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Abstract

We consider a general model for a network of oscillators with time delayed
coupling where the coupling matrix is circulant. We use the theory of weakly
coupled oscillators to reduce the system of delay differential equations to a
phase model where the time delay enters as a phase shift. We use the phase
model to determine model independent existence and stability results for
symmetric cluster solutions. Our results extend previous work to systems
with time delay and a more general coupling matrix. We show that the
presence of the time delay can lead to the coexistence of multiple stable
clustering solutions. We apply our analytical results to a network of Morris
Lecar neurons and compare these results with numerical continuation and
simulation studies.

Keywords: Time delay, neural network, oscillators, clustering solutions,
stability

1. Introduction

Coupled oscillator models have been used to study many biological and
physical systems, for example neural networks [1, 2], laser arrays [3, 4], flash-
ing of fireflies [5], and movement of a slime mold [6]. A basic question ex-
plored with such models is whether the elements in the system will phase-
lock, i.e., oscillate with some fixed phase difference, and how the physical
parameters affect the answer to this question. Clustering is a type of phase
locking behavior where the oscillators in a network separate into groups.

Preprint submitted to Physica D February 1, 2017



Each group consists of fully synchronized oscillators, and different groups
are phase-locked with nonzero phase difference. Symmetric clustering refers
to the situation when all the groups are the same size while non-symmetric
clustering means the groups have different sizes.

A phase model represents each oscillator with a single variable. A d-
ifferential equation for each phase variable indicates how the phase of the
oscillator changes in time:

dθi
dt

= Ωi +Hi(θ1, θ2, . . . , θN)

Here Ωi is the intrinsic frequency of the ith oscillator and the functions Hi

described how the coupling between oscillators influences the phases. Phase
models have been used to study the behaviour of networks of coupled os-
cillators beginning with the work of [7]. Phase models are sometimes posed
as models for coupled oscillators [5, 7, 8, 9]. When the coupling between
oscillators is sufficiently weak, however, a phase model representation of a
system can be derived from a higher dimensional differential equation model,
such as one obtained from a physical or biological description of the system
[10, 11, 12, 13]. The low dimensional phase model can then be used to predict
behaviour in the original high dimensional physical model. This approach
has proved useful in studying synchronization properties of many different
neural models [1, 14, 15, 16, 17, 18, 19, 20]. Phase models can be linked
to experimentally derived phase resetting curves [10, 13], thus this approach
has also been used to make predictions about synchronization properties of
experimental preparations [19].

[21, 8] were the first to use phase models to study clustering behaviour.
Using the theory of equivariant differential equations [21] studied a gener-
al network of identical oscillators of arbitrary size with symmetric, weak
coupling, corresponding to the symmetry groups Sn, Zn, and Dn. They de-
termined which type of solutions are forced to exist by the symmetry in each
case. For the case of Sn symmetry they gave conditions for the stability of
several types of solutions, including symmetric cluster solutions, and deter-
mined which bifurcations are forced by symmetry to occur. They also studied
the existence of heteroclinic cycles and tori for some special cases. By direct
analysis of the phase model, [8] studied a network with global homogeneous
coupling, (Sn symmetry). He established general criteria for the stability of
all possible symmetric cluster solutions as well as some nonsymmetric cluster
solutions. Using numerical simulations, [8] further showed that these results
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give a good prediction of stability for a variety of model networks. More
recently, [22] considered the existence and stability of cluster solutions and
fixed tori for phase models corresponding to networks with global homoge-
neous coupling. They also considered the effect of additional absolute-phase
product coupling. Using a similar approach as [8] stability results have been
obtained for inhibitory neural networks with nearest-neighbour coupling [23].
Phase model analysis has also been extensively used to study phase-locking
in pairs of model and experimental neurons [12, 25, 19]. More recently it
has been used to study clustering in larger neural networks [26, 27]. A more
comprehensive review of the analysis of phase models and their application
to the study of synchronization is given in [24].

In many systems there are time delays in the connections between the
oscillators due to the time for a signal to propagate from one element to
the other. In neural networks this delay is attributed to the conduction
of electrical activity along an axon or a dendrite [15, 12]. Much work has
been devoted to the study of the effect of time delays in neural networks.
However, the majority of this work has focussed on systems where the neurons
are excitable not oscillatory, (e.g., [28, 29, 30, 31, 32, 33]), the networks
have only a few neurons (e.g., [9, 34, 12, 35, 36]) or focussed exclusively on
synchronization (e.g., [15, 37, 38, 39, 32]). Extensive work has been done on
networks of Stuart-Landau oscillators with delayed diffusive coupling (e.g.,
[40, 41] where the model for the individual oscillators is the normal form
for a Hopf bifurcation and thus the system is often amenable to theoretical
analysis. Numerical approaches to study the stability of cluster solutions
in delayed neural oscillator networks have also been developed [39, 42]. We
note that there is a vast literature on time delays in artificial neural networks
which we do not attempt to cite here.

Initial studies of phase models for systems with delayed coupling consid-
ered models where the delay occurs in the argument of the phases [36, 37, 43,
44, 45]. However, it has been shown [12, 46, 47] that for small enough time
delays it is more appropriate to include the time delay as phase shift in the
argument of the coupling function. Crook et al. [15] use this type of model
to study a continuum of cortical oscillators with spatially decaying coupling
and axonal delay. Bressloff and Coombes [14, 48] study phase locking in
chains and rings of pulse coupled neurons with distributed delays and show
that distributed delays result in phase models with a distribution of phase
shifts. They consider phase models derived from integrate and fire neurons
and the Kuramoto phase model.
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In this paper, we investigate the effect of time delayed coupling on the
clustering behavior of oscillator networks. The plan for our article are as
follows. In the next section we will review how a general network model
with delayed coupling may be reduced to a phase model. In section 3 we
use the phase model to determine conditions for existence and stability of
symmetric cluster solutions in a network with a circulant coupling matrix,
extending some prior results [21, 8, 23] to systems with time delays and
more general coupling. In section 4 we consider a particular application: a
network of Morris-Lecar oscillators. We derive the particular phase model
for this system and compare the predictions of the phase model theory to
numerical continuation and simulation studies to determine when the weak
coupling assumption breaks down. We show that the time delay can induce
multistability between different cluster solutions and explore how changing
the coupling matrix affects this. In section 5 we explore the effects of breaking
the symmetry of the connection matrix and introducing multiple time delays
on our results. In section 6 we discuss our work.

2. Reduction to a phase model

In this section, we review how to reduce a general model for a network of
all-to-all coupled oscillators with time-delayed connections to a phase model.
We assume the model for a single oscillator

dX

dt
= F (X(t)), (1)

admits an exponentially asymptotically stable periodic orbit, denoted by
X̂(t), with period T . Further, we denote by Z = Ẑ(t) the unique periodic
solution of the system adjoint to the linearization of (1) about X̂(t) satisfying
the normalization condition:

1

T

∫ T

0

Ẑ(t) · F (X̂(t))dt = 1.

Now consider the following network of identical oscillators with all-to-all,
time-delayed coupling

dXi

dt
= F (Xi(t)) + ε

N∑

j=1

wijG(Xi(t), Xj(t− τij)), i = 1, · · · , N. (2)
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Here G : Rn × Rn → Rn describes the coupling between two oscillators, ε is
referred to as the coupling strength, and W = [wij] is the coupling matrix.
We assume wij ≥ 0.

When ε is sufficiently small and the wij are of order 1 with respect to ε,
we can apply the theory of weakly coupled oscillators to reduce (2) to a phase
model [10, 11, 12]. The way in which the time delays enter into the phase
model depends on the size of the delays relative to other time constants in the
model. Let Ω = 2π/T . It has been shown [12, 46, 47] that if the delays satisfy
Ωτij = O(1) with respect to the coupling strength ε, then the appropriate
model is

dθi
dt

= Ω + ε

N∑

j=1

WijH(θj − θi − ηij) + O(ε2), i = 1, 2, · · · , N, (3)

where ηij = Ωτij. That is, the delays enter as phase lags. The interaction
function H is a 2π-periodic function which satisfies

H(θ) =
1

T

∫ T

0

Ẑ(s) ·G(X̂(s), X̂(s+ θ/Ω)) ds.

with X̂, Ẑ as defined above.
To study cluster solutions we will make two simplifications. First, we

assume that all the delays are equal:

τij = τ, i.e., ηij = η. (4)

Second, we will assume the network has some symmetry. In particular, we
will consider the coupling matrix to be in circulant form:

W = circ(w0, w1, w2, · · · , wN−1), equivalently, Wij = w
j−i (mod N)

. (5)

Following [23], we will say the network has connectivity radius r, if wk > 0
for all k ≤ r, and wk = 0 for all k > r. For example, a network with
nearest neighbor coupling has connectivity radius r = 1. Our results will be
derived with the coupling matrix (5), but can be applied to coupling with
any connectivity radius by setting the appropriate wk = 0.

We will also assume there is no self coupling, w0 = 0, as this generally the
case in applications. The results are essentially unchanged if we include it
[50]. These simplifications will apply for the next two sections. In section 5,
we will return to the general model (3).
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3. Existence and stability of cluster solutions

Rewriting (3) using the simplifications (4)-(5) and dropping the higher
order terms in ε we have

dθi
dt

= Ω + ε

N∑

j=1,j 6=i
w
j−i (mod N)

H(θj − θi − η), i = 1, 2, · · · , N. (6)

Now the right hand sides of equation (6) depend only on the difference
of phases. Thus, introducing the phase difference variables:

φi = θi+1 − θi, i = 1, . . . , N, (7)

we can transform the phase equation (6), to the following system

dφi
dt

= ε

N−1∑

k=1

wk

(
H(

k−1∑

s=0

φ
i+s+1 (mod N)

− η)−H(
k−1∑

s=0

φ
i+s (mod N)

− η)

)
(8)

for i = 1, 2, · · · , N .
Note that the N phase difference variables are not independent but satisfy

the relation

N∑

i=1

φi = 0 mod 2π. (9)

Thus, the N−dimensional system (8) could be reduced to system of dimen-
sion N − 1. However, to take advantage of the symmetry, we choose instead
to work with the full set of N equations and apply the constraint (9).

As discussed above, a cluster solution of the DDE model (2) is one where
all the oscillators have the same waveform, but they separate into differ-
ent groups or clusters. Oscillators within a cluster are synchronized, while
oscillators in different clusters are phase-locked with some fixed phase differ-
ence. It follows that in a cluster solution the difference between the phases
of any two oscillators are fixed. Using (6) we can show that, to order ε, these
solutions correspond to the lines

θi = (Ω + εω)t+ θi0. (10)

See [8] for details of this calculation in the case that η = 0 and wk = w.
The case we are considering is completely analogous. Further, from the def-
inition (7), it is clear that cluster solutions correspond to equilibrium points
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of the phase difference equation (8). Therefore, by studying the existence of
the equilibrium points of the phase difference model (8), we can obtain the
existence of the corresponding cluster solutions of the original DDE model.

We can now state our first result.

Theorem 1 (Existence of cluster solutions). For any values of H and the
wk, the phase difference model (8) admits N equilibrium points of the form
φi = ψ, i = 1, . . . , N :

(i) ψ = 0 corresponds to the 1-cluster or fully synchronized solution.

(ii) ψ = 2pπ
N

where p,N are relatively prime corresponds to an N-cluster
solution, also called a splay or rotating wave solution.

(iii) ψ = 2mπ
n

where N = nk for some positive integers n, k > 1, 1 ≤ m <
n, and m,n are relatively prime corresponds to a symmetric n-cluster
solution.

If ψ is a solution then so is 2π − ψ and they have the same number of
clusters. The ordering of the clusters of the 2π − ψ solution is the reverse
of the ψ solution. For generic weights, these are the only model independent
equilibrium points.

Proof. It is clear from eq. (8) that, for any H and wk, there are equilibrium
points given by φi = ψ, i = 1, . . . , N , subject to the constraint

Nψ = 0 mod 2π. (11)

Analysis of this constraint determine the possible values for ψ. Using these
values in the solution (10) determines the number and ordering of clusters in
the solution. The details of this analysis are similar to those in [23], which
considers the case of no delays (η = 0), hence we omit them.

In the case of generic weights, i.e., no further symmetry in the connection
matrix, model-independent equilibrium points exist if and only if there are
constant values of the φi satisfying

φi+k − φi = 0 mod 2π, i = 1, . . . , N, k = 1, . . . , N − i.

Analysis of these equations shows that the only possible solutions are in the
form φi = ψ, i = 1, . . . , N .
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Note that different values of ψ can have the same number of clusters with
different oscillators in the clusters and/or a different ordering of the clusters
in the solution. We shall see some examples of this in section 4.

We next analyze the stability of the equilibrium points φi = ψ.

Theorem 2 (Stability of cluster solutions). Let ε > 0 and define

µj =
N−1∑

k=1

wkH
′(kψ − η) (1− cos (2πkj/N)) . (12)

The equilibrium point ψ = 2πk
N

, k ∈ {0, · · · , N − 1}, and the corresponding
cluster solution is asymptotically stable when µj > 0 for j = 1, . . . ,

⌊
N
2

⌋
, and

unstable if at least one µj < 0.

Proof. The Jacobian matrix of the linearization of (8) about the equilibrium
point φi = ψ, i = 1, . . . , N , is the circulant matrix εJ = circ(c0, c1, . . . , cN−1)
with c0 = −∑N−1

s=1 wsH
′(sψ − η) and ck = wkH

′(kψ − η), k = 1, · · · , N − 1.
A standard result for circulant matrices [49] shows that the eigenvalues of J
are ελj, j = 0, 1, . . . , N where

λj = −
N−1∑

k=1

wkH
′(kψ − η)(1− e 2πi

N
kj).

Thus there is always one zero eigenvalue, corresponding to λ0. This is
because the phase differences in (8) are not all independent. It can be verified
that if the constraint (9) is used to reduce the phase difference model (8) to
N − 1 equations then the linearization yields only the eigenvalues ελj, j =
1, . . . , N − 1. A simple calculation shows that λN−j = λj, j = 1, . . . ,

⌊
N
2

⌋

and Re(λj) = µj. The result follows.

Recall that a cluster solution corresponds to a line in the phase model
(6). The zero eigenvalue corresponds to the motion along this line.

Remark 1. Due to the periodicity of H, the stability of the cluster solutions
is 2π−periodic in the parameter η. Recall that η = 2πτ/T where τ is the
time delay in the coupling and T is the intrinsic period of the uncoupled
oscillators. Thus the stability is T−periodic in τ . That is, if a given solution
is asymptotically stable (unstable) for τ = τ0 then it is asymptotically stable
(unstable) for τ = τ0 + kT, k = 1, 2, . . . This will carry over to the original
delay differential equation model so long as τ is sufficiently small that the
phase model is a valid approximation, i.e., 2πτ

T
= O(1) with respect to ε.
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From the two theorems above we can obtain some general results about
certain common solutions.

Corollary 1 (Synchronized solution). The phase difference model (8) always
admits the 1−cluster solution, ψ = 0, corresponding to the solution where all
the oscillators are synchronized. The stability of this solution is independent
of the size of the network and coupling between oscillators (wk). In particular,
the synchronized solution is asymptotically stable when H ′(−η) > 0, and
unstable when H ′(−η) < 0.

Corollary 2 (Anti-phase solution). If N is even the phase difference model
(8) admits 2−cluster solution, ψ = π, which corresponds to the anti-phase
solution where adjacent oscillators are out of phase by one half period. The
stability of this solution is independent of the coupling. For N = 2 it is
asymptotically stable (unstable) if H ′(π − η) > 0 (< 0). For all N > 2
this solution is asymptotically stable if H ′(−η) > 0 and H ′(π − η) > 0 and
unstable if H ′(π − η) < 0.

Remark 2. In the above stability results, we assume ε > 0. If ε < 0, the
stability of asymptotically stable solutions and totally unstable solutions will
be reversed, and the saddle type solutions will remain of saddle type.

3.1. Stability analysis for bi-directional, distance dependent coupling

In this section, we consider a special case where the coupling strength
is distance-dependent and bi-directional. In real neural networks, coupling
strength is not necessarily determined by the physical distance. However,
the “distance” here can be generalized to include functional distance [9]:
the degree of correlation in the activity of coupled neurons. Therefore, we
consider a coupling matrix that satisfies

W = circ(0, w1, w2, . . . , wN/2, . . . , w2, w1) (13)

if N is even, and

W = circ(0, w1, w2, . . . , w(N−1)/2, w(N−1)/2, . . . , w2, w1) (14)

if N is odd. Applying Theorem 2 to this system leads to the following.
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Corollary 3. Consider (8) with bi-directional, distance dependent coupling.
Define

µj =

N−1
2∑

k=1

wk [H ′(kψ − η) +H ′(−kψ − η)] (1− cos(2πkj/N))

for N odd and

µj = wmH
′(mψ−η)(1−(−1)j)+

m−1∑

k=1

wk [H ′(kψ − η) +H ′(−kψ − η)] (1−cos(2πkj/N))

for N = 2m, even. The equilibrium point ψ = 2πk
N

, k ∈ {0, · · · , N − 1}, and
the corresponding cluster solution is asymptotically stable when µj > 0 for
j = 1, . . . ,

⌊
N
2

⌋
, and unstable if at least one µj < 0.

Recall that ψ and 2π−ψ correspond to the same type of cluster solution.
For a network with bi-directional coupling, these solutions have a stronger
relationship.

Corollary 4. For the phase model with coupling matrix given by (13) or
(14), the solutions φi = ψ and φi = 2π − ψ have the same stability.

Proof. This follows by replacing ψ by 2π − ψ in the expressions for µj in
Corollary 3 and using the 2π−periodicity of H.

A special case of bi-directional coupling is when the only nonzero coupling
coefficient is w1. This is commonly called nearest-neighbour coupling. In this
case the stability of any symmetric cluster solution is easily determined.

Corollary 5. For the phase model with coupling matrix given by (13) or (14)
with w1 6= 0 and wj = 0, j = 2, . . . , N , the symmetric cluster solution with
φi = ψ is asymptotically stable if H ′(ψ − η) +H ′(−ψ − η) > 0 and unstable
if H ′(ψ − η) +H ′(−ψ − η) < 0.

Proof. In this case we have

µj = −w1 [H ′(ψ − η) +H ′(−ψ − η)] (1− cos(2πj/N)).

The result follows.

This extends the result in [23, Section 3.2] to systems with time delayed
coupling.
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3.2. Stability analysis for global homogeneous coupling

We next consider a special case: W2 = circ(0, 1, · · · , 1). That is, all the
coupling weights are the same. A straightforward calculation shows that, in
this case, for a symmetric n-cluster solution we have

λ0 = 0,

λ
(n)
0 = −N

n

n−1∑

k=0

H ′(
2πk

n
− η), multiplicity N − n,

λ
(n)
j = −N

n

n−1∑

k=0

H ′(
2πk

n
− η)(1− ei2πkj/n), p = 1, · · · , n− 1.

(15)

where λj is as defined in the proof of Theorem 2.
This recovers the result of [50], which was an extension to systems with

time delayed coupling of results in [21, Section 6.1], [8, Section 2]. In [50]
they made the following observation. The stability of an n-cluster solution
(with n < N) depends on the number of clusters and the phase differences,
not the size of the network. For example, any network with N = 3m (m a
positive integer) has a 3-cluster solution with ψ = 2π/3. The stability of this
solution is the same for all networks with m > 1.

As discussed in [50, 21], since networks with global homogeneous coupling
are unchanged by any rearrangement of the indices, there are many more
cluster solutions. For example, consider a network where N > 2 is even.
When the connection matrix is circulant with different wk, there is one 2-
cluster solution with oscillators 1, 3, 5, . . . , N − 1 forming one cluster and
oscillators 2, 4, . . . N forming the second cluster. For a network with global
homogeneous coupling, any division of the oscillators into two groups of N/2
oscillators is an admissible 2-cluster solution with stability described by (15)
with n = 2.

3.3. Other types of cluster solutions

If more conditions are put on the coupling matrix then different cluster
solutions may occur. For example, consider a 2-cluster solution where the
phase differences between adjacent elements is not the same, but is described
by

φ1 = φ3 = · · · = φN−1 = 0, and φ2 = φ4 = · · · = φN = π, (16)

or
φ1 = φ3 = · · · = φN−1 = π, and φ2 = φ4 = · · · = φN = 0. (17)
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In this situation the elements group into pairs, so that each element is syn-
chronized with one of its nearest neighbours and one-half period out of phase
with its other nearest neighbour. As shown by the next result, these solutions
exist under appropriate conditions on the connectivity matrix.

Theorem 3. For a network with a circulant connectivity matrix, the system
(8) admits solutions of the form (16) and (17) if N = 4p for some integer p,
and

∑p−1
k=0w4k+1 =

∑p−1
k=0w4k+3. These two solutions have the same stability.

Proof. Applying the constraint condition (9) to (16) or (17), we have that,
for some integer p,

N

2
· π = 2pπ.

Therefore, N = 4p, for some integer p.
Substituting solution (16) or (17) into the system (8), we have that

p−1∑

k=0

w4k+1

(
H(π − η)−H(−η)

)
=

p−1∑

k=0

w4k+3

(
H(π − η)−H(−η)

)
.

To satisfy this for any H, we must have
∑p−1

k=0w4k+1 =
∑p−1

k=0w4k+3.
The Jacobian matrix of the linearization of system (8) at (16) is in the

form (L)ij =

{
(L1)ij, if i is even,
(L2)ij, if i is odd. (18)

with L1 = circ(α0, · · · , αN−1), and L2 = circ(β0, · · · , βN−1), with αk, βk, k =
0, · · · , N − 1 can be explicitly expressed in terms of w1, · · · , wN−1, H ′(π− η)
and H ′(−η).

The Jacobian matrix of the linearization of system (8) at (17) is in the

form (L̂)ij =

{
(L2)ij, if i is even,
(L1)ij, if i is odd. (19)

which is equivalent to L.

Remark 3. Note that, for networks with bi-directional coupling or global
homogeneous coupling, the second condition,

∑p−1
k=0w4k+1 =

∑p−1
k=0w4k+3, is

automatically satisfied if N = 4p.
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We were not able to obtain general results about the eigenvalues of L
and L̂. Thus, we are not able to make any general conclusions about the
stability of solutions (16) and (17). However, we have general expressions for
the αk, βk:

α0 = β0 = −H ′(−η)
( p−1∑

k=0

w4k+1 +

p−1∑

k=1

w4k

)
−H ′(π − η)

p−1∑

k=0

(w4k+2 + w4k+3),

and, for k = 1, · · · , N − 1 and appropriate s values

αk =

{
wkH

′(π − η) +B1(s)
(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 1, 4s+ 2

wkH
′(−η) +B2(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 3, 4s

βk =





wkH
′(−η)−B2(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 1,

wkH
′(π − η)−B2(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 2,

wkH
′(π − η)−B1(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 3

wkH
′(−η)−B1(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s

where

B1(s) =
( p−1∑

j=s+1

w4j+1 −
p−1∑

j=s+1

w4j+3

)
, B2(s) =

( p−1∑

j=s+1

w4j+1 −
p−1∑

j=s

w4j+3

)
.

These can be used to calculate the eigenvalues calculated numerically for
particular cases. We will do this for the example in the next section.

4. Application to networks of Morris-Lecar oscillators with global
synaptic coupling

In this section, we apply our results to a specific network: globally cou-
pled Morris-Lecar oscillators. Since the nondimensional form of Morris-Lecar
equation is more convenient to work with, we adopt the dimensionless Morris-
Lecar model which is formulated by Rinzel and Ermentrout in [51]. Consid-
ering N identical Morris-Lecar oscillators with delayed synaptic coupling, we
have the following model

v′i = Iapp − gCam∞(vi)(vi − vCa)− gKwi(vi − vK) (20)

−gL(vi − vL)− gsyn
N − 1

N∑

j=1,j 6=i
s(vj(t− τ))(vi(t)− Esyn),

w′i = ϕλ(vi)(w∞(vi)− wi),

13



where i = 1, . . . , N and

m∞(v) =
1

2
(1 + tanh((v − ν1)/ν2)), λ(v) = cosh((v − ν3)/2ν4),

w∞(v) =
1

2
(1 + tanh((v − ν3)/ν4)), s(v) =

1

2
(1 + tanh(10v)).

Using the parameter set I from [34, Table 1], when there is no coupling in
the network each oscillator has a unique exponentially asymptotically stable
limit cycle with period T ≈ 23.87 corresponding to Ω = 0.2632.

Parameter Name value

vCa Calcium equilibrium potential 1
vK Potassium equilibrium potential -0.7
vL Leak equilibrium potential -0.5
gK Potassium ionic conductance 2
gL Leak ionic conductance 0.5
ϕ Potassium rate constant 1

3

ν1 Calcium activation potential -0.01
ν2 Calcium reciprocal slope 0.15
ν3 Potassium activation potential 0.1
ν4 Potassium reciprocal slope 0.145
gCa Calcium potential conductance 1
Iapp Applied current 0.09

Table 1: Parameters used in system (20) [34, Table 1]

4.1. Phase model analysis

The calculation of the phase model interaction function, H, described in
section 2, may be carried out numerically. We used the numerical simulation
package XPPAUT [52] to do this for model (20) with τ = 0, and to calculate
a finite number of terms in the Fourier series approximation for H. This
gives an explicit approximation for H:

H(φ) ≈ a0 +
K∑

k=1

(ak cos(kφ) + bk sin(kφ)). (21)

The first nine terms of Fourier coefficients are shown in Table 2. Figure 1
shows the plot of the interaction function (red solid), H, together with the

14



approximations using one (black solid) and 20 terms (green dashed) of Fouri-
er Series. Obviously, the one term approximation is not enough to explain
the behavior of H. However, the 20-term approximation is indistinguish-
able with the numerically calculated H. Therefore, we adopt the 20-term
approximation for subsequent calculations.

k ak bk k ak bk

0 -2.0214064 0 5 -0.01054942 0.010251001
1 1.994447 -0.93897837 6 -0.002131111 0.0046384884
2 0.010604496 0.27575842 7 9.9814584e-05 0.0013808256
3 -0.051657807 0.042355601 8 0.00015646126 7.391713e-05
4 -0.029127343 0.01801952 9 -8.1846403e-05 -0.00024995379

Table 2: Fourier coefficients of the interaction function for model (20).

0 5 10 15 20
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Figure 1: Interaction function for model (20) and the approximations using 1 and 20 terms
of Fourier Series

With the explicit approximation for H (21) and the value of the co-
efficients aj, bj, we can determine the asymptotic stability of any possible

15



symmetric cluster states for any N using the eigenvalues calculated in the
last section. In this section, we consider two coupling matrices

W1 = circ(0, 1,
1

2
,
1

3
, · · · , 1

2
, 1), bi-directional, distance dependent (22)

W2 = circ(0, 1, 1, · · · , 1), global homogeneous. (23)

With the coupling matrices W1 and W2, various values of ε and the time
delay τ , we used our phase model results above to predict the stability of
all possible symmetric cluster solutions for N = 2, · · · , 10. The results are
shown in Tables 3 and 4. Note that, in all cases, for τ = 0 only the syn-
chronous (1−cluster) solution is asymptotically stable. However, increasing τ
may destabilize this solution and/or stabilize other cluster solutions. In par-
ticular, for some values of τ multistability between different cluster solutions
occurs. Further, changing the coupling matrix from W1 (bi-directional, dis-
tance dependent coupling) to W2 (global homogeneous coupling) can cause
significant changes in stability. For example, when N is a prime number,
the only clustered states are splay states (rotating waves). With W2 all the
splay states for a given N have the same stability (Table 4), while with W1

splay states corresponding to different ψ can have quite different stabilities
(Table 3).

4.2. Numerical studies

Numerical continuation studies of the full model (20) were carried out
in DDE-BIFTOOL [53] in MATLAB. This package allows one to compute
branches of periodic orbits and their stability as a parameter is varied. Using
the delay as a continuation parameter, we used this package to compute
the stability of all possible symmetric cluster solutions for N = 2, 3, · · · , 10
with the two different coupling matrices W1, W2 and four different values
of ε, ε = 0.001, 0.01, 0.05, 0.1. These results indicated that the phase model
prediction is accurate up to ε = 0.01. The results for ε = 0.01, 0.05 are shown
in Tables 3 and 4. In particular we observe that the synchronous solution is
stable for approximately the same τ−interval in all networks (cf. Corollary 1)
and the 2−cluster solution is stable for approximately the same τ−interval
in all networks with N > 2 and even (cf. Corollary 2).

Using dde23 in MATLAB, we are able to numerically simulate the solution
for larger sizes of networks. In the following, we show several numerical
simulations that verify the predictions of the phase model for the case of a
network with N = 140 oscillators. This network admits 1-cluster, 2-cluster,
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n ψ
Stability w.r.t. τ

W1 W2

1 0 (0, 1.52) ∪ (14.28,23.87) (0, 1.52) ∪ (14.28,23.87)
2 π (2.73, 9.19) (2.73, 9.19)

5
2π
5
, 8π

5
(1.52, 2.61) ∪ (10.78, 12.55)

4π
5
, 6π

5
(1.61, 2.81) ∪ (6.21, 7.77) ∪ (10.03, 12.55) (1.57, 2.69) ∪ (10.03, 12.54)

7

2π
7
, 12π

7
(12.77, 13.29)

4π
7
, 10π

7
(8.13, 9.81 ) ∪ (11.12, 13.28) (12.47, 13.28)

6π
7
, 8π

7
(8.45, 9.88) ∪ (11.11, 13.13)

10
π
5
, 9π

5
All unstable

3π
5
, 7π

5
(7.85, 7.86) ∪ (11.80, 12.62) All unstable

Table 5: Phase model prediction of intervals of τ where stable 1-, 2-, 5-, 7-, and 10-cluster
solutions exist. The network has 140 oscillators and the coupling matrix W1 or W2.

5-cluster, 7-cluster, 10-cluster, 14-cluster, 35-cluster, 70-cluster, and 140-
cluster solutions. From the phase model analysis, we are able to predict the
stability regions for all the cluster states. Table 5 summarize the stability
intervals with respect to τ for the first five cluster types.

The phase model predicts that, for bidirectional coupling, there should
be four stable 5-cluster solutions when τ = 12 corresponding to ψ = kπ

5
,

k = 1, 2, 3, 4. In these 5-cluster solutions, the clusters are the same and given
by

C1 = {1, 6, 11, . . . , 136},
C2 = {2, 7, 12, . . . , 137},

...

C5 = {5, 10, 15, . . . , 140}.

but each solution has a different cluster ordering. The ordering is C1−C2−
C3−C4−C5 with ψ = 2π/5 (see Figure 2 (a)), C1−C4−C2−C5−C3 with
ψ = 4π/5 (see Figure 2 (b)), C1 − C3 − C5 − C2 − C4 with ψ = 6π/5(see
Figure 2 (c)) and C1 −C5 −C4 −C3 −C2 with ψ = 8π/5 (see Figure 2 (d)).
Note that in Figure 2 we reorder the indices so that oscillators that belong
to the same cluster are plotted together.

Now consider the 7-cluster solution with connection matrix W1. The
phase model predicts that when τ = 13 there exist six stable 7-cluster solu-

19



9900 9950 10000
0

20

40

60

80

100

120

140

(a) ψ = 2π/5

9900 9950 10000
0

20

40

60

80

100

120

140

(b) ψ = 4π/5

9900 9950 10000
0

20

40

60

80

100

120

140

(c) ψ = 6π/5

9900 9900 10000
0

20

40

60

80

100

120

140
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Figure 2: Raster plots showing a stable 5-cluster solutions in a network with N =
140 neurons and bi-directional coupling (connectivity matrix W1). τ = 12 and
ε = 0.001 all other parameters values are given in Table 1. (a) ψ = 2π/5, cluster
ordering C1−C2−C3−C4−C5 (b) ψ = 4π/5, cluster ordering C1−C4−C2−C5−C3

(c) ψ = 6π/5, cluster ordering C1−C3−C5−C2−C4 (d) ψ = 8π/5, cluster ordering
C1 − C5 − C4 − C3 − C2
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tions with clusters:

C1 = {1, 8, 15, . . . , 134},
C2 = {2, 9, 16, . . . , 135},

...

C7 = {7, 14, 21, . . . , 140}.
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(a) ψ = 8π/7
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(b) ψ = 6π/7

Figure 3: Raster plots showing stable 7-cluster solutions with τ = 13, ε = 0.01 in
a network with N = 140 neurons and bi-directional coupling (connectivity matrix
W1). (a) ψ = 6π

7 , cluster ordering C1 − C6 − C4 − C7 − C5 − C3. (b) ψ = 8π
7 ,

cluster ordering C1 − C3 − C5 − C7 − C2 − C4 − C6.

For ψ = 6π
7

, the cluster ordering is C1 − C6 − C4 − C2 − C7 − C5 − C3

(see Figure 3(a)), while for ψ = 8π
7

, the cluster ordering is C1 − C3 − C5 − C7 − C2 − C4 − C6

(see Figure 3(b)). In Figure 3, we reorder the oscillator indices so that oscil-
lators that belong to the same cluster are plotted together. We were unable
to find the other 7-cluster solutions numerically.

Remark 4. We have observed other types of stable cluster solutions. For
example, Figure 4 shows solutions of the type (16) and (17) which appear to
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be stable. With N = 8 and bidirectional coupling in (22), the phase model
predicts that the solutions of the type (16) and (17) are unstable for all τ
when ε > 0, and stable for τ ∈ (1.5, 2.0] ∪ (13.8, 14.1) when ε < 0. This
prediction is consistent the numerically observed solution which occurs for
ε = −0.01, and τ = 2.
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Figure 4: 2-cluster solutions of the form (16) (a) and (17) (b) for N = 8, ε = −0.01, τ = 2
and connectivity matrix W1.

From Tables 3 and 4 it is clear that the system exhibits multistability
for a large of range of τ values. To further investigate the multistability, we
carried out numerical simulations of the model (20) with N = 6 and coupling
matrix W1 using XPPAUT [52]. We start with constant initial conditions
(vi(t) = vi0, wi(t) = wi0, −τ ≤ t ≤ 0), and apply a small perturbation
to the input current of one or more neurons during the simulation. The
perturbations could cause switching between two different cluster types or
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between different realizations of the same cluster type. Figure 5 show two
examples, where the dark bars indicate when a particular neuron spikes.
When τ = 8, both the 2-cluster solutions and 3-cluster solutions are stable.
Figure 5 (a) shows that when τ = 8, a perturbation to neurons 1, 2, 3, 4 and
6 for 600 ≤ t ≤ 650 switches the networks from a 3-cluster solution (with
clusters (1, 4), (2, 5) and (3, 6)) to a 2-cluster solution (with clusters (1, 3,
5), and (2, 4, 6)). Figure 5 (b) shows when τ = 8, a perturbation to neuron 2,
4, 5, and 6 for 600 ≤ t ≤ 650 switches the network from a 3-cluster solution
with clusters ordering (1, 4)-(3, 6)-(2, 5) to a 3-cluster solution with clusters
ordering (1, 4)-(2, 5)-(3, 6).

index

time

500

1100

 0 6

 0.259298 

(a) τ = 8

index

time

500

1100

 0 6

 0.259298 

(b) τ = 8

Figure 5: Numerical simulations showing multistability in a 6 neuron network with bidi-
rectional coupling (22). (a) Switching from a 3-cluster solution to a 2-cluster solution. (b)
Switching from a 3-cluster solution to a 3-cluster solution. τ = 8 and ε = 0.001. All other
parameters are given in Table 1.

5. Persistence under symmetry breaking.

By the weakly connected theory, the phase model analysis should persist
under ε-perturbation of the original model. From the steps of phase model
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reduction, we can see that if we perturb the connectivity matrix W = (wij)
as W̃ = wij (1 + εmij), the ε-perturbation term will finally add to O(ε2)
term in the phase model (6). A similar conclusion is obtained if we perturb
the time delay τ as τij = τ (1 + ε σij). Here M = (mij), and S = (σij) are
N×N matrices with elements which are O(1) with respect to ε. τij represents
transmission time from the jth oscillator to the ith oscillator. Note that, after
the perturbation, system (2) no longer possesses any symmetry. To O(ε) the
symmetry persists, however. We thus expect that, for ε sufficiently small,
the analysis of section 3 should still predict the behaviour of the system.

In order to investigate the effect of the ε-perturbation on the connectivity
matrix and time delay, we carried out sets of numerical simulations. For each
set, we compare the original model with W and τ , to a model with W̃ and τ ,
and a model with W and τij. Take N = 6, W = circ{0, 1, 1/2, 1/3, 1/2, 1},
and mij, σij to be random numbers between 0 and 1. We simulate the
original model and two perturbed models with τ = 1, · · · , 15, and ε =
0.001, 0.01, 0.05, 0.1, respectively. From the simulation results, we see that
for ε = 0.001, 0.01, 0.05 the behavior of the perturbed models are the same
as the unperturbed one for large time t. More accurately, the perturbed
models take longer to settle at steady states than the original model. For
ε = 0.1, the behavior of unperturbed model almost captures the behavior of
the perturbed ones. However, the system is sensitive to the τ values where
steady states switch stability. Therefore, we conclude that for a network with
6 oscillators, the analysis of the original model is valid under perturbation
with ε up to 0.05. Furthermore, for a network with N oscillators, the analysis
of the system (2) should persist under sufficiently small ε-perturbation.

6. Conclusions and future work

In this paper, we studied a general system of identical oscillators with
global circulant, time-delayed coupling and showed that clustering behavior
is a quite prevalent pattern of solution. We classified different clusters by
the phase differences between neighboring oscillators, and investigated the
existence and linear stability of clustering solutions. We focussed on sym-
metric cluster solutions, where the same number of oscillators belong to each
cluster. In particular, we showed that certain symmetric cluster solutions
exist for any type of oscillator and any value of the delay – their existence
depends only on the presence of circulant coupling. We gave a complete
analysis of the linear stability of these cluster solutions. In the case of global
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τ PMP
ε = 0.001 ε = 0.01 ε = 0.05 ε = 0.1

original W̃ τ̃ original W̃ τ̃ original W̃ τ̃ original W̃ τ̃
1 1C/3C 1C 1C 1C NC NC NC NC NC NC 6C NC NC
2 3C 6C 6C 6C 3C 3C 3C 2C 2C 2C 2C 2C 2C
3 2C/3C 2C 2C 2C 3C 3C 3C 2C 2C 2C 2C 2C 2C
4 2C/3C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C
5 2C/3C 3C 3C 3C 2C 2C 2C 2C 2C 2C 2C 2C 2C
6 2C/3C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C NC
7 2C/3C 2C 2C 2C 2C 2C 2C 2C 2C 2C 1C 1C 1C
8 2C/3C 2C 2C 2C 2C 2C 2C 3C 3C NC 1C 1C 1C
9 2C/3C 3C 3C 3C 2C 2C 2C NC 1C 1C 1C 1C 1C
10 3C 3C 3C 3C 1C 1C 1C 1C 1C 1C 1C 1C 1C
11 3C NC NC NC NC NC NC 1C 1C 1C 1C 1C 1C
12 3C NC NC NC NC NC NC 1C 1C 1C 1C 1C 1C
13 3C/6C 6C 6C 6C 1C 1C 1C 1C 1C 1C 1C 1C 1C
14 6C 6C 6C 6C 1C 1C 1C 1C 1C 1C 1C 1C 1C
15 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 2C NC

Table 6: Comparison of the original model and the two perturbed models for τ =
1, 2, · · · , 15 with N = 6. The first column shows the stable cluster solutions predicted
by the phase model for each τ .

bidirectional coupling and global homogeneous coupling, more details about
how the stability changes with parameters could be obtained using the sym-
metry. Our results extend some previous work [21, Section 6.1], [8, Section
2], [23, Section 3.2] to the case with time delayed and more general circulant
coupling.

Further exploration was done through numerical continuation and numer-
ical simulation studies of a specific example: circulantly coupled Morris-Lecar
oscillators. We considered both small (N = 6, 8) and large (N = 140) net-
works and two types of coupling: homogeneous and bi-directional, distance
dependent. As expected, the numerical studies agree with the theoretical
predictions of the phase model, so long as the strength of the coupling (ε)
was sufficiently small. For the parameters we explored this was ε . 0.05.
In all cases we explored, the 1−cluster (synchronous) solution was the only
asymptotically stable solution when there was no delay in the system. For
non-zero delay, this solution could become unstable and other cluster so-
lutions became stable. We found ranges of the delay for which the system
exhibits a high degree of multistability. The multistability persisted even un-
der in perturbations of the coupling matrix (W ), and time delay (τ) which
break the symmetry of the model. The perturbed model agreed with the
phase model prediction for ε . 0.01.
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Delay-induced multistability has been observed in Hopfield neural net-
works (e.g., [54, 55]), in networks of spiking neurons [56, 57, 58], and even
in experimental systems [59], where it has been postulated as a potential
mechanism for memory storage. The multistability we observe has similar
potential. It also provides the network with a simple way to respond dif-
ferently to different inputs, without changing synaptic weights. Switching
between solutions with a different number of clusters changes the network
average frequency, which could then change how the network affects down-
stream neurons.

Multistability between different cluster solutions also has potential con-
nections with the concept of neural assemblies. A neural assembly is a group
of neurons which transiently act together to achieve a particular purpose
[60, 61, 62]. A network with multiple stable cluster solutions provides a
basic model for such behaviour. As the system switches between different
cluster solutions different neurons become synchronized with each other. As
we have shown, it possible for network to possess multiple stable solutions
with the same number of clusters but with different groupings of the neurons.

In the future, it would be interesting to pursue a variety of the directions
suggested by our results. The switching of stability of the cluster solutions
as the delay is varied should be associated with bifurcations in the model. In
the case of system with two neurons it has been shown that delay induced
stability changes of the 1− and 2− cluster solutions are associated with
pitchfork and saddle-node bifurcations in the phase model and sometimes
involve other phase-locked solutions [34]. It would be interesting to explore
the delay induced bifurcations that occur in our network model. Preliminary
numerical investigations of the phase model (not shown) indicate a quite
complex bifurcation structure. It would also be interesting to compute the
bifurcation structure of the cluster solutions in the (τ, ε) parameter plane to
get a better understanding of the limits of the validity of the phase model.
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[30] N. Burić, I. Grozdanović, N. Vasović, Type I vs type II excitable systems
with delayed coupling, Chaos, Solitons and Fractals 23 (2005) 1221–
1233.

[31] M. Dahlem, G. Hiller, A. Panchuk, E. Schöll, Dynamics of delay-coupled
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