
CHAPTER

67

4INDUSTRIAL AGENTS
IN THE ERA OF
SERVICE-ORIENTED
ARCHITECTURES
AND CLOUD-
BASED INDUSTRIAL
INFRASTRUCTURES

Armando Walter Colombo1,2, Stamatis Karnouskos3, João Marco Mendes2, and Paulo Leitão4,5

1University of Applied Sciences Emden/Leer, Emden, Germany
2Schneider Electric Automation GmbH, Marktheidenfeld, Germany

3SAP, Karlsruhe, Germany
4Polytechnic Institute of Bragança, Bragança, Portugal

5LIACC—Artificial Intelligence and Computer Science Laboratory, Porto, Portugal

4.1  INTRODUCTION
The umbrella paradigm underpinning novel collaborative industrial systems is to consider the set of
intelligent system units as a conglomerate of distributed, autonomous, intelligent, proactive, fault-
tolerant, and reusable units, which operate as a set of cooperating entities (Colombo and Karnouskos,
2009). These entities are forming an evolvable infrastructure, entering and/or going out (plug-in/plug-
out) in an asynchronous manner. Moreover, these entities, having each of them their own function-
alities, data, and associated information are now connected and able to interact. They are capable of
working in a proactive manner, initiating collaborative actions and dynamically interacting with each
other in order to achieve both local and global objectives. New emergent behaviors resulting from the
co-operations arise and need to be managed in a smart manner.

Service-oriented architecture (SOA) principles and technologies are considered an adequate
backbone to enable the industrial implementation of such collaborative industrial automation and
management systems corresponding to the, for example, ISA-95 standard, from the sensor/actu-
ator level through the control devices (Computer Numeric Control (CNC), programmable logic
controller (PLC), Robot Controls) and Supervisory Control and Data Acquisition (SCADA) to the
Manufacturing Execution System (MES) levels and above. Another very important result of the
implementation of the SOA paradigm in the collaborative industrial environment is associated with

68 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

the digitalization (virtualization) of the physical environment—i.e., (1) “things in the real world”
may get a digital address (get connected to the Internet) and expose their own data and information,
and (2) the Internet “things in the cyber world” get real (physical)-world aware.

A first consequence of the digitalization of the industrial environment is that “services” are
having a direct physical impact and the real physical world integrates part of the cyber world.
A second major consequence is the big amount of machine processable data, servitized func-
tions, generated by heterogeneous data sources located both in the physical and cyber world.
Both functions and data, but also information, derived from the data processing and intelligent
decision-making systems are offered/exposed as services in both worlds—i.e., the physical world
by devices and systems, and the cyber world by a cloud of services. Each entity, located in the
physical and/or in the cyber (cloud-based) world, connected into the cyber-physical systems
(CPSs) network, is then able to access and consume those services, and also to use these services
for generating new ones.

Smartness is intrinsically embedded in an immense set of distributed but networked physical and
cyber entities: products, solutions, and services. Major challenges arise when this smartness of such
collaborative industrial infrastructures needs to be mastered—i.e., mastering the inherent autonomy of
each of the entities and mastering the co-operation capabilities of the networked entities.

The application of the industrial agents paradigm is well-fit to act as an enabler for mastering such
collaborative industrial systems. Physical agents following the “Holonic Control” principles (Leitão
et al., 2005) are capable of using the information exposed as services in an autonomous manner to
perform their own functions and are able to negotiate among them to achieve common goals such
as controlling emergent behaviors of the multi-agent community by processing, combining, orches-
trating, and composing that data. In summary, both kinds of data sources in a digitalized industrial
environment—i.e., physical and cyber (cloud) entities need the support of the agents for fulfilling many
of their collaborative behaviors, and for achieving their “common goals.”

Although the adoption of service-oriented CPSs is increasingly getting industrial consensus, it
should not be underestimated that this kind of system needs connectivity and interoperability with
real-time decision systems responsible for supporting the management of the emergent behaviors and
timely assessment of the big amount of reachable digital data. On the one side, multi-agent-based real-
time decision systems that have been designed for managing emergent behaviors need access to the
information/data exposed by the components of the industrial environment. They need the SOA-based
cyber-physical infrastructure. On the other side, the functionality and usability of SOA-based industrial
CPSs need to be enriched by multi-agent decision-making systems.

In this work, a brief overview of the SOAs paradigm and related technologies that are currently
used as a backbone to implement industrial cloud-based CPSs is discussed. Additionally, arguments to
consider industrial agents as an unavoidable complementary automation and management system in
that CPS industrial environment are analyzed.

The chapter is organized as follows: First, key concepts such as SOAs, cloud systems, and the way
they can be used in industrial automation systems is discussed. Subsequently, it is investigated how
multi-agent systems (MASs) and SOA principles can be combined to extract the best of the two worlds.
Some example use cases are then analyzed, with the first related to a cyber-physical simulation infra-
structure using agents and services, and the second one related to a prototype industrial implementation
of service-oriented industrial automation systems. The last section rounds up the chapter with some
considerations.

694.2  TECHNOLOGIES

4.2  TECHNOLOGIES
4.2.1  TOWARD SOAS
In the last several years, significant efforts have been made (Colombo et al., 2014) to investigate the
benefits as well as the impact of emerging technologies, such as SOA, cloud computing, CPS, etc.
Industrial agents have long been recognized as a key approach (Leitão et al., 2013) for developing intel-
ligent solutions—e.g., for simulating behaviors, monitoring and autonomously taking decisions in the
field, as well as acting as a glue among disparate systems and functionalities.

The SOA paradigm is a way of building distributed systems, originally designed for business sys-
tems and electronic commerce, but progressively adopted in other domains. SOA is based on the con-
cept of providing and requesting services. Basically, a service is a software piece that encapsulates the
control logic or functionality of an entity that responds to a specific request. In such systems, a provider
entity hides its internal structure and functionalities by encapsulating them as services and offering
them to the other entities (requesters) by publishing them in a service registry central repository, as
illustrated in Figure 4.1.

The list of provided services must be published so they can be discovered by the service requester.
Using discovery mechanisms—e.g., UDDI (Universal Description, Discovery, and Integration)—ser-
vice requesters can find the services they need. After getting information about the available ser-
vices, the service requester can invoke the execution of those services. More complex services may
be created by aggregating the functionalities provided by simpler (atomic) ones. This functional-
ity is referred to as service composition and the aggregated service becomes a composite service
(Chafle et al., 2004). The composition of services requires mechanisms for coordination and syn-
chronization and shares many common features with workflow systems. However, service composi-
tion requires additional functionalities for discovery and checking the interoperability of the services
(Karakoc et al., 2006).

Other concepts, such as service orchestration and choreography, are important for the coordination
and composition, and particularly in determining how the services “play” together. Orchestration is

Provide
service

Find
service

Publish
service

Service registry
(Directory of service description)

Request
service

Service
requester

Service
provider

FIGURE 4.1

SOA concepts.

70 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

the practice of sequencing and synchronizing the execution of services, which encapsulate business or
manufacturing processes (Jammes et al., 2005). An orchestration engine implements the logic for the
workflow-oriented execution and sequencing of atomic or composed services, and provides a high-
level interface for the composed process. The service choreography is a complementary concept, which
considers the rules that define the messages and interaction sequences that must occur to execute a
given process through a particular service interface.

Despite the possibility of using other implementation strategies, SOA is commonly imple-
mented using web services (OASIS, 2006). A web service, as defined by the World Wide Web
Consortium (W3C), is a software system that supports interoperable machine-to-machine interac-
tion over a network (W3C, 2004). The use of the service-oriented paradigm, implemented through
web services technologies, enables the adoption of a unifying technology for all levels of the
enterprise, from sensors and actuators to enterprise business processes (Bepperling et al., 2006;
Karnouskos et al., 2010).

4.2.2  TOWARD WEB SERVICE-ENABLED DEVICES: DPWS, REST, OPC-UA
Current industrial monitoring and control applications are facing many challenges as the complexity
of systems increases and the systems evolve from synchronous to asynchronous. When hundreds of
thousands of devices and service-oriented systems are asynchronously interconnected and share and
exchange data and information (i.e., services, for monitoring, controlling, and managing the processes),
key challenges such as interoperability and real-time performance constraints, among others, arise
and need to be addressed. Several Internet-based technologies and concepts have found their way into
industrial automation, and especially onto integration of devices (Bangemann et al., 2014). Some of
the most widely used constitute the Devices Profile for Web Services (DPWS), Representational State
Transfer (REST), and OPC Unified Architecture (OPC-UA).

A standard dealing with ubiquitous device integration is DPWS as described in the OASIS (2009)
standard, which is a collection of web service standards. Initially, DPWS was conceived as a suc-
cessor of UPnP (Universal Plug and Play) for home automation scenarios, but recent works have
shown its applicability to the automation world (Karnouskos et al., 2010). DPWS advances previous
dynamic discovery concepts, such as Jini (www.jini.org) and UPnP (www.upnp.org) to integrate
devices into the networking world and make their functionality available in an interoperable way.
DPWS is an effort to bring web services to embedded devices, taking into consideration their con-
strained resources. Several implementations exist in Java and C (e.g., www.ws4d.org, www.soa4d.
org), while Microsoft has also included a DPWS implementation (WSDAPI) by default in Windows
Vista onwards and in Windows Embedded CE operating systems. DPWS exists in a number of
devices today, and basically brings the SOA world down to the devices, hence extending a fully
service-oriented infrastructure down to the physical world and resource-constrained networked em-
bedded systems.

An alternative integration approach is REST, as described by Fielding (2000), which is the archi-
tectural principle that lies at the heart of the web and shares a similar goal with integration techniques,
such as WS-* web services, that is increasing interoperability for a looser coupling between the parts
of distributed applications. However, the goal of REST is to achieve this in a more lightweight and
simple manner; therefore, it focuses on resources, not functions, as is the case with WS-* web services.
In particular, REST uses the web as an application platform and fully leverages all the features inherent

http://www.jini.org
http://www.upnp.org
http://www.ws4d.org
http://www.soa4d.org
http://www.soa4d.org

714.2  TECHNOLOGIES

to HTTP, such as authentication, authorization, encryption, compression, and caching. This way, REST
brings services “into the browser”—i.e., resources can be linked and bookmarked and the results are
visible with any web browser. There is no need to generate complex source code out of WSDL (Web
Services Description Language) files to be able to interact with the service.

Finally, OPC-UA (Mahnke et al., 2009) was developed with the goal to provide a path from the
traditional OPC communications model to a SOA. OPC-UA supports a binary protocol for high per-
formance and a web service protocol (e.g., SOAP (Simple Object Access protocol)), which is firewall
friendly and uses standard http/https ports. IEC 62541 is a standard for OPC Unified Architecture.

OPC-UA, DPWS, and REST constitute some of the “emerging” technologies and blend with many
other traditional ones in the shop floor (Bangemann et al., 2014). The selection of the best-fit technol-
ogy depends on the scenario and the requirements posed, as at this stage all of them have benefits
but also drawbacks (Jammes et al., 2014). Lighthouse projects, such as SOCRADES (www.socrades.
eu) and IMC-AESOP (www.imc-aesop.eu), have developed and tested prototypes in industrial set-
tings that use a mix of these technologies to integrate industrial systems (Colombo et al., 2014), as
well as couple them with information and business systems (Karnouskos et al., 2010). There are also
ongoing efforts—e.g., to further enhance the performance in DPWS with the introduction of Efficient
XML Interchange (EXI), as well as integrate more lightweight protocols, such as the IETF Constrained
Application Protocol (CoAP), and the fusion of DPWS and OPC-UA (Colombo et al., 2014; Jammes
et al., 2014).

All of these efforts that promote modularization and easy integration over heterogeneous infra-
structures act as enablers for industrial agents. The latter can be realized both within the device itself,
as well as externally, and interact with the devices via well-defined services, as will be analyzed later
in this chapter.

4.2.3  CLOUD-BASED INDUSTRIAL SYSTEMS
Future industrial automation systems are expected to be complex system of systems that will empower
a new generation of what today would be considered hardly realizable applications and services. The
rapid advances in technology during the last years have given rise to virtualization and cloud sys-
tems. Virtualization addresses many enterprise needs for scalability, more efficient use of resources
and lower total cost of ownership (TCO), to name a few. Cloud computing has emerged powered by
the widespread adoption of virtualization, SOA, and utility computing. IT services are accessed over
the Internet and local tools and applications (usually via a web browser) offer the feeling that they were
installed locally. However, the important paradigm change is that the data are computed in the network
but not in a priori known places. Typically, the physical infrastructure may not be owned, and various
business models exist that consider access-oriented payment for usage (Karnouskos et al., 2014a).

New industrial systems and architectures are being developed to take advantage of the cloud and
its services (Karnouskos et al., 2014b). Figure 4.2 illustrates such an effort carried out within the
IMC-AESOP project (Colombo et al., 2014). There we see the emergence of an information-based
infrastructure that is built in a complementary fashion to the traditional automation “pyramid,” as de-
fined in ISA-95. The ever-increasing need for rapid development and deployment of applications and
services has taken advantage of the modularization of functionalities and the availability of services at
the different traditional automation levels (Level 0 up to Level 4) and combined them in a lightweight
application-specific manner.

http://www.socrades.eu
http://www.socrades.eu
http://www.imc-aesop.eu

72 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

Hence, although the traditional hierarchical view is left untouched, hooks in the form of services
enable now the emergence of a flat information-based architecture. Next-generation industrial applica-
tions can now rapidly be composed by selecting and combining the new information and capabilities
offered (as services in the cloud) to realize their goals. The envisioned transition to the future cloud-
based industrial systems is depicted in Figure 4.2.

For industrial agents, such visions and technology trends signal a new era. Industrial agents can
very well act as enablers for the servicification of the traditional ISA-95 infrastructure by capturing
key functionalities and providing them as services. In addition, they could play coordination roles by
orchestrating the integration of various services in the cloud while hosting the intelligence needed.

4.3  BRIDGING AGENTS AND SOA-ENABLED DEVICES
The Internet of Things is prevailing in the industrial domain where devices are acquiring increasingly
sophisticated computing and communication capabilities. As such, these are envisioned to play active
roles in emerging collaborative infrastructures and systems. Hence, we witness efforts to migrate ad-
vanced functionality previously hosted in powerful static back-end systems toward more lightweight
mobile distributed embedded devices. Web services nowadays can be implemented directly on de-
vices, providing them with the necessary technology abstraction and making them easily integratable in

FIGURE 4.2

Industrial automation evolution: complementing the traditional ISA-95 automation world view (pyramid on the
left side) with a flat information-based infrastructure for dynamically composable services and applications
(right side).

734.3  BRIDGING AGENTS AND SOA-ENABLED DEVICES

heterogeneous environments. Additionally, intelligence can also be realized in various forms including
those in the form of agents. In such systems, agents can be integrated within the intelligent device or as
an orchestrator at a higher level. Therefore, coupling agents and devices for industrial purposes could
yield several benefits.

4.3.1  AGENT AND SERVICE COMMONALITIES
Service-oriented principles can be integrated with MAS to enhance some functionalities and overcome
some limitations, namely in terms of interoperability, legacy system integration, and IT-vertical inte-
gration. In spite of being based on the same concept of providing a distributed approach to the system,
MAS and SOA present some important differences, namely in terms of computational requirements
and interoperability, as illustrated in Table 4.1. (Ribeiro et al. (2008) provide a deeper study of these
differences.)

These differences highlight the complementary aspects of the two paradigms, suggesting the ben-
efits of combining them to extract the best of both worlds: the intelligence and autonomy provided by
MAS solutions and interoperability offered by SOA solutions (Huhns, 2002). This suggestion is not
new since services are already part of the agents' specification (e.g., included in the Foundation for
Intelligent Physical Agents (FIPA) specification (FIPA, 2002)), and agents are also present in stan-
dard documents of SOA methodologies (e.g., in the OASIS (2006) standard). However, the under-
considered elements (services in MASs and agents in SOA) are vaguely defined and have a more
passive and customized role.

4.3.2  APPROACHES TO COMBINE AGENTS AND SERVICES
Traditionally, the combination of MAS and SOA paradigms can be performed in different ways, as
illustrated in Figure 4.3 (Mendes et al., 2009a). The first traditional option, illustrated in Figure 4.3a,

Table 4.1  Differences Between MAS and SOA

Multi-Agent Systems Service-Oriented Architectures

Well-established methods to describe the behavior of an
agent

Focus is on detailing the public interface rather than
describing execution details

Agents denote social ability regulated by internal or
environmental rules

Social ability is not defined for SOA

Most implementations are optimized for LAN use, but
Internet is also possible

Supported by Web-related technologies and can
seamlessly run on the internet

Reactive to changes in the environment Reconfiguration often requires reprogramming

Interoperability heavily dependent on compliance with
FIPA-like standards

Interoperability assured by the use of general-purpose
Web technologies

Heavy computational requirements High performance without significant interoperability
constraints

Adapted from Ribeiro et al. (2008)

74 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

considers gateways to translate the semantics from the agent world to the services world. According to
the FIPA specifications, this task is basically performed by translating:

•	 Service registration: DF (Directory Facilitator) ↔ UDDI
•	 Service description: agent service ↔ WSDL
•	 Message: ACL (Agent Communication Language) ↔ SOAP

An example is the Web Services Integration Gateway (WSIG) plug-in provided by the Java Agent
Development (JADE) framework to offer an implementation of the concept of gateway (Bellifemine
et al., 2007). This plug-in, in the form of a gateway agent, was implemented by Whitestein Technologies
and allows transparent and bidirectional transformations between FIPA-compliant services and web
services, employing the WSDL/SOAP/UDDI stack (i.e., publishing agents' capabilities as web services
used in a SOA environment). The communication between the WSIG Gateway Agent and the other
agents use FIPA-ACL, as illustrated in Figure 4.4, and the service discovery is performed by using two
repositories: DF (for the agents world) and UDDI (for the services world). The discovery transforma-
tion performed by the gateway agent allows agents to perform service discovery in the web services
registry using the UDDI and lets web service clients perform service discovery in the MAS registry
using the DF.

Other similar examples are the WS2JADE (Nguyen and Kowalczyk, 2007) and AgentWeb
Gateway (Shafiq et al., 2005). Several applications combining MAS and SOA principles employ-
ing the concept of gateway agents are reported in the literature. For example, Jacobi et al. (2010)
use a model-driven approach that combines SOA and MAS to model a segment of a production
chain in the steel industry, and Fayçal et al. (2010) propose the integration of legacy systems by
the encapsulation of its features by agents. Another idea is to join the subscribing directories from
the agent side (DF) from the web services side (UDDI) in just one common place named UD3
(Cheaib et al., 2008).

Utilizing the described approach, the design of truly service-oriented MASs is far from the real
expected potential and benefits, because the combination is only focused in the communication per-
spective offered by SOA approaches, and it does not fully explore the potential of designing the system
using service-orientation. Another option, illustrated in Figure 4.3b, was introduced by Mendes et al.
(2009a) and is characterized by the use of a set of autonomous agents that use the SOA principles
(i.e., oriented by the offer and request of services) to fulfill industrial system goals. The achieved

S

S

FIPA-ACL UDDIDF

Gateway
agent

S

S

S

Gateway agent

(a) (b)

SOMAS

Service-oriented
agent

FIGURE 4.3

Common approaches for integrating SOA and MAS.

754.3  BRIDGING AGENTS AND SOA-ENABLED DEVICES

service-oriented multi-agent systems (SOMAS) approach is different from the traditional MAS mainly
because agents are service-oriented—i.e., according to Mendes et al. (2009a):

•	 Agents share services as the major form of communication among agents.
•	 Individual goals of agents may be complemented by services provided by other agents.
•	 The internal functionalities of agents can be offered as services to other agents.

An important note is that these service-oriented agents do not only share services as their main form
of communication, but also complement their own goals with externally provided services.

An example of using the SOMAS approach is illustrated in Figure 4.4, where devices represent
conveyors (transporting pallets) and pallets, and have associated service-oriented agents that are re-
sponsible for part of their environment (Leitão, 2012). The conveyor agent provides a service, called
the transfer pallet, which encapsulates its internal functionality of transferring the pallet from the
input location to the output location. Therefore, it has the ability to read the sensors, execute the em-
bedded logic control and send commands to the actuators of the conveyor. This service is published
in the Service Registry to be discovered by other agents representing devices—e.g., conveyors or
pallets.

Other neighbor devices (e.g., a pallet agent that needs this transfer service to accomplish its goals)
may request the service to the conveyor agent. However, to complete the execution of the service and
also to respect global objectives, the conveyor must request an availability service from the next trans-
port unit or workstation connected to its output, using the SOAP protocol. This can be seen as the form
of collaboration among the service-oriented agents in the system.

SCADA,
MES

Pallet
agent

Pallet
agentConveyor

agent

“Transfer”
service

Internal
functionalities
exposed as

services

Sensing
/ acting

S

S S S

FIGURE 4.4

Example of a service-oriented multi-agent system.

76 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

4.3.3  ENTERPRISE SERVICE BUS-BASED SOLUTIONS
SOA-based systems can be realized by an Enterprise Service Bus (ESB) that provides a layer on top
of an implementation of an enterprise messaging system (Ziyaeva et al., 2008), acting as backbone for
supporting the interoperability among the connected software applications. Typically desirable capabil-
ities of ESBs include, without being exhaustive, process orchestration (typically via WS-BPEL), pro-
tocol translation, hot deployment, versioning, life-cycle management, and security. The use of an ESB
constitutes an alternative way to implement the integration of MAS and SOA following the SOMAS
concept, where software applications are MAS-based systems that are interacting through the use of the
ESB by exposing and consuming services.

An example of the use of this approach to integrate MAS and SOA paradigms is provided by the
EU FP7 Adaptive Production Management (ARUM) project (arum-project.eu) that addresses the
development of solutions to handle emergent challenges in ramping up production of complex and
highly customized products, such as for the aircraft industry, and particularly mitigation strategies to
respond faster to unexpected events and intelligent decision support systems for planning and opera-
tion (Marín et al., 2013).

Aiming to achieve a full interoperability across the entire ARUM solution, traditional ESBs—e.g.,
the open source JBoss ESB (Jboss, 2014) and the proprietary TIE Smart Bridge (TSB, 2014)—are
enriched with a plethora of advanced modules and functionalities that support the tool's life cycle from
creation time until they are unplugged from the system, resulting in an intelligent enterprise service bus
(iESB). Examples of such modules are the Ontology Service, Data Transformation Service, Sniffer,
Node Management, and Life-Cycle Management. The iESB provides a common infrastructure for the
integration of heterogeneous agent-based planning and scheduling tools, and legacy systems using the
services principles, as illustrated in Figure 4.5.

Strategic planner 1

Intelligent enterprise service bus

Enterprise service bus

Node
manager

Life-cycle
management Sniffer Ontology

service
Data

transformation

Legacy
data

sources

Gateway

Strategic planner i

... ...

Operational scheduler 1 Operational scheduler j

FIGURE 4.5

Integration of MAS and SOA using an Enterprise Service Bus.

http://arum-project.eu

774.4  USE CASE: CYBER-PHYSICAL INFRASTRUCTURE SIMULATION

The plugability of the agent-based tools is facilitated by the exposition of their functionalities as
services and by the use of the ontology services for the representation of the shared knowledge, improv-
ing the interoperability in such distributed and heterogeneous systems.

4.4  USE CASE: CYBER-PHYSICAL INFRASTRUCTURE SIMULATION BY
COUPLING SOFTWARE AGENTS AND PHYSICAL DEVICES
Today, we see the emergence of cyber-physical infrastructures composed from a high number of het-
erogeneous devices. The latter may as well be SOA-enabled devices on the basis of technologies such
as OPC-UA, DPWS, and REST, as we have already discussed. However, in order to study large-scale
systems, the development of real testbeds with hundreds or thousands of such devices is costly. Hence,
a compromise might be to simulate their behavior as realistically as possible. Simulating an infrastruc-
ture populated by a high number of web service enabled devices is not trivial, but it could provide a
very useful tool in the hands of enterprise application developers.

Coupling agents with such physical devices could provide an interesting approach for investigating
some of these aspects, including management and network aspects. An architecture for such a simula-
tion is depicted in Figure 4.6 (Karnouskos and Tariq, 2009).

Scenario 1 Scenario n

Collaboration

Monitoring and
control links

Wireless
sensor

Conveyor beltPLC Simulator

Virtual
DPWS device

DPWS
gateway/
mediator

Applications and
business processes

ACL communication

Collaboration

Enterprise

Scenario
logic/strategy

Execution

e.g., DPWS-enabled
Devices

FIGURE 4.6

A simulator of CPS infrastructures relying on agent-driven integration.

78 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

The devices at the lowest layer make available their functionality via web services, while a subscription
can be made to their services. The device layer consists of devices that directly implement web services—
e.g., via the DPWS protocol, and/or via the DPWS gateway (due to resource constraints, etc.). Typical
examples of such devices that implement web services (SOA-ready) are PLCs, robots, advanced wireless
sensors (e.g., SunSPOTs etc.), and examples of devices connected via a DPWS gateway, which could be
Radio-Frequency IDentification (RFID) tags that connect via an RFID reader that acts as a DPWS gateway.

At the execution layer, the mobile agent system hosts several agents that not only cooperate but also
control the created virtual devices. One layer higher is the logic, which describes the scenarios that us-
ers run within the simulator. The scenarios range from simple ones running standalone, up to complex
ones which may start other simpler scenarios first. Finally, at the enterprise layer, various services and
applications can communicate via web services with the devices, both real and simulated ones.

For the implementation, the JADE multi-agent platform (Bellifemine et al., 2007) is used to create
the agents representing DPWS devices. Each agent represents one DPWS device, which needs to be
created using the DPWS toolkit (www.soa4d.org). This integration has been achieved by creating two
types of agents interacting with the DPWS toolkit: (i) a DPWS Client Agent (DC-Agent); and (ii) a
DPWS Server Agent (DS-Agent), as analyzed in detail in Karnouskos and Tariq (2008).

The DC-Agent implements the client part of the DPWS toolkit, acting as a client for consuming ser-
vices offered by devices, as well as for services offered by DS-Agents. This agent acts as a bridge between
a device and a DS-agent offering service(s) to applications. Tasks assigned to the DC-Agent include dis-
covery of other in-network DPWS-enabled devices, the acquisition of services and data offered by those
devices, the processing of data, and the exposition of data to other applications via the DPWS protocol.

The DS-Agent implements the server part of the DPWS toolkit and is more complex because it
consists of two distinct components: a server and a service. The server part instantiates the services,
registers them, and listens at the specified port for the client requests. The service part is exposed to the
external world and handles all the client requests.

As can be seen in Figure 4.7, simulated and real DPWS-enabled devices can be discovered by third-
party DPWS clients. These appear as normal devices (distinguishable only by their name), and coexist

FIGURE 4.7

DS-Agents and DPWS devices discoverable in Windows.

http://www.soa4d.org

794.5  USE CASE: SERVICE-ORIENTED INDUSTRIAL AUTOMATION SYSTEM

with other devices such as a robotic arm, a SunSPOT sensor (www.sunspotworld.com), and a windows
computer. This makes it obvious that the simulator-created devices can at least be discovered/used by
other infrastructure actors in an agnostic, non-intrusive way.

The simulation environment consists of a basic set of agents, each of which has its goals and inter-
nal logic (Karnouskos and Tariq, 2009):

•	 Management Agent: Tasks of this agent include the evaluation of user arguments, the creation of
other agents and other management functions (e.g., logging).

•	 Device Explorer Agent: This agent is based on the concept of the DC-Agent with the aim to
discover all the DPWS-enabled devices in the network based with a specific scope.

•	 Device Generator Agent: The core function of this agent is to receive and execute requests
towards creating and initializing service agents that simulate a specific service.

•	 Scenario Agent: This agent is specific for each scenario because it executes its strategy/logic.
•	 Service Agent(s): The design of a service agent is based on the DS-Agent model. Such types

of agents simulate a DPWS service and are visible to the external world via the DPWS
communication.

Using the capabilities of the simulator, thousands of DPWS devices were instantiated and investi-
gated (Karnouskos and Tariq, 2009). However, limitations in the hosting computer(s) played a role, and
potentially these results can be revisited with more powerful hardware, larger distribution of the agents
(e.g., in the cloud), and more efficient implementations of the DPWS toolkit.

The agents played various key roles in this system. First, they acted as “glue” that serviced physi-
cal devices and exposed their capabilities via web services, and more specifically the DPWS protocol.
As such, any “legacy” or other non-SOA devices could now be easily integrated via web services. The
agents also acted as simulation scenario orchestrators, holding the intelligence needed to execute the
simulation. As such, we can witness a diverse utilization of their capabilities and some potential roles
they can play in industrial settings.

4.5  USE CASE: SERVICE-ORIENTED INDUSTRIAL AUTOMATION SYSTEM
The European research project SOCRADES had explored the application of service-orientation and
web services for the next generation of industrial automation systems. In particular, an engineering
framework for the development of service-oriented automation systems was introduced by Mendes
et al. (2008), using the Petri nets formalism as a unified tool for the specification, modeling, analysis,
and execution of service-based automation systems. Petri nets are also exploited as the form of orches-
tration and composition in service-oriented automation systems.

The application scenario used to demonstrate the SOA approach was a dynamic assembly system
based on a customized and modular factory platform for the light assembly, inspection, test, repairing
and packing applications as shown in Figure 4.8, left part.

The SOA-based prototype comprises a flexible production system with two work stations (that can
be used by operators and robots), several conveyors that route production pallets into/out of the system
and to the workstations, and also two lifters. Schematic depicted on the right side of Figure 4.8, the
central part of the transfer system (C1-C9) is made of nine transfer units (conveyors) of unidirectional
and cross types. The unidirectional transfer unit provides an input and an output port, and the cross trans-
fer unit provides transfers not only in the longitudinal axis, but also in the transversal axis. The lower

http://www.sunspotworld.com

80 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

transfer units (C10, C11) have the same behavior as the normal unidirectional transfer units (such as unit
C5), but are physically longer. Lifter units (L1 and L2) are responsible for the interface between the up-
per and lower part of the system, and also for transferring pallets into and out of the automation system.

The pallets enter in the system via the unit C4 and are conveyed using alternative paths to the two
workstations W1 and W2. The routing is done at the transfer units based on the required production
operations needed by the product mounted on a particular pallet and based on the location and avail-
ability of production services in the system (at W1 and W2). A workstation can provide more than one
type of production operation, and one kind of production operation could be provided by more than
one workstation. The units C4, C6, C2, and C8 are equipped with RFID which is able to read/write
information from/to tags attached to the pallets.

A composition approach applies to most levels of the factory floor; simple devices compose com-
plex devices or machines, which in turn are composed to build cells or lines of a production system, and
so on. The same applies to the concept of service-oriented production systems and composing complex
services from simpler services, complemented with orchestration engines, as illustrated in Figure 4.9.
As a matter of fact, the orchestration engines will be located (embedded) into selected devices and
their orchestration/composition functionalities exposed from the devices or directly from the service
bus, considered here as the service recipient of the service cloud. Note: Orchestration engines appear
where atomic services discovered in the service bus have to be composed or orchestrated to generate
new services or to manage and control the results of service compositions.

Since services are not isolated entities exposed by the intervenient software components, a kind of
logic that is responsible for the interaction is needed. This SOA-based function is depicted by the block
“Orch” in the Figure 4.9.

As a matter of fact, the Orch-component of the SOA-architecture is an engine developed and imple-
mented to compose services and to generate high-level functionalities that are results of those service com-
positions. In the case of a model-based orchestration engine, it is able to interpret a given work-plan made
of services (an orchestration) and execute it. The work-plan can be defined in Business Process Execution
Language (BPEL) as defined in OASIS (2007), Petri nets formalism e.g., Hamadi and Benatallah (2003)
and Bing and Huaping (2005), or even in adapted IEC 61131-3 languages, beside others.

The modeling language used in the EU FP6 SOCRADES work derives from Petri net specifications,
including time considerations, property system and customizable token game engine. The developed

FIGURE 4.8

Prodatec/FlexLink DAS 30 used for the SOCRADES demonstration (located at Schneider Electric Automation
GmbH in Germany).

814.5  USE CASE: SERVICE-ORIENTED INDUSTRIAL AUTOMATION SYSTEM

Petri net orchestration engine needs to know how and when to respond to services and to represent
them in the model. This is done by describing transitions in the Petri net model. A transition willing of
sending a request/response or an event must be enabled, and the action is done when it fires. In the other
hand, a transition receiving a message from a request, response or event, will only fire if it is enabled
and the message is there.

The information to be used by transitions is gathered by an imported WSDL file that contains the de-
scription of the service. Depending on the operation, transitions can be part of a client request/response,
server request/response, client event and server event. The first two types require two transitions: one for
initializing the request and one for the response. It is also possible to test responses by their return pa-
rameters, implying the use of one response transition for each test. The difference of an operation being
a server or client is obvious: a server waits for the request and then gives a response, and a client makes
a request and waits for a response. Events are possible as client and server, but only require one single
direction (and consequently, one transition for each test. The difference of an operation being a server or
client is obvious: a server waits for the request and then gives a response, and a transition).

The fully distributed service-based automation system with its associated service ecosystem for the
case study addressed in Figure 4.8 is represented in Figure 4.10. The atomic services are exposed by
the transfer units (Transfer), lifters (Lifting) and RFID devices (RFID) through the smart embedded
I/O units (STBs and gateways). These services are the building blocks for the construction of more
advanced production automation scenarios, so that they can be associated and composed depending on
the requirements and objectives of the application.

The approach for creating complex, flexible and reconfigurable production systems is based on a
network of modular, reusable entities that expose their production capabilities as a set of services. Data
and information associated to industrial equipment, i.e., physical entities like a warehouse unit, a lifter

ERP/MES Orch.

WS WS

Engineering
system

IP network (wireline or wireless)

WS

WS WS WS WS WS WS

Gateway

Legacy
and low
resource
devices

Wireless
sensor /
actuator
network

E.g., Warehouse

WS: Servive capability
e.g., DPWS, REST, OPC-UA

Service
mediator

Work-
pieces

PLC, RCDistr. IODevice

FIGURE 4.9

Important elements of the service-oriented automation system.

82 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

or a robot, as shown in Figure 4.11, are digitalized by smart embedded devices and exposed as services
into a cyber-infrastructure such as a “Service Bus” (cloud of services).

The next major task during the engineering development process of the SOA-based automation
system is to fit the automation bot, including the orchestration engine and web service technology into
an automation device. The resulting smart embedded device hosts most of the services exposed in the
system and is also responsible for the coordination and control of the mechanical parts of the mechatron-
ics system, as represented in Figure 4.11. As one of the first industrial prototypes, the Telemecanique
Advantys STB (Small Terminal Box) NIP2311 prototype devices were used in the case of the EU FP6
SOCRADES project, which provide two main interfaces: mediating the automation equipment via
input/output modules and managing the access to the service bus by exposing and requesting services
(using the Ethernet network interface module). Atomic services representing resources and functions of
the connected equipment are provided by the device interface. Some of them may include an orchestra-
tion engine to “link” services together and create new composite services. An internal decision support
system is responsible for sustaining the engine for decisions (e.g., selecting the best process based on
the decision criteria).

The controller of the Ethernet module is used to host the service infrastructure, based on the SOA4D
implementation of DPWS (forge.soa4d.org), allowing the deployment of user-defined applications as
DPWS-compliant service components. The services are implemented by the STB with an embedded
IEC-61131 engine. The ControlBuild prototype developed by Geensys (www.geensys.com) is used to
specify the logic and services offline and then deploy those into STBs. Another STB prototype has been

Transfer

PC

3 STBs

STB

STB

STB

STB

TSXETG 100
gateway

STB

STB

STB

STB

E
th

er
ne

t

(running gateway and
engineering tools)

(each running a service
orch estration engine)

Produce

RFID antenna

RFID antennaRFID antenna

RFID antenna

Transfer

Transfer

Transfer

LiftingLifting

Transfer Transfer

I/O I/O I/O

I/O

I/O

I/OI/O

I/OI/O

I/OI/OI/OI/O

C3

C5

C7

C10 C11

C8 C9

Transfer

Transfer Transfer

Produce

L2C6L1 C4

C2C1

FIGURE 4.10

Service landscape and fully distributed SOA-based automation system.

http://forge.soa4d.org
http://www.geensys.com

834.5  USE CASE: SERVICE-ORIENTED INDUSTRIAL AUTOMATION SYSTEM

implemented that provides an embedded service orchestration engine based on the Continuum Bot
Framework with Petri nets kernel (Mendes et al., 2009a) and the DPWS stack with the same deploy-
ment mechanisms as for the STB with IEC-61131 engine. The orchestration engines run on their own
STBs and provide composed services to the system.

The control logic is managed by the Petri nets kernel module that interprets a given Petri net model
(Mendes et al., 2009b). During the execution of the behavioral models, some decision nodes may ap-
pear, requiring their real-time resolution. In the case of Petri nets to represent the system behavior,
this detection is performed with the identification of marked places that can evolve into more than one
alternative way: the marked places that have connected more than one enabled transition. As illustrated
in Figure 4.12, the place p1 constitutes a decision node because there are three alternatives to evolve
the model—the operation service can be performed using three distinct machines. The decision point is
translated in the Petri net model as a conflict, making it necessary that someone, in this case a decision
support system, resolves the conflict—that is, selects one of the machines depending on various criteria.

The degree of complexity associated with the decision support system can range from simple al-
gorithms to complex cognitive systems, making the use of agents a natural option in providing intel-
ligence during the orchestration process. After selecting the best option to evolve, the achieved decision
is translated to the Petri nets model by increasing the priority associated with the selected transition—in
this case, transition t3. Analyzing the priority of alternative transitions, the logic controller will evolve
the system by firing the transition with a higher priority, activating the corresponding web services, and
sending a message to the machine.

ERP

Warehouse “Storage and Material Flow Functions” exposed as “Services”
The distribution center mapped into an “Intelligent Service Network”

Service bus (network)

Service
framework

Device
interface

Industrial
equipment

Level 4

Level 3

S S: service

Service orchestration/ composition

Service cloud

S

Smart embedded device

Coordination of services
and composition

Exposition of internal
atomic services representing
resources of the equipment

Give support for decisions and
optimization of processes

Orchestration
engine

Decision support
system

Networked embedded systems in the cloud
The warehouse as a service-oriented system positioned in a service cloud

MES

SCADA

Control/interlocking

Sensor/actuators

Storage/material flow

FIGURE 4.11

Implementing a SOA-based automation system with smart embedded devices using industrial Advantys STB
NIP2311 components.

84 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

The orchestration models can be connected together via the ports of the models, using two alterna-
tive ways:

•	 Offline composition, which permits generating a new model based on the connection of
individual ones. For this connection, the information has to be set up in the Petri net models, and
an XML connection file must be defined to describe which models will be connected and through
which ports.

•	 Online composition, which permits the intercommunication of two engines and their respective
models via the exposition and request of services (this is already part of the information of the
models designed before).

At the time of the experimentation, there were only three available STB devices embedding Petri
net orchestration engines, which are only able to run one model at a time. The solution was using the
offline composition to generate only three composed models (one for each orchestration device) and
let them work together in real time using the online composition. Afterward, the decision was to split
the system into three clusters of units, resulting in one model for C1-C3; one model for C4-C5, L1,
L2, C10, and C11; and another model for C7-C9, ending up in three composed Petri nets models. The
generated models communicate via each other (for the inter-transfer operation of pallets) using service
invocation (i.e., the “TransferIn/TransferOut” mechanism).

The composition application shows that it is possible to design individual models without knowing
the availability and disposability of the final orchestration devices. The experiment shows one possible
way to compose the system using three devices and a defined distribution, but it could also be done
with a different number of devices and other ways of division. Offline composition is used to limit the
use of devices and network traffic, but introduces more complex models to be orchestrated (considering
the limitations of embedded devices). On the other hand, the online composition is focused more on
the distributed orchestration and the synchronization thereof. The correct division and use of the com-
position types depends always on the available resources, the optimization strategies, and the layout of
the system, but orchestration models can be individually developed without knowing this information.

S

Decision
support
system

Status: p1 is in conflict and t1, t2 and t3
are alternative paths to proceed.

Which one should be selected?

machine1:start

machine2:start

machine3:start

t1 p2

t2

t3

p3

p1

t1 p2

t2 p3

machine3:start

t3 p4

p1

?

p4

 decision support
system selects to fire t3 (i.e.

execute service machine3:start)Question:

Action:

S

S S

FIGURE 4.12

Petri net-based orchestration with a decision support system.

85REFERENCES

4.6  CONCLUSIONS AND FUTURE DIRECTIONS
Although agents in general, as well as industrial agents, have been investigated for several years, their
productive use in industrial settings has been demonstrated but is limited. Other technologies and ap-
proaches that complement them have been used, as we have already discussed. However, with the
prevalence of a new high-tech infrastructure driven by CPSs, as defined in the Industrie 4.0 vision,
industrial agents have come again to the forefront of realizing the key features needed. As such, we
see a renewed interest in the practical applications of industrial agents, especially in conjunction with
CPSs, SOAs, and cloud computing. Their roles can vary from delivering intelligence to the infrastruc-
ture, acting as “glue” for legacy systems, and negotiating or mediating functionalities and services, etc.

To achieve large portions of the Industrie 4.0 vision, further research is required, with a focus on
the usage of modern Internet technologies and services, but in industrial production. The latter as-
sumes a good understanding of the challenges and limitations posed in real-world industrial systems, as
well as the optimization of agent systems to make them sustainably operational in such environments,
as shown in the first industrial prototype applications reported at the beginning of the last decade
(Colombo et.al. 2006).

ACKNOWLEDGMENTS
The authors would like to thank the European Commission for their support, and the partners of the EU FP6 project
SOCRADES (www.socrades.eu), EU FP7 IMC-AESOP (www.imc-aesop.eu) and EU FP7 ARUM (www.arum-
project.eu) for their fruitful support and discussions.

REFERENCES
Bangemann, T., Karnouskos, S., Camp, R., Carlsson, O., Riedl, M., McLeod, S., Harrison, R., Colombo, A.W.,

Stluka, P., 2014. State of the art in industrial automation. In: Colombo, A.W., Bangemann, T., Karnouskos,
S., Delsing, J., Stluka, P., Harrison, R., Jammes, F., Martínez Lastra, J.L. (Eds.), Industrial Cloud-Based
Cyber-Physical Systems: The IMC-AESOP Approach. Springer, Switzerland, pp. 23–47. http://dx.doi.
org/10.1007/978-3-319-05624-1_2.

Bellifemine, F., Caire, G., Greenwood, D., 2007. In: Developing Multi-Agent Systems with JADE. Wiley, USA.
Bepperling, A., Mendes, J.M., Colombo, A.W., Schoop, R., Aspragathos, A., 2006. A framework for development

and implementation of web service-based intelligent autonomous mechatronics components. In: Proceedings
of the IEEE International Conference on Industrial Informatics, Singapore, pp. 341–347.

Bing, L., Huaping, C., 2005. Web service composition and analysis: a Petri-net based approach. In: First
International Conference on Semantics, Knowledge and Grid (SKG'05), November.

Chafle, G.B., Chandra, S., Mann, V., Nanda, M.G., 2004. Decentralized orchestration of composite web services.
In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters.
ACM Press, New York, pp. 134–143.

Cheaib, N., Otmane, S., Mallem, M., 2008. Combining FIPA agents and web services for the design of tailorable
groupware architecture. In: Proceedings of the 10th International Conference on Information Integration and
Web-based Applications & Services. pp. 702–705.

Colombo, A.W., Schoop, R., Neubert, R., 2006. An agent-based intelligent control platform for industrial holonic
manufacturing systems. IEEE Trans. Ind. Inform. 53 (1), 322–337.

http://www.socrades.eu
http://www.imc-aesop.eu
http://www.arum-project.eu
http://www.arum-project.eu
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0010
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0010
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0010
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0010
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0010
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0015
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0020
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0020
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0020
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0025
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0025
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0030
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0030
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0030
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0035
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0035
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0035
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf9040
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf9040

86 CHAPTER 4  INDUSTRIAL AGENTS IN THE ERA OF SOA

Colombo, A.W., Karnouskos, S., 2009. Towards the factory of the future: a service-oriented cross-layer
infrastructure. In: ICT Shaping the World: A Scientific View. European Telecommunications Standards
Institute (ETSI), Wiley, New York, pp. 65–81.

Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R., Jammes, F., Lastra, J. (Eds.),
2014. Industrial Cloud-Based Cyber-Physical Systems: The IMC-AESOP Approach. Springer, Switzerland,
ISBN: 978-3-319-05623-4.

Fayçal, H., Habiba, D., Hakima, M., 2010. Integrating legacy systems in a SOA using an agent based approach for
information system agility. In: Proceedings of the International Conference on Machine and Web Intelligence
(ICMWI'10). pp. 338–343.

Fielding, R.T., 2000. Architectural Styles and the Design of Network-Based Software Architectures (Ph.D. Thesis).
University of California, Irvine, CA.

FIPA, 2002. FIPA Abstract Architecture Specification. Standard of the Foundation for Intelligent Physical Agents.
http://www.fipa.org/specs/fipa00001.

Hamadi, R., Benatallah, B., 2003. A Petri net-based model for web service composition. In: Proceedings of the
14th Australasian Database Conference, Darlinghurst, Australia, pp. 191–200.

Huhns, M.N., 2002. Agents as web services. IEEE Internet Comput. 6 (4), 93–95.
Jacobi, S., Hahn, C., Raber, D., 2010. Integration of multiagent systems and service oriented architectures in the

steel industry. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT'10), vol. 2, pp. 479–482.

Jammes, F., Smit, H., Martinez Lastra, J.L., Delamer, I., 2005. Orchestration of service-oriented manufacturing
processes. In: Proceedings of the 10th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA'05), vol. 1, pp. 617–624.

Jammes, F., Karnouskos, S., Bony, B., Nappey, P., Colombo, A.W., Delsing, J., Eliasson, J., Kyusakov, R., Stluka,
P., Tilly, M., Bangemann, T., 2014. Promising technologies for SOA-based industrial automation systems. In:
Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R., Jammes, F., Martínez
Lastra, J.L. (Eds.), Industrial Cloud-Based Cyber-Physical Systems: The IMC-AESOP Approach. Springer,
Switzerland, pp. 89–109. http://dx.doi.org/10.1007/978-3-319-05624-1_4.

JBOSS, 2014. JBOSS Middleware. http://www.jboss.org (accessed 23.09.14).
Karakoc, E., Kardas, K., Senkul, P.A., 2006. Workflow-based web service composition system. In: Proceedings of

the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.
IEEE Computer Society, Hong-Kong, pp. 113–116.

Karnouskos, S., Tariq, M.M.J., 2008. An agent-based simulation of SOA-ready devices. In: Proceedings of the
10th International Conference on Computer Modeling and Simulation. IEEE Computer Society, Cambridge,
England, pp. 330–335.

Karnouskos, S., Tariq, M.M.J., 2009. Using multi-agent systems to simulate dynamic infrastructures populated
with large numbers of web service enabled devices. In: Proceedings of the International Symposium on
Autonomous Decentralized Systems (ISADS'09), Athens, Greece, pp. 1–7.

Karnouskos, S., Savio, D., Spiess, P., Guinard, D., Trifa, V., Baecker, O., 2010. Real world service interaction with
enterprise systems in dynamic manufacturing environments. In: Benyoucef, L., Grabot, B. (Eds.), Artificial
Intelligence Techniques for Networked Manufacturing Enterprises Management. Springer, Switzerland,
pp. 423–457. http://dx.doi.org/10.1007/978-1-84996-119-6_14.

Karnouskos, S., Colombo, A.W., Bangemann, T., 2014a. Trends and challenges for cloud-based industrial cyber-
physical systems. In: Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R.,
Jammes, F., Martínez Lastra, J.L. (Eds.), Industrial Cloud-Based Cyber-Physical Systems: The IMC-AESOP
Approach. Springer, Switzerland, pp. 231–240. http://dx.doi.org/10.1007/978-3-319-05624-1_11.

Karnouskos, S., Colombo, A.W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., Sikora, M., Jammes, F.,
Delsing, J., Eliasson, J., Nappey, P., Hu, J., Graf, M., 2014b. The IMC-AESOP architecture for cloud-based
industrial CPS. In: Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R.,

http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0040
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0040
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0040
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0045
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0045
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0045
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0050
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0050
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0050
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0055
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0055
http://www.fipa.org/specs/fipa00001
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0065
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0065
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0070
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0075
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0075
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0075
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0080
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0080
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0080
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0085
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0085
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0085
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0085
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0085
http://www.jboss.org
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0095
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0095
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0095
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0100
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0100
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0100
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0105
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0105
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0105
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0110
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0110
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0110
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0110
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0115
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0115
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0115
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0115
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0120
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0120
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0120

87REFERENCES

Jammes, F., Martínez Lastra, J.L. (Eds.), Industrial Cloud-based Cyber-Physical Systems: The IMC-AESOP
Approach. Springer, Switzerland, pp. 49–88. http://dx.doi.org/10.1007/978-3-319-05624-1_3.

Leitão, P., 2012. Towards self-organized service-oriented multi-agent systems. In: Borangiu, T., Thomas, A.,
Trentesaux, D. (Eds.), Service Orientation in Holonic and Multi-agent Manufacturing and Robotics. Springer-
Verlag, Berlin, Heidelberg, pp. 41–56.

Leitão, P., Colombo, A.W., Restivo, F., 2005. ADACOR, a collaborative production automation and control
architecture. IEEE Intell. Syst. 20 (1), 58–66.

Leitão, P., Marik, V., Vrba, P., 2013. Past, present, and future of industrial agent applications. IEEE Trans. Ind.
Inform. 9 (4), 2360–2372.

Mahnke, W., Leitner, S.H., Damm, M., 2009. OPC Unified Architecture. Springer, Heidelberg, ISBN:
978-3-540-68899-0.

Marín, C., Mönch, L., Leitão, P., Vrba, P., Kazanskaia, D., Chepegin, V., Liu, L., Mehandjiev, N., 2013.
A conceptual architecture based on intelligent services for manufacturing support systems. In:
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC'13),
pp. 4749–4754.

Mendes, J.M., Leitão, P., Colombo, A.W., Restivo, F., 2008. Service-oriented process control using high-level
Petri nets. In: Proceedings of the 6th IEEE International Conference on Industrial Information (INDIN'08),
Daejeon, South Korea, 13–16 July, pp. 750–755.

Mendes, J.M., Leitão, P., Restivo, F., Colombo, A.W., 2009a. Service-oriented agents for collaborative industrial
automation and production systems. In: Marik, V., Strasser, T., Zoitl, A. (Eds.), Proceedings of the 4th
International Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS'09).
Springer-Verlag, Berlin, Heidelberg, pp. 1–12 (LNAI 5696).

Mendes, J.M., Bepperling, A., Pinto, J., Leitão, P., Restivo, F., Colombo, A.W., 2009b. Software methodologies for
the engineering of service-oriented industrial automation: the Continuum Project. In: Proceedings of the 33rd
Annual IEEE International Conference on Computer Software and Applications (COMPSAC'09), Seattle,
WA, USA, 20–24 July, pp. 452–459.

Nguyen, X.T., Kowalczyk, R., 2007. WS2JADE: integrating web service with jade agents. In: Huang, J., et al.
(Eds.), Proceedings of the SOCASE 2007 Conference on Service-Oriented Computing: Agents, Semantics,
and Engineering. Springer-Verlag, Berlin, Heidelberg, pp. 147–159 (LNCS 4504).

OASIS, 2006. Reference Model for Service Oriented Architecture 1.0. http://docs.oasis-open.org/soa-rm/v1.0
(accessed 12.10.06).

OASIS, 2007. Web Services Business Process Execution Language Version 2.0. OASIS Standard. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

OASIS, 2009. Devices Profile for Web Services (DPWS). http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-
dpws-1.1-spec-os.html.

Ribeiro, L., Barata, J., Mendes, P., 2008. MAS and SOA: complementary automation paradigms. In: IFIP
International Federation for Information Processing, vol. 266. Springer, Boston, pp. 259–268.

Shafiq, M.O., Ali, A., Ahmad, H.F., Suguri, H., 2005. AgentWeb gateway—a middleware for dynamic integration
of multi agent system and web services framework. In: Proceedings of the 14th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise.

TSB, 2014. TIE Smart Bridge. http://businessintegration.tiekinetix.com/nl/contact/smartbridge-for-suppliers
(accessed 23.09.14).

W3C (World Wide Web Consortium), Web Services Glossary, 2004. http://www.w3.org/TR/ws-gloss/.
Ziyaeva, G., Choi, E., Min, D., 2008. Content-based intelligent routing and message processing in enterprise

service bus. In: Proceedings of the International Conference on Convergence and Hybrid Information
Technology (ICHIT'08), pp. 245–249.

http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0120
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0120
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0125
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0125
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0125
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0130
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0130
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0135
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0135
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0140
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0140
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0145
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0145
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0145
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0145
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0150
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0150
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0150
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0155
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0155
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0155
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0155
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0160
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0160
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0160
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0160
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0165
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0165
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0165
http://docs.oasis-open.org/soa-rm/v1.0
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0185
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0185
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0190
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0190
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0190
http://businessintegration.tiekinetix.com/nl/contact/smartbridge-for-suppliers
http://www.w3.org/TR/ws-gloss/
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0200
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0200
http://refhub.elsevier.com/B978-0-12-800341-1.00004-8/rf0200

