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4.1  INTRODUCTION
The umbrella paradigm underpinning novel collaborative industrial systems is to consider the set of 
intelligent system units as a conglomerate of distributed, autonomous, intelligent, proactive, fault-
tolerant, and reusable units, which operate as a set of cooperating entities (Colombo and Karnouskos, 
2009). These entities are forming an evolvable infrastructure, entering and/or going out (plug-in/plug-
out) in an asynchronous manner. Moreover, these entities, having each of them their own function-
alities, data, and associated information are now connected and able to interact. They are capable of 
working in a proactive manner, initiating collaborative actions and dynamically interacting with each 
other in order to achieve both local and global objectives. New emergent behaviors resulting from the 
co-operations arise and need to be managed in a smart manner.

Service-oriented architecture (SOA) principles and technologies are considered an adequate 
backbone to enable the industrial implementation of such collaborative industrial automation and 
management systems corresponding to the, for example, ISA-95 standard, from the sensor/actu-
ator level through the control devices (Computer Numeric Control (CNC), programmable logic  
controller (PLC), Robot Controls) and Supervisory Control and Data Acquisition (SCADA) to the 
Manufacturing Execution System (MES) levels and above. Another very important result of the 
implementation of the SOA paradigm in the collaborative industrial environment is associated with 
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the digitalization (virtualization) of the physical environment—i.e., (1) “things in the real world” 
may get a digital address (get connected to the Internet) and expose their own data and information, 
and (2) the Internet “things in the cyber world” get real (physical)-world aware.

A first consequence of the digitalization of the industrial environment is that “services” are 
having a direct physical impact and the real physical world integrates part of the cyber world. 
A second major consequence is the big amount of machine processable data, servitized func-
tions, generated by heterogeneous data sources located both in the physical and cyber world. 
Both functions and data, but also information, derived from the data processing and intelligent 
decision-making systems are offered/exposed as services in both worlds—i.e., the physical world 
by devices and systems, and the cyber world by a cloud of services. Each entity, located in the 
physical and/or in the cyber (cloud-based) world, connected into the cyber-physical systems 
(CPSs) network, is then able to access and consume those services, and also to use these services 
for generating new ones.

Smartness is intrinsically embedded in an immense set of distributed but networked physical and 
cyber entities: products, solutions, and services. Major challenges arise when this smartness of such 
collaborative industrial infrastructures needs to be mastered—i.e., mastering the inherent autonomy of 
each of the entities and mastering the co-operation capabilities of the networked entities.

The application of the industrial agents paradigm is well-fit to act as an enabler for mastering such 
collaborative industrial systems. Physical agents following the “Holonic Control” principles (Leitão 
et al., 2005) are capable of using the information exposed as services in an autonomous manner to 
perform their own functions and are able to negotiate among them to achieve common goals such 
as controlling emergent behaviors of the multi-agent community by processing, combining, orches-
trating, and composing that data. In summary, both kinds of data sources in a digitalized industrial 
environment—i.e., physical and cyber (cloud) entities need the support of the agents for fulfilling many 
of their collaborative behaviors, and for achieving their “common goals.”

Although the adoption of service-oriented CPSs is increasingly getting industrial consensus, it 
should not be underestimated that this kind of system needs connectivity and interoperability with 
real-time decision systems responsible for supporting the management of the emergent behaviors and 
timely assessment of the big amount of reachable digital data. On the one side, multi-agent-based real-
time decision systems that have been designed for managing emergent behaviors need access to the 
information/data exposed by the components of the industrial environment. They need the SOA-based 
cyber-physical infrastructure. On the other side, the functionality and usability of SOA-based industrial 
CPSs need to be enriched by multi-agent decision-making systems.

In this work, a brief overview of the SOAs paradigm and related technologies that are currently 
used as a backbone to implement industrial cloud-based CPSs is discussed. Additionally, arguments to 
consider industrial agents as an unavoidable complementary automation and management system in 
that CPS industrial environment are analyzed.

The chapter is organized as follows: First, key concepts such as SOAs, cloud systems, and the way 
they can be used in industrial automation systems is discussed. Subsequently, it is investigated how 
multi-agent systems (MASs) and SOA principles can be combined to extract the best of the two worlds. 
Some example use cases are then analyzed, with the first related to a cyber-physical simulation infra-
structure using agents and services, and the second one related to a prototype industrial implementation 
of service-oriented industrial automation systems. The last section rounds up the chapter with some 
considerations.
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4.2  TECHNOLOGIES
4.2.1  TOWARD SOAS
In the last several years, significant efforts have been made (Colombo et al., 2014) to investigate the 
benefits as well as the impact of emerging technologies, such as SOA, cloud computing, CPS, etc. 
Industrial agents have long been recognized as a key approach (Leitão et al., 2013) for developing intel-
ligent solutions—e.g., for simulating behaviors, monitoring and autonomously taking decisions in the 
field, as well as acting as a glue among disparate systems and functionalities.

The SOA paradigm is a way of building distributed systems, originally designed for business sys-
tems and electronic commerce, but progressively adopted in other domains. SOA is based on the con-
cept of providing and requesting services. Basically, a service is a software piece that encapsulates the 
control logic or functionality of an entity that responds to a specific request. In such systems, a provider 
entity hides its internal structure and functionalities by encapsulating them as services and offering 
them to the other entities (requesters) by publishing them in a service registry central repository, as 
illustrated in Figure 4.1.

The list of provided services must be published so they can be discovered by the service requester. 
Using discovery mechanisms—e.g., UDDI (Universal Description, Discovery, and Integration)—ser-
vice requesters can find the services they need. After getting information about the available ser-
vices, the service requester can invoke the execution of those services. More complex services may 
be created by aggregating the functionalities provided by simpler (atomic) ones. This functional-
ity is referred to as service composition and the aggregated service becomes a composite service 
(Chafle et  al., 2004). The composition of services requires mechanisms for coordination and syn-
chronization and shares many common features with workflow systems. However, service composi-
tion requires additional functionalities for discovery and checking the interoperability of the services  
(Karakoc et al., 2006).

Other concepts, such as service orchestration and choreography, are important for the coordination 
and composition, and particularly in determining how the services “play” together. Orchestration is 
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the practice of sequencing and synchronizing the execution of services, which encapsulate business or 
manufacturing processes (Jammes et al., 2005). An orchestration engine implements the logic for the 
workflow-oriented execution and sequencing of atomic or composed services, and provides a high-
level interface for the composed process. The service choreography is a complementary concept, which 
considers the rules that define the messages and interaction sequences that must occur to execute a 
given process through a particular service interface.

Despite the possibility of using other implementation strategies, SOA is commonly imple-
mented using web services (OASIS, 2006). A web service, as defined by the World Wide Web 
Consortium (W3C), is a software system that supports interoperable machine-to-machine interac-
tion over a network (W3C, 2004). The use of the service-oriented paradigm, implemented through 
web services technologies, enables the adoption of a unifying technology for all levels of the 
enterprise, from sensors and actuators to enterprise business processes (Bepperling et al., 2006; 
Karnouskos et al., 2010).

4.2.2  TOWARD WEB SERVICE-ENABLED DEVICES: DPWS, REST, OPC-UA
Current industrial monitoring and control applications are facing many challenges as the complexity 
of systems increases and the systems evolve from synchronous to asynchronous. When hundreds of 
thousands of devices and service-oriented systems are asynchronously interconnected and share and 
exchange data and information (i.e., services, for monitoring, controlling, and managing the processes), 
key challenges such as interoperability and real-time performance constraints, among others, arise 
and need to be addressed. Several Internet-based technologies and concepts have found their way into 
industrial automation, and especially onto integration of devices (Bangemann et al., 2014). Some of 
the most widely used constitute the Devices Profile for Web Services (DPWS), Representational State 
Transfer (REST), and OPC Unified Architecture (OPC-UA).

A standard dealing with ubiquitous device integration is DPWS as described in the OASIS (2009) 
standard, which is a collection of web service standards. Initially, DPWS was conceived as a suc-
cessor of UPnP (Universal Plug and Play) for home automation scenarios, but recent works have 
shown its applicability to the automation world (Karnouskos et al., 2010). DPWS advances previous 
dynamic discovery concepts, such as Jini (www.jini.org) and UPnP (www.upnp.org) to integrate 
devices into the networking world and make their functionality available in an interoperable way. 
DPWS is an effort to bring web services to embedded devices, taking into consideration their con-
strained resources. Several implementations exist in Java and C (e.g., www.ws4d.org, www.soa4d.
org), while Microsoft has also included a DPWS implementation (WSDAPI) by default in Windows 
Vista onwards and in Windows Embedded CE operating systems. DPWS exists in a number of 
devices today, and basically brings the SOA world down to the devices, hence extending a fully 
service-oriented infrastructure down to the physical world and resource-constrained networked em-
bedded systems.

An alternative integration approach is REST, as described by Fielding (2000), which is the archi-
tectural principle that lies at the heart of the web and shares a similar goal with integration techniques, 
such as WS-* web services, that is increasing interoperability for a looser coupling between the parts 
of distributed applications. However, the goal of REST is to achieve this in a more lightweight and 
simple manner; therefore, it focuses on resources, not functions, as is the case with WS-* web services. 
In particular, REST uses the web as an application platform and fully leverages all the features inherent 

http://www.jini.org
http://www.upnp.org
http://www.ws4d.org
http://www.soa4d.org
http://www.soa4d.org
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to HTTP, such as authentication, authorization, encryption, compression, and caching. This way, REST 
brings services “into the browser”—i.e., resources can be linked and bookmarked and the results are 
visible with any web browser. There is no need to generate complex source code out of WSDL (Web 
Services Description Language) files to be able to interact with the service.

Finally, OPC-UA (Mahnke et al., 2009) was developed with the goal to provide a path from the 
traditional OPC communications model to a SOA. OPC-UA supports a binary protocol for high per-
formance and a web service protocol (e.g., SOAP (Simple Object Access protocol)), which is firewall 
friendly and uses standard http/https ports. IEC 62541 is a standard for OPC Unified Architecture.

OPC-UA, DPWS, and REST constitute some of the “emerging” technologies and blend with many 
other traditional ones in the shop floor (Bangemann et al., 2014). The selection of the best-fit technol-
ogy depends on the scenario and the requirements posed, as at this stage all of them have benefits 
but also drawbacks (Jammes et al., 2014). Lighthouse projects, such as SOCRADES (www.socrades.
eu) and IMC-AESOP (www.imc-aesop.eu), have developed and tested prototypes in industrial set-
tings that use a mix of these technologies to integrate industrial systems (Colombo et al., 2014), as 
well as couple them with information and business systems (Karnouskos et al., 2010). There are also 
ongoing efforts—e.g., to further enhance the performance in DPWS with the introduction of Efficient 
XML Interchange (EXI), as well as integrate more lightweight protocols, such as the IETF Constrained 
Application Protocol (CoAP), and the fusion of DPWS and OPC-UA (Colombo et al., 2014; Jammes 
et al., 2014).

All of these efforts that promote modularization and easy integration over heterogeneous infra-
structures act as enablers for industrial agents. The latter can be realized both within the device itself, 
as well as externally, and interact with the devices via well-defined services, as will be analyzed later 
in this chapter.

4.2.3  CLOUD-BASED INDUSTRIAL SYSTEMS
Future industrial automation systems are expected to be complex system of systems that will empower 
a new generation of what today would be considered hardly realizable applications and services. The 
rapid advances in technology during the last years have given rise to virtualization and cloud sys-
tems. Virtualization addresses many enterprise needs for scalability, more efficient use of resources 
and lower total cost of ownership (TCO), to name a few. Cloud computing has emerged powered by 
the widespread adoption of virtualization, SOA, and utility computing. IT services are accessed over 
the Internet and local tools and applications (usually via a web browser) offer the feeling that they were 
installed locally. However, the important paradigm change is that the data are computed in the network 
but not in a priori known places. Typically, the physical infrastructure may not be owned, and various 
business models exist that consider access-oriented payment for usage (Karnouskos et al., 2014a).

New industrial systems and architectures are being developed to take advantage of the cloud and 
its services (Karnouskos et  al., 2014b). Figure  4.2 illustrates such an effort carried out within the 
IMC-AESOP project (Colombo et al., 2014). There we see the emergence of an information-based 
infrastructure that is built in a complementary fashion to the traditional automation “pyramid,” as de-
fined in ISA-95. The ever-increasing need for rapid development and deployment of applications and 
services has taken advantage of the modularization of functionalities and the availability of services at 
the different traditional automation levels (Level 0 up to Level 4) and combined them in a lightweight 
application-specific manner.

http://www.socrades.eu
http://www.socrades.eu
http://www.imc-aesop.eu
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Hence, although the traditional hierarchical view is left untouched, hooks in the form of services 
enable now the emergence of a flat information-based architecture. Next-generation industrial applica-
tions can now rapidly be composed by selecting and combining the new information and capabilities 
offered (as services in the cloud) to realize their goals. The envisioned transition to the future cloud-
based industrial systems is depicted in Figure 4.2.

For industrial agents, such visions and technology trends signal a new era. Industrial agents can 
very well act as enablers for the servicification of the traditional ISA-95 infrastructure by capturing 
key functionalities and providing them as services. In addition, they could play coordination roles by 
orchestrating the integration of various services in the cloud while hosting the intelligence needed.

4.3  BRIDGING AGENTS AND SOA-ENABLED DEVICES
The Internet of Things is prevailing in the industrial domain where devices are acquiring increasingly 
sophisticated computing and communication capabilities. As such, these are envisioned to play active 
roles in emerging collaborative infrastructures and systems. Hence, we witness efforts to migrate ad-
vanced functionality previously hosted in powerful static back-end systems toward more lightweight 
mobile distributed embedded devices. Web services nowadays can be implemented directly on de-
vices, providing them with the necessary technology abstraction and making them easily integratable in 

FIGURE 4.2

Industrial automation evolution: complementing the traditional ISA-95 automation world view (pyramid on the 
left side) with a flat information-based infrastructure for dynamically composable services and applications 
(right side).
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heterogeneous environments. Additionally, intelligence can also be realized in various forms including 
those in the form of agents. In such systems, agents can be integrated within the intelligent device or as 
an orchestrator at a higher level. Therefore, coupling agents and devices for industrial purposes could 
yield several benefits.

4.3.1  AGENT AND SERVICE COMMONALITIES
Service-oriented principles can be integrated with MAS to enhance some functionalities and overcome 
some limitations, namely in terms of interoperability, legacy system integration, and IT-vertical inte-
gration. In spite of being based on the same concept of providing a distributed approach to the system, 
MAS and SOA present some important differences, namely in terms of computational requirements 
and interoperability, as illustrated in Table 4.1. (Ribeiro et al. (2008) provide a deeper study of these 
differences.)

These differences highlight the complementary aspects of the two paradigms, suggesting the ben-
efits of combining them to extract the best of both worlds: the intelligence and autonomy provided by 
MAS solutions and interoperability offered by SOA solutions (Huhns, 2002). This suggestion is not 
new since services are already part of the agents' specification (e.g., included in the Foundation for 
Intelligent Physical Agents (FIPA) specification (FIPA, 2002)), and agents are also present in stan-
dard documents of SOA methodologies (e.g., in the OASIS (2006) standard). However, the under- 
considered elements (services in MASs and agents in SOA) are vaguely defined and have a more  
passive and customized role.

4.3.2  APPROACHES TO COMBINE AGENTS AND SERVICES
Traditionally, the combination of MAS and SOA paradigms can be performed in different ways, as 
illustrated in Figure 4.3 (Mendes et al., 2009a). The first traditional option, illustrated in Figure 4.3a, 

Table 4.1  Differences Between MAS and SOA

Multi-Agent Systems Service-Oriented Architectures

Well-established methods to describe the behavior of an 
agent

Focus is on detailing the public interface rather than 
describing execution details

Agents denote social ability regulated by internal or 
environmental rules

Social ability is not defined for SOA

Most implementations are optimized for LAN use, but 
Internet is also possible

Supported by Web-related technologies and can 
seamlessly run on the internet

Reactive to changes in the environment Reconfiguration often requires reprogramming

Interoperability heavily dependent on compliance with 
FIPA-like standards

Interoperability assured by the use of general-purpose 
Web technologies

Heavy computational requirements High performance without significant interoperability 
constraints

Adapted from Ribeiro et al. (2008)
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considers gateways to translate the semantics from the agent world to the services world. According to 
the FIPA specifications, this task is basically performed by translating:

•	 Service registration: DF (Directory Facilitator) ↔ UDDI
•	 Service description: agent service ↔ WSDL
•	 Message: ACL (Agent Communication Language) ↔ SOAP

An example is the Web Services Integration Gateway (WSIG) plug-in provided by the Java Agent 
Development (JADE) framework to offer an implementation of the concept of gateway (Bellifemine 
et al., 2007). This plug-in, in the form of a gateway agent, was implemented by Whitestein Technologies 
and allows transparent and bidirectional transformations between FIPA-compliant services and web 
services, employing the WSDL/SOAP/UDDI stack (i.e., publishing agents' capabilities as web services 
used in a SOA environment). The communication between the WSIG Gateway Agent and the other 
agents use FIPA-ACL, as illustrated in Figure 4.4, and the service discovery is performed by using two 
repositories: DF (for the agents world) and UDDI (for the services world). The discovery transforma-
tion performed by the gateway agent allows agents to perform service discovery in the web services 
registry using the UDDI and lets web service clients perform service discovery in the MAS registry 
using the DF.

Other similar examples are the WS2JADE (Nguyen and Kowalczyk, 2007) and AgentWeb 
Gateway (Shafiq et al., 2005). Several applications combining MAS and SOA principles employ-
ing the concept of gateway agents are reported in the literature. For example, Jacobi et al. (2010) 
use a model-driven approach that combines SOA and MAS to model a segment of a production 
chain in the steel industry, and Fayçal et al. (2010) propose the integration of legacy systems by 
the encapsulation of its features by agents. Another idea is to join the subscribing directories from 
the agent side (DF) from the web services side (UDDI) in just one common place named UD3  
(Cheaib et al., 2008).

Utilizing the described approach, the design of truly service-oriented MASs is far from the real 
expected potential and benefits, because the combination is only focused in the communication per-
spective offered by SOA approaches, and it does not fully explore the potential of designing the system 
using service-orientation. Another option, illustrated in Figure 4.3b, was introduced by Mendes et al. 
(2009a) and is characterized by the use of a set of autonomous agents that use the SOA principles 
(i.e., oriented by the offer and request of services) to fulfill industrial system goals. The achieved 
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Common approaches for integrating SOA and MAS.
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service-oriented multi-agent systems (SOMAS) approach is different from the traditional MAS mainly 
because agents are service-oriented—i.e., according to Mendes et al. (2009a):

•	 Agents share services as the major form of communication among agents.
•	 Individual goals of agents may be complemented by services provided by other agents.
•	 The internal functionalities of agents can be offered as services to other agents.

An important note is that these service-oriented agents do not only share services as their main form 
of communication, but also complement their own goals with externally provided services.

An example of using the SOMAS approach is illustrated in Figure 4.4, where devices represent 
conveyors (transporting pallets) and pallets, and have associated service-oriented agents that are re-
sponsible for part of their environment (Leitão, 2012). The conveyor agent provides a service, called 
the transfer pallet, which encapsulates its internal functionality of transferring the pallet from the 
input location to the output location. Therefore, it has the ability to read the sensors, execute the em-
bedded logic control and send commands to the actuators of the conveyor. This service is published 
in the Service Registry to be discovered by other agents representing devices—e.g., conveyors or 
pallets.

Other neighbor devices (e.g., a pallet agent that needs this transfer service to accomplish its goals) 
may request the service to the conveyor agent. However, to complete the execution of the service and 
also to respect global objectives, the conveyor must request an availability service from the next trans-
port unit or workstation connected to its output, using the SOAP protocol. This can be seen as the form 
of collaboration among the service-oriented agents in the system.

SCADA,
MES

Pallet
agent

Pallet
agentConveyor

agent

“Transfer”
service

Internal
functionalities
exposed as

services

Sensing
/ acting

S

S S S

FIGURE 4.4

Example of a service-oriented multi-agent system.
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4.3.3  ENTERPRISE SERVICE BUS-BASED SOLUTIONS
SOA-based systems can be realized by an Enterprise Service Bus (ESB) that provides a layer on top 
of an implementation of an enterprise messaging system (Ziyaeva et al., 2008), acting as backbone for 
supporting the interoperability among the connected software applications. Typically desirable capabil-
ities of ESBs include, without being exhaustive, process orchestration (typically via WS-BPEL), pro-
tocol translation, hot deployment, versioning, life-cycle management, and security. The use of an ESB 
constitutes an alternative way to implement the integration of MAS and SOA following the SOMAS 
concept, where software applications are MAS-based systems that are interacting through the use of the 
ESB by exposing and consuming services.

An example of the use of this approach to integrate MAS and SOA paradigms is provided by the 
EU FP7 Adaptive Production Management (ARUM) project (arum-project.eu) that addresses the 
development of solutions to handle emergent challenges in ramping up production of complex and 
highly customized products, such as for the aircraft industry, and particularly mitigation strategies to 
respond faster to unexpected events and intelligent decision support systems for planning and opera-
tion (Marín et al., 2013).

Aiming to achieve a full interoperability across the entire ARUM solution, traditional ESBs—e.g., 
the open source JBoss ESB (Jboss, 2014) and the proprietary TIE Smart Bridge (TSB, 2014)—are 
enriched with a plethora of advanced modules and functionalities that support the tool's life cycle from 
creation time until they are unplugged from the system, resulting in an intelligent enterprise service bus 
(iESB). Examples of such modules are the Ontology Service, Data Transformation Service, Sniffer, 
Node Management, and Life-Cycle Management. The iESB provides a common infrastructure for the 
integration of heterogeneous agent-based planning and scheduling tools, and legacy systems using the 
services principles, as illustrated in Figure 4.5.
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FIGURE 4.5

Integration of MAS and SOA using an Enterprise Service Bus.

http://arum-project.eu
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The plugability of the agent-based tools is facilitated by the exposition of their functionalities as 
services and by the use of the ontology services for the representation of the shared knowledge, improv-
ing the interoperability in such distributed and heterogeneous systems.

4.4  USE CASE: CYBER-PHYSICAL INFRASTRUCTURE SIMULATION BY 
COUPLING SOFTWARE AGENTS AND PHYSICAL DEVICES
Today, we see the emergence of cyber-physical infrastructures composed from a high number of het-
erogeneous devices. The latter may as well be SOA-enabled devices on the basis of technologies such 
as OPC-UA, DPWS, and REST, as we have already discussed. However, in order to study large-scale 
systems, the development of real testbeds with hundreds or thousands of such devices is costly. Hence, 
a compromise might be to simulate their behavior as realistically as possible. Simulating an infrastruc-
ture populated by a high number of web service enabled devices is not trivial, but it could provide a 
very useful tool in the hands of enterprise application developers.

Coupling agents with such physical devices could provide an interesting approach for investigating 
some of these aspects, including management and network aspects. An architecture for such a simula-
tion is depicted in Figure 4.6 (Karnouskos and Tariq, 2009).
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e.g., DPWS-enabled
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FIGURE 4.6

A simulator of CPS infrastructures relying on agent-driven integration.
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The devices at the lowest layer make available their functionality via web services, while a subscription 
can be made to their services. The device layer consists of devices that directly implement web services—
e.g., via the DPWS protocol, and/or via the DPWS gateway (due to resource constraints, etc.). Typical 
examples of such devices that implement web services (SOA-ready) are PLCs, robots, advanced wireless 
sensors (e.g., SunSPOTs etc.), and examples of devices connected via a DPWS gateway, which could be 
Radio-Frequency IDentification (RFID) tags that connect via an RFID reader that acts as a DPWS gateway.

At the execution layer, the mobile agent system hosts several agents that not only cooperate but also 
control the created virtual devices. One layer higher is the logic, which describes the scenarios that us-
ers run within the simulator. The scenarios range from simple ones running standalone, up to complex 
ones which may start other simpler scenarios first. Finally, at the enterprise layer, various services and 
applications can communicate via web services with the devices, both real and simulated ones.

For the implementation, the JADE multi-agent platform (Bellifemine et al., 2007) is used to create 
the agents representing DPWS devices. Each agent represents one DPWS device, which needs to be 
created using the DPWS toolkit (www.soa4d.org). This integration has been achieved by creating two 
types of agents interacting with the DPWS toolkit: (i) a DPWS Client Agent (DC-Agent); and (ii) a 
DPWS Server Agent (DS-Agent), as analyzed in detail in Karnouskos and Tariq (2008).

The DC-Agent implements the client part of the DPWS toolkit, acting as a client for consuming ser-
vices offered by devices, as well as for services offered by DS-Agents. This agent acts as a bridge between 
a device and a DS-agent offering service(s) to applications. Tasks assigned to the DC-Agent include dis-
covery of other in-network DPWS-enabled devices, the acquisition of services and data offered by those 
devices, the processing of data, and the exposition of data to other applications via the DPWS protocol.

The DS-Agent implements the server part of the DPWS toolkit and is more complex because it 
consists of two distinct components: a server and a service. The server part instantiates the services, 
registers them, and listens at the specified port for the client requests. The service part is exposed to the 
external world and handles all the client requests.

As can be seen in Figure 4.7, simulated and real DPWS-enabled devices can be discovered by third-
party DPWS clients. These appear as normal devices (distinguishable only by their name), and coexist 

FIGURE 4.7

DS-Agents and DPWS devices discoverable in Windows.

http://www.soa4d.org
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with other devices such as a robotic arm, a SunSPOT sensor (www.sunspotworld.com), and a windows 
computer. This makes it obvious that the simulator-created devices can at least be discovered/used by 
other infrastructure actors in an agnostic, non-intrusive way.

The simulation environment consists of a basic set of agents, each of which has its goals and inter-
nal logic (Karnouskos and Tariq, 2009):

•	 Management Agent: Tasks of this agent include the evaluation of user arguments, the creation of 
other agents and other management functions (e.g., logging).

•	 Device Explorer Agent: This agent is based on the concept of the DC-Agent with the aim to 
discover all the DPWS-enabled devices in the network based with a specific scope.

•	 Device Generator Agent: The core function of this agent is to receive and execute requests 
towards creating and initializing service agents that simulate a specific service.

•	 Scenario Agent: This agent is specific for each scenario because it executes its strategy/logic.
•	 Service Agent(s): The design of a service agent is based on the DS-Agent model. Such types 

of agents simulate a DPWS service and are visible to the external world via the DPWS 
communication.

Using the capabilities of the simulator, thousands of DPWS devices were instantiated and investi-
gated (Karnouskos and Tariq, 2009). However, limitations in the hosting computer(s) played a role, and 
potentially these results can be revisited with more powerful hardware, larger distribution of the agents 
(e.g., in the cloud), and more efficient implementations of the DPWS toolkit.

The agents played various key roles in this system. First, they acted as “glue” that serviced physi-
cal devices and exposed their capabilities via web services, and more specifically the DPWS protocol. 
As such, any “legacy” or other non-SOA devices could now be easily integrated via web services. The 
agents also acted as simulation scenario orchestrators, holding the intelligence needed to execute the 
simulation. As such, we can witness a diverse utilization of their capabilities and some potential roles 
they can play in industrial settings.

4.5  USE CASE: SERVICE-ORIENTED INDUSTRIAL AUTOMATION SYSTEM
The European research project SOCRADES had explored the application of service-orientation and 
web services for the next generation of industrial automation systems. In particular, an engineering 
framework for the development of service-oriented automation systems was introduced by Mendes 
et al. (2008), using the Petri nets formalism as a unified tool for the specification, modeling, analysis, 
and execution of service-based automation systems. Petri nets are also exploited as the form of orches-
tration and composition in service-oriented automation systems.

The application scenario used to demonstrate the SOA approach was a dynamic assembly system 
based on a customized and modular factory platform for the light assembly, inspection, test, repairing 
and packing applications as shown in Figure 4.8, left part. 

The SOA-based prototype comprises a flexible production system with two work stations (that can 
be used by operators and robots), several conveyors that route production pallets into/out of the system 
and to the workstations, and also two lifters. Schematic depicted on the right side of Figure 4.8, the  
central part of the transfer system (C1-C9) is made of nine transfer units (conveyors) of unidirectional 
and cross types. The unidirectional transfer unit provides an input and an output port, and the cross trans-
fer unit provides transfers not only in the longitudinal axis, but also in the transversal axis. The lower 

http://www.sunspotworld.com
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transfer units (C10, C11) have the same behavior as the normal unidirectional transfer units (such as unit 
C5), but are physically longer. Lifter units (L1 and L2) are responsible for the interface between the up-
per and lower part of the system, and also for transferring pallets into and out of the automation system.

The pallets enter in the system via the unit C4 and are conveyed using alternative paths to the two 
workstations W1 and W2. The routing is done at the transfer units based on the required production 
operations needed by the product mounted on a particular pallet and based on the location and avail-
ability of production services in the system (at W1 and W2). A workstation can provide more than one 
type of production operation, and one kind of production operation could be provided by more than 
one workstation. The units C4, C6, C2, and C8 are equipped with RFID which is able to read/write 
information from/to tags attached to the pallets.

A composition approach applies to most levels of the factory floor; simple devices compose com-
plex devices or machines, which in turn are composed to build cells or lines of a production system, and 
so on. The same applies to the concept of service-oriented production systems and composing complex 
services from simpler services, complemented with orchestration engines, as illustrated in Figure 4.9. 
As a matter of fact, the orchestration engines will be located (embedded) into selected devices and 
their orchestration/composition functionalities exposed from the devices or directly from the service 
bus, considered here as the service recipient of the service cloud. Note: Orchestration engines appear 
where atomic services discovered in the service bus have to be composed or orchestrated to generate 
new services or to manage and control the results of service compositions.

Since services are not isolated entities exposed by the intervenient software components, a kind of 
logic that is responsible for the interaction is needed. This SOA-based function is depicted by the block 
“Orch” in the Figure 4.9.

As a matter of fact, the Orch-component of the SOA-architecture is an engine developed and imple-
mented to compose services and to generate high-level functionalities that are results of those service com-
positions. In the case of a model-based orchestration engine, it is able to interpret a given work-plan made 
of services (an orchestration) and execute it. The work-plan can be defined in Business Process Execution 
Language (BPEL) as defined in OASIS (2007), Petri nets formalism e.g., Hamadi and Benatallah (2003) 
and Bing and Huaping (2005), or even in adapted IEC 61131-3 languages, beside others.

The modeling language used in the EU FP6 SOCRADES work derives from Petri net specifications, 
including time considerations, property system and customizable token game engine. The developed 

FIGURE 4.8

Prodatec/FlexLink DAS 30 used for the SOCRADES demonstration (located at Schneider Electric Automation 
GmbH in Germany).
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Petri net orchestration engine needs to know how and when to respond to services and to represent 
them in the model. This is done by describing transitions in the Petri net model. A transition willing of 
sending a request/response or an event must be enabled, and the action is done when it fires. In the other 
hand, a transition receiving a message from a request, response or event, will only fire if it is enabled 
and the message is there.

The information to be used by transitions is gathered by an imported WSDL file that contains the de-
scription of the service. Depending on the operation, transitions can be part of a client request/response, 
server request/response, client event and server event. The first two types require two transitions: one for 
initializing the request and one for the response. It is also possible to test responses by their return pa-
rameters, implying the use of one response transition for each test. The difference of an operation being 
a server or client is obvious: a server waits for the request and then gives a response, and a client makes 
a request and waits for a response. Events are possible as client and server, but only require one single 
direction (and consequently, one transition for each test. The difference of an operation being a server or 
client is obvious: a server waits for the request and then gives a response, and a transition).

The fully distributed service-based automation system with its associated service ecosystem for the 
case study addressed in Figure 4.8 is represented in Figure 4.10. The atomic services are exposed by 
the transfer units (Transfer), lifters (Lifting) and RFID devices (RFID) through the smart embedded 
I/O units (STBs and gateways). These services are the building blocks for the construction of more 
advanced production automation scenarios, so that they can be associated and composed depending on 
the requirements and objectives of the application.

The approach for creating complex, flexible and reconfigurable production systems is based on a 
network of modular, reusable entities that expose their production capabilities as a set of services. Data 
and information associated to industrial equipment, i.e., physical entities like a warehouse unit, a lifter 
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or a robot, as shown in Figure 4.11, are digitalized by smart embedded devices and exposed as services 
into a cyber-infrastructure such as a “Service Bus” (cloud of services).

The next major task during the engineering development process of the SOA-based automation  
system is to fit the automation bot, including the orchestration engine and web service technology into 
an automation device. The resulting smart embedded device hosts most of the services exposed in the 
system and is also responsible for the coordination and control of the mechanical parts of the mechatron-
ics system, as represented in Figure 4.11. As one of the first industrial prototypes, the Telemecanique 
Advantys STB (Small Terminal Box) NIP2311 prototype devices were used in the case of the EU FP6 
SOCRADES project, which provide two main interfaces: mediating the automation equipment via 
input/output modules and managing the access to the service bus by exposing and requesting services 
(using the Ethernet network interface module). Atomic services representing resources and functions of 
the connected equipment are provided by the device interface. Some of them may include an orchestra-
tion engine to “link” services together and create new composite services. An internal decision support 
system is responsible for sustaining the engine for decisions (e.g., selecting the best process based on 
the decision criteria).

The controller of the Ethernet module is used to host the service infrastructure, based on the SOA4D 
implementation of DPWS (forge.soa4d.org), allowing the deployment of user-defined applications as 
DPWS-compliant service components. The services are implemented by the STB with an embedded 
IEC-61131 engine. The ControlBuild prototype developed by Geensys (www.geensys.com) is used to 
specify the logic and services offline and then deploy those into STBs. Another STB prototype has been 
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implemented that provides an embedded service orchestration engine based on the Continuum Bot 
Framework with Petri nets kernel (Mendes et al., 2009a) and the DPWS stack with the same deploy-
ment mechanisms as for the STB with IEC-61131 engine. The orchestration engines run on their own 
STBs and provide composed services to the system.

The control logic is managed by the Petri nets kernel module that interprets a given Petri net model 
(Mendes et al., 2009b). During the execution of the behavioral models, some decision nodes may ap-
pear, requiring their real-time resolution. In the case of Petri nets to represent the system behavior, 
this detection is performed with the identification of marked places that can evolve into more than one 
alternative way: the marked places that have connected more than one enabled transition. As illustrated 
in Figure 4.12, the place p1 constitutes a decision node because there are three alternatives to evolve 
the model—the operation service can be performed using three distinct machines. The decision point is 
translated in the Petri net model as a conflict, making it necessary that someone, in this case a decision 
support system, resolves the conflict—that is, selects one of the machines depending on various criteria.

The degree of complexity associated with the decision support system can range from simple al-
gorithms to complex cognitive systems, making the use of agents a natural option in providing intel-
ligence during the orchestration process. After selecting the best option to evolve, the achieved decision 
is translated to the Petri nets model by increasing the priority associated with the selected transition—in 
this case, transition t3. Analyzing the priority of alternative transitions, the logic controller will evolve 
the system by firing the transition with a higher priority, activating the corresponding web services, and 
sending a message to the machine.
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The orchestration models can be connected together via the ports of the models, using two alterna-
tive ways:

•	 Offline composition, which permits generating a new model based on the connection of 
individual ones. For this connection, the information has to be set up in the Petri net models, and 
an XML connection file must be defined to describe which models will be connected and through 
which ports.

•	 Online composition, which permits the intercommunication of two engines and their respective 
models via the exposition and request of services (this is already part of the information of the 
models designed before).

At the time of the experimentation, there were only three available STB devices embedding Petri 
net orchestration engines, which are only able to run one model at a time. The solution was using the 
offline composition to generate only three composed models (one for each orchestration device) and 
let them work together in real time using the online composition. Afterward, the decision was to split 
the system into three clusters of units, resulting in one model for C1-C3; one model for C4-C5, L1, 
L2, C10, and C11; and another model for C7-C9, ending up in three composed Petri nets models. The 
generated models communicate via each other (for the inter-transfer operation of pallets) using service 
invocation (i.e., the “TransferIn/TransferOut” mechanism).

The composition application shows that it is possible to design individual models without knowing 
the availability and disposability of the final orchestration devices. The experiment shows one possible 
way to compose the system using three devices and a defined distribution, but it could also be done 
with a different number of devices and other ways of division. Offline composition is used to limit the 
use of devices and network traffic, but introduces more complex models to be orchestrated (considering 
the limitations of embedded devices). On the other hand, the online composition is focused more on 
the distributed orchestration and the synchronization thereof. The correct division and use of the com-
position types depends always on the available resources, the optimization strategies, and the layout of 
the system, but orchestration models can be individually developed without knowing this information.
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4.6  CONCLUSIONS AND FUTURE DIRECTIONS
Although agents in general, as well as industrial agents, have been investigated for several years, their 
productive use in industrial settings has been demonstrated but is limited. Other technologies and ap-
proaches that complement them have been used, as we have already discussed. However, with the 
prevalence of a new high-tech infrastructure driven by CPSs, as defined in the Industrie 4.0 vision, 
industrial agents have come again to the forefront of realizing the key features needed. As such, we 
see a renewed interest in the practical applications of industrial agents, especially in conjunction with 
CPSs, SOAs, and cloud computing. Their roles can vary from delivering intelligence to the infrastruc-
ture, acting as “glue” for legacy systems, and negotiating or mediating functionalities and services, etc.

To achieve large portions of the Industrie 4.0 vision, further research is required, with a focus on 
the usage of modern Internet technologies and services, but in industrial production. The latter as-
sumes a good understanding of the challenges and limitations posed in real-world industrial systems, as 
well as the optimization of agent systems to make them sustainably operational in such environments,  
as shown in the first industrial prototype applications reported at the beginning of the last decade 
(Colombo et.al. 2006).
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