In this manuscript we analyze the collective behavior of mean-field limits of
large-scale, spatially extended stochastic neuronal networks with delays.
Rigorously, the asymptotic regime of such systems is characterized by a very
intricate stochastic delayed integro-differential McKean-Vlasov equation that
remain impenetrable, leaving the stochastic collective dynamics of such
networks poorly understood. In order to study these macroscopic dynamics, we
analyze networks of firing-rate neurons, i.e. with linear intrinsic dynamics
and sigmoidal interactions. In that case, we prove that the solution of the
mean-field equation is Gaussian, hence characterized by its two first moments,
and that these two quantities satisfy a set of coupled delayed
integro-differential equations. These equations are similar to usual neural
field equations, and incorporate noise levels as a parameter, allowing analysis
of noise-induced transitions. We identify through bifurcation analysis several
qualitative transitions due to noise in the mean-field limit. In particular,
stabilization of spatially homogeneous solutions, synchronized oscillations,
bumps, chaotic dynamics, wave or bump splitting are exhibited and arise from
static or dynamic Turing-Hopf bifurcations. These surprising phenomena allow
further exploring the role of noise in the nervous system.Comment: Updated to the latest version published, and clarified the dependence
in space of Brownian motion