
 

UNIVERSIDADE DA BEIRA INTERIOR 
Faculdade de Engenharia 
Departamento de Informática 

 

 

Web Services Approach for 
Ambient Assisted Living in 

Mobile Environments 

 
Joel Lourenço Fernandes 

 

Submitted to the University of Beira Interior in candidature for the 
Degree of Master of Science in Informatics Engineering 

 

Supervised by Prof. Dr. Joel José Puga Coelho Rodrigues 

 

 
Departamento de Informática 

University of Beira Interior 
Covilhã, Portugal 

http://www.di.ubi.pt





 

i 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work has been partially supported by the Instituto de 

Telecomunicações, Next Generation Networks and Applications Group 

(NetGNA), Portugal, by National Funding from the FCT – Fundação para a 

Ciência e Tecnologia through the Pest-OE/EEI/LA0008/2011, and by the 

AAL4ALL (Ambient Assisted Living for All), project co-financed by the 

European Community Fund FEDER through COMPETE – Programa 

Operacional Factores de Competitividade. 

 

          

 

 





 

iii 

 

 

 

 

 

Acknowledgements 

 

 

 First of all, I would like to thank Prof. Joel José Puga Coelho 

Rodrigues for giving me a chance to join the Next Generation Networks and 

Applications Research Group (NetGNA), for all the constant words of 

encouragement and for supervising my Master’s Thesis. The last year was 

undoubtedly very important in my evolution has Informatics Engineer as a 

person as well. 

I am most grateful to the University of Beira Interior, the Instituto 

de Telecomunicações, Next Generation Networks and Applications Group 

(NetGNA), Covilhã Delegation, Portugal, by National Funding from the FCT – 

Fundação para a Ciência e a Tecnologia through the PEst-

OE/EEI/LA0008/2011 Project, by the AAL4ALL (Ambient Assisted Living for 

All), project co-financed by the European Community Fund FEDER through 

COMPETE – Programa Operacional Factores de Competitividade. 

 Many thanks to all members of NetGNA, particularly Ivo Lopes, Fábio 

Canelo, Edgar Horta and João Dias. 

 And of course, a enormous thanks to my parents, my sister, my 

family and my girlfriend, for their constant support and for all words of 

motivation. 

 

 





 

v 

 

 

 

 

 

Abstract  
 

 

Web services appeared as a promising technology for Web 

environments independent of technologies, services, and applications. 

First, a performance comparison study between the two most used Web 

service architectures, SOAP and REST, is presented, considering messages 

exchange between clients and a server. Based on this study, the REST 

architecture was chosen to deploy the system because it gets better results 

compared to SOAP architecture. Currently, there are some issues related 

with this approach that should be studied. For instance, if massive 

quantities of data are sent to databases it can influence significantly the 

performance of the whole system. The Advanced Message Queuing Protocol 

(AMPQ) appears as a promising solution to address this problem. Then, in 

order to evaluate the performance of this approach, this work presents a 

performance evaluation and a comparison study of RESTful Web services 

and the AMQP Protocol considering exchanging messages between clients 

and a server. The study is based on the averaged exchanged messages for a 

certain period of time. It was observed and concluded that, for large 

quantities of messages exchange, the best results comes from the Advanced 

Message Queuing Protocol. Message Queuing Telemetry Transport (MQTT) 

was addressed in this work because it is a similar protocol to AMQP but it 

can be used by mobile devices with a processing capacity smallest unlike 

the AMQP that needs greater processing capacity. These studies are 

performed in the context of Ambient Assisted Living environments, since 
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the work was applied to this topic in order to experiment the effectiveness 

and evaluate the performance of these protocols in this scenario. 
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1. Introduction 

1.1. Focus and Research Scope 

 

The idea of distributed computing was born with the appearance of 

computer networks. Applications were divided first into two main 

components. One is the client, starting a distributed activity, and the 

other, the server, carrying out that activity. This reorganisation minimized 

bottlenecks by distributing the workload through several systems. It offered 

flexibility for application design previously nearby unknown on centralized 

hosts. But this two-tier architecture, Figure 1, had its limits [1].  

Client PC

Java 
Application

Client Server

Tier 1 Tier 2

JDBC 
Driver

Storage Server

 

Figure 1. Illustration of Two-tier architecture. 

 

For scalability and failover, issues a third-tier has been announced, 

dividing an application into a presentation part, an intermediate tier 

including the business logic, and a third-tier dealing with the data. This 

three-tier model of distribution, presented in Figure 2, has become the 
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most popular way of splitting applications. It makes application systems 

scalable.  

The basis for the communication between the distributed parts of an 

application is the remote procedure call (RPC) [1].  

Client PC

Browser

Tier 1 Tier 2 Tier 3

Client Application 
Services DBMS System

RPC / HTML SQL Data Access

 

Figure 2. Illustration of a three-tier architecture. 

 

The main use of the World Wide Web is interactive access to 

documents and applications. In nearly every case, access is by human 

users, generally working through Web browsers, audio players, or other 

systems of interactive front-end. The Web can grow greatly in power and 

scope if it is extended to support communication among applications, from 

one program to another. 

The Web has been a phenomenal success at allows simple 

computer/human interactions at Internet scale. The original HTML and 

HTTP protocol stack used by current Web browsers has proven to be a cost- 

effective way to project user interfaces onto a wide range of devices. The 

main factor in the success of HTML and HTTP was their relative simplicity —

both HTML and HTTP are primarily text-based and can be implemented 

using a multiplicity of operating systems and programming environments. 

In the last few years, ad hoc styles have been used in business-to-

business applications to enjoy the benefits of the basic Internet 

infrastructure [2]. The wondrous growth of the information space and the 

wondrous number of accessible information sources are factors which arise 

a growing interest for integrating information sources into Web services in 
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order to improve collaboration and knowledge sharing between enterprises. 

The appearance of Web services as a model for incorporating 

heterogeneous Web information has opened new possibilities of interaction 

and provided more potential for interoperability. 

Currently, more and more Web services are present in applications, 

serving information or consuming a service. Within the context of 

distributed applications, the service has become a important, switching the 

old paradigm of using Dynamic-Link Library (DLL) [3]. 

The growing number of available Web services, the increase 

necessity to collaborate and to share knowledge directing to the best 

decisions are factors which generate a growing interest for meeting Web 

services into communities in order to facilitate and accelerate Web services 

discovery and selection. Web services communities provide a centralized 

access to several functionally-equivalent Web services through a unique 

endpoint which enables the query processing [4]. 

For end users, the large growth in available services can involve 

greater freedom or more chaos or both. For developers, Web services 

computing provide important theoretical and engineering challenges as 

they determine how to take advantage of emerging technologies to 

automate individual applications. The era of globalization as purchased 

nearly all services to the Internet environment with multiple providers 

offering the same service in different ways [5]. Several providers are 

provide the same functionality so it necessary to distinguish one self from 

the crowd with the aim to prosper against the cutthroat competition from 

the service provider’s view. On the other hand it is absolutely necessary for 

the client to choose a service provider that not only meet the functional 

requirements of the client but also offers the best quality of service (QoS) 

to the customers. 

Mobile Internet is driving the exponential growth of mobile devices 

in a faster way than previous computing technologies. Mobile Internet 

devices has surpassed ten billion units in 2010 [6]. With the increasing use 
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of mobile devices, mobile applications will create a larger percentage of 

Web service requests.  

Mobile platforms have their own set of challenges as: bandwidth, 

memory and CPU availability, storage capacity, connectivity options and 

issues, security and user interaction and display. Since the capacity of 

storage and processing on mobile devices is reduced to best solution for 

mobile applications that generate large amounts of data or need to save 

too many messages, passes to use other services to send and store 

messages outside the device. Against this problem, increasingly, the option 

is to use Web services to send data from the mobile device to a server. 

The Web services are the key point of integration for different 

applications pertaining to different platforms/languages/systems once they 

are based in a set of standards that make them independent of the 

underlying technologies used for providing them. There are currently two 

groups of thinking in the development of Web services: the traditional, 

standards-based approach (SOAP) and conceptually simpler and the 

trendier on the block (REST). Spite of the fact that the requirement of 

mobile computing has improved considerably in recent years [7], [8], using 

traditional Web services (i.e., SOAP-based services) models to mobile 

computing may result in unacceptable performance overheads. 

Simple Object Access Protocol is extensively used as a messaging 

framework for Web services realization of Service Oriented Architecture 

(SOA). This standard is not suitable for mobile devices with resource 

constraints, provisioning Mobile Web Services, due to large payloads of 

SOAP message constructs. In addition to memory limitations, the data 

parsing of the intensive SOAP messages can lead to performance 

degradation of the mobile Web servers in terms of server utilization. In 

contrast, the Representational State Transfer (REST) messaging framework 

is lightweight enough to be appropriate for messaging communication in 

such devices. A single URL only identifies each service resource in this 

framework [9]. 



Introduction 

5 

 

REST is an architectural style derived from the Web, and its 

constraints and architectural elements aim at gathering the fundamental 

design principles that enable the great scalability, growth, and success of 

the Web. A RESTful service is provided as a resource, which is meaningful 

concept and can be addressed in the Web. A RESTful service is supplied as a 

feature, which is the concept extremely useful and can be addressed on 

the Web. As the Internet grows continuously, new needs are identified, and 

to confront them, new approaches are emerging. One is the pub-sub 

(publish-subscribe), wherever the messaging middleware is an operating 

model with asynchronous and freely combined characteristics. As the 

message consumers and producers in control flow, space and time are 

totally dissociated, doing the two endpoints communicate using a distinct 

statement and registration messages for asynchronous communication, 

which can better serve dynamic distributed information systems 

integrations needs and the large-scale. The existing applications of subject 

based pub-sub were used effectively in the mobile computing, stock, 

financial and other situations [10]. 

SOAP-based services are heavy-weighted services, which are not 

applicable for mobile services in comparison to light weighted RESTful 

services. Migration of SOAP-based services to RESTful services makes the 

services more pervasive, faster, and suitable for thin clients. In addition, 

RESTful services are invoked using HTTP methods [3]. 

Whatever the technology used to deploy Web services, they provide 

several advantages [11], like language independence and distribution 

mechanisms; it also increases the interoperability between different soft- 

ware elements (for example, it is possible to add communication libraries 

without modifying existent code), and facilitates code distribution (it is not 

required the use of a concrete implementation or library) among 

geographically distributed work teams. 

The healthcare industry offers many more situations in which Web 

services can be put to use effectively. A doctor carrying a handheld device 

can access your records, health history, and your preferred pharmacy using 
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a Web service. The doctor can also write you an electronic prescription and 

send it directly to your preferred pharmacy via another Web service. 

The high penetration of mobile devices and networks implies that 

mobile technology cloud be used very effectively for health promotion in 

order to compensate the lack of resources problem, particularly in 

developing countries. 

Over the past decade, new application areas in healthcare, such as 

Ambient Assisted Living (AAL) has improved the interest of community 

safety engineering. They are reliant upon information gathered from their 

environment through small, hidden, distributed, and communicating 

embedded devices for offer their services and are open to the integration 

of new and heterogeneous devices to optimize offered services. Under 

these circumstances they must be able to react appropriately to the 

variation observed in their environment, in the quality of information 

provided by the embedded devices and in the availability of resources. 

The Information and Communication Technologies (ICT) can play a 

very important role to achieving these goals. ICT can contribute an to a 

better quality of life for older people contributing to a more healthy and 

independent life, opposing the difficulties of this age group. This therefore 

the starting point for the concept of AAL. 

From the point of view of AAL, people with special needs are 

supported through an interaction with the intelligent environment that 

surrounds them, facilitated by devices capable of measuring several 

parameters, acting on the environment, with a capacity of computing and 

communications. So, the passage of the personal computer/device for a 

range of devices capable of sensing processing and distributed computing 

environment and by a new paradigm that yields a set of challenges related 

to the interaction of people with technology in their environment. 

The concept AAL refers thus to the study and development of 

intelligent systems to support the requirements of quality of life, offering a 

secure conditions in daily environment preferred by user. In AAL are 
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proposing new approaches in design of products and services that interlink 

and enhance new technologies in a social environment. 

Figure 3 shows the basic process of functioning of systems 

implemented for the AAL. The sensors / robot send data to the Home Node 

(gateway). Subsequently the gateway sends this data to a server. 

Consumers intending to have access to data make requests to the server 

and it returns the required information. 

HOME NODE
(gateway)

Sensors

Internet

Internet

Consumer

Server

Robot

 

Figure 3. Basic process of functioning of systems implemented for the AAL. 

 

Ambient Assisted Living (AAL) research the development of systems 

that monitor activities and vital signs of lonely elderly people in order to 

detect emergency situations or deviations from desirable medical patterns 

[12]. The discussion about Ambient Assisted Living started when political 

entities couldn’t ignore the fact of the demographic change any longer 

[13]. 
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The large potential of these AAL technologies related to the capacity 

to influence people to live in a positive way. In particular, the AAL has 

influences on the following: 

• Support the maintenance of health and functional capacity of 

older people; 

• Improved safety in the physical integrity of the end users, 

especially those who have illness and/or physical limitations; 

• Promoting a healthier lifestyle for people at risk; 

• Extension of time that user can live in there preferred 

environment with safety and proper socialization; 

• Contribution to the extension of working lives of people, in that 

they provide a set of tools and in his own house, ensuring 

comfort conditions and adequate security and maintaining 

contact with the entities with whom they interact; 

• Increased efficiency and productivity of the resources used in 

aging societies. 

 

All of these features enable a greater capacity for participation of 

individuals in society regardless of age, sex, education level or economic 

origin. The enhancements in the health of users and development of 

numerous technologies such as, for example, telemedicine from home or 

use of wearable sensors also contribute to reduce the resources used and 

therefore the associated costs. 

Moreover, the points identified as the weak current AAL solutions in 

general: 

• Solutions are typically high cost; 

• These solutions, in many cases, highly technological and complex 

use which can hinder their use by the target users; 

• Solutions based on body monitoring devices, it’s hard to get the 

trio, comfort, volume and autonomy; 
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• The difficulty in achieving an objective study on the real needs 

of end users, leads to the development of solutions that often 

are not adapted or are not of practical use for these; 

 

For making monitoring activity and vital signs are used devices, such 

as mobile devices, sensors, etc., with little processing power, low memory 

and limited battery. Given these problems it is necessary to implement 

solutions of low energy consumption, with data packets minimized and they 

can make the efficient distribution of information to one or many 

receptors. Advanced Message Queuing Protocol (AMQP) e Message Queuing 

Telemetry Transport (MQTT) are both open protocols for asynchronous 

message queuing which have been developed and matured over several 

years. AMQP has selected the OASIS industry standards group, whit the 

intention of moving to becoming an ISO/IEC standard [14]. MQTT has 

chosen to use the Eclipse foundation [15]. 

 

1.2. Problem Definition  

 

Ambient Assisted Living focuses on the development and market of 

products and services that can be used for user monitoring and events 

detection. Thus, it is possible that users live in more secure conditions and 

in their preferred environment. Constant monitoring by sensors or other 

devices generates large amounts of data to be transmitted and stored. 

A problem that arises in this area is the large amount of data that is 

generated and needs to be transmitted. In this way it is necessary to study 

and develop mechanisms and apply systems that allow the exchange of 

large amount of data to be made as quickly as possible and with no loss of 

data.  

 In the present study is carried out the comparison between the two 

models for transmitting large amounts of data with the aim of find the best 

solution to solve that problem. 
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1.3. Research Objectives 

 

 The main objective of this dissertation is the design, constructing, 

deployment, and performance evaluation of Web services when employed 

in system that generate large amounts of data. To carry out this study, Web 

services have been applied in mobility systems for the Ambient Assisted 

Living. 

 

 To reach this main objective the following intermediate objectives 

were define: 

• Study of the state of the art, about Web services, Advanced 

Message Queuing Protocol, Message Queuing Telemetry Transport 

and Ambient Assisted Living (AAL); 

• Detailed analysis of the RESTful Web services and RabbitMQ; 

• Requirement analysis of Web services and message queuing 

protocols considering ambient assisted living (AAL) environments 

with mobility support; 

• Proposal, deployment, and validation of the system based on 

requirements analysis; 

• Performance evaluation of Web services and RabbitMQ 

considering an AAL system with mobility support. 

 

1.4. Main Contributions 

 

This section is devoted to the scientific contributions of this 

dissertation to the stat-of-the-art on Web services and Advanced Message 

Queuing Protocol (AMQP). The main contribution is the Performance 

Evaluation of RESTful Web Services and AMQP Protocol that presents a 

performance comparison study of RESTful Web services and the AMQP 

Protocol considering exchanging messages between client and server. The 

study is based on the averaged exchanged messages for a period of time. 
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This study was presented at The Fifth International Conference on 

Ubiquitous and Future Networks (ICUFN 2013), Da Nang, Vietnam, July 2-5, 

2013.  

 

1.5. Dissertation Structure 

 

 This dissertation is organized in five chapters. This Chapter, the 

first, presents the context of the dissertation, focusing on the topic under 

study, the problem definitions, the objectives, the main contributions and 

the dissertation structure. 

 Chapter 2 - Related Work – Presents the literature review on Web 

services, Advanced Message Queuing Protocol, Message Queuing Telemetry 

Protocol and Ambient Assisted Living. Referring some of the work done in 

each of the topics mentioned above. 

 Chapter 3 – Requirements Analysis – This chapter presents the 

design and implementation of the system architecture developed. Presents 

the system architecture, the conceptual design of the system proposed and 

the technologies used in the development of proposed application. 

 Chapter 4 – Performance Evaluation – This chapter presents the 

comparison between the implemented services and equivalents, and 

between communication protocols implemented. It also focuses on the 

demonstration of the system and evaluates the performance of two 

approaches developed that will be integrated into applications AAL.  

 Chapter 5 – Conclusions and Future Work – Concludes the 

dissertation and presents a few remarks for future work. 
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2. Related Work 

In order to fully understand the context of the thesis objectives and 

have an awareness of the state-of-the-art, it is required to approach the 

related work, as a study of the literature review.  

This chapter presents the literature review. In section 2.1 is 

presented the literature review in Web services with reference to multiple 

Web service technologies, making a comparison between the two most 

widely used. Section 2.2 present the literature review in Advanced Message 

Queuing Protocol focusing interest in the RabbitMQ, used in the 

development of this thesis. In section 2.3 is presented the literature review 

in Message Queuing Telemetry Transport protocol can also be used with 

RabbitMQ. Finally, section 2.4 presents the literature review in Ambient 

Assisted Living, area chosen to implement Web services and RabbitMQ to 

evaluate their performance. 

 

2.1. Web Services 

 

The predecessors, such as the Common Request Broker Architecture 

(CORBA), Remote Method Invocation (RMI) and Distributed Component 

Object Model (DCOM), Web Services is a set of standards and programming 

methods for the exchange of data between different software applications, 

Web services also is a standardized way for distributing services on the 

Internet [14]. 

In the last years, Web Services technologies have been used 

successfully to simplify interoperability, while providing scalability and 

flexibility in various applications, including distributed simulation software. 
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The W3C [16] defines a Web service as a method of communication 

between two electronic devices over a network, it is a solution used in 

systems integration and communication between different applications. 

With this technology it is possible that new applications are able to interact 

with those that already exist and that systems developed across different 

platforms are compatible. Primarily, the Web service makes the resources 

of the software application available on the network in a standardized way. 

In current collaborative environments, Web Services seems to be a 

privileged means to interconnect applications across organizations, even if 

those organizations use different operating systems, different hardware, 

and different programming languages. Web Services are software systems 

projected to support interoperable machine-to-machine interaction over a 

network [17] by using URI (Uniform Resource Identifier) on the distributed 

environment of internet. They are modular applications with interface 

descriptions that can be published, located, and invoked across the Web 

[18]. 

Web Services they became gradually popular method of managing 

inter-system communications through networks, with the ubiquity of HTTP, 

XML, and JSON in modern computing. A Web services-based architecture 

results in complex system that demands coordination, communications, and 

distributions among loosely coupled system with dependent users in order 

to provide scalability, flexibility and extensibility. In its simplest form, Web 

services refer to software components that support interoperability 

between computer systems connected over communications network. The 

key elements of Web Services include, HTML, XML, JSON, SOAP, UDDI, 

WSDL. 

The potential widespread use and benefits of Web Services are very 

compelling, because they facilitate: 

• Automation of business processes distributed across multiple 

enterprises; 

• Collaboration among multiple enterprises by coupling together 

the business processes running on their various computers. 
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The Web Service technology has become an industry standard for 

connecting remote and heterogeneous resources, mobile devices have 

become a vital part of people’s everyday life. People use mobile devices 

anytime and anywhere, they may use their mobiles to check Email, access 

the Internet, or run other Web applications. 

A Web service is a piece of business logic, located somewhere on the 

Internet, that is accessible through standard-based Internet protocols such 

as HTTP or SMTP [19]. Using a Web service could be as simple as logging 

into a site or as complex as facilitating a multi-organization business 

negotiation. 

There is a multitude of Web services and applications programming 

interface (APIs) available on the Web offer a wider variety of various 

services and generally, has considerable semantic overlap between them, 

where several Web services deliver basically the selfsame functions. This 

superimposed feature allows redundancy in the ecosystem of Web services 

and offers developers the chance to transfer from one API to another while 

the API initially used is not available or inadequate for their requirements. 

To help the innovation of similar APIs, many novel methods are being 

developed to finding the Web services, including query-based methods 

relying on keywords and identifiers [20], [21], clustering [22] and more 

detailed structure matching [23], [24]. 

REST (Representational State Transfer), the architectural style 

underlying the Web [25], has gained acceptance as an alternative way to 

develop Web services [26]. This trend is witnessed by several deployed 

RESTful Web services in the industry, such as Amazon S3 and Facebook API, 

as well as active researches and studies on REST Web services [27], [28], 

[29]. 

RESTful Web Services are earning more and more approaches. They 

are used as application programming interfaces (APIs) for Web Services 2.9, 

and are considered a more flexible and lighter-weight alternative to the so-

called Big Web Services [30]. 
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RESTful Web Services technical topics become popular because the 

REST style includes a global identifier of all resources (eg, a uniform 

resource identifier) and the customer only need to know this handle and 

the action required. He must also know the right format of representation, 

which is typically an HTML, eXtensible Markup Language (XML) or JavaScript 

Object Notation (JSON) meta-data. RESTful Web services (REST APIs) 

specify a set of resources, which includes three components: the URI of the 

Web service, the data type supported (JSON, XML, etc.), and the support 

operations through HTTP methods. 

Much research has been done in the field of developing RESTful 

applications. Richardson and Ruby [26] provide best practice examples and 

hints on how to develop RESTful applications. 

Kopecky et al. [31] present hRESTS as a solution for missing machine-

readable Web APIs of RESTful services. They argue that a micro format is 

the easiest way to enrich existing human-readable HTML documentations. 

They introduce a model for RESTful services, but with a focus on 

documentation and discovery. 

Alarcón and Wilde [32] introduce a metamodel for descriptions of 

RESTful services which is the basis for the Resource Linking Language. They 

focus on service documentation and composition.  

Furthermore, Liu et al. [33] introduce an approach for reengineering 

legacy systems to RESTful Web Services. They outline the key issues in this 

area and propose a solution that covers identification of resource 

candidates, relation and operation analysis, URI and representation design, 

as well as service construction. In their opinion, the key problem is to find 

the right granularity for the resources. 

In the domain of model driven development, Laitkorpi et al. [28] 

propose a process for designing RESTful services that focuses on a model 

based identification of the resources and on generating corresponding 

WADL descriptions. 

Mayer and Lubke [34] also highlight the need to bring formal testing 

and validation into the area of Web applications, pointing out that many of 
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the existing tools for BPEL Testing concentrate only on black box testing, to 

the exclusion of any kind of white box testing. 

In [35], they discussed a number of areas in which Web services 

create additional testing problems. They conclude that Web services need 

to confront additional problems of scale, such as work flow complexity, 

volume of data, number of nodes, complexity of operations and differences 

in usage patterns. 

C. Riva et al. [36] investigate how to apply the REST principles to the 

design of mobile services. They identified several issues such as latency and 

data format that need particular attention when applying REST concepts to 

mobile environment. However, they only focused on consuming RESTful 

Web Services on mobile devices and did not address the provision of Web 

Services from a mobile host. 

Web Services technology recognizes mobile computing as an area to 

which it should expand. Through integration, Web Services enable 

pervasive accessibility by allowing for user mobility as it overcomes the 

physical location constraints of conventional computing. However, mobile 

computing also requires a technology that connects mobile systems to a 

conventional distributed computing environment. Web services may be the 

perfect candidate for such connections, since a strong interoperable 

capability is the key requirement of the technology. The integrations of 

mobile computing with Web Services technology will give many advantages 

to both sides.  

Mobile computing and Web Services are becoming popular in 

collaboration systems, with mobile computing adding heterogeneity to 

collaboration systems and Web Services providing interoperability. Mobile 

computing has largely improved in recent years, applying traditional Web 

Services (i.e. SOAP-based services) models to mobile computing may result 

in unacceptable performance overheads. 
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2.1.1. Web Services Platform Elements 

 

Web services are a set of tools that can be used in a number of ways. 

The three most common styles of use are the Remote Procedure Calls 

(RPC), Service-Oriented Architecture (SOA) and Representational State 

Transfer (REST). 

 

RPC – Remote Procedure Calls 

RPC Web services present a distributed function (or method) call 

interface that is familiar to many developers. Typically, the basic unit of 

RPC Web Services is the WSDL operation. 

  

• WSDL 

The WSDL (Web Services Description Language) [37] Is a specification 

developed by W3C that describes the Web Service according to an XML 

format, working as a contract of service. The WSDL is extensible to allow 

description of services and their messages regardless of message formats 

and network protocols that are used. However, it is common to use the 

MIME (Multipurpose Internet Mail Extensions) and SOAP. 

The WSDL describes the service available on the network through a 

semantic XML, this provides the necessary documentation to be called a 

distributed system and the procedure required for this communication is 

established. While SOAP specifies the communication between a client and 

a server, the WSDL describes the services offers. 

A WSDL description contains all the details of a Web Service, 

including the service’s URL, the communication mechanisms it understands, 

what operation it can perform and the structure of its messages. 

 

• SOAP 

 Simple Object Access Protocol is a protocol for exchanging 

structured information in a decentralized and distributed platform. It is 
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based on Extensible Markup Language (XML) to format the messages, and 

usually based on other application layer protocols, most notably in Remote 

Procedure Call (RPC) and HTTP for trading and messaging, using GET/POST 

over HTTP, allowing the data to be exchanged independent where the user 

is in the network. 

 

SOA – Service-Oriented Architecture  

Web Services can also be used to implement architecture according 

to service-oriented architecture (SOA) concepts, where the basic unit of 

communication is a message, rather than an operation. This is often 

referred to as “message-oriented” services. 

In the traditional client server world, we had the server offering 

some functionality that could be used or called by the client. Some kind of 

look up service acted as a broker between the client and the server. 

Since Web Service represent just another paradigm for distributed 

applications, they consist of the same three components [1]: 

• A service broker that acts as a look up service between a service 

provider and a service requestor. This is a logically centralized 

directory of services. 

• A service provider that publishes its services to service broker. 

The service provider implements the service and makes it 

available on the Internet. 

• A service requester that asks the service broker where to find a 

suitable service provider and that binds itself to the provider. 

This is any consumer of the Web Service. The requester utilizes 

an existing Web Service by opening a network connection and 

sending any request. 

 

Each Web Service has an API that can be accessed over the network 

and executes the Web service at host location. Every service provides a 

role, such as service provider, a requester or a broker. In other words, Web 
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Services make possible the effective processing or machine readable 

information. 

The Figure 4 illustrates the relationships between the Web Services 

components. 

Service 
Requester

Service 
Broker

Service 
Provier

Find Publish
Internet

Bind

Service 
Description

Web 
Service

 

Figure 4. Service Oriented Architecture (SOA) diagram. 

 

• WCF 

Windows Communication Foundation (WFC) [38] is the Microsoft 

platform available since –NET Framework 3.0, used to handle the 

communication between systems. WCF is a union of a Web Service, and 

Remoting, all in a single platform, simple to use, robust and easy 

integration.  

 WCF is designed in accordance with service oriented architecture 

principles to support distributed computing where consumers consume 

services. A WCF client connects to a WCF service via an EndPoint. Each 

service exposes its contract via one or more endpoints. An endpoint has an 

address with a URL specifying where the endpoint can be accessed, and 

binding properties that specify how data will be transferred. An endpoint 

(Figure 5) contains three main features called ABC (Address, Binding and 
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Contract). An analogy for these features is that the Address is where the 

service is hosted, Binding is how the service can be accessed, and the 

Contract would be seen in service. 

EndPoint

Address
(Where)

Binding
(How)

Contract
(What)

 

Figure 5. WCF endpoint – ABC (Address, Binding and Contract). 

 

REST – Representational State Transfer 

Roy Fielding introduced the term REST in his PhD dissertation [25], 

where he referred to “hypermedia as the engine of application state”.  This 

means that a resource is expected to contain hyperlinks. These hyperlinks 

are the method by which a transition can take place that changes the 

resource state or transfers to another resource. While hyperlinks are 

commonplace in (X)HTML applications meant to be used by humans, they 

have not typically been used in XML, which is meant to be consumed by 

machines. Like (X)HTML, REST Web Services make use of hyperlinks in XML. 

 To understand REST, it is necessary to understand the definition of 

resource, representation and state. A resource can be anything, may be a 

physical object or an abstract concept. Usually a resource is something that 

can be stored on a computer and represented as a stream of bits. A 

representation is any useful information about the state of a resource. A 

resource may have multiple different representations. In REST there are 
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two types of state. One is resource state, which is information about a 

resource, and the other is application state, which is information about the 

path the client has taken through the application. Resource state stays on 

the server and application state only lives on the client. Rest provides a set 

of architectural constraints that, when applied as a whole, emphasizes 

scalability of component interactions, generality of interfaces, independent 

deployment of components, and intermediary components to reduce 

interaction latency, enforce security, and encapsulate legacy systems.[25] 

 In REST, the server is abstracted into a set of resources. A resource 

is a nominal concept, so the modeling based on REST is noun-centralized, 

which is a domain model [39]. Figure 6 shows the architecture of RESTful 

Web Services. Client communicates with server via a uniform interface and 

during the stateless communication; client and server swap features 

depictions. Therefore, the REST design restrictions supply a standardized 

method to develop an API wearing the HTTP protocol. 

 

Client Server

HTTP Verb:
GET | POST | PUT | DELETE

HTTP Packet

Resource Representation

HTTPHTTP

Stateless Web Service Conversation
 

Figure 6. Illustration of RESTful Web Services architecture. 

 

Old-style Web applications access methods using HTTP operations 

(GET and/or POST). Contrasting with this, applications RESTful access 

methods according to the following functions: create, read, update, and 

delete (CRUD) style using the full range of HTTP methods (GET, POST, PUT 
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and DELETE). Table 1 shows a mapping of HTTP methods to these CRUD 

actions. 

Thus, the RESTful design constraints provide a standardized way to 

build an API using the HTTP protocol. This design includes correct use of 

standard HTTP methods and return codes.  

Table 1. HTTP Methods and their corresponding CRUD Action 

HTTP Method CRUD Action 

          GET           Retrieve a resource 

          POST           Create a resource 

          PUT           Update a resource 

          DELETE           Delete a resource 

  

RESTful Web Services can be depicted over the Web Applications 

Description Language (WADL). A WADL file sets out the requirements that 

can be legally directed to a service involving the service uniform resource 

identifier (URI) and service data waiting and serves. 

REST architecture is an architecture style for designing networked 

applications [40]. Grounded in distributed hypermedia systems and 

software engineering.  

REST and Resource-Oriented Architecture (ROA) support a wide 

range of representation formats, including plain text, HTML, XML, and 

JavaScript Object Notation (JSON).  

 

2.2. Advanced Message Queuing Protocol (AMQP) 

 

The Advanced Message Queuing Protocol (AMQP) is a open standard 

middleware message. Accordance with the AMQP standard, middleware 

products developing for various platforms and in various languages can 

submit messages from one to another. AMQP is borne by a number of 
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important companies, including JPMorgan Chase Bank, Cisco Systems, 

Credit Suisse, Deutsche Börse Systems and Red Hat [41]. 

Advanced Message Queue Protocol (AMQP) originated in the financial 

services industry in 2006 [41] [42] [43]. AMQP is an open standard for 

Message Oriented Middleware (MOM) communication. AMQP grew out of the 

need for MOM system integration both within and across corporate 

enterprise boundaries. 

 Although AMQP specification is not finalized yet, several products 

supporting different drafts of AMQP exist today (Table 2), as the Red Hat, 

VMware, Ltd and OW2 Consortium who use the 0-9-1 version of AMQP, the 

Apache Software Foundation and the Stormmq who use the 0-10 version. It 

is used to simplify critical tasks, for example, JPMorgan reported a AMQP 

environment support 2,000 users on five continents to process 300 million 

messages per day. Every products that are listed comes with client library 

for different programming language, such, C++, Ruby, Java, and Python 

[44].  

Table 2. Products that support AMQP  

Developer Product AMQP version 

VMware, Ltd RabbitMQ 0-9-1 

Red Hat Red Hat Enterprise MRG n/a 

OW2 Consortium JORAM 0-9-1 

Apache Software Foundaton Apache Qpid™ 0-10 

Stormmq stormmq 0-10 

 

The primary reasons for choose the AMQP as proprietary alternatives 

are the following realize the savings commoditization brings, connect 

applications on different platforms, connect to business partners using a 

full featured open standard and position for innovations built upon the 

foundations of AMQP. 

AMQP enables applications to send and receive messages. In this 

regard it works like instant messaging or eMail. AMQP differs enormously 

from other available solutions comes from the fact that it allows the 
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specification of what messages can be received and from, and how trade-

offs are performed with respect to security, reliability, and performance. 

Systems built to integrate AMQP perform much better at functioning 

unattended or “lights-out” than other solutions. 

Systems built to integrate with AMQP are much better at functioning 

unattended, or “lights-out”, than other solutions. 

AMQP is different from other middleware standards because it is: 

• Interoperable – All AMQP clients interoperate with all AMQP 

servers. Diverse programming languages can communicate easily. 

Legacy message brokers can be retrofitted to remove proprietary 

protocols from your network. Messaging can be enabled as a 

cloud service. 

• Reliable – Capable of eliminating the communication gaps and 

slowdowns between different platforms, critical systems and 

applications components both within enterprise and out to 

external systems and organizations. 

• Unified – Provide a core set of messaging patterns via a single 

manageable protocol. 

• Complete – AMQP provides a wire level transport for applications 

using that API. AMQP is broadly applicable and can be leveraged 

by any language, and identifies both store-and-forward and 

publish-and-subscribe semantics in on specification. 

• Open – Vender and platform agnostic, and created by users and 

technology provides working in collaboration. 

• Safe – A secure solution to the problem of transporting value-

bearing messages across and between organizations, technology 

platforms and a virtual cloud computing environment. 

 

I will show the performance of RabbitMQ that implements the 

Advanced Message Queuing Protocol standard. RabbitMQ is an open source 

message broker and queuing server that can be used to let disparate 
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applications share data via a common protocol, or to simply queue jobs for 

processing by distributed workers. 

RabbitMQ server is written in Erlang and is built on the Open 

Telecom Platform framework for clustering and failover. The RabbitMQ 

project consists of: 

• The RabbitMQ exchange server itself; 

• Gateways for HTTP, STOMP, and MQTT protocols; 

• AMQP client libraries for Java, .NET Framework, and Erlang; 

• A plug-in platform for custom additions, with a pre-defined 

collection of supported plug-ins. 

 

The main characteristics of RabbitMQ project include the following: 

the RabbitMQ interchange server; gateways for protocols (HTTP, STOMP, 

and MQTT); AMQP client libraries for .NET Framework, Java, and Erlang; 

and a plug-in platform for personalized add-ons, with a pre-stated 

collection of sustained plugins. 

AMQP defines an efficient and flexible publish/subscribe interface 

that is independent of the data model. AMQP uses a central server, or 

broker, but the RabbitMQ implementation can be scaled linearly by 

distributing the broker over multiple physical nodes [45]. 

With the creation of a group of publishers and subscribers can access 

the nodes of messages, is possible to create an information network that 

can span from small to very large scale in a local area, or over the large 

geographical distance. The distribution of information sent from the 

publishers to the hub to be distributed to the necessary subscribers allows 

for applications to run while relying on data from other locations, wherever 

they may be. This allows RabbitMQ to be useful in designing architectures 

for small-localized systems to large, geographically dispersed interactive 

systems.  

Figure 7 presents the basic process of exchanging messages using 

RabbitMQ. 
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Figure 7. Illustration of the process of exchanging messages using RabbitMQ. 

 

2.3. Message Queuing Telemetry Transport (MQTT) 

 

Message Queue Telemetry Transport (MQTT) is a publish/subscribe 

messaging protocol created in 1999. The idea of MQTT is to is to be 

extremely simple and lightweight. It is designed for constrained devices 

and low-bandwidth, high-latency or unreliable networks. The aim of MQTT 

is to minimize network bandwidth and device resource requirements while 

also attempting to ensure some level of reliability. MQTT is intended for 

"machine-to- machine" (M2M) or "Internet of Things" world of connected 
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devices and for mobile applications, where bandwidth and battery power 

are at a premium [15]. 

MQTT is one the protocols supported by the IBM WebSphere Message 

Broker products as a way of getting data in and put of the broker. The 

protocol was designed specifically for remote telemetry applications, with 

three specific design goals [46]: 

1. It should offer a once-and-once-only assured delivery mode to 

enable a message to be reliably transferred ail the way from a 

remote sensor to a back-end applications; 

2. The protocol should be as lightweight as possible across the 

“wire”; most remote telemetry is done over low bandwidth, high 

cost network, and so minimising the overhead of each message is 

highly desirable; 

3. The protocol should be very easy to implement on embedded 

devices such as sensors and gateways. 

 

The MQTT specification is openly published with a royalty-free 

license. There is no need to pay royalties to any authority in order 

implement and use the specification. Therefore, different companies have 

implemented the principles described in MQTT specification in various 

software products. Applications of MQTT differ from smart energy meters 

or smartphones to cars, trains or personal health devices and other remote 

sensors. They are connected to the central systems with the help of MQTT, 

which it is often used for these purposes. The central systems process data 

and emit control commands, which are sent back to the sensors over MQTT 

as well [47]. 

Since MQTT follows the topic-based publish/subscribe paradigm, the 

server decouples publishers and subscribers along the following three 

dimensions [48]: 

• Space decoupling: sender of the message does not have to know 

the location of the receiver and even the number of receivers 

and their identifiers.  



Related Work 

29 

 

• Time decoupling: the participants do not have to interact at one 

and the same time. The publisher can publish events before the 

subscribers are connected and a subscriber may receive the 

message even after the publisher is disconnected.  

• Synchronization decoupling: publishers are not blocked while 

producing events and subscribers can be asynchronously notified 

while performing other concurrent operations.  

 

Figure 8 presents an example of possible MQTT network topology. 

There is a client, which acts as a publisher on the left hand side. When a 

message with a defined topic is published, it is delivered to the server first. 

The server forwards the message upon receiving to three subscribers on the 

right hand side. It is assumed in this case, that all three subscribers are 

subscribed to the topic of the particular message. Any client can act as a 

publisher and subscriber at the same time. 

 

Message

Message

Message

Message

Client
Publisher

Server Clients,
Subscribers

 

Figure 8. Example of MQTT network topology. 
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The MQTT protocol has an open, published specification, which is 

available for anyone to implement on a client device, and reference 

implementations are available from IBM in Java[49] and C[50]. 

 

2.4. Ambient Assisted Living (AAL) 

 

The recent process of demographic change, exposed in an aging 

world population is reflected in the inversion of population pyramids, has 

brought new challenges to which families, governments and society in 

general are not prepared. Recent European projections [51] show a 

significant increase in the rate of aging. 

This scenario offers new chances for innovation, strengthening 

research in scientific areas, the development of new approaches and 

business opportunities for technology companies, particularly those that 

already operate in the markets for products and services intended for 

elderly populations with special needs.  

It is indispensable to help aging with health, autonomy and 

independence, allowing the aging to permanency active in the labour 

market by the greatest quantity of time. For companies raises the question 

of thinking elderly over the life, an approach more preventive and health-

promoting and guaranteeing the autonomy and quality of life of populations 

[52]. A strong investment in new research activities, development of 

products and services which guarantee and improve the quality of living 

conditions at the level of health, safety, entertainment and communication 

is now a necessity.  

The concept of Ambient Assisted Living (AAL) is a change of paradigm 

in the interaction person-computer. The transition of the personal 

computer/device for a variety of devices capable of sensing, processing and 

distributed computing environment and by a new paradigm that produces a 

set of challenges related to the interaction of people with technology in 

their environment. 
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The concept of AAL and often perceived as [53]: 

• An extension of time that the user can live in their preferred 

environment through the improvement of autonomy, self-

confidence and mobility; 

• Support the maintenance of the health status and functional 

capacity of older persons; 

• Promoting a healthy lifestyle for people at risk; 

• Increased efficiency and productivity of the resources used in 

aging societies. 

 

AAL initiative promotes the use of technologies for helping elderly 

people to maintain their autonomy, increasing their quality of life and 

facilitating their daily activities, but bearing in mind that it is crucial 

serving users in terms of usability. It is important to consider that an 

important number of elderly people present disorders of memory, 

orientation and cognition. Cases in which these disorders are severe need 

holistic attention by caregivers; however, slight cases can achieve a 

personal autonomy adapting technologies to the performance of their daily 

activities and needs. 

In this case, to offer to elderly people new ways for getting natural 

and implicit services by using pervasive mechanisms we consider that the 

integration of new technologies in these environments conveniently is the 

key to improve the life quality of our independent or autonomous elders. 

To achieve a smart environment, the deployed services must be adapted 

and context-dependents. 

AAL solutions intend to deploy technology approaches to assist 

people with some kind of disease and older people to living independently 

in their daily life [54]. ALL products and services have a huge potential not 

only to enhance the independence and quality of life of elderly population 

and patients, but also to greatly reduce the costs associated with health 

care services [53]. Numerous targets have been proposed by the major AAL 

stakeholders [55], [56].  
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Figure 9 shows	
   the main topics related to Assisted Living 

Environment, and their utilities, as well as technologies and techniques 

that can be implemented to achieve the objectives of the Ambient Assisted 

Living. 
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Figure 9. Topics, techniques and technologies applied in Ambient Assisted Living. 

 

In terms of prevention, AAL systems can be considered for different 

situations, such as falls, physical immobility, monitoring of activities of 

daily living, occupying spaces at home, behaviour analysis, and other 

possibilities [57], [58], [59], [60] . All improvements on each of these 

scenarios are an important step towards the development of more effective 

and secure solutions enabling the further development of new mechanisms, 

products and even services [61]. However, to achieve these objectives, it is 

necessary to take into account developments of several distinct areas. On 

the one hand, mobile devices, including sensors, will be of great 
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importance to provide the ability to realize the environments they require. 

In terms of network devices, it is necessary that they are able to 

accommodate devices that support and dynamic way communication 

between them, regardless of their characteristics or features in an 

integrated manner. Another area of great importance is the ubiquitous 

computing, where it is expected that mobile devices may evolve towards 

greater autonomy and mobility, making it easier and more comfortable to 

carry. In terms of human-machine interaction, will be fundamental to the 

continued development of natural interfaces to humans, such as speech, 

gestures or even thoughts that allow minimal interaction, and possibly 

without the awareness of their interaction by the user. Finally, the area of 

Artificial Intelligence will contribute in various levels. Specifically, there is 

interest here in adaptation tools and learning environments that can 

provide them with the ability to learn the routines and preferences of the 

user in a manner not invasive in order to adapt their actions.  

Based on recent developments in technology (especially in terms of 

mobile solutions) and given the increased rate of aging of the population 

and their needs, several solutions are emerging for AAL. Currently, it 

represents one of the most important topics of research and development, 

at both national and international level [62], [63], [64]. In this type of 

solutions the accessibility, usability, and learning process play an extremely 

important role [65]. 

Several relevant statistical information, are presented and discussed 

in [53]. It analyses the market size of the current AAL and eHealth in 

Europe. According to Silva et al. [66], it is possible to understand the 

impact of specific contributions of Information and Communication 

Technology (ICT) in the health sector, such as electronic health records 

(EHR) and ePrescribing systems. This report concludes the scale of returns 

on the socioeconomics and return on investment, concluding that EHRs and 

ePrescribing investments are beneficial to improving health. Several case 

studies are also presented and discussed. 
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Recently, Hristova et al. [67] presented a prototype system including 

a set of health services, such as monitoring heart rate, prescription 

medications, generating a schedule reminders, and emergency 

notifications. Flynn et al. [68] developed a wireless bio monitor, which 

integrates wearable sensors, blood volume pulse and electrocardiogram 

(ECG). On the other hand Stelis [69] has developed a system capable of 

providing location data of people associated with tools and alarm 

notifications. 

In [70] the authors intends to develop a falls detector to be used in 

residences for seniors. The system uses an infrared sensor to monitor a low 

resolution for division. When an individual who falls into this division in the 

system automatically activates a process aid by sending a message to a 

caregiver. The Peach project [71] explores how health professionals can 

treat ulcers in the feet remotely through the use of images and video. With 

the use of ICT professional clinics can follow treatment progress despite 

the distance. In the framework of the project we developed a platform 

that allows the sharing of images and video. 

The i2Home [72], based on industry standards and already existing 

development. Focuses on domestic use of devices (including consumer 

electronica) by people with cognitive difficulties and older people. I2Home 

simultaneously takes into account that the access strategies, developed 

and standardized, will apply to areas beyond the home. For that developed 

a standard, ISO 24752 (Universal Remote Console - URC), allows for easy 

integration of any user interface to any device or service. 

The project Bedmond [73] aims to develop a system for continuous 

monitoring of the activities of day-to-day life of elderly thus allowing early 

detection of diseases neurodegenerative. The data collected will be used 

for an early diagnosis and for monitoring disease progression. This project 

has as one of its central blocks the ISO 24752 standard. 
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3. Requirements Analysis 

This chapter presents the design and implementation of the system 

architecture developed. Section 3.1 presents the conceptual design of the 

system proposed and then presenting UML diagrams of the main actions and 

procedures. Section 3.2 presents the system architecture. Finally, section 

3.3 presents the technologies used in the development of proposed 

application. 

The analysis of requirements is an essential process for the 

development of a product, because is in the analysis of requirements that 

is define precisely the objectives to develop. When it comes to developing 

software, it is of extreme importance for all the analysis requirements will 

constrain both the software as its final operation. 

 

3.1. Essential Requirements 

 

In this section I will present the entity-relationship model and some 

UML diagrams, including activity and sequence diagrams.  

The Unified Modeling Language (UML) is a graphical language for 

visualizing specifying, constructing, and documenting the artefacts of a 

software-intensive system. The UML offers a standard way to write a 

system’s blueprints, including conceptual things such as business processes 

and system functions as well as concrete things such as programming 

language statements, database schemas, and reusable software 

components.  
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3.1.1. Entity-Relationship Model 

 The entity-relationship model (ER model) is a way to unify the 

network and relational database views. An ER model is an abstract way to 

describe a database proposed in Peter Chen’s 1976 paper [74]. Diagram 

created to design these entities and relationships are called entity-

relationship diagrams or ER diagrams. These models are used to describe 

information needs or the type of information that is to be stored in a 

database.  

 Figure 10 show the entity-relationship diagram based in IDEFIX [75] 

notation of the database developed and implemented in MySQL for testing 

the Web Services and the Advanced Message Queuing Protocol. 
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- username VARCHAR(20) <<PK>>
- password VARCHAR(45)

Autenticacao

- id INT <<PK>>
- nome VARCHAR(45)
- dataNascimento DATE
- peso DOUBLE
- altura DOUBLE
- user VARCHAR(20) <<FK>>

Perfil

idQ INT <<PK>>
idUser INT <<FK>>
dataHora TIMESTAMP
eeg DOUBLE

Electroencefalograma

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- forcaG DOUBLE

Queda

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- pressaoAr DOUBLE

PressaoDoAr

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- gsr DOUBLE

GSR

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- ecg DOUBLE

Electrocardiograma

1 0..110..1

1

1

1

1

1

1

1
1

0..1

0..1

0..1

0..1

 

Figure 10. Entity-Relationship Diagram based in IDEF1X notation. 
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3.1.2. Activity Diagrams 

 

The activity diagrams are used to describe the business operational 

components of a system step-by-step, and the overall flow of control. 

Currently, Web services are gradually included in applications, and 

consume information, regardless of user location. Web Services triumph the 

goal with a technologically neutral way, which provides well-defined 

interfaces for dispersed resources, which are not dependent of the 

operating system, hardware platform and programming languages. Then 

dispersed resources or services that can be run on distinctive hardware 

platforms, on various operating systems, or even can be written in various 

programming languages communicating using Web services interfaces. 

Web services are not the most suitable solution in case there is the 

exchange of huge amounts of messages daily because if the server has little 

processing power, the customer is waiting the response from the Web 

service to send the next message, thus existing the possibility of lost data 

during runtime of the application. Given this problem, it becomes 

necessary to use another service, in this case the RabbitMQ, which allows 

you to store messages in a cloud environment, and only subsequently or 

simultaneously through a back-end service go get the messages, analyze 

them and store the that interest. 

In this project have been implemented the two cases, the Web 

service and RabbitMQ server. The activity diagrams presented in the 

following pictures show the operational components for each of the cases 

explaining each step-by-step operation of systems and how they are 

controlled.  

Figure 11 describes a request workflow and sends processes through 

Web services. When a node needs to send or receive information, the 

requests go directly to the database. The requester or sender makes the 

solicitation in REST, the server will unfold the request to whether it is a 

request for data or to data store, and if it was a request for data, the 
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server sends the data directly from the database, otherwise if it was to 

store data, the server will save the data directly in the database. 

Web services 
receives the 
solicitation

Send data?

False

True Web services send 
the data

Request or Send 
data

end

Web services workflow

Requester 
/ Sender 

Node

Solicitation sent to 
Web services

False

True
Receive data? Web services 

receives the data

 

Figure 11. Request / send path to the Web services activity diagram. 

 

Figure 12 shows the activity diagram of the RabbitMQ request and 

data sending. All the solicitations should go first through the RabbitMQ 

before reach the database either sending or receiving. When a node sends 
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information the RabbitMQ will put the message in a stack, then, when a 

request is made it will go directly to the stack. Messages will be stored in 

the RabbitMQ until they are consumed. 

Data sender 
request

Data sent to 
RabbitMQ

RabbitMQ stores 
data in the stack

RabbitMQ have 
messages in the 

stack?

Any connection 
requesting data? 

False

True

RabbitMQ send 
data to the 
requester

RabbitMQ 
"Pause Mode"

Request data

end

Sender 
Node

Request Data

Requester 
Node

Request sent to 
RabbitMQ

False

True

Send Data

RabbitMQ workflow

 

Figure 12. Request and sender path to the RabbitMQ activity diagram. 
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3.1.3. Sequence Diagrams 

 

The sequence diagram shows how processes interact, every sequence 

diagram is important, but some have more importance those others. 

Figure 13 shows the communication process between the client, the 

Web service, and the database. Initially, the client, a mobile application, 

makes a request to the Web service, i.e., calls one of the methods 

implemented, which can be a method of inserting or querying data. 

Thereafter, the Web service processes the received data and sends them to 

the database where they will be stored. Finally the database sends a 

response to the Web service, and this to the client, in order to the client 

knows if your request was successfully or unsuccessful performed. 

Client Web service Database

Send request / Call Method

Confirmation

Confirmation

Insert / Get data

Process data

 

Figure 13. Sequence Diagram – Communication between Client (Mobile Application) 
and Web service to insert or get data in / from database. 

 

Figure 14 presents the communication process between the client, a 

mobile application, and RabbitMQ server. In this process the client sends 

data into the RabbitMQ, which subsequently confirms to the client that the 

data was received or not. May be observed that using the RabbitMQ server, 

the client only has the possibility to send data being the query carried out 

merely using the Web service. 
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Client RabbitMQ Server

Send data

Confirmation

 

Figure 14. Sequence Diagram – Communication between Client (Mobile Application) 
and RabbitMQ Server. 

 

In Figure 15 is presented the process of communication between the 

back-end service, the RabbitMQ server and the database. Initially, the 

backend service makes a request to RabbitMQ with the aim of receiving the 

data that are stored in the server queue. The RabbitMQ responds by 

sending to service an array with all the contents of the queues. 

Subsequently, the back-end service will insert the data in the database 

waiting for the answer about the success or failure of insertion. 

Back-end Service RabbitMQ Server Database

Get data

Array

Confirmation

Insert data

 

Figure 15. Sequence Diagram – Communication between Back-end service and 
RabbitMQ server and database.   
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3.2. System Architecture 

 

Two different approaches have been developed to effect the 

exchange of messages between the client and the database. Initially 

created a Web service to which the user sends requests to send and receive 

data. It was subsequently installed a RabbitMQ server that uses the 

protocol Advanced Message Queuing Protocol, to where the client will send 

the messages. Was also implemented a back-end service that will consume 

messages on the server RabbitMQ. 

Figure 16 shows a scenario that illustrates the global system 

architecture. The user can choose to send messages using a Web service or 

a service of message queuing. For one thing, if the user chooses to submit 

messages through the Web service, this will automatically store the 

messages in database. On the other hand, if the user choose to submit 

messages through message queuing service is need to use a back-end 

service to pick up the messages to the message queuing service and then 

send them to the database. 

Web Server

DataBase

Message Queuing

Back-End Services

User

 

Figure 16. Illustration of the global system architecture. 
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In system architecture the Web Server runs a RESTful Web service 

architecture built on java language with which the user communicates to 

send and receive data, i.e., the user makes HTTP requests to the Web 

service in order to call the method necessary to insert or query data. With 

regard to Message Queuing protocol has been implemented AMQP 

(Advanced Message Queuing Protocol), which requires the installation of a 

RabbitMQ server. The back-end service was developed in Java and was used 

to send and get messages from RabbitMQ server and insert them into the 

database. Finally the database was developed in MySQL language and was 

used to hold all the system data. The user was a mobile application that 

communicates with the Web Service through HTTP requests and makes 

requests through the AMQP port to communicate with the service for 

message queuing. 

 

3.3. Used Technologies 

 

In the proposed system have been used diverse technologies. The 

NetBeans IDE has been used to develop and running services for sending 

and receiving messages. The Web service was developed in Java and runs 

on Glassfish server version 3.1, a Web server open-source application. To 

implement AMQP, a protocol application layer open standard for message-

oriented middleware, was necessary to install a RabbitMQ server, a 

message broker software open source that stores messages in a cloud 

environment, and also develop a Java application to send and consume 

messages from RabbitMQ server. The database where messages are stored 

was created using a management system relational database, MySQL, also 

using MySQL 
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4. Performance Evaluation  

This chapter presents the comparison between the implemented 

services and equivalents, and between communication protocols 

implemented. As well focuses on the demonstration of the system and 

evaluate the performance of two approaches developed that will be 

integrated into applications AAL.  

Initially, in Section 4.1 presents a comparison between the two 

styles of Web services, SOAP and REST, referring the strengths and 

weaknesses of each. Yet in this section is presented the comparison 

between the two languages most used by Web services, and also presented 

the strengths and weaknesses of each of them. Section 4.2 shows the 

comparison between two different protocols of message queuing, MQTT 

and AMQP, referring some of the most important points, such as safety and 

the size of messages and others. In the Section 4.3, are presented the 

system demonstration and validation, which are presented in more detail 

the Web service, the RabbitMQ server and back-end service. Finally, 

Section 4.4 shows the performance evaluation of the system, where is 

made a comparison between the two systems implemented through several 

tests performed for the purpose. 

 

4.1. REST versus SOAP 

 

The philosophies of SOAP and RESTful Web Services are very 

different. Strictly, SOAP is a protocol for XML-based distributed computing, 

whereas REST adheres much more closely to a Web-based design. SOAP 

requires a greater implementation and understanding effort of the client 
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side to difference of REST based APIs, which focus these efforts on the 

server side. SOAP by itself is not that complex, it can get complex, 

however, when it is used with its numerous extensions.  

Table 3 shows the main strengths and weaknesses for both SOAP and 

REST [76]. 

Table 3. Strengths and Weaknesses for both SOAP and REST. 

SOAP 

Strengths Weaknesses 

• Language, platform, and transport 

agnostic 

• Design to handle distributed 

computing environments 

• Is the prevailing standard for Web 

services, and hence has better 

support from other standards  

• Conceptually more difficult 

• More “heavy-weight” than REST 

• More verbose Harder to develop, 

requires tools  

REST 

Strengths Weaknesses 

• Language and platform agnostic 

• Much simpler to develop than 

SOAP 

• Small learning curve, less reliance 

on tools 

• Concise, no need for additional 

messaging layer 

• Closer in design and philosophy to 

the Web 

• Assumes a point-to-point 

communication model 

• Not usable for distributed 

computing environment 

• Lack of standards support security, 

policy, reliable messaging 

• Tied to the HTTP Transport model 

 

Applying the traditional models of mobile communications may 

simply result in failure in terms of performance. First the encoding and 

decoding of verbose XML-based SOAP messages consumes important 

resources, endangering the performance. Then comes the issue of 
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communications, Wi-Fi, 3G/GSM are not as efficient and quick as wired, 

reverting to the processing speed and limited memory and battery 

problems. 

Along with WSDL and XML Schema, SOAP has become the standard 

for exchanging XML-based messages. SOAP was also designed from the 

ground up to be extensible, so that other standards could be integrated 

into it, and there have been many, often collectively referred to as WS-*. 

REST is an ancient philosophy more than a new technology. While 

SOAP looks to drive the next phase of Internet development with a series of 

new specifications, the REST philosophy advocates that the existing 

principles and protocols of the Web are enough to create robust Web 

services. This means that developers who understand HTTP, XML and JSON 

can start building Web services immediately, without any toolkits beyond 

that normally uses for the development of Internet applications. 

The main point of the REST methodology for write Web services is 

using an interface that is already well known and used widely: the URI. For 

example, exposing a stock quote service, in which a user enters a stock 

ticker, to return to a real time price can be as simple as a script on a Web 

server accessible via the URI. 

This interface method has significant advantages over SOAP-based 

services. Any developer may discover how to create and modify the URL to 

access the different Web resources. SOAP, on the other hand, requires 

specific knowledge of a new XML specification, and most developers will 

need a toolkit to make SOAP requests and analyse the results. 

Other advantage is that the RESTful interface requests and responses 

can be short. SOAP requires an XML wrapper around each request and 

response. After typing and namespaces are declared a stock quote from 

four or five digits in a SOAP response may require more than 10 times as 

many bytes as would be the same answer in REST. 

To compare the performance between REST and SOAP an experiment 

was performed. The test consists of sending messages through twenty-four 

users over a period of 30 minutes to the Web service REST and SOAP and 
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then store them in the database. The test was performed with the Web 

services installed in Mac OS X server running a virtual machine with 

Windows 7 Professional operating system and with a processor Inter (R) 

Xeon(R) CPU 2.67GHz and 1GB of RAM memory Mac. Results are present in 

Table 4. 

Table 4. Results of the Performed Experiment to Compare SOAP with REST Web 
Services. 

 
Users 

Number of messages 

stored in database 

Average messages 

sent per second 

SOAP 24 192060 106.7 

REST 24 223740 124.3 

 

The evaluation results demonstrate the performance advantages of 

using Web service REST in contrast with Web service SOAP. The Web 

services REST are faster than Web service SOAP to transmit messages. Like 

previously mentioned, this experiment confirms the fact that the XML SOAP 

require a wrapper to each request and response makes the communication 

slowest, because is necessary to use parsers to read the transmitted data. 

SOAP proponents assert that strong typing is a necessary feature for 

distributed applications. In practice, however, both the request for the 

service and knowing the types of data ahead of time, thus transferring that 

information requests and answers is gratuitous. 

Perhaps the most interesting aspect of REST vs. SOAP debate is the 

security angle. While the field of SOAP insists that sending remote 

procedure calls through the standard HTTP port is a good way to safeguard 

support of Web services across organizational boundaries, REST followers 

argue that the practice is a major design failure that compromise network 

security. REST calls also go over HTTP or HTTPS, but with REST the 

administrator (or firewall) may discern the intent of each message, 

examining the HTTP command used in the request, e.g., a GET request can 

always be regarded as safe because it cannot, by default, modify the data. 

It can only query data. 
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A typical SOAP request, on the other hand, will use POST to 

communicate with a particular service. And without seeing the SOAP 

envelope, a task that is both resource-consuming and not built into most 

firewalls, there is no way of knowing if the application simply wants to 

query data, or delete entire tables from the database. 

Regarding the authentication and authorization, SOAP puts the 

burden on application developer's hands. The REST methodology instead 

ignores the fact that Web servers already have support for these tasks. By 

using industry-standard certificates and a common identity management, as 

a Lightweight Directory Access Protocol (LDAP) server, developers can 

make the network layer do all the heavy lifting. This is not only useful for 

developers, but it relieves the weight on administrators who can use 

something as simple as the files Access Control List (ACL) to manage its 

Web services just as you would any other URI. 

Making calls to an REST/HTTP API is significantly easier than making 

calls to a SOAP API. The latter requires a client library, a stub and a 

learning curve. The first is native to all programming languages simple and 

involves the construction of an HTTP request with appropriate parameters 

appended to it. Even psychologically former seems much less effort. 

Most programming languages make it extremely easy to expose a 

method using SOAP. The SOAP server library does the serialization and 

deserialization. To expose the methods of an object as an HTTP API can be 

relatively more difficult, since it may require serialization of output to 

XML. Doing the REST API involves additional work to map URI paths to 

specific handlers to import and the meaning of the HTTP request in the 

scheme of things. Off course there are many frameworks to make this task 

easier. However, starting today, it's even easier to expose a set of methods 

using SOAP, which is to expose them through regular HTTP. 

Since HTTP based/RESTful APIs can be consumed through simple GET 

requests, intermediate proxy server/reverse proxy can cache the answer 

very easily. On the other hand, SOAP requests use POST and require a 

complex XML to be created, which caches the response difficult. 
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Rest is not perfect 

REST is not the best solution for each Web service. Data that need to 

be safe should not be sent as parameters in URIs. And large amounts of 

data, such as purchase orders in detail, can quickly become cumbersome or 

even outside the boundaries within a URI. In these cases, the SOAP is 

actually a solid solution. But it is important to try REST first and resort to 

SOAP only when necessary. This helps keep the development of simple and 

affordable. 

One comparison has been performance in [77], between SOAP 

framework and RESTful framework. The comparison demonstrate that 

RESTful Web services prove to be more suitable for mobile environment 

because it doesn’t require large weight parses, witch supports caching and 

will save the limited network bandwidth, increase scalability and 

reliability, and doesn’t consume a large amount of mobile resources. 

 

4.1.1. Markup Languages 

 

In this sub section I will present the two languages most used for 

Web services, the JavaScript Object Notation (JSON) and the eXtensible 

Markup Language (XML). Initially I will present shortly each of the 

languages and subsequently reference their strengths and weaknesses.  

 

JavaScript Object Notation (JSON) 

 JSON is a lightweight, text-based, language-independent data 

interchange format. It was derived from the ECMAScript Programming 

Language Standard. JSON defines a small set of formatting rules for the 

portable representation of structured data [78]. 

 JSON is built on two structures, a collection of name/value pairs and 

an ordered list of values. A collection of name/value pairs, is realized as an 

object, record, struct, dictionary, hash table, keyed list, or associative 

array. An ordered list of values is realized as an array, vector, list, or 

sequence. 
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The simplicity of JSON has resulted in its widespread use, especially 

as an alternative to XML. One of the claimed advantages of JSON over XML 

as a format for data exchange in this context is the fact that it is much 

easier to write a JSON parser. This was important for the acceptance of 

JSON within the community due to the presence of this feature of 

JavaScript on all Web browsers today. 

 

eXtensible Markup Language (XML) 

XML is a set of rules for encoding documents in machine-readable 

form. Originally designed to meet the challenges of large-scale electronic 

publishing, XLM is also playing an increasingly important role in the 

exchange of a wide variety of data on the Web and elsewhere. XML is a 

simple, very flexible text format derived from Standard Generalized 

Markup Language (SGML) [79]. The XML is defined in the XML 1.0 

Specification [80] produced by the W3C, and several other related 

specifications. 

The design goals of XML emphasize simplicity, generality, and 

usability over the Internet. It is a textual data format with strong support 

through Unicode for the languages of the world. Although the design of XML 

focuses on documents, it is generally used for the representation of 

arbitrary data structures, for example in Web services. 

 

Strengths of JSON 

JSON is simple and already well defined. Many people can generate 

invalid JSON (without quote identifiers, use single quotation marks, the use 

of a Byte Order Mark (BOM) at the beginning), it seems like a problem. This 

should get better as new libraries come out. Introducing JSON parsers (in 

the style of the HTML 5) seem to be unnecessary for a simple format that is 

usually generated by a computer. A strict JSON parser is not a lot of code. 

JSON has a simple way to showing which of the permissible encodings 

it is in, based on the zero bytes at the beginning, as the first two 

characters must be in ASCII. Permitting a BOM and them allowing Unicode 
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whitespace might be more standard, but the whitespace has no function 

expect for use in text editors.  

Despite attempts, for example, add an ECMAScript for XML (E4X) to a 

native XML format and a simple processing model of JavaScript, JSON, 

remains very easy in most languages to process, at it is built around 

structures that most languages have only natively while XML is not. 

Another advantage of using JSON instead of XML is in the Internet 

quality of data structuring. JSON is closer to being a HashMap as in Java or 

an associative array in some other languages like PHP. Hence it does not 

require parsing libraries in an application as XML does. The time spent 

however, on parsing XML into the native language, is not so much 

significant considering the fast processing power of machines today. 

The comparison of XML and JSON lies more on the network 

bandwidth aspect. JSON can take almost half of the bandwidth as XML for 

transferring the same data. It can achieve the same throughput as passing 

simple objects in the network in a distributed computing environment. 

JSON has distinction between string, number and boolean e.g. 

{“result: “1”} versus {“result”: 1}. XML document itself doesn’t have the 

distinction. The distinction saves a bit of programmer’s work to convert to 

appropriate type manually. You can define data type of values in XML with 

XML Schema, but it’s complicated and not always available [81]. 

 

Weakness of JSON 

JSON is not a widespread as XML. Its tooling and language support 

still fall a bit short of XML, is not a powerful as XML in namespaces. XML 

throws everything and won’t need to use every single one of its features, 

but when it’s necessary, does it come in handy.  

There are some syntactically different representations: arbitrary 

white space, although this definition does not include the dull Unicode 

whitespace characters and backslash escape, which can be represented for 

the most part directly in Unicode encoding of the document. Whitespace 

clearly needs to be preserved for readability and use of line oriented 
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editors and tools. It is not clear how inconvenient it would be if the \u 

codes were normalizes to Unicode which is the sane default. 

 

Strengths of XML 

First, it has enough structure so it is possible to build rich data 

structures, and to add to that, it has some standard ways (like XHTML) with 

rich sets of attributes and elements that can be reused in multiple 

domains, and relations link patter. The other great thing it the set of tools 

for extraction and processing, which are generally well designed and fairly 

complete. There are stream and DOM parsers widely available. 

 

Weakness of XML 

XML’s biggest disadvantage is that its parsers tend to be very large, 

although the large memory footprint of XML parsers may be reduced to a 

reasonable size by eliminating unneeded features, and the larger size of 

XML data records may be an issue for some applications. This can be dealt 

with by compressing the data before transmitting it or writing. 

 

JSON almost perfect 

Binary data is a problem in both XML and JSON. It is necessary a lot 

of other formats for anything that has binary data, they are just much more 

efficient, even after compression. Thus, the ideas of a universal format will 

not happen. The fact that the XML is a lot easier to read and JSON has a 

smaller footprint. 

 

4.2. Advanced Message Queuing Protocol (AMQP) 

versus Message Queuing Telemetry Transport 

(MQTT) 

 

AMQP and MQTT are both open protocols for asynchronous message 

queuing, which have been developed and matured over several years. 
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AMQP has selected the OASIS industry standards group [82], with the 

intention of moving to becoming an ISO/IEC standard. MQTT has chosen to 

use the Eclipse foundation [15]. 

Both provide basic messaging needs; beyond that, AMQP provides a 

very much richer set of messaging scenarios. AMQP is almost a complete 

superset, lacking only explicit protocol support for Last-Value-Queues and 

will messages. 

Both protocols are being promoted for ‘widespread’ use in the 

internet: 

• MQTT as a low-overhead, simple to implement way to send data, 

especially from embedded devices; 

• AMQP as the asynchronous complement to HTTP. 

 

As such, both are being promoted as being ideal for cloud computing 

and the “internet of things”. Message queuing, with their asynchronous 

nature and minimal need for configuration when well done, is perfect for 

interoperating many different environments. 

 

Beginnings 

AMQP come from the financial community, and it is mainly customer-

driven: its makers wanted an open way to communicate greatly increase 

over-the-counter trace, risk and clearing market data the transfer, and 

doing it without the necessity the pain of a bespoke protocol and its 

licensing headache. MQTT is vendor-driven; that comes from IBM and their 

partners as a response to the high cost of implementation MQSeries imposes 

on its customers using small devices. Both of these approaches have greatly 

influenced the design and features of the protocols. 

 

Intended use of protocol 

The two protocols "sit" above TCP / IP, and are designed to be used 

to enable programs to send and receive messages asynchronously, 

irrespective of their choice of hardware, operating system or programming 
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language. The protocols diverge; MQTT is designed to be helpful for many 

small, relatively dumb devices sending small messages on low-bandwidth 

networks. AMQP, on the other hand, is designed to provide the full vibrancy 

of messaging scenarios. MQTT’s design goals are a subset of its intended 

uses. 

In particular, MQTT really sees the networks between the involved 

parties as a controlled, near private infrastructure. AMQP, in turn, is 

designed supposing it is in use between parties under different controls and 

who use network and infrastructure resources outside of those parties 

control. 

 

Framing Optimisation 

Both of these protocols provide for heavily optimized “on-the-wire” 

framing of data. MQTT uses a more stream-orientated approach, making it 

easier for low-memory clients to write frames. AMQP uses a buffer-

orientated approach, making possible high-performance servers. MQTT does 

not allow fragmentation of messages, making it hard to transmit large 

messages with constrained memory devices, however. 

 

Messaging Scenarios 

MQTT supports publish-subscribe messaging to topics. MQTT’s 

messaging is actually ephemeral: it is optimised for the use case of active 

routing of simultaneously connected publishers and subscribers. 

Consequently, it is very difficult to use it for classic long-lived message 

queuing. AMQP supports this use case, and more, with five different kinds 

of message publisher-consumer “lifetime”, from “as long as connected” to 

“nobody is using this queue”. 

AMQP permits almost any form of messaging including classic message 

queues, round-robin, store-and-forward and combinations thereof. 
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Transactions 

This is short but poignant. MQTT not support transactions, it support 

basic acknowledgments. AMQP supports different acknowledgments uses 

cases and transactions across message queues, it allows separation of the 

different transactional semantics, should that be needed, and for 

acknowledgments to be out-of-order or even delayed, and batched us as a 

performance optimisation. 

 

Connection Security 

MQTT does not address connection security, although the community 

does provide advice. AMQP on the other hand, has specifically worked to 

integrated with Transport Layer Security (TLS) [83] and Simple 

Authentication and Security Layer (SASL)[84], the Internet Engineering Task 

Force set of RFCs that provide appropriate ways of securing the right to use 

a connection. AMQP core design allows separate negotiation of, and 

policies for, TLS and SASL mechanisms and upward replacement with 

alternative techniques as they develop. 

 

User security 

MQTT requires short user names and short passwords that do not 

provide enough entropy in the modern world. It has made these part of the 

protocol itself, so any change in policy, or security weakness, requires a 

new protocol version. AMQP uses SASL mechanisms, allowing organisations 

to choose the security that matters to them without protocol change. 

 

Reliable Messaging 

Essentially, most users of messaging either care a message is sent and 

definitively received once, or they do not. Both protocols provide for “fire-

and-forget, do not try to hard” messaging. AQMP provides fine-grained 

control over this, should it be reliable, but order of delivery matters. 

Both protocols claim to provide reliable messaging, essentially using a 

series of acknowledgments to give “exactly-once” receipt of a message. 
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However, under analysis, this is not always the case with MQTT. MQTT 

assumes general reliability of the parties involved. AMQP addresses these 

scenarios with link recovery, which allows fine-grained control, and will 

ensure eventual delivery under hostile conditions. 

 

Implementation 

It is certainly easier to implement MQTT, it is a much smaller 

protocol. Open protocols result in open source libraries. The vast majority 

of users will simply choose the open source client library for their operating 

system or language. However, a simple protocol does not necessarily mean 

less operation size.  

 

MQTT and AMQP are both message queuing protocols, suitable for use 

in hardware and software and on all major operating systems and 

platforms. MQTT is suited to its use case to simple clients talking to a 

server, but any infrastructure using it is exposed to serious security 

weaknesses and an inability to make best use of resources or to support 

additional use cases. AMQP is suited to these uses cases and many others, 

supports far better use of resources, far more pragmatic security and 

message reliability and has a future place as an ISO standard.  

 

4.3 Systems Demonstration and Validation 

 

This section presents the systems developed and their validation. The 

RabbitMQ server, the Web server, the back-end service and the database 

were created on a Mac OS X server running a virtual machine with Windows 

7 Professional operating system and with a processor Inter (R) Xeon(R) CPU 

2.67GHz and 1GB of RAM memory. The user application was developed for 

mobile devices running the Android operating system. The application will 

run from the 2.0 version (Eclair) of Android and higher. 
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4.3.1 RESTful Web Service, RabbitMQ server and Back-end Service 

 

In this section will be presented in more detail the different services 

implemented in this study, making reference to the methods of the Web 

service, the management and monitoring interfaces the RabbitMQ server 

and finally the functions of the back-end service. 

 

RESTful Web Service 

RESTful Web services are services built using the RESTful 

architectural style. In this study, the RESTful Web service has been 

developed in Java using the Java API for RESTful Web services (JAX-RS) and 

Jersey, the open source JAX-RS, supported by IDE NetBeans 7.2.1 and runs 

on the Web server Glassfish version 3.1. In addition, the IDE also supports 

testing, building client applications that access RESTful web services, and 

generating code for invoking web services. 

On the Web service have been implemented a number of methods 

for inserting and querying data. The methods of the Web service using the 

HTTP PUT method are used to insert or update data while that use the 

HTTP GET method is used to query the data from the database.  

In Table 5 are presented the different methods implemented on my 

Web service and the HTTP methods used by each of them. In the methods 

presented in Table 5, the parameters that are enclosed in braces ({}) 

concern the data that the user must provide when making a request to the 

Web service. Regarding the query methods (GET) in Table 5 are shown only 

methods that use "idUser" as search parameter, however, were also 

implemented other research methods to the same table but with other 

search parameters, such as the date and the respective fields in each 

table. 
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Table 5. Methods implemented in the Web service reference to the HTTP 
method to use 

HTTP 

method 
Web service method 

PUT 

/Insert_Profile/{name}/{ birthDate}/{weight}/{height}/{user} 

/Inserir_Contact/{idUser}/{name}/{phone}/{mail} 

/Insert_Fall/{idUser}/{forceG}/{date} 

/Insert_AirPressure/{idUser}/{pressure}/{date} 

/Insert_EEG/{idUser}/{eeg}/{date} 

/Insert_ecg/{idUser}/{ecg}/{date} 

GET 

/ProfileName/{name} 

/getcontacts/{idUser} 

/getfallsuser/{idUser} 

/getairpressureUser/{idUser} 

/geteeg/{idUser} 

/getecg/{idUser} 

 

RabbitMQ server 

To build the RabbitMQ server is required various tools. RabbitMQ 

requires a recent version of Python. In addition you also need the Erlang 

development and runtime tools, a recent version of GNU make a recent 

version of xsltproc.  

For installing the RabbitMQ server on Windows is need install Erlang 

and then install RabbitMQ and run it as a service, using the basic 

configuration. If it is necessary configure names, ports, locations is also 

very easy, just configure the environment variables in Windows. In this 

system was used the basic settings. 

For management and monitoring the RabbitMQ server more easily and 

with a visual interface it was necessary to also install an API based on 

HTTP, the rabbitmq-management plugin.  
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This plugin includes the following features: 

• Declare, list and delete exchanges, queues, bindings, users, 

virtual hosts and permissions; 

• Monitor queue length, messages rates globally and per channel, 

data rates per connection, etc. 

• Send and receive messages; 

• Export / import object definitions to JSON; 

• Force the closing of connections, clean queues. 

 

To use the Web UI is needed authenticating as a user of RabbitMQ and 

only then it is possible to manage exchanges, queues, bindings, etc. By 

default the server issues statistics every 5000ms. The average value of 

messages shown on the management plugin is calculated in this period of 

time. Figure 17 shows the visual interface RabbitMQ management plugin 

obtained during the execution of on of the experiments performed in this 

study. This Figure refers to experiment 1, since we have several 

connections but no consumer.  

1

2 3 4 5 6

7

 

Figure 17. RabbitMQ management plugin interface 
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The image caption is a follows: 

1. Number of messages stored in the existing queues on the 

RabbitMQ server, and average messages received by the server 

per second;  

2. Number of clients connected to the server and sending messages; 

3. Number of channels created to communicate between client and 

server. 

4. Number of exchanges defined on the server. 

5. Number of queues present on the server where it will be stored 

messages. 

6. Number of consumers connected to the server 

7. Name and information of node where the RabbitMQ server is 

installed. 

 

Back-End Service 

The back-end service has been developed in Java using Netbeans 

version 7.2.1. This service is used to consume the messages from RabbitMQ 

server, process them and store them in the database. This program when 

executed, tries to make the connection to RabbitMQ and then gets the 

messages are stored. Finally, the service processes the messages obtained 

so as to separate the various fields necessary to create and execute a query 

that will allow insert data in the database. 

 

4.4 Results Analysis 

 

Several experiments were performed and deployed for this study in 

order to compare both implemented services. With these experiments the 

authors tried to find out the main advantages regarding the use of a Web 

service, compared to using Message Broker open source software, or vice 

versa. In these experiments, twenty-four handsets were used continuously 

to send messages to servers.  
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The experiments were performed as follows: 

 

• Experiment 1 – the user application sends messages for 30 

minutes to RabbitMQ using AMQP protocol without no active 

consumer (back-end service); 

• Experiment 2 – the user application sends messages for 30 

minutes to Web service server using HTTP protocol, and then, 

the Web service communicates with the database using JDCB 

driver to store the messages; 

• Experiment 3 - the user application sends messages for 30 

minutes to RabbitMQ using AMQP protocol with a consumer 

(back-end service) to read the messages, process them and 

through JDBC driver connect to the database to store the 

messages. 

 

In these experiments, the user had a single function to send data to 

the service without ever doing queries. In this way is able to obtain a more 

reliable comparison of the two services when many clients are constantly 

sending data. In experiment 3, the consumer is consuming messages and 

save then in the database at the same time that users are sending, the 

results are presented in Table 6 and in Figure 18. 

Table 6. Results of the Performed Experiments. 

 Users 
Messages 
stored in 
RabbitMQ 

Messages 
stored in 
Database 

Average 
messages sent 

per second 

Experim. 1 24 407793 n/a 226.6 

Experim. 2 24 n/a 226530 125.9 

Experim. 3 24 160747 219907 211.5 
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Figure 18. Performance comparison considering the number of message for tree 
different experimental scenarios showing the messages stored in the Database, 

RabbitMQ,and the average messages per second. 
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As above-mentioned, the objective of the experiment 1 passed 

through the objective to send messages to the RabbitMQ, during 30 

minutes, using 24 users. As it can be observed in Table 6 and Figure 18, in 

the experiment 1, a total number of 407793 messages were sent and stored 

with an average of 226.6 messages per second. In the experiment 2, in the 

same interval of time as the experiment 1, but now with the objective to 

sent messages through Web services and storing them in the database, a 

total of 226530 messages were stored with an average of 125.9 messages 

per second. Finally. In the 3rd experiment, the same interval of time was 

used for the experiments 1 and 2. Its objective includes sending and storing 

the messages using the RabbitMQ, a total number of 380654 were sent and, 

after, the time was over a total of 160747 messages stayed stored in the 

RabbitMQ. A total number of 219907 messages where stored in the 

database, making a average of 211.5 messages per second. None of the 

messages in the experiment 3 where lost, some of them stay in the 

RabbitMQ because it takes extra time to the client in order to obtain the 

messages from the stack and put them in the database.  

With these experiments it is possible to conclude that when the AMQP 

protocol is used to messages exchange it will send a larger number of 

messages per second as can be seen in the experiments 2 and 3. There is a 

big difference between RabbitMQ and the Web service since the Web 

Service is in charge of receiving the request introduced by the user and 

then, depending on the method called, save the message on respective 

table of the database. While RabbitMQ only sends messages to the server 

when the server asks for it and stores the messages in a queued from the 

client, the client connects with the RabbitMQ. 

Is can be seen the number of messages in test 2 is significantly 

smaller compared to the tests 1 and 3. This is due to the fact that when 

using the Web service, the client waits that the services insert the data in 

the database and give him a response. Only after the client sends new 

data. The process of storing data in the database takes more time doing 

also with some client messages are lost while waiting for confirmation of 
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the Web service about the conclusion of the communication process, 

because the client does not exist any mechanism to temporarily store the 

messages. On the other hand when using the RabbitMQ server the client 

sends the data and waits for confirmation of RabbitMQ then sending new 

data. This process is almost twice faster than the first avoiding loss of 

messages.
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5. Conclusions and Future 

Work 

 

5.1 Conclusions 

  

 This chapter presents a synthesis of this dissertation along with the 

main achievements and important conclusions that result from this work 

and points some directions for future work. The main objective of this 

dissertation is the design, constructing, deployment, and performance 

evaluation of Web services when employed in system that generate large 

amounts of data. It was carried out with the development of the RESTful 

web service applied in a real system of Ambient Assisted Living. Thus, all 

the dissertation objectives were successfully accomplished and the all 

intermediate objectives were successfully achieved. 

After introducing and presenting the topic of this dissertation, 

definition the problem, define its objectives and main contributions 

chapter two present the revision literature on Web services, with special 

interest in RESTful architecture. But also making references to other styles 

of Web services and use the existing approaches. It also presented the 

state-of-the-art on Message Queuing Protocol, the Advanced Message 

Queuing Protocol and the Message Queuing Telemetry transport, showing 

some of the products that use these protocols. And finally, some import 

points of Ambient Assisted Living as well as some developed and developing 

work in this area. 
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Chapter three presents the analysis of requirements before 

developing it. First define the essential requirements, that is, the database 

structure, the activity and sequence diagrams and the system architecture. 

Next, and finally discuss the technologies used for the implementations of 

system. 

In chapter four are presented systems implemented in this study, and 

shows the comparison between the implemented technologies and their 

equivalents. In the first comparison is made between the two architectures 

of Web services, RESTful and SOAP, the forces and the weaknesses of each 

of them. In this study, after making the requirements analysis and the 

comparison between the two architectures concludes that RESTful was the 

best architecture to implement. Still about Web services are presented the 

strengths and weaknesses of the two main markup languages used by Web 

services, JSON and XML. Taking into account the needs of the system that 

should be prepared to exchange large amounts of messages, conclude that 

the way forward was to use JSON to be lighter than XML. Then, presents 

the comparison between two protocols message queuing, the MQTT and 

AMQP, making reference to some of the most important points to keep in 

mind when we want to implement these protocol. In this study chose to use 

the AMQP, since the newest mobile devices already has good capability of 

processing. Finally, is performed the demonstration of the system and 

presented the performance evaluation, accomplished through tests, the 

comparison between the use of RESTful Web services and RabbitMQ server 

to exchange messages between client and server. In this comparison, it was 

concluded that the use RabbitMQ obtain the best results, it is possible to 

exchange an increased amount of messages and lossless compared with the 

Web service. 
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5.2 Future Works 

 

 To conclude this work, it just remains to suggest future research 

directions based on current work: 

 

• Implement a MQTT system to allow the use of sensors for sending 

data. 
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Abstract— Web services appeared as a promising technology 
for Web environments independent of technologies, services, and 
applications. Currently, there are some issues related with this 
approach that should be studied. For instance, if massive 
quantities of data are sent to databases it can influence 
significantly the performance of the whole system. The Advanced 
Message Queuing Protocol (AMPQ) appears as a promising 
solution to address this problem. Then, in order to evaluate the 
performance of this approach, this paper presents a performance 
comparison study of RESTful Web services and the AMQP 
Protocol considering exchanging messages between client and 
server. The study is based on the averaged exchanged messages 
for a period of time. It was observed and concluded that, for 
large quantities of messages exchange, the best results comes 
from the Advanced Message Queuing Protocol. 

Keywords— Web Services; AMPQ; RESTful; Mobile 
Computing; Mobile Health Application 

INTRODUCTION 

The World Wide Web (or simply Web) has been a 
phenomenal success allowing simple computer/human 
interactions at the Internet scale. The original HyperText 
Transfer Protocol (HTTP) and HyperText Markup Language 
(HTML), current technologies used by Web browsers proven 
to be an effective way to design user interfaces in a wide 
variety of devices. 

In recent years, Web services technologies were effectively 
used to simplify interoperability between different systems 
whilst providing litheness and scalability for several 
applications, inclusive the distributed simulation software. The 
World Wide Web Consortium (W3C) [1] defines a Web 
service like a method of communication between two 
electronic devices over a network. It is a key solution used in 
systems integration and interaction among diverse types of 
applications. With this technology it is possible that novel 
applications may interact with existent and implement a system 
on different platforms. Essentially, a Web service does 
software features available on a network in a standardized way. 

The increasing number of available Web services, the 
growing need of collaboration, the need for knowledge sharing, 
and the necessity to take better decisions are the factors which 
generate a growing interest in the Web services. In 2000, Roy 

Fielding [2] introduced the term Representational State 
Transfer (REST) like an architectural style for dispersed 
hypermedia systems. In this context, an architecture is 
considered a set of characteristics and constraints on the 
elements of architecture that induce a set of desired properties. 
REST is an abstraction of a basic architecture of the HTTP 
Protocol and concentrates on concepts instead of on technical 
details and syntax. REST architectural features and restrictions 
aim to collect the fundamental design principles that allow high 
scalability, expansion, and success of the Web. A RESTful 
service is supplied as a feature, which is the concept extremely 
useful and can be addressed on the web.  

As Internet grows continuously, new needs are identified, 
and to address them, new approaches are emerging. One of 
them is the publish-subscribe (Pub-Sub) where the messaging 
middleware is a working model with asynchronous and loosely 
coupled characteristics. As the message producers and 
consumers in time, space, and control flow are completely 
decoupled, making the two end-points communicating through 
a separate release and subscription messaging for asynchronous 
communication, which can better meet the large-scale and 
dynamic distributed information systems integration needs. 
The current subject-based publish-subscribe system has been 
successfully used in the financial, stock, mobile computing, 
and other situations [3]. 

In 2006, a new proposal originated in the financial services 
industry, called Advanced Message Queuing Protocol 
(AMQP), was proposed [4-6]. AMQP is an open standard for 
Message Oriented Middleware (MOM) communication. Then, 
in order to evaluate the performance of this approach, this 
paper presents a performance comparison study considering 
RESTful Web services and the AMQP Protocol considering 
exchanging messages between client and server. 

The remainder of the paper is structured as follows. 
Section II elaborates on the related work with focus on 
available approaches, considering the two technologies under 
study (RESTful Web Services and AMQP Protocol). Section 
III presents the requirements analysis, namely, the application 
necessities, the system architecture, and the used technologies 
while Section IV describes the corresponding application 
development. The study to evaluate the performance of the 
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considered services is presented in Section V. Finally, Section 
VI concludes the paper and suggests topics for further works. 

RELATED WORK 

There are a myriad of Web services and Applications 
Programming Interface (APIs) available on the Web providing 
a wide range of different services. Usually, there is a 
substantial semantic overlapping among them where many 
Web services provide essentially the same functions. Such 
overlapping functionalities enables redundancy in the Web 
service ecosystem and give developers the opportunity to 
migrate from an API to another when the API originally used 
becomes unavailable or insufficient for their needs. To support 
the discovery of similar APIs, several new methods are being 
developed for a Web service discovery, including query-based 
methods relying on keywords and identifiers [7-8], clustering 
[9], and more detailed structure matching [10-11]. 

RESTful Web services are gaining more and more 
approaches. They are used as APIs in Web 2.9 services and are 
considered a more flexible and lighter-weight alternative to the 
so-called Big Web Services [12]. Much research has been 
performed in the field of developing RESTful applications. 
Richardson and Ruby [13] provide best practice examples and 
hints on how to develop RESTful applications. 

Riva et al. [14] investigate how to apply the REST 
principles to the design of mobile services. They identified 
several issues such as latency and data format that need 
particular attention when applying REST concepts to mobile 
environments. However, they only focused on consuming 
RESTful Web services on mobile devices and did not address 
the provision of Web services from a mobile host. 

In the domain of model driven development, Laitkorpi et 
al. [15] propose a process for designing RESTful services that 
focuses on a model based identification of the resources and on 
generating corresponding Web Application Description 
Language (WADL). 

Although AMQP specification is not finalized yet, several 
products supporting different drafts of AMQP already exist, as 
Red Hat, VMware Ltd, the OW2 Consortium who use the 0-9-
1 version of AMQP, the Apache Software Foundation, and the 
Sormmq who use the 0-10 version. 

a. Representational State Transfer (REST) 

 Representational State Transfer (REST) architecture style 
behind the Web enlarged recognition as another way to 
develop Web services. RESTful Web Services are earning 
more and more approaches. They are used as application 
programming interfaces (APIs) for Web Services 2.9. RESTful 
Web Services technical topics become popular because the 
REST style includes a global identifier of all resources (e.g., a 
uniform resource identifier) and the customer only need to 
know this handle and the action required. He must also know 
the right format of representation, which is typically an HTML, 
eXtensible Markup Language (XML), or JavaScript Object 
Notation (JSON) meta-data. RESTful Web services (REST 
APIs) specify a set of resources, which includes three 
components: the URI of the Web service, the data type 

supported (JSON, XML, etc.), and the support operations 
through HTTP methods. 

Previous Web applications access methods using HTTP 
operations (such as GET and/or POST). On the contrary with 
this, RESTful applications use methods according to the 
following functions: create, read, update, and delete (CRUD) 
style using the full range of HTTP methods (GET, POST, PUT 
and DELETE). 

Figure 1 shows the architecture of RESTful Web Services. 
Client communicates with server through a uniform interface 
and during the stateless communication; client and server swap 
features depictions. Therefore, the REST design restrictions 
supply a standardized method to develop an API wearing the 
HTTP protocol.  

Client Server

HTTP Verb:
GET | POST | PUT | DELETE

HTTP Packet

Resource Representation

HTTPHTTP

Stateless Web Service Conversation

 
Figure 1. Illustration of a RESTful Web service architecture with  

client-server interaction 
 

RESTful Web Services can be depicted over the Web 
Applications Description Language (WADL). A WADL 
include information about the requirements that can be 
addressed to a service involving the service uniform resource 
identifier (URI) and service data waiting and serves. 

b. Advanced Message Queuing Protocol (AMQP) 

The Advanced Message Queuing Protocol (AMQP) is an 
open standard message middleware. According to the standard 
AMQP, middleware products written for different platforms 
and in different languages can send messages from one to 
another. AMQP is supported by a good number of key players, 
including Cisco Systems, Credit Suisse, Deutsche Borse 
Systems, Goldman Sachs, JPMorgan Chase Bank, Red Hat, 
and 29West. 

AMQP enables applications to send and receive messages. 
In this regard it works like instant messaging or eMail. AMQP 
differs enormously from other available solutions because it 
allows the specification of what messages can be received and 
from, and how trade-offs are performed with respect to 
security, reliability, and performance. Systems built to integrate 
AMQP perform much better at functioning unattended or 
“lights-out” than other solutions. There are several reasons to 
choose the AMQP over the competition, including 
convenience, the possibility to connect applications on 
different platforms, the possibility to connect business partners 
using a full featured open standard, and a position for 
innovation built upon the foundations of AMQP. 
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Although AMQP specification is not finalized yet, several 
products supporting different drafts of AMQP today exist, as 
Red Hat, VMware, Ltd, and OW2 Consortium who use the 0-
9-1 version of AMQP, the Apache Software Foundation, and 
the Sormmq who use the 0-10 version. It is used to simplify 
critical tasks, for example, JPMorgan reported a AMQP 
environment support 2,000 users on five continents to process 
300 million messages per day. Every products that are listed 
comes with client library for different programming language, 
such, C + +, Ruby, Java, and Python. 

For performance studies, this paper will consider the 
RabbitMQ that supports the standard AMQP Protocol. 
RabbitMQ is an open source message broker and queuing 
server that can be used to let disparate applications share data 
via a common protocol, or to simply queue jobs for processing 
by distributed workers.  

RabbitMQ server is written in Erlang and is created on the 
Open Telecom Platform framework for failover and clustering. 
The main characteristics of RabbitMQ project include the 
following: i) the RabbitMQ exchange server itself; ii) gateways 
for HTTP, STOMP, and MQTT protocols; iii) AMQP client 
libraries for Java, .NET Framework, and Erlang; and iv) a plug-
in platform for custom additions, with a pre-defined collection 
of supported plug-ins. Figure 2 presents the basic process of 
messages exchange using RabbitMQ. 

 

Consumer

Producer
Messages

Exchanges

Bindings

Queues

Topic Fanout Direct

Message Message Message Message Message

Q1 Q2 Q3 Q4 Q5

api_call*.s
ev
er
e logs.*

 
Figure 2. Illustration of the messages exchange process using RabbitMQ. 

 

SYSTEM DEVELOPMENT 

This section describes the application requirements and the 
system architecture, addressing also the used technologies. 

c. Requirements Analysis 

Nowadays, Web services are increasingly included in 
applications and consume information regardless of user 
location. Web Services triumph the goal with a technologically 
neutral way, which delivers interfaces clearly defined for 
dispersed features, which are not dependent of the operating 
system, hardware platform, and programming languages. Then, 
dispersed resources or services that can run in different 
hardware platforms, on various operating systems, or even can 
be written in various programming languages communicating 
through Web services interfaces. 

Figure 3 describes a request workflow and sends processes 
through Web services. When a node needs to send or receive 
information, the requests go directly to the database. The 
requester or sender makes the solicitation in REST, the server 
will unfold the request to whether it is a request for data or to 
data store, and if it was a request for data, the server sends the 
data directly from the database, otherwise if it was to store 
data, the server will save the data directly in the database. 

The server 
receives the 
solicitation

Request data?

False

True Server sends the 
data

Request or Store 
data

end

Web services workflow

Requester / Sender 
Node

Solicitation sent 
through Web 

services

False

True
Store data? Server receives 

the data

 
Figure 3. Request or Store workflow of the Web services activity diagram. 
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Figure 4 shows the activity diagram of the RabbitMQ 
request and data sending. All the solicitations should go first 
through the RabbitMQ before reach the database either 
sending or receiving. When a node sends information the 
RabbitMQ will put the message in a stack, then, when a 
request is made it will go directly to the stack. Messages will 
be stored in the RabbitMQ until they are consumed. 

Data sender 
request

Data sent to 
RabbitMQ

RabbitMQ stores 
data in the stack

RabbitMQ have 
messages in the 

stack?

Any connection 
requesting data? 

False

True

RabbitMQ send 
data to the 
requester

RabbitMQ 
"Pause Mode"

Request data

end

Sender 
Node

Request Data

Requester 
Node

Request sent to 
RabbitMQ

False

True

Send Data

RabbitMQ workflow

 
Figure 4. Request and sender path to the RabbitMQ activity diagram. 
 

d. System Architecture 

Figure 5 shows a scenario that illustrates the global system 
architecture. A user can choose messages to send using a Web 

service or a service of message queuing. If the user chooses 
messages submission through the Web service, it will 
automatically store the messages in the database. On the other 
hand, if a user chooses messages submission through message 
queuing service it will be necessary to use a back-end service 
to pick up the messages to the message queuing service and 
send them to the database. 

 

Web Server

DataBase

Message Queuing

Back-End Services

User

 
Figure 5. Illustration of the global system architecture with a database,  

a Web server, back-end services, and a message queuing. 
 

 In system architecture the Web server runs a RESTful Web 
service architecture built on java language, which an user 
communicates to send and receive data, i.e., the user makes 
HTTP requests to the Web service in order to call the method 
needed to insert or query data. With regard to Message 
Queuing protocol has been implemented AMQP (Advanced 
Message Queuing Protocol), which requires the installation of 
a RabbitMQ server. The back-end service was developed in 
Java and was used to send and get messages from RabbitMQ 
server and insert them into the database. Finally, the database 
was developed in MySQL language and was used to hold all 
the system data. The user was a mobile application that 
communicates with the Web Service through HTTP requests 
and makes requests through the AMQP port to communicate 
with the service for message queuing. 

e. Used Technologies 

For the proposed system several technologies were used. 
The Netbeans IDE was used to develop and execute the 
services for sending and receiving messages. The Web service 
was developed in Java and runs on Glassfish, an open-source 
application server. For the AMQP protocol, the RabbitMQ 
server and an open source message broker software were used, 
and also developed a Java application to publish and consume 
messages from the server. The database where messages were 
stored was created using a relational database management 
system, the MySQL. 
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WEB SERVICES MECHANISMS AND AMQP PROTOCOL FOR 
MOBILE APPLICATIONS 

Mobile platforms present their own set of challenges that 
can be identified as follows: CPU availability, memory and 
bandwidth, storage capacity, connectivity options and issues, 
security and user interaction. As the capacity of storage and 
processing on mobile devices is reduced in order to find the 
best solution for mobile applications that generate large 
amounts of data or many messages should be saved, other 
services to send and store messages outside the device should 
be used. 

Against this problem, increasingly, the option comes with 
the use of Web services to send data from the mobile device to 
a server. However, in this case, it is necessary that a Web 
service accepts a large number of requests per second, 
assuming the system will process all of them. Once it receives 
a large amount of data per second in order to process them and 
store in the database, if the system fail to manage the requests, 
messages may be lost while the system recovers because the 
mobile device is not ready to temporarily store the messages in 
case of service failure. Despite having been implemented in 
mobile application solutions to solve the problem, it should not 
be a good option given the small memory of mobile devices. 

To avoid these situations a RabbitMQ server was proposed. 
Through it, the data is sent to server queues and the back-end 
service should get the messages. In this case even if the back-
end service fails, the messages are stored on the RabbitMQ 
server and it will not be needed that the mobile device 
temporarily store messages and avoids that some of them may 
be lost during the time that the service is down. 

The Web service and RabbitMQ server were developed 
separately in order to compare both of them and get more 
reliable results. 

 

SYSTEM EVALUATION AND VALIDATION 
The RabbitMQ server, the Web server, and the database 

were created on a Mac server over a virtual machine running 
Windows 7 Professional operating system with a processor 
Inter (R) Xeon(R) CPU 2.67GHz and 1GB of RAM memory. 

The user application was designed for mobile devices 
running the Android operating system. The application will run 
from the 2.0 version (Eclair) of Android and higher. 

Several experiments were performed and deployed for this 
study in order to compare both deployed services. With these 
experiments the authors tried to find out the main advantages 
regarding the use of a Web service, compared with the use of 
Message Broker open source software, or vice versa. In these 
experiments, twenty-four handsets were used continuously to 
send messages to servers. The experiments were performed as 
follows: 

Experiment 1 – the user application sends messages for 30 
minutes to RabbitMQ using AMQP protocol without no active 
consumer (back-end service); 

Experiment 2 – the user application sends messages for 30 
minutes to the Web service server using HTTP protocol, and 
then, the Web service communicates with the database using 
JDCB driver to store the messages; 

Experiment 3 - the user applications sends messages for 30 
minutes to RabbitMQ using AMQP protocol with a consumer 
(back-end service) to read the messages, process them, and 
through JDBC driver connect to the database to store the 
messages. 

In these experiments, the user had a single function to send 
data to the service without ever doing queries. In this way the 
authors were able to obtain a more reliable comparison of the 
two services when many clients are constantly sending data. 
The results are presented in Table I. 

RESULTS OF THE PERFORMED EXPERIMENTS. 

 Users 
Messages 
stored in 

RabbitMQ 

Messages 
stored in 
Database 

Average 
messages 
sent per 
second 

Experim. 1 24 407793 n/a 226.6 

Experim. 2 24 n/a 226530 125.9 

Experim. 3 24 160747 219907 211.5 
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Figure 6. Performance comparison considering the number of message for 3 
different experimental scenarios showing the messages stored in the Database, 

RabbitMQ, and the average messages sent per second. 
 

As above-mentioned, the objective of the experiment 1 
passed through the objective to send messages to the 
RabbitMQ, during 30 minutes, using 24 users. As it can be 
observed in Table I and Figure 6, in the experiment 1, a total 
number of 407793 messages were sent and stored with an 
average of 226.6 messages per second. In the experiment 2, in 
the same interval of time as the experiment 1, but now with the 
objective to sent messages through Web services and storing 
them in the database, a total of 226530 messages were stored 
with an average of 125.9 messages per second. Finally. In the 
3rd experiment, the same interval of time was used for the 
experiments 1 and 2. Its objective includes sending and storing 
the messages using the RabbitMQ, a total number of 380654 
were sent and, after, the time was over a total of 160747 
messages stayed stored in the RabbitMQ. A total number of 
219907 messages where stored in the database, presenting an 
average of 211.5 messages per second. None of the messages 
in the experiment 3 where lost, some of them stay in the 
RabbitMQ because it takes extra time to the client in order to 
obtain the messages from the stack and put them in the 
database. 

With these experiments it is possible to conclude that when 
the AMQP protocol is used to exchange messages, it will send 
a larger number of messages per second, as can be seen in the 
experiments 2 and 3. There is a big difference between 
RabbitMQ and the Web service since the Web Service is in 
charge of receiving the request introduced by the user and then, 
depending on the method called, save the message on 
respective table of the database. While RabbitMQ only sends 
messages to the server when the server asks for it and stores the 
messages in a queued from the client, the client connects with 
the RabbitMQ. 

CONCLUSIONS AND FUTURE WORK 

This paper proposed a comparison study between a 
RESTful Web service and the AMQP protocol for exchanging 
messages between clients and servers. As it can be seen in 
Section V, it is possible to conclude that applications which 
will exchange an large amount of data, the best approach is to 
use the RabbitMQ server and use a Back-End Service to 
consume the messages, process them, and send them to the 
database. This approach will allow resources saving, prevent 
data loss, and a better organization of the messages. As for the 
other approach, when massive data is exchange, this approach 
has shown that it can send fewer messages per second, 
increasing the time for the exchange, and will consume more 
resources.  

As future work it is intend to join the RESTful Web 
service with RabbitMQ server in order to obtain the most 
effective results. With this solution it is planned that there is 
less coupling between the two services and allows better 
communication between them when the number of 
applications that consume the services increases. 
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