
EzWeb/FAST: Reporting on a Successful Mashup-based Solution for
Developing and Deploying Composite Applications in the Upcoming

"Ubiquitous SOA"

David Lizcano and Javier Soriano Marcos Reyes and Juan J. Hierro
Universidad Politécnica de Madrid, Spain Telefónica I+D, Madrid, Spain

{dlizcano, jsoriano}@fi. upm. es {mru,jhierro}@tid. es

Abstract

Service oriented architectures (SOAs) based on
Web Services have attracted a great interest and IT
investments during the last years, principally in the
context of business-to-business integration within
corporate intranets. However, they are nowadays
evolving to break through enterprise boundaries, in a
revolutionary attempt to make the approach pervasive,
leading to what we cali the ubiquitous SOA, i.e. a SOA
conceived as a Web of Services made up of
compositional resources that empowers end-users to
ubiquitously exploit these resources by collaboratively
remixing them. In this paper we explore the
architectural basis, technologies, frameworks and
tools considered necessary to face this novel visión of
SOA. We also present the rationale behind
EzWeb/FAST: an undergoing EUfundedproject whose
first outcomes could serve as a preliminary proof of
concept.

1. Introduction

A service-oriented architecture (SOA) based on
semantic Web services has been considered the key IT
for achieving a machine-to-machine integration within
company boundaries over the last few years [8].
Therefore, traditional SOA has attracted a great deal of
interest in the composite application paradigm. Indeed
it is the only current technology stack capable of
dealing with composite application developments [1].
However, the latest big phenomena like Web 2.0, and
its application to enterprises, the so-called Enterprise
2.0, have revealed the current need to offer a user-
centered face in IT to improve business productivity
and innovation [12]. And this user-centered approach
has never been considered before in traditional
business-to-business (B2B) SOAs or in the composite
application paradigm. With this new approach that is,
a user-centric SOA, it would be feasible to achieve a
real Web of services, i.e. a Web of ubiquitous

compositional resources/services that offer uniform
access to end users, giving browsers, mobile devices,
and server applications alike accessibility to resources
(i.e. providing a "multi-channel" and ubiquitous face to
end users). This great revolution in user-service
interaction could finally enable a user-friendly,
semantically-guided and context-aware framework for
end users to develop real composite applications on
their own, making back-end resources and services
very appealing to a wide range of users and to different
usage áreas.

This new approach is completely incompatible with
traditional SOA, which was conceived for the B2B
domain instead of for user-centered composite
applications. It is not at all easy to enrich real SOAs
with this new face for users. This paper elaborates on
the methods, tools and heuristics that SOA must
embrace to deal with user-centered composite
applications, using Enterprise 2.0 principies (and
specially enterprise mashups) as a source of inspiration
[6].

With this in mind, we elabórate in this paper on the
synergies between the Enterprise 2.0 and the WS-SOA
concepts with regard to the development of user-
centered composite applications. Enterprise 2.0's focus
on the principies of including human beings and multi-
device and mobile ubiquitous adaptation, etc., and the
exploitation of users' collective intelligence should be
considered a key enrichment of existing composite
applications. It is therefore expected to act as an
enabler of an improved user-service interaction. Our
approach is being supported by two hot research
projects: FAST and EzWeb. These projects are
referenced and examined at length in this paper. The
rationale behind FAST, i.e. a complex gadget
development environment, and EzWeb, i.e. a reference
architecture and implementation of an open Enterprise
2.0 Mashup Platform, are both presented and exploited
in a use case as a proof of concept. These two elements
together empower users to co-produce and share

instant composite applications and their components.
The remainder of the paper is structured as follows.
First we revisit the notion of traditional WS-SOA-
based composite applications, and analyze their major
shortcomings with regard to the ideal user-service
interaction in a user-centered Web of services (section
2). Also, we elabórate on a use case that ilhistrates the
current user-service interaction needs in composite
application development, where current IT like
traditional Web services or novel mashup ideas based
on disparate and independent gadgets, have more than
once been found to be wanting. The above
shortcomings of current approaches and technologies,
and the ideal solutions for these problems can be easily
identified in this use case (section 3). We then present
a novel architecture framework, built on the FAST
development approach and the EzWeb exploitation
platform. FAST creates the building blocks and EzWeb
interconnects these building blocks to compose instant
applications (section 4). Section 5 describes existing
simple prototypes of this framework as a proof of
concept, dealing with the use case presented in section
3.. Finally, the last section concludes this paper and
presents a brief outline of future work.

2. Shortcomings of WS-SOA on the road
towards a Web of services

Many definitions of composite applications have
been published since the late 1990s [14]. The widely
accepted OASIS Web Services Composite Application
Framework (WS-CAF) standard defines composite
applications as "...a perspective of software
engineering that defines an application built by
combining múltiple existing functions into a new
application" [7]. Accordingto this definition, the major
supporting technology for the composite applications
paradigm is nowadays a Web services-based SOA.
However, it is wrong to assume that composite
applications are by definition part of a SOA, since one
can build composite applications using any technology
or architecture. In fact, there is a relatively new
initiative, called Service Component Architecture
(SCA) [15], advocated by major software vendors that
claim it is more natively suited for the delivery of
applications that conform to service-oriented
architecture principies in a composite application
paradigm.

The central concepts of the composite application
framework are enterprise and enterprise-ready sources
(e.g., existing resources or even enterprise Web
services) of information and functionality (as opposed
to current general mashups, which usually rely on web-

based, and often free and ungoverned sources). These
business sources provide access to capabilities via
well-defined interfaces to be exercised following a
component contract with constraints and policies. This
enables a loóse coupling of sources (thereby
minimizing mutual dependencies) and complies with
some of the probably best-known software engineering
principies: information-hiding and modularization
This main idea is often supported by Web services that
are provided by entities, the service providers, and are
to be used by others, the service consumere.

Components may be composed on the basis of
other, existing services, thereby adhering to the
principie of reuse. They are autonomous (control the
logic they encapsulate only), uniformly described and
publicly retrievable via certain discovery mechanisms.
Nowadays, IT and Internet evolution has stated that
these services should be more easily deployed by
providers, as well as accessed and managed by end
users than traditional packaged software [20].
Therefore, services must be accessible for all users
(not only enterprise stakeholders), because these
services should replace a previous wide range of
enterprise software [5], [17]. Therefore, services
should support common daily processes (both business
processes carried out by companies and processes
conducted by individuáis or groups in their daily life)
at any time, and as flexibly and dynamically as
possible.

Business users will see their job support tools
replaced by composite applications based on Web
services, that are not well enough tailored to users and
their routine processes. If these users were at liberty to
créate their own flexible management tools to support
their routine operations, this would encourage business
innovation. If they were able to créate their own tools
from friendly interfaces, they would put substantial
innate knowledge of the business into their
construction, and this would encourage business
innovation and development [3].

Obviously, composite applications based on SOA,
as it was originally conceived, represent an architecture
focused fundamentally on a B2B context and are not
good for B2C problems, since they do not offer the
best prospects for dealing with user-service interaction
[16]. We can tackle their shortcomings from three
different perspectives:
1) Traditional composite application's aim:
Conventional composite applications merely aim at
facilitating seamless machine-to-machine
collaboration Web services deployments are very
abstract and invisible to users. Its customers of choice
are medium-sized or larger corporations instead of
normal end users along The Long Tail [2] of the
Internet.

2) Current composite application's technology: Apart
from its aims, this framework relies on a set of
complex standards that are not user friendly. Because,
technically speaking, SOA is extremely complex, there
needs to be one or more expert players within the valué
chain to build and provide solutions for their
customers. In contrast to this one-to-many valué chain
model of numerous SOA use cases (where one expert
serves many clients), new valué chains should begin to
be mostly loosely coupled (many-to-many) networks
of self-managed self-sufficient users who can offer and
consume resources via the Web.
3) Component's government: Finally, traditional
components, i.e. enterprise services, are subject to
clearly defined regulatory frameworks since they
mostly exist in the corporate context. The design,
provisión, maintenance, and coupling of components
must be compliant with legal frameworks. Therefore,
they do not allow for the flexibility that the described
new user-services interaction model appears to need.

3. Use Case: a real problem of user-service
interaction in people's daily Ufe

In this section, we are going to imagine an
anonymous end user of any enterprise and her daily
user-service interaction. One of tasks she performs as
part of her job is to find out and interact with different
services, resources and information, either by sharing
knowledge with other parties (enterprises, knowledge
workers, Web intermediarles and so on) or looking for
the information, services and resources herself. In the
latter case, she usually spends a lot of time scrutinizing
UDDFs Web Services or surfing the blogs, forums and
boards of the different service websites that she or her
company are acquainted with [16].

This tedious task gets even worse when our end user
realizes that, depending on the service she wants to use
—which can be provided locally at her company or by
another service provider—, she has to fill in
application forms with several kinds of data formats to
deal with completely different websites where she can
either invoke Web services in the application online or
get the information to manage the service. She also has
to take into account the different invocation processes
for properly using the services and enter the
information in the correct formal
This end user is fed up with keeping her bookmarks
updated with the latest Web services, portáis and
information used. Also when she knows the required
service is new, going through services catalogues like
UDDI looking for particular terms and functionality is
a waste of time, especially when she doesn't know the
provider and service's particularities and she has to

find her way [11]. This end user is looking for some
kind of facility that she can use to easily manage
different services, resources, information and,
ultimately, back-end legacy and its related
knowledge by composing an instant application
from the services and back-end provided by each
service provider, which would be displayed via a
single user-centered face, regardless of the
data/functionality source or particularities. She
even wants to manage the resources and services
personalized according to her tastes and also by the
context, discarding the knowledge she is not interested
in and presenting the best user interface for her current
access device.

Some important service providers, like Amazon,
already offer several Web services from their back-end
wrapped with a resource layer (similar to a POX-RPC
abstraction layer). Initiatives like these offer a uniform
way to manage back-end systems easily, but a little
chunk of either application or JavaScript code in an
html page or a little gadget still needs to be developed
to invoke these Amazon Web services. The problem is
that our end user knows about business logic in her
domain, but is a nontechnical person and has no
programming skills.

As a first approximation, some of these service
providers could provide end users with isolated
gadgets to facilitate the back-end management process.
This is a rather significant enhancement with respect to
the initial situation and represents the current state of
the art of enterprise mashups and Web 2.0 ideas [13].
However, there is room for further improvement: the
end user would be grateful for not having her desktop
flooded with lots of gadgets that do the same thing,
each of which gives her sepárate access to some
isolated service or functionality.

An end user, playing the role of knowledge worker,
mostly needs a few (complex) gadgets that provide her
with all the relevant business logic she requires,
assuring standardized and easy interaction with the
desired services and back-end legacy. These (complex)
gadgets will be the basic building blocks in our new
approach to composite applications development, and
their interconnection will be able to support real
functionalities and solve real daily problems.
Moreover, resources and application gadgets of her
interest could be more easily published and discovered
by leveraging their semantic description to exploit
collaboration and the emergence of collective
intelligence in her company [9].

4. Composite application Framework,
combining FAST and EzWeb in an
Enterprise 2.0 Compositional Platform
Architecture

Now that we have looked at the shortcomings of the
traditional composite application framework, this
section will present the architecture of a specific
potential framework based on an enterprise mashup
workflow-oriented enabler that empowers its users to
co-produce and share instant applications, i.e.
applications based on composition rather than
programming and their building blocks. This
framework has been built adhering to the design
principies, technologies, tools and methods of two
initiatives, FAST and EzWeb, as an integral solution
bridging users and final services.

First of all, we should briefly review the reference
architectural stack underpinning the FAST and EzWeb
projects, showninFig. 1.

Knowledge Workers
(End-Users)

use # V assemble I

rate *

Developers

Mashup

Developers

1
Web application

develop

}

£É
Reso

(Re
Haces
ons)

intégrate

(ws) [DB] Enterprise Legacy Systems

Figure 1. Enterprise 2.0 Mashup Stack.

The bottom layer contains the actual Web
resources, be they content, data or application
functionality. They represent the core building blocks
of Enterprise 2.0 Mashups [19] and are the mark of the
resource-centric paradigm. According to the
Hghtweight Representational State Transfer (REST)
architecture style [4], each Web-based resource can be
addressed by a Universal Resource Identifier (URI)
giving browsers, mobile devices, and server
applications alike accessibility to those resources (i.e.
multi-channeling). This programming style makes the
resources very appealing to a wide range of developers
and for different uses.

The resources themselves are sourced via a well-
defined public interface, the so-called Application
Programming Interface (API). APIs encapsulate the
actual implementation as sepárate from the
specification and allow Web-based resources to be
loosely coupled. In this sense, the underlying resources

are used as core building blocks to compose individual
applications on top of existing resources. According to
the REST architectural style, the four CRUD-
Operations (Créate, Read, Update and Delete) are
represented by the HTTP verbs Put, Get, Post and
Delete. The Atom Publishing Protocol (APP)
represents a first application-level protocol for
publishing and editing Web resources following the
REST architectural style. The protocol is based on the
HTTP transfer of Atom-formatted representations. This
is documented in the Atom Syndication XML Formal
A new Google-driven initiative, called GData, uses the
APP extensión mechanism and also provides queries
and authentication functionalities. It allows full-text
search queries to be sent to the underlying Web-based
resource. The returned syndication XML format (Atom
or RSS) is based on the Opensearch.org response
elements, an Amazon-driven specification. Besides
these new hghtweight standards, existing application
functionalities described with WSDL also represent an
enterprise mashup API. A big issue surrounding APIs
is identity. Most of the major API vendors have their
own authentication APIs. Even though they are all
similar, each one is different in the end. The
OpenID.Net initiative is looking for a solution to deal
with this challenge.

Being resources based and sourced via public APIs,
gadgets (also known as widgets) provide application
domain functions or information-specific functions.
They are responsible for providing graphics, simple
and efficient user interaction mechanisms which put a
face to the resources and abstract from the technical
description (functional and non-functional) of the
Web-based resources. In general, widgets can be both
visual (in that they render visual content, such as a
chart) or non-visual (in that they provide some form of
discrete function or access to a Web-based resource).
In contrast to full-blown software applications, widgets
represent a tool or component providing a small and
specific application domain function. Through
configuration and personalization, the underlying Web-
based resources can be used according to individual
requirements. Therewith, they tend to be designed with
a focus on consumption and customization to ensure
they are extremely flexible and reusable. But, although
the respected W3C published a draft widgets
specification, there is no widespread widget model.
Software vendors (like Microsoft or Google) defined
their own widget model, NetVibes has the compelling
Universal Widget Architecture (UWA), and OpenAjax
has no component model per se but vital strategies for
fitting/putting Web components together in the same
mashup.

By assembling and composing a collection of
gadgets stored in a catalogue or repository, knowledge

http://Opensearch.org

workers are able to define the behavior of the actual
application according to their individual needs,
creating a composite application as a mashup. By
visually and intuitively aggregating and linking content
from different resources, knowledge workers are
empowered to créate a workspace of their own that
best solves their heterogeneous business problems. No
skills in programming concepts are required. Many
software vendors have started the implementation of
so-called mashup makers; visual mashup
environments, i.e. IBM QED Wiki, Microsoft Popfly,
Serena Mashup Composer, Kapow, JackBe Presto
Enterprise Mashup Solution or NexaWeb Enterprise
2.0.

Based on this reference stack, we are considering
software development from a top-down perspective as
opposed to the conventional bottom-up approach.
Users will play a leading role in this new approach and
the applications will automatically adapt to their data
and functionality requirements (see Figure 2). This
new top-down scheme can be summarized as foliows:
1. The end user or consumer identifies a need or series
of needs in the form of data to be displayed and
ftinctionality to be offered. These users will créate their
own solutions based on the ideas of mashup and
freewheeling wire framing of complex resources and
APIs in a do-it-yourself (DIY) business process. Users
will have already composed this complex of resources
from REST resources via a piping and wiring
composition of simple resources or by remixing/fixing
existing resources. REST resources are a front-end to
enterprise legacy, traditional web services, data in
enterprise boundaries, etc., resulting from a "RESTify"
process carried out by enterprises themselves.

2. Users just have to search the gadget registry to find a
gadget (or part of one) that meets their needs or more
than one gadget that they can put together to créate or
compose a new one of their own. The result of this
stage is a gadget conceptualization including all the
above aspects (user needs satisfied, user capabilities
required, interaction models applied, internal logic
flow, etc.). This way, a semantic enrichment based on
rules, facts and pre/post conditions improves the whole
B2C channel of services.
3. Users manage their new gadgets in their own
dashboard, supported by an Enterprise Mashup
platform (i.e. EzWeb). This platform allows gadgets to
intercommunicate with each other and with their own
platform, creating a hybrid composite web application.
This instant application supports users' daily work
thanks to an environment of interconnected resources,
offered by a gadget ambience. In addition, users can
publish their improvements to the gadget registry for
ftiture reuse, adaptation or specialization. Thanks to
this, knowledge and innovation management is an

implicit part of the process, fostering user collaboration
and collective intelligence exploitation.

4. Alternatively, users could contribute
clarifications, innovations, bugs, enhancements,
comments or simply new usages of their mashup
components without actually recomposing, remixing or
creating new resources. Increasing the visibility of
these business inputs and assuring that they rapidly
reach the users of that collective intelligence is vital for
boosting business innovation [10]. Therefore, each
resource that appears in a mashup should be associated
with standard Web 2.0 communication channels (such
as blogging, edition of associated entries in the
underlying wiki-based catalogue, etc.). This way, users
would be able to implement inputs simply and flexibly
without having to create/tailor and publish the solution
in order to be able to contribute their expertise and
share it with the enterprise. This puts existing
knowledge to better use. Note that, taking into account
the concepts and technologies governed by this idea,
the contributions will focus on the end user without
specific background knowledge in semantics, user
interfaces, and back-end integration. However, the
user-centric approach supports the rapid development
and maintenance of applications and information
systems in a clear attempt to reach The Web 2.0 Long
Tail. The central driver of this framework designed to
address The Long Tail of user needs is the lightweight
resource composition style. In this style building
blocks from different contexts are reused to build
individual enterprise applications. As illustrated in the
Figure 3, the composition takes place both in the
resource layer (piping) and in the gadget (wiring) layer
according to the enterprise mashup stack (see Fig. 1).

In reference to the UNIX shell pipeline concept, the
piping composition integrates a number of
heterogeneous Web-based resources defining
composed processing data chains/graphs concatenating
successive resources. The output of each process feeds
directly as input to the next one. Aggregation,
transformation, filter and sort functions adapt, mix and
manipúlate the content, data and application
functionality of the Web-based resources. Intuitive
visual environments for the piping composition
represent Yahoo Pipes or IBM Diama. The piping
composition itself addresses users versed in classical
development or data manipulation languages. In the
gadget layer, the actual end user is able to wire existing
gadgets together with behavior and data relationships
by visually interconnecting their input and output
parameters. For example, a form gadget can be placed
on a page, allowing a user to enter data. This data entry
can be connected to the input of a gadget that provides
a Web-based resource invocation, and the output of the
resource response can be connected to a gadget that

renders a visual display. Users then can interconnect
existing resources with each other to créate
increasingly complex web services and their APIs,
taking up the idea of resources composition based on
storyboard-driven creation. End users can then exploit
this complex of creations to achieve enormous
improvements in their job performance and innóvate
by creating/remixing their own business tools.

Business Process
Screen Flow

I I Screen K |

i! u
I Screen I "^j Screen I

Resourfe CompositioT

1=1
1=1

1=11=1

Service Inteqration 2
Semantic Service Adapter

:
Service Layer

Assistei
Proces!

Automatic
Process

Figure 2. Visual composition of screen-flow resources
and interoperability with back-end Web services

Wiring

Gadget 1

Pipe 1

| [P'Pe 2

y vviring ^

j^C Gadget 2 > ^
•H^^jt L_ Pipe 1 l • "

Gadget ó

H f p¡pe n

•Piping-

Figure 3. Resource and gadget compositions building
composite applications

A key challenge of this whole new approach is to
créate a new visual programming environment that will
facilitate the development of composite applications
from complex front-end gadgets, involving the
execution of relatively complex business processes that
rely on traditional back-end semantic Web services.
This is the main objective of the FAST project. The
adopted approach should be user-centric rather than
program-centric. Instead of first building programs that
orchestrate available semantic Web services and then
trying to figure out how to implement interaction with
the users at given points of the process execution flow,
programmers will start from the front-end gadgets that
the user will see and interact with and then visually

establish the connection to back-end Web services by
tracing back process execution flows, if necessary.
Programmers take an approach similar to the
visualization of UML sequence diagrams to visually
establish this connection. In this approach,
programmers will visually manage and connect front-
end gadgets, screen-flow resources and back-end
services and overeóme the limitations of current
business process engine approaches (based on the
traditional SOA visión).

Note that the programming tool to be used in this
solution should be compatible with existing and future
mashup exploitation platforms. Its goal is not to
develop the gadget mashup platform. It is a tool that
should enable the development of mashupable gadgets
that rely on screen-flow resources and semantic Web
services stored in a catalogue. In this paper we are
going to emphasize the exploitation of created gadgets
in the well-known EzWeb mashup platform, which is
fully tailored to support complex gadgets
intercommunication, multi-device ubiquitous
adaptation and ambience creation.

Clearly, this particular solution is a subset of a
global user-centric composite application framework,
specified around the creation of software based on
screen-flows and work-flows that end users could
establish via a catalogue of existing semantic Web
services.

In summary, this solution aims to define a whole
new approach to front-end and back-end integration by
developing a new visual programming environment.
This new environment will facilitate the development
of complex front-end gadgets, involving the execution
of relatively complex business processes that rely on
back-end semantic Web services and applying the
foliowing basic principies:
- As opposed to front-end-oriented mashup platforms,

which are concerned with facilitating retrieval,
mashing and utilization of lightweight gadgets, this
platform would go a step further and deal with the
creation rather than the utilization of such lightweight
gadgets. This can significantly improve
programmers' operational efficieney.

- Instead of first building programs that orchestrate
available semantic Web services with BPEL and then
trying to figure out how to implement interaction
with the users at given points of the process
execution flow, users will start from the front-end
gadgets they will see and interact with, and then
visually establish the connection to the back-end
Web services tracing back the process execution
flows, if necessary. The framework will visually
establish this connection adopting an approach
similar to the visualization of UML sequence
diagrams.

- The goal is to build a system that reads the URIs of a
number of semantic Web services and is able to
automatically interpret and visualize possible
messaging patterns between them for the developer.

- Instead of implementing a choreography from
scratch, developers and end users have a visual and
efficient interface by means of which to orchestrate
services according to their needs and to créate a
gadget on top that clearly conveys its functionality to
human users.

5. Proof of concept: application of a
composite application framework

As a proof of concept, this section shows the
application of our framework (based on the FAST tool
and EzWeb mashup platform) to the domain problem
presented in the section 3. This scenario is only one
example of the many solutions that could be developed
based on the proposed novel user-centric SOA-oriented
framework. This section explains a composite
application deployed on an existing prototype of the
EzWeb platform, where a service-oriented
environment is created by visually attaching different
complex gadgets to each other and to the enterprise
back-end. This specific enterprise mashup environment
is useful for an end user responsible for the task of
managing services, data, functionalities and resources
from back-end legacy systems. Each complex gadget
has been created using FAST, putting a face on SOA
and leveraging a user-centered top-down approach to
Web services as shown in Fig 4. This screenshot shows
how a domain expert can créate a multi-screen gadget,
whose main functionality is to list several corporate
services (managed thanks to a REST abstraction layer)
on an in-tray screen. The main screen is therefore an
in-tray (as a html visual artifact) that is linked to a
piping (concatenation and filtering) built on three
resources of Telefónica's back-end (see Fig. 4: three
web services associated with different projects called
"avanza", "singular" and "tractor" respectively that are
wrapped with REST resources). By clicking on one of
these Unes, every end user can deal with a back-end
service, through forms and screens that act as a screen-
flow wizard to manage that resource's specifics. These
visual artifacts are deployed and presented in
accordance with the special features of the end user
device. In addition, FAST manages facts as internal
pre/post conditions (thereby interconnecting building
blocks to build complex gadgets) or as external stubs
(events and slots) to orchestrate several complex
gadgets in an EzWeb mashup.

The zoomed screenshot in Figure 5 depicts a simple
scenario when the created in-tray gadget is put together

with other gadgets and APIs to créate a complex
workspace as a composite application that pro vides job
support for the EzWeb mashup platform end users.

More precisely, this dashboard has been extracted
from a Telefónica core OSS, which is part of a more
general mashup now deployed at Telefónica as a fully
operational environment. The mashup connects four
gadgets: the list of core Web services deployed in
Telefónica's back-end, including functionalities to
manage customer requests (this is in-tray created by
FAST), a customer agenda, a Google map and a
network status map. A fully functional environment is
created by visually attaching these FAST gadgets to
each other and to the enterprise back-end in a
wireframing-oriented integration: the agenda gadget
will display customer details and have a customer/task
selection option, the network map will represent the
selected customer's network status and the Google map
gadget will display the selected customer's address on
a map when a given task is selected from the list.

Í D ^ X • A 9 \ * * ~^\
a ^L f ScreenFlow ^ Projecta In-Tray Screen f InTray Foim ^

k J

Figure 4. Creation of a complex in-tray gadget
using the FAST tool

Figure5. Creation of an enterprise mashup on the
basis of the proposed framework

7. Conclusión and future trends

The appearance of user-centric approaches to
composite application developments, such as the one
proposed in this paper, will be a major step forward,
providing solutions to currently hard-to-solve problems
in the traditional composite application paradigm. The
emergence of such platforms will solve key problems
in three different scenarios. Large enterprises may
capitalize on faster application development (for what
are known as instant applications). There will be a
more agüe system landscape. .

On the other hand, Enterprise 2.0 collaboration
platforms enable SMEs to find, customize, combine,
catalogue, share and finally use applications that
exactly meet their individual demands by leveraging
the SaaS model, Finally, individuáis benefit from a
strongly increased capability of personalization and
participation The proposed approach will provide end
users with intuitive, unsophisticated IT ways to
discover, remix and use those Web-based services that
they consider interesting and useful.

Future work will concéntrate on evolving FAST and
EzWeb, the open source composite application
framework used as proof of concept in this paper. We
expect them to become a major hub for the publishing,
brokerage, customization and, finally, the consumption
of Web-based resources on a global, cross-
organizational scale [18].

8. Acknowledgment

This work is supported in part by the European
Commission under the first cali of its Seventh
Framework Program (FAST STREP Project, grant
INFSO-ICT-216048) and by the European Social Fund
and UPM under their Researcher Training program.

9. References

[1] Alonso, G., Casati, F., Kuno, H. & Machiraju, V.(2004).
Web Services Concepts, Architectures and Applications.
Springer, 2004

[2] Anderson, C.(2006). The Long Tail, Why the Future of
Business is Selling Less of More. Hyperion. July 2006.

[3] Davenport, T. H.(2005). Thinking for a Living: How to
Get Better Performance and Results from Knowledge
Workers. Harvard Business School Press, Boston, MA,
USA. 2005.

[4] Fielding, R. T.(2000). Architectural styles and the
design of network-based software architectures, Ph.D.
thesis, University of California, Irvine, 2000

[5] Gartner Inc. (2006). Hype Cycle for Software as a
Service, Gartner Research, 10 August 2006.

[6] Hogg, R., Meckel, M., Stanoevska-Slabeva, K. &
Martignoni, R.(2006). Overview of business models for

Web 2.0 communities, Proceedings of GeNeMe 2006, p.
23-37, Dresden, 2006.

[7] IBM Developer Works (2006). Composite applications
- Business Mash-ups

[8] MacKenzie, M. (2006) OASIS - Reference Model for
Service Oriented Architecture 1.0, http://www.oasis-
open.org/committee s/tc_home.php?wg_abbrev=soa-rm

[9] McAfee, A.(2005). Will Web Services Really
Transform Collaboration, MIT Sloan Management
Review, Vol.46, No.2, 2005

[10] McAfee, A.(2006). Enterprise 2.0: The Dawn of
Emergent Collaboration. MIT Sloan Management
Review, Vol.47,No.3 (pp. 21-28).Spring 2006.

[11] North, D.C.(1990). Institutions, Institutional change and
economic performance, Cambridge University Press,
Cambridge, 1990

[12] O'Reilly, T. & Musser, 1(2006). Web 2.0 Principies
and Best Practices. O'Reilly radar, November 2006.

[13] O'Reilly, T.(2005). What is Web 2.0: Design Patterns
and Business Models for the Next Generation of
Software.
www.oreillynet.eom/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html

[14] OASIS (2003).Web Services Composite Application
Framework (WS-CAF) TC, http://www.oasis-
open.org/committees/tc_home.php? wg_abbrev=ws-caf

[15] OASIS Open CSA (2007). Service Component
Architecture (SCA), http://www.oasis-opencsa.org/sca

[16] Román, D. (2005). Web Service Modeling Ontology,
Applied Ontology, Vol.l,No.l (pp. 77 -106), 2005.

[17] Schroth, C. & Christ, O. (2007). Brave New Web:
Emerging Design Principies and Technologies as
Enablers of a Global SOA. In Proceedings of the 2007
IEEE International Conference on Services Computing
(SCC 2007) (pp. 8): IEEE Computer Society. Retrieved
2007-07-11, from
http: //www. alexandria.unisg. ch/publications/3 7038.

[18] Schroth, C. & Janner, T. (2007). Web 2.0 and SOA:
Converging Concepts Enabling the Internet of Services.
IEEE IT Professional Vol.9, No.3(pp.36-41) , June
2007.

[19] Smith, R.(2006). Enterprise Mashups: An Industry Case
Study. Keynote at the New York PHP Conference &
Expo, Manhattan, New York, USA, 14-16 June 2006

[20] Winewright, P. (2005) Why Microsoft can't best
Google, Software as a Service ZDNet editorial, August
2005. Retrieved September 18 2007, from
http://blogs.zdnet.com/SAAS/?p=13

http://www.oasis
http://open.org/committee
http://www.oreillynet.eom/pub/a/oreilly/tim/news/2005/09/30/
http://www.oasis
http://open.org/committees/tc_home.php
http://www.oasis-opencsa.org/sca
http://blogs.zdnet.com/SAAS/?p=13

