919 research outputs found

    Tying Together Solutions for Digital Manufacturing: Assessment of Connectivity Technologies & Approaches

    Get PDF
    This paper concerns the development of low-cost solutions to address challenges in digital manufacturing (DM). Service Oriented Architectures (SOAs) are a promising approach for addressing the requirements of a low-cost DM architecture. Interaction between services in a SOA is facilitated by a connectivity technology, i.e., a framework for interoperable data exchange between heterogeneous participants. We review a variety of connectivity technologies according to their suitability for use in an SME manufacturer’s production environment, and we assess how they have been integrated into past architectures. We then provide insights into an incremental and modular architecture for manufacturing SMEs.Digital Manufacturing on a Shoestring [Digital Shoestring]. EPSRC Reference: EP/R032777/1

    EzWeb/FAST: Reporting on a Successful Mashup-based Solution for Developing and Deploying Composite Applications in the Upcoming "Ubiquitous SOA"

    Get PDF
    Service oriented architectures (SOAs) based on Web services have attracted a great interest and IT investments during the last years, principally in the context of business-to-business integration within corporate Intranets. However, they are nowadays evolving to break through enterprise boundaries, in a revolutionary attempt to make the approach pervasive, leading to what we call the ubiquitous SOA, i.e. a SOA conceived as a Web of services made up of compositional resources that empowers end-users to ubiquitously exploit these resources by collaboratively remixing them. In this paper we explore the architectural basis, technologies, frameworks and tools considered necessary to face this novel vision of SOA. We also present the rationale behind EzWeb/FAST: an undergoing EU funded project whose first outcomes could serve as a preliminary proof of concep

    EzWeb/FAST: Reporting on a Successful Mashup-based Solution for Developing and Deploying Composite Applications in the Upcoming Web of Services

    Get PDF
    Service oriented architectures (SOAs) based on Web Services have attracted a great interest and IT investments during the last years, principally in the context of business-to-business integration within corporate intranets. However, they are nowadays evolving to break through enterprise boundaries, in a revolutionary attempt to make the approach pervasive, leading to what we call a user-centric SOA, i.e. a SOA conceived as a Web of Services made up of compositional resources that empowers end-users to ubiquitously exploit these resources by collaboratively remixing them. In this paper we explore the architectural basis, technologies, frameworks and tools considered necessary to face this novel vision of SOA. We also present the rationale behind EzWeb/FAST: an undergoing EU funded project whose first outcomes could serve as a preliminary proof of concep

    Data analysis as a service: an infrastructure for storing and analyzing the internet of things

    Get PDF
    As the Internet of Things (IoT) is becoming an increasingly trendy topic both for individuals, businesses and governments, the need for academically reviewed and developed prototypes focusing on certain aspects of IoT are increasing as well. Throughout this paper we propose an architecture and a technology stack for creating real-time applications focusing on time-series data generated by IoT devices. The architecture and technology stack are then implemented through a proof-of-concept prototype named Office Analysis as a Service, DaaS, a data-centric web application developed using Meteor. js and MongoDB. We also propose a data structure for storing time-series data in a MongoDB document for optimal query performance of large datasets. One common research challenge in the IoT, security, is considered only briefly, and is of utmost importance in future research

    Web services approach for ambient assisted living in mobile environments

    Get PDF
    Web services appeared as a promising technology for Web environments independent of technologies, services, and applications. First, a performance comparison study between the two most used Web service architectures, SOAP and REST, is presented, considering messages exchange between clients and a server. Based on this study, the REST architecture was chosen to deploy the system because it gets better results compared to SOAP architecture. Currently, there are some issues related with this approach that should be studied. For instance, if massive quantities of data are sent to databases it can influence significantly the performance of the whole system. The Advanced Message Queuing Protocol (AMPQ) appears as a promising solution to address this problem. Then, in order to evaluate the performance of this approach, this work presents a performance evaluation and a comparison study of RESTful Web services and the AMQP Protocol considering exchanging messages between clients and a server. The study is based on the averaged exchanged messages for a certain period of time. It was observed and concluded that, for large quantities of messages exchange, the best results comes from the Advanced Message Queuing Protocol. Message Queuing Telemetry Transport (MQTT) was addressed in this work because it is a similar protocol to AMQP but it can be used by mobile devices with a processing capacity smallest unlike the AMQP that needs greater processing capacity. These studies are performed in the context of Ambient Assisted Living environments, since the work was applied to this topic in order to experiment the effectiveness and evaluate the performance of these protocols in this scenario

    The HomePort System

    Get PDF

    Industrial agents in the era of service-oriented architectures and cloudbased industrial infrastructures

    Get PDF
    The umbrella paradigm underpinning novel collaborative industrial systems is to consider the set of intelligent system units as a conglomerate of distributed, autonomous, intelligent, proactive, fault-tolerant, and reusable units, which operate as a set of cooperating entities (Colombo and Karnouskos, 2009). These entities are forming an evolvable infrastructure, entering and/or going out (plug-in/plugout) in an asynchronous manner. Moreover, these entities, having each of them their own functionalities, data, and associated information are now connected and able to interact. They are capable of working in a proactive manner, initiating collaborative actions and dynamically interacting with each other in order to achieve both local and global objectives.info:eu-repo/semantics/publishedVersio

    A Framework for Service-Oriented Architecture (SOA)-Based IoT Application Development

    Get PDF
    Funding: This research was partially supported by funds provided by the European Commission in the scope of FoF/H2020-723710 vf-OS, ICT/H2020-825631 ZDMP projects, and by the FCT— Fundação para a Ciência e a Tecnologia in the scope of UIDB/00066/2020 related to CTS—Centro de Tecnologia e Sistemas research unit.In the last decades, the increasing complexity of industrial information technology has led to the emergence of new trends in manufacturing. Factories are using multiple Internet of Things (IoT) platforms to harvest sensor information to improve production. Such a transformation contributes to efficiency growth and reduced production costs. To deal with the heterogeneity of the services within an IoT system, Service-Oriented Architecture (SOA) is referred to in the literature as being advantageous for the design and development of software to support IoT-based production processes.The aim of SOA-based design is to provide the leverage to use and reuse loosely coupled IoT services at the middleware layer to minimise system integration problems. We propose a system architecture that follows the SOA architectural pattern and enables developers and business process designers to dynamically add, query or use instances of existing modular software in the IoT context. Furthermore, an analysis of utilization of modular software that presents some challenges and limitations of this approach is also in the scope of this workpublishersversionpublishe

    A Language-based Approach for Interoperability of IoT Platforms

    Get PDF
    The Internet of Things (IoT) promotes the communication among heterogeneous entities, from small sensors to Cloud systems. However, this is realized using a wide range of communication media and data protocols, usually incompatible with each other. Thus, IoT systems tend to grow as homogeneous isolated platforms, which hardly interact. To achieve a higher degree of interoperability among disparate IoT platforms, we propose a language-based approach for communication technology integration. We build on the Jolie programming language, which allows programmers to easily make the same logic work over disparate communication stacks in a declarative, dynamic way. Jolie currently supports the main technologies from Service-Oriented Computing, such as TCP/IP, Bluetooth, and RMI at transport level, and HTTP and SOAP at application level. As technical result, we integrate in Jolie the two most adopted protocols for IoT communication, i.e., CoAP and MQTT. In this paper, we report our experience and we present high-level concepts valuable both for the general implementation of interoperable systems and for the development of other language-based solutions
    corecore