

UNIVERSIDADE DA BEIRA INTERIOR
Faculdade de Engenharia
Departamento de Informática

Web Services Approach for
Ambient Assisted Living in

Mobile Environments

Joel Lourenço Fernandes

Submitted to the University of Beira Interior in candidature for the
Degree of Master of Science in Informatics Engineering

Supervised by Prof. Dr. Joel José Puga Coelho Rodrigues

Departamento de Informática

University of Beira Interior
Covilhã, Portugal

http://www.di.ubi.pt

i

This work has been partially supported by the Instituto de

Telecomunicações, Next Generation Networks and Applications Group

(NetGNA), Portugal, by National Funding from the FCT – Fundação para a

Ciência e Tecnologia through the Pest-OE/EEI/LA0008/2011, and by the

AAL4ALL (Ambient Assisted Living for All), project co-financed by the

European Community Fund FEDER through COMPETE – Programa

Operacional Factores de Competitividade.

iii

Acknowledgements

 First of all, I would like to thank Prof. Joel José Puga Coelho

Rodrigues for giving me a chance to join the Next Generation Networks and

Applications Research Group (NetGNA), for all the constant words of

encouragement and for supervising my Master’s Thesis. The last year was

undoubtedly very important in my evolution has Informatics Engineer as a

person as well.

I am most grateful to the University of Beira Interior, the Instituto

de Telecomunicações, Next Generation Networks and Applications Group

(NetGNA), Covilhã Delegation, Portugal, by National Funding from the FCT –

Fundação para a Ciência e a Tecnologia through the PEst-

OE/EEI/LA0008/2011 Project, by the AAL4ALL (Ambient Assisted Living for

All), project co-financed by the European Community Fund FEDER through

COMPETE – Programa Operacional Factores de Competitividade.

 Many thanks to all members of NetGNA, particularly Ivo Lopes, Fábio

Canelo, Edgar Horta and João Dias.

 And of course, a enormous thanks to my parents, my sister, my

family and my girlfriend, for their constant support and for all words of

motivation.

v

Abstract

Web services appeared as a promising technology for Web

environments independent of technologies, services, and applications.

First, a performance comparison study between the two most used Web

service architectures, SOAP and REST, is presented, considering messages

exchange between clients and a server. Based on this study, the REST

architecture was chosen to deploy the system because it gets better results

compared to SOAP architecture. Currently, there are some issues related

with this approach that should be studied. For instance, if massive

quantities of data are sent to databases it can influence significantly the

performance of the whole system. The Advanced Message Queuing Protocol

(AMPQ) appears as a promising solution to address this problem. Then, in

order to evaluate the performance of this approach, this work presents a

performance evaluation and a comparison study of RESTful Web services

and the AMQP Protocol considering exchanging messages between clients

and a server. The study is based on the averaged exchanged messages for a

certain period of time. It was observed and concluded that, for large

quantities of messages exchange, the best results comes from the Advanced

Message Queuing Protocol. Message Queuing Telemetry Transport (MQTT)

was addressed in this work because it is a similar protocol to AMQP but it

can be used by mobile devices with a processing capacity smallest unlike

the AMQP that needs greater processing capacity. These studies are

performed in the context of Ambient Assisted Living environments, since

vi

the work was applied to this topic in order to experiment the effectiveness

and evaluate the performance of these protocols in this scenario.

vii

Keywords

 Web Services, RESTful, Advanced Message Queuing Protocol, AMQP,

Message Queuing Telemetry Transport, MQTT, RabbitMQ, Ambient Assisted

Living, AAL.

ix

Contents

Acknowledgements .. iii	

Abstract ... v	

Keywords ... vii	

Contents ... ix	

List of Figures ... xi	

List of Tables .. xiii	

Acronyms ... xv	

1.	
 Introduction ... 1	

1.1. Focus and Research Scope .. 1	

1.2. Problem Definition .. 9	

1.3. Research Objectives .. 10	

1.4. Main Contributions .. 10	

1.5. Dissertation Structure ... 11	

2.	
 Related Work .. 13	

2.1. Web Services ... 13	

2.1.1. Web Services Platform Elements 18	

2.2. Advanced Message Queuing Protocol (AMQP) 23	

x

2.3. Message Queuing Telemetry Transport (MQTT) 27	

2.4. Ambient Assisted Living (AAL) .. 30	

3.	
 Requirements Analysis .. 35	

3.1. Essential Requirements .. 35	

3.1.1. Entity-Relationship Model .. 36	

3.1.2. Activity Diagrams ... 37	

3.1.3. Sequence Diagrams ... 40	

3.2. System Architecture .. 42	

3.3. Used Technologies .. 43	

4.	
 Performance Evaluation .. 45	

4.1. REST versus SOAP ... 45	

4.1.1. Markup Languages ... 50	

4.2. Advanced Message Queuing Protocol (AMQP) versus Message
Queuing Telemetry Transport (MQTT) 53	

4.3 Systems Demonstration and Validation 57	

4.3.1 RESTful Web Service, RabbitMQ server and Back-end Service 58	

4.4 Results Analysis .. 61	

5.	
 Conclusions and Future Work 67	

5.1 Conclusions .. 67	

5.2 Future Works ... 69	

References ... 71	

Appendice ... A	

xi

List of Figures

Figure 1.	
 Illustration of Two-tier architecture. 1	

Figure 2.	
 Illustration of a three-tier architecture. 2	

Figure 3.	
 Basic process of functioning of systems implemented for the

AAL.......... .. 7	

Figure 4.	
 Service Oriented Architecture (SOA) diagram. 20	

Figure 5.	
 WCF endpoint – ABC (Address, Binding and Contract). 21	

Figure 6.	
 Illustration of RESTful Web Services architecture. 22	

Figure 7.	
 Illustration of the process of exchanging messages using

RabbitMQ... .. 27	

Figure 8.	
 Example of MQTT network topology. 29	

Figure 9.	
 Topics, techniques and technologies applied in Ambient

Assisted Living. .. 32	

Figure 10.	
 Entity-Relationship Diagram based in IDEF1X notation. 36	

Figure 11.	
 Request / send path to the Web services activity diagram. ... 38	

Figure 12.	
 Request and sender path to the RabbitMQ activity diagram. . 39	

Figure 13.	
 Sequence Diagram – Communication between Client (Mobile

Application) and Web service to insert or get data in / from database. ... 40	

Figure 14.	
 Sequence Diagram – Communication between Client (Mobile

Application) and RabbitMQ Server. ... 41	

Figure 15.	
 Sequence Diagram – Communication between Back-end service

and RabbitMQ server and database. .. 41	

Figure 16.	
 Illustration of the global system architecture. 42	

Figure 17.	
 RabbitMQ management plugin interface 60	

xii

Figure 18.	
 Performance comparison considering the number of message

for tree different experimental scenarios showing the messages stored in

the Database, RabbitMQ,and the average messages per second. 63	

xiii

List of Tables

Table 1.	
 HTTP Methods and their corresponding CRUD Action 23	

Table 2.	
 Products that support AMQP .. 24	

Table 3.	
 Strengths and Weaknesses for both SOAP and REST. 46	

Table 4.	
 Results of the Performed Experiment to Compare SOAP with REST

Web Services. .. 48	

Table 5.	
 Methods implemented in the Web service reference to the HTTP

method to use ... 59	

Table 6.	
 Results of the Performed Experiments. 62	

xv

Acronyms
AAL : Ambient Assisted Living

ACL : Access Control List

AMQP : Advanced Message Queuing Protocol

API : Application Programming Interface

CORBA : Common Request Broker Architecture

CPU : Central Processing Unit

DCOM : Distributed Component Object Model

DLL : Dynamic-Link Library

ECG : Electrocardiogram

HER : Electronic Health Record

HTML : Hypertext Markup Language

HTTP : Hypertext Transfer Protocol

ICT : Information and Communication Technology

ISO : International Organization Standardization

JSON : JavaScript Object Notation

LDAP : Lightweight Directory Access Protocol

MQTT : Message Queue Telemetry Transport

QoS : Quality of service

REST : Representational State Transfer

RFC : Request for Comments

RMI : Remote Method Invocation

ROA : Resource-Oriented Architecture

RPC : Remote Procedure Call

SASL : Simple Authentication and Security Layer

SMTP : Simple Mail Transfer Protocol

xvi

SOA : Service-Oriented Architecture

SOAP : Simple Object Access Protocol

TCP/IP : Transmission Control Protocol / Internet Protocol

TLS : Transport Layer Security

UDDI : Universal Description Discovery and Integration

UML : Unified Modeling Language

URC : Universal Remote Console

URI : Uniform Resource Identifier

W3C : World Wide Web Consortium

WADL : Web Application Description Language

WCF : Windows Communication Foundation

WSDL : Web Service Definition Language

XML : eXtensible Markup Language

YAML : YAML Ain’t Markup Language

Introduction

1

1. Introduction

1.1. Focus and Research Scope

The idea of distributed computing was born with the appearance of

computer networks. Applications were divided first into two main

components. One is the client, starting a distributed activity, and the

other, the server, carrying out that activity. This reorganisation minimized

bottlenecks by distributing the workload through several systems. It offered

flexibility for application design previously nearby unknown on centralized

hosts. But this two-tier architecture, Figure 1, had its limits [1].

Client PC

Java
Application

Client Server

Tier 1 Tier 2

JDBC
Driver

Storage Server

Figure 1. Illustration of Two-tier architecture.

For scalability and failover, issues a third-tier has been announced,

dividing an application into a presentation part, an intermediate tier

including the business logic, and a third-tier dealing with the data. This

three-tier model of distribution, presented in Figure 2, has become the

Introduction

2

most popular way of splitting applications. It makes application systems

scalable.

The basis for the communication between the distributed parts of an

application is the remote procedure call (RPC) [1].

Client PC

Browser

Tier 1 Tier 2 Tier 3

Client Application
Services DBMS System

RPC / HTML SQL Data Access

Figure 2. Illustration of a three-tier architecture.

The main use of the World Wide Web is interactive access to

documents and applications. In nearly every case, access is by human

users, generally working through Web browsers, audio players, or other

systems of interactive front-end. The Web can grow greatly in power and

scope if it is extended to support communication among applications, from

one program to another.

The Web has been a phenomenal success at allows simple

computer/human interactions at Internet scale. The original HTML and

HTTP protocol stack used by current Web browsers has proven to be a cost-

effective way to project user interfaces onto a wide range of devices. The

main factor in the success of HTML and HTTP was their relative simplicity —

both HTML and HTTP are primarily text-based and can be implemented

using a multiplicity of operating systems and programming environments.

In the last few years, ad hoc styles have been used in business-to-

business applications to enjoy the benefits of the basic Internet

infrastructure [2]. The wondrous growth of the information space and the

wondrous number of accessible information sources are factors which arise

a growing interest for integrating information sources into Web services in

Introduction

3

order to improve collaboration and knowledge sharing between enterprises.

The appearance of Web services as a model for incorporating

heterogeneous Web information has opened new possibilities of interaction

and provided more potential for interoperability.

Currently, more and more Web services are present in applications,

serving information or consuming a service. Within the context of

distributed applications, the service has become a important, switching the

old paradigm of using Dynamic-Link Library (DLL) [3].

The growing number of available Web services, the increase

necessity to collaborate and to share knowledge directing to the best

decisions are factors which generate a growing interest for meeting Web

services into communities in order to facilitate and accelerate Web services

discovery and selection. Web services communities provide a centralized

access to several functionally-equivalent Web services through a unique

endpoint which enables the query processing [4].

For end users, the large growth in available services can involve

greater freedom or more chaos or both. For developers, Web services

computing provide important theoretical and engineering challenges as

they determine how to take advantage of emerging technologies to

automate individual applications. The era of globalization as purchased

nearly all services to the Internet environment with multiple providers

offering the same service in different ways [5]. Several providers are

provide the same functionality so it necessary to distinguish one self from

the crowd with the aim to prosper against the cutthroat competition from

the service provider’s view. On the other hand it is absolutely necessary for

the client to choose a service provider that not only meet the functional

requirements of the client but also offers the best quality of service (QoS)

to the customers.

Mobile Internet is driving the exponential growth of mobile devices

in a faster way than previous computing technologies. Mobile Internet

devices has surpassed ten billion units in 2010 [6]. With the increasing use

Introduction

4

of mobile devices, mobile applications will create a larger percentage of

Web service requests.

Mobile platforms have their own set of challenges as: bandwidth,

memory and CPU availability, storage capacity, connectivity options and

issues, security and user interaction and display. Since the capacity of

storage and processing on mobile devices is reduced to best solution for

mobile applications that generate large amounts of data or need to save

too many messages, passes to use other services to send and store

messages outside the device. Against this problem, increasingly, the option

is to use Web services to send data from the mobile device to a server.

The Web services are the key point of integration for different

applications pertaining to different platforms/languages/systems once they

are based in a set of standards that make them independent of the

underlying technologies used for providing them. There are currently two

groups of thinking in the development of Web services: the traditional,

standards-based approach (SOAP) and conceptually simpler and the

trendier on the block (REST). Spite of the fact that the requirement of

mobile computing has improved considerably in recent years [7], [8], using

traditional Web services (i.e., SOAP-based services) models to mobile

computing may result in unacceptable performance overheads.

Simple Object Access Protocol is extensively used as a messaging

framework for Web services realization of Service Oriented Architecture

(SOA). This standard is not suitable for mobile devices with resource

constraints, provisioning Mobile Web Services, due to large payloads of

SOAP message constructs. In addition to memory limitations, the data

parsing of the intensive SOAP messages can lead to performance

degradation of the mobile Web servers in terms of server utilization. In

contrast, the Representational State Transfer (REST) messaging framework

is lightweight enough to be appropriate for messaging communication in

such devices. A single URL only identifies each service resource in this

framework [9].

Introduction

5

REST is an architectural style derived from the Web, and its

constraints and architectural elements aim at gathering the fundamental

design principles that enable the great scalability, growth, and success of

the Web. A RESTful service is provided as a resource, which is meaningful

concept and can be addressed in the Web. A RESTful service is supplied as a

feature, which is the concept extremely useful and can be addressed on

the Web. As the Internet grows continuously, new needs are identified, and

to confront them, new approaches are emerging. One is the pub-sub

(publish-subscribe), wherever the messaging middleware is an operating

model with asynchronous and freely combined characteristics. As the

message consumers and producers in control flow, space and time are

totally dissociated, doing the two endpoints communicate using a distinct

statement and registration messages for asynchronous communication,

which can better serve dynamic distributed information systems

integrations needs and the large-scale. The existing applications of subject

based pub-sub were used effectively in the mobile computing, stock,

financial and other situations [10].

SOAP-based services are heavy-weighted services, which are not

applicable for mobile services in comparison to light weighted RESTful

services. Migration of SOAP-based services to RESTful services makes the

services more pervasive, faster, and suitable for thin clients. In addition,

RESTful services are invoked using HTTP methods [3].

Whatever the technology used to deploy Web services, they provide

several advantages [11], like language independence and distribution

mechanisms; it also increases the interoperability between different soft-

ware elements (for example, it is possible to add communication libraries

without modifying existent code), and facilitates code distribution (it is not

required the use of a concrete implementation or library) among

geographically distributed work teams.

The healthcare industry offers many more situations in which Web

services can be put to use effectively. A doctor carrying a handheld device

can access your records, health history, and your preferred pharmacy using

Introduction

6

a Web service. The doctor can also write you an electronic prescription and

send it directly to your preferred pharmacy via another Web service.

The high penetration of mobile devices and networks implies that

mobile technology cloud be used very effectively for health promotion in

order to compensate the lack of resources problem, particularly in

developing countries.

Over the past decade, new application areas in healthcare, such as

Ambient Assisted Living (AAL) has improved the interest of community

safety engineering. They are reliant upon information gathered from their

environment through small, hidden, distributed, and communicating

embedded devices for offer their services and are open to the integration

of new and heterogeneous devices to optimize offered services. Under

these circumstances they must be able to react appropriately to the

variation observed in their environment, in the quality of information

provided by the embedded devices and in the availability of resources.

The Information and Communication Technologies (ICT) can play a

very important role to achieving these goals. ICT can contribute an to a

better quality of life for older people contributing to a more healthy and

independent life, opposing the difficulties of this age group. This therefore

the starting point for the concept of AAL.

From the point of view of AAL, people with special needs are

supported through an interaction with the intelligent environment that

surrounds them, facilitated by devices capable of measuring several

parameters, acting on the environment, with a capacity of computing and

communications. So, the passage of the personal computer/device for a

range of devices capable of sensing processing and distributed computing

environment and by a new paradigm that yields a set of challenges related

to the interaction of people with technology in their environment.

The concept AAL refers thus to the study and development of

intelligent systems to support the requirements of quality of life, offering a

secure conditions in daily environment preferred by user. In AAL are

Introduction

7

proposing new approaches in design of products and services that interlink

and enhance new technologies in a social environment.

Figure 3 shows the basic process of functioning of systems

implemented for the AAL. The sensors / robot send data to the Home Node

(gateway). Subsequently the gateway sends this data to a server.

Consumers intending to have access to data make requests to the server

and it returns the required information.

HOME NODE
(gateway)

Sensors

Internet

Internet

Consumer

Server

Robot

Figure 3. Basic process of functioning of systems implemented for the AAL.

Ambient Assisted Living (AAL) research the development of systems

that monitor activities and vital signs of lonely elderly people in order to

detect emergency situations or deviations from desirable medical patterns

[12]. The discussion about Ambient Assisted Living started when political

entities couldn’t ignore the fact of the demographic change any longer

[13].

Introduction

8

The large potential of these AAL technologies related to the capacity

to influence people to live in a positive way. In particular, the AAL has

influences on the following:

• Support the maintenance of health and functional capacity of

older people;

• Improved safety in the physical integrity of the end users,

especially those who have illness and/or physical limitations;

• Promoting a healthier lifestyle for people at risk;

• Extension of time that user can live in there preferred

environment with safety and proper socialization;

• Contribution to the extension of working lives of people, in that

they provide a set of tools and in his own house, ensuring

comfort conditions and adequate security and maintaining

contact with the entities with whom they interact;

• Increased efficiency and productivity of the resources used in

aging societies.

All of these features enable a greater capacity for participation of

individuals in society regardless of age, sex, education level or economic

origin. The enhancements in the health of users and development of

numerous technologies such as, for example, telemedicine from home or

use of wearable sensors also contribute to reduce the resources used and

therefore the associated costs.

Moreover, the points identified as the weak current AAL solutions in

general:

• Solutions are typically high cost;

• These solutions, in many cases, highly technological and complex

use which can hinder their use by the target users;

• Solutions based on body monitoring devices, it’s hard to get the

trio, comfort, volume and autonomy;

Introduction

9

• The difficulty in achieving an objective study on the real needs

of end users, leads to the development of solutions that often

are not adapted or are not of practical use for these;

For making monitoring activity and vital signs are used devices, such

as mobile devices, sensors, etc., with little processing power, low memory

and limited battery. Given these problems it is necessary to implement

solutions of low energy consumption, with data packets minimized and they

can make the efficient distribution of information to one or many

receptors. Advanced Message Queuing Protocol (AMQP) e Message Queuing

Telemetry Transport (MQTT) are both open protocols for asynchronous

message queuing which have been developed and matured over several

years. AMQP has selected the OASIS industry standards group, whit the

intention of moving to becoming an ISO/IEC standard [14]. MQTT has

chosen to use the Eclipse foundation [15].

1.2. Problem Definition

Ambient Assisted Living focuses on the development and market of

products and services that can be used for user monitoring and events

detection. Thus, it is possible that users live in more secure conditions and

in their preferred environment. Constant monitoring by sensors or other

devices generates large amounts of data to be transmitted and stored.

A problem that arises in this area is the large amount of data that is

generated and needs to be transmitted. In this way it is necessary to study

and develop mechanisms and apply systems that allow the exchange of

large amount of data to be made as quickly as possible and with no loss of

data.

 In the present study is carried out the comparison between the two

models for transmitting large amounts of data with the aim of find the best

solution to solve that problem.

Introduction

10

1.3. Research Objectives

 The main objective of this dissertation is the design, constructing,

deployment, and performance evaluation of Web services when employed

in system that generate large amounts of data. To carry out this study, Web

services have been applied in mobility systems for the Ambient Assisted

Living.

 To reach this main objective the following intermediate objectives

were define:

• Study of the state of the art, about Web services, Advanced

Message Queuing Protocol, Message Queuing Telemetry Transport

and Ambient Assisted Living (AAL);

• Detailed analysis of the RESTful Web services and RabbitMQ;

• Requirement analysis of Web services and message queuing

protocols considering ambient assisted living (AAL) environments

with mobility support;

• Proposal, deployment, and validation of the system based on

requirements analysis;

• Performance evaluation of Web services and RabbitMQ

considering an AAL system with mobility support.

1.4. Main Contributions

This section is devoted to the scientific contributions of this

dissertation to the stat-of-the-art on Web services and Advanced Message

Queuing Protocol (AMQP). The main contribution is the Performance

Evaluation of RESTful Web Services and AMQP Protocol that presents a

performance comparison study of RESTful Web services and the AMQP

Protocol considering exchanging messages between client and server. The

study is based on the averaged exchanged messages for a period of time.

Introduction

11

This study was presented at The Fifth International Conference on

Ubiquitous and Future Networks (ICUFN 2013), Da Nang, Vietnam, July 2-5,

2013.

1.5. Dissertation Structure

 This dissertation is organized in five chapters. This Chapter, the

first, presents the context of the dissertation, focusing on the topic under

study, the problem definitions, the objectives, the main contributions and

the dissertation structure.

 Chapter 2 - Related Work – Presents the literature review on Web

services, Advanced Message Queuing Protocol, Message Queuing Telemetry

Protocol and Ambient Assisted Living. Referring some of the work done in

each of the topics mentioned above.

 Chapter 3 – Requirements Analysis – This chapter presents the

design and implementation of the system architecture developed. Presents

the system architecture, the conceptual design of the system proposed and

the technologies used in the development of proposed application.

 Chapter 4 – Performance Evaluation – This chapter presents the

comparison between the implemented services and equivalents, and

between communication protocols implemented. It also focuses on the

demonstration of the system and evaluates the performance of two

approaches developed that will be integrated into applications AAL.

 Chapter 5 – Conclusions and Future Work – Concludes the

dissertation and presents a few remarks for future work.

Related Work

13

2. Related Work

In order to fully understand the context of the thesis objectives and

have an awareness of the state-of-the-art, it is required to approach the

related work, as a study of the literature review.

This chapter presents the literature review. In section 2.1 is

presented the literature review in Web services with reference to multiple

Web service technologies, making a comparison between the two most

widely used. Section 2.2 present the literature review in Advanced Message

Queuing Protocol focusing interest in the RabbitMQ, used in the

development of this thesis. In section 2.3 is presented the literature review

in Message Queuing Telemetry Transport protocol can also be used with

RabbitMQ. Finally, section 2.4 presents the literature review in Ambient

Assisted Living, area chosen to implement Web services and RabbitMQ to

evaluate their performance.

2.1. Web Services

The predecessors, such as the Common Request Broker Architecture

(CORBA), Remote Method Invocation (RMI) and Distributed Component

Object Model (DCOM), Web Services is a set of standards and programming

methods for the exchange of data between different software applications,

Web services also is a standardized way for distributing services on the

Internet [14].

In the last years, Web Services technologies have been used

successfully to simplify interoperability, while providing scalability and

flexibility in various applications, including distributed simulation software.

Related Work

14

The W3C [16] defines a Web service as a method of communication

between two electronic devices over a network, it is a solution used in

systems integration and communication between different applications.

With this technology it is possible that new applications are able to interact

with those that already exist and that systems developed across different

platforms are compatible. Primarily, the Web service makes the resources

of the software application available on the network in a standardized way.

In current collaborative environments, Web Services seems to be a

privileged means to interconnect applications across organizations, even if

those organizations use different operating systems, different hardware,

and different programming languages. Web Services are software systems

projected to support interoperable machine-to-machine interaction over a

network [17] by using URI (Uniform Resource Identifier) on the distributed

environment of internet. They are modular applications with interface

descriptions that can be published, located, and invoked across the Web

[18].

Web Services they became gradually popular method of managing

inter-system communications through networks, with the ubiquity of HTTP,

XML, and JSON in modern computing. A Web services-based architecture

results in complex system that demands coordination, communications, and

distributions among loosely coupled system with dependent users in order

to provide scalability, flexibility and extensibility. In its simplest form, Web

services refer to software components that support interoperability

between computer systems connected over communications network. The

key elements of Web Services include, HTML, XML, JSON, SOAP, UDDI,

WSDL.

The potential widespread use and benefits of Web Services are very

compelling, because they facilitate:

• Automation of business processes distributed across multiple

enterprises;

• Collaboration among multiple enterprises by coupling together

the business processes running on their various computers.

Related Work

15

The Web Service technology has become an industry standard for

connecting remote and heterogeneous resources, mobile devices have

become a vital part of people’s everyday life. People use mobile devices

anytime and anywhere, they may use their mobiles to check Email, access

the Internet, or run other Web applications.

A Web service is a piece of business logic, located somewhere on the

Internet, that is accessible through standard-based Internet protocols such

as HTTP or SMTP [19]. Using a Web service could be as simple as logging

into a site or as complex as facilitating a multi-organization business

negotiation.

There is a multitude of Web services and applications programming

interface (APIs) available on the Web offer a wider variety of various

services and generally, has considerable semantic overlap between them,

where several Web services deliver basically the selfsame functions. This

superimposed feature allows redundancy in the ecosystem of Web services

and offers developers the chance to transfer from one API to another while

the API initially used is not available or inadequate for their requirements.

To help the innovation of similar APIs, many novel methods are being

developed to finding the Web services, including query-based methods

relying on keywords and identifiers [20], [21], clustering [22] and more

detailed structure matching [23], [24].

REST (Representational State Transfer), the architectural style

underlying the Web [25], has gained acceptance as an alternative way to

develop Web services [26]. This trend is witnessed by several deployed

RESTful Web services in the industry, such as Amazon S3 and Facebook API,

as well as active researches and studies on REST Web services [27], [28],

[29].

RESTful Web Services are earning more and more approaches. They

are used as application programming interfaces (APIs) for Web Services 2.9,

and are considered a more flexible and lighter-weight alternative to the so-

called Big Web Services [30].

Related Work

16

RESTful Web Services technical topics become popular because the

REST style includes a global identifier of all resources (eg, a uniform

resource identifier) and the customer only need to know this handle and

the action required. He must also know the right format of representation,

which is typically an HTML, eXtensible Markup Language (XML) or JavaScript

Object Notation (JSON) meta-data. RESTful Web services (REST APIs)

specify a set of resources, which includes three components: the URI of the

Web service, the data type supported (JSON, XML, etc.), and the support

operations through HTTP methods.

Much research has been done in the field of developing RESTful

applications. Richardson and Ruby [26] provide best practice examples and

hints on how to develop RESTful applications.

Kopecky et al. [31] present hRESTS as a solution for missing machine-

readable Web APIs of RESTful services. They argue that a micro format is

the easiest way to enrich existing human-readable HTML documentations.

They introduce a model for RESTful services, but with a focus on

documentation and discovery.

Alarcón and Wilde [32] introduce a metamodel for descriptions of

RESTful services which is the basis for the Resource Linking Language. They

focus on service documentation and composition.

Furthermore, Liu et al. [33] introduce an approach for reengineering

legacy systems to RESTful Web Services. They outline the key issues in this

area and propose a solution that covers identification of resource

candidates, relation and operation analysis, URI and representation design,

as well as service construction. In their opinion, the key problem is to find

the right granularity for the resources.

In the domain of model driven development, Laitkorpi et al. [28]

propose a process for designing RESTful services that focuses on a model

based identification of the resources and on generating corresponding

WADL descriptions.

Mayer and Lubke [34] also highlight the need to bring formal testing

and validation into the area of Web applications, pointing out that many of

Related Work

17

the existing tools for BPEL Testing concentrate only on black box testing, to

the exclusion of any kind of white box testing.

In [35], they discussed a number of areas in which Web services

create additional testing problems. They conclude that Web services need

to confront additional problems of scale, such as work flow complexity,

volume of data, number of nodes, complexity of operations and differences

in usage patterns.

C. Riva et al. [36] investigate how to apply the REST principles to the

design of mobile services. They identified several issues such as latency and

data format that need particular attention when applying REST concepts to

mobile environment. However, they only focused on consuming RESTful

Web Services on mobile devices and did not address the provision of Web

Services from a mobile host.

Web Services technology recognizes mobile computing as an area to

which it should expand. Through integration, Web Services enable

pervasive accessibility by allowing for user mobility as it overcomes the

physical location constraints of conventional computing. However, mobile

computing also requires a technology that connects mobile systems to a

conventional distributed computing environment. Web services may be the

perfect candidate for such connections, since a strong interoperable

capability is the key requirement of the technology. The integrations of

mobile computing with Web Services technology will give many advantages

to both sides.

Mobile computing and Web Services are becoming popular in

collaboration systems, with mobile computing adding heterogeneity to

collaboration systems and Web Services providing interoperability. Mobile

computing has largely improved in recent years, applying traditional Web

Services (i.e. SOAP-based services) models to mobile computing may result

in unacceptable performance overheads.

Related Work

18

2.1.1. Web Services Platform Elements

Web services are a set of tools that can be used in a number of ways.

The three most common styles of use are the Remote Procedure Calls

(RPC), Service-Oriented Architecture (SOA) and Representational State

Transfer (REST).

RPC – Remote Procedure Calls

RPC Web services present a distributed function (or method) call

interface that is familiar to many developers. Typically, the basic unit of

RPC Web Services is the WSDL operation.

• WSDL

The WSDL (Web Services Description Language) [37] Is a specification

developed by W3C that describes the Web Service according to an XML

format, working as a contract of service. The WSDL is extensible to allow

description of services and their messages regardless of message formats

and network protocols that are used. However, it is common to use the

MIME (Multipurpose Internet Mail Extensions) and SOAP.

The WSDL describes the service available on the network through a

semantic XML, this provides the necessary documentation to be called a

distributed system and the procedure required for this communication is

established. While SOAP specifies the communication between a client and

a server, the WSDL describes the services offers.

A WSDL description contains all the details of a Web Service,

including the service’s URL, the communication mechanisms it understands,

what operation it can perform and the structure of its messages.

• SOAP

 Simple Object Access Protocol is a protocol for exchanging

structured information in a decentralized and distributed platform. It is

Related Work

19

based on Extensible Markup Language (XML) to format the messages, and

usually based on other application layer protocols, most notably in Remote

Procedure Call (RPC) and HTTP for trading and messaging, using GET/POST

over HTTP, allowing the data to be exchanged independent where the user

is in the network.

SOA – Service-Oriented Architecture

Web Services can also be used to implement architecture according

to service-oriented architecture (SOA) concepts, where the basic unit of

communication is a message, rather than an operation. This is often

referred to as “message-oriented” services.

In the traditional client server world, we had the server offering

some functionality that could be used or called by the client. Some kind of

look up service acted as a broker between the client and the server.

Since Web Service represent just another paradigm for distributed

applications, they consist of the same three components [1]:

• A service broker that acts as a look up service between a service

provider and a service requestor. This is a logically centralized

directory of services.

• A service provider that publishes its services to service broker.

The service provider implements the service and makes it

available on the Internet.

• A service requester that asks the service broker where to find a

suitable service provider and that binds itself to the provider.

This is any consumer of the Web Service. The requester utilizes

an existing Web Service by opening a network connection and

sending any request.

Each Web Service has an API that can be accessed over the network

and executes the Web service at host location. Every service provides a

role, such as service provider, a requester or a broker. In other words, Web

Related Work

20

Services make possible the effective processing or machine readable

information.

The Figure 4 illustrates the relationships between the Web Services

components.

Service
Requester

Service
Broker

Service
Provier

Find Publish
Internet

Bind

Service
Description

Web
Service

Figure 4. Service Oriented Architecture (SOA) diagram.

• WCF

Windows Communication Foundation (WFC) [38] is the Microsoft

platform available since –NET Framework 3.0, used to handle the

communication between systems. WCF is a union of a Web Service, and

Remoting, all in a single platform, simple to use, robust and easy

integration.

 WCF is designed in accordance with service oriented architecture

principles to support distributed computing where consumers consume

services. A WCF client connects to a WCF service via an EndPoint. Each

service exposes its contract via one or more endpoints. An endpoint has an

address with a URL specifying where the endpoint can be accessed, and

binding properties that specify how data will be transferred. An endpoint

(Figure 5) contains three main features called ABC (Address, Binding and

Related Work

21

Contract). An analogy for these features is that the Address is where the

service is hosted, Binding is how the service can be accessed, and the

Contract would be seen in service.

EndPoint

Address
(Where)

Binding
(How)

Contract
(What)

Figure 5. WCF endpoint – ABC (Address, Binding and Contract).

REST – Representational State Transfer

Roy Fielding introduced the term REST in his PhD dissertation [25],

where he referred to “hypermedia as the engine of application state”. This

means that a resource is expected to contain hyperlinks. These hyperlinks

are the method by which a transition can take place that changes the

resource state or transfers to another resource. While hyperlinks are

commonplace in (X)HTML applications meant to be used by humans, they

have not typically been used in XML, which is meant to be consumed by

machines. Like (X)HTML, REST Web Services make use of hyperlinks in XML.

 To understand REST, it is necessary to understand the definition of

resource, representation and state. A resource can be anything, may be a

physical object or an abstract concept. Usually a resource is something that

can be stored on a computer and represented as a stream of bits. A

representation is any useful information about the state of a resource. A

resource may have multiple different representations. In REST there are

Related Work

22

two types of state. One is resource state, which is information about a

resource, and the other is application state, which is information about the

path the client has taken through the application. Resource state stays on

the server and application state only lives on the client. Rest provides a set

of architectural constraints that, when applied as a whole, emphasizes

scalability of component interactions, generality of interfaces, independent

deployment of components, and intermediary components to reduce

interaction latency, enforce security, and encapsulate legacy systems.[25]

 In REST, the server is abstracted into a set of resources. A resource

is a nominal concept, so the modeling based on REST is noun-centralized,

which is a domain model [39]. Figure 6 shows the architecture of RESTful

Web Services. Client communicates with server via a uniform interface and

during the stateless communication; client and server swap features

depictions. Therefore, the REST design restrictions supply a standardized

method to develop an API wearing the HTTP protocol.

Client Server

HTTP Verb:
GET | POST | PUT | DELETE

HTTP Packet

Resource Representation

HTTPHTTP

Stateless Web Service Conversation

Figure 6. Illustration of RESTful Web Services architecture.

Old-style Web applications access methods using HTTP operations

(GET and/or POST). Contrasting with this, applications RESTful access

methods according to the following functions: create, read, update, and

delete (CRUD) style using the full range of HTTP methods (GET, POST, PUT

Related Work

23

and DELETE). Table 1 shows a mapping of HTTP methods to these CRUD

actions.

Thus, the RESTful design constraints provide a standardized way to

build an API using the HTTP protocol. This design includes correct use of

standard HTTP methods and return codes.

Table 1. HTTP Methods and their corresponding CRUD Action

HTTP Method CRUD Action

 GET Retrieve a resource

 POST Create a resource

 PUT Update a resource

 DELETE Delete a resource

RESTful Web Services can be depicted over the Web Applications

Description Language (WADL). A WADL file sets out the requirements that

can be legally directed to a service involving the service uniform resource

identifier (URI) and service data waiting and serves.

REST architecture is an architecture style for designing networked

applications [40]. Grounded in distributed hypermedia systems and

software engineering.

REST and Resource-Oriented Architecture (ROA) support a wide

range of representation formats, including plain text, HTML, XML, and

JavaScript Object Notation (JSON).

2.2. Advanced Message Queuing Protocol (AMQP)

The Advanced Message Queuing Protocol (AMQP) is a open standard

middleware message. Accordance with the AMQP standard, middleware

products developing for various platforms and in various languages can

submit messages from one to another. AMQP is borne by a number of

Related Work

24

important companies, including JPMorgan Chase Bank, Cisco Systems,

Credit Suisse, Deutsche Börse Systems and Red Hat [41].

Advanced Message Queue Protocol (AMQP) originated in the financial

services industry in 2006 [41] [42] [43]. AMQP is an open standard for

Message Oriented Middleware (MOM) communication. AMQP grew out of the

need for MOM system integration both within and across corporate

enterprise boundaries.

 Although AMQP specification is not finalized yet, several products

supporting different drafts of AMQP exist today (Table 2), as the Red Hat,

VMware, Ltd and OW2 Consortium who use the 0-9-1 version of AMQP, the

Apache Software Foundation and the Stormmq who use the 0-10 version. It

is used to simplify critical tasks, for example, JPMorgan reported a AMQP

environment support 2,000 users on five continents to process 300 million

messages per day. Every products that are listed comes with client library

for different programming language, such, C++, Ruby, Java, and Python

[44].

Table 2. Products that support AMQP

Developer Product AMQP version

VMware, Ltd RabbitMQ 0-9-1

Red Hat Red Hat Enterprise MRG n/a

OW2 Consortium JORAM 0-9-1

Apache Software Foundaton Apache Qpid™ 0-10

Stormmq stormmq 0-10

The primary reasons for choose the AMQP as proprietary alternatives

are the following realize the savings commoditization brings, connect

applications on different platforms, connect to business partners using a

full featured open standard and position for innovations built upon the

foundations of AMQP.

AMQP enables applications to send and receive messages. In this

regard it works like instant messaging or eMail. AMQP differs enormously

from other available solutions comes from the fact that it allows the

Related Work

25

specification of what messages can be received and from, and how trade-

offs are performed with respect to security, reliability, and performance.

Systems built to integrate AMQP perform much better at functioning

unattended or “lights-out” than other solutions.

Systems built to integrate with AMQP are much better at functioning

unattended, or “lights-out”, than other solutions.

AMQP is different from other middleware standards because it is:

• Interoperable – All AMQP clients interoperate with all AMQP

servers. Diverse programming languages can communicate easily.

Legacy message brokers can be retrofitted to remove proprietary

protocols from your network. Messaging can be enabled as a

cloud service.

• Reliable – Capable of eliminating the communication gaps and

slowdowns between different platforms, critical systems and

applications components both within enterprise and out to

external systems and organizations.

• Unified – Provide a core set of messaging patterns via a single

manageable protocol.

• Complete – AMQP provides a wire level transport for applications

using that API. AMQP is broadly applicable and can be leveraged

by any language, and identifies both store-and-forward and

publish-and-subscribe semantics in on specification.

• Open – Vender and platform agnostic, and created by users and

technology provides working in collaboration.

• Safe – A secure solution to the problem of transporting value-

bearing messages across and between organizations, technology

platforms and a virtual cloud computing environment.

I will show the performance of RabbitMQ that implements the

Advanced Message Queuing Protocol standard. RabbitMQ is an open source

message broker and queuing server that can be used to let disparate

Related Work

26

applications share data via a common protocol, or to simply queue jobs for

processing by distributed workers.

RabbitMQ server is written in Erlang and is built on the Open

Telecom Platform framework for clustering and failover. The RabbitMQ

project consists of:

• The RabbitMQ exchange server itself;

• Gateways for HTTP, STOMP, and MQTT protocols;

• AMQP client libraries for Java, .NET Framework, and Erlang;

• A plug-in platform for custom additions, with a pre-defined

collection of supported plug-ins.

The main characteristics of RabbitMQ project include the following:

the RabbitMQ interchange server; gateways for protocols (HTTP, STOMP,

and MQTT); AMQP client libraries for .NET Framework, Java, and Erlang;

and a plug-in platform for personalized add-ons, with a pre-stated

collection of sustained plugins.

AMQP defines an efficient and flexible publish/subscribe interface

that is independent of the data model. AMQP uses a central server, or

broker, but the RabbitMQ implementation can be scaled linearly by

distributing the broker over multiple physical nodes [45].

With the creation of a group of publishers and subscribers can access

the nodes of messages, is possible to create an information network that

can span from small to very large scale in a local area, or over the large

geographical distance. The distribution of information sent from the

publishers to the hub to be distributed to the necessary subscribers allows

for applications to run while relying on data from other locations, wherever

they may be. This allows RabbitMQ to be useful in designing architectures

for small-localized systems to large, geographically dispersed interactive

systems.

Figure 7 presents the basic process of exchanging messages using

RabbitMQ.

Related Work

27

Consumer

Producer
Messages

Exchanges

Bindings

Queues

Topic Fanout Direct

Message Message Message Message Message

Q1 Q2 Q3 Q4 Q5

api_call*.s
ev
er
e logs.*

Figure 7. Illustration of the process of exchanging messages using RabbitMQ.

2.3. Message Queuing Telemetry Transport (MQTT)

Message Queue Telemetry Transport (MQTT) is a publish/subscribe

messaging protocol created in 1999. The idea of MQTT is to is to be

extremely simple and lightweight. It is designed for constrained devices

and low-bandwidth, high-latency or unreliable networks. The aim of MQTT

is to minimize network bandwidth and device resource requirements while

also attempting to ensure some level of reliability. MQTT is intended for

"machine-to- machine" (M2M) or "Internet of Things" world of connected

Related Work

28

devices and for mobile applications, where bandwidth and battery power

are at a premium [15].

MQTT is one the protocols supported by the IBM WebSphere Message

Broker products as a way of getting data in and put of the broker. The

protocol was designed specifically for remote telemetry applications, with

three specific design goals [46]:

1. It should offer a once-and-once-only assured delivery mode to

enable a message to be reliably transferred ail the way from a

remote sensor to a back-end applications;

2. The protocol should be as lightweight as possible across the

“wire”; most remote telemetry is done over low bandwidth, high

cost network, and so minimising the overhead of each message is

highly desirable;

3. The protocol should be very easy to implement on embedded

devices such as sensors and gateways.

The MQTT specification is openly published with a royalty-free

license. There is no need to pay royalties to any authority in order

implement and use the specification. Therefore, different companies have

implemented the principles described in MQTT specification in various

software products. Applications of MQTT differ from smart energy meters

or smartphones to cars, trains or personal health devices and other remote

sensors. They are connected to the central systems with the help of MQTT,

which it is often used for these purposes. The central systems process data

and emit control commands, which are sent back to the sensors over MQTT

as well [47].

Since MQTT follows the topic-based publish/subscribe paradigm, the

server decouples publishers and subscribers along the following three

dimensions [48]:

• Space decoupling: sender of the message does not have to know

the location of the receiver and even the number of receivers

and their identifiers.

Related Work

29

• Time decoupling: the participants do not have to interact at one

and the same time. The publisher can publish events before the

subscribers are connected and a subscriber may receive the

message even after the publisher is disconnected.

• Synchronization decoupling: publishers are not blocked while

producing events and subscribers can be asynchronously notified

while performing other concurrent operations.

Figure 8 presents an example of possible MQTT network topology.

There is a client, which acts as a publisher on the left hand side. When a

message with a defined topic is published, it is delivered to the server first.

The server forwards the message upon receiving to three subscribers on the

right hand side. It is assumed in this case, that all three subscribers are

subscribed to the topic of the particular message. Any client can act as a

publisher and subscriber at the same time.

Message

Message

Message

Message

Client
Publisher

Server Clients,
Subscribers

Figure 8. Example of MQTT network topology.

Related Work

30

The MQTT protocol has an open, published specification, which is

available for anyone to implement on a client device, and reference

implementations are available from IBM in Java[49] and C[50].

2.4. Ambient Assisted Living (AAL)

The recent process of demographic change, exposed in an aging

world population is reflected in the inversion of population pyramids, has

brought new challenges to which families, governments and society in

general are not prepared. Recent European projections [51] show a

significant increase in the rate of aging.

This scenario offers new chances for innovation, strengthening

research in scientific areas, the development of new approaches and

business opportunities for technology companies, particularly those that

already operate in the markets for products and services intended for

elderly populations with special needs.

It is indispensable to help aging with health, autonomy and

independence, allowing the aging to permanency active in the labour

market by the greatest quantity of time. For companies raises the question

of thinking elderly over the life, an approach more preventive and health-

promoting and guaranteeing the autonomy and quality of life of populations

[52]. A strong investment in new research activities, development of

products and services which guarantee and improve the quality of living

conditions at the level of health, safety, entertainment and communication

is now a necessity.

The concept of Ambient Assisted Living (AAL) is a change of paradigm

in the interaction person-computer. The transition of the personal

computer/device for a variety of devices capable of sensing, processing and

distributed computing environment and by a new paradigm that produces a

set of challenges related to the interaction of people with technology in

their environment.

Related Work

31

The concept of AAL and often perceived as [53]:

• An extension of time that the user can live in their preferred

environment through the improvement of autonomy, self-

confidence and mobility;

• Support the maintenance of the health status and functional

capacity of older persons;

• Promoting a healthy lifestyle for people at risk;

• Increased efficiency and productivity of the resources used in

aging societies.

AAL initiative promotes the use of technologies for helping elderly

people to maintain their autonomy, increasing their quality of life and

facilitating their daily activities, but bearing in mind that it is crucial

serving users in terms of usability. It is important to consider that an

important number of elderly people present disorders of memory,

orientation and cognition. Cases in which these disorders are severe need

holistic attention by caregivers; however, slight cases can achieve a

personal autonomy adapting technologies to the performance of their daily

activities and needs.

In this case, to offer to elderly people new ways for getting natural

and implicit services by using pervasive mechanisms we consider that the

integration of new technologies in these environments conveniently is the

key to improve the life quality of our independent or autonomous elders.

To achieve a smart environment, the deployed services must be adapted

and context-dependents.

AAL solutions intend to deploy technology approaches to assist

people with some kind of disease and older people to living independently

in their daily life [54]. ALL products and services have a huge potential not

only to enhance the independence and quality of life of elderly population

and patients, but also to greatly reduce the costs associated with health

care services [53]. Numerous targets have been proposed by the major AAL

stakeholders [55], [56].

Related Work

32

Figure 9 shows	
 the main topics related to Assisted Living

Environment, and their utilities, as well as technologies and techniques

that can be implemented to achieve the objectives of the Ambient Assisted

Living.

Frailty
Dementia
Potential
diseases

Medical
treatment

Chronic diseases
Vital Signs

Risk trends
Health Alarms

Physical Rehab.
Emotional

comp.
Psychology

Social
relationships

Daily activities
support

Activ
ity

Recognitio
n

AAL
Home-Care

Intelligent User Interfaces
Knowledge Management

Context-Awareness
HCI Design for All

Prevention

Supervision

D
etection

In
cl

us
io

n

Su
pport

Health Monitoring

Sensors
Mobile Computing
Video Recognition

Near Field Communication

TechnologiesTechniques

Figure 9. Topics, techniques and technologies applied in Ambient Assisted Living.

In terms of prevention, AAL systems can be considered for different

situations, such as falls, physical immobility, monitoring of activities of

daily living, occupying spaces at home, behaviour analysis, and other

possibilities [57], [58], [59], [60] . All improvements on each of these

scenarios are an important step towards the development of more effective

and secure solutions enabling the further development of new mechanisms,

products and even services [61]. However, to achieve these objectives, it is

necessary to take into account developments of several distinct areas. On

the one hand, mobile devices, including sensors, will be of great

Related Work

33

importance to provide the ability to realize the environments they require.

In terms of network devices, it is necessary that they are able to

accommodate devices that support and dynamic way communication

between them, regardless of their characteristics or features in an

integrated manner. Another area of great importance is the ubiquitous

computing, where it is expected that mobile devices may evolve towards

greater autonomy and mobility, making it easier and more comfortable to

carry. In terms of human-machine interaction, will be fundamental to the

continued development of natural interfaces to humans, such as speech,

gestures or even thoughts that allow minimal interaction, and possibly

without the awareness of their interaction by the user. Finally, the area of

Artificial Intelligence will contribute in various levels. Specifically, there is

interest here in adaptation tools and learning environments that can

provide them with the ability to learn the routines and preferences of the

user in a manner not invasive in order to adapt their actions.

Based on recent developments in technology (especially in terms of

mobile solutions) and given the increased rate of aging of the population

and their needs, several solutions are emerging for AAL. Currently, it

represents one of the most important topics of research and development,

at both national and international level [62], [63], [64]. In this type of

solutions the accessibility, usability, and learning process play an extremely

important role [65].

Several relevant statistical information, are presented and discussed

in [53]. It analyses the market size of the current AAL and eHealth in

Europe. According to Silva et al. [66], it is possible to understand the

impact of specific contributions of Information and Communication

Technology (ICT) in the health sector, such as electronic health records

(EHR) and ePrescribing systems. This report concludes the scale of returns

on the socioeconomics and return on investment, concluding that EHRs and

ePrescribing investments are beneficial to improving health. Several case

studies are also presented and discussed.

Related Work

34

Recently, Hristova et al. [67] presented a prototype system including

a set of health services, such as monitoring heart rate, prescription

medications, generating a schedule reminders, and emergency

notifications. Flynn et al. [68] developed a wireless bio monitor, which

integrates wearable sensors, blood volume pulse and electrocardiogram

(ECG). On the other hand Stelis [69] has developed a system capable of

providing location data of people associated with tools and alarm

notifications.

In [70] the authors intends to develop a falls detector to be used in

residences for seniors. The system uses an infrared sensor to monitor a low

resolution for division. When an individual who falls into this division in the

system automatically activates a process aid by sending a message to a

caregiver. The Peach project [71] explores how health professionals can

treat ulcers in the feet remotely through the use of images and video. With

the use of ICT professional clinics can follow treatment progress despite

the distance. In the framework of the project we developed a platform

that allows the sharing of images and video.

The i2Home [72], based on industry standards and already existing

development. Focuses on domestic use of devices (including consumer

electronica) by people with cognitive difficulties and older people. I2Home

simultaneously takes into account that the access strategies, developed

and standardized, will apply to areas beyond the home. For that developed

a standard, ISO 24752 (Universal Remote Console - URC), allows for easy

integration of any user interface to any device or service.

The project Bedmond [73] aims to develop a system for continuous

monitoring of the activities of day-to-day life of elderly thus allowing early

detection of diseases neurodegenerative. The data collected will be used

for an early diagnosis and for monitoring disease progression. This project

has as one of its central blocks the ISO 24752 standard.

Requirements Analysis

35

3. Requirements Analysis

This chapter presents the design and implementation of the system

architecture developed. Section 3.1 presents the conceptual design of the

system proposed and then presenting UML diagrams of the main actions and

procedures. Section 3.2 presents the system architecture. Finally, section

3.3 presents the technologies used in the development of proposed

application.

The analysis of requirements is an essential process for the

development of a product, because is in the analysis of requirements that

is define precisely the objectives to develop. When it comes to developing

software, it is of extreme importance for all the analysis requirements will

constrain both the software as its final operation.

3.1. Essential Requirements

In this section I will present the entity-relationship model and some

UML diagrams, including activity and sequence diagrams.

The Unified Modeling Language (UML) is a graphical language for

visualizing specifying, constructing, and documenting the artefacts of a

software-intensive system. The UML offers a standard way to write a

system’s blueprints, including conceptual things such as business processes

and system functions as well as concrete things such as programming

language statements, database schemas, and reusable software

components.

Requirements Analysis

36

3.1.1. Entity-Relationship Model

 The entity-relationship model (ER model) is a way to unify the

network and relational database views. An ER model is an abstract way to

describe a database proposed in Peter Chen’s 1976 paper [74]. Diagram

created to design these entities and relationships are called entity-

relationship diagrams or ER diagrams. These models are used to describe

information needs or the type of information that is to be stored in a

database.

 Figure 10 show the entity-relationship diagram based in IDEFIX [75]

notation of the database developed and implemented in MySQL for testing

the Web Services and the Advanced Message Queuing Protocol.

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- percentagemO2 DOUBLE

PercentagemO2

- idUser INT <<PK>> <<FK>>
- nome VARCHAR(45)
- telefone VARCHAR(45)
- mail VARCHAR(45)

Contactos

- username VARCHAR(20) <<PK>>
- password VARCHAR(45)

Autenticacao

- id INT <<PK>>
- nome VARCHAR(45)
- dataNascimento DATE
- peso DOUBLE
- altura DOUBLE
- user VARCHAR(20) <<FK>>

Perfil

idQ INT <<PK>>
idUser INT <<FK>>
dataHora TIMESTAMP
eeg DOUBLE

Electroencefalograma

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- forcaG DOUBLE

Queda

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- pressaoAr DOUBLE

PressaoDoAr

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- gsr DOUBLE

GSR

- idQ INT <<PK>>
- idUser INT <<FK>>
- dataHora TIMESTAMP
- ecg DOUBLE

Electrocardiograma

1 0..110..1

1

1

1

1

1

1

1
1

0..1

0..1

0..1

0..1

Figure 10. Entity-Relationship Diagram based in IDEF1X notation.

Requirements Analysis

37

3.1.2. Activity Diagrams

The activity diagrams are used to describe the business operational

components of a system step-by-step, and the overall flow of control.

Currently, Web services are gradually included in applications, and

consume information, regardless of user location. Web Services triumph the

goal with a technologically neutral way, which provides well-defined

interfaces for dispersed resources, which are not dependent of the

operating system, hardware platform and programming languages. Then

dispersed resources or services that can be run on distinctive hardware

platforms, on various operating systems, or even can be written in various

programming languages communicating using Web services interfaces.

Web services are not the most suitable solution in case there is the

exchange of huge amounts of messages daily because if the server has little

processing power, the customer is waiting the response from the Web

service to send the next message, thus existing the possibility of lost data

during runtime of the application. Given this problem, it becomes

necessary to use another service, in this case the RabbitMQ, which allows

you to store messages in a cloud environment, and only subsequently or

simultaneously through a back-end service go get the messages, analyze

them and store the that interest.

In this project have been implemented the two cases, the Web

service and RabbitMQ server. The activity diagrams presented in the

following pictures show the operational components for each of the cases

explaining each step-by-step operation of systems and how they are

controlled.

Figure 11 describes a request workflow and sends processes through

Web services. When a node needs to send or receive information, the

requests go directly to the database. The requester or sender makes the

solicitation in REST, the server will unfold the request to whether it is a

request for data or to data store, and if it was a request for data, the

Requirements Analysis

38

server sends the data directly from the database, otherwise if it was to

store data, the server will save the data directly in the database.

Web services
receives the
solicitation

Send data?

False

True Web services send
the data

Request or Send
data

end

Web services workflow

Requester
/ Sender

Node

Solicitation sent to
Web services

False

True
Receive data? Web services

receives the data

Figure 11. Request / send path to the Web services activity diagram.

Figure 12 shows the activity diagram of the RabbitMQ request and

data sending. All the solicitations should go first through the RabbitMQ

before reach the database either sending or receiving. When a node sends

Requirements Analysis

39

information the RabbitMQ will put the message in a stack, then, when a

request is made it will go directly to the stack. Messages will be stored in

the RabbitMQ until they are consumed.

Data sender
request

Data sent to
RabbitMQ

RabbitMQ stores
data in the stack

RabbitMQ have
messages in the

stack?

Any connection
requesting data?

False

True

RabbitMQ send
data to the
requester

RabbitMQ
"Pause Mode"

Request data

end

Sender
Node

Request Data

Requester
Node

Request sent to
RabbitMQ

False

True

Send Data

RabbitMQ workflow

Figure 12. Request and sender path to the RabbitMQ activity diagram.

Requirements Analysis

40

3.1.3. Sequence Diagrams

The sequence diagram shows how processes interact, every sequence

diagram is important, but some have more importance those others.

Figure 13 shows the communication process between the client, the

Web service, and the database. Initially, the client, a mobile application,

makes a request to the Web service, i.e., calls one of the methods

implemented, which can be a method of inserting or querying data.

Thereafter, the Web service processes the received data and sends them to

the database where they will be stored. Finally the database sends a

response to the Web service, and this to the client, in order to the client

knows if your request was successfully or unsuccessful performed.

Client Web service Database

Send request / Call Method

Confirmation

Confirmation

Insert / Get data

Process data

Figure 13. Sequence Diagram – Communication between Client (Mobile Application)
and Web service to insert or get data in / from database.

Figure 14 presents the communication process between the client, a

mobile application, and RabbitMQ server. In this process the client sends

data into the RabbitMQ, which subsequently confirms to the client that the

data was received or not. May be observed that using the RabbitMQ server,

the client only has the possibility to send data being the query carried out

merely using the Web service.

Requirements Analysis

41

Client RabbitMQ Server

Send data

Confirmation

Figure 14. Sequence Diagram – Communication between Client (Mobile Application)
and RabbitMQ Server.

In Figure 15 is presented the process of communication between the

back-end service, the RabbitMQ server and the database. Initially, the

backend service makes a request to RabbitMQ with the aim of receiving the

data that are stored in the server queue. The RabbitMQ responds by

sending to service an array with all the contents of the queues.

Subsequently, the back-end service will insert the data in the database

waiting for the answer about the success or failure of insertion.

Back-end Service RabbitMQ Server Database

Get data

Array

Confirmation

Insert data

Figure 15. Sequence Diagram – Communication between Back-end service and
RabbitMQ server and database.

Requirements Analysis

42

3.2. System Architecture

Two different approaches have been developed to effect the

exchange of messages between the client and the database. Initially

created a Web service to which the user sends requests to send and receive

data. It was subsequently installed a RabbitMQ server that uses the

protocol Advanced Message Queuing Protocol, to where the client will send

the messages. Was also implemented a back-end service that will consume

messages on the server RabbitMQ.

Figure 16 shows a scenario that illustrates the global system

architecture. The user can choose to send messages using a Web service or

a service of message queuing. For one thing, if the user chooses to submit

messages through the Web service, this will automatically store the

messages in database. On the other hand, if the user choose to submit

messages through message queuing service is need to use a back-end

service to pick up the messages to the message queuing service and then

send them to the database.

Web Server

DataBase

Message Queuing

Back-End Services

User

Figure 16. Illustration of the global system architecture.

Requirements Analysis

43

In system architecture the Web Server runs a RESTful Web service

architecture built on java language with which the user communicates to

send and receive data, i.e., the user makes HTTP requests to the Web

service in order to call the method necessary to insert or query data. With

regard to Message Queuing protocol has been implemented AMQP

(Advanced Message Queuing Protocol), which requires the installation of a

RabbitMQ server. The back-end service was developed in Java and was used

to send and get messages from RabbitMQ server and insert them into the

database. Finally the database was developed in MySQL language and was

used to hold all the system data. The user was a mobile application that

communicates with the Web Service through HTTP requests and makes

requests through the AMQP port to communicate with the service for

message queuing.

3.3. Used Technologies

In the proposed system have been used diverse technologies. The

NetBeans IDE has been used to develop and running services for sending

and receiving messages. The Web service was developed in Java and runs

on Glassfish server version 3.1, a Web server open-source application. To

implement AMQP, a protocol application layer open standard for message-

oriented middleware, was necessary to install a RabbitMQ server, a

message broker software open source that stores messages in a cloud

environment, and also develop a Java application to send and consume

messages from RabbitMQ server. The database where messages are stored

was created using a management system relational database, MySQL, also

using MySQL

Performance Evaluation

45

4. Performance Evaluation

This chapter presents the comparison between the implemented

services and equivalents, and between communication protocols

implemented. As well focuses on the demonstration of the system and

evaluate the performance of two approaches developed that will be

integrated into applications AAL.

Initially, in Section 4.1 presents a comparison between the two

styles of Web services, SOAP and REST, referring the strengths and

weaknesses of each. Yet in this section is presented the comparison

between the two languages most used by Web services, and also presented

the strengths and weaknesses of each of them. Section 4.2 shows the

comparison between two different protocols of message queuing, MQTT

and AMQP, referring some of the most important points, such as safety and

the size of messages and others. In the Section 4.3, are presented the

system demonstration and validation, which are presented in more detail

the Web service, the RabbitMQ server and back-end service. Finally,

Section 4.4 shows the performance evaluation of the system, where is

made a comparison between the two systems implemented through several

tests performed for the purpose.

4.1. REST versus SOAP

The philosophies of SOAP and RESTful Web Services are very

different. Strictly, SOAP is a protocol for XML-based distributed computing,

whereas REST adheres much more closely to a Web-based design. SOAP

requires a greater implementation and understanding effort of the client

Performance Evaluation

46

side to difference of REST based APIs, which focus these efforts on the

server side. SOAP by itself is not that complex, it can get complex,

however, when it is used with its numerous extensions.

Table 3 shows the main strengths and weaknesses for both SOAP and

REST [76].

Table 3. Strengths and Weaknesses for both SOAP and REST.

SOAP

Strengths Weaknesses

• Language, platform, and transport

agnostic

• Design to handle distributed

computing environments

• Is the prevailing standard for Web

services, and hence has better

support from other standards

• Conceptually more difficult

• More “heavy-weight” than REST

• More verbose Harder to develop,

requires tools

REST

Strengths Weaknesses

• Language and platform agnostic

• Much simpler to develop than

SOAP

• Small learning curve, less reliance

on tools

• Concise, no need for additional

messaging layer

• Closer in design and philosophy to

the Web

• Assumes a point-to-point

communication model

• Not usable for distributed

computing environment

• Lack of standards support security,

policy, reliable messaging

• Tied to the HTTP Transport model

Applying the traditional models of mobile communications may

simply result in failure in terms of performance. First the encoding and

decoding of verbose XML-based SOAP messages consumes important

resources, endangering the performance. Then comes the issue of

Performance Evaluation

47

communications, Wi-Fi, 3G/GSM are not as efficient and quick as wired,

reverting to the processing speed and limited memory and battery

problems.

Along with WSDL and XML Schema, SOAP has become the standard

for exchanging XML-based messages. SOAP was also designed from the

ground up to be extensible, so that other standards could be integrated

into it, and there have been many, often collectively referred to as WS-*.

REST is an ancient philosophy more than a new technology. While

SOAP looks to drive the next phase of Internet development with a series of

new specifications, the REST philosophy advocates that the existing

principles and protocols of the Web are enough to create robust Web

services. This means that developers who understand HTTP, XML and JSON

can start building Web services immediately, without any toolkits beyond

that normally uses for the development of Internet applications.

The main point of the REST methodology for write Web services is

using an interface that is already well known and used widely: the URI. For

example, exposing a stock quote service, in which a user enters a stock

ticker, to return to a real time price can be as simple as a script on a Web

server accessible via the URI.

This interface method has significant advantages over SOAP-based

services. Any developer may discover how to create and modify the URL to

access the different Web resources. SOAP, on the other hand, requires

specific knowledge of a new XML specification, and most developers will

need a toolkit to make SOAP requests and analyse the results.

Other advantage is that the RESTful interface requests and responses

can be short. SOAP requires an XML wrapper around each request and

response. After typing and namespaces are declared a stock quote from

four or five digits in a SOAP response may require more than 10 times as

many bytes as would be the same answer in REST.

To compare the performance between REST and SOAP an experiment

was performed. The test consists of sending messages through twenty-four

users over a period of 30 minutes to the Web service REST and SOAP and

Performance Evaluation

48

then store them in the database. The test was performed with the Web

services installed in Mac OS X server running a virtual machine with

Windows 7 Professional operating system and with a processor Inter (R)

Xeon(R) CPU 2.67GHz and 1GB of RAM memory Mac. Results are present in

Table 4.

Table 4. Results of the Performed Experiment to Compare SOAP with REST Web
Services.

Users

Number of messages

stored in database

Average messages

sent per second

SOAP 24 192060 106.7

REST 24 223740 124.3

The evaluation results demonstrate the performance advantages of

using Web service REST in contrast with Web service SOAP. The Web

services REST are faster than Web service SOAP to transmit messages. Like

previously mentioned, this experiment confirms the fact that the XML SOAP

require a wrapper to each request and response makes the communication

slowest, because is necessary to use parsers to read the transmitted data.

SOAP proponents assert that strong typing is a necessary feature for

distributed applications. In practice, however, both the request for the

service and knowing the types of data ahead of time, thus transferring that

information requests and answers is gratuitous.

Perhaps the most interesting aspect of REST vs. SOAP debate is the

security angle. While the field of SOAP insists that sending remote

procedure calls through the standard HTTP port is a good way to safeguard

support of Web services across organizational boundaries, REST followers

argue that the practice is a major design failure that compromise network

security. REST calls also go over HTTP or HTTPS, but with REST the

administrator (or firewall) may discern the intent of each message,

examining the HTTP command used in the request, e.g., a GET request can

always be regarded as safe because it cannot, by default, modify the data.

It can only query data.

Performance Evaluation

49

A typical SOAP request, on the other hand, will use POST to

communicate with a particular service. And without seeing the SOAP

envelope, a task that is both resource-consuming and not built into most

firewalls, there is no way of knowing if the application simply wants to

query data, or delete entire tables from the database.

Regarding the authentication and authorization, SOAP puts the

burden on application developer's hands. The REST methodology instead

ignores the fact that Web servers already have support for these tasks. By

using industry-standard certificates and a common identity management, as

a Lightweight Directory Access Protocol (LDAP) server, developers can

make the network layer do all the heavy lifting. This is not only useful for

developers, but it relieves the weight on administrators who can use

something as simple as the files Access Control List (ACL) to manage its

Web services just as you would any other URI.

Making calls to an REST/HTTP API is significantly easier than making

calls to a SOAP API. The latter requires a client library, a stub and a

learning curve. The first is native to all programming languages simple and

involves the construction of an HTTP request with appropriate parameters

appended to it. Even psychologically former seems much less effort.

Most programming languages make it extremely easy to expose a

method using SOAP. The SOAP server library does the serialization and

deserialization. To expose the methods of an object as an HTTP API can be

relatively more difficult, since it may require serialization of output to

XML. Doing the REST API involves additional work to map URI paths to

specific handlers to import and the meaning of the HTTP request in the

scheme of things. Off course there are many frameworks to make this task

easier. However, starting today, it's even easier to expose a set of methods

using SOAP, which is to expose them through regular HTTP.

Since HTTP based/RESTful APIs can be consumed through simple GET

requests, intermediate proxy server/reverse proxy can cache the answer

very easily. On the other hand, SOAP requests use POST and require a

complex XML to be created, which caches the response difficult.

Performance Evaluation

50

Rest is not perfect

REST is not the best solution for each Web service. Data that need to

be safe should not be sent as parameters in URIs. And large amounts of

data, such as purchase orders in detail, can quickly become cumbersome or

even outside the boundaries within a URI. In these cases, the SOAP is

actually a solid solution. But it is important to try REST first and resort to

SOAP only when necessary. This helps keep the development of simple and

affordable.

One comparison has been performance in [77], between SOAP

framework and RESTful framework. The comparison demonstrate that

RESTful Web services prove to be more suitable for mobile environment

because it doesn’t require large weight parses, witch supports caching and

will save the limited network bandwidth, increase scalability and

reliability, and doesn’t consume a large amount of mobile resources.

4.1.1. Markup Languages

In this sub section I will present the two languages most used for

Web services, the JavaScript Object Notation (JSON) and the eXtensible

Markup Language (XML). Initially I will present shortly each of the

languages and subsequently reference their strengths and weaknesses.

JavaScript Object Notation (JSON)

 JSON is a lightweight, text-based, language-independent data

interchange format. It was derived from the ECMAScript Programming

Language Standard. JSON defines a small set of formatting rules for the

portable representation of structured data [78].

 JSON is built on two structures, a collection of name/value pairs and

an ordered list of values. A collection of name/value pairs, is realized as an

object, record, struct, dictionary, hash table, keyed list, or associative

array. An ordered list of values is realized as an array, vector, list, or

sequence.

Performance Evaluation

51

The simplicity of JSON has resulted in its widespread use, especially

as an alternative to XML. One of the claimed advantages of JSON over XML

as a format for data exchange in this context is the fact that it is much

easier to write a JSON parser. This was important for the acceptance of

JSON within the community due to the presence of this feature of

JavaScript on all Web browsers today.

eXtensible Markup Language (XML)

XML is a set of rules for encoding documents in machine-readable

form. Originally designed to meet the challenges of large-scale electronic

publishing, XLM is also playing an increasingly important role in the

exchange of a wide variety of data on the Web and elsewhere. XML is a

simple, very flexible text format derived from Standard Generalized

Markup Language (SGML) [79]. The XML is defined in the XML 1.0

Specification [80] produced by the W3C, and several other related

specifications.

The design goals of XML emphasize simplicity, generality, and

usability over the Internet. It is a textual data format with strong support

through Unicode for the languages of the world. Although the design of XML

focuses on documents, it is generally used for the representation of

arbitrary data structures, for example in Web services.

Strengths of JSON

JSON is simple and already well defined. Many people can generate

invalid JSON (without quote identifiers, use single quotation marks, the use

of a Byte Order Mark (BOM) at the beginning), it seems like a problem. This

should get better as new libraries come out. Introducing JSON parsers (in

the style of the HTML 5) seem to be unnecessary for a simple format that is

usually generated by a computer. A strict JSON parser is not a lot of code.

JSON has a simple way to showing which of the permissible encodings

it is in, based on the zero bytes at the beginning, as the first two

characters must be in ASCII. Permitting a BOM and them allowing Unicode

Performance Evaluation

52

whitespace might be more standard, but the whitespace has no function

expect for use in text editors.

Despite attempts, for example, add an ECMAScript for XML (E4X) to a

native XML format and a simple processing model of JavaScript, JSON,

remains very easy in most languages to process, at it is built around

structures that most languages have only natively while XML is not.

Another advantage of using JSON instead of XML is in the Internet

quality of data structuring. JSON is closer to being a HashMap as in Java or

an associative array in some other languages like PHP. Hence it does not

require parsing libraries in an application as XML does. The time spent

however, on parsing XML into the native language, is not so much

significant considering the fast processing power of machines today.

The comparison of XML and JSON lies more on the network

bandwidth aspect. JSON can take almost half of the bandwidth as XML for

transferring the same data. It can achieve the same throughput as passing

simple objects in the network in a distributed computing environment.

JSON has distinction between string, number and boolean e.g.

{“result: “1”} versus {“result”: 1}. XML document itself doesn’t have the

distinction. The distinction saves a bit of programmer’s work to convert to

appropriate type manually. You can define data type of values in XML with

XML Schema, but it’s complicated and not always available [81].

Weakness of JSON

JSON is not a widespread as XML. Its tooling and language support

still fall a bit short of XML, is not a powerful as XML in namespaces. XML

throws everything and won’t need to use every single one of its features,

but when it’s necessary, does it come in handy.

There are some syntactically different representations: arbitrary

white space, although this definition does not include the dull Unicode

whitespace characters and backslash escape, which can be represented for

the most part directly in Unicode encoding of the document. Whitespace

clearly needs to be preserved for readability and use of line oriented

Performance Evaluation

53

editors and tools. It is not clear how inconvenient it would be if the \u

codes were normalizes to Unicode which is the sane default.

Strengths of XML

First, it has enough structure so it is possible to build rich data

structures, and to add to that, it has some standard ways (like XHTML) with

rich sets of attributes and elements that can be reused in multiple

domains, and relations link patter. The other great thing it the set of tools

for extraction and processing, which are generally well designed and fairly

complete. There are stream and DOM parsers widely available.

Weakness of XML

XML’s biggest disadvantage is that its parsers tend to be very large,

although the large memory footprint of XML parsers may be reduced to a

reasonable size by eliminating unneeded features, and the larger size of

XML data records may be an issue for some applications. This can be dealt

with by compressing the data before transmitting it or writing.

JSON almost perfect

Binary data is a problem in both XML and JSON. It is necessary a lot

of other formats for anything that has binary data, they are just much more

efficient, even after compression. Thus, the ideas of a universal format will

not happen. The fact that the XML is a lot easier to read and JSON has a

smaller footprint.

4.2. Advanced Message Queuing Protocol (AMQP)

versus Message Queuing Telemetry Transport

(MQTT)

AMQP and MQTT are both open protocols for asynchronous message

queuing, which have been developed and matured over several years.

Performance Evaluation

54

AMQP has selected the OASIS industry standards group [82], with the

intention of moving to becoming an ISO/IEC standard. MQTT has chosen to

use the Eclipse foundation [15].

Both provide basic messaging needs; beyond that, AMQP provides a

very much richer set of messaging scenarios. AMQP is almost a complete

superset, lacking only explicit protocol support for Last-Value-Queues and

will messages.

Both protocols are being promoted for ‘widespread’ use in the

internet:

• MQTT as a low-overhead, simple to implement way to send data,

especially from embedded devices;

• AMQP as the asynchronous complement to HTTP.

As such, both are being promoted as being ideal for cloud computing

and the “internet of things”. Message queuing, with their asynchronous

nature and minimal need for configuration when well done, is perfect for

interoperating many different environments.

Beginnings

AMQP come from the financial community, and it is mainly customer-

driven: its makers wanted an open way to communicate greatly increase

over-the-counter trace, risk and clearing market data the transfer, and

doing it without the necessity the pain of a bespoke protocol and its

licensing headache. MQTT is vendor-driven; that comes from IBM and their

partners as a response to the high cost of implementation MQSeries imposes

on its customers using small devices. Both of these approaches have greatly

influenced the design and features of the protocols.

Intended use of protocol

The two protocols "sit" above TCP / IP, and are designed to be used

to enable programs to send and receive messages asynchronously,

irrespective of their choice of hardware, operating system or programming

Performance Evaluation

55

language. The protocols diverge; MQTT is designed to be helpful for many

small, relatively dumb devices sending small messages on low-bandwidth

networks. AMQP, on the other hand, is designed to provide the full vibrancy

of messaging scenarios. MQTT’s design goals are a subset of its intended

uses.

In particular, MQTT really sees the networks between the involved

parties as a controlled, near private infrastructure. AMQP, in turn, is

designed supposing it is in use between parties under different controls and

who use network and infrastructure resources outside of those parties

control.

Framing Optimisation

Both of these protocols provide for heavily optimized “on-the-wire”

framing of data. MQTT uses a more stream-orientated approach, making it

easier for low-memory clients to write frames. AMQP uses a buffer-

orientated approach, making possible high-performance servers. MQTT does

not allow fragmentation of messages, making it hard to transmit large

messages with constrained memory devices, however.

Messaging Scenarios

MQTT supports publish-subscribe messaging to topics. MQTT’s

messaging is actually ephemeral: it is optimised for the use case of active

routing of simultaneously connected publishers and subscribers.

Consequently, it is very difficult to use it for classic long-lived message

queuing. AMQP supports this use case, and more, with five different kinds

of message publisher-consumer “lifetime”, from “as long as connected” to

“nobody is using this queue”.

AMQP permits almost any form of messaging including classic message

queues, round-robin, store-and-forward and combinations thereof.

Performance Evaluation

56

Transactions

This is short but poignant. MQTT not support transactions, it support

basic acknowledgments. AMQP supports different acknowledgments uses

cases and transactions across message queues, it allows separation of the

different transactional semantics, should that be needed, and for

acknowledgments to be out-of-order or even delayed, and batched us as a

performance optimisation.

Connection Security

MQTT does not address connection security, although the community

does provide advice. AMQP on the other hand, has specifically worked to

integrated with Transport Layer Security (TLS) [83] and Simple

Authentication and Security Layer (SASL)[84], the Internet Engineering Task

Force set of RFCs that provide appropriate ways of securing the right to use

a connection. AMQP core design allows separate negotiation of, and

policies for, TLS and SASL mechanisms and upward replacement with

alternative techniques as they develop.

User security

MQTT requires short user names and short passwords that do not

provide enough entropy in the modern world. It has made these part of the

protocol itself, so any change in policy, or security weakness, requires a

new protocol version. AMQP uses SASL mechanisms, allowing organisations

to choose the security that matters to them without protocol change.

Reliable Messaging

Essentially, most users of messaging either care a message is sent and

definitively received once, or they do not. Both protocols provide for “fire-

and-forget, do not try to hard” messaging. AQMP provides fine-grained

control over this, should it be reliable, but order of delivery matters.

Both protocols claim to provide reliable messaging, essentially using a

series of acknowledgments to give “exactly-once” receipt of a message.

Performance Evaluation

57

However, under analysis, this is not always the case with MQTT. MQTT

assumes general reliability of the parties involved. AMQP addresses these

scenarios with link recovery, which allows fine-grained control, and will

ensure eventual delivery under hostile conditions.

Implementation

It is certainly easier to implement MQTT, it is a much smaller

protocol. Open protocols result in open source libraries. The vast majority

of users will simply choose the open source client library for their operating

system or language. However, a simple protocol does not necessarily mean

less operation size.

MQTT and AMQP are both message queuing protocols, suitable for use

in hardware and software and on all major operating systems and

platforms. MQTT is suited to its use case to simple clients talking to a

server, but any infrastructure using it is exposed to serious security

weaknesses and an inability to make best use of resources or to support

additional use cases. AMQP is suited to these uses cases and many others,

supports far better use of resources, far more pragmatic security and

message reliability and has a future place as an ISO standard.

4.3 Systems Demonstration and Validation

This section presents the systems developed and their validation. The

RabbitMQ server, the Web server, the back-end service and the database

were created on a Mac OS X server running a virtual machine with Windows

7 Professional operating system and with a processor Inter (R) Xeon(R) CPU

2.67GHz and 1GB of RAM memory. The user application was developed for

mobile devices running the Android operating system. The application will

run from the 2.0 version (Eclair) of Android and higher.

Performance Evaluation

58

4.3.1 RESTful Web Service, RabbitMQ server and Back-end Service

In this section will be presented in more detail the different services

implemented in this study, making reference to the methods of the Web

service, the management and monitoring interfaces the RabbitMQ server

and finally the functions of the back-end service.

RESTful Web Service

RESTful Web services are services built using the RESTful

architectural style. In this study, the RESTful Web service has been

developed in Java using the Java API for RESTful Web services (JAX-RS) and

Jersey, the open source JAX-RS, supported by IDE NetBeans 7.2.1 and runs

on the Web server Glassfish version 3.1. In addition, the IDE also supports

testing, building client applications that access RESTful web services, and

generating code for invoking web services.

On the Web service have been implemented a number of methods

for inserting and querying data. The methods of the Web service using the

HTTP PUT method are used to insert or update data while that use the

HTTP GET method is used to query the data from the database.

In Table 5 are presented the different methods implemented on my

Web service and the HTTP methods used by each of them. In the methods

presented in Table 5, the parameters that are enclosed in braces ({})

concern the data that the user must provide when making a request to the

Web service. Regarding the query methods (GET) in Table 5 are shown only

methods that use "idUser" as search parameter, however, were also

implemented other research methods to the same table but with other

search parameters, such as the date and the respective fields in each

table.

Performance Evaluation

59

Table 5. Methods implemented in the Web service reference to the HTTP
method to use

HTTP

method
Web service method

PUT

/Insert_Profile/{name}/{ birthDate}/{weight}/{height}/{user}

/Inserir_Contact/{idUser}/{name}/{phone}/{mail}

/Insert_Fall/{idUser}/{forceG}/{date}

/Insert_AirPressure/{idUser}/{pressure}/{date}

/Insert_EEG/{idUser}/{eeg}/{date}

/Insert_ecg/{idUser}/{ecg}/{date}

GET

/ProfileName/{name}

/getcontacts/{idUser}

/getfallsuser/{idUser}

/getairpressureUser/{idUser}

/geteeg/{idUser}

/getecg/{idUser}

RabbitMQ server

To build the RabbitMQ server is required various tools. RabbitMQ

requires a recent version of Python. In addition you also need the Erlang

development and runtime tools, a recent version of GNU make a recent

version of xsltproc.

For installing the RabbitMQ server on Windows is need install Erlang

and then install RabbitMQ and run it as a service, using the basic

configuration. If it is necessary configure names, ports, locations is also

very easy, just configure the environment variables in Windows. In this

system was used the basic settings.

For management and monitoring the RabbitMQ server more easily and

with a visual interface it was necessary to also install an API based on

HTTP, the rabbitmq-management plugin.

Performance Evaluation

60

This plugin includes the following features:

• Declare, list and delete exchanges, queues, bindings, users,

virtual hosts and permissions;

• Monitor queue length, messages rates globally and per channel,

data rates per connection, etc.

• Send and receive messages;

• Export / import object definitions to JSON;

• Force the closing of connections, clean queues.

To use the Web UI is needed authenticating as a user of RabbitMQ and

only then it is possible to manage exchanges, queues, bindings, etc. By

default the server issues statistics every 5000ms. The average value of

messages shown on the management plugin is calculated in this period of

time. Figure 17 shows the visual interface RabbitMQ management plugin

obtained during the execution of on of the experiments performed in this

study. This Figure refers to experiment 1, since we have several

connections but no consumer.

1

2 3 4 5 6

7

Figure 17. RabbitMQ management plugin interface

Performance Evaluation

61

The image caption is a follows:

1. Number of messages stored in the existing queues on the

RabbitMQ server, and average messages received by the server

per second;

2. Number of clients connected to the server and sending messages;

3. Number of channels created to communicate between client and

server.

4. Number of exchanges defined on the server.

5. Number of queues present on the server where it will be stored

messages.

6. Number of consumers connected to the server

7. Name and information of node where the RabbitMQ server is

installed.

Back-End Service

The back-end service has been developed in Java using Netbeans

version 7.2.1. This service is used to consume the messages from RabbitMQ

server, process them and store them in the database. This program when

executed, tries to make the connection to RabbitMQ and then gets the

messages are stored. Finally, the service processes the messages obtained

so as to separate the various fields necessary to create and execute a query

that will allow insert data in the database.

4.4 Results Analysis

Several experiments were performed and deployed for this study in

order to compare both implemented services. With these experiments the

authors tried to find out the main advantages regarding the use of a Web

service, compared to using Message Broker open source software, or vice

versa. In these experiments, twenty-four handsets were used continuously

to send messages to servers.

Performance Evaluation

62

The experiments were performed as follows:

• Experiment 1 – the user application sends messages for 30

minutes to RabbitMQ using AMQP protocol without no active

consumer (back-end service);

• Experiment 2 – the user application sends messages for 30

minutes to Web service server using HTTP protocol, and then,

the Web service communicates with the database using JDCB

driver to store the messages;

• Experiment 3 - the user application sends messages for 30

minutes to RabbitMQ using AMQP protocol with a consumer

(back-end service) to read the messages, process them and

through JDBC driver connect to the database to store the

messages.

In these experiments, the user had a single function to send data to

the service without ever doing queries. In this way is able to obtain a more

reliable comparison of the two services when many clients are constantly

sending data. In experiment 3, the consumer is consuming messages and

save then in the database at the same time that users are sending, the

results are presented in Table 6 and in Figure 18.

Table 6. Results of the Performed Experiments.

 Users
Messages
stored in
RabbitMQ

Messages
stored in
Database

Average
messages sent

per second

Experim. 1 24 407793 n/a 226.6

Experim. 2 24 n/a 226530 125.9

Experim. 3 24 160747 219907 211.5

Performance Evaluation

63

Figure 18. Performance comparison considering the number of message for tree
different experimental scenarios showing the messages stored in the Database,

RabbitMQ,and the average messages per second.

Performance Evaluation

64

As above-mentioned, the objective of the experiment 1 passed

through the objective to send messages to the RabbitMQ, during 30

minutes, using 24 users. As it can be observed in Table 6 and Figure 18, in

the experiment 1, a total number of 407793 messages were sent and stored

with an average of 226.6 messages per second. In the experiment 2, in the

same interval of time as the experiment 1, but now with the objective to

sent messages through Web services and storing them in the database, a

total of 226530 messages were stored with an average of 125.9 messages

per second. Finally. In the 3rd experiment, the same interval of time was

used for the experiments 1 and 2. Its objective includes sending and storing

the messages using the RabbitMQ, a total number of 380654 were sent and,

after, the time was over a total of 160747 messages stayed stored in the

RabbitMQ. A total number of 219907 messages where stored in the

database, making a average of 211.5 messages per second. None of the

messages in the experiment 3 where lost, some of them stay in the

RabbitMQ because it takes extra time to the client in order to obtain the

messages from the stack and put them in the database.

With these experiments it is possible to conclude that when the AMQP

protocol is used to messages exchange it will send a larger number of

messages per second as can be seen in the experiments 2 and 3. There is a

big difference between RabbitMQ and the Web service since the Web

Service is in charge of receiving the request introduced by the user and

then, depending on the method called, save the message on respective

table of the database. While RabbitMQ only sends messages to the server

when the server asks for it and stores the messages in a queued from the

client, the client connects with the RabbitMQ.

Is can be seen the number of messages in test 2 is significantly

smaller compared to the tests 1 and 3. This is due to the fact that when

using the Web service, the client waits that the services insert the data in

the database and give him a response. Only after the client sends new

data. The process of storing data in the database takes more time doing

also with some client messages are lost while waiting for confirmation of

Performance Evaluation

65

the Web service about the conclusion of the communication process,

because the client does not exist any mechanism to temporarily store the

messages. On the other hand when using the RabbitMQ server the client

sends the data and waits for confirmation of RabbitMQ then sending new

data. This process is almost twice faster than the first avoiding loss of

messages.

Conclusions and Future Work

67

5. Conclusions and Future

Work

5.1 Conclusions

 This chapter presents a synthesis of this dissertation along with the

main achievements and important conclusions that result from this work

and points some directions for future work. The main objective of this

dissertation is the design, constructing, deployment, and performance

evaluation of Web services when employed in system that generate large

amounts of data. It was carried out with the development of the RESTful

web service applied in a real system of Ambient Assisted Living. Thus, all

the dissertation objectives were successfully accomplished and the all

intermediate objectives were successfully achieved.

After introducing and presenting the topic of this dissertation,

definition the problem, define its objectives and main contributions

chapter two present the revision literature on Web services, with special

interest in RESTful architecture. But also making references to other styles

of Web services and use the existing approaches. It also presented the

state-of-the-art on Message Queuing Protocol, the Advanced Message

Queuing Protocol and the Message Queuing Telemetry transport, showing

some of the products that use these protocols. And finally, some import

points of Ambient Assisted Living as well as some developed and developing

work in this area.

Conclusions and Future Work

68

Chapter three presents the analysis of requirements before

developing it. First define the essential requirements, that is, the database

structure, the activity and sequence diagrams and the system architecture.

Next, and finally discuss the technologies used for the implementations of

system.

In chapter four are presented systems implemented in this study, and

shows the comparison between the implemented technologies and their

equivalents. In the first comparison is made between the two architectures

of Web services, RESTful and SOAP, the forces and the weaknesses of each

of them. In this study, after making the requirements analysis and the

comparison between the two architectures concludes that RESTful was the

best architecture to implement. Still about Web services are presented the

strengths and weaknesses of the two main markup languages used by Web

services, JSON and XML. Taking into account the needs of the system that

should be prepared to exchange large amounts of messages, conclude that

the way forward was to use JSON to be lighter than XML. Then, presents

the comparison between two protocols message queuing, the MQTT and

AMQP, making reference to some of the most important points to keep in

mind when we want to implement these protocol. In this study chose to use

the AMQP, since the newest mobile devices already has good capability of

processing. Finally, is performed the demonstration of the system and

presented the performance evaluation, accomplished through tests, the

comparison between the use of RESTful Web services and RabbitMQ server

to exchange messages between client and server. In this comparison, it was

concluded that the use RabbitMQ obtain the best results, it is possible to

exchange an increased amount of messages and lossless compared with the

Web service.

Conclusions and Future Work

69

5.2 Future Works

 To conclude this work, it just remains to suggest future research

directions based on current work:

• Implement a MQTT system to allow the use of sensors for sending

data.

References

 71

References

[1] H. Gunzer and S. Engineer, Introduction to web services. Scotts

Valley, California: Borland Software Corporation, 2002, pp. 2–9.

[2] H. Wang, J. Z. Huang, Y. Qu, and J. Xie, “Web services: problems

and future directions,” Web Semantics: Science, Services and Agents

on the World Wide Web, vol. 1, no. 3, pp. 309–320, Apr. 2004.

[3] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau, “Migration of

SOAP-based services to RESTful services,” presented at the 2011 13th

IEEE International Symposium on Web Systems Evolution (WSE),

Williamsburg, USA, 2011, pp. 105–114.

[4] H. Limam and J. Akaichi, “Managing and Querying Web Services

Communities: A Survey,” International Journal of Database

Management Systems (IJDMS),, vol. 3, no. 1, Feb. 2011.

[5] V. Krithika, D. A. Kaur, and D. K. C. Sekaran, “Web Services Supply

Chains: A Literature Review,” International Journal of Web Services

Computing, vol. 3, no. 1, Mar. 2012.

[6] MobileBeyond, “Mobile Internet Research Report Shows Massive

Growth” [Online]. Available: http://mobilebeyond.net/mobile-

internet-research-report/#axzz1M5vzN8G7 [Accessed: February

2013].

[7] S. Oh and G. C. Fox, “Optimizing Web Service Messaging

Performance in Mobile Computing,” Future Generation Computer

Systems, vol. 23, no. 4, pp. 623–632, May 2007.

[8] S. Oh, H. Bulut, A. Uyar, W. Wu, and G. Fox, “Optimized

communication using the SOAP infoset for mobile multimedia

References

72

collaboration applications,” presented at the Proceedings of the

2005 international conference on Collaborative technologies and

systems, Washington, DC, USA, 2005, pp. 32–39.

[9] F. Aijaz, M. A. Chaudhary, and B. Walke, “Performance Comparison

of a SOAP and REST Mobile Web Server,” presented at the Third

International Conference on Open-Source Systems and Technologies

(ICOSST 2009), Lahore, Pakistan, 2009.

[10] X. Xiong and J. Fu, “Active Status Certificate Publish and Subscribe

Based on AMQP,” presented at the 2011 International Conference on

Computational and Information Sciences, Chengdu, China, 2011, pp.

725–728.

[11] C. Gagné and M. Parizeau, “Genericity in Evolutionary Computation

Software Tools: Principles and Case-Study,” International Journal on

Artificial Intelligence Tools, vol. 15, no. 2, pp. 173–194, Apr. 2006.

[12] G. N. Rodrigues, V. Alves, R. Franklin, and L. Laranjeira,

“Dependability Analysis in the Ambient Assisted Living Domain: An

Exploratory Case Study,” presented at the 2010 Fourth Brazilian

Symposium on Software Components, Architectures and Reuse

(SBCARS),, Bahia, Brazil, 2010, pp. 150–159.

[13] V. Fuchsberger, “Ambient assisted living,” presented at the SAME '08

Proceedings of the 1st ACM international workshop on Semantic

ambient media experiences, New York, USA, 2008, pp. 21–24.

[14] OASIS, “OASIS Forms AMQP Technical Committee to Advance

Business Messaging Interoperability Within Middleware, Mobile, and

Cloud Environments” [Online]. Available: https://www.oasis-

open.org/news/pr/amqp-tc [Accessed: March 2013].

[15] MQTT.org, “Eclipse Paho, Open Source, and other news” [Online].

Available: http://mqtt.org/2011/11/eclipse-paho-open-source-and-

other-news [Accessed: March 2013].

[16] D. Booth, H. Haas, F. McCabe, E. NewComer, M. Champion, C. Ferris

and D. Orchard, “Web Service Architecture” [Online]. Available:

http://www.w3.org/TR/ws-arch/ [Accessed: February 2013].

References

 73

[17] H. Limam and J. Akaichi, “Web services synchronization health care

application,” International Journal of Web & Semantic Technology

(IJWesT), vol. 2, no. 2, pp. 40–57, Apr. 2011.

[18] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:

Concepts And Design, 2nd ed. 2005.

[19] D. A. Chappell and T. Jewell, Java web services, 1st ed. O'Reilly,

2002, pp. 8–16.

[20] Y. Wang and E. W. Stroulia, “Flexible interface matching for Web-

service discovery,” presented at the WISE 2003, Proceedings of the

Fourth International Conference on Web Information Systems

Engineering, 2003, pp. 147–156.

[21] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,

“Similarity search for web services,” presented at the VLDB '04

Proceedings of the Thirtieth international conference on Very large

data bases, Toronto, Canada, 2004, vol. 30, pp. 372–383.

[22] R. Nayak and B. Lee, “Web Service Discovery with additional

Semantics and Clustering,” presented at the IEEE/WIC/ACM

International Conference on Web Intelligence, Fremont, California,

2007, pp. 555–558.

[23] H. R. Motahari Nezhad, G. Y. Xu, and B. Benatallah, “Protocol-aware

matching of web service interfaces for adapter development,”

presented at the WWW '10 Proceedings of the 19th international

conference on World wide web, Raleigh, USA, 2010, pp. 731–740.

[24] R. Mikhaiel and E. Stroulia, “Examining Usage Protocols for Service

Discovery,” in Lecture Notes in Computer Science, vol. 4294, no. 46,

A. Dan and W. Lamersdorf, Eds. Chicago, USA: Service-Oriented

Computing – ICSOC 2006, 2006, pp. 496–502.

[25] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” University of California, Irvine, 2000.

[26] L. Richardson and S. Ruby, RESTful web services. Sebastropol,

Ukraine:, 2007, pp. 23–106.

[27] C. Pautasso and E. Wilde, “RESTful web services: principles,

References

74

patterns, emerging technologies,” presented at the WWW '10

Proceedings of the 19th international conference on World wide

web, Raleigh, USA, 2010, pp. 1359–1360.

[28] M. Laitkorpi, P. Selonen, and T. Systa, “Towards a Model-Driven

Process for Designing ReSTful Web Services,” presented at the ICWS

2009. IEEE International Conference on Web Service., Los Angeles,

USA, 2009, pp. 173–180.

[29] J. R. Erenkrantz, M. Gorlick, G. Suryanarayana, and R. N. Taylor,

“From representations to computations: the evolution of web

architectures,” presented at the ESEC-FSE '07 Proceedings of the the

6th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software

engineering, Dubrovnik, Croatia, 2007, pp. 255–264.

[30] C. Fu, F. Belqasmi, and R. Glitho, “RESTful web services for bridging

presence service across technologies and domains: an early

feasibility prototype,” Communications Magazine, IEEE, vol. 48, no.

12, pp. 92–100, 2010.

[31] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: An HTML

Microformat for Describing RESTful Web Services,” presented at the

WI-IAT '08. IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, Sydney, Autralia,

2008, vol. 1, pp. 619–625.

[32] R. Alarcón and E. Wilde, “RESTler: crawling RESTful services,” WWW

'10 Proceedings of the 19th international conference on World wide

web, pp. 1051–1052, 2010.

[33] Y. Liu, Q. Wang, M. Zhuang, and Y. Zhu, “Reengineering Legacy

Systems with RESTful Web Service,” COMPSAC '08. 32 Annual IEEE

International Computer Software and Applications, pp. 785–790,

2008.

[34] P. Mayer and D. Lübke, “Towards a BPEL unit testing framework,”

Proceedings of the 2006 workshop on Testing, analysis, and

verification of web services and applications, pp. 33–42, Jul. 2006.

References

 75

[35] S. Krishnamurthi and T. Bultan, “Discussion summary: Characteristics

of web services and their impact on testing, analysis and

verification,” ACM SIGSOFT Software Engineering Notes, vol. 30, no.

1, 2005.

[36] C. Riva and M. Laitkorpi, “Designing Web-Based Mobile Services with

REST,” in Service-Oriented Computing-ICSOC 2007 …, vol. 4907, no.

42, Viena, Austria: ICSOC 2007, International Workshops, 2009, pp.

439–450.

[37] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, “Web

Service Description Language (WSDL),” [Online]. Available:

http://www.w3.org/TR/wsdl [Accessed: February 2013].

[38] Windows Communication Foundation, “What Is Windows

Communication Foundation,” [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms731082.aspx

[Accessed: February 2013].

[39] X. Feng, J. Shen, and F. Ying, “REST: An alternative to RPC for Web

services architecture,” presented at the First International

Conference on Future Information Networks, Beijing, China, 2009,

pp. 7–10.

[40] W. Choi and J. Kim, “Development of the RESTful JPIC SDK for the

Application Using Public Information,” Ninth IEEE International

Symposium on Parallel and Distributed Processing with Applications

Workshops, pp. 352–360, 2011.

[41] OASIS, “AMQP is the Internet Protocol for Business Messaging”

[Online]. Available: http://www.amqp.org/ [Accessed: February

2013].

[42] J. O'Hara, Toward a commodity enterprise middleware, vol. 5, no.

4. ACM, 2007, pp. 48–55.

[43] S. Vinoski, “Advanced Message Queuing Protocol,” IEEE Computer

Society, vol. 10, no. 6, pp. 87–89, 2006.

[44] J. Kramer, “Advanced message queuing protocol (AMQP),” Linux

Journal, vol. 2009, no. 187, p. 3, Nov. 2009.

References

76

[45] D. Gunter, E. Deelman, T. Samak, C. H. Brooks, M. Goode, G. Juve,

G. Mehta, P. Moraes, F. Silva, M. Swany, and K. Vahi, “Online

workflow management and performance analysis with stampede,”

presented at the Proceedings of the 7th International Conference on

Network and Services Management, Paris, France, 2011, pp. 152–161.

[46] J. Robinson, J. Frey, A. Stanford-Clark, A. Reynolds, and B. Bedi,

“Sensor networks and grid middleware for laboratory monitoring,”

Proceedings of the First International Conference on e-Science and

Grid Computing, pp. 569–575, Jun. 2005.

[47] M. Prihodko, “Energy Consumption in Location Sharing Protocols for

Android Applications,” Linköping University, The Institute of

Technology, Linköping, Sweden, 2012.

[48] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM Computing Surveys (CSUR),

vol. 35, no. 2, pp. 114–131, Jun. 2003.

[49] IBM, “IA92: WBI Brokers - Java Implementation of WebSphere MQ

Telemetry Transport” [Online]. Available: http://www-

01.ibm.com/support/docview.wss?uid=swg24006006 [Accessed: April

2013].

[50] IBM, “IA93: WITHDRAWN: WBI Brokers - C Implementation of

WebSphere MQ Telemetry Transport” [Online]. Available:

http://www-01.ibm.com/support/docview.wss?uid=swg24006525

[Accessed: April 2013].

[51] “Eurostat (2008). Population projections 2008--2060 -- From 2015,

deaths projected to outnumber births in the EU27 Almost three

times as many people aged 80 or more in 2060,” (STAT/08/119),

26AD.

[52] H. Sun, V. D. Florio, N. Gui, and C. Blondia, “Promises and

Challenges of Ambient Assisted Living Systems,” presented at the

2009 Sixth International Conference on Information Technology: New

Generations, Las Vegas, USA, 2009, pp. 1201–1207.

[53] AAL - AMBIENT ASSISTED LIVING, “Ambient Assisted Living (AAL)

References

 77

Joint Programme.” [Online]. Available: http://www.aal-europe.eu

[Accessed: February 2013].

[54] M. A. Estudillo-Valderrama and L. M. Roa, “Ambient Assisted Living:

A methodological approach,” 32nd Annual International Conference

of the IEEE EMBS, pp. 2155–2158, 2010.

[55] A. J. Quigley and B. Knapp, “Bridging Research in Aging and ICT

Development,” Proceedings of the International Federation on Aging

10th Global Conference 2010, 2010.

[56] D. Wright, “Structuring stakeholder e-inclusion needs,” Journal of

Information, Communication and Ethics in Society, vol. 8, no. 2, pp.

178–205, 2010.

[57] A. Jin, Bin Yin, G. Morren, H. Duric, and R. Aarts, “Performance

evaluation of a tri-axial accelerometry-based respiration monitoring

for ambient assisted living,” presented at the Annual International

Conference of the IEEE Engineering in Medicine and Biology Society,

Minneapolis, USA, 2009, pp. 5677–5680.

[58] E. S. Sazonov, O. Makeyev, S. Schuckers, P. Lopez-Meyer, E. L.

Melanson, and M. R. Neuman, “Automatic Detection of Swallowing

Events by Acoustical Means for Applications of Monitoring of Ingestive

Behavior,” IEEE Transactions on Biomedical Engineering, vol. 57, no.

3, pp. 626–633, 2010.

[59] I. C. Lopes, B. Vaidya, and J. J. P. C. Rodrigues, “Towards an

autonomous fall detection and alerting system on a mobile and

pervasive environment,” Telecommun Syst, pp. 1–12, Jun. 2011.

[60] S. S. Torkestani, S. Sahuguede, A. Julien-Vergonjanne, J. Cances,

and J. C. Daviet, “Infrared Communication Technology Applied to

Indoor Mobile Healthcare Monitoring System,” International Journal

of E-Health and Medical Communications, vol. 3, no. 3, pp. 1–11,

2012.

[61] V. Venkatesh, V. Vaithyanathan, M. P. Kumar, and P. Raj, “A secure

Ambient Assisted Living (AAL) environment: An implementation

view,” presented at the 2012 International Conference on Computer

References

78

Communication and Informatics (ICCCI), Coimbatore, India, 2012, pp.

1–7.

[62] I. Martinez and J. Escayola, “Standard-based middleware platform

for medical sensor networks and u-health,” Proceedings of 17th

International Conference on Computer Communications and

Networks, pp. 1–6, 2008.

[63] F. Zhou, J. R. Jiao, S. Chen, and D. Zhang, “A Case-Driven Ambient

Intelligence System for Elderly in-Home Assistance Applications,”

IEEE Trans. Syst., Man, Cybern. C, vol. 41, no. 2, pp. 179–189, 2011.

[64] N. Noury, P. Barralon, N. Vuillerme, and A. Fleury, Fusion of

Multiple Sensors Sources in a Smart Home to Detect Scenarios of

Activities in Ambient Assisted Living, vol. 3, no. 3. International

Journal of E-Health and Medical Communications (IJEHMC), 2012, pp.

29–44.

[65] C. Stephanidis, User interfaces for all: New perspectives into

human-computer interaction, 1st ed. User Interfaces for All-

Concepts, Methods, and Tools, 2001, pp. 3–17.

[66] M. Silva, P. M. Teixeira, F. Abrantes, and F. Sousa, Design and

Evaluation of a Fall Detection Algorithm on Mobile Phone Platform,

vol. 70, no. 4. Ambient Media and Systems, 2011, pp. 28–35.

[67] A. Hristova, A. M. Bernardos, and J. R. Casar, “Context-aware

services for ambient assisted living: A case-study,” First

International Symposium on Applied Sciences on Biomedical and

Communication Technologies, pp. 1–5, 2008.

[68] B. O'Flynn, P. Angove, J. Barton, and A. Gonzalez, “Wireless

biomonitor for ambient assisted living,” Oral presentation at …,

2006.

[69] M. A. Stelios, A. D. Nick, M. T. Effie, K. M. Dimitris, and S. C. A.

Thomopoulos, “An indoor localization platform for ambient assisted

living using UWB,” presented at the MoMM '08: Proceedings of the

6th International Conference on Advances in Mobile Computing and

Multimedia, Linz, Austria, 2008, pp. 178–182.

References

 79

[70] P. A. Bromiley, P. Courtney, and N. A. Thacker, “Design of a visual

system for detecting natural events by the use of an independent

visual estimate: A human fall detector,” Empirical Evaluation

Methods in Computer Vision, 2002.

[71] J. Clemensen, S. B. Larsen, M. Kyng, and M. Kirkevold,

“Participatory Design in Health Sciences: Using Cooperative

Experimental Methods in Developing Health Services and Computer

Technology,” Qualitative Health Research, vol. 17, no. 1, pp. 122–

130, Jan. 2007.

[72] G. Zimmermann, J. Alexandersson, C. Buiza, E. Urdaneta, U. Diaz, E.

Carrasco, M. Klima, and A. Pfalzgraf, “Meeting the Needs of Diverse

User Groups,” in Benefits and Costs of Pluggable User Interfaces in

Designing for Older People and People with Cognitive Impairments,

no. 6, IGI Global, pp. 80–93.

[73] A. Hochgatterer, L. Roedl, and A. Martinez, “Requirements for a

behaviour pattern based assistant for early detection and

management of neurodegenerative diseases,” 5th International

Conference on Pervasive Computing Technologies for Healthcare

(PervasiveHealth), pp. 346–353, 2011.

[74] P. P.-S. Chen, “The entity-relationship model---toward a unified

view of data,” ACM Transactions on Database Systems (TODS), vol.

1, no. 1, pp. 9–36, Mar. 1976.

[75] IDEF1X, “Data Modeling Method” [Online]. Available

http://www.idef.com/IDEF1x.htm [Accessed: April 2013].

[76] P. A. Castillo, J. L. Bernier, M. G. Arenas, J. J. Merelo, and P.

Garcia-Sanchez, “SOAP vs REST: Comparing a master-slave GA

implementation,” First International Workshop of Distributed

Evolutionary computation in informal Environments, May 25, 2011.

[77] F. AlShahwan and K. Moessner, “Providing SOAP Web services and

RESTful Web services from mobile hosts,” 2010 Fifth International

Conference on Internet and Web Applications and Services, pp. 174–

179, 2010.

References

80

[78] D. Crockford, “The application/json Media Type for JavaScript

Object Notation (JSON),” 2006.

[79] W3C, “Extensible Markup Language (XML)” [Online]. Available:

http://www.w3.org/XML/ [Accessed: April 2013].

[80] W3C, “Extensible Markup Language 1.0 Recommendation” [Online].

Available: http://www.w3.org/TR/REC-xml/ [Accessed: May 2013].

[81] Douglas Crockford, “JSON: The Fat-Free Alternative to XML”

[Online]. Available: http://www.json.org/fatfree.html [Accessed:

May 2013].

[82] OASIS, “OASIS Advanced Message Queuing Protocol (AMQP) TC ”

[Online]. Available: https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=amqp [Accessed: April 2013].

[83] T. D. T. D. org, “The Transport Layer Security (TLS) Protocol Version

1.2,” 2008.

[84] J. G. M. J. N. com, “Simple Authentication and Security Layer

(SASL),” 1997.

Appendices

A

Appendice

In this appendix is included an article presented at The Fifth

International Conference Ubiquitous and Future Networks (ICUFN 2013), Da Nang,

Vietnam, July 02 - 05, 2013.

Appendices

B

Performance Evaluation of RESTful Web Services
and AMQP Protocol

Joel L. Fernandes1, Ivo C. Lopes1, Joel J. P. C. Rodrigues1, and Sana Ullah2

1 Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal
1 King Saud University, Riyadh, Saudi Arabia

joellfernandes@gmail.com; ivo.lopes@it.ubi.pt; joeljr@ieee.org; sullah@ksu.edu.sa

Abstract— Web services appeared as a promising technology
for Web environments independent of technologies, services, and
applications. Currently, there are some issues related with this
approach that should be studied. For instance, if massive
quantities of data are sent to databases it can influence
significantly the performance of the whole system. The Advanced
Message Queuing Protocol (AMPQ) appears as a promising
solution to address this problem. Then, in order to evaluate the
performance of this approach, this paper presents a performance
comparison study of RESTful Web services and the AMQP
Protocol considering exchanging messages between client and
server. The study is based on the averaged exchanged messages
for a period of time. It was observed and concluded that, for
large quantities of messages exchange, the best results comes
from the Advanced Message Queuing Protocol.

Keywords— Web Services; AMPQ; RESTful; Mobile
Computing; Mobile Health Application

INTRODUCTION

The World Wide Web (or simply Web) has been a
phenomenal success allowing simple computer/human
interactions at the Internet scale. The original HyperText
Transfer Protocol (HTTP) and HyperText Markup Language
(HTML), current technologies used by Web browsers proven
to be an effective way to design user interfaces in a wide
variety of devices.

In recent years, Web services technologies were effectively
used to simplify interoperability between different systems
whilst providing litheness and scalability for several
applications, inclusive the distributed simulation software. The
World Wide Web Consortium (W3C) [1] defines a Web
service like a method of communication between two
electronic devices over a network. It is a key solution used in
systems integration and interaction among diverse types of
applications. With this technology it is possible that novel
applications may interact with existent and implement a system
on different platforms. Essentially, a Web service does
software features available on a network in a standardized way.

The increasing number of available Web services, the
growing need of collaboration, the need for knowledge sharing,
and the necessity to take better decisions are the factors which
generate a growing interest in the Web services. In 2000, Roy

Fielding [2] introduced the term Representational State
Transfer (REST) like an architectural style for dispersed
hypermedia systems. In this context, an architecture is
considered a set of characteristics and constraints on the
elements of architecture that induce a set of desired properties.
REST is an abstraction of a basic architecture of the HTTP
Protocol and concentrates on concepts instead of on technical
details and syntax. REST architectural features and restrictions
aim to collect the fundamental design principles that allow high
scalability, expansion, and success of the Web. A RESTful
service is supplied as a feature, which is the concept extremely
useful and can be addressed on the web.

As Internet grows continuously, new needs are identified,
and to address them, new approaches are emerging. One of
them is the publish-subscribe (Pub-Sub) where the messaging
middleware is a working model with asynchronous and loosely
coupled characteristics. As the message producers and
consumers in time, space, and control flow are completely
decoupled, making the two end-points communicating through
a separate release and subscription messaging for asynchronous
communication, which can better meet the large-scale and
dynamic distributed information systems integration needs.
The current subject-based publish-subscribe system has been
successfully used in the financial, stock, mobile computing,
and other situations [3].

In 2006, a new proposal originated in the financial services
industry, called Advanced Message Queuing Protocol
(AMQP), was proposed [4-6]. AMQP is an open standard for
Message Oriented Middleware (MOM) communication. Then,
in order to evaluate the performance of this approach, this
paper presents a performance comparison study considering
RESTful Web services and the AMQP Protocol considering
exchanging messages between client and server.

The remainder of the paper is structured as follows.
Section II elaborates on the related work with focus on
available approaches, considering the two technologies under
study (RESTful Web Services and AMQP Protocol). Section
III presents the requirements analysis, namely, the application
necessities, the system architecture, and the used technologies
while Section IV describes the corresponding application
development. The study to evaluate the performance of the

Appendices

C

considered services is presented in Section V. Finally, Section
VI concludes the paper and suggests topics for further works.

RELATED WORK

There are a myriad of Web services and Applications
Programming Interface (APIs) available on the Web providing
a wide range of different services. Usually, there is a
substantial semantic overlapping among them where many
Web services provide essentially the same functions. Such
overlapping functionalities enables redundancy in the Web
service ecosystem and give developers the opportunity to
migrate from an API to another when the API originally used
becomes unavailable or insufficient for their needs. To support
the discovery of similar APIs, several new methods are being
developed for a Web service discovery, including query-based
methods relying on keywords and identifiers [7-8], clustering
[9], and more detailed structure matching [10-11].

RESTful Web services are gaining more and more
approaches. They are used as APIs in Web 2.9 services and are
considered a more flexible and lighter-weight alternative to the
so-called Big Web Services [12]. Much research has been
performed in the field of developing RESTful applications.
Richardson and Ruby [13] provide best practice examples and
hints on how to develop RESTful applications.

Riva et al. [14] investigate how to apply the REST
principles to the design of mobile services. They identified
several issues such as latency and data format that need
particular attention when applying REST concepts to mobile
environments. However, they only focused on consuming
RESTful Web services on mobile devices and did not address
the provision of Web services from a mobile host.

In the domain of model driven development, Laitkorpi et
al. [15] propose a process for designing RESTful services that
focuses on a model based identification of the resources and on
generating corresponding Web Application Description
Language (WADL).

Although AMQP specification is not finalized yet, several
products supporting different drafts of AMQP already exist, as
Red Hat, VMware Ltd, the OW2 Consortium who use the 0-9-
1 version of AMQP, the Apache Software Foundation, and the
Sormmq who use the 0-10 version.

a. Representational State Transfer (REST)

 Representational State Transfer (REST) architecture style
behind the Web enlarged recognition as another way to
develop Web services. RESTful Web Services are earning
more and more approaches. They are used as application
programming interfaces (APIs) for Web Services 2.9. RESTful
Web Services technical topics become popular because the
REST style includes a global identifier of all resources (e.g., a
uniform resource identifier) and the customer only need to
know this handle and the action required. He must also know
the right format of representation, which is typically an HTML,
eXtensible Markup Language (XML), or JavaScript Object
Notation (JSON) meta-data. RESTful Web services (REST
APIs) specify a set of resources, which includes three
components: the URI of the Web service, the data type

supported (JSON, XML, etc.), and the support operations
through HTTP methods.

Previous Web applications access methods using HTTP
operations (such as GET and/or POST). On the contrary with
this, RESTful applications use methods according to the
following functions: create, read, update, and delete (CRUD)
style using the full range of HTTP methods (GET, POST, PUT
and DELETE).

Figure 1 shows the architecture of RESTful Web Services.
Client communicates with server through a uniform interface
and during the stateless communication; client and server swap
features depictions. Therefore, the REST design restrictions
supply a standardized method to develop an API wearing the
HTTP protocol.

Client Server

HTTP Verb:
GET | POST | PUT | DELETE

HTTP Packet

Resource Representation

HTTPHTTP

Stateless Web Service Conversation

Figure 1. Illustration of a RESTful Web service architecture with

client-server interaction

RESTful Web Services can be depicted over the Web
Applications Description Language (WADL). A WADL
include information about the requirements that can be
addressed to a service involving the service uniform resource
identifier (URI) and service data waiting and serves.

b. Advanced Message Queuing Protocol (AMQP)

The Advanced Message Queuing Protocol (AMQP) is an
open standard message middleware. According to the standard
AMQP, middleware products written for different platforms
and in different languages can send messages from one to
another. AMQP is supported by a good number of key players,
including Cisco Systems, Credit Suisse, Deutsche Borse
Systems, Goldman Sachs, JPMorgan Chase Bank, Red Hat,
and 29West.

AMQP enables applications to send and receive messages.
In this regard it works like instant messaging or eMail. AMQP
differs enormously from other available solutions because it
allows the specification of what messages can be received and
from, and how trade-offs are performed with respect to
security, reliability, and performance. Systems built to integrate
AMQP perform much better at functioning unattended or
“lights-out” than other solutions. There are several reasons to
choose the AMQP over the competition, including
convenience, the possibility to connect applications on
different platforms, the possibility to connect business partners
using a full featured open standard, and a position for
innovation built upon the foundations of AMQP.

Appendices

D

Although AMQP specification is not finalized yet, several
products supporting different drafts of AMQP today exist, as
Red Hat, VMware, Ltd, and OW2 Consortium who use the 0-
9-1 version of AMQP, the Apache Software Foundation, and
the Sormmq who use the 0-10 version. It is used to simplify
critical tasks, for example, JPMorgan reported a AMQP
environment support 2,000 users on five continents to process
300 million messages per day. Every products that are listed
comes with client library for different programming language,
such, C + +, Ruby, Java, and Python.

For performance studies, this paper will consider the
RabbitMQ that supports the standard AMQP Protocol.
RabbitMQ is an open source message broker and queuing
server that can be used to let disparate applications share data
via a common protocol, or to simply queue jobs for processing
by distributed workers.

RabbitMQ server is written in Erlang and is created on the
Open Telecom Platform framework for failover and clustering.
The main characteristics of RabbitMQ project include the
following: i) the RabbitMQ exchange server itself; ii) gateways
for HTTP, STOMP, and MQTT protocols; iii) AMQP client
libraries for Java, .NET Framework, and Erlang; and iv) a plug-
in platform for custom additions, with a pre-defined collection
of supported plug-ins. Figure 2 presents the basic process of
messages exchange using RabbitMQ.

Consumer

Producer
Messages

Exchanges

Bindings

Queues

Topic Fanout Direct

Message Message Message Message Message

Q1 Q2 Q3 Q4 Q5

api_call*.s
ev
er
e logs.*

Figure 2. Illustration of the messages exchange process using RabbitMQ.

SYSTEM DEVELOPMENT

This section describes the application requirements and the
system architecture, addressing also the used technologies.

c. Requirements Analysis

Nowadays, Web services are increasingly included in
applications and consume information regardless of user
location. Web Services triumph the goal with a technologically
neutral way, which delivers interfaces clearly defined for
dispersed features, which are not dependent of the operating
system, hardware platform, and programming languages. Then,
dispersed resources or services that can run in different
hardware platforms, on various operating systems, or even can
be written in various programming languages communicating
through Web services interfaces.

Figure 3 describes a request workflow and sends processes
through Web services. When a node needs to send or receive
information, the requests go directly to the database. The
requester or sender makes the solicitation in REST, the server
will unfold the request to whether it is a request for data or to
data store, and if it was a request for data, the server sends the
data directly from the database, otherwise if it was to store
data, the server will save the data directly in the database.

The server
receives the
solicitation

Request data?

False

True Server sends the
data

Request or Store
data

end

Web services workflow

Requester / Sender
Node

Solicitation sent
through Web

services

False

True
Store data? Server receives

the data

Figure 3. Request or Store workflow of the Web services activity diagram.

Appendices

E

Figure 4 shows the activity diagram of the RabbitMQ
request and data sending. All the solicitations should go first
through the RabbitMQ before reach the database either
sending or receiving. When a node sends information the
RabbitMQ will put the message in a stack, then, when a
request is made it will go directly to the stack. Messages will
be stored in the RabbitMQ until they are consumed.

Data sender
request

Data sent to
RabbitMQ

RabbitMQ stores
data in the stack

RabbitMQ have
messages in the

stack?

Any connection
requesting data?

False

True

RabbitMQ send
data to the
requester

RabbitMQ
"Pause Mode"

Request data

end

Sender
Node

Request Data

Requester
Node

Request sent to
RabbitMQ

False

True

Send Data

RabbitMQ workflow

Figure 4. Request and sender path to the RabbitMQ activity diagram.

d. System Architecture

Figure 5 shows a scenario that illustrates the global system
architecture. A user can choose messages to send using a Web

service or a service of message queuing. If the user chooses
messages submission through the Web service, it will
automatically store the messages in the database. On the other
hand, if a user chooses messages submission through message
queuing service it will be necessary to use a back-end service
to pick up the messages to the message queuing service and
send them to the database.

Web Server

DataBase

Message Queuing

Back-End Services

User

Figure 5. Illustration of the global system architecture with a database,

a Web server, back-end services, and a message queuing.

 In system architecture the Web server runs a RESTful Web
service architecture built on java language, which an user
communicates to send and receive data, i.e., the user makes
HTTP requests to the Web service in order to call the method
needed to insert or query data. With regard to Message
Queuing protocol has been implemented AMQP (Advanced
Message Queuing Protocol), which requires the installation of
a RabbitMQ server. The back-end service was developed in
Java and was used to send and get messages from RabbitMQ
server and insert them into the database. Finally, the database
was developed in MySQL language and was used to hold all
the system data. The user was a mobile application that
communicates with the Web Service through HTTP requests
and makes requests through the AMQP port to communicate
with the service for message queuing.

e. Used Technologies

For the proposed system several technologies were used.
The Netbeans IDE was used to develop and execute the
services for sending and receiving messages. The Web service
was developed in Java and runs on Glassfish, an open-source
application server. For the AMQP protocol, the RabbitMQ
server and an open source message broker software were used,
and also developed a Java application to publish and consume
messages from the server. The database where messages were
stored was created using a relational database management
system, the MySQL.

Appendices

F

WEB SERVICES MECHANISMS AND AMQP PROTOCOL FOR
MOBILE APPLICATIONS

Mobile platforms present their own set of challenges that
can be identified as follows: CPU availability, memory and
bandwidth, storage capacity, connectivity options and issues,
security and user interaction. As the capacity of storage and
processing on mobile devices is reduced in order to find the
best solution for mobile applications that generate large
amounts of data or many messages should be saved, other
services to send and store messages outside the device should
be used.

Against this problem, increasingly, the option comes with
the use of Web services to send data from the mobile device to
a server. However, in this case, it is necessary that a Web
service accepts a large number of requests per second,
assuming the system will process all of them. Once it receives
a large amount of data per second in order to process them and
store in the database, if the system fail to manage the requests,
messages may be lost while the system recovers because the
mobile device is not ready to temporarily store the messages in
case of service failure. Despite having been implemented in
mobile application solutions to solve the problem, it should not
be a good option given the small memory of mobile devices.

To avoid these situations a RabbitMQ server was proposed.
Through it, the data is sent to server queues and the back-end
service should get the messages. In this case even if the back-
end service fails, the messages are stored on the RabbitMQ
server and it will not be needed that the mobile device
temporarily store messages and avoids that some of them may
be lost during the time that the service is down.

The Web service and RabbitMQ server were developed
separately in order to compare both of them and get more
reliable results.

SYSTEM EVALUATION AND VALIDATION
The RabbitMQ server, the Web server, and the database

were created on a Mac server over a virtual machine running
Windows 7 Professional operating system with a processor
Inter (R) Xeon(R) CPU 2.67GHz and 1GB of RAM memory.

The user application was designed for mobile devices
running the Android operating system. The application will run
from the 2.0 version (Eclair) of Android and higher.

Several experiments were performed and deployed for this
study in order to compare both deployed services. With these
experiments the authors tried to find out the main advantages
regarding the use of a Web service, compared with the use of
Message Broker open source software, or vice versa. In these
experiments, twenty-four handsets were used continuously to
send messages to servers. The experiments were performed as
follows:

Experiment 1 – the user application sends messages for 30
minutes to RabbitMQ using AMQP protocol without no active
consumer (back-end service);

Experiment 2 – the user application sends messages for 30
minutes to the Web service server using HTTP protocol, and
then, the Web service communicates with the database using
JDCB driver to store the messages;

Experiment 3 - the user applications sends messages for 30
minutes to RabbitMQ using AMQP protocol with a consumer
(back-end service) to read the messages, process them, and
through JDBC driver connect to the database to store the
messages.

In these experiments, the user had a single function to send
data to the service without ever doing queries. In this way the
authors were able to obtain a more reliable comparison of the
two services when many clients are constantly sending data.
The results are presented in Table I.

RESULTS OF THE PERFORMED EXPERIMENTS.

 Users
Messages
stored in

RabbitMQ

Messages
stored in
Database

Average
messages
sent per
second

Experim. 1 24 407793 n/a 226.6

Experim. 2 24 n/a 226530 125.9

Experim. 3 24 160747 219907 211.5

Appendices

G

Figure 6. Performance comparison considering the number of message for 3
different experimental scenarios showing the messages stored in the Database,

RabbitMQ, and the average messages sent per second.

As above-mentioned, the objective of the experiment 1
passed through the objective to send messages to the
RabbitMQ, during 30 minutes, using 24 users. As it can be
observed in Table I and Figure 6, in the experiment 1, a total
number of 407793 messages were sent and stored with an
average of 226.6 messages per second. In the experiment 2, in
the same interval of time as the experiment 1, but now with the
objective to sent messages through Web services and storing
them in the database, a total of 226530 messages were stored
with an average of 125.9 messages per second. Finally. In the
3rd experiment, the same interval of time was used for the
experiments 1 and 2. Its objective includes sending and storing
the messages using the RabbitMQ, a total number of 380654
were sent and, after, the time was over a total of 160747
messages stayed stored in the RabbitMQ. A total number of
219907 messages where stored in the database, presenting an
average of 211.5 messages per second. None of the messages
in the experiment 3 where lost, some of them stay in the
RabbitMQ because it takes extra time to the client in order to
obtain the messages from the stack and put them in the
database.

With these experiments it is possible to conclude that when
the AMQP protocol is used to exchange messages, it will send
a larger number of messages per second, as can be seen in the
experiments 2 and 3. There is a big difference between
RabbitMQ and the Web service since the Web Service is in
charge of receiving the request introduced by the user and then,
depending on the method called, save the message on
respective table of the database. While RabbitMQ only sends
messages to the server when the server asks for it and stores the
messages in a queued from the client, the client connects with
the RabbitMQ.

CONCLUSIONS AND FUTURE WORK

This paper proposed a comparison study between a
RESTful Web service and the AMQP protocol for exchanging
messages between clients and servers. As it can be seen in
Section V, it is possible to conclude that applications which
will exchange an large amount of data, the best approach is to
use the RabbitMQ server and use a Back-End Service to
consume the messages, process them, and send them to the
database. This approach will allow resources saving, prevent
data loss, and a better organization of the messages. As for the
other approach, when massive data is exchange, this approach
has shown that it can send fewer messages per second,
increasing the time for the exchange, and will consume more
resources.

As future work it is intend to join the RESTful Web
service with RabbitMQ server in order to obtain the most
effective results. With this solution it is planned that there is
less coupling between the two services and allows better
communication between them when the number of
applications that consume the services increases.

I. ACKNOWLEDGMENTS

This work has been partially supported by the Instituto de
Telecomunicações, Next Generation Networks and
Applications Group (NetGNA), Portugal, by National Funding
from the FCT – Fundação para a Ciência e a Tecnologia
through the PEst-OE/EEI/LA0008/2011 Project, by the
AAL4ALL (Ambient Assisted Living for All), project
co-financed by the European Community Fund FEDER
through COMPETE – Programa Operacional Factores de
Competitividade.

II. REFERENCES
[1] Web Service Description Language, “Web Service Definition Language

(WSDL),” [Online]. Available: http://www.w3.org/TR/wsdl [Accessed:
February 2013].

[2] Roy Thomas Fielding, "Architectural styles and the design of network-
based software architectures," PhD diss., University of California, 2000.

[3] X. Xiong and J. Fu, "Active Status Certificate Publish and Subscribe
Based on AMQP," 2011 International Conference on Computational and
Information Sciences (ICCIS 2011), Chengdu, China, 21-23 October,
2011, pp. 725-728.

[4] OASIS, “AMQP is the Internet Protocol for Business Messaging,”
[Online] Available: http://www.amqp.org/ [Accessed: February 2013].

[5] J. O'Hara, “Toward a commodity enterprise middleware,” in Queue, vol.
5, no. 4, pp. 48–55, May, 2007.

[6] S. I. C. I. Vinoski, “Advanced Message Queuing Protocol,” 2006 IEEE
Internet Computing, Las Vegas, NE , USA, 26-29 June, 2006, vol. 10, no. 6.

[7] Y. Wang and E. Stroulia, "Flexible interface matching for Web service
discovery," 4th Int. Conf. on Web Information Systems Engineering (IEEE
WISE 2003), Rome, ITA, 10-12 Dec., 2003, pp. 147-156.

[8] X. Dong, A. Halevy, J. Madhavan, E. Nemes and J. Zhang, "Similarity
search for web services," in Proceedings of the Thirtieth international
conference on Very large data bases (VLDB 2004), Toronto, Canada, 29
August - 3 September, 2004, vol. 30, pp. 372-383.

[9] R. Nayak and Bryan Lee, "Web service discovery with additional
semantics and clustering," 2007 IEEE/WIC/ACM International
Conference on Web Intelligence (WI 2007), 2-5 November 2007,
Silicon Valley, CA, USA, pp. 555-558.

[10] H. R. M. Nezhad, G. Y. Xu and B. Benatallah, "Protocol-aware
matching of web service interfaces for adapter development," 19th
international conference on World Wide Web, Raleigh, North Carolina
USA, April 26-30, 2010, pp. 731-740.

[11] R. Mikhaiel and E. Stroulia, "Examining usage protocols for service
discovery," 4th International Conference of Service-Oriented Computing
(ICSOC 2006), Chicago, USA, Dec. 4-7, 2006, pp. 496-502.

[12] C. Fu, F. Belqasmi and R. Glitho, "RESTful web services for bridging
presence service across technologies and domains: an early feasibility
prototype," IEEE Communications Magazine, vol. 48, no. 12 , 2010, pp.
92-100.

[13] L. Richardson and S. Ruby, “RESTful web services,” O'Reilly Media,
2008.

[14] C. Riva and M. Laitkorpi, "Designing web-based mobile services with
REST," 2007 Workshops in Service-Oriented Computing (ICSOC
2007), Vienna, Austria, September 17-20, pp. 439-450.

[15] M. Laitkorpi, P. Selonen and T. Systa. "Towards a model-driven process
for designing restful web services," 2009 IEEE International Conference
on Web Services (ICWS 2009), Los Angeles, CA, USA, July 6-10,
2009, pp. 173-180.

