

The WaveGAN [172] architecture is one of the earliest utilises of the GAN for audio
generation based on raw audio. The WaveGAN includes an adapted GAN known as the Deep
Convolutional Generative Adversarial Networks (DC-GAN), which essentially incorporates
convolutional layers to both the generator and the discriminator network to enable even
higher complexity modelling [173]. As the DC-GAN is traditionally focused on image
generation, for the WaveGAN aspects are modified to enable audio processing. Mainly this
pertains to the dimensionality, in that the two-dimensional up- and downsampling filters are
replaced by a one-dimensional equivalent. Deeper details of the functionality of WaveGAN
are provided by the authors [172].

3.3.2.2 Deep Auto-Regressive Networks

Unlike a GAN, the Deep Auto-regressive Networks (DARN) is able to be used in the context
of generation by sequentially modelling the input and output. Much like an RNN, a DARN
is learning from past information Figure 3.14, however unlike the RNN the previous input is
not given via a hidden state, but directly as a new input based on the output at the previous
step [152]. A DARN is typically a set of convolutional layers, which have auto regressive
connections i. e., the generated output becomes the input of the next. This flow is able to
continue until eventually the input to the network is no longer the original data at all.
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Figure 3.14: An illustration of an auto regressive network, adapted based on the illustra-
tion given in [152]. The DARN predicts the i-th input xi from the previous xi − 1.The
parameterisation of the DARN means that groups of hidden units hi can be reused.

The WaveNet [174] is one of the most well known DARN-based architectures, and was
specifically developed for the generation of raw audio by machines. This architecture is
essentially an audio implementation of the first of its kind PixelCNN [18]. At its core the
WaveNet architecture is generating a given sample of audio xt and conditioning based on
the samples from the previous time steps, and the probability distribution of the waveform
x1, ...,xT is then a product of a set of conditional probabilities:

p(x) =
T

∏
t=1

pθ (xT |x<t) (3.18)

As a first step, the WaveNet model processes the raw audio, into an 8-bit resolution, with
256 possible values, and the amplitude is then one-hot encoded, and passed through to a
set of causal convolutional layers. During the training process, the model predicts audio
signal values at each step comparing to the previous step, and applying cross entropy as a
loss function. To decrease the computational expense of this, WaveNet applies the method of
stacked dilated casual convolutions, which essentially skips nodes of a given hidden layer
(see Figure 3.14), this then reduces the receptive field in general. Another method to reduce
computational expense is the residual block and parameterised skip connections, which
speeds up general convergence, and allows for deeper model training [174].

3.3.2.3 Evaluation of Generated Raw Audio

Evaluating the performance of any generation model is a challenge, but more so in the context
of audio. Several qualitative or quantitative approaches have been developed for evaluating
image-based generative data, mainly focusing on the GAN [175], and researchers in the
audio domain will typically apply these image-based approaches to generate audio data.
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Most common and well-known is the inception score [176], which is pre-trained on Ima-
geNet and calculates the logits (e. g., raw unnormalised probabilities) for a given generated
sample. The inception score does not make a comparison to the actual source data, and so
for this purpose, the Fréchet Inception distance was proposed in [177]. The main limitation
for these approaches is, as mentioned in [175], that these two Inception-based approaches
are not able to discuss both quality and diversity, e. g., a low inception score or Fréchet
distance may be caused by both non-realistic samples, and also samples being too close
within the embedding space. Furthermore, although the results from these scores have shown
to be similar to human perception, it was noted in [175] that they might be biased towards
ImageNet, and therefore less applicable in other domains.

Another, more conventional approach, which is more easily adapted to other domains
such as audio, is to use the generated data to augment the original training set and validate
the overall performance boost. Given that the generative model is based on the source data
training set, the assumption is made that a better performing model will produce data samples
within the distribution of the source data. However, this method is a ‘black-box’, and only
limited interpretations can be made about the overall quality of the data [170].

A time-consuming but popular approach and some might argue needed for audio, is to
conduct human-perception studies on the generated samples, where the target is compared
to the generated sample. However, this is massively time expensive in the context of audio,
given its time-based nature. With this in mind, more methods consider many evaluation
criteria, e. g., consideration to interpretability and observation of quality and diversity.

Analysis of the embedding space is in general becoming a more deeply investigated
area, as this allows for improved data interpretability, which, as mentioned, is a limitation
of the inception approaches. One other approach for this is Local Intrinsic Dimensionality
(LID) from [178] who introduced the CrossLID method to evaluate the distances of clusters
in a ‘neighbourhood’ within the latent GAN generated space by measuring the distances
between two data distributions. Leading from these types of works, in the experiments
of Chapter 4 Section 4.4, analysis of the data manifold (i. e., embedding or latent space) is
explored utilising the aforementioned Prototypical network Section 3.3.1.6.





Experiments
Within this chapter a series of experiments are described which focus largely on the evaluation
of states of emotional wellbeing, as well as tackling aspects which make modelling this target
a challenge. Details of the methodologies for these experiments are described in Chapter 3
in earlier sections, and therefore the theoretical descriptions in this section will be limited.
Further to this, where possible it will be highlighted how each experiment relates to each of
the research questions described in Chapter 1.

4.1 Physiological Markers of Stress from Speech

There is a substantial impact on the body when an individual is stressed, which, if sustained,
can result in potentially serious health implications [179]. Physiological signals can provide
an objective marker of biological stress e. g., the stress hormone cortisol, however extracting
such data can be costly and time-consuming [180]. As stress results in an emotional response
by the body and is known to alter expression and an individual’s ability to function in a
typical manner, speech-based monitoring may capture these changes in various markers
and allow for a non-invasive indication of stress. With this in mind, within these set of
experiments, the focus is on the recognition of several physiological markers of stress from
the audio signal, based mainly on the work conducted by the author and colleagues in [112],
and later extended in [31]. Utilising three datasets collected under the Trier Social Stress
Test (TSST) scenario, the first experiments focus on the use of audio and multimodal signals
to recognise saliva-based sequentially sampled cortisol (the stress hormone). Following this,
experiments are conducted to recognised heart rate as BPM, with further analysis on how
this may pertain to cortisol groupings. To bring this back to the research questions (RQs)
laid out in Chapter 1, these experiments address several RQs in the following manner:

• RQ-1: Validating the efficacy of audio-based features for targeting markers of stress,
and in turn overall emotional wellbeing.

• RQ-2: Exploring the use of audio in a uni vs multimodal setting. Validating the overall
benefit of audio for recognising markers of reduced emotional wellbeing.
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• RQ-3: Exploring the benefit (or not) of combing three datasets which have been
collected in differing acoustic environments, under the TSST scenario. Through the
combination of these datasets multi-domain analysis possible, and total speakers is
increase to more than 100, which is larger than typically available dataset in this area,
and may allow for improved generalisation.

• RQ-4: To improve the scientific rigour, the data provided was gathered from external
partners at several respected psychology research groups. With this in mind these exper-
iments are also a testing bed to explore the benefit that interdisciplinary collaboration
can have in regards to computational emotional wellbeing analysis.

Physiological markers are known to relate to the activation of the Hypothalamic Pituitary
Adrenal axis (HPA) [181], which is an indication of stress. With this in mind, two core
markers are targeted within these experiments 1) sequential saliva-based samples of cortisol
2) continuous Heart Beats per Minute (BPM) . For both experiments the FAU-TSST, Reg-
TSST, and Ulm-TSST datasets will be used interchangeably, and for further detail on these,
as well as the TSST testing paradigm see Chapter 3. Within these paradigms, several cross-
corpus (where possible) and multi-domain experiments are performed for each of the targets
and the efficacy of these machine learning approaches for entirely unlabelled data is explored.

4.1.1 Data and Procedure
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Figure 4.1: The mean of the raw cortisol samples for all speakers of each sequential time step,
given in Nanomoles per Litre (nmol /L), for both the FAU-TSST and Reg-TSST. Highlighted
is the stress period in grey, with annotations of sample time in minutes (left). The density
distribution of the mean BPM across all subjects from the Ulm-TSST and Reg-TSST (right).
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Table 4.1: An overview of each of the three datasets (FAU)- (Reg)- and (Ulm)-TSST used
within these initial experiments. Including, number of subjects (#), Age, mean (µ) and
standard deviation (σ ) in years - as well as, the speaker independent partitions, Train,
(Devel)opment and Test, and the duration (hh: mm) of audio data, before (∑) and after Voice
Activity Detection (VAD) and for each TSST task, (Inter)view, and (Arith)methic.

Dataset # (M:F) Age µ / σ ∑ VAD Inter. Arith. Train Devel Test ∑

FAU 43 (14:29) 24.26 / 4.97 7: 25 4: 20 2: 32 1: 48 15 15 13 43
Reg 27 (13:14) 22.74 / 2.96 4: 28 2: 26 1: 24 1: 02 10 9 8 27
Ulm 69 (20:49) 25.06 / 4.48 5: 47 2: 21 2: 21 – 41 14 14 69

For both of the experiments the data processing and features used will be the same.
All audio was converted to 16 kHz, 16bit, mono, WAV format and normalised to -1 dB
before extracting features. A Voice Activity Detection (VAD), utilising the LSTM-RNN
approach described by [182] was applied as a first step. From this procedure, in Table 4.1
it can be seen that the arithmetic task contains less speech, and in general, there appears
to be substantial silence within the audio data, likely caused by the induced stress. For all
datasets segmentation is applied. For FAU-TSST and Reg-TSST, this is based on speech
start (provided by the VAD), until the next utterance. As the Ulm-TSST provides transcripts
the segmentation is based on this [15].

Each dataset is then partitioned in a speaker-independent manner into training, devel-
opment, and test sets (see Table 4.1) where demographics including age and gender are
balanced as best possible. For this approach a feature-based machine learning method is
applied, and the features are extracted with a window size is of 1 second and a hop size of
0.5 seconds. Primarily speech-driven audio features are used, however, video-based features
are also included here to observe any advantage that speech may have in this particular
context. An overview of the extracted features is shown in Table 4.2.

Table 4.2: An overview of the extracted features, used within these experiments. Of the
vision derived features in [15], and for further detail on audio-based features see Chapter 3.

Feature Set Modality Dimensions

ComParE Audio 6 373
eGeMAPS Audio 88
DeepSpectrum Audio 4 096
VGGish Audio 128
FAU-intensity Video 17
VGGFace Video 512
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4.1.1.1 Experimental Settings

For all experiments within this section, the tasks are regression in nature, and the same
architectures will be applied to model both targets. For an initial data analysis of the cortisol
target only, an SVR is first applied. This is then followed by a series of deep learning models
based on an LSTM-RNN architecture.

The Support Vector Regression (SVR) algorithm used is an epsilon-support vector
regressor with a linear kernel implementation from the Scikit-Learn toolkit [183]. During the
development phase for these experiments, a series of SVR models was trained optimising
the C parameters (C ∈ 10−4, 10−3, 10−2, 10−1, 1). The model is then re-trained with the
concatenated train and development set and evaluated on the test set.

The Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) architecture
is based on a similar methodology applied for the baseline of MuSe 20211 [32]. In the
training processes, the features and labels of every input are further segmented via a win-
dowing approach [184], which may offer the network more context. We experimented
with various window lengths, but as in the MuSe Challenge, a window size of 300 steps
(150 seconds) was found to be optimal for all datasets. We tested n = {1,2,4}-layered uni-
and bi-directional networks with h = {50,100,200} hidden states and a learning rate of
lr = {0.00005,0.0001,0.005,0.001}. Initial experiments showed that the best results were
obtained with a 4-layered network, consisting of 2 LSTM and 2 fully-connected (FC) layers,
with a hidden size of 50, and a learning rate of 0.00005, (see Figure 4.2). To reduce the
computational cost, these parameter values were applied to the experiments reported herein.

For the BPM target a continuous frame-level label is available, which means frame-level
predictions using an LSTM-RNN architecture can be obtained and subsequently compared to
the target. However, for the cortisol task, only one single target value is available per session
at a given time. Moreover, each session lasts approximately ten minutes, and stress may only
manifest on short, intermittent segments throughout those recordings. To overcome this, the
labels are duplicated on a session-level.

During the training, a many-to-many training is used [185], where the algorithms (SVR
and LSTM) are trained to predict the target on all frames. This formulation results in frame-
level predictions during evaluation as well. To evaluate the performance of the models, the
predictions are first aggregated for each session before comparing them to the reference
cortisol values.

The primary evaluation metrics for all models is either Spearman’s correlation coefficient
ρ or Root Mean Square Error (RMSE) is reported. Correlation as ρ is reported for the cortisol
target, as this target is derived from a more ordinal-based sequence. RMSE, in contrast, is

1github.com/lstappen/MuSe2021 accessed on: 09.2021

https://github.com/lstappen/MuSe2021
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H1LSTM H1LSTM FC O1FC

HtLSTM HtLSTM FC FC

... ...
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Figure 4.2: LSTM-RNN model architecture. The input sequence Xi...Xt is first fed to two
LSTM layers of hidden size 50. The representations of hi...ht produced by the second LSTM
layer are then processed by two fully-connected layers producing the output sequence Oi...Ot .

better suited to a more objective evaluation of the continue signal, which fits the case of
continuous heart rate.

4.1.2 Sequentially Sampled Cortisol

To evaluate the efficacy of the speech signal as a marker of stress, first, the relationship
between sequential cortisol samples and speech-based features is explored. The sequential
saliva-based cortisol samples are taken at eight steps, S0 (-45 minutes) to S7 (+60 minutes),
measured in nmol /L. The assay (i. e., biochemical analysis procedure) applied to extract
cortisol varied for the two datasets in use. FAU-TSST utilised CLIA, and Reg-TSST,
DELFIA, meaning that the derived cortisol values are not entirely comparable, for further
detail on the difference in these procedures, the interested reader is directed to [114]. For
an overview of the raw cortisol in each dataset see the left of Figure 4.1. As can be seen,
in Figure 4.1, the behaviour is similar in regards to the time in which the peak of cortisol
occurs in both cases at +10 minutes are the stress, with the FAU-TSST dataset sustaining that
to +20 minutes. However, as the cortisol of the two datasets is derived with a different assay,
and given these statistical differences, the two datasets will be treated individually unless
otherwise stated. The primary source of truth for the degree of stress during the TSST setting
is the saliva-based cortisol measurements obtained at differing time points. As a traditional
cross-corpus analysis would not be fair, the core focus of these experiments is to explore
how well the methodology of sequential cortisol prediction can be replicated on the different
datasets. However, pooling the data from the two studies and learning a joint model is also
explored. Pooling more data, which comes from fundamentally different domains as the two
datasets differ in their acoustic nature, might benefit the training procedure particularly in the
case of the LSTM-RNN architecture, which would typically require more data to learn from.
Thus a model is trained in both single- and multi-domain settings and evaluated on in-domain



58 Experiments

data separately for each dataset. The subjects also perform two tasks during the TSST; a
spoken interview and an arithmetic task. It is possible that stress manifested differently in
the respective acoustic features of these tasks. Thus, the interview and the arithmetic tasks
are separated, and a contrast is made to models built after pooling both tasks.

4.1.2.1 Discussion of Results
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Figure 4.3: The SVR results for the FAU-TSST (above), and Reg-TSST (below). Reporting
ρ for all scenarios (left), interview task (middle), and arithmetic task (right).

The conventional SVR and only acoustic features are explored first to observe if the
Reg-TSST dataset performs similarly to FAU-TSST in terms of sequential cortisol prediction.
In Figure 4.3, the FAU-TSST dataset the correlation is strongest after S3 (+ 10 minutes) S4
(+ 20 minutes). When observing eGeMAPS features this increase is slightly weaker for the
arithmetic task compared to the interview, which could be caused by the reduced speech
in the arithmetic task. For the Reg-TSST dataset, the trend is less obvious for all feature
sets, particularly for the interview task with ComParE features where a strong decline from
S1 is seen. The eGeMAPS features appear to perform consistently for both tasks of the
Reg-TSST, in this case, the arithmetic task appears to have stronger correlations than the
interview however, peaking earlier than FAU-TSST at S3 than, for this task, which may
indicate a difference in intra-individual stress response for the two datasets. In general,
from these experiments, a higher correlation is obtained post S2 (in most cases S3-S4),
suggesting that acoustics features can target stress markers, given the delay common in
cortisol response during a period of stress. Hand-crafted features appear to be more suited
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Table 4.3: The test set results for session-level cortisol prediction using eGeMAPS features
for FAU-TSST, (and multi-domain, plus Reg-TSST)for the (Inter)view and (Arith)metic
tasks, as well as the mean (µ) across all and for each individual task. Reporting ρ as the
evaluation metric, with values reporting ≥.2 positive correlation emphasised.

ρ FAU-TSST

Train Task S0 S1 S2 S3 S4 S5 S6 S7

FAU Inter. .104 .016 .203 .000 .286 -.209 -.352 -.324
FAU Arith. .302 .060 .236 .385 .396 -.165 -.242 -.225
FAU Inter. & Arith. .077 .093 .022 .099 -.176 -.286 -.555 -.407
FAU & Reg Inter. .154 .055 -.159 .159 .044 -.341 .016 -.456
FAU & Reg Arith. .335 .214 .368 .374 .698 .286 -.027 -.214
FAU & Reg Inter. & Arith. .126 .209 -.077 .104 .088 -.220 -.632 -.456

Inter µ .129 .035 .022 .159 .165 -.275 -.168 -.390
FAU Arith µ .318 .137 .302 .379 .547 .061 -.135 -.220

All µ .183 .108. .099 .187 .223 -.156 -.299 -.347

for this task overall, and given this, eGeMAPS will be used as the main acoustic feature set
for all further experiments.

The LSTM-RNN model results are shown in Table 4.3 for FAU-TSST evaluated exper-
iments and Table 4.4 for Reg-TSST evaluation. Again, speech-based models can predict
cortisol levels samples taken at time points S2-S5 with a medium to strong correlation and a
mean peak around S4 (+20 minutes after the TSST) in the case of FAU-TSST. This is consis-
tent across both datasets and tasks. However, there are important and interesting differences
across different settings. In general, the LSTM-RNN can better predict cortisol from the
arithmetic task of FAU-TSST, which slightly contradicts the SVR results and shows that this
task can also yield good results if the sequential nature of different frames is considered. This
indicates that, for this dataset, subjects either became more stressed during the arithmetic
part of the TSST or that the manifestation of stress in the speech was more pronounced.

Overall, for both datasets, a higher correlation for point S3-S4 is seen, with the interview
task tending to peak a bit earlier than the arithmetic one. Given the relative delay between
the two tasks, this is in line with the authors previous research [112] showing that speech
signals are more correlated with cortisol measurements taken approximately 10 minutes after
initial stress. Interestingly, a high correlation is occasionally seen for cortisol measures taken
at S1 (1 minute before the TSST) for Reg-TSST (particularly for the interview task). which
seems counter-intuitive, however, it could be considered that this is attributed to the lower
variability across subjects for measurements at S1 (see Figure 4.1), which may have made
this task easier to learn.
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Finally, the multi-domain models built by pooling both datasets perform consistently
better while additionally benefiting from the pooling of the interview and arithmetic tasks in
the case of Reg-TSST. This illustrates that, even though the cortisol measurements in the
two datasets are based on fundamentally different scales, the relationship between relative
cortisol values and acoustic features remains consistent, allowing the models to benefit from
more diverse data and obtain better performance, as measured by ρ correlation.

Table 4.4: The test set results for session-level cortisol prediction using eGeMAPS features
for the Reg-TSST (and multi-domain, plus FAU-TSST) for the (Inter)view and (Arith)metic
tasks, as well as the mean (µ) across all and for each task. Reporting ρ as the evaluation
metric, with values reporting ≥0.2 positive correlation emphasised.

ρ Reg-TSST

Train Task S0 S1 S2 S3 S4 S5 S6 S7

Reg Inter. .297 .827 .527 .261 .236 -.127 -.527 -.079
Reg Arith. .091 .559 -.164 .091 .455 .333 .552 .406
Reg Inter. & Arith. .127 .474 .055 .285 .248 .115 -.273 -.406
FAU & Reg Inter. -.152 .559 .467 .200 .261 -.018 -.539 .164
FAU & Reg Arith. -.212 .267 .055 -.042 .370 .212 .188 .091
FAU & Reg Inter. & Arith. .006 .584 .721 .770 .442 .176 -.139 -.042

Inter µ .072 .693 .497 .230 .262 -.073 -.533 .043
Reg Arith µ -.061 .413 -.055 .025 .412 .273 .370 .285

All µ .026 .545 .279 .261 .335 .115 -.123 .022

To compare the performance of audio, video-based models for stress recognition on
the FAU-TSST dataset were also trained. Using an identical experimental protocol, and
simply substituting eGeMAPS with VGGFace (VGGFace) features. Results are shown
in Figure 4.4, and as can be seen, the vision features are in general lower than those obtained
with eGeMAPS features. This indicates that, particularly in the FAU-TSST dataset, the
auditory modality is more appropriate as a marker of stress.

Moreover, both early and late multimodal fusion is applied for these experiments. For
early fusion, the features are concatenated and a single model is trained, for the decision-level
(late fusion) separate models are trained individually for each modality, and the predictions
of these are fused by training an additional uni-directional LSTM-RNN model as described
above. From these it is observed that multimodal fusion can lead to better performance in
some cases, most notably for the prediction of cortisol at S2, suggesting that the interview task
was more meaningful for these features – potentially due to more facial activity. However,
generally eGeMAPS features remain strong as a uni-modal approach.
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Figure 4.4: The correlation ρ for session-level cortisol prediction using VGGFace and
eGeMAPS features on the data from FAU-TSST interview task (left) and arithmetic task
(right). Reporting uni-modal visual-based results as well as multi-modal fusion utilising
either an early or late fusion a strategy.

4.1.3 Continuous Heart Rate and Cortisol

Next, in an endeavour to evaluate the ability of the speech signal to model markers of stress,
in a continuous manner, heart rate is evaluated in relation to cortisol. Stress is known to
impact Heart Rate (HR) [186, 187] through its activation of the sympathetic [188] and
suppression of the parasympathetic branch of the autonomic nervous system [189]. HR itself
can therefore serve as a vital indicator of stress in modern affective computing applications.
As discussed earlier, only one of the three datasets utilised, the Reg-TSST dataset, has both
HR and cortisol measurements, whereas the FAU-TSST dataset has only cortisol measures
and Ulm-TSST only HR. Thus, the only dataset where the relationship of HR with stress (as
cortisol as ground truth) can be evaluated fully is Reg-TSST.

4.1.3.1 Discussion of Results

To obtain an understanding of the HR signal in relation to cortisol, Figure 4.5 shows the
distribution of ground truth HR values for the Reg-TSST dataset in groupings of Low (below
the 33rd percentile), Mid, and High (above the 66th percentile) cortisol levels taken at
different time points. Due to the differing assay between FAU-TSST and Reg-TSST, when
discussing these groupings, they are based on the percentile distribution of the cortisol
samples, which for FAU-TSST is 1) 33rd < 4.90 nmol /L, 2) middle 4.90−9.05 nmol /L,
3) 66th > 9.05 nmol /L , and for Reg-TSST 1) 33rd < 4.18 nmol /L, 2) middle 4.18−6.79
nmol /L, 3) 66th > 6.79 nmol /L .

When observing all of the results for each sequential time step, a two-sample independent
T-tests shows that all results are significant at the p < 0.05 level, except the low vs high
percentiles at time S0 and the low vs middle percentiles at time S5. Overall, a rising trend for
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Figure 4.5: Box plots of ground truth BPM values for the Reg-TSST dataset. Grouped based
on raw cortisol (nmol /L) measures taken at time-points S2,S3,S5.

HR as BPM shows an increase in cortisol levels; this is consistent with our expectations and
prior work [186, 187]. This trend is particularly pronounced for S5 (+20 minutes after the
TSST), showing that higher cortisol values obtained during that time were highly correlated
with higher HR during the TSST.

The other dataset used in this study with cortisol measurements is FAU-TSST, but this
dataset does not have available HR measures, and so a model built on the other two datasets
can be applied to predict HR as BPM. For this, the speech modality of the Reg-TSST and
Ulm-TSST datasets are used to build a model, which can then predict BPM on the FAU-TSST
dataset. This is motivated by audios commonality across the three datasets, and also the
effect of HR on the voice has long been established by previous research [190]. Several prior
works have attempted to model HR from voice signals, either as a classification [191] or
a regression task [192]. In [192] the authors use eGeMAPS to predict BPM from speech
on the segment level, and achieve an RMSE of 12 BPM. Inspired by these past findings,
HR in the form of BPM is targeted using the acoustic speech-based features. As all three
datasets were recorded in different locations with potentially different acoustic conditions,
the domain mismatch problem may be a concern [193], where models trained on data from
one domain might not generalise well to different domains. Moreover, the two datasets
are slightly different for their range in BPM ranges, with subjects in Reg-TSST having a
generally lower BPM than subjects in Ulm-TSST. To address this issue, two single-domain
models are trained using both datasets in isolation and then trained in a multi-domain model
using data from both datasets together. In all cases, the performance is evaluated and reported
separately for each dataset.

The RMSE results are shown in Table 4.5. The initial observation shows that all models
perform better on the Ulm-TSST dataset and that in-domain models perform better than
their cross-domain counterparts. Moreover, the multi-domain model does not bring any
improvements compared to the single-domain ones. The limited overlap in the BPM ranges
for the two datasets is most likely the reason for this; combining the data does not lead
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Table 4.5: The (devel)opment and test RMSE results for BPM prediction in a single- and
multi-domain paradigm. Utilising the Reg-TSST and Ulm-TSST datasets with the eGeMAPS
and an LSTM-RNN architecture.

RMSE Reg-TSST Ulm-TSST

Train Devel Test Devel Test

Reg-TSST 39.90 38.57 20.98 22.96
Ulm-TSST 36.53 40.80 19.32 22.70
Reg-TSST & Ulm-TSST 36.23 38.96 23.07 23.05

to considerable benefits since the target is different. The best performing combination is
obtained when training and testing on the Ulm-TSST dataset and achieves an RMSE of 19
BPM, which is not as strong as the previously mentioned state-of-the-art of 12 BPM [192]. It
is worth noting that capturing biological signals is a challenge, with the potential movements
of the subjects leading to more unreliable measurements, which in turn makes the target
much more of a challenge to learn.

Despite the relatively low performance obtained by these speech-to-BPM models, they
can still be used to obtain BPM predictions on the FAU-TSST dataset, as the primary
interest is in the usefulness of predicted BPM values for stress modelling. In Figure 4.6, the
distribution of predicted BPM values for cortisol measurements obtained at different time
points are shown. A slight downward trend for BPM is observed as the cortisol level increases
in this case which would be different to the trend seen in Figure 4.5. However, rather than
these low measurements implying that stress leads to a lower BPM, they can be interpreted
as a demonstration that BPM signals, though theoretically well justified as predictors of
stress, are nevertheless a challenge to collect in practice. Thus, BPM alone may be inferior
to signals like voice that are easier to manage and provide richer information for evaluation.
Although the trend is not what would be expected, there is still a separation between different
cortisol levels, indicating that predicting HR from the speech signal can be a valuable proxy
for stress prediction. Two-sample independent t-tests show that all differences are significant
at the p < 0.05 level except the middle vs high percentiles as measured at S4.

4.1.4 Conclusions

When utilising acoustic information to recognise markers of stress, it can be seen from
these experiments that audio is a robust modality, for targeting cortisol as compared to HR
and other vision-based features (RQ-1). In this way, speech, in general, does show to be
a valuable proxy for the degree of stress concerning percentile groupings of cortisol, and
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Figure 4.6: Box plots of predicted BPM values for the FAU-TSST dataset, based on a
combined model train on the FAU-TSST and Ulm-TSST datasets. Grouped based on raw
cortisol (nmol /L) measures taken at time-points S2,S3,S5.

markers of stress in general. The main results from these experiments are the validity of
speech-based prediction of high-levels of cortisol, which is substantiated by results which
show that saliva-samples taken between 10–20 minutes after the stress event are more highly
correlated to the speech features in general. This finding links to literature that supports the
delay in cortisol after stress (in this case, when speaking).

From a uni-modal vs multimodal perspective (RQ-2), the system benefited when audio
and video-derived features were fused, which may be partly due to the sustained silence that
exists for some more heavily stressed subjects. However, as a uni-modal signal, handcrafted
audio features appear to model the targets well on their own, and when fusing modalities,
there did not appear to be a substantial benefit to neither early nor late fusion, although
late fusion showed a slight increase in overall correlation. In general, this study was also a
strong example of interdisciplinary work (RQ-4). The data collection was made solely by
the respective psychology focused research groups at the University of the Regensburg, the
University of Ulm, and the University of FAU Erlangen-Nürnberg, which not only gives the
data more scientific validity, this also means that via interdisciplinary collaboration with the
data collectors, several aspects of the experimental settings can be rigorously considered,
e. g., the effect of the varied assay used for extracting cortisol (RQ-3).

In summary, these experiments show that audio alone is suitable for recognising several
physiological markers of stress; however, a multimodal approach is beneficial where speech
is limited. Despite this, as with many states of emotional wellbeing, there appears to be
substantial variance in the physiological manifestation of stress, making generalisation
a challenge, particularly in the case of BPM. This strong variance may be tackled by
personalised machine learning approaches, and should be considered in future work.
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4.2 The State of Anxiety in Speech

The rate of diagnosis for mental health disorders characterised as anxiety disorders have
been increasing throughout the last decade, particularly for those living in urban environ-
ments [194]. There are several anxiety disorders that range in their severity, including
Generalised Anxiety Disorder (GAD), Obsessive-Compulsive Disorder (OCD), and Post-
Traumatic Stress Disorder (PTSD). For the current experiment, GAD (henceforth, anxiety) is
the focus and has been defined as excessive worry and apprehension occurring more days
than not [195]. A feeling of uncertainty is often a catalyst for anxiety, and the current global
pandemic of SARS-CoV-2 now contributes to this [196]. With this in mind, as with many
states of emotional wellbeing, mechanisms to monitor and treat anxiety are needed [197].

The proceeding experiments are based on those initially described in [19]. Within these
experiments the effect of anxiety on speech is explored, via an acoustic analysis, and machine
learning experiments focusing on the ability for the speech signal to computationally predict
the degree of anxiety (based on the BAI score). The experiments focus on four classes of
emotional sustained vowels (Sad, Smiling, Comfortable, and Powerful) which have been
taken from the Düsseldorf Anxiety Corpus (DAC) as described with more detail in Chapter 3.
First, acoustic analysis is performed on the data, observing a selection of conventional LLDs,
concerning BAI groupings. Following this, a series of regression experiments are performed
to see how well acoustic features can target the BAI score within particular BAI groupings
and with consideration to certain questions within the BAI that may be particularly related to
vocalisations. As with the previously described study, these experiments address several RQs
in the following manner:

• RQ-1: Validating the use of audio-based features for targeting states of reduced
emotional wellbeing. This is more deeply explored with these experiments as a specific
focus on prosodic-derives features of the speech signal are analysed, as well as targeting
a well established ground-truth for anxiety.

• RQ-3: Utilising the DAC dataset to explore the available data in the community, which
is of a larger scale than many other datasets. Further to this, for these experiments a
self-reported measure is used, and so the validity of targeting this in comparison to
other metrics, e. g., perceived or other objective markers, from audio will be discussed.

4.2.1 Data and Procedure

As a first step, the audio was converted to 16 kHz, 16 bit, mono, WAV format, and as the
beginning and end of many instances contained silence, the Librosa toolkit trimming function



66 Experiments

Table 4.6: The speaker (#) independent partitions, Train, (Devel)opment, and Test. Gender
(M)ale:(F)emale, and number of (inst)ances.

Train Devel Test ∑

# 74 97 68 239
M:F 26:48 25:72 19:49 69:170
Inst. 614 511 440 1565

was applied to automatically trim each file. Given the nature of the sustained vowels being
used this was trivial, however the data loss was quite substantial, with the original data
duration (4 h:30 :m24 s) reduced to 3 h:00 m:40 s. Proceeding this, from the 239 speakers
(69 males) which are taken from the DAC, speaker-independent partitions are created, train,
development, and test (see Table 4.6).

Within the dataset, the absolute BAI rating for a given individual range from 0–60 and
to avoid weighting for particular speakers, these raw annotations were standardised to zero
mean and unit standard deviation, resulting in a range of [-1.11: 4.36]. Speakers were grouped
based on the raw BAI values, as either High-BAI or Low-BAI (≤ 20: Low, ≥ 21: High).

The procedure for the BAI is a series of questions that relate to the degree (Likert scale
0–3) to which a given symptom bothers them in the past month. To explore this more
specifically for speech, there are two questions which relate more specifically to vocalisation
feeling of choking (choking) and a difficulty breathing (breathing), and so these are used to
group the data in another manner. Where no symptoms (no) would be those reporting a value
for 0 (Not at all) has symptoms (has) individual reporting 1 and above (Mildly, Moderately,
Severely) for each of those questions.

The experiments being conducted are based on a feature-based machine learning strategy,
and the features used include both hand-crafted and spectrogram representations of speech
(see Table 4.7). There was no window or hop applied in this case as the duration for the
sample is reasonably small (ca. 8 seconds), and there is no words to assume a meaningful
segmentation on, and so extraction was made over the entire signal. No other modalities are
extracted from the data in this case, as this was not made available in the DAC.

4.2.1.1 Experimental Settings

For the machine learning experiments where the degree of anxiety is targeted by the acoustic
features, given that the subset being used from DAC is reasonably small (ca. 3 hours), for
a robust and easily reproducible approach, an epsilon- SVR with a linear kernel is applied.
During the development phase, a series of SVR models are trained, optimising the complexity
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Table 4.7: An overview of the extracted features used within these experiments, for further
detail on these feature sets see Chapter 3.

Feature Set Modality Dimensions

ComParE Audio 6 373
eGeMAPS Audio 88
DeepSpectrum Audio 4 096

parameters (C ∈ 10−4 – 1), and evaluating the performance on the development set. The best
model is then re-trained with the concatenated train and development set and evaluated on
the test set. This is then repeated for each combination.

To evaluate the results of the machine learning experiments, the Spearman’s correlation
coefficient (ρ) is applied, due to the ordinal nature of the raw BAI values. Additionally,
Cohen’s d is reported as a measure of effect size between the various groupings, and for
the machine learning experiments, this proceeds an evaluation of each test set prediction
result for normality using a Shapiro-Wilktest [198], as well as two-tailed T-test, rejecting
the null hypothesis at a significance level of p < 0.05. In general the effect size can also be
interpreted as, small d ≥ .2, medium d ≥ .4, and large d ≥ .8.

4.2.2 Acoustic Analysis of Anxious Speech

There has been limited analysis in the Computational Paralinguistics (CP) and speech
processing community for the state of anxiety. In [199] the authors compare self-reported
anxiety from the renowned State-Trait Anxiety Inventory (STAI) [200], to human perception
and compare this with acoustic LLDs, yet there appears to be no literature that does this in
the context of the BAI score. Inspired by results in [199], based on the groupings created
earlier, a variety of acoustic LLDs will be extracted from each of the speech samples and
analysed.

4.2.2.1 Discussion of Results

As a brief initial step, the effect size (Cohen’s d) between High-BAI and Low-BAI groupings
of each of the acoustic feature sets extracted for each sustained vowel is evaluated (see Ta-
ble 4.8). Of note from this analysis, it can be seen that DeepSpectrum features appear to
have consistently moderate effect sizes, larger than ComParE and eGeMAPS, particularly for
the Sad and Comfortable class. However, in most cases there is a difference in the standard
deviation of the mean from all acoustic feature sets, taken from all sustained vowels.
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Table 4.8: The effect size as Cohen’s d, between the mean of all features sets (eGeMAPS,
DeepSpectrum, and ComParE for Low-BAI vs High-BAI groupings of each stressed vowel
class. Individual results excluded reject the null-hypothesis.

Feature Set Sad Smile Comf. Power

eGeMAPS .564 .463 -.053 .649
ComParE .774 .336 -1.339 –
DeepSpectrum .819 .708 .797 .463

µ .719 .502 -.198 .556

Table 4.9: The results from the acoustic analysis. Reporting the mean across all speakers
for the mean (µ) and standard deviation (σ ) of F0 (Hz), HNR (dB), and (Int)ensity (dB), for
each class of emotionally sustained vowel in (Low) and (High)-BAI groupings. Including the
number (#) of samples in each group.

BAI-level (#) Class F0 µ F0 σ HNR µ HNR σ Int. µ Int. σ

Low (290) Sad 165.23 24.73 15.93 3.86 54.65 9.80
High (88) 148.04 27.093 13.97 4.00 56.68 9.39
Low (302) Smile 221.88 25.09 18.07 4.03 60.66 11.87
High (89) 185.09 20.85 16.31 3.80 62.42 10.95
Low (305) Comf. 171.18 16.10 16.66 3.41 56.42 11.64
High (88) 155.65 22.03 15.45 3.71 60.23 11.33
Low (93) Power 193.87 12.07 20.16 3.74 64.75 13.94
High (310) 170.08 13.98 17.59 3.73 65.75 12.56

Next, the standard deviation (STD) and the mean of Pitch F0 (Hz), intensity (dB), and
HNR (dB) for each speech sample is extracted for the subset of the DAC, and also the Low-
BAI and High-BAI pairings, for which the effect size using Cohen’s d, will be compared
between. Before this, a two-tailed T-test is performed, rejecting the null hypothesis at a
significance level of p < 0.05. An overview of the mean results is given in Table 4.9.

When evaluating pitch (F0) of the four classes of sustained vowels, higher STD between
Low-BAI and High-BAI groupings for all classes is found, except Smiling – particularly,
for Sad and Comfortable, which show a smaller and medium effect size, respectively. This
finding shows that lower aroused phonation types present stronger F0 variance for individuals
with higher anxiety levels. In Figure 4.7 this finding is shown more specifically for a selection
of speakers. Where those with higher levels of BAI have a lower STD for F0 for Smiling ,
but higher for Sad, with this finding seemingly consistent between genders.

For the intensity of the speech signal, in all cases samples of Low-BAI show strong
deviation in dB, and particularly for Smiling and Powerful. Additionally, when comparing
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Figure 4.7: Pitch F0 plot for(F)emale and (M)ale samples from the Low-BAI and High-BAI
groupings, taken from the Sad and Smile sustained vowel. Of note a higher mean standard
deviation of F0 for samples in High-BAI grouping as well as for females compared to males
is shown. Further to this, the F0 for High-BAI grouping also appears to be in a lower range
as compared to the Low-BAI for each gender.

Low-BAI-Sad and Low-BAI-Powerful, a large effect size (d=1.068) is found, reaffirming
the difference in affect for the target emotional style for these sustained vowels. Overall the
mean intensity is quite consistent with a general increase from Sad to Powerful.

For HNR, all classes show a higher mean results for the Low-BAI class but a higher STD
in most cases for the HNR for the High-BAI, aside from the Smiling vocalisation. The STD
finding is more substantial significant for Sad and Comfortable and shows that vocal-fold
action is less consistent for these classes in the High-BAI group.

The findings from the initial acoustic feature set analysis, specifically for DeepSpectrum,
also seems to be reflective of the individual LLDs, specifically for Sad and Comfortable. This
leads to the assumption that given the visual nature of DeepSpectrum features, an increased
STD in F0 for those with higher anxiety may be more easily captured with these features.
Further to this, DeepSpectrum most likely observes noise in the signal, as reflected by the
varied HNR for both Sad and Comfortable. From this analysis the relation between state of
emotional arousal for the sustained vowel and the F0 STD is clearly shown.

4.2.3 Anxiety Prediction from Stressed Vowels

A series of experiments are performed to explore the efficacy of computational prediction
of anxiety from speech in a set domain-specific groupings, in relation the BAI scale. The
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Table 4.10: The results for the prediction of Beck Anxiety Inventory (BAI) for Sad and
Smiling sustained vowels and (Has) symptoms or (No) symptoms of feeling of choking
and difficulty in breathing. Reporting ρ , and for Has symptoms ∗ indicates significance
(p < 0.05) compared to the equivalent No symptoms. Emphasised test results show ρ > .3.

ρ Sad Smiling

Feeling of choking No Has No Has
Devel Test Devel Test Devel Test Devel Test

eGeMAPS .102 .190 .611 -.064* .252 .350 .343 .218*
ComParE .099 -.170 .110 .051* .309 .011 .223 .535*
DeepSpectrum .078 .288 .369 -.397* .202 .246 .022 -.160*

Difficulty in breathing No Has No Has
Devel Test Devel Test Devel Test Devel Test

eGeMAPS -.019 .120 .276 -.122* .187 .255 .453 .340
ComParE .048 -.139 -.028 .363* .282 -.021 .357 .699*
DeepSpectrum -.006 .357 .301 .284* .342 .256 -.045 .028*

same subsets as applied earlier are used for these experiments, as well as the four emotional
sustained vowel classes, described previously (Sad, Smiling, Comfortable, and Powerful).
Experiments are performed from within the emotion-class, as well as for all together.

4.2.3.1 Discussion of Results

The results for experiments are divided into more manageable groups for east of discussion
In Table 4.11, Table 4.12 and Table 4.13 correlation prediction results for BAI of Low and
High-BAI groupings are given for the Sad and Smiling, Comfortable and Powerful, and
All sustained vowels respectively. For the Has and No-symptoms groupings, Table 4.10,
Table 4.14, and Table 4.15 report results for the Sad and Smiling, Comfortable and Powerful,
and All sustained vowels, respectively.

In general, as indicated by ∗, there are significant differences in almost all predictions for
Low-BAI vs High-BAI groupings. As well as this, in most cases, High-BAI grouped results
are substantially higher than Low-BAI grouped results. Although the results vary slightly,
they do suggest that speech characteristics, harnessed for the prediction of anxiety, are more
robust when anxiety is at high levels. This finding is supported by earlier discussed literature,
which suggests that speech disturbances and varied speech rate are prominent in the speech
of those with high anxiety [201].

Looking closer at the BAI grouped experiments, High-BAI grouped anxiety predictions,
in general, are stronger, with at best, .506 ρ for prediction of BAI across all sustained vowels
(see Table 4.13). Through the late-fusion of the two best results eGeMAPS and DeepSpec-
trum, this is increased to .592 ρ . For the individual sustained vowels (see Table 4.11),
Smiling in High-BAI grouping performs best, with eGeMAPS showing up to .593 ρ , a
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Table 4.11: The results for the prediction of Beck Anxiety Inventory (BAI) for Sad and
Smiling sustained vowels and Low- and High-BAI groupings. Reporting ρ , and for High-BAI
∗ indicates significance (p < 0.05) compared to the equivalent Low-BAI. Late fusion is
included from the mean of predictions of the two best performing feature sets. Emphasised
test results show ρ > .3.

ρ Sad Smiling

BAI Low High Low High
Devel Test Devel Test Devel Test Devel Test

eGeMAPS -.049 .106 .210 -.057* .043 -.012 .181 .593*
ComParE .025 -.018 .100 -.241* .015 -.271 .441 .446*
DeepSpectrum .104 .210 .005 .304* .190 .012 .253 .418*

Late-Fusion – .194 – .228* – .008 – .646*

Table 4.12: The results for the prediction of Beck Anxiety Inventory (BAI) for Comfortable
and Powerful sustained vowels and Low and High BAI grouping. Reporting ρ , and for
High-BAI ∗ indicates significance (p < 0.05) compared to the equivalent Low-BAI. Late
fusion is included from the mean of predictions of the two best performing feature sets.

ρ Comfortable Powerful

BAI Low High Low High
Devel Test Devel Test Devel Test Devel Test

eGeMAPS -.053 .029 .350 .031* -.098 -.294 .084 .087*
ComParE -.101 .183 .154 -.127* .096 .073 .252 .143*
DeepSpectrum .219 .216 .146 -.145* .132 -.004 .146 -.501*

Late-Fusion – .213 – .027* – -.029 – .167

result which is also improved by late-fusion up to .646 ρ . A slight moderate correlation
for DeepSpectrum of Sad High-BAI grouping is seen. However, this is not consistent with
all feature sets. For Comfortable and Powerful, there are no substantial correlations overall.
When comparing to Smiling and Sad this leads to the assumption that Comfortable and
Powerful do not provide meaningful information for the current task, and that the inherent
emotionality of the Sad and Smiling is very meaningful in this context.

In regards to the grouping of Has-symptoms, or No-symptoms of feeling of choking,
Smiling samples again performs best, with ComParE at best .535 ρ . However, in this
case, eGeMAPS and DeepSpectrum are less able to capture the phenomena. Comfortable
phonations show a strong negative correlation for the Has-symptom choking grouping, a
finding which to a degree also appears for Sad, suggesting (based on acoustic analysis)
that intensity may play a strong roll in this task. When predicting BAI from all samples
with No-symptom of choking, this appears to be stronger than the Has-symptoms pairing.
Overall, there are no strong findings from this paradigm. However, most No-symptoms
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Table 4.13: The results for the prediction of Beck Anxiety Inventory (BAI) for all Düsseldorf
Anxiety Corpus (DAC) data with the same Low vs High-BAI groupings.

ρ All

BAI Low High
Devel Test Devel Test

eGeMAPS .012 -.033 .173 .405*
ComParE .077 .002 .120 .120*
DeepSpectrum .141 .286 .105 .506*

Late-Fusion – .238 – .592*

Table 4.14: The results for the prediction of Beck Anxiety Inventory (BAI) for Comfortable
and Powerful sustained vowels and (Has) symptoms or (No) symptoms of feeling of choking
and difficulty in breathing. Reporting ρ , and for Has symptoms ∗ indicates significance
(p < 0.05) compared to the equivalent No symptoms. Emphasised test results show ρ > .3.

ρ Comfortable Powerful

Feeling of choking No Has No Has
Devel Test Devel Test Devel Test Devel Test

eGeMAPS .192 .067 .132 -.424 .039 .376 -.148 .317*
ComParE -.008 .294 .081 -.463 .057 .201 .392 .494*
DeepSpectrum .130 .300 -.003 .297* .106 .438 .706 .200*

Difficulty in breathing No Has No Has
Devel Test Devel Test Devel Test Devel Test

eGeMAPS .036 .067 .413 -.217 .081 .234 .218 .194*
ComParE .090 .284 .082 .078* .099 .212 .259 -.384*
DeepSpectrum .004 .302 -.010 .169* .176 .384 -.009 -.026*

grouped results perform better than Has-symptoms grouped, which suggests a need for
further acoustic analysis to observe any variation in the samples for this constellation.

For the grouping of Has-symptoms or No-symptoms of difficulty in breathing, it is seen,
as with choking, that the No-symptoms grouped results are often stronger than Has-symptoms
group. However, across feature sets, this is somewhat confused. For Sad, for example, the
No-symptoms grouping performs better with DeepSpectrum, but overall, ComParE shows
slightly better results for the Has-symptoms grouping. Like all other groupings, the Smiling
class in the Has-symptoms grouping shows the best result, up to .699 ρ . ComParE also
performs best when utilising all data for the Has-symptoms grouping. This is suggesting that
HNR, which may be stronger due to restricted airflow, is more easily captured by ComParE
features for individuals with this breath symptom.

To evaluate the degree to which highly anxious speech can be applied to predict an
individuals BAI further, the experiment was rerun with all data and without any groupings,
i. e., without Low vs High-BAI, or Has vs No symptoms (see Table 4.16). From this, the



4.2 The State of Anxiety in Speech 73

Table 4.15: The results for the prediction of Beck Anxiety Inventory (BAI) for all Düsseldorf
Anxiety Corpus (DAC) data, utilising the Has vs No symptoms groupings.

ρ All

Feeling of Choking No Has
Devel Test Devel Test

eGeMAPS .146 .222 .103 -.029*
ComParE .102 -.163 -.148 -.392*
DeepSpectrum .188 .254 .075 .118*

Difficulty in Breathing No Has
Devel Test Devel Test

eGeMAPS -.019 .120 .187 .255*
ComParE .112 .136 .237 .379*
DeepSpectrum .151 .285 .178 .126*

Table 4.16: The results for prediction of Beck Anxiety Inventory (BAI) from all Düsseldorf
Anxiety Corpus (DAC) data combined, without groupings. Late-fusion was calculated based
on the mean from the two best performing feature sets.

ρ Devel Test
eGeMAPS .189 .245
ComParE .093 .213
DeepSpectrum .106 .238

Late-fusion – .243

original High-BAI grouped results with DeepSpectrum and eGeMAPS remain stronger, with
the best results from late fusion being .243 ρ for all data (a result which can be considered
negligible correlation). This result is significantly lower than the best High-BAI result with
all sustained vowels, reporting a very large effect size (d=1.718) when comparing the two
best results. In general, for all scenarios, the Smiling class performs best for the stronger
High-BAI and Has-symptoms groupings. This finding could suggest that anxiety is more
prevalent in a more facially strained stressed vowel. There is much in the literature relating
to Smiling and anxiety, for example, the “fooled by a smile” effect in which those who
suffer from anxiety can show untrue emotional expressions [94]. Furthermore, high anxiety
involves much more facial expression and general movement, as compared to lower anxiety,
with ‘non-enjoyment’ smiles being displayed frequently [202].

4.2.4 Conclusions

In this section, the effect of anxiety on speech was evaluated, and the efficacy of predicting
indications of anxiety i. e., the BAI score, from non-lexical sustained vowels were evaluated.
The findings show that utilising speech-based features for the prediction of anxiety is valid
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and that recognition of higher levels of anxiety is more easily targeted by acoustic features
than lower levels of anxiety (RQ-1). As individuals reporting high levels of BAI may need a
more timely intervention, this finding is promising and particularly applicable to integration
with a more empathic AI.

Similarly, sustained vowels with higher inherent emotion e. g., Smiling and Sad, were
more influential and related to the level of the BAI, seen both from the acoustic analysis,
e. g., those with high anxiety having lower STD F0 for Smiling than those with low anxiety
and vice versa for Sad. This is particularly interesting, as it suggests that speech can capture
states of poor wellbeing better than neutral or positive levels and that emotionality is a
strong indicator of this. Further, this may relate to the known ability for acoustic features
to model states of highly arousal emotion better in general, in most scenarios, the sustained
Smiling vowel was more easily modelled in individuals reporting higher levels of anxiety.
In general, from the literature, the smile is known to alter the vocal tract more than other
facial expressions and is said to be “heard as well as seen” [203]. Additionally, those
with high anxiety often find emotion regulation a challenge and exaggerate their emotional
expression [94], possibly leading to more substantial speech variance. Given these relations
to facial expression, it would be valid to compare these results to other modalities, particularly
video-derived features.

Another aspect that was being evaluated was the nature of the target itself, being derived
from a self-report (RQ-3). As there are no perceived or objective marker-based labels
available to compare to in this case, only assumptions can be made. However, it would seem
that as an index, the BAI was indicative of the state of anxiety, given the consistencies in the
findings across both experiments. One aspect which was less useful in the context and would
better from a more profound analysis was the specific Has vs No symptoms groupings, and it
would appear that in general, these results were less telling about the difference in the groups.
This could be due to the nature of the questions being that they are requesting information
about the subjects experienced in the last month, and analysis of the subjects during a target’s
period of anxiety where these symptoms are prominent at the time may show to be fruitful.
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4.3 Continuous States of Emotional Wellbeing

In this section, two experiments are conducted, focusing primarily on continuous recognition
of dimensional states of emotion from speech during lower-levels of wellbeing. The first
experiment is a classical continuous speech emotion recognition paradigm, where the subjects
targeted are within a public speaking scenario. The second experiment focuses on predicting
a physiological adapted emotional target from speech and multimodal fusion during TSST.
Proposing a novel and potentially more optimal representations of continuous emotional
arousal in the context of stress and recognition of states of emotional wellbeing. These
experiments are based largely on two published works, namely [25], and [24], and as with
the previous these experiments address the following RQs in the following manner:

• RQ-1: Validating the use of audio-based features for targeting states of emotional
wellbeing. In these experiments this is explored more specifically in relation to
continuous dimensional models for emotion, and within varied scenarios which may
present emotion differently.

• RQ-2: Exploring the use of audio in a uni- vs multimodal setting. Validating the
overall benefit of audio as it pertains to continuous emotion (arousal and valence) and
emotional wellbeing.

• RQ-3: Data scarcity in the context of computational analysis for emotional wellbeing
is another aspect which is explored in both experiments. The first relates more specifi-
cally to the data itself, applying an audio-specific data augmentation method, and the
second focuses on the annotation of continuous emotion, and presents an alternative in
the case lower agreement between raters, or the need for additional raters.

4.3.1 Emotion During Public Speaking

In modern society, public dissemination is a useful tool for knowledge-sharing. However,
having a fear of public speaking means that some individuals avoid this opportunity. Public
speaking can provoke disorders, including Generalised Anxiety Disorder (GAD), and acute
stress [204], both having a substantial effect on short-term wellbeing [205]. Furthermore,
cultural differences in regards to an individual’s response to the fear of public speaking
have been researched, with markers including varied heart and speech rates [204]. To this
end, observing emotional states during public speaking allows for a strong indication of the
overall state of wellbeing [206], particularly as research has shown that an individual’s typical
emotion production can change during public speaking [207]. With this in mind, biological
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signals are not readily observable and require rather invasive methods to be continuously
captured. Audio, however, can be observed non-invasively, and has shown to be a reliable
indicator for an individual’s state or trait [208, 61].

For the current study, the main goal is to evaluate if speech-based audio features are
useful for recognition of emotion during a public speaking scenario. To explore this deep
learning-based approach is applied, utilising a Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) architecture with self-attention, to predict continuous dimensional
emotion (arousal and valence). An attention mechanism is applied as this has shown to
improve results for sequence-based tasks, including emotion recognition [209, 210], and
may allow for more context to be captured during training of the LSTM-RNN. For these
experiments the BioS-DB as described in Chapter 3 is utilised, and a series of models are
trained on various acoustic features. Moussu et al. [211] have shown that speaking in front of
others in ones non-native language may cause more fear. Motivated by this, as the BioS-DB
includes individuals speaking in both German and English during a public speaking scenario,
the data is also grouped with consideration to language and native or not German.

4.3.1.1 Data and Procedure

As mentioned the BioSpeech Database (BioS-DB) is used for these experiments. The audio
data is first converted to 16 kHz, 16-bit WAV for use with popular feature extraction toolkits.
As the dataset is reasonably small, an explicit validation set is excluded in this case, and the
data is partitioned in to speaker-independent train and test partitions (see Table 4.17).

For these experiments as with others, a feature-based machine learning approach is
applied. The dataset contained a number of physiological signals, and so features were
extracted from the audio with this in mind, applying a 1-second window size and a small
hop-size of 62.5 ms (16 Hz) for all audio features. As with previous experiments in this
chapter, both hand-crafted speech features, and spectrogram-based data representations are
extracted from the speech signals (see Table 4.18).

As the dataset being used is reasonably small, and to infer the effect of overall data
quantity in this context, data augmentation is applied to the spectrogram-based features. For
this spectrogram representations are extracted from each audio file at a window-size of 1
second and a hop-size of 62.5 ms. The A Simple Data Augmentation Method for Automatic
Speech Recognition (SpecAugment) method [118] which masks portions of frequency and
time from each extracted spectrogram is then applied. These spectrograms are then fed as
an input the pre-trained CNN based architecture provided by the DeepSpectrum toolkit and
features vectors are extracted from the augmented spectrogram images directly. With this
approach the training set is then increased by a factor of 2.
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For the target itself, a gold-standard for the emotion (arousal and valence) labels was
calculated between the three raters utilising the EWE method. As described in Chapter 3,
EWE and has been applied repeatedly on emotion-based datasets [60]. When fusing the
signals, the mean inter-rater agreement across all speakers in the BioS-DB from the three
annotators was 0.47 and 0.36 (based on a range of [0,1]) for arousal and valence, respectively.
For the experiments, the gold-standard emotion labels were re-scaled to [-1,1] based on the
maximum possible value.

Table 4.17: The speaker-independent partitions created for the BioS-DB, reporting (#) of
native German (GER) and Non-native German (NonGER) speakers.

# Train Test ∑

GER 25 5 30
NonGER 7 5 12

∑ 32 10 42

Table 4.18: An overview of the extracted features, used within these experiments. For further
detail on each of the sets, see Chapter 3.

Feature Set Modality Dimensions

eGeMAPS Audio 88
DeepSpectrum Audio 4 096

4.3.1.2 Experimental Settings

As the target for these experiments is continuously rated arousal and valence, and the audio
signal is sequential in nature, an LSTM-RNN based is utilised as a regressor. The network
consists of one recurrent LSTM layer with 128 units, a self-attention sequence layer, with a
sequence-wide window, and sigmoid activation, and the output is then fed into a feed-forward
layer which provides the predictions. For each sub-set of data the model is trained for 5
epochs with a batch size of 64 using the Adam optimiser and a learning rate of 0.001.

In an endeavour to explore the ability for capturing context, and also due to the relatively
small hop-size applied for feature extraction, the input data in reshaped to sequences of
20 feature vectors (1.25 seconds). An alternative training strategy is applied for these
experiments, where the model is updated in an iterative manner per speaker. To avoid
potential speaker bias caused by this training method, several models are trained, and for
each the order of speakers is shuffled.
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Two types of language-based models (German and English) are also trained using the
two acoustic feature sets (eGeMAPS and DeepSpectrum). For model testing, the speakers
are grouped into Native-Germans speaking German (GER-GER), Native-Germans speaking
English (GER-ENG), Non-Germans speaking German (NonGER-GER), and Non-Germans
speaking English (NonGER-ENG), as well as from all test speakers together (All). To
evaluate the prediction accuracy, the Concordance Correlation Coefficient (CCC) is utilised
as the evaluation metric, given that it is established in the field of SER [212].

4.3.1.3 Discussion of Results

Table 4.19: The test set results (reporting CCC) for continuous recognition of (A)rousal
and (V)alence from the BioS-DB. Results obtained from the mean of all test speakers in
that language-based grouping, across the 5 best-performing models trained on both English
(ENG) and German (GER) languages. Emphasised results for arousal indicating a CCC ≥0.3,
and for valence CCC ≥0.1. Results with * are discussed.

GER-GER GER-ENG NonGER-GER NonGER-ENG All

CCC Train A V A V A V A V A V

eGeMAPS ENG .072 .045 .165 .102∗ .403 .279∗ .582∗ .175∗ .269 .130∗

GER .075 .069 .147 .072 .382 .148 .370 .088 .203 .084
DeepSpectrum ENG .046 .074 .117 .045 .233 .089 .349 .063 .147 .037

GER -.003 .064 -.004 .021 .471 .078 .339 .010 .114 .028
DeepSpectrum + ENG .172 .056 .018 .393 .283 .308 .156 .244 .158 .226
SpecAugment GER -.050 .192 .096 .419 .640* .491 .387 .296 .344 .334

An overview of the results for all experimental paradigms is given in Table 4.19. Where
significant differences are discussed, this is based on the predictions from all speakers and a
mean of all models and proceeds an evaluation of normality using a Shapiro-Wilktest [198];
a two-tailed T-test is also calculated, and the null hypothesis is rejected at a level of p < 0.05.

The results in Table 4.19 show that language appears to play a notable role for emotion
recognition in this context. The best Native-German correlation for arousal is .260 CCC for
the model trained on English, and tested on Germans speaking English (GER-ENG). As well
as this, The German only models (GER-GER) have consistently negligible correlations as
compared to NonGER-GER. Furthermore, looking at the Non-German results, a promising
increase in CCC is observed, particularly for the English trained models. Indeed, in this
paradigm, the best valence result comes from NonGER-GER, with .279 CCC. This result
suggests that the positive to negative dimension of emotion (which is typically a challenge for
audio modelling) is captured more easily when individuals are speaking in their non-native
language, possibly due to higher levels of anxiety [213]. A result which is slightly agreed
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upon with the GER-ENG valence score of .102 CCC, and even from the NonGER-ENG
valence results of .175 CCC – further analysis of native English is a challenge, as BioS-DB
there are only 2 native English speakers.

As discussed in the earlier experiment’s focused on anxiety (see Section 4.2), it may be
that the more neutral expression, caused by the neutral transcript of the text ’The North Wind
and the Sun’, which is limiting the ability to model aspects of valence. In other words, more
vibrant expression may be captured better by the feature representations, however this is not
commonly expressed when speaking publicly.

For the prediction of arousal, the best correlation is .582 CCC, and comes from the
eGeMAPS English model, when testing on NonGER-ENG. Across most of the testing
paradigms, the hand-crafted eGeMAPS features perform better than DeepSpectrum for this
task. However, through the use of data augmentation, more stable results across all results in
general are seen, with the best result for arousal of .640 CCC obtained in the NonGER-GER
grouping. This suggests that data augmentation is suitable here, to improve robustness of
results, and further establishes the findings in regard to the language groupings, as similar
patterns of behaviour between the feature sets is seen. In this regard, for the GER-GER
model trained on English there is an improvement with data augmentation, which would also
point to the language dependency of the model and the task itself.

In summary, the results from these experiments show that audio is suitable for modelling
arousal, with some promising results for valence in the context of public speaking, and that
the data augmentation method proposed was particularly useful in obtaining a more robust
result. For further research, it would be of interest to perform feature selection with the
eGeMAPS features, to explore which features from this set perform highly in this context. As
well as this, various audio-based augmentation approaches, such as additive noise, may also
improve the robustness of these results. The window-based training approach also appears to
have been effective for this use case, but additional hyperparameter optimisation would be
extremely fruitful, particularly to explore the overall benefit that larger windows of context
may have on model performance.

4.3.2 Physiologically-Adapted Emotion During Stress

Physiological and emotional responses can coincide during a stressful situation [214], and
the degree of correlation has shown to be dependent on factors including underlying psycho-
logical traits and states, e. g., social desirability, or physiological dispositions, e. g., brain
morphology [215]. During a stress-inducing situation, heart-rate, and breath become var-
ied [216], along with the voice [112] (which is related strongly to perceived affect [217]).
To this end, signals such Electrodermal Activity (EDA) (as known as SC) – described as a
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psycho-physiological indication of emotional arousal [218] – correlate with an individual
current perceived emotional state, specifically during high states of arousal [219].

Within the field of affective computing, recognition approaches to predict continuous
states of emotion frequently utilise the two-dimensional Circumplex Model of Affect [96],
observing the arousal (activation) and valence (positivity) of perceived emotion. However, as
emotion is a subjective state of being, multiple raters must continuously annotate, which is
time-consuming and costly. Further to this, the method to obtain a robust agreed-upon signal
from multiple raters (gold standard) remains an ongoing research question, with several
methods available (see Chapter 3, Section 3.1.3).

With this in mind, research into the fusion of physiological signals for use with perceived
emotional signals is limited. Although physiological signals are utilised as features [220],
there has been minimal research on a combined physiological and perceived arousal gold
standard. Recently, in the 2021 edition of the Multimodal Sentiment Analysis in Real-life
Media Challenge (MuSe), the signal of arousal was fused with EDA and used as a prediction
target for the MuSe-Physio sub-challenge [15]. The baseline result from this was 0.3 CCC
stronger than the arousal only MuSe-Stress sub-challenge when performing a late-fusion of
audio and video-based features. Furthermore, the text-based features (typically less helpful
for recognition of arousal) also improved when targeting EDA fused with arousal.

To explore this idea further, as the scenario is a stress induced situation, in this set of
experiments the Ulm-TSST data as described earlier and applied in earlier experiments will
be used to explore the fusion of EDA,BPM, and Rate of Respiration (RESP) with arousal
ratings. As well as a number of the aforementioned benefits, e. g., reducing the amount of
raters needed, or allowing for the addition of more raters, given this pseudo-professional
setting, it can be considered that the utilisation of physiological signals (a more objective
marker for arousal) may be of more use here, as perceived arousal may be suppressed to
make a better impression towards the interviewer [218]. Furthermore, research has shown
that the ‘illusion of transparency’ can mean that alterations in speech are more prominent to
the speaker than the audience [221], suggesting that continuous physiological signals may
be more valuable for observation generally than perceived emotion. For these experiments,
several multimodal features are extracted from audio, video, and textual transcriptions and
a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) architecture is used
as a regression algorithm, following a similar training procedure as outlined earlier in the
chapter (see Section 4.1.1.1).
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Table 4.20: An overview of the speaker-independent partitions, including number (#) of
speakers and total duration of the data splits across Train, (Devel)opment and Test partitions
for the sub-set of the Ulm-TSST dataset.

Train Devel Test ∑

# 33 9 11 53

hh: mm: ss 2:45:29 0:45:32 0:55:33 4:26:36

4.3.2.1 Data and Procedure

The full Ulm-TSST dataset consists of recordings from 110 German-speaking individuals
(ca. 10 hours), which are annotated for the continuous dimensions of emotion (valence and
arousal). For the experiments, a sub-set of the dataset is used including 53 speaker, reduced
due to various artefacts during data processing. The data is in a speaker-independent train,
development, and test partitioning, with balanced speaker demographics across the partitions
(see Table 4.20). Only EDA, BPM and RESP are used for the physiological signals, and
each is down-sampled to 2 Hz (to match the arousal ratings) and smoothed, applying a
Savitzky–Golay filter, to reduce irrelevant, fine-grained artefacts in the signal.

To fuse the rating with the physiological signal a continuous annotator fusion technique
Rater-Aligned Annotation Weighting (RAAW), first presented in [15] is used (see Chap-
ter 3, Section 3.1.3). This method essentially first aligns the signals applying GCTW and
then fuses them with consideration to the weighting of each rater using the EWE method.

In Table 4.21 the mean and standard deviation for the inter rater agreement when cal-
culating each gold standard is given. For the experiments, six gold standards are created.
Annotator 1 (A1) and 2 (A2), were selected as the consistent signals, as the correlation was
strong between these two raters (see Figure 4.8). Where there are two annotators (A1, A2)
and a physiological signal, the benefit of removing an annotator who is suboptimal (in other
words, the annotator with the lowest agreement) is explored. Where two arousal raters are
used with all physiological signals, this is exploring the advantage of using physiological
signals to bring the rating in the gold standard up to five, see Figure 4.9 to observe the signal
behaviours before and after fusion.
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of the physiological signals also showing
correlation between other signals.

Table 4.21: The mean (µ) and standard
deviation (σ ) for inter-rater agreement
between (A)nnotators 1-3 and the combi-
nations of physiological signals, as Pear-
son correlation coefficient (r). Prior to
EWE after GCTW.

r µ σ

A1,A2,A3 .173 .191

A1, A2, EDA .230 .241

A1,A2 + BPM .158 .187

A1,A2 + RESP .108 .134

A1,A2,A3, EDA,BPM .119 .155

A1,A2,A3, EDA,RESP .088 .120

A1,A2,A3, BPM,RESP .070 .097

A2, A2, EDA, BPM, RESP .127 .123

EDA, BPM, RESP .197 .149

The approach for these features is feature-based, and a combination of acoustic, vision,
and textual-based features are applied. As speech is strongly linked to perceived arousal, two
feature sets are used in this case, and these are used based on the better performing sets from
the original Ulm-TSST baseline, described in [15]. This time not using the hand-crafted
features (see Table 4.22), with further details including the applied alignment given in [15],
as well as the earlier description in Section 4.1.

4.3.2.2 Experimental Settings

Given the time-dependent nature of this task, an LSTM-RNN based architecture is utilised.
Extensive hyperparameter optimisation is applied, including, as with previous experiments,
the hidden state dimensionality of 32,64,128 and the numbers of layers 1,2,4, as well as
learning rate 0.0001,0.001,0.005. As with the experiments of Section 4.1.1.1, for the training
processes, the features and labels of every input are further segmented via a windowing
approach [184], and in this case window-size of 300 steps (150 seconds) and a hop-size of
50 steps (25 seconds) is again found to be optimal.
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To observe the benefits of multimodal approaches, a decision-level (late) fusion is applied
to evaluate the co-dependencies of the modalities. The experiments are restricted to the best
performing features from each modality only. For decision-level fusion, separate models are
trained individually for each modality.

Table 4.22: An overview of the extracted features used within these experiments. For a
description of the FAU, BERT, and VGGFace features, see [15], and for further detail on
audio-based features see Chapter 3.

Feature Set Modality Dimensions

DeepSpectrum Audio 4 096
VGGish Audio 128
BERT Textual 768
VGGFace Vision 512

4.3.2.3 Discussion of Results

To explore the benefit of physiological-based arousal and perceived arousal fusion, the
extensive results for the computational prediction experiments conducted are given in separate
tables for ease of discussion (see Table 4.23 and Table 4.24). As an evaluation metric for
these experiments, CCC is employed, as is typical for emotion recognition tasks, and to
better compare to the initial baseline results obtained for the Ulm-TSST dataset [15].

For the results in Table 4.23, it can be seen that the perceived arousal only (A1-A3) score
is strong, particularly from a multimodal approach where at best .506 CCC is achieved on
the test set, from late-fusion of audio and video-based features. However, looking at the
uni-modal approaches for A1-A3, as expected given the pseudo-professional scenario of the
TSST, audio-only features capture the perceived arousal to a lesser degree compared to
VGGFace. Furthermore, as is typical for arousal prediction tasks, the uni-modal textual
features perform worst, obtaining .2118 CCC on the test set.

This finding in relation to the pseudo-professional scenario is similar to what is disused
in the previous public speaking experiments (see Section 4.3.1), regarding the emotionality
of the speech from experiments in Section 4.2 being more easily modelled. In the last
experiments where language appeared to play a decisive role, as native speakers were less
easily modelled when speaking in front of others, this is a similar scenario here (for arousal
only gold standard), and suggests a need for adaption of the arousal gold standard to be more
representative of the speakers’ current state.
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Figure 4.9: An example of the gold standard creation for subject # 9 from Ulm-TSST. Above,
(A)nnotator A1, A2 + EDA (σ = .217), and below, a comparison of three gold standards.
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Table 4.23: The CCC results for prediction of an arousal only and single physiological signal
adapted arousal gold standard, on the (devel)opment and test partitions. Utilising (V)ision:
VGGFace, (A)udio: DeepSpectrum, VGGish (VGGish), and (T)ext: Bidirectional Encoder
Representations from Transformers (BERT). Reporting the best result from hyperparameter
optimisation, as well as reporting the mean (µ) across all feature sets for a given signal. Best
test scores are emphasised.

Perceived A1,A2,A3 A1,A2 A1,A2 A1,A2

Physiological EDA BPM RESP

CCC Devel Test Devel Test Devel Test Devel Test

VGGFace .3025 .3813 .3216 .3959 .4805 .3771 .1869 .3745
DeepSpectrum .2826 .3060 .3366 .4031 .1649 .2327 .0382 .0977
VGGish .2127 .2856 .3493 .4210 .3156 .3313 -.0079 .1716
BERT .1341 .2118 .2431 .2402 .0567 .1037 .1063 .1802

A + V .4638 .5062 .4506 .5103 .4640 .3889 .3196 .3108
A + T .3240 .3841 .3821 .3470 .3044 .3205 .1396 .2032
V + T .2526 .4668 .3442 .4213 .4735 .4202 .3443 .2871
A + V + T .3476 .4965 .4186 .4987 .4458 .4104 .3811 .3036

µ of All – .3798 – .4047 – .3231 – .2411

Table 4.24: The CCC results for prediction of physiological signal adapted arousal gold
standard with up to five signals, on the (devel)opment and test partitions. Utilising (V)ision:
VGGFace, (A)udio: DeepSpectrum, VGGish, and (T)ext: BERT. Reporting the best result
from hyperparameter optimisation, as well as reporting the mean (µ) across all feature sets
for a given signal.

Perceived A1,A2,A3 A1,A2,A3 A1,A2,A3 A1,A2

Physiological EDA,BPM EDA,RESP BPM,RESP EDA,BPM,RESP

CCC Devel Test Devel Test Devel Test Devel Test

VGGFace .3694 .4062 .3995 .3941 .3637 .4306 .4704 .4707
DeepSpectrum .3089 .3861 .1841 .3807 .2527 .2046 .3683 .3832
VGGish .4851 .5164 .0901 .3985 .2689 .3649 .5161 .4712
BERT .1999 .0542 .2733 .2393 .1210 .0922 .3568 .3344

A + V .5666 .6157 .3630 .3947 .4722 .4432 .6674 .5025
A + T .5089 .3677 .3249 .1777 .3295 .2817 .5570 .4357
V + T .4839 .3783 .3836 .2301 .3738 .3881 .5916 .5355
A + V + T .5895 .4596 .4028 .3470 .4086 .4230 .6669 .5055

µ of All – .3980 – .3203 – .3285 – .4548
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Table 4.25: The CCC results for prediction of physiological signal only gold standard, on the
(devel)opment and test partitions. Utilising (V)ision: VGGFace, (A)udio: DeepSpectrum,
VGGish, and (T)ext: BERT. Reporting the best result from hyperparameter optimisation, as
well as reporting the mean (µ) across all feature sets for a given signal.

Physiological EDA,BPM,RESP
CCC Devel Test

VGGFace .5679 .5838
DeepSpectrum .4189 .5157
VGGish .3197 .4613
BERT .2909 .3842

A + V .5030 .5728
A + T .4175 .5586
V + T .4386 .5594
A + V + T .4623 .5639

µ of All – .5250

Table 4.26: The mean (µ), standard deviation (σ ) of reported CCC for a selection of test
results given in Table 4.23, Table 4.24 and Table 4.25, which include EDA, BPM, or RESP.

A1,A2,A3 inc. EDA inc. BPM inc. RESP
CCC µ σ µ σ µ σ

VGGFace .3813 .4167 .0364 .4212 .0396 .4175 .0424
DeepSpectrum .3060 .3883 .0101 .3017 .0965 .2666 .1402
VGGish .2856 .4518 .0527 .4210 .0872 .3516 .1279
BERT .2118 .2170 .1174 .1461 .1273 .2115 .1018

Late-Fusion

A + V .5062 .5058 .0903 .4876 .0972 .4128 .0810
A + T .3841 .3320 .1096 .3514 .0663 .2746 .1162
V + T .4668 .3913 .1263 .4305 .0722 .3602 .1339
A + V + T .4965 .4527 .0733 .4496 .0427 .3948 .0888
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Figure 4.10: The Mean Absolute Change (MAC) and skewness for the mean (µ) of all
speakers, from each gold standard signal utilised within experiments.

With this in mind, continuing to look at Table 4.23, in general a slight improvement
across features when incorporating a physiological signal is seen. Of interest, a ca. .3
CCC improvement for BERT features when utilising the EDA signal. Typically, perceived
arousal is challenging for textual-based features, as seen from the perceived arousal baseline.
However, at best for BERT features when predicting the combined A1, A2, EDA, BPM, RESP
signal, a CCC of .334 is obtained, which is .1 above the A1-A3 baseline. When observing
the mean across experiments, including EDA Table 4.26, it is confirmed that EDA is the
strongest physiological signal for the BERT features.

For the audio features, it is also shown that a more robust result is obtained over VGGFace
when utilising EDA, suggesting that the behaviour of EDA is present in the voice, making
this gold standard more attainable for the speech-based features. Similar behaviour for BPM
and RESP fusion is also obtained; however, this is not as consistent as EDA results, as shown
from the more consistent mean results in Table 4.26. Furthermore, there are lower results for
the A1, A2 BPM, and A1, A2 RESP results, compared to the A1-A3 baseline.

Furthermore when discussing audio features, all gold standard approaches, which include
EDA, report an improvement, and up to .471 CCC is obtained by VGGish features, where all
physiological signals are utilised. In Figure 4.9, it can be seen that the two physiological-
adapted gold standards follow a similar trend to the arousal baseline gold standard. However,
there is a slightly reduced standard deviation for this example, with .24 for A1-A3 compared
to .22 for A1, A2, EDA, and .203 for the A1, A2, EDA, BPM, RESP signal. This may suggest
that better results are obtained from a smoothing effect when the perceived arousal is fused
with physiological signals.

To further analyse this smoothing effect, it can be seen in Table 4.25 that the results
are consistently higher than the arousal only baseline when utilising the physiological only
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(EDA-RESP) signal. With a standard deviation of .157 for the same example in Figure 4.9,
this does lean more toward being a factor in the improvement of the results.

However, the MAC, and skewness are also extracted from each of the gold standard
signals across all speakers in Figure 4.10. Although further investigation should be done here,
there is an inherent difference in the MAC from A1-A3, and EDA-RESP, which is mirrored
by the skew of the signals’ distribution. Of promise, and perhaps opposing the smoothing
effect, none of the physiological signal only results obtains higher than the best result when
fusing with perceived arousal, i. e., .6157 CCC from A1, A2, EDA, BPM with audio and
video feature fusion. This leads to the consideration that further investigation on this topic
may be fruitful – particularly, as there is no reduction in results from physiological-adapted
arousal fusion.

4.3.3 Conclusions

From the results of both these experiments, it is again clear that speech derived features
can be applied to target states emotional wellbeing (RQ-1). From the first experiments, this
was shown prominently, particularly by the evaluation of native against non-native speakers,
where arousal was modelled in a strong way, with valence being modelled to a moderate
degree via the implementation of spectrogram based data augmentation.

In the case of the gold standard adaption task, findings have shown that in most cases,
the EDA signal can improve recognition of arousal, specifically interesting for textual based
features, but also aiding acoustic features, for which the less (perceived) aroused speech
behaviours may have been a challenge. Furthermore, this finding was in general found to be
more beneficial when replacing a poor rater with a substantially low inter-rater agreement
(RQ-3). There was less of an improvement from BPM or RESP signals alone, however, when
fused with EDA, various feature sets did see improvements, with the best score obtained from
a fusion of perceived arousal with BPM and EDA of up to .6157 CCC based on late-fusion
of audio and video features.

In general, these works show again that audio can work as a uni-modal signal for
modelling various states of emotional wellbeing (RQ-2), although there is again certainly an
improvement in this context when fused with vision-based features. In this same way from
the first experiments the spectrogram data augmentation strategy also appears to be robust
for these types of application.
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4.4 Audio Generation for Speech Emotion Recognition

As data is sparse in this area of research, generative networks can be applied as an augmen-
tation approach to generate novel samples of speech data. In this section, first the efficacy
of this in relation to emotional speech is explored, and proceeding to this a method for
evaluating the generated samples is then presented. These experiments are based largely on
two published works by the author, firstly [170], where WaveNet was applied for the first
time in the context of generating emotional speech. The limitations of this work [170] were
then addressed in a later publication [26], which is the main focus for the current experiments.
These experiments address the following RQs in the following manner:

• RQ-3a: To explore the validity of generating emotional speech with the well-
established WaveGAN architecture, and the efficacy of applying generated data as an
augmentation strategy to combat the issues pertaining to data scarcity in the realm of
emotional wellbeing.

• RQ-3b: Given that data augmentation is a popular method for tackling data scarcity,
an evaluation method is proposed which allows for a more interpretable evaluation of
generated samples, for which there is currently limited methods. Exploring the ability
of this method to discuss attributes including, similarity, diversity, and plausibility.

4.4.1 Data and Procedure

In both experiments, a subset of the GEMEP dataset will be used (see Chapter 3 for
details). When processing the raw audio, first it is converted to 16 kHz, 16 bit, mono, WAV
format, and split into three (speaker-independent) folds (see Table 4.27). The partitioning
chosen is applied for all experiments and considers a balance between classes and speaker
demographics as best possible.

A WaveGAN model is trained to generate the new audio data, as first proposed in [172]
(see Chapter 3 for details). The WaveGAN model is trained using the data partitioned into
the first fold (F-1). In the GEMEP dataset, samples are of varied length. As WaveGAN
requires fixed-length data, 1-second chunks selected from the samples during training.

The WaveGAN applied was trained using the default parameters described in [172] for
100 000 training steps. For these experiments, samples are generated until the quantity is
equal to the classes within the source training data (total of 526 1-second samples). From
a qualitative evaluation of the generated audio, the samples do have similar attributes as
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the source speakers2. Of note, as is typical for GAN generated audio, there is a noise
artefact in the high-frequency range, which are also visible in the extracted spectrograms
(see Figure 4.11). In future work, the inclusion of a processing step (denoising, or low-pass
filtering) to remove such artefacts may be of value for comparison.

To compare any results obtained with WaveGAN generated data, several low-resource au-
dio augmentation approaches are also applied, namely, time-shifting and additive noise,
and spectrogram warping with time and frequency masking (e. g., the SpecAugment
method [118]). These types of augmentation are chosen for the audio to give a broad
range of representations to compare. As can be seen in Figure 4.11, the time-shift represen-
tation is most similar to the source; and subjectively, the additive noise or SpecAugment
approaches are the most dissimilar. The total number of samples from the training set of
the GEMEP dataset is duplicated for each of these augmentation approaches. The audio
signal is moved by a maximum of 0.5 seconds from the end of the signal for time-shifting
the audio samples, selecting the value for time-shift randomly for each sample. For additive
noise, white noise is injected at a SNR of 1 dB, from the amplitude from the source. The
SpecAugment augmentation approach is applied to the spectrograms directly, for more
detailed information on this approach, see Chapter 3 and Section 3.1.2.1, as well as [118].

Table 4.27: The speaker-independent folds used for both experiments, reporting quantity for
each of the four emotional classes utilised from a sub-set of the GEMEP dataset.

Fold-1 Fold-2 Fold-3 ∑

Speakers (M:F) 6 (3:3) 2 (1:1) 2 (1:1) 10

Pleasure 60 18 12 90

Anger 60 18 12 90

Elation 48 18 24 90

Sadness 48 18 24 90

∑ 216 72 72 360

4.4.1.1 Experimental Settings

For both the experiments, an adaptation of the prototypical network first presented in [167]
is proposed3. The model is first used directly as a classifier, and then the embedding space
which the network has learned is explored more deeply. For further detail on the Prototypical

2To listen to a selection of the generated samples for each of the four classes visit https://shorturl.at/mwDZ1
accessed 09.2021.

3github.com/EIHW/prototypical-network-audio-evaluation accessed on: 09.2021

https://shorturl.at/mwDZ1
https://github.com/EIHW/prototypical-network-audio-evaluation


4.4 Audio Generation for Speech Emotion Recognition 91

(a) Original (b) Noise (c) Time-shift (d) SpecAugment (e) WaveGAN

Figure 4.11: Mel-spectrogram representation (with a range of 0–8 kHz) for source and
augmented audio samples, take from a sample in the anger class.

network see Chapter 3, Section 3.3.1.6, as well as [167], particularly for further details of
specific terminology not explicitly defined herein.

For the embedding function, which learns data representations based on the four classes,
a CNN based architecture is applied. The model consists of four convolutional blocks,
each with a convolutional layer, batch normalisation, a ReLU activation function, and a
max-pooling layer. The first three blocks have a 3 × 3 filters, 64 channel output, and the last
3 × 3 blocks have a reduced channel output of 32. For the first two convolutional blocks, a 2
× 2 max-pooling layer is applied, and for the third layer, the max-pooling is increased to 4 ×
4. As a measure to avoid overfitting the network, 40 % drop out before the last convolutional
block is applied. The model is trained with the Adam optimiser applying an initial learning
rate of 10−3, which is halved every epoch of 100 episodes. An episode can be referred to as a
mini-batch. For all experiments, training is stopped after ten epochs. The episodic sampling
approach mitigates the class imbalance in the data, as samples are evaluated in randomly
selected class pairings. Given this, the F-score (F1) is reported as an evaluation metric. Each
model is evaluated five times, with the highest F1 is reported.

As an input source for the classifier, spectrogram images are extracted (see Figure 4.11)
from the raw audio. The spectrograms are extracted with a pixel dimensionality of 256 ×
256 (a dimension within a common range as applied to other speech emotion studies [222]),
and the colour map viridis. A maximum frequency of 8 kHz is applied to the spectrograms to
reduce the presence of high-frequency non-speech related activity.

4.4.2 Emotional Speech Generation

There are many advantages to generating new audio data computationally, mainly the scarcity
of actual data, particularly in the speech emotion domain [170]. The time-dependent nature of
audio makes sourcing and annotating such data an extremely time-consuming process [223],
and so generative models such as GANs [172] or DARNs [174] can be used as an augmenta-
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tion method. However, only limited research has been done on the ability of a generative
network to learn more salient aspects of audio, such as emotion in speech. Data augmentation
is one quantitative approach for evaluating the plausibility of generated audio [224], and
therefore, for these first experiments, the data generated is applied to the training set (Fold-1)
of the source data, and compared with the three other data augmentation approaches.

4.4.2.1 Discussion of Results

Table 4.28: The results obtained for the data augmentation experiments. Training a prototypi-
cal network with source data augmented with Additive (Noise), SpecAugment, Time-shifting,
and WaveGAN data. Fold-3 of the source data is used for the test evaluation. Reporting F1 as
an evaluation metric.

Fold-1 Test F1

Source Baseline 60.4

Source + Noise 61.8

Source + SpecAugment 61.0

Source + Time-shift 60.2

Source + WaveGAN 63.9

When observing the results in Table 4.28, although improvement with data augmentation
is minimal, the WaveGAN data does appear to be able to generate emotionality as there is a
slight improvement when applying this data as an augmentation approach compared to all
others, at best results of 63.9 % F1. This is particularly the case when compared to other
approaches, where the worst performing was time-shift, which reports results slightly lower
than the baseline. These lower results for time-shift may be explained by a high degree of
similarity in the embedding space and their limited diversity. In general, these results do
establish the plausibility of applying WaveGAN to the task of generating emotional speech,
however there is limited interpretation that can be made from these results alone.

4.4.3 Evaluating Generated Audio

In the previous experiments, it would seem that emotionality can be generated. However, the
interpretability from a quantitative perspective of how the samples behave within the embed-
ding space is limited when applying the generated data only as a data augmentation method.
Therefore in the proceeding experiments, an evaluation framework based on a prototypical
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network is outlined. The approach evaluates similarity and diversity, which, when applied to
domains including emotional speech, may allow for a more human-interpretable discussion
and more fine-grained evaluation.

The core aspect of this is approach is to harness the latent space learnt by the prototypical
network, which includes prototype representations of each class from the generated and
source audio. As previously, other augmentation approaches are used as an anchor to compare
the learnt prototypes too.

4.4.3.1 Additional Experimental Setting

When augmenting a training set, considering the similarity and diversity of the new data
to the already known data is a necessary factor [225]. To this end, to explore the use of
prototypical networks as an evaluation method for these aspects of generated data, two core
experiments are performed, which are described as follows:

Generated data similarity: As a first-step to observe the similarity of the generated samples,
two prototypical networks are trained on the source data, one which uses Fold-1, and
the other using a concatenation of Folds 2 and 3 (see Table 4.27). These models are
then evaluated with data from Fold-1, for each of the data augmentation types. Samples
are classified based on the euclidean distance between support class prototypes and
query samples, and therefore it can be assumed that samples with higher distance
(lower similarity) to the support class prototypes will be miss-classified.

Pairwise-embedding space diversity: To investigate the diversity of the generated data, the
distances between samples in the trained model’s embedding space are analysed. A
representation of a sample in the embedding space is a data point. It is assumed that
two similar samples lead to similar representations and, therefore, a small distance of
points in the embedding space. Counter to this, two samples from a diverse dataset are
expected to lead to separation in the embedding space. To explore this, point-pairs are
built to match each generated data point with its closest source data point according to
a calculation of the Euclidean distance. Finally, the mean Euclidean distance between
all points in a pair is calculated. As a reference point, the generated data is compared
to source data from a different fold as well as and the source data from the same fold.

4.4.3.2 Discussion of Results

The results for similarity and diversity experiments, are given in, Table 4.29 for generated data
similarity and Figure 4.12 for pairwise-embedding space diversity. For ease of discussion, the
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Table 4.29: Reporting the F1 (%) obtained for the generated data similarity experiment. Train-
ing models on (F)old-1, and Fold-2+3 source data, and evaluating with all data combinations
– Source, Additive (Noise), SpecAugment, Time-shift, and WaveGAN.

Trained on Evaluated with Test score Trained on Evaluated with Test score

Source-F1 Source-F1 95.6 Source-F2+F3 Source-F1 59.3

Noise-F1 61.4 Noise-F1 46.0

SpecAugment 77.9 SpecAugment 48.3

Time-shift-F1 87.8 Time-shift-F1 57.5
WaveGAN-F1 53.1 WaveGAN-F1 43.6

results will be outlined individually. As a baseline understanding, the prototypical networks
trained for evaluating prototype similarity are reporting accuracy’s above chance level (25 %)
(see Table 4.29). These results suggest that the network can differentiate between the four
classes to a reasonably high degree. For example, in Figure 4.13, it can be seen that the
class-prototypes from the Source-F2+3 experiments as a t-Distributed Stochastic Neighbour
Embedding (t-SNE) representation appear to have definition within the embedding space,
with source data clusters very close to the class prototype.

Specifically for evaluating the augmentation types, the time-shifting approach appears
to have a consistently strong test accuracy, 87.8 and 57.5 F1, for F1 train and F2+F3 train,
respectively. This finding would confirm that this is the most similar to the source data. For all
other augmentation types between the models, the results are less clear, and when evaluating
with unseen data (Fold-2+3 model), Noise, SpecAugment and WaveGAN fall within a similar
range. Furthermore, the SpecAugment approach appears to perform reasonably well, which
may be due to retaining considerable aspects of the source, which is then harnessed by the
convolution layers. For the WaveGAN samples, the model can classify the data above chance
level, which does show that some emotionality must have been learnt. However, results are
lower than that of all augmentation approaches. This low performance still shows promise
for the WaveGAN samples, as it shows that it is in the range of the source class prototypes
but perhaps has higher diversity in the embedding space.

The next experiments focused on evaluating diversity, and for these experiments, the
embedding space is analysed from the models of the previous experiment (generated data
similarity). The mean Euclidean distance between an augmented query set data points and
the closest source query set data point in the prototypical (Source-F1, and Source-F2+3)
embedding space is calculated. As a reference, the same measure for the source support
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Figure 4.12: A heat map representation of the results for the pairwise-embedding space
diversity experiments. Left is the Source-F1 trained model, and right is the Source-F2+3
trained model. Reporting the mean of each augmentation type’s absolute Euclidean distance
from the source query samples.
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Figure 4.13: t-SNE representation (learning rate= 20 and perplexity= 90) for the classes
of sad vs pleasure (left), elation vs anger (right) and classes of interest from the WaveGAN
generated, Source Fold-1, and Noise augmented data within the prototypical embedding
space of the F2+F3 model, where the prototype is based on the source data support set.

samples and the source query samples is also provided. The prototypical network was trained
with Fold-1 and Fold-2+3, respectively.

Any augmentation technique is based on the source data of Fold-1, therefore, implies an
inherent dependence within the data. Figure 4.12 shows that the time-shift augmentation has
the smallest average pair-distance, which is in line with the assumption that this augmentation
technique only slightly modifies the source data. Therefore, the time-shift adds the least
diversity to the data. The right plot of Figure 4.12 implies that the WaveGAN samples show
a similar average pair-distance as the independent source support samples taken from F2+3.

It would appear in general that the WaveGAN samples add a similar level of diversity
to the source query data as additional independent source support data might. Finally, the
noise and SpecAugment generated samples show a higher average pair-distance than the
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other approaches, especially in the case of SpecAugment samples, which suggests that
these approaches add more diversity than others. However, as it seems unlikely that any
suggested augmentation method adds more variance than independent source data, which
would improve augmentation results, the higher average pair-distance might also result from
a distortion of the source data. The left side of Figure 4.12 depicts the pairwise distance
where source query and source support data are identical. This again shows a very similar
diversity trend for augmented samples.

4.4.4 Conclusions

From these experiments, it becomes clear that generative models are able to produce emotion-
ality to a degree which is distinguishable by a classifier can distinguish (RQ-3a). This finding
is promising as it supports the use of generative networks to tackle the issue of data scarcity
in speech-based monitoring of emotional wellbeing. The initial results where plausibility
was evaluated, and the generated data is used to augment the source training set, in theory,
presented this. However, with these experiments minimal interpretation was available.

In this regard, the prototypical network-based framework was applied to evaluate two
additional aspects of the generated samples within an embedding space – similarity and
diversity. Despite the complexity of spectrogram images and the limited training data used,
both of those aspects were able to be discussed in the context of the emotional speech samples
generated by the WaveGAN. The similarity and diversity results, in fact, support that the
initial plausibility experiments i. e., data augmentation were obtained for the WaveGAN
from the data being neither too similar nor too diversely spread in the embedding space.

More rigorous testing is needed, including human listening studies to compare the
behaviour of the learned embedding space to that of a humans perception. Furthermore,
comparing these results to other quantitative evaluation metrics such as the inception score
may offer further insight. As a continued theme, the nature of training the WaveGAN model
was somewhat brute-force, and the variance in speaker characteristics within the training
set may have an implicit effect on the generated samples – exploring personalised model
training may be advantageous. Of most promise from the current experiments, it appears
that an understanding of all evaluation criteria can be obtained (RQ-3b), and through various
visualisations of the embedding space, this approach can allow for a more interpretable
representation of the generated audio.
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5.1 Summary

This thesis covers an extensive range of topics in the area of computer audition for emotional
wellbeing. As a result, several conclusions can be discussed in regards to the initial research
questions introduced in in Chapter 1 Section 1.1. The main focus was to explore how com-
puter audition-based methods can be applied to monitor and understand states of emotional
wellbeing (RQ-1). This was aimed primarily at speech-based computational paralinguistic
analysis, and, with emotional wellbeing being the main target of interest, a use case of
improving empathic AI was introduced.

Overall, it is clear from the experiments that the audio signal can be applied to target
an extensive range of states of emotional wellbeing (RQ-1). These include physiological
markers of stress, specific emotional states such as anxiety, and specific emotion-inducing
scenarios e. g., public speaking. The audio signal is particularly suited to monitoring highly
aroused states, including stress and anxiety, in an array of scenarios. Occasionally though,
the literature suggests that individuals may not express states such as stress outwardly, in
certain situations [218]. With this in mind, a physiologically adapted representation for
emotional arousal was explored, and this showed that audio was much more able to target
a gold-standard signal which included the objective, continuous measure of electrodermal
activity along with arousal. This was due, in part, to this signal being more indicative of
an individual’s current state than a perceived rating of arousal. Similarly, for many of the
experiments, a common theme was the variance in speaker behaviour and the overall need
for more personalised approaches. Personalisation would be particularly meaningful for
speech-driven approaches given the inherent variance in expression and the core anatomical
differences that are unavoidably present during a vocalisation. This would certainly be a
necessary factor in the context of improving empathic AI, where generalisation becomes
slightly more of an ethical concern.

Furthermore, it has been shown in the experiments that, in general, audio consistently
performs to a high degree as a uni-modal signal (RQ-2). The research in this thesis shows
that many emotional-driven states of wellbeing can be robustly targeted with the audio signal.
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Nevertheless, when speech is missing, particularly in higher states of emotional distress,
audio inherently becomes less valuable. As such, the experiments performed supported
that audio can benefit from a fusion of vision and textual-based features. However, audio,
in a sense, has the ethical upper hand over video for instance, in that it can be captured
in a pseudo-anonymous way, due to the inferiority of auditory vs visual memory [226].
Furthermore, as humans are generally visually dominant, video can be more challenging in
regards to subject privacy, despite it being extremely valuable for a number of tasks. So, in
this sense, the audio signal is a valuable resource as not only is it able to model a variety of
states of wellbeing, it can also be integrated in a ubiquitous and non-invasive way.

Leading on from this, during the development of this thesis, several datasets were col-
lected and provided to the academic community (see Table 3.1) (RQ-3). However, in general,
the majority of experiments performed are based on reasonably small-scale datasets, which is
a major limitation for computer audition. To explore this, the experiments of Chapter 4 Sec-
tion 4.1.1.1 utilised three datasets from differing acoustic environments and found that the
targets in question could be modelled to a similar degree across the varied acoustic character-
istic, e. g., room size, microphone usage. This was promising as it shows that, particularly in
the area of computational emotional wellbeing, through collaboration with expert external
research groups, several datasets can be combined for exploration. As a side note, this was
less successful in the context of physiological signals, as we saw that the characteristics of
the signal varied across datasets in such a way that made modelling targets e. g., BPM in
a multi-domain manner challenging. This was likely caused by the varied equipment and
site-specific calibration. Similarly, as it pertains to data scarcity (RQ-3), in the experiments
of Chapter 4 Section 4.4, it was shown that for the purpose of data augmentation, generative
networks are suited to the generation of classes of emotional speech, improving classification
accuracy when incorporated with the training set. One limitation of this was the ability to
interpret generated audio samples efficiently. As such, an approach in which the embedding
space could be discussed was presented, and it was found that similarity, diversity, and
plausibility could all be discussed within that process.

Many of the experiments conducted, and the fundamental tools available for this field,
have required interdisciplinary collaboration (RQ-4). This ranges from the production
of hand-crafted feature sets that remain a strong representation of the state of emotional
wellbeing to the experimental design and deriving a ground truth. Nevertheless, through
this research, the primary input from an interdisciplinary perspective was on sourcing
psychologically backed data; this is a required aspect for human-derived data and was vitally
informative for all outcomes discussed herein. However, when it comes to the modelling itself,
within the community, this remains more of a ‘black-box’ process to external researchers. A
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large component of the research made herein was written to be as accessible as possible. As
it pertains to the empathy of AI, it is clear that moving forward, accessible knowledge sharing
for psychologists, health care professionals, and other related fields, needs to continue to
improve the specific vocabulary being utilised.

5.2 Ethical Considerations

Several ethical considerations relate to the above summary and these should be outlined
as they relate to this thesis. This is particularly important given the human focus of this
thesis and the potential for unethical commercial exploitation that this type of research may
be exploited for. As it pertains to CP in [227] the authors outline a road-map for good
ethical practices in the field of CP but also with consideration to the broader field of AI.
When interfacing with this type of research, there are a number of ethical considerations,
including storage, anonymisation, and privacy (e. g., consent for data usage), which should
always take precedence. However, it has become clear throughout the development of this
doctoral research that there are three core ethical issues that the community should continue
to consider, 1. bias-free and representative data 2. interpretable decisions 3. interdisciplinary
collaboration. These will be discussed in more detail in the following section.

5.2.1 Bias-Free and Representative Data

One of the biggest challenges for the fields connected to machine learning is the representative
nature of the data that is being modelled. This is particularly relevant when the target is
human; however, the implications of poorly representative data are not limited to explicitly
human-derived data [228, 229]. Over the years, there have been several prominent media
articles that have indicated a great deal of bias occurring in a number of domains, e. g., racial
bias in health care [230].

There are several forms of bias that are often discussed in relation to AI, including
historical bias, interaction bias, latent bias, and selection bias. Selection bias is particularly
related to AI data as this occurs when the data pooled for analysis is not representative of the
larger population, e. g., skewed towards a specific gender, age, or employment status. This
would lead to misrepresentation rather than generalisation. A typical example of this type
of bias is in regards to gender [231]. In [232] the authors found, for example, that models
tend to have a bias towards a particular gender even when a dataset is balanced. This could
indicate lower level architecture-based biases, derived from early decision-making by the
developer [233]. In the case of audio, this could be caused by less dominant feature-based
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behaviours from certain demographics. Selection bias is particularly essential to address
when referring to models developed for human interaction; as such, it is highly relevant to
the discussion of empathy in AI. From data-based decision making, a bias can propagate
through a system’s architecture, leading to poor accuracy on a diverse population. Lack of
true generalisation is particularly problematic for domains such as health, where, in critical
cases, this may result in a breach of patient safety [234].

A core contributing factor to bias in AI is the management of data. Data is often sourced
in a centralised less flexible way, where individuals present a unified data source to a central
server i. e., missingness or alternative inputs outside of a controlled scale are often not
possible. This approach creates an arguably homogeneous representation of the target
population where only the static aspects of a given individual are considered and certain
participants may not be represented [235]. This is consistent with the concerns that most
AI models are based on Western, Educated, Industrialised, Rich, and Democratic (WEIRD)
societies [227]. Research needs to expand this to underrepresented regions which may not
have the resources to manage the potential impact of this, particularly where models are
being integrated into ubiquitous smart devices, which are not available global1.

5.2.2 Interpretable Decisions

From both a technical and applied perspective, machine learning, when applied to human
behaviour modelling, needs to be interpretable by the general public, particularly those
interfacing with it. Within deep learning, networks are seemingly becoming more complex,
and it is crucial in the AI evolution to continue to develop strategies for understanding the
internal decision making of machine learning algorithms [236]. Similarly, those responsible
for developing such technology need to be transparent about the reasons for developing these
models and what exactly is behind them.

With the fast-paced environment of technological advancements, it is not difficult for
researchers in machine learning to glance over the finer details of the reasons behind their
conclusions, or why their model performed so well on a particular dataset. From the
perspective of speech, performing statistical analysis of the acoustics LLDs and applying
feature importance type strategies would all contribute to an improved, more easily discussed,
early-stage understanding. However, many approaches in the audio domain are now working
on raw audio, which can make understanding the learning process somewhat less accessible.
So, although the data may represent one way of understanding why certain behaviours were
modelled better than others, researchers in the field of eXplainable Artificial Intelligence

180%≥ of the global population now own a smart device. Bank my Cell 2021, accessed: 09.2021

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
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(XAI) should continue to explore other strategies for observing the decisions of the networks
themselves. For example, in recent years, considerable work has focused on attention-based
methods for interpretability. Given the nature of attention layers, they are deemed to be
interpretable as they allow for context to be considered (based on the weighting of a given
input in a sequence), and observation of activations within the embedding space throughout
the training period [165].

Even with the technical approaches being developed, it remains vital that general advance-
ments in AI and machine learning are communicated to the general public in a manageable
and consumable way. When working with domains such as emotion understanding, this is
particularly vital as currently, the knowledge gap is growing, and many individuals report
having fear for such methodologies. This is primarily due to a lack of genuine communication
by ‘Big Tech’ in regards to why a particular AI application is integrated or what exactly it
means when it is. One option could be similar to the type of tax relief certain governments
afford to companies who contribute to charities, this could be similar for AI dissemination.
However, implementing a financial incentive is perhaps not the best practice as this may
force a kind of cognitive empathy, where researchers work on interpretability as a means to
an end, rather than understanding its true impact. Instead, a change in the overall ethos of
the AI community is needed, and it is a moral right for users to be afforded the agency to
understand the types of decisions that are behind the technology they interface with daily.

5.2.3 Interdisciplinary Collaboration

In a similar way to the above, it is critical that those within the technical domain work
alongside those with greater expertise and understanding of the human condition. Returning
to the idea of Artificial General Intelligence (AGI), interdisciplinarity has shown to be a
necessary step forward for this next phase of AI [89]. Interdisciplinarity is particularly
valuable as the literature suggests that infrastructures developed in this way more easily
tackle ethical concerns relating to acceptance, bias, and trust [89].

Social acceptance of AI integration is necessary for its success and long-term adoption
by the public. A range of aspects, including cultural and environmental impact, need to be
considered, and various experts should provide knowledge on the target areas. For example,
the synthesised voice of bus announcements not representing the community to which it
speaks may have a negative impact on those communities. A closer analysis of the voice that
best represents that community would be more ethically considerate, and more likely to be
accepted [237]. In this way, facilitating interdisciplinary collaboration between engineers
and linguists or sociologists would aid more considerate and empathic AI.
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Similarly, knowledge of bias often requires contributions from experts with non-technical
backgrounds, and an approach for facilitating discussion between fields of research would
be a valuable next step. For example, within the machine learning community, techniques
such as few-shot learning have received more attention in recent years [238] due to the
advantages that they pose for computational efficiency. However, perceptual-based biases
pose difficulties for such approaches [239], and discussion from experts of the targeted
domains may help understand the bias at an earlier stage.

In a similar way, research focused on improving empathy of AI is another area that will
strongly benefit from non-technical input. With this in mind, understanding the communica-
tion strategies between differing fields speaking different “languages” (i. e., anthropology
and engineering), is an important area to focus on in itself, as this will lead to improved
trust from the public and more empathic interactions with AI systems. In this way, due to
historical stereotypes, AI continues to have lower levels of trust by the general user. For
example, these are users who, without an understanding of the vocabulary of the field, may
not be able to grasp the core concept of such machine learning networks. Through a better
collaboration with various academic researchers, communicating AI to the general public
may also improve which, in turn, will help to build trust. Of note, trust was shown to improve
when interactions appeared to have more empathy, particularly for voice assistance’s [88].

5.3 Limitations

Although the findings and contributions from this doctoral research are substantial, there are
a number of limitations which should be discussed. These are highlighted in an endeavour to
be transparent and offer building blocks for other research to build on.

The variance in the manifestation for states of emotional wellbeing across speakers within
the datasets applied in the experiments of this thesis has not been considered in depth.
Although the overarching goal for machine learning is to generalise a given dataset, it
should be considered that in the context of wellbeing, emotion and mental health can
manifest in extremely differently in each person, across modalities, and depending on
the situation. For example, as indicated, aroused emotions can be suppressed by certain
individuals more than others, leading to differing perceptions in the degree of arousal
that the individual is facing. However, it is more than this; in the context of wellbeing,
low-level human attributes, such as gender, age, or even further prosodic characteristics,
would also be beneficial to condition on. Clustering features to understand larger
groupings of subjects within a dataset may be one area to focus on [27].
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Speaker enhancement and general denoising. Improving the quality of the raw audio signal
is a large area of speech-based machine learning research that is not focused on within
this thesis. This area would, from a data processing perspective, be extremely valid
to explore regarding benefits when targeting states of emotional wellbeing. However,
developing machine learning models that can learn representation in noisy and unclear
data does also have its merits. For data cleaning and enhancing, one aspect is therapist
patient, cross-talk, and more generally, quiet speech, which may be masked by louder
acoustic activity. Furthermore, with the rise in remote counselling and life-coaching,
improving signal quality for general interpretability for the health care practitioner
would be meaningful, in the same way as it would be for a listening machine. Similarly,
when discussing the generative approaches for emotional speech, additional denoising
may further improve the quality of the generated samples, which often retain several
digital artefacts.

There is limited use of End-to End modelling within this thesis, although this is not com-
pletely absent. It should be noted that end-to-end models are popularly applied in
general and, on large datasets, the results are impressive. However, in this case, large
really does mean very large. As mentioned for computer audition-based datasets,
particularly as it pertains to emotional wellbeing, this scale of data is much more
difficult to come by. Furthermore, as it pertains to the use of deep learning in general,
it has been noted in [240] that the overall opaque machine learning models should be
avoided when interpretability and analysis of the phenomena is critical. This has, of
course, been more of a focus for this current work.

The creation of a gold standard in the context of emotional wellbeing remains a challenge in
itself for the affective computing community, with perceived vs self-assessed emotions
inherently representing the data in different ways. Within the community, and for
particular use cases, research is still needed to determine the model for emotion that is
most useful for understanding a true human expression. In other words, should models
be attempting to replicate (potentially biased) human perception? Or, should they be
attempting to understand expressions which are more of a challenge for humans to
perceive, yet relate more to how an individual might truly feel? This is particularly
relevant for more atypical human expression and, as such, it is extremely important to
develop models that are not biased towards typical emotional expression.
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5.4 Outlook

From the research conducted, there are a number of avenues that should be targeted by the
community when continuing to develop computer audition-based applications for emotional
wellbeing. As well as the current literature and prominent trends, the outlook from the
perspective of this thesis is also based on some of the previously discussed limitations.

Given the aforementioned variance in speaker characteristics and the manifestation of
emotion-based states of individual wellbeing, as well as the potential and consideration for
bias in models, one technical area which would be extremely beneficial for this domain is
the work being developed in personalised machine learning and speaker-adaptation. Work
has been developing in this area for a number of years, and a fundamental approach is
feature adaptation i. e., normalisation of features, on a per-subject basis [241], where the
purpose is to reduce the overall speaker variability, whilst preserving the discrimination
between emotional classes. Furthermore, a number of more unsupervised strategies have
been presented recently which may also be beneficial to explore, including the application of
transfer learning from a pre-trained model, which is then adapted to single speakers [242].

Similarly, much of the research being developed in machine learning-based computer
audition topics originate from computer vision where the datasets are much larger, and the
input is potentially easier to manage. As such, research needs to focus on more audio-specific
approaches which consider the nuance of audio. Similarly, as the results here support, audio
in certain circumstances does benefit from a fusion with other modalities, and novel methods
are being developed which explore a more meaningful multimodal representation in the
context of speech emotion recognition. This is particularly prominent when it comes to
multi-level or multi-head attention mechanisms which appear to be extremely valuable [243].

Finally, given the extremely sensitive nature of emotional wellbeing, in the context of
empathic AI, greater attention needs to be given by the AI community in regards to the
representation of the emotion targets themselves. In other words, higher dimensionality,
and consideration to the vast differences in emotional expression, need to continue to be
explored. Prominent work in this direction includes a deep understanding of emotional
representation in vocal burst [244]. However, the literature still appears to require further
interdisciplinary collaboration and longer, more time-consuming studies to evaluate longer in
duration samples, particularly as pertains to dyadic pairings, and interpersonal relationships
in general. Such approaches may provide further insights into understanding the effects of
perceived vs felt emotion in the context of wellbeing.
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AGI Artificial General Intelligence.

AI Artificial Intelligence.

ALC Alcohol Language Corpus.

AMDF Average Magnitude Difference Function.

ANN Artificial Neural Network.

auDeep Unsupervised Learning of Representations from Audio with Deep RNNs.

AudioSet An Ontology and Human-labeled Dataset for Audio Events.

B

B-LSTM Bidirectional Long Short-Term Memory.

BAI Beck Anxiety Inventory.

BERT Bidirectional Encoder Representations from Transformers.

BioS-DB BioSpeech Database.

BPM Beats per Minute.

BPTT Back-propagation Through Time.

BVP Blood Volume Pulse.

C

CCA Canonical Correlation Analysis.

CCC Concordance Correlation Coefficient.
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CE Cross-Entropy.

CLIA Chemiluminescence Immunoassay.

CMU-MOSEI CMU Multimodal Opinion Sentiment and Emotion Intensity.

CNN Convolutional Neural Network.

ComParE Computational Paralinguistics Challenge.

CP Computational Paralinguistics.

CSLE Cognitive Load with Speech and EGG Corpus.

CTW Canonical Time Warping.

D

DAC Düsseldorf Anxiety Corpus.

DARN Deep Auto-regressive Networks.

DC-GAN Deep Convolutional Generative Adversarial Networks.

DeepSpectrum Spectrogram-based Feature Extraction from Audio Data with Pre-trained
Convolutional Neural Networks.

DELFIA Dissociation-Enhanced Lanthanide Fluorescence Immunoassay.

DEMoS Database of Elicited Mood in Speech.

DNN Deep Neural Network.

DTW Dynamic Time Warping.

E

EDA Electrodermal Activity.

eGeMAPS extended Geneva Minimalistic Acoustic Parameter Set.

EMO-DB Berlin Database of Emotional Speech.

EmoNET A Transfer Learning Framework for Multi-Corpus Speech Emotion Recognition.

EWE Evaluator Weighted Estimator.
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F

F-FNN Feed-Forward Neural Network.

FAU Facial Action Units.

FAU-TSST Friedrich-Alexander-Universität-Trier Social Stress Test.

FFT Fast Fourier Transform.

G

GAD Generalised Anxiety Disorder.

GAN Generative Adversarial Network.

GCTW Generalised Canonical Time Warping.

GEMEP Geneva Multimodal Emotion Portrayals Corpus.

GRU Gated Recurrent unit.

H

HNR Harmonic-to-Noise Ratio.

HPA Hypothalamic Pituitary Adrenal axis.

HR Heart Rate.

I

IEMOCAP Interactive Emotional Dyadic Motion Capture.

K

kNN k-Nearest Neighbours.

KSS Karolinska Sleepiness Scale.

L

LLDs Low-Level Descriptors.

LSTM Long Short-Term Memory.
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LSTM-RNN Long Short-Term Memory Recurrent Neural Network.

M

MAC Mean Absolute Change.

MAE Mean Absolute Error.

MBC Munich Bio-voice Corpus (MBC).

MFCCs Mel-Frequency Cepstral Coefficients.

MSE Mean Square Error.

MSP-Podcast Multimodal Signal Processing Podcast Dataset.

MuSe Multimodal Sentiment Analysis in Real-life Media Challenge.

MuSe-CaR The Multimodal Sentiment Analysis in Car Reviews Dataset.

N

NLP Natural Language Processing.

nmol /L Nanomoles per Litre.

O

OCD Obsessive-Compulsive Disorder.

openSMILE open-source Speech and Music Interpretation by Large-space Extraction.

openXBOW open-Source Crossmodal Bag-of-Words Toolkit.

P

PTSD Post-Traumatic Stress Disorder.

R

RAAW Rater-Aligned Annotation Weighting.

RASTA Relative Spectra.

RAVDESS The Ryerson Audio-Visual Database of Emotional Speech and Song.
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RECOLA REmote COLlaborative and Affective interactions.

Reg-TSST Regensburg University-Trier Social Stress Test.

RESP Rate of Respiration.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

S

SC Skin Conductance.

SER Speech Emotion Recognition.

SEWA Social Empowerment through Work Education and Action.

SHS Sub-Harmonic Summation.

SinS-DB Sincerity in Speech Database.

SLC Sleep Language Corpus.

SLEEP Düsseldorf Sleepy Language.

SMOTE Synthetic Minority Oversampling Technique.

SNR Signal-to-Noise Ratio.

SpecAugment A Simple Data Augmentation Method for Automatic Speech Recognition.

SPL Sound Pressure Level.

STFT Short-time Fourier transform.

SVM Support Vector Machine.

SVR Support Vector Regression.

T

t-SNE t-Distributed Stochastic Neighbour Embedding.

TSST Trier Social Stress Test.
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TTS Text-to-Speech.

U

UAR Unweighted Average Recall.

UCL-SBM UCL Speech Breath Monitoring Corpus.

Ulm-TSST Ulm University-Trier Social Stress Test.

URTI Upper Respiratory Tract Infection Dataset.

USoMS The Ulm State-of-Mind in Speech Corpus.

USOMS-e The Ulm State-of-Mind in Speech (Elderly) Corpus.

V

VAD Voice Activity Detection.

VAE Variational Autoencoders.

VGG16 VGG16.

VGGFace VGGFace.

VGGish VGGish.

X

XAI eXplainable Artificial Intelligence.
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