2,205 research outputs found

    Phase models and clustering in networks of oscillators with delayed coupling

    Get PDF
    We consider a general model for a network of oscillators with time delayed, circulant coupling. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to study the existence and stability of cluster solutions. Cluster solutions are phase locked solutions where the oscillators separate into groups. Oscillators within a group are synchronized while those in different groups are phase-locked. We give model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies

    Multiple firing coherence resonances in excitatory and inhibitory coupled neurons

    Full text link
    The impact of inhibitory and excitatory synapses in delay-coupled Hodgkin--Huxley neurons that are driven by noise is studied. If both synaptic types are used for coupling, appropriately tuned delays in the inhibition feedback induce multiple firing coherence resonances at sufficiently strong coupling strengths, thus giving rise to tongues of coherency in the corresponding delay-strength parameter plane. If only inhibitory synapses are used, however, appropriately tuned delays also give rise to multiresonant responses, yet the successive delays warranting an optimal coherence of excitations obey different relations with regards to the inherent time scales of neuronal dynamics. This leads to denser coherence resonance patterns in the delay-strength parameter plane. The robustness of these findings to the introduction of delay in the excitatory feedback, to noise, and to the number of coupled neurons is determined. Mechanisms underlying our observations are revealed, and it is suggested that the regularity of spiking across neuronal networks can be optimized in an unexpectedly rich variety of ways, depending on the type of coupling and the duration of delays.Comment: 7 two-column pages, 6 figures; accepted for publication in Communications in Nonlinear Science and Numerical Simulatio

    Asymptotic Stability, Orbital Stability of Hopf-Bifurcating Periodic Solution of a Simple Three-Neuron Artificial Neural Network with Distributed Delay

    Get PDF
    A distributed delay model of a class of three-neuron network has been investigated. Sufficient conditions for existence of unique equilibrium, multiple equilibria and their local stability are derived. A closed interval for a parameter of the system is identified in which Hopf-bifurcating periodic solution occurs for each point of such interval. The orbital stability of such bifurcating periodic solution at the extreme points of the interval is ascertained. Lastly global bifurcation aspect of such periodic solutions is studied. The results are illustrated by numerical simulations

    Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions

    Full text link
    In this manuscript we analyze the collective behavior of mean-field limits of large-scale, spatially extended stochastic neuronal networks with delays. Rigorously, the asymptotic regime of such systems is characterized by a very intricate stochastic delayed integro-differential McKean-Vlasov equation that remain impenetrable, leaving the stochastic collective dynamics of such networks poorly understood. In order to study these macroscopic dynamics, we analyze networks of firing-rate neurons, i.e. with linear intrinsic dynamics and sigmoidal interactions. In that case, we prove that the solution of the mean-field equation is Gaussian, hence characterized by its two first moments, and that these two quantities satisfy a set of coupled delayed integro-differential equations. These equations are similar to usual neural field equations, and incorporate noise levels as a parameter, allowing analysis of noise-induced transitions. We identify through bifurcation analysis several qualitative transitions due to noise in the mean-field limit. In particular, stabilization of spatially homogeneous solutions, synchronized oscillations, bumps, chaotic dynamics, wave or bump splitting are exhibited and arise from static or dynamic Turing-Hopf bifurcations. These surprising phenomena allow further exploring the role of noise in the nervous system.Comment: Updated to the latest version published, and clarified the dependence in space of Brownian motion

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale
    • …
    corecore