
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Data Analysis as a Service: an Infrastructure for Storing

and Analyzing the Internet of Things

Martin Lehmann2, Andreas Biørn-Hansen2, Gheorghita Ghinea1

Tor-Morten Grønli2 and Muhammad Younas3

1Brunel University, London, UK

2Westerdals Oslo ACT, Faculty of Technology, Oslo, Norway
2 Oxford Brookes University, Oxford, UK

martin@westerdals.no, andreasb.nor@gmail.com,

tmg@westerdals.no, george.ghinea@brunel.ac.uk,

m.younas@brookes.ac.uk

Abstract. As the Internet of Things (IoT) is becoming an increasingly trendy topic

both for individuals, businesses and governments, the need for academically

reviewed and developed prototypes focusing on certain aspects of IoT are

increasing as well. Throughout this paper we propose an architecture and a

technology stack for creating real-time applications focusing on time-series data

generated by IoT devices. The architecture and technology stack are then

implemented through a proof-of-concept prototype named Office Analysis as a

Service, DaaS, a data-centric web application developed using Meteor.js and

MongoDB. We also propose a data structure for storing time-series data in a

MongoDB document for optimal query performance of large datasets. One

common research challenge in the IoT, security, is considered only briefly, and

is of utmost importance in future research..

 Keywords: Internet of Things, MongoDB, Data Analysis as a Protocol, Meteor,

RESTful services, Reactive visualisation

1 Introduction

The Internet of Things (IoT) is perhaps the fastest emerging technology trend of the

present time. The IoT technologies and applications are still in their infancy [6], and so

the academic community must thoroughly address the area. Although ‘IoT’ was

initially meant to describe a network of RadioFrequency ID-enabled devices, it has

since been expanded to the following widely accepted definition [6]:

a dynamic global network infrastructure with self-configuring

capabilities based on standard and interoperable communication

protocols where physical and virtual Things have identities, physical

attributes, and virtual personalities and use intelligent interfaces,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/30339722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:martin@westerdals.no
mailto:andreasb.nor@gmail.com
mailto:tmg@westerdals.no
mailto:george.ghinea@brunel.ac.uk

and are seamlessly integrated into the information network

(Kranenburg, 2007 cited in [6]).

It becomes clear that the Internet of Things indeed encompasses all devices with a

sensor, but there is also a second implication: the huge number of data points that will

inevitably be collected is of no use to anyone unless it is processed. The definition also

presents us with several implicit challenges, backed by Xu et al. [6] and Palattella et al.

[4]. These include, but are not limited to, privacy, distribution and maintenance, and

security concerns in the distributed system that is the IoT. These are all important areas

to explore, but outside the scope of this paper.

Also important to mention is the Web of Things (WoT) [1]: the software layer on

top of the Internet of Things. This paper mainly focuses on the programming model

side of an IoT application, and is thus mostly concerned with the WoT. Furthermore,

standards are a real concern. This is described in Palattella et al. [4], which emphasises

emerging industry alliances and IEEE/IETF working groups as the key to success.

Finally, the pre-eminent concern of this paper is the gap of knowledge with regard to

modelling and implementing complete IoT-oriented applications, as described by

Paganelli, Turchi and Giuli [3].

This paper first revisits the current state of research on the fields of the Internet and

Web of Things, respectively. It then presents an architectural model and proof-of-

concept implementation of a full-stack IoT-oriented application which accepts, stores,

and provides access to the data in addition to subscription to real-time feeds for new

data points. Third, it compares the experiences from modelling and developing the

application to the existing research. Lastly, the most important lessons are highlighted

and briefly discussed.

2 Related Work

In this section we consider relevant literature and related work within the field. Xu et

al. [6] contribute a major review of the current research on the Internet of Things (IoT).

A very recent survey paper [6] identifies several key gaps in the current knowledge

body regarding the Internet of Things. The main points - cost, security, standardisation,

and technology – are all areas that will need to be explored further, but only

standardisation and technology are considered in this paper. Additionally, they propose

a service-oriented architecture (SOA) style approach to the Web of Things. This

approach is not considered by this paper. As mentioned in the introduction, Paganelli

et al. [3] describes a lack of actually modelled and implemented applications as a major

hole in the current research body. This paper also refers to a relatively large number of

other papers proposing middleware and frameworks for designing applications in the

Web of Things. However, Palattella et al. [4] claim that what may have previously

seemed impossible given the restrictions of the Internet of Things in terms of building

a standards-compliant stack may indeed become a reality. They propose a highly

technical communication stack for an entire application, but have not actually

considered implementing a system. It is worth noting that their stack includes IETF’s

RFC 7252 - the Constrained Application Protocol (COAP) (2014) for application layer

communication.

Xu et al. [6] also mention context awareness as an important factor in the Internet of

Things, as millions and billions of sensors will be connected, collectively producing

extreme amounts of data. While not considered by this paper, using context awareness

and artificial intelligence to filter out meaningful, important data will be a great tool as

we begin to find more and more use cases for the Internet and Web of Things.

It seems that there is no lack of proposed frameworks, protocols, and standards for

connecting things to the internet and making them part of the web. There is no shortage

of frameworks for the actual communication between devices and servers, either, and

we have quite a few contributions regarding storage of very large numbers of data

points. We also have much research on analysing the data on the field of Big Data, but

that is outside the scope of this paper.

Disregarding cost, privacy, and security, the main problem of the current Web of

Things research body seems to arise only when committing to building a complete full-

stack application: there is no standard, proven, manufacturer-independent way to

implement a complete application for gathering and analysing data from a custom

Internet of Things system. Indeed, as Xu et al. [6] put it: the Internet of Things is still

in its infancy.

3 Data Analysis as a Service (DSaaS)

A clear gap identified in the previous section is the lack of sample implementations of

full-stack applications where communication, storage, analysis opportunities, and

availability are all thoroughly discussed and actually implemented. DSaaS is an attempt

to start bridging this gap, but will naturally only provide the perspective of one domain,

one technology stack, and one use case. Very briefly, DSaaS accepts and stores data

from providers (sensors), pushes the new data to a very simple customisable dashboard,

and provides (optionally real-time) access to the data sets. Security is not considered in

the prototype. It was implemented with the sole goal of building a complete application

designed to handle data from the Internet and Web of things.

The current architecture and technology stack is the result of several iterations in

which we experimented and prototyped in order to find the most well-fitting

combination for our paper. We initially laid out a few requirements for the architecture

and stack to support. Examples of such include the ability to rapidly prototype the

artifact, support real-time data synchronization at some level, and it should fit into

previously discovered challenges related to the IoT.

Fig. 1. The simple dashboard with two integrations

The DSaaS core is a central server written in Meteor1 providing access to both

storing and retrieving data. It also provides the option of subscribing to a change feed

for a specific resource to receive updates to the dataset in real-time. DSaaS also

provides a very simple real-time dashboard (Fig. 1) for monitoring incoming data.

Finally, it provides a management interface for customizing the dashboard and defining

the integrations that can be displayed in the dashboard.

Fig. 2. Sample integrations

1 https://www.meteor.com

An integration is a data provider of any kind that will upload data to the service. An

integration is expected to be a single sensor whose data is sent to the Internet - typically

via an Internet-enabled microcontroller - although it is possible to get creative. As seen

in Fig. 2, creating an integration automatically generates a unique ID, which must be

included in requests to upload data as identification. In addition to endpoints for storing

data, DSaaS provides two different types of endpoints for accessing the stored data.

The simplest of these is a traditional REST endpoint that exposes data from each sensor

as a resource with a unique URI: an HTTP GET request fetches data from the present

day. Of course, applying filters to fetch for example all stored data, data from the

present week, or data from the last ten days, would be helpful, but this was outside the

scope of the prototype.

The second data access endpoint provides a real-time change feed that sends all

new relevant data points to the consumer as it is stored in the database. The protocol

for real-time data updates is Meteor's Distributed Data Protocol (DDP)2, which is

based on WebSockets. Because DDP’s publish and subscribe-pattern (pub-sub) is

agnostic [2] and not coupled with Meteor.js, DDP can be used to communicate

between server-to-client, machine-to-machine, etc. This goes back to the

interoperability aspect identified in several reviewed paper. It could naturally be

possible to define a custom protocol with plain WebSockets, and that would enable

building real-time graphs or custom dashboards for the data, or real-time analysis with

for instance Apache Storm3.

The prototype also includes three sample integrations/data providers (a Spark Core

microcontroller4, a native Android application listening for light values in the room

using the light sensor on the mobile device, and a simple Ionic5 cross-platform

application for mobile and web for registering a single value. Finally, the prototype

includes one external real-time consumer written in JavaScript, which is a proof-of-

concept real-time graph for a single sensor.

4 Implemented Prototype Artefact

Our prototype, named Office Analysis as a Service (DaaS) consists of a web application

where users can sign up and log in to the service, register new integrations (their own

sensors), edit their dashboard, and view the dashboard to be displayed at a monitor or

similar. The initial idea was to provide offices and workplaces with the ability to

monitor their environments, and act on the resulting data. The end-product became

rather general as it stores data from any source, being sensors or similar, as long as the

data is in a given format, so the DaaS name is merely a thing of the past

There are various databases, like InfluxDB, KDB+ and KairosDB, exclusively

developed to handle such data structures, but MongoDB comes bundled with Meteor.js,

and is currently the only database fully supported by the Meteor Development Group.

2 https://www.meteor.com/ddp
3 https://storm.apache.org
4 https://store.spark.io/?product=spark-core
5 http://ionicframework.com/

Because of the tight coupling, it was decided to implement a time-series data structure

into MongoDB instead of writing an adapter for Meteor.js to talk to InfluxDB or some

other time-series-only database. Because MongoDB is a document database, we store

data in documents and collections instead of rows and tables like in a traditional SQL

database. For instance, we have implemented a collection named IntegrationData,

where a document has the following properties:

Fig. 3. A document data structure for time-series data in MongoDB.

integration_ID The ID of an integration (physical sensor) to

distinguish one sensor from another.

date The date a given day in a given format.

last_value A JavaScript object holding the latest value

inserted into the document:

 -time the hour and minute (HH:MM) of an inserted

value

 -value the value (numeric, string, bool)

data A JavaScript object holding 24 arrays, one

for each hour in a day. Each array has 60

indexes, one for each minute in that given

hour.

Table 1. Properties of a time-series data document

This structure (Table 1) enables the client to quickly request the current data

(last_value property) for real-time-display purposes, as well as for external services

to integrate into DaaS to get time-series data (data property) for each day for each

integration (integration_id property). Additionally, the size of the document is kept

reasonable compared to the maximum size of 16 megabytes per document [2]. The main

limitation with this approach is that one can only store one value per minute, else the

previous value is overwritten, and if an integration’s microcontroller halts and stops the

data sending, the value for those minutes within the halted time frame will stay at 0. It

is still the most optimal way we found to adapt parts of MongoDB’s own advice on

time-series storage into our service MongoDB based on read and write time, document

size limitations and query optimization.

In order to prove parts of our current architecture, we developed an external (non-

Meteor.js) example application connecting to our Meteor.js server instance through the

DDP protocol. The example is a single HTML page graphing history data levering

JavaScript, the D3 graph library, and the JavaScript library Asteroid for simple DDP

connectivity. The DDP connection and MongoDB collection subscription

(getIntegrationDataForDDP) with a parameter (integration_id) is configured

like this

Fig. 4. Connecting to a Meteor.js instance with the Asteroid DDP connector

On change-events, an asteroid.on(‘change’, {}) event will fire, similar to the

asteroid.on(‘connected’, {}) event, and serve the example application new,

real-time data from the subscribed integration/sensor. This is in practice how the

service, architecture and technology stack enables 3rd party developers, external

services and more to integrate into our prototype and real-time aggregate on the time-

series information we store. The prototype also provides RESTful non-real-time

endpoints for externals to hook onto and use for more static purposes, like weekly Excel

reports or similar. The implementation of this is based on Paganelli et al.’s [3] idea of

treating each integration as a web resource and builds further on how to handle

persisting time-series data in a document-database like MongoDB.

5 Discussion: experiences from developing DAaaS

Unsurprisingly, many design decisions had to be made as we applied the Internet and

Web of Things to a real-world application with a clearly defined use case such as Data

Analysis as a Service (DAaaS). While frameworks for connecting things to the internet,

machine to machine communication, data storage, and data analysis as plentiful, it

proved impossible to apply these frameworks and protocol stacks to the application

without modifications. In short, the development time can be greatly reduced by

utilising tools which almost fit the use case, and customize what already exists. This

experience differs from the main proposition in Palattella et al. [4], whose introduced

IoT protocol stack should have been the best fit.

A key experience from the development process is that development time can be

greatly reduced by using tools that already exists - in DAaaS's case, Meteor with

MongoDB for storage, and REST and DDP as communication protocols or styles

proved to be very effective tools for rapid prototyping. It should be noted that only

REST was used for providing data to the application, as per Uckelmann, Harrison and

Michahelles [5]. The prototype did not require two-way machine-to-machine

communication, so COaP was not relevant to this system.

An obvious downside of this approach is that a framework (like Meteor) may impose

requirements to other dependencies in the application. In DAaaS, the main issue was

that Meteor only supports the document database MongoDB6 out of the box. There are

several other stores (I.e. TempoIQ and InuxDB) better suited than MongoDB to store

timeseries data, which was expected to be stored in DSaaS. Being required to use

MongoDB for storage required a custom data structure to achieve acceptable

performance.

Another important point to make about using established protocols, even if they (like

Meteor's DDP) are not widely used outside of a small community, it may be easy to

find third party libraries to help speed up development. For example, the real-time

consumer graph used the library asteroid 7 . By defining a custom protocol with

WebSockets, all communication must have been implemented by hand.

As long as there are not enough good all-purpose reference implementations with

the proposed frameworks and protocol stacks, building something based on existing

and well-defined protocols is easier. For rapid prototyping of a system, it seems best to

prefer well-defined protocols and architectural styles like REST, and try to use existing

frameworks for both client- and server-side applications. For commercial products,

however, and especially if one aims to deliver several variations of the same product,

service, or platform, exploring and using protocol stacks and frameworks developed

specifically for the Internet of Things may be the best fit.

Several aspects of building a commercial application for actual use have been

ignored in the development of DAaaS. Examples include security in both providing and

consuming data; privacy, which has not been considered whatsoever (and rightfully so:

the platform only stores and displays data in a custom fashion); and no error handling

is implemented: if anything unexpected happens, the system will not do anything to

restore state or shut down gracefully. These are all considerations to make which may

differ from the regular Web application when introducing the aspect of Internet and

Web of things.

While no actual (big data) analysis of the data was performed by the prototype,

leaving potential issues with this type of data unexplored by this paper, the proof-of-

concept shows that, in its current state, it can connect Internet-enabled devices to our

service via REST interfaces, persist the time-series data in a query-optimized fashion,

and both real-time (DDP) and statically (REST) integrate into external services.

Because of DDP’s agnostic communication-approach, it could be of interest to

research on the protocol’s ability to handle real-time machine-to-machine

communication in constrained environments. Overall, the DDP protocol has proven

itself as a potential standard for real-time data synchronization between client and

6 https://www.mongodb.org/
7 https://github.com/mondora/asteroid

server, and the REST paradigm for sending data between constrained environments

(sensors via microcontrollers) to RESTful endpoints at a server.

However, the possibly most important experience from developing the DSaaS

application is that handling providers and consumers of the Internet and Web of Things

just like any other type of client in the business logic of the application is tremendously

helpful: if data from things needs to be transformed to fit a certain structure, then it

should likely be transformed in the communication layer of the application before ever

reaching the business logic.

As a final remark, HTTP/28 is on its way, and will certainly be an interesting player

once released, allowing two-way communication and several asynchronous requests

over the same connection. This may impact the need for COaP and WoT performance,

create some disturbance in the effort to standardize WoT protocols, and certainly

improve performance on the Web in general.

6 Conclusion

We have seen that the current body of research on the Internet and Web of Things

agrees that standardization, full-stack research-oriented implementations, technology,

and security are among the most important areas to look into in the future. Data

Analysis as a Service attempts to address the first two of these issues, and is a small

step on the way to bridging the gap. More focus must be directed at full-stack

implementations of Internet and Web of Things-oriented applications, with special

regard to separate use cases and domains. In particular, it should be interesting to see

what matters in development of commercial products.

Utilising existing Web standards instead of developing the Internet and Web of

Things as its own technology is going to be an important part of the process of

simplifying the Internet of Things. We will probably require some new protocols as

well - CoAP is a great example of this - but developing the WoT with the Web and

upcoming technology advancements like HTTP/2 in mind will be crucial. At present,

business needs and proposed technology, frameworks, and protocols are in conflict -

but as more example implementations become available, this will hopefully change.

Standardizing protocols instead of having manufacturers implement custom means of

communication is key to simplifying the Internet and Web of Things.

Security, privacy, cost, and maintenance of a distributed network such as the Internet

of Things are still major considerations to make, and are certainly directions in which

the academic community should go in the near future.

7 References

1. Duquennoy, S., Grimaud, G. and Vandewalle, J.-J., 2009. The Web of Things:

Interconnecting Devices with High Usability and Performance

2. Meteor (2015). DDP Meteor.com. [online] Available at:< https://www.meteor.com/ddp >.

8 https://tools.ietf.org/html/draft-ietf-httpbis-http2-17

3. Paganelli, F., Turchi, S. & Giuli, D. (2014). A web of things framework for restful

applications and its experimentation in a smart city. IEEE Systems Journal, 1{12.

4. Palattella, M. R., Accettura, N., Vilajosana, X.,Watteyne, T., Grieco, L. A., Boggia, G. &

Dohler, M. (2013). Standardized protocol stack for the internet of (important) things. IEEE

Communications Surveys & Tutorials

5. Uckelmann, D., Harrison, M. & Michahelles, F. (2011). Architecting the internet of things.

New York: Springer.

6. Xu, L. D., He, W. & Li, S. (2014). Internet of things in industries: a survey. IEEE

Transactions on Industrial Informatics, 2233-2243.

