
EzWeb/FAST: Reporting on a Successful Mashup-based
Solution for Developing and Deploying Composite

Applications in the Upcoming Web of Services
David Lizcano

School of Computing

Universidad Politécnica de
Madrid

Campus de Montegancedo s/n
28660 Madrid (Spain)
(+34)913367396

dlizcano@fi.upm.es
ABSTRACT

Javier Soriano
School of Computing

Universidad Politécnica de
Madrid

Campus de Montegancedo s/n
28660 Madrid (Spain)
(+34)913367394

jsoriano@fi.upm.es

Service oriented architectures (SOAs) based on Web Services
have attracted a great interest and IT investments during the last
years, principally in the context of business-to-business
integration within corporate intranets. However, they are
nowadays evolving to break through enterprise boundaries, in a
revolutionary attempt to make the approach pervasive, leading to
what we cali a user-centric SOA, i.e. a SOA conceived as a Web
of Services made up of compositional resources that empowers
end-users to ubiquitously exploit these resources by
collaboratively remixing them. In this paper we explore the
architectural basis, technologies, frameworks and tools considered
necessary to face this novel visión of SOA. We also present the
rationale behind EzWeb/FAST: an undergoing EU fimded project
whose first outcomes could serve as a preliminary proof of
concept.

Categories and Subject Descriptors
C.2.4. [Distributed Systems]: Distributed applications; D.2.11
[Software Architectures]: patterns; H.3.3. [Information Search
and Retrieval]: Retrieval models, Search process, Information
filtering, Relevance feedback; H.5.2. [User Interfaces]: GUI and
Screen design

General Terms
Management, Design, Standardization, Experimentation.

Keywords
SOA, Web Services, Mash-up, Web 2.0, user-centric SOA, Web
of Services, Composite Applications

1. INTRODUCTION
A service-oriented architecture (SOA) based on semantic Web
services has been considered the key IT for achieving a machine-
to-machine integration within company boundaries over the last
few years [8]. Therefore, traditional SOA has attracted a great
deal of interest in the composite application paradigm. Indeed it is
the only current technology stack capable of dealing with
composite application developments [1]. However, the latest big

Marcos Reyes
Telefónica Investigación y

Desarrollo

Juan J. Hierro
Telefónica Investigación y

Desarrollo

Emilio Vargas 6, 28043 Madrid Emilio Vargas 6, 28043 Madrid
(Spain) (Spain)

(+34) 913374000 (+34) 913374000

mru@tid.es jhierro@tid.es

phenomena like Web 2.0, and its application to enterprises, the
so-called Enterprise 2.0, have revealed the current need to offer a
user-centered face in IT to improve business productivity and
innovation [12]. And this user-centered approach has never been
considered before in traditional business-to-business (B2B) SOAs
or in the composite application paradigm.

With this new approach, that is, a user-centric SOA, it would be
feasible to achieve a real Web of services, i.e. a Web of
ubiquitous compositional resources/services that offer uniform
access to end users, giving browsers, mobile devices, and server
applications alike accessibility to resources (i.e. providing a
"multi-channel" and ubiquitous face to end users). This great
revolution in user-service interaction could finally enable a user-
friendly, semantically-guided and context-aware framework for
end users to develop real composite applications on their own,
making back-end resources and services very appealing to a wide
range of users and to different usage áreas.

This new approach is completely incompatible with traditional
SOA, which was conceived for the B2B domain instead of for
user-centered composite applications. It is not at all easy to enrich
real SOAs with this new face for users. This paper elaborates on
the methods, tools and heuristics that SOA must embrace to deal
with user-centered composite applications, using Enterprise 2.0
principies (and specially enterprise mashups) as a source of
inspiration [6].

With this in mind, we elabórate in this paper on the synergies
between the Enterprise 2.0 and the WS-SOA concepts with regard
to the development of user-centered composite applications.
Enterprise 2.0's focus on the principies of including human beings
and multi-device and mobile ubiquitous adaptation, etc., and the
exploitation of users' collective intelligence should be considered
a key enrichment of existing composite applications. It is
therefore expected to act as an enabler of an improved user-
service interaction. Our approach is being supported by two hot
research projects: FAST and EzWeb. These projects are
referenced and examined at length in this paper. The rationale
behind FAST, i.e. a complex gadget development environment,
and EzWeb, i.e. a reference architecture and implementation of an
open Enterprise 2.0 Mashup Platform, are both presented and
exploited in a use case as a proof of concept. These two elements
together empower users to co-produce and share instant
composite applications and their components. The remainder of
the paper is structured as follows. First we revisit the notion of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dlizcano@fi.upm.es
mailto:jsoriano@fi.upm.es
mailto:mru@tid.es
mailto:jhierro@tid.es

traditional WS-SOA-based composite applications, and analyze
their major shortcomings with regard to the ideal user-service
interaction in a user-centered Web of services (Section 2). Also,
we elaborate on a use case that illustrates the current user-service
interaction needs in composite application development, where
current IT like traditional Web services or novel mashup ideas
based on disparate and independent gadgets, have more than once
been found to be wanting. The above shortcomings of current
approaches and technologies, and the ideal solutions for these
problems can be easily identified in this use case (Section 3). We
then go on to illustrate the guiding principles to achieve our aim
in the Section 4 and some general key ideas to materialize this
principles in Section 5. We then present a novel architecture
framework, built on the FAST development approach and the
EzWeb exploitation platform. FAST creates the building blocks
and EzWeb interconnects these building blocks to compose
instant applications (Section 6). Section 7 describes existing
simple prototypes of this framework as a proof of concept,
dealing with the use case presented in Section 3. Section 8
presents other related work. Finally, the last section concludes this
paper and presents a brief outline of future work.

2. WS-SOA-BASED COMPOSITE
APPLICATIONS AND THEIR
SHORTCOMINGS ON THE ROAD
TOWARDS A POWERFUL USER-
SERVICES INTERACTION IN A WEB OF
SERVICES
The massive deployment of user-centric services over the Internet
demands services that must be accessible for all users (not only
enterprise stakeholders). Therefore, services should flexibly and
dynamically support common daily processes (both business
processes carried out by companies and processes conducted by
individuals or groups in their daily life) at any time [17]. Users
will see the tools supporting their daily work replaced by
composite applications based on Web Services, but traditional
Web Services are not well enough tailored to users and their daily
processes. Obviously, SOA, as it was originally conceived,
represents an architecture focused fundamentally on a B2B
context. It is weak for B2C problems, since it does not offer the
best prospects for dealing with user-service interaction [9]. We
can tackle its shortcomings from three different perspectives:

1) SOA’s aim: SOAs merely aim at facilitating seamless
machine-to-machine collaboration. SOA deployments are
very abstract and invisible to users. Its customers of choice
are medium-sized or larger corporations instead of normal
end users along the long tail of Internet. Therefore, with
SOA, normal Internet users with little IT expertise have not
been able to easily retrieve and use services because services
mostly reside within company boundaries and are only
accessed for professional use in a corporate context.

2) SOA’s technology: Apart from SOA’s aims, this architecture
relies on a set of complex standards that are not user friendly
[1]. Because, technically speaking, SOA is extremely
complex, there needs to be one or more expert players within
the value chain to build and provide solutions for their
customers. In contrast to this one-to-many value chain model
of numerous SOA use cases (where one expert serves many

clients), new value chains should begin to be mostly loosely
coupled (many-to-many) networks of self-managed self-
sufficient users who can offer and consume resources Web.

3) SOA’s government: Finally, SOAs are subject to clearly
defined regulatory frameworks since they mostly exist in the
corporate context. The design, provision, maintenance, and
coupling of services must be compliant with legal
frameworks. Therefore, they do not allow for the flexibility
that the described new user-services interaction model
appears to need.

3. USE CASE: A REAL PROBLEM OF
USER-SERVICE INTERACTION IN
PEOPLE’S DAILY LIFE
Bill is a production manager in a footwear firm. As part of his job,
Bill makes frequent business trips to attend shoe industry fairs
and to visit his company clients and suppliers. Partners are
scattered around the globe. Bill's next trip takes him to China
where he will give a talk about his company and deal a raw
material purchasing contract.

Planning such a business trip usually took him long time browsing
several Web portals and searching for accommodation and
transportation, mainly including flights. During the trip, he also
has to take with him lots of notes, maps and documents that
guided him and where he has recommendations, addresses and his
agenda.

Bill and his workmates have created and evolved a business trip
supporting mash-up. They have been able to manage this task
without programming skills. This mash-up is a Web workspace
where they have integrated the following elements:

- A trip search window that operates on the travel companies
his firm works with. Bill chooses the suggested train trips,
flights, busses and so on, after introducing his requirements
such as dates and destination. This element allows Bill to
purchase the boarding cards to China without worrying about
doing the payment by himself since it automatically invoices
the trip to Bill's company.

- A hotel finder element is also included in this workspace.
This window offers accommodation possibilities in
destination and dates that Bill has specified. These
recommendations follow his preferences, such as price or
desired hotel facilities.

- Other window deals with searching regional transport at
destination. It offers information about busses, trains, trams,
taxies, etc.

- The most important element in this mash-up is an agenda
where the chosen trip elements, such as hotels, flights, trains,
etc, are graphically shown all together. This information
appears as Bill configures his trip in the other windows. This
window integrates also Bill's personal agenda information,
including his arrangements and meeting during and outside
the trip. This tool helps Bill to match all the trip elements
and smartly plan it.

- Finally, the mash-up includes a map where all trip's locations
and journeys are graphically shown. This map supports Bill

during his trip, helping and notifying him about footways,
bus stops, hotels, restaurants and even tourist information.

Using this mash-up, which Bill received from a workmate, he can
manage and configure his whole trip in an easy and integrated
manner, including support when he is on the road. Obviously,
Bill's preferences about trip specifics are not the same as his
workmate's, i.e. flight menu, seat in the flight, price ranges, etc.
However, the workspace is its elements are adapted to fit this new
context (new user), and allows him to personalize the work bench
in a guided, flexible and easy manner from his desktop PC.

Once this setup has been done, Bill starts planning his trip. First,
he introduces the meetings and arrangements dates in his personal
agenda. In the workspace, the trip search window shows flights
around these dates, and the hotel selector shows available hotels
in the destination city matching with the options already chosen.
However, a tiny news aggregator based on the destination city,
announces that there is a great sportive event on that city during
his visit. That news explains the expensive prices for the
accommodation suggested. Then Bill decides to search for
accommodation in some other city using the map, and he finds
more affordable hotels in a nearby city. Before booking the hotel
he looks for transportation between both cities in the regional
transport window, getting a high speed train that, according to the
agenda's timing representation, allows him to reach his meetings
on time. Nevertheless, he notices that the train fares are only
given in yens, Chinese currency. Bill realizes that a currency
converter would be very useful during the trip. This issue is new
to their workspace since his workmates have only travelled inside
the EU. Using a simple drag and drop action, Bill adds such a
converter to the mash-up, which translates to Euros any other
windows price whatever its currency.

To his surprise, the support given by this workspace goes far
beyond the single arrangement of his trip. This mash-up helps him
showing itineraries using his own PDA, checking timetables or
even ask for a taxi or rent a suit if there is an unforeseen event
during his trip. Moreover a new element appears in the
application. It is a restaurant recommender that gathers opinions
and ratings from Spanish travelers.

During the visit the PDA is continuously guiding him with the
map about his real situation, when he must reach the places,
which means of transport to use and its price. One day in the visit
it happens that the train that takes him from one city to another is
quarter an hour delayed. The mash-up alerts Bill since he will not
arrive on time to his meeting, and suggest him to take a taxi at the
final train station, as Bill used to go by walk. When the train
finally arrives, the delay is even longer and the recommendation
changes because the underground has just started its service. Bill
is also indicated the path to the nearest underground station.

This ubiquity approach helps Bill to easily reach the company he
is visiting, and accessing through his PDA companies internal
services. He therefore asks for a meeting room, accesses the
internal network and borrows a projector in his visit. During the
meeting Bill gives his talk and automatically receives digital
updated information about the attendees, and sends his own
business information back. This fosters the exploitation of his
social network and makes the most of the possibilities of his
company, allowing it to thrive day by day.

4. DESIGN PRINCIPLES ENABLING THE
WEB OF SERVICES
The evolution of Web 2.0 sites and applications is a testimony to
the progress achieved to improve user relevance and service
usability. However, current service front-ends are far from
meeting end-user expectations [18]. Applications are still based
on monolithic, inflexible, and unfriendly UIs. This is a serious
obstacle for achieving the benefits of the Web of Services. In
order to build the next generation service front-end for this
ecosystem of services we propose three guiding principles. These
principles are further detailed in the following.

4.1 Enabling users to design and share their
operating workspace and applications
Users should be able to design and implement their own interfaces
in a flexible and friendly manner. New generation front-ends
should provide new tools aiding end-user UI creation and self-
adaptation, while supporting a dynamic computing infrastructure
[19]. Community-based collaboration tools should also be
supported to satisfy the demands for secure social interaction and
improve knowledge and resource sharing. More to the point, the
following aspects should be covered:

1. Empower users to select resources of their interest, annotate,
and configure their own personalized operating environment

2. Promote user pro-activeness for creating new resources, to
improve versions of resources, and share further expertise
about these resources, their use, and their interrelationships

3. Provide social facilities to share services, results, knowledge
and resources with other users

4. Foster social interaction by providing visual mechanisms to
manage user communities, user identity, privacy and security
constraints, and the information to be shared, annotated, or
send to specific groups and individuals

The new generation of user-service front-ends should be based on
helping users with the flexible composition of applications.
Application and service front-ends will no longer be conceived as
monolithic blocks, but as a set of interoperable service front-end
components –called gadgets–, which are available from a
catalogue. A catalogue of components or gadgets will be available
for creating application or service front-ends by using and
combining these building blocks to construct new components.
Users should be able to create their own applications by
combining different catalogue components without any help from
IT experts or a thorough knowledge of the underlying
infrastructure.

4.2 Businesses need to adapt to the new
reality
Today’s competitiveness-driven business markets and the severe
time-to-market restrictions on applications, specifically for
enterprise IT systems, have increased the business needs to evolve
applications to suit this new reality. They can be evolved through
the following key guidelines:

1. Businesses need to embrace the Software as a Service (SaaS)
model as an effective software-delivery mechanism [5]. This
approach helps to reach a marketplace of services that can be

composed to create unanticipated business solutions adapted
to real needs.

2. Next generation Web Services ecosystems must respond to
unforeseen business requirements that emerge or evolve
spontaneously. This should be supported by new software
development methodologies that ease the integration,
adaptation and evolution of service-based applications.

3. Company boundaries must be eroded, evolving towards the
Internet of Services vision. This approach can be split into
two perspectives:

a) Next generation business systems should adopt a user-centric
approach to take into account users. Users of these services
are no longer just the company’s employees; clients should
also access the same business resources. This could even
affect the entrepreneurial service-based workflows [2].

b) Collaboration between companies, irrespective of their size,
must be fostered, thus increasing productivity and
accelerating innovation [19]. The creation of collaborative
services by integrating components from disaggregated
companies will afford new business opportunities and
improves the global service provided to end-users.

4.3 Context-adapted user-service interaction
The proliferation of multiple Internet-enabled devices allows end
users to access the Web anytime and anywhere. As a result, there
is a wide range of situations in which a user might need to access
these services, and they must therefore be provided the right user
interface for the right situation. These situations can be defined as
the context in which access occurs.

Next generation service front-ends should take into account the
following context aspects:

1. The delivery context, that is, a set of attributes that
characterizes the environment in which a service is going to
be delivered. Delivery context is a crucial aspect with regard
to service front-ends, as it provides a clear indication of what
the capabilities of the target device, web browser and
network are. Such aspects play an important role in the end
user experience. The information about these capabilities
should be exploited by service front-ends to provide a
harmonized experience adapted to the peculiarities of every
delivery context

2. Users and their circumstances: This aspect includes
properties such as user identity, profile and roles.

3. The surrounding environment, including the spatial location,
speed, light, level of noise, nearby objects/things, etc.

4. The situation / time which has to do with variables such as
date and time, weather, season, at home or at work, ...

5. MATERIALIZING THE GUIDING
PRINCIPLES
In this section we offer a general approach to support the previous
guiding principles, recommending key technologies, issues and
ideas to materialize them.

5.1 Enabling users to create their applications
The end-user empowerment idea gives an active role to end-users
letting them author, enhance, share and customize their own
applications and operating environment (workspace), thus going
beyond traditional, monolithic user-service interaction. Figure 1
depicts our technical proposal to materialize such principle. The
main component of the underlying platform is a resource
catalogue containing gadgets (which will implement be the front-
end for one or more services) and possibly other application or
content delivery services. This resource catalogue plays a similar
role than backend service and process registries.

Figure 1. Resource Catalogue.

Our proposed catalogue will be responsible for maintaining the
information about each front-end resource (gadget) and associated
metadata (template descriptors, deployment information, author,
icons, versions, formal-semantics-based annotations, user-
assigned tags and punctuation…). In addition the following
software modules will be devoted to user-catalogue interaction:
- An upload module that will allow service front-ends creators

to add new resources to the catalogue, making them
available to the community. To upload a new resource it will
be necessary to provide a gadget descriptor (template) with
all the metadata and deployment information.

- A search and recommendation module that will make it
possible to locate and discover those gadgets that satisfy the
necessities of end-users at a given moment. This search
application will be intelligent, recommending the most
suitable resources in the given Context. For example, the set
of pieces found in a catalogue should be different when the
end-user is at work than when is at home or on vacation.

- A drag-and-drop-based browsing and selection module that
will allow end-users to browse and select the resources of
their interest, putting them in their operating environment,
thus enabling further interactions.

Apart from a resource catalogue and its supporting modules, it is
also necessary a runtime environment devoted to the execution of
the user’s operating environment. Such operating environment (or
workspace) will act as a container, enabling the interaction
between the end-user and service front-ends. We envisage an
operating environment runtime with the following functionalities:
- Flexible layout composition enabling the free disposition of

gadgets on the viewport.

- Multiple service front-end views (implemented as tabs, for
example) allowing the user to group and compose different
gadgets for different problems or situations.

- Publish and subscribe facilities enabling the interconnection
between the different gadgets.

5.2 A Universal Framework for Ubiquitous
and Context-Aware Service Front-Ends
The seamless context-aware user-service interaction ideas will
drive the construction of novel service front-ends capable of using
contextual information to influence their behaviour, thus
supporting human users in a more effective and personalized way.
Particularly, Context-Awareness will provide the following
benefits to service front-ends:
- User Interface harmonization for every device or mode of

interaction. Contextual information will enable automatic
content and application delivery tailored to each target
environment.

- User-Service interaction enhancement:
• Contextual information can be exploited to present a

different operating environment depending on each
situation. Each operating environment may include
different functionalities or interaction modes depending
on the situation (at home, at work, on vacation, on the
move, on a business trip …).

• Context can be used by resource catalogue search and
retrieval modules to recommend the best gadgets to be
used under a given situation, matching rich resource
descriptions with the characteristics of the target
environment.

To materialize our vision, new tools, formalisms and engineering
methods need to be devised in order to simplify the development
of context-aware service front-ends:
- A device and modality independent Declarative Authoring

Language (and associated standard context-based adaptation
policies). This is a fundamental piece for those service front-
ends intended to work on multiples devices or modes of
interaction.

- A Context Framework composed, at least, by the following
elements:

• A Universal and Extensible Context Model enabling the
development of Context Vocabularies.

• A Context Mediation Layer, including binding
formalisms, hiding applications from the complexities
of dealing with multiple and heterogeneous Context
data sources.

• A Universal Context API, providing a simple, uniform
programming abstraction for the development of
context-aware services.

Once this Context Framework is in place an application can infer
which actions should be triggered, what data is relevant, and what
topics are interesting for the user within a specific context. In the
following sections we describe with a finer level of detail the
elements that compose our envisaged Context Framework.

5.3 A framework for user’s knowledge
capture and exploitation in service front-ends
In order to allow end users to create their own workspaces and
adapt them to the new business reality appears a new need:
exploit users’ domain knowledge and collective intelligence for
enhancing service front-ends. This idea can be materialized by:
- Encouraging users to create and compose their own service

front-ends as a way to solve not anticipated problems that
require thorough domain knowledge.

- Stimulating user’s participation in the provision of semantic
descriptions and annotations for service front-ends. This
point is really challenging as it will imply the integration
between folksonomies (light semantics) and ontologies
(formal semantics).

- Monitor users’ behaviour and input to service front-ends.
The accomplishment of the previous ideas requires research on
new formalisms and technologies such as:
- Advanced user-centric integrated development environments

(User-Centric IDEs) making it possible in a couple of clicks,
without deep IT knowledge, to create new and not
anticipated service front-ends.

- A catalogue browsing module enhanced with collaborative,
user-generated semantics (folksonomies). These
folksonomies will be constructed incrementally as users
assign tags to gadgets found in the catalogue. A rating
mechanism can also be used to promote those service front-
ends with a better quality level. This user-generated metadata
should be integrated with the formal metadata (coming from
an ontology, for example) about service front-ends and will
serve to improve the search and recommendation processes.

- Collaborative filtering techniques aimed at analyzing user
behaviour in order to:

• Create and extrapolate implicit user profiles taking
into account which links are more frequently
clicked or the time spent on each one.

• Capture underlying user’s knowledge to be later
used, for example in form filling assistance

• To extract repetitive interaction patterns driving
the automation of new, not anticipated processes

All the novel approaches described above should be the starting
point for a new innovation culture based on continuous
improvement via reusing and sharing of knowledge. In fact, users
will connect and use resources in their workspace according to
their skills, situation, social status or others. Wheel-reinventing in
organizations or between individuals regarding service front-ends
will no longer happen. Competition will rise as there will be an
ecosystem of providers and consumers of resources willing to
provide the best solution for a problem.

6. COMPOSITE APPLICATION
FRAMEWORK, COMBINING FAST AND
EZWEB IN AN ENTERPRISE 2.0
COMPOSITIONAL PLATFORM
ARCHITECTURE
Now that we have looked at the design principles of the future
Web of Services and its general materialization, this section will
present the architecture of a specific potential framework based
on an enterprise mashup workflow-oriented enabler that
empowers its users to co-produce and share instant applications,
i.e. applications based on composition rather than programming
and their building blocks. This framework has been built
adhering to the design guidelines, technologies, tools and methods
of two initiatives, FAST and EzWeb, as an integral solution
bridging users and final services.

First of all, we should briefly review the reference architectural
stack underpinning the FAST and EzWeb projects, shown in
Figure 2.

Figure 2. Enterprise 2.0 Mashup Stack.

The bottom layer contains the actual Web resources, be they
content, data or application functionality. They represent the core
building blocks of Enterprise 2.0 Mashups [19] and are the mark
of the resource-centric paradigm. According to the lightweight
Representational State Transfer (REST) architecture style [4],
each Web-based resource can be addressed by a Universal
Resource Identifier (URI) giving browsers, mobile devices, and
server applications alike accessibility to those resources (i.e.
multi-channeling). This programming style makes the resources
very appealing to a wide range of developers and for different
uses.

The resources themselves are sourced via a well-defined public
interface, the so-called Application Programming Interface
(API). APIs encapsulate the actual implementation as separate
from the specification and allow Web-based resources to be
loosely coupled. In this sense, the underlying resources are used
as core building blocks to compose individual applications on top
of existing resources. According to the REST architectural style,
the four CRUD-Operations (Create, Read, Update and Delete) are
represented by the HTTP verbs Put, Get, Post and Delete. The
Atom Publishing Protocol (APP) represents a first application-
level protocol for publishing and editing Web resources following
the REST architectural style. The protocol is based on the HTTP

transfer of Atom-formatted representations. This is documented in
the Atom Syndication XML Format. A new Google-driven
initiative, called GData, uses the APP extension mechanism and
also provides queries and authentication functionalities. It allows
full-text search queries to be sent to the underlying Web-based
resource. The returned syndication XML format (Atom or RSS) is
based on the Opensearch.org response elements, an Amazon-
driven specification. Besides these new lightweight standards,
existing application functionalities described with WSDL also
represent an enterprise mashup API. A big issue surrounding APIs
is identity. Most of the major API vendors have their own
authentication APIs. Even though they are all similar, each one is
different in the end. The OpenID.Net initiative is looking for a
solution to deal with this challenge.

Being resources based and sourced via public APIs, gadgets (also
known as widgets) provide application domain functions or
information-specific functions. They are responsible for providing
graphics, simple and efficient user interaction mechanisms which
put a face to the resources and abstract from the technical
description (functional and non-functional) of the Web-based
resources. In general, widgets can be both visual (in that they
render visual content, such as a chart) or non-visual (in that they
provide some form of discrete function or access to a Web-based
resource). In contrast to full-blown software applications, widgets
represent a tool or component providing a small and specific
application domain function. Through configuration and
personalization, the underlying Web-based resources can be used
according to individual requirements. Therewith, they tend to be
designed with a focus on consumption and customization to
ensure they are extremely flexible and reusable. But, although the
respected W3C published a draft widgets specification, there is no
widespread widget model. Software vendors (like Microsoft or
Google) defined their own widget model, NetVibes has the
compelling Universal Widget Architecture (UWA), and
OpenAjax has no component model per se but vital strategies for
fitting/putting Web components together in the same mashup.

By assembling and composing a collection of gadgets stored in a
catalogue or repository, knowledge workers are able to define the
behavior of the actual application according to their individual
needs, creating a composite application as a mashup. By visually
and intuitively aggregating and linking content from different
resources, knowledge workers are empowered to create a
workspace of their own that best solves their heterogeneous
business problems. No skills in programming concepts are
required. Many software vendors have started the implementation
of so-called mashup makers; visual mashup environments, i.e.
IBM QED Wiki, Microsoft Popfly, Serena Mashup Composer,
Kapow, JackBe Presto Enterprise Mashup Solution or NexaWeb
Enterprise 2.0.

Based on this reference stack, we are considering software
development from a top-down perspective as opposed to the
conventional bottom-up approach. Users will play a leading role
in this new approach and the applications will automatically
adapt to their data and functionality requirements (see Figure 3).
This new top-down scheme can be summarized as follows:

1. The end user or consumer identifies a need or series of needs
in the form of data to be displayed and functionality to be
offered. These users will create their own solutions based on
the ideas of mashup and freewheeling wire framing of

complex resources and APIs in a do-it-yourself (DIY)
business process. Users will have already composed this
complex of resources from REST resources via a piping and
wiring composition of simple resources or by
remixing/fixing existing resources. REST resources are a
front-end to enterprise legacy, traditional web services, data
in enterprise boundaries, etc., resulting from a “RESTify”
process carried out by enterprises themselves.

Figure 3. Visual composition of screen-flow resources and
interoperability with back-end Web services.

2. Users just have to search the gadget registry to find a gadget
(or part of one) that meets their needs or more than one
gadget that they can put together to create or compose a new
one of their own. The result of this stage is a gadget
conceptualization including all the above aspects (user needs
satisfied, user capabilities required, interaction models
applied, internal logic flow, etc.). This way, a semantic
enrichment based on rules, facts and pre/post conditions
improves the whole B2C channel of services.

3. Users manage their new gadgets in their own dashboard,
supported by an Enterprise Mashup platform (i.e. EzWeb).
This platform allows gadgets to intercommunicate with each
other and with their own platform, creating a hybrid
composite web application. This instant application supports
users’ daily work thanks to an environment of interconnected
resources, offered by a gadget ambience. In addition, users
can publish their improvements to the gadget registry for
future reuse, adaptation or specialization. Thanks to this,
knowledge and innovation management is an implicit part of
the process, fostering user collaboration and collective
intelligence exploitation.

4. Alternatively, users could contribute clarifications,
innovations, bugs, enhancements, comments or simply new
usages of their mashup components without actually
recomposing, remixing or creating new resources. Increasing
the visibility of these business inputs and assuring that they
rapidly reach the users of that collective intelligence is vital
for boosting business innovation [10]. Therefore, each

resource that appears in a mashup should be associated with
standard Web 2.0 communication channels (such as
blogging, edition of associated entries in the underlying
wiki-based catalogue, etc.). This way, users would be able to
implement inputs simply and flexibly without having to
create/tailor and publish the solution in order to be able to
contribute their expertise and share it with the enterprise.
This puts existing knowledge to better use.

Note that, taking into account the concepts and technologies
governed by this idea, the contributions will focus on the end
user without specific background knowledge in semantics,
user interfaces, and back-end integration. However, the user-
centric approach supports the rapid development and
maintenance of applications and information systems in a
clear attempt to reach The Web 2.0 Long Tail.

The central driver of this framework designed to address The
Long Tail of user needs is the lightweight resource composition
style. In this style building blocks from different contexts are
reused to build individual enterprise applications. As illustrated in
the Figure 4, the composition takes place both in the resource
layer (piping) and in the gadget (wiring) layer according to the
enterprise mashup stack (see Figure 2).

Figure 4. Resource and gadget compositions building

composite applications.

In reference to the UNIX shell pipeline concept, the piping
composition integrates a number of heterogeneous Web-based
resources defining composed processing data chains/graphs
concatenating successive resources. The output of each process
feeds directly as input to the next one. Aggregation,
transformation, filter and sort functions adapt, mix and manipulate
the content, data and application functionality of the Web-based
resources. Intuitive visual environments for the piping
composition represent Yahoo Pipes or IBM Diama. The piping
composition itself addresses users versed in classical development
or data manipulation languages. In the gadget layer, the actual end
user is able to wire existing gadgets together with behavior and
data relationships by visually interconnecting their input and
output parameters. For example, a form gadget can be placed on a
page, allowing a user to enter data. This data entry can be
connected to the input of a gadget that provides a Web-based
resource invocation, and the output of the resource response can
be connected to a gadget that renders a visual display. Users then
can interconnect existing resources with each other to create
increasingly complex web services and their APIs, taking up the
idea of resources composition based on storyboard-driven
creation. End users can then exploit this complex of creations to

achieve enormous improvements in their job performance and
innovate by creating/remixing their own business tools.

A key challenge of this whole new approach is to create a new
visual programming environment that will facilitate the
development of composite applications from complex front-end
gadgets, involving the execution of relatively complex business
processes that rely on traditional back-end semantic Web services.
This is the main objective of the FAST project. The adopted
approach should be user-centric rather than program-centric.
Instead of first building programs that orchestrate available
semantic Web services and then trying to figure out how to
implement interaction with the users at given points of the process
execution flow, programmers will start from the front-end gadgets
that the user will see and interact with and then visually establish
the connection to back-end Web services by tracing back process
execution flows, if necessary. Programmers take an approach
similar to the visualization of UML sequence diagrams to visually
establish this connection. In this approach, programmers will
visually manage and connect front-end gadgets, screen-flow
resources and back-end services and overcome the limitations of
current business process engine approaches (based on the
traditional SOA vision).

Note that the programming tool to be used in this solution should
be compatible with existing and future mashup exploitation
platforms. Its goal is not to develop the gadget mashup platform.
It is a tool that should enable the development of mashupable
gadgets that rely on screen-flow resources and semantic Web
services stored in a catalogue. In this paper we are going to
emphasize the exploitation of created gadgets in the well-known
EzWeb mashup platform, which is fully tailored to support
complex gadgets intercommunication, multi-device ubiquitous
adaptation and ambience creation.

Clearly, this particular solution is a subset of a global user-centric
composite application framework, specified around the creation of
software based on screen-flows and work-flows that end users
could establish via a catalogue of existing semantic Web services.

In summary, this solution aims to define a whole new approach to
front-end and back-end integration by developing a new visual
programming environment. This new environment will facilitate
the development of complex front-end gadgets, involving the
execution of relatively complex business processes that rely on
back-end semantic Web services and applying the previous
guiding principles and its materialization (Section 4 and 5):

- As opposed to front-end-oriented mashup platforms, which
are concerned with facilitating retrieval, mashing and
utilization of lightweight gadgets, this platform would go a
step further and deal with the creation rather than the
utilization of such lightweight gadgets. This can significantly
improve programmers' operational efficiency.

- Instead of first building programs that orchestrate available
semantic Web services with BPEL and then trying to figure
out how to implement interaction with the users at given
points of the process execution flow, users will start from the
front-end gadgets they will see and interact with, and then
visually establish the connection to the back-end Web
services tracing back the process execution flows, if
necessary. The framework will visually establish this

connection adopting an approach similar to the visualization
of UML sequence diagrams.

- The goal is to build a system that reads the URIs of a number
of semantic Web services and is able to automatically
interpret and visualize possible messaging patterns between
them for the developer.

Instead of implementing a choreography from scratch, developers
and end users have a visual and efficient interface by means of
which to orchestrate services according to their needs and to
create a gadget on top that clearly conveys its functionality to
human users.

7. PROOF OF CONCEPT: APPLICATION
OF A COMPOSITE APPLICATION
FRAMEWORK TO OUR USE CASE
As a proof of concept, this section shows the application of our
framework (based on the FAST tool and EzWeb mashup
platform) to the domain problem presented in the section 3. This
scenario is only one example of the many solutions that could be
developed based on the proposed novel user-centric SOA-oriented
framework. This section explains a composite application
deployed on an existing prototype of the EzWeb platform, where
a service-oriented environment is created by visually attaching
different complex gadgets to each other and to the enterprise
back-end. This specific enterprise mashup environment is useful
for an end user responsible for the task of managing services,
data, functionalities and resources from back-end legacy systems.
Each complex gadget has been created using FAST, putting a face
on SOA and leveraging a user-centered top-down approach to
Web services as shown in Fig 5. This screenshot shows how a
domain expert can create a multi-screen gadget, whose main
functionality is to list several corporate services (managed thanks
to a REST abstraction layer) on an in-tray screen. The main
screen is therefore an in-tray (as a html visual artifact) that is
linked to a piping (concatenation and filtering) built on three
resources of travel agencies back-end (see Figure 5: three web
services associated with different agencies for hotel management,
travel management and local travels management respectively
that are wrapped with REST resources). By clicking on one of
these lines, every end user can deal with a back-end service,
through forms and screens that act as a screen-flow wizard to
manage that resource’s specifics. These visual artifacts are
deployed and presented in accordance with the special features of
the end user device. In addition, FAST manages facts as internal
pre/post conditions (thereby interconnecting building blocks to
build complex gadgets) or as external stubs (events and slots) to
orchestrate several complex gadgets in an EzWeb mashup.

The zoomed screenshot in Figure 6 depicts a simple scenario
when the created in-tray gadget is put together with other gadgets
and APIs to create a complex workspace as a composite
application that provides trip support for the EzWeb mashup
platform end users. More precisely, this dashboard has been
extracted from a Telefónica core OSS, which is part of a more
general mashup now deployed by Telefónica as a fully
operational environment. The mashup connects four gadgets: the
list of core Web services deployed in several agencies’ back-end,
including functionalities to manage user requests (this is in-tray
created by FAST), an end user agenda, a Google map and a travel

manager. A fully functional environment is created by visually
attaching these FAST gadgets to each other and to the enterprise
back-end in a wireframing-oriented integration: the agenda gadget
will display end user tasks, travels and trip details, the location
map will represent the selected element’s situation and the gadget
for travel management will display the selected travel’s
information, operations, etc.

Figure 5. Creation of a complex in-tray gadget using the

FAST tool.

Figure 6. Creation of an enterprise mashup on the basis

of the proposed framework.

It is the end users themselves who develop this “service” to meet
their own requirements. They do this on the fly with the help of
frameworks like the one proposed in the last section, based on a
user-centric approach. Additionally, these systems help users to
define and to customize their operational environment, thus
improving their use of the entire infrastructure of a real enterprise
system in a collaborative and knowledge-driven fashion.

8. RELATED WORK
The Companies are beginning to focus on people as the SOA
entry point and therefore to composite applications. Thus they
need a means to bridge the gap between people and services. It is
then that they come up against traditional composite applications’
shortcomings. Consequently, a number of user-centric composite

application frameworks are beginning to proliferate. Worthy of
note is IBM’s solution, named SOA for people. It focuses on a
portal framework acting as a SOA front-end to maximize people’s
productivity and collaboration. IBM claims that “with portal and
collaboration software, an SOA environment can simplify the way
people interact”. The increasing interest in this approach is
indicative of the current importance of user-centric SOA in the
business world.

 However, IBM’s approach focuses on employing particular Web
2.0-based technologies to deliver a front-end to SOA, instead of
reconsidering the whole SOA vision and its application to a
composite application domain from an end user viewpoint. In this
paper all creation, composition and consumption of new services
and applications following a user-centric approach based on
enterprise composite applications are completely revisited from
an Enterprise 2.0 perspective. Additionally, IBM’s approach only
considers mashups composed of simple gadgets. Our approach
goes a step further and also considers the development of complex
gadgets based on the storyboard notion. (Storyboarding is an
approach used when filming movies, where the use cases and user
needs are identified visually in the form of a flow of abstract
windows, pages or screens.) Complex gadgets are now composed
of gadgets of more than one page/screen and help to deal with
real-life workflows and business processes. This is quite an
original approach, and is being developed as part of the FAST
initiative, a STREP project partially funded under the European
Commission’s 7th Framework Programme (INFSO-ICT-216048),
as part of NESSI, the Networked European Software and Services
Initiative. Other similar initiatives are beginning to proliferate in
this research field. Of these, the NEXOF-RA project deserves a
special mention. Authors collaborate and participate actively in
this project, which aims to build the Reference Architecture for
the NESSI Open Service Framework by leveraging research in the
area of service-based systems, and to consolidate and trigger
innovation in service-oriented economies. NESSI is the European
Technology Platform dedicated to Software and Services. Its
name stands for the Networked European Software and
Services Initiative.

ServFace is another STREP project funded under the European
Commission’s 7th Framework Programme related partially to the
ideas presented in this paper. This initiative aims to add an
integrated UI description and development approach to SOA
concepts by introducing the notion of a correspondent user
interface for services. This is a completely bottom-up approach:
the idea is to enrich Web services and resources with UI
descriptions (i.e. in UML) to build generic faces to this back-end.
Therefore, it takes a completely opposite approach to this paper’s
top-down line of attack. ServFace aims to create composite
applications from user-created UIs that then are related to an
existent enterprise back-end. Taking our approach, UIs are richer,
more flexible and closer to end users.

9. CONCLUSION AND FUTURE TRENDS
In this paper, we elaborated on the traditional WS-SOA-based
approach to composite applications as a traditional enabler for
integrating distant and potentially heterogeneous web resources,
data and functionalities. As this traditional approach has neither
lived up to its promise of facilitating a global network of loosely
interconnected services nor provided an appropriate front-end to
deliver composite application domains to people, new approaches

are required to rise to this challenge of enabling user-centered
composite application development. As a key component of the
Web 2.0 era, novel technologies and design principles are now
about to emerge that will allow human users to use, customize,
combine, interconnect and finally display Web-based content or
functionality as new resources on the Web. In this paper we have
elaborated on the synergies between the Web 2.0 and the
composite application worlds that can be exploited to rise to this
important challenge and have proposed a generic model of a
global user-centric SOA and a novel architecture for enterprise
mashup composite applications.
The appearance of user-centric approaches to next generation
service front-ends, such as the one proposed in this paper, will be
a major step forward, providing solutions to currently hard-to-
solve problems in the traditional SOA paradigm. The emergence
of such service architectures will solve key problems in three
different scenarios. Large enterprises may capitalize on faster
application development (for what are known as instant
applications), a more agile system landscape and the
empowerment of their employees to design their own applications
that best satisfy their unique requirements, and to share this
knowledge with other employees better than in traditional Web
service architectures.
On the other hand, the proposed architecture enables SMEs to
find, customize, combine, catalogue, share and finally use
applications that exactly meet their individual demands by
leveraging the SaaS model, viewed as Utopian from a traditional
SOA perspective. Supported by the new Internet of Services ap-
proach, they can select and combine resources hosted by third
parties rather than buying a pre-determined, inflexible and
potentially heavyweight solution.
Finally, individuals benefit from a strongly increased capability of
personalization and participation. This approach will provide end-
users with intuitive, unsophisticated IT ways to discover, remix
and use those Web-based services that they consider interesting
and useful. It will also allow them to participate, swap
information with other users and service providers and to actively
contribute in a way that encourages extensive use of the resources
offered. This speeds up the service innovation pace. Focusing on
the”long tail” advanced by Chris Anderson rather than a limited
number of sophisticated experts, a user-centric SOA will involve
the bulk of private users or small businesses and allow
for”customer self-service”.
Future work will concentrate on evolving FAST and EzWeb, the
open source composite application framework used as proof of
concept in this paper. We expect them to become a major hub for
the publishing, brokerage, customization and, finally, the
consumption of Web-based resources on a global, cross-
organizational scale [18].

10. ACKNOWLEDGMENTS
This work is supported in part by the European Commission
under the first call of its Seventh Framework Program (FAST
STREP Project, grant INFSO-ICT-216048) and by the European
Social Fund and UPM under their Researcher Training program.

11. REFERENCES
[1] Alonso, G., Casati, F., Kuno, H. & Machiraju, V.(2004).

Web Services Concepts, Architectures and Applications.

[2] Anderson, C.(2006). The Long Tail, Why the Future of
Business is Selling Less of More. Hyperion. July 2006.

[3] Davenport, T. H.(2005). Thinking for a Living: How to Get
Better Performance and Results from Knowledge Workers.
Harvard Business School Press, Boston, MA, USA. 2005.

[4] Fielding, R. T.(2000). Architectural styles and the design of
network-based software architectures, Ph.D. thesis,
University of California, Irvine, 2000

[5] Gartner Inc. (2006). Hype Cycle for Software as a Service,
Gartner Research, 10 August 2006.

[6] Högg, R., Meckel, M., Stanoevska-Slabeva, K. &
Martignoni, R.(2006). Overview of business models for Web
2.0 communities, Proceedings of GeNeMe 2006, p. 23-37,
Dresden, 2006.

[7] IBM Developer Works (2006). Composite applications –
Business Mash-ups, http://www.ibm.com/developerworks

[8] MacKenzie, M. (2006) OASIS - Reference Model for
Service Oriented Architecture 1.0, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=soa-rm

[9] McAfee, A.(2005). Will Web Services Really Transform
Collaboration, MIT Sloan Management Review, Vol.46,
No.2, 2005

[10] McAfee, A.(2006). Enterprise 2.0: The Dawn of Emergent
Collaboration. MIT Sloan Management Review, Vol.47,
No.3 (pp. 21-28).Spring 2006.

[11] North, D.C.(1990). Institutions, Institutional change and
economic performance, Cambridge University Press,
Cambridge, 1990

[12] O’Reilly, T. & Musser, J.(2006). Web 2.0 Principles and
Best Practices. O’Reilly radar, November 2006.

[13] O’Reilly, T.(2005). What is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software.
www.oreillynet.com/pub/what-is-web-20.html

[14] OASIS (2003).Web Services Composite Application
Framework (WS-CAF) TC, http://www.oasis-
open.org/committees/tc_home.php? wg_abbrev=ws-caf

[15] OASIS Open CSA (2007). Service Component Architecture
(SCA), http://www.oasis-opencsa.org/sca

[16] Roman, D. (2005). Web Service Modeling Ontology,
Applied Ontology, Vol.1,No.1 (pp. 77 - 106), 2005.

[17] Schroth, C. & Christ, O. (2007). Brave New Web: Emerging
Design Principles and Technologies as Enablers of a Global
SOA. In Proceedings of the 2007 IEEE International
Conference on Services Computing (SCC 2007) (pp. 8)

[18] Schroth, C. & Janner, T. (2007). Web 2.0 and SOA:
Converging Concepts Enabling the Internet of Services.
IEEE IT Professional Vol.9, No.3(pp.36-41) , June 2007.

[19] Smith, R.(2006). Enterprise Mashups: An Industry Case
Study. Keynote at the New York PHP Conference & Expo,
Manhattan, New York, USA, 14-16 June 2006

[20] Winewright, P. (2005) Why Microsoft can’t best Google,
Software as a Service ZDNet editorial, August 2005.

	2. WS-SOA-BASED COMPOSITE APPLICATIONS AND THEIR SHORTCOMINGS ON THE ROAD TOWARDS A POWERFUL USER-SERVICES INTERACTION IN A WEB OF SERVICES
	3. USE CASE: A REAL PROBLEM OF USER-SERVICE INTERACTION IN PEOPLE’S DAILY LIFE
	4. DESIGN PRINCIPLES ENABLING THE WEB OF SERVICES
	4.1 Enabling users to design and share their operating workspace and applications
	4.2 Businesses need to adapt to the new reality
	4.3 Context-adapted user-service interaction

	5. MATERIALIZING THE GUIDING PRINCIPLES
	5.1 Enabling users to create their applications
	5.2 A Universal Framework for Ubiquitous and Context-Aware Service Front-Ends
	5.3 A framework for user’s knowledge capture and exploitation in service front-ends

	6. COMPOSITE APPLICATION FRAMEWORK, COMBINING FAST AND EZWEB IN AN ENTERPRISE 2.0 COMPOSITIONAL PLATFORM ARCHITECTURE
	7. PROOF OF CONCEPT: APPLICATION OF A COMPOSITE APPLICATION FRAMEWORK TO OUR USE CASE
	8. RELATED WORK
	9. CONCLUSION AND FUTURE TRENDS
	10. ACKNOWLEDGMENTS
	11. REFERENCES

