118 research outputs found

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF

    Hierarchical programming language for modal multi-rate real-time stream processing applications

    Get PDF
    Modal multi-rate stream processing applications with real-time constraints which are executed on multi-core embedded systems often cannot be conveniently specified using current programming languages. An important issue is that sequential programming languages do not allow for convenient programming of multi-rate behavior, whereas parallel programming languages are insufficiently analyzable such that deadlock-freedom and a sufficient throughput cannot be guaranteed.\ud \ud In this paper a programming language is proposed by which a sequential specification of the behavior of an application can be nested in a concurrent specification. Multi-rate behavior can be conveniently expressed using concurrent modules which have well-defined, but restricted interfaces. Complex control behavior can be expressed in the sequential specification of the body of a module. The language is not Turing complete such that a Compositional Temporal Analysis (CTA) model can be derived. It is shown that the CTA model can be used despite the presence of control statements and that the composition of black-box components is possible. Algorithms with a polynomial time complexity can be used to verify whether throughput and latency constraints are met and to determine sufficient buffer capacities.\ud \ud A Phase Alternating Line (PAL) video decoder application is used to demonstrate the applicability of the presented language and analysis approach

    Contract-Based Design of Dataflow Programs

    Get PDF
    Quality and correctness are becoming increasingly important aspects of software development, as our reliance on software systems in everyday life continues to increase. Highly complex software systems are today found in critical appliances such as medical equipment, cars, and telecommunication infrastructure. Failures in these kinds of systems may have disastrous consequences. At the same time, modern computer platforms are increasingly concurrent, as the computational capacity of modern CPUs is improved mainly by increasing the number of processor cores. Computer platforms are also becoming increasingly parallel, distributed and heterogeneous, often involving special processing units, such as graphics processing units (GPU) or digital signal processors (DSP) for performing specific tasks more efficiently than possible on general-purpose CPUs. These modern platforms allow implementing increasingly complex functionality in software. Cost efficient development of software that efficiently exploits the power of this type of platforms and at the same time ensures correctness is, however, a challenging task. Dataflow programming has become popular in development of safetycritical software in many domains in the embedded community. For instance, in the automotive domain, the dataflow language Simulink has become widely used in model-based design of control software. However, for more complex functionality, this model of computation may not be expressive enough. In the signal processing domain, more expressive, dynamic models of computation have attracted much attention. These models of computation have, however, not gained as significant uptake in safety-critical domains due to a great extent to that it is challenging to provide guarantees regarding e.g. timing or determinism under these more expressive models of computation. Contract-based design has become widespread to specify and verify correctness properties of software components. A contract consists of assumptions (preconditions) regarding the input data and guarantees (postconditions) regarding the output data. By verifying a component with respect to its contract, it is ensured that the output fulfils the guarantees, assuming that the input fulfils the assumptions. While contract-based verification of traditional object-oriented programs has been researched extensively, verification of asynchronous dataflow programs has not been researched to the same extent. In this thesis, a contract-based design framework tailored specifically to dataflow programs is proposed. The proposed framework supports both an extensive subset of the discrete-time Simulink synchronous language, as well as a more general, asynchronous and dynamic, dataflow language. The proposed contract-based verification techniques are automatic, only guided by user-provided invariants, and based on encoding dataflow programs in existing, mature verification tools for sequential programs, such as the Boogie guarded command language and its associated verifier. It is shown how dataflow programs, with components implemented in an expressive programming language with support for matrix computations, can be efficiently encoded in such a verifier. Furthermore, it is also shown that contract-based design can be used to improve runtime performance of dataflow programs by allowing more scheduling decisions to be made at compile-time. All the proposed techniques have been implemented in prototype tools and evaluated on a large number of different programs. Based on the evaluation, the methods were proven to work in practice and to scale to real-world programs.Kvalitet och korrekthet blir idag allt viktigare aspekter inom mjukvaruutveckling, då vi i allt högre grad förlitar oss på mjukvarusystem i våra vardagliga sysslor. Mycket komplicerade mjukvarusystem finns idag i kritiska tillämpningar så som medicinsk utrustning, bilar och infrastruktur för telekommunikation. Fel som uppstår i de här typerna av system kan ha katastrofala följder. Samtidigt utvecklas kapaciteten hos moderna datorplattformar idag främst genom att öka antalet processorkärnor. Därtill blir datorplattformar allt mer parallella, distribuerade och heterogena, och innefattar ofta specialla processorer så som grafikprocessorer (GPU) eller signalprocessorer (DSP) för att utföra specifika beräkningar snabbare än vad som är möjligt på vanliga processorer. Den här typen av plattformar möjligör implementering av allt mer komplicerade beräkningar i mjukvara. Kostnadseffektiv utveckling av mjukvara som effektivt utnyttjar kapaciteten i den här typen av plattformar och samtidigt säkerställer korrekthet är emellertid en mycket utmanande uppgift. Dataflödesprogrammering har blivit ett populärt sätt att utveckla mjukvara inom flera områden som innefattar säkerhetskritiska inbyggda datorsystem. Till exempel inom fordonsindustrin har dataflödesspråket Simulink kommit att användas i bred utsträckning för modellbaserad design av kontrollsystem. För mer komplicerad funktionalitet kan dock den här modellen för beräkning vara för begränsad beträffande vad som kan beksrivas. Inom signalbehandling har mera expressiva och dynamiska modeller för beräkning attraherat stort intresse. De här modellerna för beräkning har ändå inte tagits i bruk i samma utsträckning inom säkerhetskritiska tillämpningar. Det här beror till en stor del på att det är betydligt svårare att garantera egenskaper gällande till exempel timing och determinism under sådana här modeller för beräkning. Kontraktbaserad design har blivit ett vanligt sätt att specifiera och verifiera korrekthetsegenskaper hos mjukvarukomponeneter. Ett kontrakt består av antaganden (förvillkor) gällande indata och garantier (eftervillkor) gällande utdata. Genom att verifiera en komponent gentemot sitt konktrakt kan man bevisa att utdatan uppfyller garantierna, givet att indatan uppfyller antagandena. Trots att kontraktbaserad verifiering i sig är ett mycket beforskat område, så har inte verifiering av asynkrona dataflödesprogram beforskats i samma utsträckning. I den här avhandlingen presenteras ett ramverk för kontraktbaserad design skräddarsytt för dataflödesprogram. Det föreslagna ramverket stödjer så väl en stor del av det synkrona språket. Simulink med diskret tid som ett mera generellt asynkront och dynamiskt dataflödesspråk. De föreslagna kontraktbaserade verifieringsteknikerna är automatiska. Utöver kontraktets för- och eftervillkor ger användaren endast de invarianter som krävs för att möjliggöra verifieringen. Verifieringsteknikerna grundar sig på att omkoda dataflödesprogram till input för existerande och beprövade verifieringsverktyg för sekventiella program så som Boogie. Avhandlingen visar hur dataflödesprogram implementerade i ett expressivt programmeringsspråk med inbyggt stöd för matrisoperationer effektivt kan omkodas till input för ett verifieringsverktyg som Boogie. Utöver detta visar avhandlingen också att kontraktbaserad design också kan förbättra prestandan hos dataflödesprogram i körningsskedet genom att möjliggöra flera schemaläggningsbeslut redan i kompileringsskedet. Alla tekniker som presenteras i avhandlingen har implementerats i prototypverktyg och utvärderats på en stor mängd olika program. Utvärderingen bevisar att teknikerna fungerar i praktiken och är tillräckligt skalbara för att också fungera på program av realistisk storlek

    A model-based approach for the specification and refinement of streaming applications

    Get PDF
    Embedded systems can be found in a wide range of applications. Depending on the application, embedded systems must meet a wide range of constraints. Thus, designing and programming embedded systems is a challenging task. Here, model-based design flows can be a solution. This thesis proposes novel approaches for the specification and refinement of streaming applications. To this end, it focuses on dataflow models. As key result, the proposed dataflow model provides for a seamless model-based design flow from system level to the instruction/logic level for a wide range of streaming applications

    Cross-Layer Rapid Prototyping and Synthesis of Application-Specific and Reconfigurable Many-accelerator Platforms

    Get PDF
    Technological advances of recent years laid the foundation consolidation of informatisationof society, impacting on economic, political, cultural and socialdimensions. At the peak of this realization, today, more and more everydaydevices are connected to the web, giving the term ”Internet of Things”. The futureholds the full connection and interaction of IT and communications systemsto the natural world, delimiting the transition to natural cyber systems and offeringmeta-services in the physical world, such as personalized medical care, autonomoustransportation, smart energy cities etc. . Outlining the necessities of this dynamicallyevolving market, computer engineers are required to implement computingplatforms that incorporate both increased systemic complexity and also cover awide range of meta-characteristics, such as the cost and design time, reliabilityand reuse, which are prescribed by a conflicting set of functional, technical andconstruction constraints. This thesis aims to address these design challenges bydeveloping methodologies and hardware/software co-design tools that enable therapid implementation and efficient synthesis of architectural solutions, which specifyoperating meta-features required by the modern market. Specifically, this thesispresents a) methodologies to accelerate the design flow for both reconfigurableand application-specific architectures, b) coarse-grain heterogeneous architecturaltemplates for processing and communication acceleration and c) efficient multiobjectivesynthesis techniques both at high abstraction level of programming andphysical silicon level.Regarding to the acceleration of the design flow, the proposed methodologyemploys virtual platforms in order to hide architectural details and drastically reducesimulation time. An extension of this framework introduces the systemicco-simulation using reconfigurable acceleration platforms as co-emulation intermediateplatforms. Thus, the development cycle of a hardware/software productis accelerated by moving from a vertical serial flow to a circular interactive loop.Moreover the simulation capabilities are enriched with efficient detection and correctiontechniques of design errors, as well as control methods of performancemetrics of the system according to the desired specifications, during all phasesof the system development. In orthogonal correlation with the aforementionedmethodological framework, a new architectural template is proposed, aiming atbridging the gap between design complexity and technological productivity usingspecialized hardware accelerators in heterogeneous systems-on-chip and networkon-chip platforms. It is presented a novel co-design methodology for the hardwareaccelerators and their respective programming software, including the tasks allocationto the available resources of the system/network. The introduced frameworkprovides implementation techniques for the accelerators, using either conventionalprogramming flows with hardware description language or abstract programmingmodel flows, using techniques from high-level synthesis. In any case, it is providedthe option of systemic measures optimization, such as the processing speed,the throughput, the reliability, the power consumption and the design silicon area.Finally, on addressing the increased complexity in design tools of reconfigurablesystems, there are proposed novel multi-objective optimization evolutionary algo-rithms which exploit the modern multicore processors and the coarse-grain natureof multithreaded programming environments (e.g. OpenMP) in order to reduce theplacement time, while by simultaneously grouping the applications based on theirintrinsic characteristics, the effectively explore the design space effectively.The efficiency of the proposed architectural templates, design tools and methodologyflows is evaluated in relation to the existing edge solutions with applicationsfrom typical computing domains, such as digital signal processing, multimedia andarithmetic complexity, as well as from systemic heterogeneous environments, suchas a computer vision system for autonomous robotic space navigation and manyacceleratorsystems for HPC and workstations/datacenters. The results strengthenthe belief of the author, that this thesis provides competitive expertise to addresscomplex modern - and projected future - design challenges.Οι τεχνολογικές εξελίξεις των τελευταίων ετών έθεσαν τα θεμέλια εδραίωσης της πληροφοριοποίησης της κοινωνίας, επιδρώντας σε οικονομικές,πολιτικές, πολιτιστικές και κοινωνικές διαστάσεις. Στο απόγειο αυτής τη ςπραγμάτωσης, σήμερα, ολοένα και περισσότερες καθημερινές συσκευές συνδέονται στο παγκόσμιο ιστό, αποδίδοντας τον όρο «Ίντερνετ των πραγμάτων».Το μέλλον επιφυλάσσει την πλήρη σύνδεση και αλληλεπίδραση των συστημάτων πληροφορικής και επικοινωνιών με τον φυσικό κόσμο, οριοθετώντας τη μετάβαση στα συστήματα φυσικού κυβερνοχώρου και προσφέροντας μεταυπηρεσίες στον φυσικό κόσμο όπως προσωποποιημένη ιατρική περίθαλψη, αυτόνομες μετακινήσεις, έξυπνες ενεργειακά πόλεις κ.α. . Σκιαγραφώντας τις ανάγκες αυτής της δυναμικά εξελισσόμενης αγοράς, οι μηχανικοί υπολογιστών καλούνται να υλοποιήσουν υπολογιστικές πλατφόρμες που αφενός ενσωματώνουν αυξημένη συστημική πολυπλοκότητα και αφετέρου καλύπτουν ένα ευρύ φάσμα μεταχαρακτηριστικών, όπως λ.χ. το κόστος σχεδιασμού, ο χρόνος σχεδιασμού, η αξιοπιστία και η επαναχρησιμοποίηση, τα οποία προδιαγράφονται από ένα αντικρουόμενο σύνολο λειτουργικών, τεχνολογικών και κατασκευαστικών περιορισμών. Η παρούσα διατριβή στοχεύει στην αντιμετώπιση των παραπάνω σχεδιαστικών προκλήσεων, μέσω της ανάπτυξης μεθοδολογιών και εργαλείων συνσχεδίασης υλικού/λογισμικού που επιτρέπουν την ταχεία υλοποίηση καθώς και την αποδοτική σύνθεση αρχιτεκτονικών λύσεων, οι οποίες προδιαγράφουν τα μετα-χαρακτηριστικά λειτουργίας που απαιτεί η σύγχρονη αγορά. Συγκεκριμένα, στα πλαίσια αυτής της διατριβής, παρουσιάζονται α) μεθοδολογίες επιτάχυνσης της ροής σχεδιασμού τόσο για επαναδιαμορφούμενες όσο και για εξειδικευμένες αρχιτεκτονικές, β) ετερογενή αδρομερή αρχιτεκτονικά πρότυπα επιτάχυνσης επεξεργασίας και επικοινωνίας και γ) αποδοτικές τεχνικές πολυκριτηριακής σύνθεσης τόσο σε υψηλό αφαιρετικό επίπεδο προγραμματισμού,όσο και σε φυσικό επίπεδο πυριτίου.Αναφορικά προς την επιτάχυνση της ροής σχεδιασμού, προτείνεται μια μεθοδολογία που χρησιμοποιεί εικονικές πλατφόρμες, οι οποίες αφαιρώντας τις αρχιτεκτονικές λεπτομέρειες καταφέρνουν να μειώσουν σημαντικά το χρόνο εξομοίωσης. Παράλληλα, εισηγείται η συστημική συν-εξομοίωση με τη χρήση επαναδιαμορφούμενων πλατφορμών, ως μέσων επιτάχυνσης. Με αυτόν τον τρόπο, ο κύκλος ανάπτυξης ενός προϊόντος υλικού, μετατεθειμένος από την κάθετη σειριακή ροή σε έναν κυκλικό αλληλεπιδραστικό βρόγχο, καθίσταται ταχύτερος, ενώ οι δυνατότητες προσομοίωσης εμπλουτίζονται με αποδοτικότερες μεθόδους εντοπισμού και διόρθωσης σχεδιαστικών σφαλμάτων, καθώς και μεθόδους ελέγχου των μετρικών απόδοσης του συστήματος σε σχέση με τις επιθυμητές προδιαγραφές, σε όλες τις φάσεις ανάπτυξης του συστήματος. Σε ορθογώνια συνάφεια με το προαναφερθέν μεθοδολογικό πλαίσιο, προτείνονται νέα αρχιτεκτονικά πρότυπα που στοχεύουν στη γεφύρωση του χάσματος μεταξύ της σχεδιαστικής πολυπλοκότητας και της τεχνολογικής παραγωγικότητας, με τη χρήση συστημάτων εξειδικευμένων επιταχυντών υλικού σε ετερογενή συστήματα-σε-ψηφίδα καθώς και δίκτυα-σε-ψηφίδα. Παρουσιάζεται κατάλληλη μεθοδολογία συν-σχεδίασης των επιταχυντών υλικού και του λογισμικού προκειμένου να αποφασισθεί η κατανομή των εργασιών στους διαθέσιμους πόρους του συστήματος/δικτύου. Το μεθοδολογικό πλαίσιο προβλέπει την υλοποίηση των επιταχυντών είτε με συμβατικές μεθόδους προγραμματισμού σε γλώσσα περιγραφής υλικού είτε με αφαιρετικό προγραμματιστικό μοντέλο με τη χρήση τεχνικών υψηλού επιπέδου σύνθεσης. Σε κάθε περίπτωση, δίδεται η δυνατότητα στο σχεδιαστή για βελτιστοποίηση συστημικών μετρικών, όπως η ταχύτητα επεξεργασίας, η ρυθμαπόδοση, η αξιοπιστία, η κατανάλωση ενέργειας και η επιφάνεια πυριτίου του σχεδιασμού. Τέλος, προκειμένου να αντιμετωπισθεί η αυξημένη πολυπλοκότητα στα σχεδιαστικά εργαλεία επαναδιαμορφούμενων συστημάτων, προτείνονται νέοι εξελικτικοί αλγόριθμοι πολυκριτηριακής βελτιστοποίησης, οι οποίοι εκμεταλλευόμενοι τους σύγχρονους πολυπύρηνους επεξεργαστές και την αδρομερή φύση των πολυνηματικών περιβαλλόντων προγραμματισμού (π.χ. OpenMP), μειώνουν το χρόνο επίλυσης του προβλήματος της τοποθέτησης των λογικών πόρων σε φυσικούς,ενώ ταυτόχρονα, ομαδοποιώντας τις εφαρμογές βάση των εγγενών χαρακτηριστικών τους, διερευνούν αποτελεσματικότερα το χώρο σχεδίασης.Η αποδοτικότητά των προτεινόμενων αρχιτεκτονικών προτύπων και μεθοδολογιών επαληθεύτηκε σε σχέση με τις υφιστάμενες λύσεις αιχμής τόσο σε αυτοτελής εφαρμογές, όπως η ψηφιακή επεξεργασία σήματος, τα πολυμέσα και τα προβλήματα αριθμητικής πολυπλοκότητας, καθώς και σε συστημικά ετερογενή περιβάλλοντα, όπως ένα σύστημα όρασης υπολογιστών για αυτόνομα διαστημικά ρομποτικά οχήματα και ένα σύστημα πολλαπλών επιταχυντών υλικού για σταθμούς εργασίας και κέντρα δεδομένων, στοχεύοντας εφαρμογές υψηλής υπολογιστικής απόδοσης (HPC). Τα αποτελέσματα ενισχύουν την πεποίθηση του γράφοντα, ότι η παρούσα διατριβή παρέχει ανταγωνιστική τεχνογνωσία για την αντιμετώπιση των πολύπλοκων σύγχρονων και προβλεπόμενα μελλοντικών σχεδιαστικών προκλήσεων

    Systematic Design Space Exploration of Dynamic Dataflow Programs for Multi-core Platforms

    Get PDF
    The limitations of clock frequency and power dissipation of deep sub-micron CMOS technology have led to the development of massively parallel computing platforms. They consist of dozens or hundreds of processing units and offer a high degree of parallelism. Taking advantage of that parallelism and transforming it into high program performances requires the usage of appropriate parallel programming models and paradigms. Currently, a common practice is to develop parallel applications using methods evolving directly from sequential programming models. However, they lack the abstractions to properly express the concurrency of the processes. An alternative approach is to implement dataflow applications, where the algorithms are described in terms of streams and operators thus their parallelism is directly exposed. Since algorithms are described in an abstract way, they can be easily ported to different types of platforms. Several dataflow models of computation (MoCs) have been formalized so far. They differ in terms of their expressiveness (ability to handle dynamic behavior) and complexity of analysis. So far, most of the research efforts have focused on the simpler cases of static dataflow MoCs, where many analyses are possible at compile-time and several optimization problems are greatly simplified. At the same time, for the most expressive and the most difficult to analyze dynamic dataflow (DDF), there is still a dearth of tools supporting a systematic and automated analysis minimizing the programming efforts of the designer. The objective of this Thesis is to provide a complete framework to analyze, evaluate and refactor DDF applications expressed using the RVC-CAL language. The methodology relies on a systematic design space exploration (DSE) examining different design alternatives in order to optimize the chosen objective function while satisfying the constraints. The research contributions start from a rigorous DSE problem formulation. This provides a basis for the definition of a complete and novel analysis methodology enabling systematic performance improvements of DDF applications. Different stages of the methodology include exploration heuristics, performance estimation and identification of refactoring directions. All of the stages are implemented as appropriate software tools. The contributions are substantiated by several experiments performed with complex dynamic applications on different types of physical platforms

    Parametrized dataflow scenarios

    Get PDF
    The FSM-based scenario-aware dataflow (FSM-SADF) model of computation has been introduced to facilitate the analysis of dynamic streaming applications. FSM-SADF interprets application's execution as an execution of a sequence of static modes of operation called scenarios. Each scenario is modeled using a synchronous dataflow (SDF) graph (SDFG), while a finite-state machine (FSM) is used to encode scenario occurrence patterns. However, FSM-SADF can precisely capture only those dynamic applications whose behaviors can be abstracted into a reasonably sized set of scenarios (coarse-grained dynamism). Nevertheless, in many cases, the application may exhibit thousands or even millions of behaviours (fine-grained dynamism). In this work, we generalize the concept of FSM-SADF to one that is able to model dynamic applications exhibiting fine-grained dynamism. We achieve this by applying parametrization to the FSM-SADF's base model, i.e. SDF, and defining scenarios over parametrized SDFGs. We refer to the extension as parametrized FSM-SADF (PFSM-SADF). Thereafter, we present a novel and a fully parametric analysis technique that allows us to derive tight worst-case performance (throughput and latency) guarantees for PFSM-SADF specifications. We evaluate our approach on a realistic case-study from the multimedia domain

    Temporal analysis and scheduling of hard real-time radios running on a multi-processor

    Get PDF
    On a multi-radio baseband system, multiple independent transceivers must share the resources of a multi-processor, while meeting each its own hard real-time requirements. Not all possible combinations of transceivers are known at compile time, so a solution must be found that either allows for independent timing analysis or relies on runtime timing analysis. This thesis proposes a design flow and software architecture that meets these challenges, while enabling features such as independent transceiver compilation and dynamic loading, and taking into account other challenges such as ease of programming, efficiency, and ease of validation. We take data flow as the basic model of computation, as it fits the application domain, and several static variants (such as Single-Rate, Multi-Rate and Cyclo-Static) have been shown to possess strong analytical properties. Traditional temporal analysis of data flow can provide minimum throughput guarantees for a self-timed implementation of data flow. Since transceivers may need to guarantee strictly periodic execution and meet latency requirements, we extend the analysis techniques to show that we can enforce strict periodicity for an actor in the graph; we also provide maximum latency analysis techniques for periodic, sporadic and bursty sources. We propose a scheduling strategy and an automatic scheduling flow that enable the simultaneous execution of multiple transceivers with hard-realtime requirements, described as Single-Rate Data Flow (SRDF) graphs. Each transceiver has its own execution rate and starts and stops independently from other transceivers, at times unknown at compile time, on a multiprocessor. We show how to combine scheduling and mapping decisions with the input application data flow graph to generate a worst-case temporal analysis graph. We propose algorithms to find a mapping per transceiver in the form of clusters of statically-ordered actors, and a budget for either a Time Division Multiplex (TDM) or Non-Preemptive Non-Blocking Round Robin (NPNBRR) scheduler per cluster per transceiver. The budget is computed such that if the platform can provide it, then the desired minimum throughput and maximum latency of the transceiver are guaranteed, while minimizing the required processing resources. We illustrate the use of these techniques to map a combination of WLAN and TDS-CDMA receivers onto a prototype Software-Defined Radio platform. The functionality of transceivers for standards with very dynamic behavior – such as WLAN – cannot be conveniently modeled as an SRDF graph, since SRDF is not capable of expressing variations of actor firing rules depending on the values of input data. Because of this, we propose a restricted, customized data flow model of computation, Mode-Controlled Data Flow (MCDF), that can capture the data-value dependent behavior of a transceiver, while allowing rigorous temporal analysis, and tight resource budgeting. We develop a number of analysis techniques to characterize the temporal behavior of MCDF graphs, in terms of maximum latencies and throughput. We also provide an extension to MCDF of our scheduling strategy for SRDF. The capabilities of MCDF are then illustrated with a WLAN 802.11a receiver model. Having computed budgets for each transceiver, we propose a way to use these budgets for run-time resource mapping and admissibility analysis. During run-time, at transceiver start time, the budget for each cluster of statically-ordered actors is allocated by a resource manager to platform resources. The resource manager enforces strict admission control, to restrict transceivers from interfering with each other’s worst-case temporal behaviors. We propose algorithms adapted from Vector Bin-Packing to enable the mapping at start time of transceivers to the multi-processor architecture, considering also the case where the processors are connected by a network on chip with resource reservation guarantees, in which case we also find routing and resource allocation on the network-on-chip. In our experiments, our resource allocation algorithms can keep 95% of the system resources occupied, while suffering from an allocation failure rate of less than 5%. An implementation of the framework was carried out on a prototype board. We present performance and memory utilization figures for this implementation, as they provide insights into the costs of adopting our approach. It turns out that the scheduling and synchronization overhead for an unoptimized implementation with no hardware support for synchronization of the framework is 16.3% of the cycle budget for a WLAN receiver on an EVP processor at 320 MHz. However, this overhead is less than 1% for mobile standards such as TDS-CDMA or LTE, which have lower rates, and thus larger cycle budgets. Considering that clock speeds will increase and that the synchronization primitives can be optimized to exploit the addressing modes available in the EVP, these results are very promising

    The Role of Computers in Research and Development at Langley Research Center

    Get PDF
    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics
    corecore