
NASA Conference Publication 10159

The Role of Computers in Research and
Development at Langley Research Center

3E_c97_

W'h

Compiled by
Carol D. Wieseman

Langley Research Center • Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

I I

0

u_ I aO
,4" I ,_

I I I ,*"
u'_ I,-tt_ U

0,, i _, t*
Z I Z_

o3
e_

N

0
0

e,.l

xO

0 UJ _)

U.l CI ua

t_U ;.3 ..I _,-

I-- _[Z C

0 _1" _ 0
ZZ_D

I_. E IE

I I.-- E) C_: L

_E)Z C
Z C)_ U_

Proceedings of a workshop sponsored by the
National Aeronautics and Space Administration,

Washington, D.C., and held at
Langley Research Center, Hampton, Virginia

June 15-16, 1994

October 1994

https://ntrs.nasa.gov/search.jsp?R=19950010038 2020-06-16T08:52:39+00:00Z

INTRODUCTION

On June 15 - 16, 1994, the Computer Systems Technical Committee presented a workshop,
"The Role of Computers in LARC R&D", at NASA Langley Research Center. The objectives of
the 1994 Workshop were to inform the LARC community about the current software system and
software practices being used at LARC. To meet these objectives, there were talks presented by
members of the Langley community, Naval Surface Warfare Center, Old Dominion University

and Hampton University.

The workshop was organized in 10 sessions as follows:
Software Engineering
Software Engineering Standards, Methods, and CASE Tools
Solutions of Equations
Automatic Differentiation
Mosaic and the World Wide Web

Graphics & Image Processing
System Design and Integration
CAE Tools

Languages
Advanced Topics

This document is a compilation of the presentations given at the workshop. The
Conference was also videotaped and the videotapes are archived at the NASA Learning Resource
Center (804-864-2325).

Appreciation is expressed to the individuals that participated by presenting
and attending the workshop.

Norma Campbell, CSTC co-chair

PROCEEDINGSOFTHE WORKSHOPON ROLE OFCOMPUTERSIN
LaRCRESEARCHAND DEVELOPMENT

INTRODUCTION ..i
PARTICIPANTS..v
LaRCCOMPUTERSYSTEMSTECHNICAL COMMITTEE.....................................viii

SESSION 1 Opening Session ..
- Chaired by Jerry H. Tucker

1.1 RTG Perspectives on Computing at LaRC .. 2
- Doug Dwoyer

1.2 IOG Perspectives on Computing at Langley .. 10
- Frank Allario

SESSION 2 Software Engineering .. 20
- Chaired by Susan J. Voigt

2.1 Software Engineering from a Langley Perspective 21
- Susan Voigt

2.2 Panel on Perspectives on Software Development 43
- Chuck Niles, Pare Rinsland, Pat Schuler,Peg Snyder, Tom Zang,

Brenda Zettervall

SESSION 3 Software Engineering Standards, Methods, and CASE Tools 67
- Chaired by Susan Voigt

3.1 Model-based Software Process Improvement ... 68
- Brenda Zettervall

3.2 A Study of Software Standards Used in the Avionics Industry 85
- Kelly Hayhurst

3.3 A Software Tool for Dataflow Graph Scheduling 106
- Robert Jones

3.4 Use of Software Through Pictures on CERES ... 114
- Troy Anselmo

SESSION 4 Solutions of Equations ... 129
- Chaired by Olaf Storaasli

4.1 Rapid Solution of Large-scale Systems Of Equations 130
- Olaf Storaasli

4.2 Solution of Matrix Equations Using Sparse Techniques 147
-Majdi Baddourah

4.3 Equation Solvers for Distributed Memory Computers 156
- Olaf Storaasli

SESSION 5 Automatic Differentiation .. 167

- Chaired by Olaf Storaasli

5.1 Applications of Automatic Differentiation in Computational Fluid
Dynamics ... 168

- Larry Green

5.2 Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple Processors .. 181

- Duc Nguyen, Olaf Storaasli, Jiangning Qin and Ramzi Qamar

SESSION 6 Mosaic and the World Wide Web .. 212

- Chaired by Clyde R. Gumbert and John W. McManus

6.1 Introduction to the World Wide Web and Mosaic 213

-Jim Youngblood
6.2 Use of World Wide Web and NCSA Mosaic at Langley 224

-Michael Nelson
6.3 How To Use the WWW To Distribute Scientific & Technical

Information (STI) ... 237

-Donna Roper

SESSION 7 Graphics and Image Processing ... 246
- Chaired by David C. Banks

7.1 Image Tools for UNIX ... 247
- David Banks

7.2 From Computer Images To Video Presentation: Enhancing
Technology Transfer .. 266

- Sheri Beam

7.3 Data Visualization and Animation Lab (DVAL) Overview 272

- Bill Von Ofenheim, Kathy Stacy
7.4 Data Visualization and Animation Lab: Applications 292

- Kurt Severance and Mike Weisenborn

SESSION 8 System Design and Integration .. 316
- Chaired by Jerry H. Tucker

8.1 The Design Manager's Aid for Intelligent Decomposition DeMAID 317
- Jim Rogers

8.2 RDD-100 and the Systems Engineering Process 351
- Robert Averill

8.3 Computer Tools for Systems Engineering at LaRC 377
- J. Milam Waiters

8.4 A Distributed Computing Environment for Multidisciplinary Design
FIDO .. 385

- Robert Weston

8.5 An Overview of the Computer Aided Engineering and Design for
Electronics Laboratory CAEDE ... 412

- Shelley Stover
8.6 The Software Engineering and/or Ada Lab (SEAL) 429

- Robert Kudlinski

SESSION 9 CAE Tools .. 434

- Chaired by Carol D. Wieseman

9.1 Digital Control of Wind-Tunnel Models Using LabVIEW 435
- Sherwood T. Hoadley

iii

9.2 Electronic Engineering Notebook -A Software Environment for Research
Execution, Documentation, and Dissemination 443
- Dan Moerder

9.3 IDEAS2 Computer Aided Engineering Software ... 470
- Pat Troutman

9.4 Matlab as a Robust Control Design Tool ... 485

- Irene Gregory
9.5 Simulation of the Coupled Multi- Spacecraft Control Testbed at The

Marshall Space Flight Center .. 497
- Dave Ghosh, and Raymond C. Montgomery

SESSION 10 Languages
- Chaired by Robert F. Estes ... 518

10.1 Object Oriented Numerical Computing in C++ ... 519
- John Van Rosendale

10.2 Hardware Description Languages .. 536
- Jerry H. Tucker

10.3 High Performance FORTRAN ... 546
- Piyush Mehrotra

SESSION 11 Advanced Topics ... 562
- Chaired by Susan Voigt

11.1 Current research activities at the NASA-sponsored Illinois
Computing Laboratory of Aerospace Systems and Software 563
- Kathryn Smith

11.2 Epistemology, SoftwareEngineering, and Formal Methods 570
- C. Michael Holloway

iv

Frank Allario

Mail Stop 157

NASA Langley Research Center
Hampton, VA 23681-0001

Troy Anselmo

Science Applications Int., Corp.
Mail Stop 927
NASA Langley Research Center
Hampton, VA 23681-0001

Robert Averill

Mail Stop 430
NASA Langley Research Center
Hampton, VA 23681-0001

Majdi Baddourah
Lockheed Engineering & Sciences Co.
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681-0001

David C. Banks
ICASE

Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23681-0001

Sherilee F. Beam

Computer Sciences Corporation
Mail Stop 157B
NASA Langley Research Center
Hampton, VA 23681-0001

Douglas L. Dwoyer
Mail Stop 105
NASA Langley Research Center
Hampton, VA 23681-0001

Robert F. Estes

Mail Stop 288
NASA Langley Research Center
Hampton, VA 23681-0001

Dave Ghosh

c/o Ray Montgomery
Mail Stop 161
NASA Langley Research Center
Hampton, VA 23681-0001

PARTICIPANTS

Larry Green

Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681-0001

Irene Gregory
Mail Stop 489

NASA Langley Research Center
Hampton, VA 23681-0001

Clyde R. Gumbert

Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681-0001

Kelly Hayhurst
Mail Stop 130
NASA Langley Research Center
Hampton, VA 23681-0001

Sherwood T. Hoadley
Mail Stop 340

NASA Langley Research Center
Hampton, VA 23681-0001

C. Michael Holloway
Mail Stop 130
NASA Langley Research Center
Hampton, VA 23681-0001

Robert 'J L)llt_N

Mail Stop 473
NASA Langley Research Center
Hampton, VA 23681-0001

Robert Kudlinski

Mail Stop 157
NASA Langley Research Center
Hampton, VA 23681-0001

John W. McManus

Mail Stop 125B
NASA Langley Research Center
Hampton, VA 23681-0001

Piyush Mehrotra
ICASE

Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23681-0001

DanMoerder
Mail Stop 161
NASA LangleyResearchCenter
Hampton,VA 23681-0001

RaymondC.Montgomery
Mail Stop161
NASA LangleyResearchCenter
Hampton,VA 23681-0001

MichaelNelson
Mail Stop157A
NASA LangleyResearchCenter
Hampton,VA 23681-0001

DucNguyen
Old DominionUniversity
c/o Olaf Storaasli

ChuckNiles
Mail Stop442
NASA LangleyResearchCenter
Hampton,VA 23681-0001

PamRinsland
Mail Stop472
NASA LangleyResearchCenter
Hampton,VA 23681-0001

Jim Rogers
Mail Stop246
NASA LangleyResearchCenter
Hampton,VA 23681-0001

DonnaRoper
Mail Stop444
NASA LangleyResearchCenter
Hampton,VA 23681-0001

PatSchuler
Mail Stop 125A
NASA LangleyResearchCenter
Hampton,VA 23681-0001

Kurt Severance
Mail Stop 125A
NASA LangleyResearchCenter
Hampton,VA 23681-0001

KathrynSmith
Mail Stop478
NASA LangleyResearchCenter
Hampton,VA 23681-0001

vi

PegSnyder, retired
Mail Stop 111
NASA LangleyResearchCenter
Hampton,VA 23681-0001

KathyStacy
Mail Stop 125A
NASA LangleyResearchCenter
Hampton,VA 23681-0001

Olaf Storaasli
Mail Stop240
NASA LangleyResearchCenter
Hampton,VA 23681-0001

ShelleyStover
Mail Stop488
NASA LangleyResearchCenter
Hampton,VA 23681-0001

PatTroutman
Mail Stop288
NASA LangleyResearchCenter
Hampton,VA 23681-0001

JerryH. Tucker
Mail Stop488
NASA LangleyResearchCenter
Hampton,VA 23681-0001

SusanJ.Voigt
Mail Stop288
NASA LangleyResearchCenter
Hampton,VA 23681-0001

JohnVanRosendale
ICASE
Mail Stop132C
NASA LangleyResearchCenter
Hampton,VA 23681-0001

Bill Von Ofenheim
MS 125A
NASA LangleyResearchCenter
Hampton,VA 23681-0001

J.Milam Waiters
Mail Stop430
NASA LangleyResearchCenter
Hampton,VA 23681-0001

Mike Weisenborn
Mail Stop 125A
NASA LangleyResearchCenter
Hampton,VA 23681-0001

RobertWeston
Mail Stop 159
NASA LangleyResearchCenter
Hampton,VA 23681-0001

CarolD. Wieseman
Mail Stop340
NASA LangleyResearchCenter
Hampton,VA 23681

Jim Youngblood
LockheedEngineering& SciencesCo.
Mail Stop904
NASA LangleyResearchCenter
Hampton,VA 23681

Tom Zang
Mail Stop 159
NASA Langley ResearchCenter
Hampton,VA 23681

BrendaZettervall
Code6000A1
PortHuenemeDivision
NavalSurfaceWarfareCenter
1920RegulusAve.
Virginia Bcach,VA 23461-2097

vii

LaRCCOMPUTERSYSTEMSTECHNICAL COMMITTEE

TheLaRCComputerSystemsTechnicalcommitteewasestablishedin 1991by theChief
Scientistof LangleyResearchCenter,MichaelF. Card. Thegoalof thisCommitteeis to foster
theexchangeof technicalinformationbetweenthevariousgroupswho areinvolvedin R&D on
computersystems.The technicalcommitteeendeavorsto provideworkshops,luncheonspeakers
(brownbagseminars),andoutsideexperts.Thetechnicalcommitteestrivesto provide technical
interchangeoncomputersystems.

Thecurrentmembershipof theCSTCconsistsof thefollowing personnel:

TUCKER, JERRYH, chairman
Mail Stop488
NASA LangleyResearchCenter
Hampton,VA 23681
Phone:804864-7342
email: J.H.Tucker@LaRC.nasa.gov

CAMPBELL, NORMA K,cochairman
Mail Stop355
NASA LangleyResearchCenter
Hampton,VA 23681
Phone:804864-1131
email: N.K.Campbell@LaRC.nasa.gov

WIESEMAN, CAROL D, secretary
Mail Stop340
NASA LangleyResearchCenter
Hampton,VA 23681
Phone:804864-2824
email: C.D.Wieseman@LaRC.nasa.gov

CARPENTER,CHUCK L
Mail Stop125A
NASA LangleyResearchCenter
Hampton,VA 23681
Phone:804864-8046
email: C.L.Carpenter@LaRC.nasa.gov

FOX, CHARLESH, JR
Mail Stop361
NASA LangleyResearchCenter
Hampton,VA 23681
Phone: 804864-4906
email: C.H.Fox@LaRC.nasa.gov

GUMBERT,CLYDE R
Mail Stop159
NASA LangleyResearchCenter
Hampton,VA 23681
Phone: 804864-2221
email: C.R.Gumbert@LaRC.nasa.gov

MCINTOSH,LEE T (TOM)
Mail Stop236
NASA LangleyResearchCenter
Hampton,VA 23681
Phone: 804864-4676

MCMANUS, JOHNW
Mail Stop125B
NASA LangleyResearchCenter
Hampton,VA 23681
Phone: 804864-4037
email: J.W.Mcmanus@LaRC.nasa.gov

RUGGLES,STEPHENL
Mail Stop473
NASA LangleyResearchCenter
Hampton,VA 23681
Phone:804864-1515

TRUSSELL,PHILLIP T
Mail Stop442
NASA LangleyResearchCenter
Hampton,VA 23681
Phone: 804864-6961
email: P.T.Trussell@LaRC.nasa.gov

viii

SESSION1 OpeningSession

Chairedby

JerryH. Tucker

1.I RTGPerspectivesonComputingatLaRC- DougDwoyer

1.2 lOG PerspectivesonComputingat Langley- FrankAllario

Langley Research Center
Research & Technology Group

RTG Perspectives on
Computing at LaRC

June 15,1994

Doug Dwoyer

"Three technologies are revolutionizing
our world:

silicon chips,
light fibers, and
software"

Dr. John Mayo
President, Bell Labs

2

Two RTG Perspectives on
Computing at LaRC

• Impact on how we do our research

• Impact on what research we do

Langley Research Center
RNea_-h & f echnololly _oup

Two RTG Perspectives on
Computing at LaRC

° Impact on what research we do

Langley Research Center

3

The Computing Universes at
Langley

Central .. " ",
Scientific t ' ...

Computer i _' Distributed _,.

Complex L _ _ Computing '!

" Facility "':%
•_ Dedicated ".

Business :. Computing '.• = 7'

"%e d- •• ._-= .-m _-= _- • .•B

Langley ResearchCenter
RNa_,h & Techn(,k_y _ou[,

Future Computing Universe of
Langley

Langley Research Center
Remrch & T=:lmol¢_ Gic=Jp

4

RTG ADP n-Team

• Membership: RTG division ADP managers &
at-large ADP personnel

• Role:

- Provide advice end consultation to RTG line management
on Internal and external ADP Issues and resource
requirements

- Represent the RTG's position as "ADP customer" to lOG
for long-range planning of ADP services

- Provide effective end cost-efficient planning,
Implementation, operation, and upgrade of distributed
computing services within the RTG

• Audience: RTG line management & computer
users; ADP providers (ISD, ETTD)

LangleyResearchCenter
R_ & T_hnc4ogy _oup

Future Computing Universe of
Langley--Expected Outcomes

• Enable exploration of unknown

• Universal communication

• Research productivity

• Removal of distance

• Support conversion of information into
knowledge

• Fundamentally change our research
products?

LangleyResearch Center
R_ & Tm:hnok_ Gfl_lp

Future Computing Universe of
Langley--Expected Properties

• Computational environment that serves
individual user needs

• Integrated infomation management capability

• Harmonious relationship of mini-
environments vs. unified environment

• Reuse of previously developed assets

• Software engineering standards and
techniques widely applied

Langley Research Center
Re_an:h & "[=chnok,gy C_oup

Two RTG Perspectives on
Computing at LaRC

• Impact on how we do our research

Impact on what research we do--
Transportation Research

• Requirement for transportation

- Impact of the revolutionizing technologies?

Impact on what research we do--
Transportation Research

• Impact of three revolutionizing technologies
on aero and space transportation

- National Airspace System

- on-board computing

- cockpit automation

- deslgn/manufacture/field support

• NASA impact not clear

- develop the technology and they will come doesn't work

- 3rd generation research thinking required

Langley ResearchCenter
RNeln:_ • T_hrwi_ _cujp

Impact on what research we do--
Atmospheric Science

• Creation and storage of more and more
information

• Conversion of vast storehouses of
information into knowledge

• Creative use of information technologies is
critical

Langley Research Center
RetmQ_h & T=chnok_lt f Group

Impact on what research we do--
Systems Analysis

• Must utilize level of technology industry uses
to remain credible

Langley Research Center
Ro_rch & Technc4ogy G_

8

Concluding Remarks

• Future infomation technologies will have
profound effects on Langley

• We must learn how to positively take
advantage of them

Langley Research Center
RNel_h ATicknol_WGl_p

9

INFORMATION SYSTEMS DIVISION

ISD PERSPECTIVE ON ...

" COMPUTING at Langley"

Dr. Frank Allario

June 15, 1994

ISD's PERSPECTIVE ON COMPUTING

@ Langley ...

• OUTLINE mQI

-GENERAL OBSERVATIONS ON THE FOLLOWING >>>

,, SUPERCOMPUTING WITHIN OA ...

,, INFORMATION SERVICES ... "What are they?"

,, RAPID PROTOTYPING ... "The wave of the future! "

- ISD STRATEGIC THRUSTS as presented to the ...
- LCUC ...

. RTG / ADP "n" Team ...

-SOME KEY ISD ACCOMPLISHMENTS as they relate to
NASA Langley and National priorities ...

-SUMMARY COMMENTS on the future of Computing ...

I0

ISD's PERSPECTIVE ON COMPUTING

@ Langley ...

GENERAL OBSERVATIONS ON THE FOLLOWING >>>

,, SUPERCOMPUTING WITHIN OA ...

- Langley and the other OA Centers will depend more upon a Centralized
tire for providing high capacity, mass storage capability ...

- Langley will depend excludvely upon its high bandwidth, networking
capability to communicate with the outside world, and provide
supercomputing capability for computationally intensive calculations ...

- A "clustered architecture" will be developed at Langley & other OA
Centers to handle mid-range computational requlremente ...

- This "clustered architecture" should become a joint venture between
lOG / ISD, RTG / ADP and RTG / HPCCP ...

- Langley will eventually outeoume ell barge ecubacomputing ...

- ISO will focus its Human Resources upon other Information Servicel ...

ISD's PERSPECTIVE ON COMPUTING

@ Langley ...

:Q SUPERCOMPUTING WITHIN OA & Langley ...

- LANGLEY / ISD STRENGTHS FOR OUR CUSTOMERS
INCLUDE THE FOLLOWING ...

,, A GOOD GRASP ON MASS STORAGE
TECHNOLOGY ...

,, A LEAD IN HIGH BANDWIDTH NETWORKING
TECHNOLOGY ...

,, A GOOD HANDLE ON NATIONAL & AGENCY
GOALS IN THE MASSIVELY PARALLEL

PROCESSING [MPP] TECHNOLOGY ...

• LANGLEY WILL RECEIVE AN IBM, SP-2 IN AUGUST 1994
FOR INTERNAL EVALUATION & CONSULTATION TO
INDUSTRY ...

1!

ISD's PERSPECTIVE ON COMPUTING

@ Langley ...

SUPERCOMPUTING WITHIN OA & LANGLEY ...

-While you and I sleep silently at night, we have a corps
of system engineers and technicians who keep our
facilities "purring," in our Central Scientific site, our
Communications Systems, our Specialized
Laboratories, and our Flight Simulation Facilities ...

- During severe storms, power outages, and hurricanes
our corps of contractors and civil servants keep the
vitality of the Center's research mission alive, through
dedicated engineering support ...

- As a new boy on the block in computing, I am taking
the time to say ... "Thanks from all of us !"

ISD's PERSPECTIVE ON COMPUTING

@ Langley ...

° INFORMATION SERVICES ..." What are they? "
- SCIENTIFIC SUPPORT SERVICES ...

SPECIALIZED LABORATORIES ...

• EOS I DAAC ...

• FLIGHT SIMULATION ...

• GEOLAB ...

• DVAL ...

• SEAL ...

•, SPECIALIZED INFORMATION SERVICES ...

• DATA MANAGEMENT ARCHITECTURES ...

• SOFTWARE ENGINEERING ...

• HIGH BANDWIDTH, NETWORKING SYSTEMS ...

• TRAINING IN INFORMATION SYSTEMS & TECHNOLOGY...

12

ISD's PERSPECTIVE ON COMPUTING I

INFORMATION SERVICER ... "What are they?"
- TECHNICAL SUPPORT SERVICES ...

,, MANAGEMENT INFORMATION SYSTEMS ...

,, ELECTRONIC COMMUNICATION SYSTEMS ...

,, BUSINESS ACCOUNTING SYSTEMS ...

,, COMPUTER SECURITY SYSTEMS ...

,, OFFICE MANAGEMENT TRAINING ...

,, SECURE NETWORKING SYSTEMS ...

,, HELP DESKS & TRAINING SERVICES ...

,, VOICE / VIDEO / VISUAL TECHNICAL TOOLS ...

ISD's PERSPECTIVE ON COMPUTING
@ Langley ... I

• RAPID PROTOTYPING ...
"The wave of the future!"

-I AM ENCOURAGING ALL PERSONNEL WITHIN ISD,
where it is reasonable, TO CONDUCT RAPID
PROTOTYPING TO INSURE WE PROVIDE OUR
CUSTOMERS FULL UNDERSTANDING OF THE ...

-COSTS OF DOING BUSINESS;

"What you really need, versus what we as a National
Laboratory, really can afford!"

-I WOULD APPRECIATE YOUR THOUGHTS ON E-Mail,
WHICH COULD HELP ISD UNDERSTAND THIS
CONCEPT ...

]3

I ISD's PERSPECTIVE ON COMPUTING i@ Langley ...

-SUMMARY COMMENTS, on the future of

Computing @ Langley ...

,, THE RESEARCH PROCESS WILL CHANGE AND
WITH THAT CHANGE THE ROLE OF DVAL WILL
BECOME INDISPENSIBLE TO THE RESEARCH
PROCESS ... { ISD + STID + ETTD = ONE }!

,, Langley / Ames I Lewis will consolidate NASA
resources in specialized, scientific services for our
researchers + industry partners and make them
available nationally to the Aeronautics
community ...

,, Langley will lead the software engineering
process for applications to Aeronautics ...

ISD's PERSPECTIVE ON COMPUTING

@ Langley ...

-SUMMARY COMMENTS on the future of

Computing @ Langley ...

,, THE CENTRAL SCIENTIFIC COMPUTER
COMPLEXES, WILL BE CONSOLIDATED INTO ...

"META-CENTER CONCEPTS ... "

,, LANGLEY WILL LEAD OA CENTERS IN THIS
CONCEPT ...

,, OUR FUTURE IS BRIGHT, BUT WE MUST
ESTABLISH SCIENTIFIC PRIORITIES WITHIN OUR
SCIENTIFIC CORPS, IN AERONAUTICS + SPACE
SCIENCES COMMUNITIES ...

,, OR ELSE ...

14

j,

Information Systems Division

Overview of ISD
II

• ISD was formed through the merger of ACD, BDSD, and IRMO to provide
a focal point for information services at [.aRC

• Our mission is to lead the application of advanced information systems
technologies that will improve the productivity and quality of the LaRC's
processes and products

• The role of ISO is changing:
- Decreasing emphasis on providing central computing resources
- Increasing services and technologies to make researchers,

managers, and distributed computing users mere productive and
effective

• Major "business areas" include communications, advanced technology
computing, integrated computing environment, information resources

management, management information systems, simulation systems,
data management, visualization & analysis, and software engineering

Information Systems Division

ISD Planning

• Langley requirements (known and anticipated) and perceived
trends were used to identify the major "business areas"

• These introductory presentations begin s continuous process of
customer interactions to help determine ISD priorities,
expectations, and future directions

• ISD is committed to customer satisfaction end we must work

together to develop realistic expectations that provide exceptional
service in a continually changing environment

- Growing demand for information systems and services
- Decreasing budgets and manpower
- Rapidly evolving technologies

We can do anything, but we can't do everything

15

Information Systems Division

Communications

Provide Center-wide coordinated, reliable, state-of-the-art,

and cost effective voice, data, and video communication
networks and services

• Integrate evolving advanced network technology, such as FDDI
and ATM, to accommodate high performance distributed
computing at LaRC

• Provide enhanced user access to the National Information
Superhighway and world-wide information resources

• Lead deployment of portable and desklop video conferencing

• Lead the Center-wide E-mail integration initiative

Information Systems Division

Advanced Technology Computing

Provide effective scientific computing resources through

implementation and support of evolving hardware and

system software technology

• Utilize centralized, homogeneous workstation clusters to meet
medium-scale computing requirements

• Employ local and remote vector supercomputers to meet large-
scale computing requirements

• Evaluate high performance scaleable processing technology

• Implement Distributed Mass Storage System (DMSS) to meet
rapidly increasing on-line and archival requirements; evaluate
emerging mass storage technologies

• Apply tools, performance analyses, and code enhancements to
improve the utilization of computing resources

16

Information Systems

Integrated Computing

Division

Environment

Lead the integration of central and distributed computing

resources into a unified, cost-effective computing and
communications environment

• Develop a uniform user environment and global file system

• Improve coordination and cost-effectiveness of system
administration

• Lead Center-wide implementation of "Electronic Office" hardware,
software, communications, and services

• Implement networked distribution and installation of common
software packages

• Lead architectural design efforts to implement integrated Code R
computing environment

Information Systems Division

Information Resources Management

Lead in the planning, acquisition, implementation and

efficient management of Langley's information processing

resources throughout their life-cycle

Develop policies that satisfy ADP legislation and provide essential
oversight with a minimum of "control"

Implement the LaRC Computer Security Program

Contain costs through strategic planning and consolidation of
distributed ADP requirements

- Resource reutilization and sharing
- Hardware and software mass-buys, site licenses,

maintenance, and services
- Centerwide electronic bulletin board "NewsNET" and user

services

l?

Information Systems Division

Management Information Systems
I

Develop and maintain efficient and effective information

systems for business and administrative functions

• Perform software development, maintenance, operations, and data
management for business applications, such as payroll, T&A, and
property management

• Perform business process analysis, personal computing
technology assessment, and training

• Develop Center and Headquarters management information
systems

• Implement Agency standard systems and integrate with LaRC
unique systems

Information Systems Division

Simulation Systems

Provide state-of-art, cost-effective, simulation capabifities to

support LaRC's research and focused technology programs

• Development and operation of simulation systems to accomplish
research program goals

- Real-Time Computer Systems (FSCS/ARTSS)
- Advanced Visual Systems (ACGI/WlDE, SGI/ONYX)
- Flight Decks (HSR, B737/757) and Motion Platforms (CMF)

a Rapid and cost-effective development of real-time models and software
applications

- Vehicles and Vehicle Control Systems (HSR, HARV, B737/757)
Flight Management Systems (FMC, Nav)
Atmospheric models (Windshears, Wake Vortex)

a Development and implementation of new technology
Improve efficiency of software and hardware development processes

- Provide new capabilities necessary to conduct research programs

]8

Information Systems Division

Scientific Data Management, Analysis & Visualization

Apply advanced methods and tools to effectively manage and

utilize computational and experimental research data

• Develop effective date management techniques to support the rapidly
changing research environment

- Greatly Increasing data volume and multi-disciplinary communities
On-line multimedia access and technology transfer

• Data Visualization and Animation Lab (DVAL) develops and applies
advanced techniques to visualize, analyze, and present scientific data

• Geometry Modeling and Grid Generation (GEOLAB) provides a Center
resource to effectively meat the large and varied grid geometry
requirements in scientific computation

• High-end, production input and output devices, such as the LISAR
Digitizing System and large format color plotters

• LaRC's EOSDIS Distributed Active Archive Center is a pathfinder for
Worldwide information dissemination

Information Systems Division

Software Engineering

Improve the cost-effectiveness, quality, and performance of
software developed at LaRC

• Implement a modern software development process that

optimizes cost, schedule, system performance and reliability
through the Software Engineering and(or) Ada Lab (SEAL)

• Develop mission critical software systems for LaRC space and
avionics flight projects

• Meet increasing demand to apply software engineering to other
LaRC software development efforts

Applications include NTF DAS, HSR, and TAP
- Perform training, consultation, and information dissemination

services

Reverse engineer research software products (i.e., CFD)
before transfer to customers

19

SESSION 2 Software Engineering

Chaired by

Susan J. Voigt

2.1 Software Engineering from a Langley Perspective - Susan Voigt

2.2 Panel on Perspectives on Software Development- Chuck Niles, Pam Rinsland, Pat
Schuler,Peg Snyder, Tom Zang, Brenda Zettervall

2O

35c o <to 11oo3 <1 N95-16454

SOFTWARE ENGINEERING FROM A LANGLEY PERSPECTIVE

by Susan Voigt

This presentation is intended to provide a brief introduction to software engineering to set
the stage for the panel discussion and some of the workshop presentations.

The talk is organized into four sections, beginning with the question "What is Software
Engineering?" followed by a brief history of the progression of software engineering at
LaRC in the context of an expanding computing environment. Several basic concepts and
terms are introduced, including software development life cycles and maturity levels.
Finally, some comments are offered on what software engineering means for LaRC and
where to find more information.

In an article in the ACM Computing Surveys in 1978 (Vol. 10, No. 2, p. 197), Marvin
Zelkowitz defined software engineering as the "process of creating software systems."
(Note: ACM is the Association for Computing Machinery.) The IEEE Standard 610.12-
1990 (Standard Glossary of Software Engineering Terminology) has a widely accepted
definition that effectively is the application of an engineering approach to software.

The term "software engineering" was used at NATO conferences in 1968 and 1969, but
became commonplace in 1975 when the first national conference (which became
international at the second) was held in Washington, D.C. In that same year, the IEEE
began publishing the journal: IEEE Transactions on Software Engineering. NASA started
funding software engineering research as part of the Computer Science Research Program
in the Office of Aeronautics and Space Technology in 1983. The Department of Defense

was also concerned with "the software problem" in this time frame, and in 1984 the
Software Engineering Institute was established at the Camegie Mellon University.
NASA's Office of Safety and Mission Assurance (Code Q) established the NASA Software
Engineering Program in 1991, with funding for and active participation from LaRC.

Just as software engineering was developing, our computing environment was becoming
more dispersed. In the 1960s, computing was done by computing professionals in a
"closed shop" environment. However, by the 1970s, FORTRAN was used by researchers
across the Center, and they had access to the centrally located computer facility by using the
"green tub" service for pick up and delivery of punched cards and printed output (also
called computer listings). In the mid-1970s, microprocessors and time sharing came to
LaRC, providing remote computing capability. Computing expanded in the 1980s with
distributed systems, personal computers, and data acquisition and/or control systems in
many facilities. The 1990s has brought even more powerful workstations and networked
systems. This changing environment has decentralized the computing and software
development at the Center, so that software is now created in many organizations, with
little coordination or collaboration.

One of the fundamental concepts in software engineering is that of life cycle. The life cycle
is a way to capture the schedule and discipline of key activities, reviews (such as system
design, requirements review and design review), and deliverable items at specific points in
time. The Department of Defense has identified three "program strategies" in their recent
standards, that illustrate classic software life cycles: waterfall, incremental and spiral.

The Grand Design strategy assumes a complete definition of the requirements prior to
design. The waterfall life cycle includes the development phases: requirements analysis,
design, coding, test and integration and finally operations and maintenance. As each phase
is completed, products are delivered that support the next phase.

21

TheIncrementalstrategyis alsocalled"preplannedproductimprovement.".Theuser
needsandsystemrequirementsaredefinedfollowedby aphaseddevelopmentwith several
releasesorsystembuilds. Eachphaseincludesthetypicalstepsin thewaterfallprocess.
Experiencewith earlyreleasesin the incrementalapproachcanproviderefinementsfor
subsequentreleases,alongwith thenewcapabilitiesplanned.

TheEvolutionarystrategyisbaseduponBarryBoehm'sspiralmodel (describedin ACM
SoftwareEngineeringNotes,Vol. 11,No. 4, Aug. 1986,pp. 14-24;andIEEEComputer,
May 1988,pp.61-72). This approachencouragesconsiderationof risks,constraintsand
alternatives.Thesoftwaredevelopmentoccursin thethirdquadrantof thespiral,andis
similar to theincrementaldevelopment.

TheSoftwareProductivityConsortium(Lockheed,oneof oursupportservicecontractors,
is a membercompany)hasextendedthespiralmodelinto theEvolutionarySpiralProcess
(ESP)Modelwithextensivetrainingandguidebookmaterialsavailableto SPCmembers
(andto NASA, asaLockheedcustomer).

TheSoftwareEngineeringInstitute(SEI)hasdefinedtheCapabilityMaturityModel
(CMM) thatcanbeusedto identifyhowanorganizationcanimprovethematurityof its
softwareprocess.TheCMM hasfive levels,from initial to optimizing. WattsHumphrey,
SEIfellow, is consideredtheauthorof theCMM. Wedohavecopiesof SEIprovided
documentationon theCMM in theSpaceSystemsandConceptsDivision. Thelowestlevel
(1) is whensoftwaredevelopmentis informalandeachjob is only asgoodastheindividual
softwaredeveloper.This is thestagewhengoodsoftwareresultsfrom heroiceffort.
Level2, called"repeatable,"is moreintuitive,wheretherearesomecommonpractices,but
problemsinvariablyarisewhensomethingnewis introducedinto theprocess.Thefocusat
level2 is onprojectmanagement.The"definedlevel" (3) is qualitativeandfocusedon the
engineeringprocess.Theprocesshasbeenwrittendown,andtheorganizationhas
acceptedit ascommonpractice.Trainingin theprocessis available,providingcontinuity
with personnelturnover,andthestaffmeetsregularlyto discussimprovements.The
quantitativeor "managedlevel"(4) hasmeasuresin placeto trackproductivity. Thefocus
is onbothproductandprocessquality. Theprocessis understoodandmanagedsothat
bottleneckscanbeidentifiedandautomatedtoolscanimplementpartsof theprocessto
reducehumanerror. Whenanorganizationhasachievedthe"optimizinglevel" (5),
detailedmetricson theprocessarecollected,problemscanbeanticipated,thereis constant
processimprovement,andnewtechnologycanbeinfused. A level5 organizationis
practicingTQM in softwaredevelopmentto thefull extent.At thepresenttime,most
organizationsareat level 1or2.

TheSPAandSCEaretwo assessmentmethodsdefinedby theSEI. SPA, theSoftware
ProcessAssessment,is usedbyanorganizationto assesstheir own actualprocessmaturity
anddevelopasoftwareprocessimprovementstrategy.It is only for internaluse. SCE,the
SoftwareCapabilityEvaluation,is morelike anaudit. It is usedto gatherinformationon
thesoftwareprocessmaturityof organizationsthatmightbecompetingfor asoftwaretask.
SeveralgovernmentagenciesareusingSCE'sin theirsourceselectionprocess.Our
panelistfromtheNavalSurfaceWarfareCenterhasbeentrainedin theSCE,andshewill
sharesomeinsightson this later. An analogy to compare the SPA and SCE: An

assessment is like having a friend or relative help you prepare your income taxes (it's
internal), whereas an evaluation is like having the IRS do an audit of your taxes.

Some other basic concepts of software engineering can be introduced by defining some
jargon. CASE (computer aided software engineering) is a generic term to describe tools
and environments that provide automated support for software development. The DOD has
used CSCI (computer software configuration item) to describe major software modules

22

(thatarekeptunderconfigurationcontrol). SubmodulesarecalledComputerSoftware
Components(CSC)andoftencompilationunitsarecalledComputerSoftwareUnits
(CSU). CM standsfor configurationmanagement,aprocessfor identifying andfor
controllingreleaseandchangeof softwareitems.ObjectOrientedDesign(OOD) andobject
oriented programming are an altemative approach to procedural-oriented software

architecture, treating programs and data as objects. IV&V is Independent Verification and
Validation, the testing of software functionality and validation against requirements
performed by a team separate from the developers. Software Quality Assurance (SQA) is

an activity performed throughout the life cycle to assure that requirements analysis, design,
code, and the resulting product satisfy the software requirements.

Additional jargon includes SMAP, which was the Software Management and Assurance

Program led by the NASA Office of the Chief Engineer and later the Office of Safety,
Reliability, Maintainability, and Quality Assurance (Code Q) in the 1980s. The SMAP
team included representatives from all NASA Centers, and they helped define the NASA
software documentation standards that have evolved to NASA STD-2100-91. The SMAP

has been replaced with the Software Engineering Program in the current Code Q, Office of

Safety and Mission Assurance. DID stands for Data Item Description, the Department of
Defense (DOD) term used for software documentation format, instructions and outline.

For example, the DOD-STD-2167A describing the current Defense System Software
Development standard, contains at least 16 DIDs. The DOD program Software Technology
for Adaptable, Reliable Systems, called STARS, has been active for over 10 years, and is
the focus of considerable effort in areas including Software Engineering Environment
(SEE) and Software Reuse. Research into reusing software assets (e.g., design and code
segments) has included identification of domains or classes of application areas with
common aspects where reuse makes sense.

Since the daily work at LaRC relies on software more and more, and as more emphasis is
placed on the transfer of technology (which includes our software products), there is a need
to pay more attention to the engineering of our software. There are several resources
available to people at the Center, including the Software Engineering and/or Ada
Laboratory (SEAL) in the Information Systems Division, an Inter-Group N-Team on
Software Productivity, Quality, and Reliability led by Robert Estcs, and Intemet access to
many information resources. The recently formed Hampton Roads Software Process

Improvement Network (HRSPIN) offers additional opportunity for professional
development and information exchange with individuals from government, industry and
academia interested in software improvement. The Technical Library (as well as many
individuals) have several of the software journals of particular value to the software
engineering specialist.

There are several standards that also are applicable, and these can prove useful in guiding a
software process. Experienced software engineers at NASA Langley are willing to share
their knowledge, and the SPQR N-Team provides them an opportunity to network and
work together to improve the quality of software at the Center.

Software engineering techniques can improve the software products developed for and by
LaRC. The panel represents several perspectives on software development, and these
experienced software developers and managers are willing share some of their views on
where we are and where we should be going.

23

(D
m

ILl
HI

m

ill
LU
IZ

i.-
I.i.
0

(D
a.

24

_i
m

O

O)

lli

flu

O)
C
LU

In

O
rJ)

Be

>

ID.
(/)

G)
12.
(3
I:I:

E
O
I==

E"
O

(/)
_i

lli

m

(/)

ID=

(3
C
O
(.)
O

lli

(/]

I:I:I

E
O
03
O

C
O

lli

"(3
O
li_

i

r..)
n..
m

O

C

E
{/)

J_

O
"0

25

D D

D D

26

"0

I

0
(n

G)
iim

I..-

0

im

m

im

C
m

C
im

im

W

0

T--

E
L.

0
L_

C
|m

L-

C

0

4_0

0

0

<{
O_
<{
Z

(3)
O)

27

a
o

rr <

"0

(n
0 >,q,,o
:= (n

r.

28

m

O

O

m

L_

C

E
c_
O

m

c_

.C

C
C

m

W

_E

m

O
O

m

|m

_E

O
m

O

29

m
mm

c_

Q_
,41,,J

C_

_ocn

o
n-

•- Q
- "O

o

c-
D_

m

Q
a

_2

c.-
u

I_S Q

30

G)
n-

I--

i

t_

t.)

m

G)

m

G)
n-

\

\
rr

G)
n-

!

\

i

\

\

\
t_

\

\

E _c
._.

I I I I

3!

iml

0

m

lira

m

lira

II)
m

0
n,t

J

em Im

(1) C_
> i'-

m Im

0 •

in

(1) >
-o w

(,,i

(I)

(1) 0

o _-
(1) (D

.__ ._>
E_
_E

4___"o
-m_ 0

0 (1)

l-

c_

E
E

8

(I)
11)

i--
O_

X
(D

i--
(_

m

rl

32

0 o
i

0
> 0
LU

< cu

tJ _

33

m

m

34

==
tO

-J Q.

0

o o 1:::o o

"0 01 r..
r' ¢,,.
m .= E

e., _)

:: "* I= (.,1

0 _ 01 ""r,
,- :3 ¢""

0.. O" UJ 0..

.E
q,--
(1)

i

,.Q

Q.

rr

fn

0
t,,,,

"r'

m

lama

em

£:
mmm

35

J_

om

o_

om

r_
olU

36

0
m

m s_.

e. o
o

_: o
i

, "0
Ulili

s_.

._: c_

o o
if)

0 "-
>,m I_

X _
mils

01_lu

_ minim I1_

In

• •

37

0

lira

s.._

0

0

llm

s_

C
iim

C
LU

L_

0

"0
(1)

"0
iim

<

:3
Q.
E
0
r_

LU

<
r_

t-
O

iim

!._

::3

llm

C
0

C
•i-, _)
0 _-
_o

Q.
L_

r_

r_
m

r_

c)

C

E
0")

C

0
lim

s_.

::3

iim

C
0
C)

iim

(/)

"0
G)

C

iim

s_

0

t_

..(2
0

Q
0
0

C
0

llm

iim

m

C

_Z
0

iim

t.)
iim

iim

s.._
(1)

r-

t-

O.

C
m

m

U
C

s_

::3
(/)
(/)
<

iim

m

0

s_.

0

0

s_
0

<
0

38

39

(n

4O

(/)

0

0

n-

0

s_

CO

"0
s_

E

41

C

0 X (1) "--0
(D UJ _:

42

Summary of Panel on Perspectiveson Software Development

The panel consisted of five NASA Langleyemployees representing different

application domains and a representative from the Naval Surface Warfare Center

in Virginia Beach, VA. Each panelist began with a short statement reflecting both

experiences and perspectives on software development. The panelists, their

application domain area, and organization were:

Chuck Niles

Pat Schuler

Tom Zang
Pam Rinsland

Peg Snyder
Brenda Zettervall

Susan Voigt

Facilities Software, IOG

Flight Software, IOG

Researcher Software, RTG and LCUC Chair

Embedded Systems Software, lOG

Science Software, SASPG (retired)

Software Quality Improvement,
Naval Surface Warfare Center

Moderator, SASPG

Chuck Niles is in the Electrical and Electronic Systems Branch in the Facilities

Systems Engineering Division of the Internal Operations Group. He has 15 years

of experience in software development for wind tunnel control systems, process

monitoring, and ground facilities communications on minicomputers and the

whole family of Intel microprocessors. He is responsible for software

configuration management for many wind tunnels at LaRC and has developed

documentation for all phases of software development. His opening remarks,

"Perspectives on Software Development," are included following this section.

Pat Schuler is in the Advanced Computer Systems Branch in the Information

Systems Division of the Internal Operations Group. She began her Langley

career providing support for scientific research computer applications. She was

software manager for the first embedded systems (flight software) project in the

Software Engineering and Ada Laboratory (SEAL). Since the SEAL was formed,

she has been active in developing it as a center of excellence in software

engineering at LaRC, with support from the NASA Office of Safety and Mission

Assurance (Code Q). In this discussion, Pat represented the flight software for
Langley scientific instruments.

Pat cited three characteristics of flight software development: embedded systems,

distributed processing, and real-time. She went on to clarify these as follows:

Embedded systems - A specialized computer with custom-programmed

software used to control functions within the device it's controlling.

Distributed processing - A system in which tasks to be performed by the

available computing resources are executed by a number of processors,
often in parallel.

43

Real-time- Results are calculated in sufficient time to guide the physical

process under control.

She cited four typical examples of space flight projects at LaRC: CERES, JADE,

LITE, and MIDAS with flight life-times ranging from 11 days to a few months to 5

years, and flight code size ranging from 2K to 18K (where K represents 1000

source lines of code). In addition to on-board flight software, ground support

software, including simulators, test subsystems and mission operations

subsystems must be developed, and these range from 2 to 10 times the size of the

flight code. The SEAL has standardized on Microsoft Windows and other MS

software, Ada, object-oriented design, formal inspections, and Novell as their

local area network for internal mail and a shared group calendar. The SEAL tools,

based on PC and Intel, are considered a Center resource. The SEAL is also trying

to baseline their software development process and document it in guidebooks.

They also are collecting metrics on how software is developed in the SEAL. SEAL

personnel provide consultation to and arrange training for other groups at the

Center in software engineering processes and tools, but they do have a limited
staff. A list of the tools and software documents available from SEAL follows this

section. Anyone interested in learning about the tools, their use, and related

training should contact her.

Tom Zang is head of the Multidisciplinary Design Optimization Branch in the

Fluid Mechanics and Acoustics Division of the Research and Technology Group.

He also is the chair of the Langley Computer Users Committee (LCUC). He

represented researcher software on the panel.

Tom said that the LCUC intends to reorganize itself in the fall to align with the

new Center organization. The LCUC was set up about 20 years ago to provide a

voice for user concerns and desires to the Analysis and Computation Division for

short-term tactical and some long-term strategic planning.

The two products from research are reports and software. However, managers

and researchers simply do not recognize the importance of their software as a

technical product. He observed that NASA encourages the quality aspects of

technical reports, but not of software. Four types of software products are

produced by researchers at LaRC: concepts, portable modules, pilot codes, and

production codes. The concepts may include new algorithms and these are

published in technical reports. Modules are usually available as commented

code. Pilots are prototype software for early release with caveats since it is not

thoroughly tested, still may be in development, and has little documentation.

Production codes are well written and well documented computer programs. A

good example of multidisciplinary code at LaRC is FIDO (described by Bob

Weston at a later session at the workshop). In closing Tom stated he would like

to see management place greater value on good software, researchers write their

44

software for others as well as themselves, and software engineers act as a resource

for others at LaRC. He did note that software engineering is included on the list

of necessary skills in the Research and Technology Group (RTG).

In these proceedings, he has included a few charts from the LCUC files of a 1980

briefing by Jarek Sobieski which cite some of the same issues. A copy of Tom's

transparencies "Perspectives on Software Development" are included following
this section.

Pam Rinsland is the assistant head of the Electronics Systems Branch in the

Aerospace Electronics Systems Division of the Internal Operations Group. In her

22 years at LaRC she experienced the transition from the batch-oriented central

computing and plotting without preview to the "instant gratification" of time-

sharing. She has developed software for a wide range of aerospace applications,

including writing code to execute on computers ranging from Intel's first 4-bit

processor to the first supercomputers delivered to LaRC. In her current position,

she is in a hardware-oriented branch and promotes her firm beliefs in the

absolute necessity of close ties between hardware and software specialists, and in

maintaining discipline in the software development process.

Her opening remarks, Reflections from a "Jurassic Programmer" on Software

Development at LaRC, follow this section.

Peg Snyder, prior to her retirement from NASA in May 1994. was in the Data

Management Office in the Atmospheric Sciences Division of the Space and

Atmospheric Sciences Program Group. She has 31 years of experience in

software development at NASA, starting at Lewis Research Center with

FORTRAN code on a mainframe with 30K of 36-bit words (memory) for basic

research in nuclear physics scattering analysis and non-steady fluid flow. An

early lesson she learned was to number your punched cards (artifacts now found

in the museums in Washington, DC). She worked for several years in the Space

Station Freedom Program Office prior to coming to LaRC 3 years ago. Her

software experience ranges from office automation software and space

applications to wind tunnel applications, data reduction, and CERES data

processing.

Peg's most important message to the audience was that best results are obtained

when an engineering approach is applied in the development of software.

Specifically, her approach has six steps: 1) Define the problem (in the 1960s an

engineer would bring a notebook to the programmer with "requirements"

documented); 2) Figure out how to solve (reformulate the problem in terms of

mathematics and select appropriate numerical analysis techniques); 3) Design

the solution; 4) Implement the solution; 5) Test; 6) Use and maintain. We

actually practiced more software engineering back in the batch days than we do

45

now. A second important message was that automated tools are only useful if

they help you implement a process already in place.

Brenda Zettervall is Quality Improvement Administrator for East Coast

Operations of the Port Hueneme Division of the Naval Surface Warfare Center

located at Dam Neck in Virginia Beach, Virginia. She has 18 years of experience

in software development including land-based integrated combat simulation

programs and systems engineering necessary to translate operational

requirements into simulation performance requirements. She is a member of the

Software Engineering Institute (SEI) Capability Maturity Model (CMM) Advisory

Board and the CMM Based Appraisal Review Group. She also is qualified to

perform Software Capability Evaluations. She is the first chair of the recently

formed Hampton Roads Software Process Improvement Network (HRSPIN).

Three years ago, Brenda became involved in quality improvement as part of a

competition between Naval support centers and between the Navy and AF for

software post-deployment support. Since the Navy is down-sizing and

decommissioning many ships, software process improvement was necessary for

survival since most of the systems supported at Dam Neck were on the "hit list."

Being able to maintain cost and schedule is highly dependent on the maturity of

the process in place. Hence they have embarked on establishing a management

discipline for software development and maintenance. This means their process

is documented, trained and enforced. The Navy is challenged to survive and to

improve their software engineering process, since the Air Force has a vision to do

all software engineering for the Department of Defense.

Questions from the Audience and Panelist Answers:

Q) Other engineering disciplines are based on mathematics. What is the basic

science on which software engineering is based?

A) Mathematics is the basis for formal methods and algorithms such as rate

monotonic scheduling.

Q) Suppose your organization were in charge of developing software for the

next generation aircraft. Would you fly on it?

A) Four panelists said "Yes" and two said that flight critical software was outside

their domain, and their organizations did not have the appropriate expertise and
training.

46

Q) How will the software development process have changed 10 years from
now?

A1) We will be doing it at home.

A2) Researchers will write code from day one using good practices - even if it is
just "for themselves".

A3) We hope to raise our organization to higher maturity levels, hopefully close
to a CMM level 5 and the Center to level 3 or 4.

A4) Necessity is the mother of invention. In the 60's there were incentives to

make programs work smarter (e.g., you could be called in the middle of the night

about your wind tunnel software if it didn't work properly). Things are

changing, so we will be forced to be more rigorous.

A5) There will be a trend toward graphical programming models, and off-the-

shelf packages available for control systems. There will be "6th generation
programming languages".

A6) We will be rewarding people for good software engineering practices

(activity will not be confused with productivity).

A7) Rapid prototyping and workstation platforms will be common.

Q) Where is a good place for Software Engineering at LaRC? In an N-team, a

Branch or a Group?

A1) Software people are throughout the Center and there is no central focus or

mechanism for software developers to exchange ideas and information except in

the N-team. In a closed shop (as in the 1960's) professionals sat closely together

and could share ideas and software. The Software Productivity, Quality and

Reliability (SPQR) N-team is a good place for professional sharing°

A2) The Information Systems Division has a business thrust in Software

Engineering and it is focused in the SEAL, the LaRC Center of Excellence in

software engineering encouraged and supported by the Code Q Software

Engineering Program. (The GSFC Software Engineering Laboratory just won the

first IEEE Software Process Award; JSC has a Software Technology Branch; JPL
has the SORCE).

A3) Perhaps the Center should form a local SPIN (software process

improvement network) or SEPG (software engineering process group) in
addition to the N-team.

Q) More than half of the software is being developed by people who are not

software professionals. Engineers, doctors, and lawyers often write their own

code. I can't find good textbooks written by professionals. Do you share that
view?

A1) Perhaps we can never get non-software professionals away from

programming. Would it help to have more training in software engineering?

4"/

A2) The Information Super-Highway may be more of a threat to a disciplined

approach than interactive programming!

A3) The SEI apparently is now hiring mathematicians rather than computer

science graduates, going back to the basics.

A4) I would defend the engineer who writes his own code. We need better

practices in software development so the researcher can do the software work.

A5) Everyone needs to work more closely with the customer. The research

engineer and the programmer need to work closely together.

A6) We need to have more fundamental training for "FORTRAN-type"

programmers (basic training for research and prototype software).

Unfortunately, the training office doesn't like to repeat classes, which makes it
difficult to offer basic classes to a wide audience.

Q) I build "Flight Systems" and there is electrical hardware that is not

well-documented. Are we confusing software engineering with engineering as a

discipline?

A) There is a difference between scientific research (prototyping) and systematic

engineering (final product) software. Software engineering professionals should

be involved with the final product.

COMMENT) We need to distinguish between scientific research and

engineering development. Be careful not to compartmentalize or constrain

research. I did the software development on one of my own mathematical

models - it helped me to understand the problem.

In closing, Moderator Susan Voigt proposed 5 domains for software classification:

flight software, facility software, ground support equipment software,

management information systems, and research software (see Attachment). Also

the intended use of software may affect its level of disciplined development: My

use only, use within my work group at LaRC, Informal release outside LaRC, Beta

release outside LaRC, and Formal release (e.g. COSMIC) outside LaRC.

Members of the audience were invited to comment on the domains and intended

use categories and to join the LaRC software N-team if they were interested.

48

Perspective on Software Development
Charles E. Niles

What types of software do you develop? The domain is ground facility automation
systems, specifically closed circuit and blowdown wind tunnels and
research labs. Applications include control algorithms for test environment
conditions (Mach number, Reynolds number, pressure, temperature),
model support systems and other test articles (pitch, roll, yaw, Alpha,
Beta), and high pressure air systems (pressure, temperature); process
monitoring; operator interfaces; and utility functions such as data logging
and sequence of events recording. Hardware systems include 80486-
based microcontrollers, industrial PCS, PLCs, minicomputers, and

combinations of these. Supporting systems include commercial analog
and digital controllers, motion controllers, and servocontrollers.

Who are the users of this software? Facility operators, in support of LaRC and
commercial aerospace researchers.

What is the life cycle (how long is the software used)? Indefinitely. Generally, the
software is replaced during a CoF upgrade to computer hardware and
control rooms.

Is there much maintenance or enhancement required? Steady work - correcting
bugs and improving performance.

Maturity of Software Development - Software development, as we know it, has
been around for 40-50 years. Software engineering, has been around since the
early 1980's. Considering that other engineering disciplines have existed for
1900 years or so, the software world has come a long way. Understand though,
that software engineering is still in its infancy. The point is that other engineering
disciplines are not exact sciences and neither is software engineering. Only the
laws of physics and the mathematics upon which they are based are.

Software Development Relative to Operatinq Systems - In recent years, more
popular languages, notably C and C++, have advanced the portability of
applications from mainframes, to minicomputers, to PCs, Macs, and
workstations. Witness that different operating system platforms are capable of
running the same application. However, the class of applications is generally
confined to office automation tools. I believe that application software developers
should be able to develop an application with no concern for the operating
system it will run on. Of course, we have no universal operating system today
and probably never will. But, the proliferation of operating systems and
programming languages demands a consistent application programming
interface. Currently, we have at least as many APIs as there are operating
systems and hardware platforms to run them on. Perhaps, a universal API will

emerge as the POSIX standards are developed.

49

Software Reusability - DoD mandated the use of Ada to promote reusability of

source code, among other things. C++ was developed to foster the development

of reusable class libraries and methods. Neither has accomplished this goal,
and never will. Problem - reusability is more trouble than it is worth. How

many of you have ever written a five-to-ten line routine to do something because
there was not a library call to do it or because you could not afford the time to

locate one ? ... How many of you have ever obtained source code that seemed to

meet your needs but would not compile initially or did not execute as you

expected ?... Individuals and small teams will usually reuse source code they
have written themselves because they know where to find it and they know how it

works - and it does not matter the language in which it is written - they will

convert it, if necessary. But seldom will you go to another organization to find

code that you need. Can you imagine Microsoft and Borland sharing source

code ? Forget it. There are instances where commercial developers license

software packages from other developers - it is less expensive than litigation.

Problem - new or unique software does not already exist. An entirely new
application can be based on a existing components (system calls, intrinsic
functions, internally reused segments, etc), but they must be blended into a new

overall package. Blending it all together to create a new application is still time-

consuming, even if 50% of it is built from existing components... In my opinion,

widespread software reuse will not happen on a nationwide basis and definitely
not on an industry-wide basis. It is unlikely to be harnessed on a domain basis.

What is wrong with software developed at LaRC? What should we do about it?

1. Funding is always inadequate because of the politics involved in selling a

facility modification project. The the higher the cost of a project, the less likely
that it will be approved by HQ. When it is approved, the budget has been

decreased too much to accomplish the overall job, let alone the software part.
So, ultimately, we must complete the project in-house. The transition time for a

50,000-line job is not instantaneous. When we do a job in-house from its

inception, the product is better, but the project takes longer because only minimal

resources can be applied. The solution begins with properly planning a job and
estimating the cost, including risk factors, and selling it for what it will cost, not for

what management believes HQ will approve it.

2. Documentation is generally poor - it is usually outdated and incomplete. Face

it, programmers like to write code, not documents. Programmers are extremely

optimistic estimators. When they have used their allocated time getting their

code to run, they do not have enough time to document anyway.
3. Management/customers do not understand the true costs of software. Most

managers believe that software is something that comes on a set of disks or CD-

ROM, costs $500, and has a life of 6-12 months, depending on when the latest

revision is released. Management fails to recognize that the developer probably
spent $1 million and 20 person-years to develop the initial release and must sell

200,000 copies to break even. Facilities automation personnel and/or contractor

personnel, by comparison, have performed miracles with $200,000 and 4 person-

years. Unfortunately, our products have been overshadowed by late delivery and
hardware reliability problems.

5O

How can software improvements be institutionalized at LaRC?
1. Define standards and the criteria for their applicability.
2. Train and equip developers better.

3. Apply newer, industry-proven techniques.
Aside: Software has improved. Consider that the applications we develop today
are significantly larger and more complex than their predecessors. I suspect that
most of us could rewrite some piece of software we developed a few years ago in
less time and far more robustly. So, what was it that really improved ?

What data should be collected on software developed at LaRC and how should
this data be used?

1. Description of the software - function, size, platform, language(s), etc.
2. Resources applied - personnel, cost, tools
3. Why it was developed - benefits
4. Techniques - requirements analysis, design, coding, testing
5. Lessons learned

Information of this type could serve two purposes. First, a project team could use
it for guidance. Secondly, after some period of time, a committee could evaluate
this database to establish recommended practices, identify common attributes
across different domains, identify common problems and how to avoid them,
develop cost/resource criteria for future software projects, etc.

How can we encourage problem (defect) reporting & collection at LaRC?
There are two distinct categories: pre-release and post-release. Pre-release is
the responsibility of the person(s) testing the software. Since the programmer
usually performs intial testing, any data is virtually meaningless. Post-release is
the responsibility of the users. I have found that encouragement is generally not
an issue in this case. Problems having potential safety impact - a portion of
which are software related - are reported when a subsystem fails. Under the
facilities Configuration Management program, the Facility Safety Head is
responsible for reporting such problems. Problems are generally reported when
a certain function of the software becomes important to a test. Generally, there is
no mechanism to report problems specifically with software at LaRC.

What suggestions would you make for how we should be developing software at
LaRC in the future? I believe an individual representing each software domain
(i.e. Blue team) should visit the SEI or a major commercial developer, spend a
few days observing, retum, draft a software development handbook, obtain
feedback from a different set of individuals representing each software domain
(i.e. Red team), revise the handbook, publish it, and encourage management to
enforce it.

51

0

B

IIm

o0_
B'%

"0

52

53

8
¢/) c_

_.,.,
LC3)
G_c_

e.., .C:

8
>,
(3)

i

"E_c_E
= ;°J

m t-

_E
o_

C _
_ u

E

54

O

iimmm

Illll I

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiii!!iiiiii_iiiiii_iiiiiiiiiiiiiiiiii!iiii_

i!i!iiiii!iii_!iiiiii_!!iiiiiiiiiiiii_iii
_ _i_ __i_i_i_!_ _

iiiiiii!iiii!iiii!iiil_i__ii_i!i!ii_iiii!!iiii

_iiiiiiiiiiiiiiiiiiii_iiiiiii_iiiiii!iiiiiiiiiil_!ii

iii_i_i!iiiiii_i!ii

I

m!

55

0

UL

0

in

56

57

0

L.

13.

C3
CO

'!"

IlU

43
0
CO

58

m,

0
co

..._

0
mmmm

0

59

0)

.....-

U)

Dmml

0
03

60

• • • • •

T _

im

0

6]

Reflections from a "Jurassic Progrmmner" on Software Development at LaRC

In 1972 the software development environment at NASA was very different. It was
a batch environment where the programmer's life revolved around the deliveries

of the "green tub" and the survival of data and programs on assorted paper media.

Some advanced programmers took advantage of 7-track tapes and data cells for
storage.

• The Revolution of 1975

Two major developments occured at the Center in 1975 that changed the scope and
way of doing software development forever.

The advent of micro-processors ended the monopoly held by discrete hardware
components or "random logic" in the implementation of control functions. This
also exposed engineers to "programmers" who were unfamiliar with hardware

and its associated engineering discipline. Critical real-time applications were

now in the hands of software developers and opened up the embedded domain.

Good programmers saw the value in adopting practices very analogous to those of
the hardware designers. As the electronics revolution continued, hardware
engineers were forced to become somewhat familiar with software.

The introduction of the interactive development environment was brought about
by the installation of a new operating system on the NOS mainframes and the

populating of selected offices with dumb terminals. Key-to-disk storage did away

with all of those card files. The terminal opened access to any programmer,

regardless of background. Requirements to pass proficiency tests on the use of the
system and FORTRAN in order to get a user number were deleted.

• Q&A: Was batch all bad?

Was interactive all good?

The answers to the two questions are No and No. In retrospect, I believe the batch

environment had several good attributes, and the interactive environment has

been a major factor in the lack of discipline we see today.

Pre-revolutionary programmers realized the value of desk checking and

flowcharting because it could take weeks to get a successful compilation if they
weren't careful. Plotting in a batch mode was often an extremely frustrating task!

Programmers were freed from the tedium of keypunching because folks at ACD

punched and verified from green and white coding sheets. This gave me an
opportunity to insert lots of good documentation and scan the code one more time

before committing to the initial submittal. The slower pace of life gave

programmers more time to sit and stare at their code. In fact, managers expected
them to behave this way.

62

In the interactive world, the lure of instant gratification at the terminal led to a

rush to the CRT. People routinely sat down and began typing wildly without even

a coding sheet. The most unfortunate result was that people could more easily

confuse activity with productivity. Often, the lowest level task - pounding the keys -
was the key measure of productivity.

• The Revolution of 1994 - better, cheaper, faster?

Here at Langley, times have changed. In fact, times are tough. Software is now a

real product, not just a by-product generated along the way to some higher goal

like a report. Software is a technology that needs to be transferred outside the gate

- and it needs to be good because of its added visibility. Quality issues are brought
up everywhere. The dilemma is how to get quality while operating under a
constrained budget.

• No more heroes - we have to work smarter

There is no more of the "green medicine" to throw at our software problems.
There are no additional people to hire. We must realize that faster CPUs and

graphics workstations and glitzy tools simply speed up the most visible portion of

the development process. Automating a poor process will get us nowhere.

We need to create a recipe for successful software development for the various
domains at LaRC. That is, learn from the mistakes that are often the best

teachers, share the tips and tricks, and reward the people who do the right things
throughout the entire lifecycle that result in quality software. We need to catch

our collective breath and treat software like an engineering discipline in order to

design, manage, document, maintain, and transfer knowledge.

In short, there is no license to meander anymore. The choice is ours: will we

remember the past or are we, as Santayana says, "doomed to repeat it'?

Pamela L. Rinsland

63

,- r,-

64

Software Enqineering & Ada Lab (SEAL I Tools

1) CADRE Teamwork CASE Tools:

a) Teamwork/SA (Structured Analysis)
b) Teamwork/RT (Real-Time Analysis)

c) Teamwork/IM (Information Modeling)
d) Teamwork/SD (Structure Design)
e) Teamwork/OOD (Object-Oriented Design)

f) Teamwork/Ada (Editor, Code Generator, Design Sensitive Editor)
g) Teamwork/SlM (Simulation Tool)
h) Teamwork/FORTRAN REV (rev. eng.)
i) Ensemble "C" Tools

o System Understanding (High-level rev. eng.)
- Function Understanding (Low-level rev. eng.)
- Documentation

2) Paradigm Plus (Object-Oriented Meta-CASE Tool) (4)

3) McCabe Tools:

a) Analysis of Complexity Tool (ACT)
b) Battlemap Analysis Tool (BAT)

c) Ada language parser

4) Ada Measurement and Analysis Tool/Diana (AdaMAT/D)

5) VAX Software Engineering Tools (VAXset)
6) NASA Intelligent Documentation Management System (IDMS)
7) InQuisiX - Reuse Repository

8) In-Circuit Emulators
a) Microtek MICE-V 386 Emulator
b) Microtek MICE-V 486 Emulator

c) HyperSource-386/486 Source/Assembly-Level Debugger
d) AMC ES-1800 80186 Emulator (2)

e) Emulation Support Driver (ESD) Software

9) CADRE Software Analysis Workstation (SAW) (2)
a) Interactive State Analyzer

b) SoftAnalyst
c) Probes for 80186/286/386, 1750A, Generic

10) Logic Analyzers/Oscilloscopes:
a) HP 16500A Logic Analyzer
b) HP 16530A Digitizing Oscilloscope Module
c) HP Probes/Preprocessor Interfaces for: 1553B, TMS320C30/31,

80486, HPIB-RS232-RS449, SCSI Bus, user definable
d) HP Performance Analyzer
e) HP Inverse Assemblers

f) Fluke Scopemeters (2)

65

11) TITAN SESCO Flight Equivalent Computer
a) SECS 386/30 Single Board Computer
b) SECS 186/30 Single Board Computer
c) SECS 80/1553B Single Board Computer
d) Memory board (386 -4M, 186- 512K)
e) Parallel and Analog I/O Modules

12) PROM Tools

a) TITAN/Data IO Flight Board Programmer
b) EPROM Erasers (3)
c) PROM ICE

13) PC Data Acquisition Hardware and Software
a) GPIB Boards and Software
b) AT-DIO-32F (10) AND DIO-96 Boards and software
c) SF-1 (2) Shuttle SFMDM Cards
d) LabVlEW For Windows Dev. System (2)
e) LabWindows
f) NI°DAQ DOS/Windows

14) Systems
a) VAXstation 4000 model 60
b) SUN SPARCstation 10

c) SUNserver 690MP
d) Novell 486 Server/UPS

e) Castelle FAXpress
f) SMTP Gateway PC
g) Various 386/486 PCs
h) Laser Printers (3)

15) Miscellaneous

a) Soldering/Desoldering station
b) Wire-wrap tools
c) Insertion/Deinsertion tools
d) Proto-Boards/Breadboards

e) Military & D-shell connectors and cabling tools
f) HP Power Supplies (4)
g) Optical Drives

For more information, contact Jerry Garcia at (804)-864-5888.

66

SESSION 3 Software Engineering Standards, Methods, and CASE Tools

Chaired by

Susan Voigt

3. I Model-based Software Process Improvement - Brenda Zettervall

3.2 A Study of Software Standards Used in the Avionics Industry - Kelly Hayhurst

3.3 A Software Tool for Dataflow Graph Scheduling - Robert Jones

3.4 Use of Software Through Pictures on CERES - Troy Anselmo

67

6 o q/ / N95- 16455

Model-Based Software Process Improvement

Brenda T. Zettervall

Naval Surface Warfare Center (NSWC)

Port Hueneme Division (PHD)

East Coast Operation (ECO)
Dam Neck

Virginia Beach VA

This presentation demonstrates our organization's approach to model-

based Software Process Improvement (SPI). Our organization, a Process

Transfer Technology Affiliate of the STARS program, was selected in April 1993

to participate as a field test site for the Software Engineering Institute (SEI)
Software Process Definition (SPD) project. The products tested included the

improvement model itself, descriptive modeling techniques, the CMM level 2

framework document, and the use of process definition guidelines and
templates.

The SPI model developed by the SPD project at the SEI represents a five

stage cyclic approach for organizational process improvement. The cycle

consists of the initiating, diagnosing, establishing, acting, and leveraging
phases. Our organization's three year Total Quality Initiative facilitated the

adoption of this model for our software improvement teams.

The process improvement infrastructure includes the steering committee,

SEPG team leader, the SEPG core advisors, Quality Management Boards
(QMB), and designated working groups chartered by the SEPG. The QMB's

directly support the strategic goals of the organization. Monthly briefings from
the SEPG team leader to the steering committee and the QMB's facilitate the

integration of the SPI initiative with the strategic business goals.
The SPD project at SEI field-tested the Process Framework Document for

CMM level 2 at our organization. The document provides checklists to determine

CMM compliance for each Key Process Area (KPA). In addition, we gained

insight into the necessary organizational components to support well-defined
processes.

Process Definition (PD) training was provided for our SEPG, Technology
QMB, and the Project Planning Working Group. Our SEPG recognized the need

to establish a documented standard approach for PD that all software

improvement teams can use (i.e. a well-defined process!). Our Process

Breakdown Structure establishes planning, definition, and enactment as the top-
level phases of the Process Engineering life-cycle.

68

The process planning phase is necessary to baseline and document the
current process by establishing the purpose and the high-level process flow. In
addition, it is important to set the policy that will over-arch the process and help
set the context for the follow-on process definition engineering. The process
definition phase is decomposed into three activities: layout, design, and
enactment information. The layout activity establishes the process relationships
by organizing the high-level entryltaskslvalidationlexit (ETVX) information and
defining the work flow and work products associated with the process. In
addition, a mid-level process flow is established during this step which will

facilitate using the information organizers in the design activity. The agents that

will perform each task are also identified during this activity.

The design activity of the definition phase is characterized by the use of

multiple information organizers (i.e. templates) which provide the necessary data

to develop the enactment information. Measurement criteria and the validation

method are further defined in this stage of process definition.

The development of the enactment information is the last activity to be

performed in the definition phase of process engineering. The procedures must

be developed during this activity in order to trial test the process during a pilot

project. The training requirements for the process must also be established at
this time.

The enactment and process support is the final phase of process
engineering and constitutes the institutionalization of the process. This phase

must establish process control and process assurance procedures to ensure that

the process has the ability to improve. A training plan is important to support the

on-going use of the process.

The outer ring represents all of the work products developed during the

process engineering life-cycle. In an attempt to avoid shelfware, the SEPG is

targeting a Process User's Manual for each KPA that will contain only the

essential information required for the user of the process.

69

.. _'_iiiiiiiik._iil L _

il lh :i .:

[...

.1©<

>

II _ ,,,

0 > '_" "'
_0 0 >__-

n wN _
Za

W

111
|

W

0

m

0

I--

ct

7t)

..l!i_i!_ .,t
Ill #, . _

qq il li_i i,

tu

_ tuI,-.,

71

72

r._ _A_ _

,.,.,,,'_._ .,r+,...
+" +'NAak

ILl

I- m I I 0

73

w u .

mb-O

!

_-E ,7

"'I".
74

:, !|,-,,,•
_ .:_.__i_"

_Z

Z

ilz

o_,,<z
El

m

¢O

2

l-

r"

A

o._
n

o_
11. I%

ql

I--Z
_Z O

m

_z<O
Luz

o_
D. el)

li.l
Ixl
m

_I
,<
Z
O
m

I-

l-
m

l--

Z
m

ILl
m

El
n_

(.9

Ill
¢n

i!

El

:3
13
El
¢J
O

Z
O _

I-l.u
'ON

O(3
I.I=
Z _
--O

O
=.I
U.

El
Z
i

=J
El
Or)
,<
El

?5

"4 _NA'dl'_

Z
0
liD

El LI,.i

I,,IJ
0 _-
0

iiiiiiii[......-_ "

LU

;I_ .wO I
I-- _ I.) n I

On I
el,_ I

<0

z - o= _>
ILl Z E::'" "'- >

I.U o W I-- I.u
Z =,=,,._,,,. <.;

< OI.--w
_o_zO_

I I I II'm LLI_I: I I ::3_1_;_"

- "'"
_ °

z_ _1
z °_1

= N_1

0

u.

0
0
el,'

>

J

"r

"r

I-
Z
UJ

UJ
I--
,<
I--
U)

>-
(,1
m

-I
0
D.

7(;

?7

F,,
__iliiiiii'_' " ¸'_...... .iiiiiiiiiiii!iiiiiiiiiii:i_:_ L_ _

% __ili_ % _ _'_ i,..) C.) OO.,

on" LU _

_ z- _ o_-w_ _._Z: 5,,_i, ,,,o,..a_

. ,,,oU.I r,

" 5
,,, --ic-

I....

...j

78

a

0
0
o

0
o
z
0
I.-
o

0

-r

"I,,.

0

o

z
iii
n."
<

79

T

._"_

@

8O

1

,_) .4

_| iz

IE_

,q

. w

_a (m)

)

I--
Z
u.I
s;
I--
L)
<{
Z
iii

Z

o
P_
Z

LL

C

(_
ii

gum

i{

o ,o_, ,>,

81

mo

on

N=N

N.N

Z
W

W

W W

_ _ m Z
W W

0

82

'::::.........'+ _ I,,LI _

N A'__'_ W
I

LJJI--
0

<o

o __<_o_

,. _ o ,-o,_°
i

+i++t _+, '

i+++..... . .+,, + +,.
+- ++< _

Iii+i+:+_+:+2_ ! o,.-'i o,.o.

83

4 :N

F4 iqp

co)
nno

:3
C_
LLI

CO)

Z
Itl

LU
n,"
:3
(/)

I.U

(.9
Z

c/)
l.IJ
,_.I
0
nr

I---
Z
I.I.I

84

IIOOYI
N95-16456

A Study of Software Standards Used in the Avionics Industry

Kelly J. Hayhurst
Assessment Technology Branch

' C3_/_,- Research Technology Group _, j/

Within the past decade, software has
become an increasingly common element in

computing systems. In particular, the role
of software used in the aerospace industry,

especially in life- or safety-critical
applications, is rapidly expanding. This
intensifies the need to use effective

techniques for achieving and verifying the
reliability of avionics software. Although
certain software development processes and
techniques are mandated by government
regulating agencies such as the Federal
Aviation Administration (FAA) and the

Department of Defense, no one methodology
has been shown to consistently produce
reliable software. The knowledge base for
designing reliable software simply has not
reached the maturity of its hardware
counterpart.

To date, existing software development
methods and standards have been accepted
largely based on intuitive arguments or
anecdotal evidence. The data typically
collected from a software development
process include a description and some
classification of faults identified during the
prescribed development and verification
activitics and the final software product.
From a statistical perspective, this
represents a single replicate of development
information. From this single replicate,
some insight could be gained into the
feasibility and impact of the software
development method on that particular
implementation of software. However, the
single replicate does not provide enough
information to make statistical inferences

with confidence about the effectiveness of

the development method in general and it
provides little information about the
operational behavior of the software. To
provide the empirical data necessary to
scientifically evaluate and improve software
processes and product reliability, controlled
experimentation that accounts for the
performance of software during operation is
needed.

In an effort to increase our

understanding of software, Langley
Research Center has conducted a series of

experiments over the past 15 years with the
goal of understanding why and how
software fails. With an increased

understanding of the failure behavior of
software, improved methods for producing
reliable software and assessing reliability
can be developed. As part of this program,
the effectiveness of current industry

standards for the development of avionics
software is being investigated. This study
involves the generation of a controlled
environment to conduct scientific

experiments on software processes.
The Guidance and Control Software

(GCS) project involves the establishment of
an experimentation test-bed to monitor and
study the application of software
development methods and collect data that
can be used to make statistical inferences
about the effectiveness of those methods.

This test-bed allows the development and
simulated operational testing of multiple
implementations of a guidance and control
application that was adapted from the
terminal descent phase of the Viking
lander. The test-bed is comprised of
software requirements for the guidance
and control application, a configuration
management and data collection system,
and a software simulator to run the control

software in a simulated operational
environment. The simulator is designed to
allow one or more implementations of the
GCS to run in a multitasking environment
and to collect data on the comparison of the
results from multiple implementations.

This test-bed provides a capability for
empirically investigating the effectiveness of
software development methods along with
investigating the reliability of the resultant

software. Currently, the GCS test-bed is
being used to investigate development and
verification techniques that comply with the
Requirements and Technical Concepts for
Aviation RTCA/DO-178B guidelines,
"Software Considerations in Airborne

Systems and Equipment Certification." The
DO-178B guidelines are used by every
commercial civil transport airframer and
equipment vendor since compliance with

85

these guidelines is required by the FAA for
developing software to be used in systems
or equipment certified for use in
commercial aircraft.

The purpose of the DO-178B document
is to provide guidelines for the production of
software for airborne systems that performs
its intended function with a level of

confidence in safety that complies with
airworthiness requirements. It is hoped
that following the guidelines in DO-178B
will ensure the production of reliable
software that is documented, traceable,

testable, and maintainable. The guidelines,
however, do not stipulate specific reliability
requirements for the software product since
currently available reliability estimation
techniques do not provide results in which
confidence can be placed to the level
required for certification purposes.

The DO-178B guidelines decompose the
software life cycle into three major
processes: a software planning process,
software development processes, and
integral processes. The software planning
process defines and coordinates all of the
project activities. The software development
processes are those processes that actually
produce the software product. These
include the requirements, design, code, and
integration processes. And finally, the
integral processes ensure the correctness,
control, and confidence of the software life

cycle processes and their outputs. The
integral processes consist of the
verification, configuration management,
quality assurance, and certification liaison

processes.
To study the effectiveness of the DO-

178B guidelines on the quality of the
software, a simple case study in which two

GCS implementations are being developed
is being conducted. Two teams consisting
of a programmer and a verification analyst
have each been tasked to develop an
implementation of the GCS following the
DO-178B guidelines within the GCS test-

bed. An extensive problem reporting
system captures relevant software error
information throughout the DO-178B
development process. This data includes:
a description of the software errors found;
the activity when the error was detected,

such as design review, unit testing, or
integration testing; and, action taken with
respect to the error. This data will allow us
to not only look at the number of faults

detected but, more importantly, the class of

faults found at different development stages

and the relationship among the classes of
faults found by the different verification
techniques. This information coupled with
the effort data for all development and
verification activities could provide some

insight into the effectiveness of the various
development and verification methods.

After the two implementations have
completed the DO-178B development
process, the final software products will
undergo testing in the simulated
operational environment to help identify
any remaining faults. These results could

provide further insight into the effectiveness
of the development methods and the
reliability of the final software products.

Due to the extent of the data collection

and configuration management procedures
used in the test-bed, any phase in the life

cycle of the GCS implementations can be
reproduced. This gives a researcher the
capability to go back to any one of the

stages of the development process, apply a
different development or verification
technique to the software, and compare the

resulting software to any previously
developed implementation. Hence, the GCS
development and verification environment
can serve as a test-bed for the analysis of
various software development and

verification processes.
Many lessons have been learned about

conducting software experiments during the
course of this study of the DO-178B
guidelines. A primary lesson is that a
simple case study is not an adequate
experiment design to evaluate an entire
software development process. Conducting
a more statistically rigorous software
experiment, however, would require
significant resources in terms of time and
man-power. Development of the GCS test-
bed, though, is a step toward conducting
the experimentation necessary to provide
the empirical data we need to scientifically
evaluate and improve software processes

and product quality.
The presentation provides further detail

about the study of the DO-178B guidelines
and the effort to conduct valid software

experiments.

86

A Studyof Software Standards

Used in the Avionics Industry

Kelly J. Hayhurst
Assessment Technology Branch
Research and Technology Group

The Role of Computers in LaRC R&D Workshop
June 15, 1994

Outline

• Background

• Software Standards

• Guidance and Control Software Project

• Summary

8"/

Background

• Software is used in a wide variety of applications:

• video games, answering machines, anti-lock brakes on
cars, automatic teller machines, ..

• Software has many benefits compared to its
hardware counterpart:

• allows for more complex logic

• provides increased flexibility

• easier to modify

• Use of software is increasing in life- and safety-
critical applications

• avionics, Airbus 320

• control of nuclear power plants

Software Engineering

• Software is a logical rather than a physical system
element

• Software is developed or "engineered" -- not manufactured

I The establishment and use of sound engineering |
principles to economically obtain reliable
software that works efficiently on real machines

• Engineering: the application of a systematic

approac:h based on science and mathematics,
toward the production of a product, process, or
system

88

Reliable Software

• Achieving reliable software is a global problem

• no one knows how to generate perfect software

• Many proposed software reliability models (since
'64)

• Inadequate for estimation about life-critical software
- most consider reliability growth based on faults found in

development, as opposed to operational reliability

• Often based on simplistic (unverified) assumptions

- constant failure rates

- stochastic independence

• Little existing data available to validate models

Software Dilemma

Software can significantly expand

system capability

-.---C> Since we don't know how to build

perfect software -- Risk

.....
How do we deal with these risks?

©
?

©

89

Software Standards

• There are a number of software guidelines/standards
used in industry

• DO-178B, used by the Federal Aviation Administration (FAA)

• DoD-2167A, used by the Department of Defense

• ISO 9000

• Provide the guidelines for the production of software
that

• performs its intended function

- with some level of confidence that complies with the given
requirements

Software Standards

• Many software development techniques, models and
standards exist and are in use

• most have been accepted largely based on logical arguments
or anecdotal evidence

"...we need to codify standard practices for software

engineering -- just as soon as we discover what they

should be. Regulations uninformed by evidence,
however, can make matters worse."

-- from Digital Woes (Why We Should not Depend on Software),
by Lauren Ruth Wiener

9O

Focus

We need to become "...informed by evidence"

Conduct scientific experiments to understand:

• software failure

- need to examine operational behavior of software

• the effect of different software development techniques

- relate that understanding to process models and standards

Conduct Experiments!!

Collect Empirical Evidence!!

Software Experiments in ATB

GOAL

Establish a controlled environment to conduct

scientific experiments to address:

_-the reliability of software and
the effectiveness of software development methods

• Guidance and Control Software (GCS) Project

• study of the RTCA/DO-178B guidelines (Software
Considerations in Airborne Systems and Equipment
Certification)

; s

• "sponsored" by the FAA

91

RTCA/DO-178B Guidelines

• FAA requires compliance with DO-178B for software
developed for embedded commercial aircraft
equipment

• software designers must take a disciplined approach to
software development

• Gives general guidelines for software development
and verification according to "software levels" --
A-E

• A: anomalous behavior causes catastrophic failure
condition

• E: anomalous behavior has no effect on operational
capacity

Software Life Cycle Processes

• Plannincj Process: defines and coordinates the
software development activities

• Development Processes:

• Software Requirements Process

• Software Design Process
• Software Coding Process

• Integration Process

• Integral Processes: ensure correctness, control and
confidence

• Software Verification Process
• SoftwaPe Cohfiguration Management Process

• Software Quality Assurance Process
• Certification Liaison Process

92

Development & Verification Flow

Oe e'° men 'O've'° Oesign 'n'eir te'Activities [-_Software llSoftwareI1SoftwareRqmts." - , M°dules/

Artifacts
Produced

Verification
Activities

,1
software I
Rqmts.

Review

D_SoftwareI JUnits c Integrated I IOperationail

_ Code

lnteTgr;_i°

I

DO-178B Life Cycle Data

Life Cycle Process

Planning

Development

Integral

Life Cycle Data

Plan for Aspects of Certification

Development Standards
Accomplishment Summary

Requirements Data

Design Description
Source Code

Executable Object Code

Verification Plan
Verification Procedures & Cases

Verification Results

Configuration Management Plan
Configuration Management Records

Development Environmerlt Configuration Index
Configuration Index

Quality Assurance Plan
Quality Assurance Records

Problem Reports

93

CASE Tools

• CASE tools can be used in the development of
airborne software

• Any tool used must be qualified

• Qualification is done by type:

• Software Development Tools: whose output is part of the
airborne software

- ex. source code generator

• Software Verification Tools: tools that cannot introduce

errors -- but may fail to detect them

- ex. analysis of complexity tool

CASE Tools Qualification

For Software Development Tools:

• show that the development process used for the tool is
equivalent to that used for the airborne software

For Software Verification Tools:

• show that the tool complies with its operational
requirements under normal operating conditions

94

Study of DO-178B Guidelines

• Work with the FAA to evaluate methods that comply
with the DO-178B guidelines

• Base study on earlier work done at the Research Triangle
Institute to study the DO-178A guidelines

• Experiment Design: One Shot Case Study

X O

' Apply DO-178B and see what you get

Guidance and Control Software
Project

• Develop software according to DO-178B

• use a guidance and control application

• complete the life cycle starting from software requirements
through integration

• Provide a controlled environment

• extensive documentation and configuration control

• extensive data collection

- failure data

- effort and cost data

• Simulate _operation of the software to:

• determine remaining faults

• determine reliability

95

/'Purpose:

The GCS Application

(I) Provide guidance and engine control of a

planetary landing vehicle during terminal
descent to the planet's surface

(2) Communicate sensory information about the

vehicle and its descent to a receiving device
J

Requirements are based on a

simulation program used to study
the probability of success of the

1976 Viking Lander mission to Mars/_

Terminal Descent Trajectory

Parachute Descent

Engines Begin Warm-up

Chute Released

(Terminal Descent Begins)

Drop ght

Touch Down

96

Software Composition

The guidance and control software is composed of:

11 Functional Units which are divided into:

3 Subframes:

Sensor Processing

Guidance Processing

Control Law Processing

1 Frame = 1 iteration of the 3 subframes

1 Trajectory = - 2000 frames

GCS Development Processes

• Producing 2 GCS implementations

• each implementation has a designated programmer
& verification analyst

• Each development team uses the same
software high-level requirements document

• Designs generated using teamwork

• conduct design review using formal inspection

procedures

• Implementations coded in FORTRAN

• projected' size: 1500 - 2000 lines of code

• conduct code review using formal inspection
procedures

9?

Integration Process

• Code is integrated at 4 levels: functional units
subframes
frames

trajectory

• Testing conducted at all 4 levels to:

• demonstrate that the software satisfies its requirements

• demonstrate (with high confidence) that errors which could
lead to unacceptable failure conditions have been removed

• 100% coverage for requirements-based tests

• 100% modified condition/decision coverage

Development Products
Software

Requirements

Design

Desig
T

Code

Code Review

Unit Test

Subframe Test

Fram_ Te_it

Trajectory Test

98

More Products

l SoftwareRequirements
T

Design

Desig_Review_
Code

Code Review
T

I nit Test+
f Subframe Test _

I Frame Test

[Trajectory Test

Design milestone 0

Design milestone 1

Design milestone 2

Design milestone 3

Design milestone 4

Design m_destone 5

Design milestone 6

Design milestone 7

......-

I

Code milestone 0

Code milestone 1

Code milestone 2

Code milestone 3

Code milestone 4

Code milestone 5

Software Products

• Each software product (requirements, design, code,
test cases, documentation) is placed under
configuration control starting with the initial version

• the Code Management System (CMS) by Digital Equipment
Corp. is being used

• Each subsequent change to a software product is
controlled and captured by the configuration
management system

• All versions of any software product are preserved
and can be reproduced

QQ

Experiment Basics

• Independently generate "n" implementations of the
GCS

• each following the development methodology defined in
DO-178B

• Collect effort/cost data for all development and
verification activities for each implementation

• Collect data on all faults identified in the software

products throughout the development and
verification processes

• Collect data on all faults identified in simulated
operation

GCS Simulator

• Provides inputs (about environment & lander) for
sensor processing

• Performs response modeling for the guidance and
control

• Receives data

Sensor Inputs

GCS Iml

Sensor Processing

send data

Guidance Processing

send data

Control Law Processin(

send data

)lementation J

recor_
data

recor
data

recorl
data:

A

espoll isel

lodeli _g l

J •

i

J

!

100

GCS Simulator

• Serves as a testbed for back-to-back testing of

multiple GCS implementations (up to 28)

• For back-to-back testing, one implementation is

designated as the "driver" implementation

• The results of all implementations are checked at
the end of each subframe

• for limit errors, comparing each variable against its
predetermined valid range

• for accuracy errors, comparing results of each
implementation with results of the driver implementation

• All miscomparisons are recorded and investigated

to determine the source of the problem

Operational Failure Characterization

/

_l Gcs b-7
Ilmplemen!at'_,_ 1

GCS

Implementati_,_2

/
Dr _ '

GCS

mplementatip/_Yn I /

GCS Simulator L " V

Examine

• Use the software failure data to

• estimate reliability of final version of each implementation

• determine effectiveness of the development methodology

I01

Understanding the Failure Data

Questions of Interest

-- How many faults in the set?

-- What types of faults?

-- Are there any critical faults?

-- Are there classes of faults found

during random testing that are
different than those found during
DO-178B development cycle?

Studying Effectiveness

GCS Simulator

co0eeviewed

ersions

GCS Simulator

_vFinal _
ersions

Are these fault sets equivalent?

-- Is the integration process more effective (or efficient)
compared to other fault detection methods?

102

GCS Project Status

• The following project artifacts have been developed:

• Requirements for the guidance and control application

• Configuration management system

• GCS simulator

• Data collection system

• Project documentation

• 2 implementations are in the Design phase of
development

• Plan to complete development by end of December
'94

Lessons Learned

• Be prepared to document - and document -- and
document

• Allow sufficient time up front for planning -- and
documentation of those plans

• Tools can be helpful

• can help you organize and track items more efficiently

• Tools can be hurtful

• it takes time ($$) to learn all about new tools and how to use
them

- allow for such time while planning

• everyone involved with the output of a development tool
needs to understand that tool

103

More Lessons

• Complying with the DO-178B guidelines is not
cheap

• developing critical software is time, man-power, and
documentation intensive

• Collecting data -- software failure data and cost/
effort data -- is difficult

• software problems are often complex

• changes can impact many project artifacts

• reluctance to accurately account for development effort

Summary

I Gathering empirical evidence is difficult 1-- But IMPORTANT!!!

• GCS project provides a controlled environment to
observe and collect empirical data on software
development methods

• Realistic guidance and control application

• Applying industry-standard guidelines and practices

• Provide data to increase understanding of software

development processes and the quality of their
products

• improve software processes & product'quality

• improve reliability estimation methods

• provide input for improving software standards

104

Project Plans

Make the GCS testbed available to other researchers

Improve the experiment design to allow more
statistical analysis

GCS Package / /

Software Requirements

Intermediate & Final Development Produc

Verification Products (Checklists, test cases

Simulator

Documentation

:s

e c.)

/
/

105

oq5 ll OO,-AT- N95.16457

A Software Tool for Dataflow Graph Scheduling

Robert L. Jones III /0.

NASA Langley Research Center

K

A graph-theoretic design process and so_ware tool is presented for selecting a

multiprocessing scheduling solution for a class of computational problems. The problems of

interest are those that can be described using a dataflow graph and are intended to be executed

repetitively on multiple processors. The dataflow paradigm is very useful in exposing the

parallelism inherent in algorithms. It provides a graphical and mathematical model which

describes a partial ordering of algorithm tasks based on data precedences. That is, some tasks

must execute in a particular order whereas other tasks may execute independent of other tasks.

Dataflow graph nodes represent schedulable tasks and edges represent the data dependencies

between the tasks. Analytical analysis of the dataflow graph is possible for many digital signal

processing (DSP) and control law algorithms which are deterministic. For determinism, the

model is applicable to a class of dataflow graphs where the time to execute tasks are assumed

constant from iteration to iteration when executed on a set of identical processors. Also, it is

assumed that the dataflow graph is data independent. Any decisions present within the

computational problem must be contained within the graph nodes rather than described at the

graph level. Special transitions called sources and sinks are also provided to model the input and

output data streams of the task system. The presence of data is indicated by marking the dataflow

graph with tokens. The graph transitions through markings as a result of a sequence of node

firings. A node is enabled for firing when a token is available on every input edge of the node,

indicating that the task has all of its operands. When the node fires, it encumbers one token from

each of its input edges, delays an amount of time equal to the task latency, and then deposits one

token on each of its output edges. Sources and sinks have special firing rules in that sources are

unconditionally enabled for firing and sinks consume tokens, but do not produce any. By

analyzing the dataflow graph in terms of its critical path, critical circuit, dataflow schedule, and

the token bounds within the graph, the perforrnance characteristics and resource requirements can

be determined a priori.

As for any mathematical model, there is a need for efficient software tools which facilitate

the use of the model in solving problems. A software program, referred to as the Dataflow

Design Tool, was developed at Langley to apply the dataflow model and design multiprocessor

solutions for spaceborne applications. The tool was written in C++ for Microsoft Windows 3.1 or

NT can be hosted on an i386/486 personal computer or compatible. The Design Tool takes input

from a text file which specifies the topology and attributes of the dataflow graph. A Graph Tool

was developed to facilitate the creation of the graph text file. The various displays and features

are shown to provide an automated and user-interactive design process which facilitates the

selection of a multiprocessor solution based on dataflow analysis. Performance metrics

determined automatically by the Dataflow Design Tool include the minimum time to execute all

tasks for a given computation (schedule length), the minimum time between graph input and the

corresponding output (TBIOlb), the minimum graph-imposed iteration period (To), and the

minimum time between outputs (TBOlb). Also, the tool determines if tasks can be delayed a finite

amount of time without degrading performance, referred to as slack time. Since the edges imply

the physical storage of data, the tool can calculate the minimum data buffers required for proper

106

sharingof data between tasks. In addition to numerical performance metrics, the tool graphically

portrays system behavior using Gantt charts and resource envelopes. The Single Graph Play

displays the steady-state task schedule associated with a single computation, and the Total Graph

Play displays the periodic, steady-state task schedule over a single iteration period.

The analysis and multiprocessor mapping of a finite impulse response (FIR) filter is

illustrated. A linear phase FIR filter is selected since it requires half the number of multiplies of

other FIR realizations. DSP problems are very suitable for dataflow analysis since they are

typically described as signal flow graph. One can easily translate signal flow graphs to dataflow

graphs by locating the computations (addition and multiplication) and representing unit delays

(inverse z terms) with initial tokens. Once the filter has been captured into the Graph Tool it can

be analyzed by the Dataflow Design Tool to expose the inherent parallelism and determine graph-

theoretic performance bounds. Since there are many realizations of the same filter, characterized

by different dataflow graphs, the Dataflow Design Tool can be useful in determining which

realization exposes the most parallelism. The SGP shows that some of the additions can execute

in parallel (C1 through C4), enabling the parallel execution of the multiplies, and finally the

sequential summation to generate the output sample. The SGP bars are shaded to depict the read,

process, and write activities of the processor, and the hollow bars denote slack time associated

with some tasks. In addition to the parallel concurrency, the TGP shows pipeline concurrency

that may be exploited. In this example, the TGP shows that at most 4 different data samples may

be computed within a sampling period of 224 time units. The Total Resource Envelope shows

that 10 processors are required to achieve this level of throughput. The dataflow analysis applied

to the dataflow graph and portrayed in the graph play diagrams assume infinite resources

(processors and memory) so that the exposed parallelism is limited only by the data precedences.

If there is not enough resources to exploit the inherent parallelism, the schedule must be

optimized. As an example, lets assume that a fully-static schedule (i.e., a task will execute on the

same processor for every iteration) on 8 processors is desirable to minimize run-time overhead.

The Dataflow Design Tool shows that such a solution can be achieved by inserting two additional

"artificial" data dependencies and increasing the sampling period to 260 time units. The tool can

also display the periodic memory accesses within a periodic schedule. Such an assessment may be

useful to optimize the schedule based on the limited bandwidth between processors or processors

and memory. Once a desirable solution is obtained, the tool can summarize the scheduling

constraints in terms of earliest start (ES), latest finish (LF), and slack time. The summary of run-

time requirements include task instantiations (INST) defined as the number of processors a task

will have to execute on simultaneously for different data sets. For a fully-static schedule, one

would expect all instantiations to be 1 as shown. Also, the buffer sizes (QUEUE) for shared data

is given along with the number of initially empty buffers (OE) and the number of initially full

buffers (OF) due to initial data.

In summary, the dataflow paradigm provides a general model suitable in exposing

parallelism inherent in algorithms as fine-grain as filters to more computationally complex

algorithms where a node might represent an entire filter. When the algorithm is deterministic, the

Dataflow Design Tool can analytically determine the steady-state behavior, performance bounds,

scheduling constraints, and resource requirements. By permitting the user to insert artificial data

dependencies, the dataflow schedule can be optimized to match resource requirements with

resource availability.

107

A Software Tool for Dataflow

Graph Scheduling

June 15,1994

Robert L. Jones III

NASA Langley Research Center

tlantpton, Virginia

Outline

• Functional Overview

• Analysis of a DSP Filter

• Static Scheduling and Optimization

• Summary

108

Dataflow Design Tool

TaSk System, (q;, _ -<, _)

• 'T Set of Tasks

• /, Fixed Task Latencies I'-"_
y• .< PadiaI-Order on T

• _ Initial State

Dataflow

Graph (DFG)

Performance Bounds

• Schedule Length, o)

• Time Between tnput& Output,

TBIO_

• Minimum Iteration Period, T o

• Time Between Outputs, TBO,_

• Slack

• Processor Utilization

Dataflow Graph

• Nodes Represent 'T

• Edges Describe -<

• Tokens Indicate Presence of Data

• Initial Marking = _fo

Run-Time Requirements

• Task Instantiations

• Processor Requirement

• Data Buffers

• Artificial -<, Control Edges

Graphical Displays
• Gantt-Chart Task Execution

• Single Iteration (SGP)

• Periodic Execution (TGP)

• Resource Envelopes

Eight-Order, Linear Phase FIR Filter

Tasks Instructions

Direct Form Signal Flow Graph

z.t

x(n)

C1+

C2+

z -1 z"1 C3+

-- c4+
,L _ ,(I cs-
• [[I cs"
i r I -t C7"1\ z c.1 C9÷

z l C10+

 I-o 1 -o c1,÷

_ y(n)

x0 = x(n) + x(n-7)

x1 = x(n-t) + x(n-6)

x2- x(n-2)÷ x(n-S)
x3= x(n-,l)+ x(n-4)
x4= xo* h(O)

= Xl " h(1)

xs = x2 " h(2)

x7 = x3 * h(3)

X 8 = X 4 + X 5

xg=_+xs

y(n) = x7 + x_

A DSP signal flow graph is a Dataflow Graph where the z -1 unit delays can be
modeled with initial tokens. Thus, run-time implementation of delay does not

incur any overhead. Unit delays are simply implemented by initializing FIFO

queues used for intermediate data.

109

Dataflow Graph Capture of FIR Filter

Graph Tool

,-,, _ _v,l_l i il,.i i:l,-i ilzl_i., dll,_i

_lle _.dll iooll _llplly _lndow Ilua

I 'l'l
Help

Multiprocessor Implementation Example

Assumptions:

Performance

Division of Effort

_ol_enlllng = 1500

Rlt'ld/Wfile _ 290

0vedKead = 1 £.?

Shared memory with no contention
Multiplies take 200 time units
Additions take 100 time units

One-operand read/writes take 10 time units

Two-operand read/writes take 20 time units

Data-Driven Schedule for One Iteration

,_ IIIIII_ lUll
Ols411oy

g-Order FIR Filter

:u- I I
:it,. I I

I i n I

'=" 1 I 1

,4. I :: _ ::1::::: :::1 I I I

_, • I t i i
I I I

1--[] _ ;......... , ii_,-o,m_ ;
I

'1 I m I
T_

':_" . I I I
[] • II

L:"'" ' t I
i I L

TIME 0 (740)

_ Ellatt_

110

Exposing the Parallelism in the FIR Filter

Steady-State Periodic Schedule

I _.... I -I=
lm, IGled

g-Order FIR Filter
_1 I+ t

_,,,. I2

1

4

I I L ::.... ,:, ,,

I :: " "

:::::::::::::::::::::::: :::::: :::::::::::.: :: : : : [
(:6' j 4

I i

IME 0 (224) I ' _3

l

Speedup Potential

St_'_K/p
lo =.o _o •.(. .'_ &o ,.o =o

i 2 3 • S 6 ? O

Pru_mow

Processor Requirements

Optimization for 8 Processors
A fully.static schedule is desired for minimum run-time overhead.

Single-Iteration Schedule
iill I [] []

g-Order FIR Filter
tit+ I

¢1.. I

l

c,- I

c_

t
m

I

g$" ['cJ*

I

,1 I
I

I

I

ii _'1 Artificial _ataPfecedenCeSc2÷Cl+-<.<C3÷C4+

l Periodic Schedule

8-Order FIR Filter]
¢11. " 1

OW k:.::::: :: ::::: :;:;:;:]

111

Fully-Static Processor Requirements

Sampling Period = 260 t/me units

Processor Assiqnments

P1 {C1+, C4+}

P2 {C2+, C3+)

(CS']

P4 {C6"}

P5 {C7"}

P6 (C8"}

P7 {C9+, C10+}

P8 {C11+}

Total of 8 DSP Chips are Required

8-Order FIR Filter [

Analysis of Memory Access

Optimized schedule has better distribution of memory accesses which e.g., can

be accomodated with 6 Independent communication ports in the TMS320C40's.

Unoptimized Schedule

_P.r P*,=
8-Order FIR Filter
c.. L

L....,..,,.
_.,.:...,.. ;............... : ..1 l

...... : ::: IIm

,. , °

:P :::: roll ,

::llm I = :

TIME 0 (224) _ ::_.,

L__...J

Too many localized memory
referencest

Optimized Schedule

i illl]-

8-Order FIR Filter

1 1--

_.'-°"H:::: •!:: :::•am _.....
J

c4.

m : : : : : : : : : ::::: ::: ¸¸:¸:::::¸:::¸::::¸::::am

-- :V.:=:I:,:, : :=i

TIME O (260)

Memory references are more

evenly distributed.

112

Summary of Fully-Static Multiprocessor Solution
FIR Filter

_,_E _n_c_ (s _ SL_C_ mT OUOr OUtU_
n i 14-> c4, s -_,c4, I_)I

IIs--_ c)* s-> c_. H
116->c?. I-->c2. lii:l
I I]-->c,. d->c4. li]il
i I _-> c3, 3-> c_, i_i::l
a#_ -> cz* z -> c2, l]]:il

,,,->C-- ,-> c1+ H
cs* I_ * I_o o 1 t le-_ca* _-_ ca* |]']I

C,?t I)41 I I)0 | I | I |-> C3,I+ I -> C/I Iiil

,,+-,.- ,-,c.-H

I:_{!
C4+ I _11 130 IqJg I)1 I I 0 -> Cl" I -> C4P

Clr 2_0 210 11 o 1)l z I o -) C I I * l -) CI I •. . ,0 . 0 i??iiii?:iii :lil
Cl|t 130 4|0 I_10 il 1 /11->C1'1_ I -> Cltt

iln

tilt I)II 610 I_1 il

Summary

• Dataflow provides a general model of computation
capable of exposing fine- and large-grain
parallelism.

• Design Tool provides analytic, compile-time
prediction of:

- Steady-state behavior

- Graph-theoretic performance bounds

- Iterative run-time scheduling criteria

• Permits inclusion of artificial precedences for
optimization.

• Facilitates selection of static run-time schedules.

113

Use of Software through Pictures on CERES

The CERES team has been using the YourdorffDeMarco Structured Analysis/Structured Design

methodology to develop the data management system for producing higher order science data

products from CERES instrument data. As part of this effort, the team is using the Software

through Pictures CASE tool to automate portions of the methodology. This presentation

addresses the team's experiences with the selected methodology and CASE tool, describes lessons

learned, and provides recommendations for other teams contemplating the use of structured meth-

odologies and CASE tools.

Software Engineering methodologies can help developers create systems in less time with higher

reliability and quality by providing tools for managing the complexity inherent in software sys-

tems and development programs. CASE tools can facilitate using a methodology by providing

tools for creating and maintaining requirements and design models, automating consistency and

completeness checking, and automating much of the bookkeeping associated with following the

methodology. This allows developers to focus on the creative aspects of software design and
development.

Overall, our experience on CERES has been that structured methodologies and CASE tools prove

useful in creating, maintaining, and documenting high quality requirements and analysis products.

Although the learning curves associated with these tools require an investment in time and train-

ing early on, the benefits to be gained are well worth the effort and our productivity continues to

increase as we become more familiar with the methodology.

To date, the CERES data management team has used the tool to model more than 130 data prod-

ucts down to the level of atomic variables, define each data element in terms of type, units, accu-

racy, and number of bits, and create documentation from the information stored in the models.

Since the CERES system is primarily a science data processing system which generates more than

5 terabytes of data per month, focusing on the system's data products has led to a deeper under-

standing of processing needs and resulted in higher quality functional requirements. Furthermore,

the graphical editors and consistency checking features provided by the tool have allowed the

team to rapidly iterate through the modelling process in less time than would have been required
without the tool.

The data management team is currently analyzing system functional requirements by modelling

the functionality needed to process instrument and higher order science data. Here again, the tool

speeds up the process of iterating on the model to converge on a final solution. In addition, the

tool has allowed the team to automatically produce software requirements documents in a stan-
dard format from information contained in the CASE tool database.

We have incorporated several customizations in order to tailor the CASE tool to support the spe-

cific processes employed on CERES. These customizations include creating templates for pro-

ducing CERES-specific documentation, enhancing the CASE tool main menu, and integrating

the CASE tool with the FrameMaker desktop publishing package. The CASE tool is supplied

with templates for producing documentation that complies with military software standards.

Since these standards were not appropriate for NASA publications, we developed templates for

114

several documents including a Software Requirements Document, Data Products Catalog, and

Data Dictionary as well as several utilities to provide hard copies of details stored in the tool's

database for developer's use in reviewing their models. We have also modified the tool's main

menu to simplify the user interface for creating documents. Finally, there are several places in the

tool where the developer adds detail to the requirements or design model by entering free form

text. These items include functional descriptions, data product descriptions, and interface

descriptions. The CASE tool only supports ASCII text and, since much of our processing is

described in terms of equations, tables, and graphics this restriction limited our ability to fully

describe the necessary processing. Therefore, we have modified the tool to allow the use of

FrameMaker (desktop publishing/word processor) for entering descriptions of functions, data

products, and interfaces. This allows a designer to include any combination of text, graphics,

tables, and equations in these descriptions which are then included directly into the documenta-

tion produced using the tool.

Our experience indicates that when combined with well-structured methodologies, CASE tools

can provide a important component of a development environment which helps designers create

software products with higher quality in less time. However, the key to achieving productivity

gains is the process used to design the software. The processes incorporated in structured analysis

and structured design provide a sound framework for creating complex software systems and

must be adopted in order to derive any benefits from the use of automated tools such as Software

through Pictures.

115

o
.I=

._u
_. _ C_

.C er
01 CJ _

O_ 0 0_C_ rem =
ow _9"" E ®

0

0 "--
CfJ ° cL

0 ®
_I o o

re

b- (n

116

C
0 0

g =

m E

Z

117

118

2 8

119

120

/

*-(/)

m

•-_ ww
_ 4) t'-
_.o_o

og)
_>_nc

121

E

({nm_ • •

122

0
m

t-
ot
rr

0
m

I1_
Z
0
t.)

0
0

ul

0

0

123

124

q,m

0 • • _ 4- 4" '4-

HI • •

125

126

E

a"v" • • •

• •

127

""=

e r_ .:

128

SESSION 4 Solutions of Equations

Chaired by

Olaf Storaasli

4.1 Rapid Solution of Large-scale Systems Of Equations - Olaf Storaasli

4.2 Solution of Matrix Equations Using Sparse Techniques -Majdi Baddourah

4.3 Equation Solvers for Distributed Memory Computers - Olaf Storaasli

129

354 o _c/" //0o
N95. 16458

Rapid Solution of Large-scale Systems Of Equations

by Olaf O. Storaasli, (O.O.Storaasli @ larc.nasa.gov or 804-864-2927)

for Workshop on the Role of Computers in Langley R&D (6-15-94)

The analysis and design of complex aerospace structures requires the rapid

solution of large systems of linear and nonlinear equations, eigenvalue extraction
for buckling, vibration and flutter modes, structural optimization and design
sensitivity calculation. Computers with multiple processors and vector capabilities
can offer substantial computational advantages over traditional scalar computers

for these analyses. These computers fall into two categories: shared-memory
computers (e.g., Cray C-90) and distributed-memory computers (e.g., Intel
Paragon, IBM SP-2).

Shared-memory computers have only a few processors (16 on a Cray C-90),
which rapidly process vector instructions (simultaneous adds and multiplies) and
address a large memory. Information is shared among processors by referencing
a common variable in shared-memory.

Distributed-memory computers may have thousands of processors, each with

limited memory. Explicit message passing commands (i.e. send, receive), are
used to communicate information between processors. Such communication is
time consuming, so algorithms need to be designed to run efficiently on
distributed-memory computers.

This presentation will cover general-purpose, highly-efficient algorithms for:
generation/assembly of element matrices, solution of systems of linear and
nonlinear equations, eigenvalue and design sensitivity analysis and optimization.
All algorithms are coded in FORTRAN for shared-memory computers, and many
adapted to distributed-memory computers. The capability and numerical
performance of these algorithms will be addressed.

O. Storaasli, D. Nguyen, M. Baddourah and J. Qin (1993), "Computational
Mechanics Analysis Tools for Parallel-Vector Supercomputers", AIAA/ASME/
ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference
Proceedings, Part 2, pp. 772-778 (Int. J. of Computing Systems in Engineering,
Vol 4, No. 2-4, 1993)

130

Dr. Olaf Oliver Storaasli is a senior research scientist in computational mechanics

at the NASA Langley Research Center, Hampton, Virginia. He began his career
at Langley after receiving a Ph.D. degree in Engineering Mechanics from North
Carolina State University in 1970.

Long before parallel computers were commercially available, Dr. Storaasli led a
hardware, software and applications team at NASA Langley Research Center to
develop one of the first parallel computers, the Finite Element Machine. He has
authored over 80 works in computational structural mechanics including static

and dynamic structural analysis, eigenvalue and optimization methods,
interdisciplinary analysis, data management, and parallel-vector structural
analysis methods on supercomputers. He received the Floyd L." Thompson
Fellowship of NASA Langley Research Center for post-doctoral research at
Norges Tekniske Hogskole in Trondheim, Norway, and Det Norske Veritas, Oslo,
Norway, during 1984-85 and has been invited back twice since He received 5
NASA-wide and 8 Langley Achievement awards for outstanding work in
Computational Structural Mechanics. These awards included significant
contributions to the NASA Viking and Integrated Programs for Aerospace-Vehicle
Design (IPAD) Projects as well as to the development of Relational Information

Management (RIM), since developed into the commercial relational data-base
software: R:BASE. In August, 1989, Cray Research selected the general-purpose
matrix equation solution software, pvsolve, developed by Dr. Storaasli and his
colleagues, to receive the GigaFLOP Performance Award. pvsolve was used to
solve the 54,870 equations (9.2 billion floating point operations) in the Space
Shuttle Solid Rocket Booster structural analysis in six seconds elapsed time. His
recent research has resulted in methods to analyze a 172,400 equation (5,737

bandwidth) refined model of a high speed civil transport and a 265,000 equation
automobile (3,374 bandwidth) application in less than two minutes on the Cray C-

90 and a method to generate and assemble stuctural stiffness matrices on the
Intel Delta at speeds 25 times that of one Cray C-90 processor.

131

Dr. Olaf Storaasli
Computational Structures Branch

Mail Stop 240

NASA Langley Research Center

Hampton, VA 23681

Email: O.O.Storaasli@larc.nasa.gov
Phone: 804-864-2927

FAX: 804-864-8912presented at

Workshop on [P M J

The Role of Computers in Langley R&D
June 15, 1994, Reid Conference Center

NASA Langley Research Center Langley
Research

Center

IObjective I

• Faster, cheaper, better analysis/design
of large-scale structures

- Develop algorithms to exploit high-
performance computers

- Evaluate computational performance

Langley
Research

Center

132

IOuUinel

.@

• Supercomputers & Structural Models

• Structural Analysis

- Nodal Generation and Assembly

- Linear Equation Solvers

[__ Shared-memory computers

[__ Distributed-memory computers

- Nonlinear Equation Solvers

• Structural Optimization

• Design Sensitivity
Langley

Research
Center

=o.3

Parallel-Vector Speedup

16x20=320

300

20(

I ,°,_,Io,Speedup

T
Sequential

Code

5

10

Parallel Speedup

15

Vector
Speedup

5

Langley

Research
Center

e=.4

133

Cray C-90 and T-3D

Intel Paragon

I Being installed at NAS (160 proc) Iand [.aRC (48 proc) this summer

.@1Current world record holder

143 GlgaFLOPS for MP-Linpack

150

GFLOPS*

120

90

60

@

TMC

. CI'5

TMC Intel NEC 'r
CM-2 Delta SX/3 l,.,I /

I

1992 1993

30

0

1991 1994

* billion floating point operations per second

Fujitsu Intel

I

1995

Langley
RlMmarch
Center

al-a

134

• Generate mesh
(nodes and elements)

• Assemble stiffness [K],
mass [M], and load {p}

• Solve: [K] {u} = {p} for displacement,U
[K] {(p} = _. [M] {(p} for modes, (p

Repeat: multiple analyses for nonlinear & design

Earth Observation

form

Plot: u, stresses and vibration modes, (p

Langley

Research

CenW,

Performance Assessment Applications

Geostationary Platform

537 Nodes]

3,188 Equations [
1,647 Elements |

108 Bandwidth

_ Civil Transport

7,868 Elements _

16,1S2 Equations W _-
770 Bandwidth _'

Langtey

Research

Center
o_-e

135

I

.@ Langley
Research

Center
¢m.t

I Parallel-Vector Structures Algorithms I

Static

Ku=f

Substructuring
NL Algorithms

Eigenvalue

K_= _.Mq)

Subspace
Lanczos

Dynamics-Control

M;', + Cu + Ku = f(t)

Time Integration
Reduced-Order
Simulate Multibody

Flutter

K¢= ;LM¢

Unsymmetric
Choleski and
Lanczos

Optimization

bk, l= bk+ s kdk

Search methods
Sensitivity

Matrix Assemblers
- Finite Element based

- Degree-of-Freedom based

Equation Solvers

- Direct - Sparse
- Iterative - SVD

Langley
Research.,

Center
oe.lo

136

I Structural Analysis Computation Time I

69%
4%

20%

I

0 Constraints [] Output K,M I

I[] deflection

m Generate

[] Factor

Langley• Research

Centjr

Parallel Matrix Generation and Assembly I

By element: Traditional thinking]1
Generate [k (e)] on different processors I _ 3

Assemble global [K] = ,T_,[k(e)] I _lu _,

7 ,LU
Ican't write elements simultaneously! I

[By node: New method j

Nodal Connectivity

Node Prec. Elements

2 2
3 3

¢;2 ,_13-] 1

¢___ ' -'_ ITI Lang,.y
Re.arch

Center
=e•t2

137

• Nearly ideal parallel speedup

• (no interprocessor communication)

Time 30, ,,

(Sec) 1!,,__][_] 2_°_" T

7,868 Elements
21 16,152 Equations

20 andwldth _

. I I r'-1,1.7, I
i 8 16 32 64 128 256 512

(_ Cray C-90 Intel Delta Langley• Number of Processors Re.arch
Center

Eq_ion Sol_ [_
(Time, memory, disk space, I/0)

- Iterative or direct ?

• Banded or sparse ?

• "In-core" or "out-of-core" ?

Communication I_ I

• Broadcast or ring?

• OSF or SUNMOS?

Langley
Research

Center
=e_4

138

Equation Solvers [

• Iterative and Direct (function of application)

• Linpack (MP Linpack), LApack
(needs full matrix for best performance)

• Banded Indefinite, nonsymmetric
(requires pivoting)

• Banded Definite Symmetric
(seldom occurs in practical structures)

• Skyline*, Variable-band*
(DOT-product, SAXPY operations minimize time)

• Sparse*, Wavefront* (<5% nonzeros)

Langley
• * node or equation reordering minimizes solution time Ruearch

Centj,,

Langley• Research

Centre,

139

Iterative v__ssDirect Solvers

• Iterative slow, convergence no___ttguaranteed

• Direct complex coding (banded, sparse)

.@

1600

1200
Time

(sec) so0

400

I

0 I
4

Number of Intel Gamma Processors

T

8 16

_---Iterative (PCG)

Direct (Gauss)

32

Langley

Research
Center

w-t7

Time

(sec)

"Out-of-core" Direct Solver
- using Cray Solid State Disk - C-90

15.6

• as fast as "in-core" solver

• memory used: 1.1xbandwidth2
(or 24 x bandwidth + 6 x neq)

Maeh 2.4 HSCT
16,152 Equations
3.5 billion operations

4 /"in-core"

/f'out-of-core"

.8 .5_

1 2 4 8 16
Number of Cray Processors (Y-UP, C-90)

Langley
Re=earch

Center
¢_-18

140

48,894 Elements

44,188 Nodes

263,574 Equations

• Langley solution took 40 CPU sec (1 Cray C-90 processor)

. fastest solution known to date -

• Challenge: achieve even faster solution on SP-2 and Paragon!

Langley• Rnearch

Centjr

Convex

• Iterative slowest, Sparse fastestl

10000012 _I _I;_'g _'_ _ _ _ i14_1 Mach 2.4 HSCT IIiii244_517675

'°°°°_-Wi1111_:1----'._1W----II t _5, 8,02.

'_ I______"_'°°--
Time I_B [:i Bn_.i ,_i _i I,[!_ 0 263.574car

10

i Langley

._ri._ Iterative Pvloive VecFSperIe Pvsolve-ooc Sparse-Gray Vect.Sp•rse Research

IW' Convex Cray C-90 Con2,0

141

Solver ApDlication eM.cm.qj:y_ _ Paralle (Dlstrlbuted_

PVSOLVE Syrn4newlc + Def" equations X Bandwidth Yes (Cray C-S0. it(:) Yes (Intel Paragon, IBM SP-1}

PVSOLVE-OOC t.1 x B_mdwidth= Yes (Cray C-S0, it(:) Not yet

PVSOLVE-OOC+ " 24 • Bandwidth No (Cray C-90, etc) Not yet

VSS 0/eoto¢ SparN) " function of spw_ty No (Cray C-90, It(:) Not yet

PCG(Iteratlve) = - matrix nenzero= Yes (trey C-S0, etc) Yes (Intel Paragon, IBM SP-I]

LANZ(Elgenso_ver) equations X bandwidth Yes (Crly C-90, etc) Yes (Intel Paragon)

NOTE: These solvers have been evaluated on real applications with up to 263.574 eouaUons

and larger matrices with several million eauation_• PCG Is slowest, VSS is fastest

(for large, sparse problems) and PVSOLVE-OOC Is the best all-around parallel-

vector solver. PVSOLVE-OOC exploits Cray solid-state disk•

(_ " =pedal versions of PVSOLVE for unsymme_l¢ and negative coefficient matrices Langley• stave patrol flutter, CFD, nonlinear and optlrrdzatlon problems Research

Centjr,

Parallel-Vector Equation Solver
(PVSOLVE) I

e

I Shared Memory I Cray GigaFLOPaward I
• "in-core skyline and variable-band versions

• "out-of-core" versions: memory ~ 12 bandwidth=
and 24 x bandwidth

• tuned for Crays (orsharedmemorycomputer/workstation)

I Distributed Memory I

"in-core" skyline - Intel i/860 or Paragon

"in-core" row version - Intel 860 or Paragon, IBM SP-1

Conversion underway to TMC CM-5, Convex SSP-1 and Cray T-3D

COMET, Ford, U. Virginia, IBM, Princeton, LLNL, NSF sites
Convex, COMCO, NASA Lewis + several dozen sites

Langley

Research

Center

142

Time

(sec)

• Newton-Raphson fastest on parallel-vector computers

s37 Nodes [K + Kg] {u} = {f}

30 _ [] _ 1,647 Elements
3,186 Equations _

20 Geostationary
Platform

15 _ J_/m°difiedBFGS (354M)Newt°n'Raphs°n (301M)

10 _,Ar_.Newton-Raphson (438M)

1 2 4 8

Number of Cray ¥-MP Processors
Langley
Research

Centee_

• Find aircraft minimum weight subject to
displacement and stress constraints

• Nonlinear constrained optimization finds:

• Direction: BFGS, Simplex-Linear
Programming

• Step size: Golden Block

I bk+ = b k + Skdk

Langley- Research
Center

oltl4

143

 Method-" /
Linear Programming

• Scalable time reduction

124
Time

(sec) 3,000 design variables
500 constraints

63

32

17

1 2 4 8 16

Number of Cray C-90 Processors Langley• Reeearch

Centjr

Minimize F(xt, x=..... xn)

For 11,000 nonlinear equations:

3 2.6

2

1.37

is equivalent to

0.762

Time

(sec)

F,(x,, x=..... x.) = 0 "II
F2(x1, x=..... Xn) "- 0

:

Fn(xl, x2..... Xn)= 0

or

Min (F12 + F2 2 + ... Fn z)

0.45
0.29

1 2 4 8 16

Number of Cray C-90 Processors Langley
Research

Center

144

- 2-D Truss (80 bays x 190 stories)

16

Time 14

(sec) 12

10

6

4

2

t 0.@

16.27

=--,,,,,,-,=-,,,,-- _ _ Generate RHS
_ Factor

__ Generate/Assemble ,26

1 8 16

Number of Cray C-90 Processors

60,990 truss elements

30,780 equations
6.2 million matrix terms
168 semi-bandwidth

96 Design Variables (X-Sect areas)

Displacement Sensitivity (Gradients)

Langley
Research

Center
_t

Time

(sec.)

7,868 Triangular Elements

1 Desi_In Variable (skin thickness)

In Hand coded • ADIFOR [] Finite Difference

140

120

100

60

60

40

20

16 64 64 128
Number of Intel Delta Processors

Langley

Research

Center
wtm

145

IC°ncluding Remarks I
• New algorithms for high-performance computers

• Perform well on large-scale applications:

- Nodal Matrix Generation and Assembly

- Equation Solvers: [K]{u} - {p} ,,
(finear, nonlinear, "out-of core ,sparse)

• Structural Optimization

- Design Sensitivity

• Operate on Cray, Paragon, IBM SP-1 and SP.2!

Langley

Research

Center

IReferences I

• Storaasli, O., Nguyen, D., Baddourah, M. and Qin, J.;
Computational Mechanics Analysis Tools for Parallel-

Vector Supercomputers",AIAA/ASMF_/ASCF_JAHS/ASC
34th Structures, Structural Dynamics and Materials

Conference Proceedings, Part 2, pp. 772-778, April 1993.

• also International Journal of Computing Systems in

Engineering, Vol. 4, No. 2-4, 1993 pp. 349-354

• on MOSAIC-WWW (Langley Technical Report Server)

• Questions: O.O.Storaasli@larc.nasa.gov

• Free Videotape from: shuguez@nas.nasa.gov
(Santa Huguez at 415-604-4632)

Langley

Research

Center
o=*=o

146

3 S o 6 0 N95-16459IlOOqq

Solution of Matrix Equations Using Sparse Techniques

by Majdi Baddourah, (majdi@sunny.larc.nasa.gov or 804-864-2913)

The solution of large systems of matrix equations is key to the solution a

large number of scientific and engineering problems.

Tradition has it that iterative methods persist for CFD and direct methods
for Structures spplications. With the increase in computational power

(over 3 orders of magnitude this decade) problem sizes with full detail
that could not have even been considered tractable are now solved

routinely. The equation solvers used for structures applications have
advanced from the use of full matrix (LINPACK, LAPACK BLAS-3) to band

solvers to variable band and skyline solvers to sparse matrix solvers with

corresponding increases in performance. It appears that for large-scale
structural analysis applications sparse matrix methods have a significant

performance advantage over other methods This talk will describe the

latest sparse matrix solver developed at Langley which if not the fastest

in the world is among the best. It can routinely solve in excess of

263,000 equations in 40 seconds on one Cray C-90 processor.

Dr. Majdi Baddourah received the Ph D. in the Department of Civil

Engineering at Old Dominion University in 1991. He has been employed by

Lockheed Engineering and Sciences Company since then in support of the

Computational Structures Branch at NASA Langley Research Center. Dr.

Baddourah is widely recognized for contributing to the development of

software to exploit scalable high-performance computers for structural

analysis applications including the solution of large systems of equations

(approaching 1 million) by both direct and iterative methods.

147

Solution of Matrix Equations Using
Sparse Techniques

Majdi A. Baddourah
Lockheed Engineering and Sciences Co.

1994 Workshop
June 15-16

I Outline I

• Matrix Storage

• Reordering

• Factoring

• Results (Computational Structures and Fluids)

• Conclusion

148

OOFI Original Matrix (No reordering) I
lx

lz --11Yrx _ { _,.

1 Node = 6 DOF= 6 Equations] _ " .

[2,694 Nodes _ " I

17,868 Elements _ [

116,1S2 Equations _

L 770 Bandwidth t

JMach 2.4 High Speed Civil TransPort J

Method = 0 (_

\ ;":" ' ""'i

Method = 1 (MD) "_

\

Me"_"t"ho___''''_" "!_

149

Method = 0 "%;i
"4"==.;._!

Method = 1 "_

I Matrix Storage Memory Requirement I

Million

Words

12

10

8

6

4

2

0
0 1 2 3

Method

150

Reordering Time I

Time

16

14

12

10

8

6

4

2

0
0 1 2 3

Method

I Equation Reordering Reduces I
Solution Time I

Typical Node Reordering

Maximum Band = 1266

Average Band = 770

500,

400.

300
Time

(see.) 200,

100.

O

J Mach 2.4 Displacemaent I

7869 elements 1 ;_
2694 Nodes

16152 Equations

u Reordering]

ill Solution |

I (PVSOLVE)]

Equation Reordering

Maximum Band = 609

Average Band = 347

Nodal Equation

Reordering Method

151

Factoring Matrix

Banded or full:

- easy to vectorize.

- problem size limit.

General sparse:

- difficult to vectorize.

- fewer operations.

- indirect addressing.

I Results

• High Speed Civil Transport

• Space Station

• CFD Application

• Automotive Application

152

I Mach 2.4 HSCT Results I

• Only VSS solves 172,400 equz_tion
HSC'{" on Conv(.=x C240 _ _ Math 2.4 HSCT

BITER
1ooooo u SKY

u PVSOLVE

Time 10oo .o

(Convexwc) 10010h

1
4,291 17,675 44,396 172,400

Number of Equations

Space Station Application I

I Space

.-.:,,__d_..,".
,i':_'-t_.<

! 'Vq',k

" <9.-.

'?LJ_.;'

Station Freedom II .:_:,:::-._ "_

_-. _.._.-,:_<_ '•_;g_.._ _-_ ._._;_._a _ _w__._>

111893 Equations I
1664984 Non-zero terms
U7 s-._lulion _,ec,(.;"

• Using I C#_y Y-MP p_oomlmo#
md Solid Still Oi -_ It NAS

I

-- Beam Elementa

Triangular Elements

.:........! Quadrilateral E!ements

153

CFD Application

Before Reordering

u.,

After Reordering with fill

,.<...-._ ,-7 _.,_-_-_-[..-,_:_:. --.7-. ;._------:!

....... _i i'_C:' ";_;,' ' t! .!

_ ..,.. ,. : .._.';_,_,

NI
Number of Equations = 15360
Number of Cofficients = 257797 Number of Cofficients = 3081995

1 Cray C-90 Solution Time = 6.7 Seconds

Automotive Application

44,188 Nodes

48,894 Elements

263,574 Equations
NASA solution took 78 sec for full static analysis

(on 1 Cray C-90 processor)
- fastest solver known to date -

(32 sec reordering, 45 set: factor and 1 sec F/B)

CRAY Sparse solver took 102 sec for full static analysis

Banded Solver took 2500 sec for full static analysis

154

I Conclusion I

• Sparse solvers are preferred for large-scale
structures.

• Sparse Solver outperforms iterative solver which can
have convegence problems.

• Sparse Solver can be used for CFD applications

• Sparse solvers uses minimum memory.

155

6 o 6 N95-16460
IIZ Oq5

Equation Solvers for Distributed Memory Computers ./

by Olaf O. Storaasli, (O.O.Storaasli@larc.nasa.gov or 804-864-2927)

for Workshop on the Role of Computers in Langley R&D (6-15-94)

A large number of scientific and engineering problems reduce to the solution of
large systems of simultaneous equations. Solving large systems of simultaneous
equations rapidly thus makes the solution of large-scale structures, physics,
electromagnetics and fluid mechanics problems tractable. The performance of
parallel computers now dwarfs traditional vector computers by nearly an order of
magnitude, so the challenge is to rapidly solve large systems of equations rapidly
on the new breed of scalable parallel processing supercomputers.

Research at Langley on solving equations on distributed memory computers goes
back nearly ten years to the Langley Finite Element Machine, one of the nation's
first parallel computers with 32 processors developed by NASA before
commercial parallel computers were available. Since then, both iterative and
direct parallel equation solvers have been developed and tuned for parallel
computers manufactured by Flexible computer, N-Cube, Alliant, Encore, Cray,
Intel, Convex and IBM. The solvers, PVSOLVE and PVS-MP are currently running
on the IBM SP-1 and SP-2 under a Memorandum of Agreement with IBM which
permits Langley early access to the SP-1 and SP-2 in return for IBM given
permission to use the NASA solvers for advertisements, demonstrations, and

trade shows. These Langley solvers are timely since in a recent $22.4 million
procurement, two IBM SP-2 supercomputers will be delivered to NASA (160
processors to NAS and 48 processors to LaRC). Based on benchmarks and the
Langley parallel equation solvers, these IBM supercomputers promise to surpass
the performance of traditional Cray vector supercomputers and other parallel
computers.

The talk will describe the major issues involved in parallel equation solvers with
particular emphasis on implementations the Intel Paragon, IBM SP-1 and SP-2.

156

Dr. Olaf Storaasli
Computational Structures Branch

Mail Stop 240
NASA Langley Research Center

Hampton, VA 23681

The Role of Computers in Langley R&D
June 15, 1994, Reid Auditorium

Langley Research Center

Emaih O.O.Storaasli @ larc.nasa.gov
Phone: 804-864-2927

FAX: 804-864-8912

presented at

Workshop on

Langley

Research
Center

ol-1

• Faster, cheaper, better analysis/design
of large-scale structures

- Develop algorithms to exploit
distributed-memory computers

- Evaluate computational performance

@ Langley

Research

Cen(=er

157

• Distributed-memory Computers

• Structural Applications

• Structural Analysis

• - Nodal Generation and Assembly

• - Linear Equation Solvers

• Structural Optimization

• x-Design Sensitivity

Langley
Rel.wch

C.,,,.j.

I Intel Paragon I

I Current world record holder! [Being Installed this summer at 143 GigaFLOPS for MP-Linpack
NAS (160 pro(_)

(_ end I.aRC (48 proc) Lang/ey266 MFL OPS/proc peak R•_,,c_

158

I Record MP-Linpack GFLOPS* I

150

GFLOPS*

120

9O

6O TMC Intel
CM-2 Delta

_,.I |

1991 1992

NEC
SX/3

30

Fujitsu Intel

. VPP_500 _Parag°n

TMC !
Ci'S

i

.@
I I

1993 1994

* billion floating point operations per second

I

1995

Langley
Reeearch

Center
o=-i

Performance Assessment Applications

t Platform

537 Nodes 1

3,188 Equations |
1,647 Elements I

108 Bandwldlhl

@ Langley
Reeearch

Center
o=-i

159

I Parallel Matrix Generation and Assembly I

By element: Traditional thinking
Generate [k (e)] on different processors
Assemble global [K] = ,T_,[k(e)]

I can't write elements simultaneously! I

3

I By node: New method |

Nodal Connectivity

Node Proc. Elements

2 2

3 3

Langley• Research

Center

I Parallel Structural Matrix Generator/|

Assembler Demonstrated on HSCT

Time 30,
(Sec) ,

20,

10,

• Nearly ideal parallel speedup
(no interprocessor communication)

in "°_=n_°'"V "_
l I 11 _ V

0.......i II-l
1 8 16 32 64 128 256 512

Cray C-90 Intel Delta Langley
N umber of Processors Reeearch

Center
o=-I

160

Equation Solution Issues I [_(Time, memory, disk space, I/O)

• Iterative or direct ?

• Banded or sparse ?

• "In-core" or "out-of-core" ?

Communication

• Broadcast or ring?

• OSF or SUNMOS?

I =n91o¥
Rneamh
Center

oe- e

I_ 1 Jlterative v_ssDirect Solvers I [_
• Iterative slow_ convergence not guaranteed

• Direct complex coding (banded, sparse)

@

1600

1200
Time

(sec) 800

400.

m _2-4 HSCT

]-----Iterative (PCG)

_1 _1 L/°ire°'(oauss)
0

4 8 16 32

Number of Intel Gamma Processors

Langley
Research

Center
o_-tO

161

MB/sec

@

45

40

35

3O

25

20

15

10

5

0

= KSR

Paragon
= Meico
o CM-5

500 1000 1500 2000 2500 3000
Message length (Bytes)

LLL

Langley
Research

Center
ot-11

120

100

l_sec 80

60

40

20

0

@

Delta 105 Parag_gB

NX 1.5. 84_L---_ OSF Tll

75 lU "__- /SUNMOS

IMP processor on)

csend- isend- alpha-median
unforced unforced

Langley

Research

Center
OlPIti

162

• OSF Rev 1.1 (Latency: 150-> 85 Ilsec, Tools

Communication: 11 -> 34 MB/sec, Memory 8-> 6MB)

• OSF Rev 1.2 (Latency: 85-> SOlisec

Communication: 34 -> SS MBIsec)

• New comm chip: tested at 400 MB/sec

• Dynamic Memory: avoidinconsistencies
(i.e. faster 2nd runs)

• SUNMOS: Sandia-UNM O/S
(Latency: 24 _sec, Comm: 175 MB/sec, Mem: 0.3MB)
178 MB/sec on Grace (NAS benchmarks run faster)

Langley

Research

Canter

I Interprocessor Com_nicationMethods [

Broadcast
(widely used)

@ Langley

Research

Center
OlP14

163

, Ring communication reduced solution time

200

Time

(Sec)

leo

o

.@

• Slower than 1 Cray processor

I Mach 2.4 HSCT Displacements I

300

2,694 Nodes I:_ _
7,868 Elements

16,152 Equat ions

,!
c:._

32 64 128 256

Number of Delta Processors

.91 Broadcast

Ring

512 Langley

Research

Center
o1-15

Solution Time Breakdown
- Mach 3.0 HSCT-

500. [I Delta/NX
I I

40o Ilcom ute -- _ _ _1Time "11 P v
(secs) II NaN,libel

II "'='" "-"l;_lE_lli ii_#
200. _.! _ _

J_l,o Send H__,_i " ._ _'._.;ii
100

1 4 128 256 512

@

Communication dominates

Computation scalable (< C-90)

Paragon/SUNMOS

128 256 512
Cray C-90 Number of Intel Processors Langley

Research

Center
ou-ls

164

ISolver Pe_

20

0

._ PVSOLVE ProSolver Re=.arch
Center

oe-117

@

la Hand coded • ADIFOR

140

120

100

80

60

40

20

0

Time

(sec.)

7,868 Triangular Elements

1 Design Variable (skin thickness)
u Finite Difference_

iiiiii_ i
16 64 64 128

Number of Intel Delta Processors

Langley
Retearch

Center
OI4|

165

IConcludingRemarksI I
• New algorithms for distributed-memory computers

• Perform well on large-scale applications:

- Nodal Matrix Generation and Assembly

- Equation Solvers: [K]{u} = {p}
(linear, nonlinear, "out-of core",sparse)

• Structural Optimization

- Design Sensitivity

• Operate on Paragon, IBM SP-1 and SP-2!

Langley• Research

Center
o=-le

• Storaasli, O., Nguyen, D., Baddourah, M. and Qin, J.;
Computational Mechanics Analysis Tools for Parallel-
Vector Supercomputers",AIAAJASMF_JASCE/AHS/ASC
34th Structures, Structural Dynamics and Materials
Conference Proceedings, Part 2, pp. 772-778, April 1993.

= also International Journal of Computing Systems in
Engineering, Vol. 4, No. 2-4, 1993 pp. 349-354

• on MOSAIC-WWW (Langley Technical Report Server)

• Questions: OoO.Storaasli@larc.nasa.gov

• Free Videotape from: shuguez@nas.nasa.gov
(Santa Huguez at 415-604-4632)

@ Langley

Reeearch

Center
oe-|e

166

SESSION 5 Automatic Differentiation

Chaired by

Olaf Storaasli

5.1

5.2

Applications of Automatic Differentiation in Computational Fluid Dynamics -

Larry Green

Automatic Differentiation for Design Sensitivity Analysis of Structural Systems

Using Multiple Processors - Duc Nguyen, Olaf Storaasli, Jiangning Qin and
Ramzi Qamar

167

//o o qo N95- 16461

Applications of Automatic Differentiation
in Computational Fluid Dynamics

Lawrence L. Green, Perry A. Newman, and Kara J. Haigler
Multidiscplinary Design Optimization Branch

Fluid Mechanics and Acoustics Division

Automatic differentiation (AD) is a powerful computational method that provides a
means for computing exact sensitivity derivatives (SD) from existing computer programs
for use in multidisciplinary design optimization (MDO) or in sensitivity analysis. The
Mathematics and Computer Sciences Division of Argonne National Laboratory and the

Center for Research on Parallel Computation at Rice University have developed a pre-
compiler AD tool for FORTRAN programs called ADIFOR. The ADIFOR tool has been

easily and quickly applied by NASA Langley researchers to assess the feasibility and
computational impact of AD in MDO with several different FORTRAN programs. These
include a state-of-the-art three-dimensional multigrid Navier-Stokes flow solver for wings
or aircraft configurations in transonic turbulent flow. With ADIFOR, the user specifies
sets of independent and dependent variables within an existing computer code. ADIFOR
then traces the dependency path throughout the code, applies the chain rule to formulate
derivative expressions, and generates new code to compute the required SD matrix. The
resulting ADIFOR-generated codes have been verified to compute exact nongeometric and
geometric SD, for a vzu'iety of cases, in less time than is required to compute the SD matrix
using centered divided differences.

168

APPLICATIONS OF
AUTOMATIC DIFFERENTIATION

IN COMPUTATIONAL FLUID
DYNAMICS

L. Green*, A. Carle**, C. Bischof***,

K. Haigler*, and P. Newman*

*NASA Langley Research Center

**Rice University

***Argonne National Laboratory

What are Sensitivity
Derivatives?

• Sensitivity Derivatives (SD) describe how one
thing changes with respect to another thing

Example:

How a car's speed changes when braking

- slowly at first, then more quickly

(how much)

- speed decreases as braking increases
(which way)

• SD's describe h_w much and which way to
change the variables in a multidisciplinary
design optimization (MDO)

169

Objectives

• Obtain exact SD using the computational
technique of Automatic Differentiation (A__DD)

• Assess the feasibility and computational
impact of A._DDin a typical MDO problem

The SD Matrix

12

13

CFD

Code

O l

O 2

SD=

Z l o_0, o_Ol-

• Sample inputs: Mach number or geometry

• Sample outputs: wing pressure coefficients or grid

• SD matrix required in MDO_

170

Calculation of the SD Matrix

• Divided differences (DD) (baseline + perturbations)

- Proper step size difficult to determine

-Truncation & resolution errors

• Hand coding (quasi-analytical) / symbolic
manipulators

-Manual dependency checking

- Error prone and time consuming

• Automatic Differentiation (A__DD)

-Automatic dependency checking and derivative
coding

- Exact derivatives via chain rule

-Quick & easy; possible speed-up over DD

The AD Tool

ADIFOR _ of FORTRAN) / PARASCOPE
(Argonne National Laboratory and Rice
University)

• User identifies dependent and independent
variables in program

• ADIFOR follows program flow, traces
program dependency paths

ADIFOR formulates exact derivatives via the
chain rule

• ADIFOR generates new code for derivative
objects

171

Potential ADIFOR Use: By Application

Potential ADIFOR Use: By Problem Type

172

needsensitivityQuasi-Analytic Differentiation

Analysis
Code

)ut and

Quasi-

Analytic sis &

rve got them
7"

I need sensi
derivatives(

Automatic Differentiation

Input and
Output

Unoptimized

'sis

got them.
Would.you
like (_3q_") also?

173

Building a Sensitivity Code

need sensitivity

Automatic Differentiation

Input and
Output

ADIFOR

I've got them.

WoUldGVOU
like (_yc) also?

174

The CFD Codes

• WTCO: wing C-O grid generation

- Algebraic

- Transfinite interpolation

• TLNS3D: 3-D thin-layer Navier-Stokes solver

- Finite-volume, central-differencing

-Grid sequencing, multigrid

-Scalar artificial dissipation

- Baldwin-Lomax turbulence model

ADIFOR Applications in CFD

• WTCO wing grid generation program

-Independents: thickness, cmax, twist

- Dependents: grid coordinates (x, y, z)

• TLNS3D Navier-Stokes flow solver

-Independents: grid coordinates (x, y, z)

- Dependents: pressure coefficients (Cp)

175

ADIFOR Applications in CFD

, WTCO wing grid generation program

-Independents: thickness, cmax, twist

-Dependents: grid coordinates (x, y, z)

• TLNS3D Navier-Stokes flow solver

-Independents: grid coordinates (x, y, z)

- Dependents: pressure coefficients (Cp)

• WTCO-TLNS3D coupling via file transfer

- Grid

-Grid SD matrix
O(Flow) = O(Flow) c_(Grid)

-Application of chain rule
O(Sect) O(Grid) O(Sect)

Computational Results

• ONERA M6 wing planform

• NACA 2412 airfoil sections

• 97 × 25 x 17 grid

• Moo= 0.84, _ = 0.00, Re = 11.7 × 106

• Wing Cp and SD of wing Cp

• Coloring: white/red = large, blue/black = small

• Several geometries:

- baseline

- thickness perturbations _+

-cmax perturbations _+

- twist perturbations _+

176

177

178

i_¸Ii! ¸I :'i_!_,"!i!_ : '_;_

Summary

• Feasibility of using A._DDin CFD demonstrated

• ADIFOR calculated exact geometric SD for
grid-flow coupling similar to MDO problem

• ADIFOR calculated SD through comolex
algorithm for nonlinear problem

• ADIFOR processing easier & faster than
quasi-analytic method

• A___DDcompetitive with & more accurate than
divided differences

Special thanks to...

• Veer Vatsa for use of TLNS3D code

• Mary Adams for FAST animation sequences

• Thomas Roberts for PowerBook movies

• John Knox for video production

• Thomas Zang for continued support

• Laura Hall, Andreas Griewank, and George
Corliss for initial training and support with
ADIFOR

179

Sensitivity Derivatives =
BETTER

Multidisciplinary Design
Optimization =

PRODUCTS & PROCESSES

Automatic Differentiation =

EASILY, QUICKLY & RELIABLY

180

356o7 //oo N95- 16462

Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple Processors

Duc T. Nguyen*, Olaf O. Storaaslit, Jiangning Qin*, and Ramzi Qamar*
Multidiscplinary Design Optimization Branch

Fluid Mechanics and Acoustics Division

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based
structural analysis program for shape and non-shape design sensitivity analysis of

structural systems. The entire analysis and sensitivity procedures are parallelized and
vectorized for high performance computation. Small-scale examples to verify the accuracy

of the proposed program and a medium-scale example to demonstrate the parallel-vector
performance on the multeiple Cray-C90- processors are included in the paper.

* Multidisciplinary Parallel-Vector Computation Center, 135 KDH Building, Old Dominion
University, Norfolk VA 23529-0241

t Computational Mechanics Branch, NASA Langley Research Center, Hampton, VA
23681

181

Automatic Differentiation for Design Sensitivity Analysis of

Structural Systems Using Multiple Processors

by

Duc T. Nguyen+, Olaf O. Storaasli _, Jiangning Qin:, and Ramzi Qamar _

Multidisciplinary Parallel-Vector Computation Center, 135 KDH Building, Old Dominion
University, Norfolk, VA 23529-0241

Computational Mechanics Branch, NASA Langley Research Center, Hampton, VA 23681

Abstract

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based structural

analysis program for shape and non-shape design sensitivity analysis of structural systems. The

entire analysis and sensitivity procedures are parallelized and vectorized for high-performance

computation. Small-scale examples to verify, the accuracy of the proposed program and a

medium-scale example to demonstrate the parallel-vector performance on the multiple Cray-C90

processors are included in the paper.

I. Introduction

Using the familiar finite element procedure m, the static equilibrium equations for a structural

model can be expressed as

[K(b)],,x,, {z},,x I = {F}n.,. l (1)

where [K (b)], {z} and {F} are referred to the stiffness matrix, nodal displacement vector and

nodal force vector, respectively. In Eq. (I), "n" represents the active degree-of-freedom of the
discretized structural model.

The stiffness matrix [K (b)], in general, is a function of design variable vector {b} (where b

Rk). As an example, {b} may represent the cross-sectional areas of various truss members, or

thickness of plate members (for non-shape type of design variables), or it may also represent the

joint coordinates of various nodes of a structure (for shape type of design variables).

A typical constraint, involving a limit on a displacement or a stress component, may be written
as

g(z, b) <_ 0 (2)

For the sake of simplified notation, it is assumed that g depends on only a simple design variable

b (i.e. b e Rk=t). Using the chain rule of differentiation, one obtains

dg _ Og + XT dz (3)
db Ob db

182

where x is a vector with components

Og
X i =

0 z; (4)

The first term on the right-hand-side of Eq. (3) is usually zero or easy to obtain, thus one
discusses only the computation of the second term.

Differentiating Eq. (1) with respect to b, one obtains

dz 0 F dK
K * = _ - * z (5)

db Ob db

Premultiplying Eq. (5) by xr K t, one obtains

xr dbdZ - xr K-' (OFOb dK ,dbz) (6)

Numerically, the computation of xT g-£ can be performed in two different ways. The first, called
db

the "direct method", consists of solving Eq. (5) for d____.-and then taking the scalar product withat,

x. The second approach, called the "adjoint method ''[:. 3j, defines an adjoint vector k which is the

solution of the system

K _. = x (7)

or

= K-1x (8)

or

xr= xrK-t (since matrix K is symmetric) (9)

and thus, Eq. (3) can be re-written as

dg_ Og +)_T(OF dK]db Ob Ob db* z (10)
)

The solution of Eq. (7) for _ is similar to a solution for displacement under a "dummy" load
vector {x }.

Once, the sensitivity information a--s- has been computed, any gradient based optimizationdb
softwares[4. 51can be used to obtain a new, improved design.

The focus of this paper is in the parallel computation of d-A as shown in Eq. (5), and
db

particularly, the computation of the term dx
da

Since in the finite element procedure

elements

[K] = _ !k <_)] (11)
e=l

Therefore, computation of d[X-----!involves with computation of d[k'] and the latter can be
db db

obtained either by

(i) Finite Difference Method

183

or

(ii) Analytical Method

In the finite difference method, a small perturbation of a design variable is first applied, then

approximate derivative (which can be affected by round-off and truncation errors I31) can be

generated. The analytical method tends to generate very cumbersome expressions for the

derivatives. Thus, the objectives of this paper is to use automatic differentiation (ADIFOR)

tools [6t to compute the derivatives of a[k'___._!lin a parallel-vector computer environment.
ab

A brief review of ADI]ZOR toots t6t is given in Section 2. Parallel generation and assembly t71

of the stiffness matrix [K] is presented in Section 3. Parallel-Vector equation solver I81which will

be used to solve system of Eq. (5) is summarized in Section 4. Numerical examples are presented
in Section 5, and conclusions are drawn in Section 6.

II. A Brief Review on Automatic Differentiation I61

Automatic Differentiation (AD) is essentially an automatic implementation of the chain rule

of differentiation based on tracking the connection between the dependent (or output) and
independent (or input) variables.

Typically, to calculate the derivative of any output variable in a computer program with

respect to any input variable, one modifies the original program by inserting of specialized

instruction which identify the relevant output and input variables.

Automatic differentiation produces exact derivatives, limited only by machine precision. There

are two modes of AD. In the forward mode, the chain rule is evaluated from the input to the

output. In this mode, the computational cost increases with the number of input variables. In the

reverse mode, the chain rule is evaluated from the output to the input.

In order to understand the forward mode in AD, let's refer to Figure 1 where the computation
flow to evaluate

- 20 b2 - 20 O,
•,Y3 = =

(2b 1 bz + _/Tb() bI (2b, + V_-b 1)

is shown in a form of the directed graph.

The derivatives of ay___and ay___are also shown in a form of the directed graph in Figure "_
db. db t -"

In Figure 2, the connecting link between any 2 vertex represents the chain-rule derivatives.

As an example, Oa _ 2 b_ and ea = 1.
d b 2 _a

On the other hand, if the reverse mode of differentiation is used to calculate dY3, then the
db.

chain-rule of differentiation will start with the output variable Y3, and then proceed as following:

184

dv 3 _ 20 b,_

dd (2 bI b,_ ÷ vT b() 2

dY3 = dY3 0___d__ 20b 2 , 1

da dd Oa (2b, b, + v'-2-b()'

dY3 dY3 0 a 0 Y3
-- ÷

dx, da Oh, 0b,

20& , 1 , 2b a -20
----- +

(2b, b, + _ bx")2 (2b, b2 + v'T b()

It has been concluded from earlier research works I6'9. _0]that using automatic differentiation (AD)

method, such as ADIFOR tool i61, will be more computationally efficient than the finite difference

method. In most problems, however, analytical method is more efficient than ADIFOR tool (but

at the expense of assuming there is no human errors in deriving analytical derivative expressions).

The comparisons of computational costs and the accuracy to evaluate derivative information

between the Finite Difference, Analytical and ADIFOR have been discussed [6' 9 Lo].This paper,

therefore, will focus on the issue of incorporating derivative calculation subroutines (generated

by AD_OR) in a parallel-vector high-performance computer environment.

III. Parallel Generation and Assembly on Distributed- and Shared Memory Computers I71

The choice of the storage scheme for the global stiffness matrix in any finite element analysis

code is based on whether it will save the memory or it will enhance the vector speed, or both.

The row-oriented storage scheme csl is good for saxpy operation and shared memory type

computers, while the skyline storage is good for dot product (daxpy) operation. Moreover, the

skyline storage scheme requires less memory and this feature is important for computers with

distributed-memory (since each processor usually has less memory capacity as compared to

shared-memory computers). Fortunately, the Intel iPSC/860 computers have good vector

performance for daxpy operation. In order to use the vector-unrolling technique to improve the

vector performance, a block-skyline columns storage and block rows storage schemes for the

stiffness matrix is used on the Intel and Cray type computers, respectively (as shown in Figure

3). To simplify the discussion, assuming the global matrix is full and three processors are used

to store different portions of the global stiffness matrix.

The size of the block is called k if there are k columns (or k-rows) in each block. It is realized
that the choice of k will have the effects on

1. the in-core memory requirement,

2. the vector performance,

3. the communication performance.

For the Intel iPSC/860 parallel computers, the block size in MPFEA is set to be 8. Since each

processor only has certain block-columns (or block rows) of the global stiffness matrix, the

generation and assembly of this matrix can be done in parallel without any communications

among processors. The work involved in the generation and assembly procedure can be

summarized as (for each processor i, where i = l, 2 NP):

185

Task 1. To identify ([but not to search for!) the elements that contribute to the columns (or rows)

which belong to processor i.

Task 2. To generate these elements stiffness matrices.

Task 3. To assemble the global stiffness matrix with these element stiffness matrices.

It should be noted here that even for the case of nonlinear structural analysis, Task 1 of the

above procedure needs to be done only once, while Task 2 and Task 3 have to be pertbrmed

repeatedly since the global matrix will be updated in each nonlinear iteration.

IV. Parallel.Vector Choleski Method Development lsl

In the sequential Choleski method, a symmetric, positive-definite stiffness matrix, [K], can be

decomposed as

[K] = ! U]r[_ (12)

with the coefficients of the upper-triangular matrix, [U]:

uo.= O for i > j (13)

Ull = v'Kll; ul:- K1: for j> 1 (14)
Ull

for i > 1 (15)

(16)
uO: _1 for i, j > 1

u:i

For example, us7 can be computed from Eq. (18) as:

k57 - 1115 //17 - //2-5 //2-7 - /135 /137 - /145 /'/47
u57 = (17)

u55

The calculations in Eq. (17) for the term us7 (of row 5) only involve columns 5 and 7.

Furthermore, the "final value" of u57 cannot be computed until the final, updated values of the

first four rows have been completed. Assuming that only the first two rows of the factored

matrix, [U], have been completed, one still can compute the second partially-updated value of

u57 as designated by superscript (2):

//(72) = k_57 - //15//17 - /22_5//2_7 (18)

If row 3 has also been completely updated, then the third partially-updated value of us7 can be
calculated as:

/15(3)= U; 2) - /135 /'/37 (19)

This observation suggests an efficient way to perform Choleski factorization in parallel on NP

186

processors. For example, each row of the coefficient stiffness matrix, [K], is assigned to a

separate processor.

From Eq. (17), assuming NP = 4, it is seen that row 5 cannot be completely updated until row

4 has been completely updated. In general, in order to update the im row, the previous (i-1)rows

must already have been updated. For the above reasons, any NP consecutive rows of the

coefficient stiffness matrix, [K], will be processed by NP separate processors. As a consequence,

while row 5 is being processed by a particular processor, say processor 1, then the first (5-NP)

rows have already been completely updated. Thus, if the i_ row is being processed by the p_

processor, there is no need to check every row (from row 1 to row i-1) to make sure they have

been completed. It is sate to assume that the first (i-NP) rows have already been completed as

shown in the triangular cross-hatched region of Figure 4.

Synchronization checks are required only for the rows between (i-NP + 1) and (i-l) as shown

in the rectangular solid region of Figure 4. Since the first (i-NP) rows have already been

completely factored, the i_ row can be "partially" processed by the p_ processor as shown in Eq.

(18, 19).

V. Numerical Applications

Different finite element types (such as 2-D Truss, and Plate/Shell elements) and different type

of design variables (such as cross-sectional areas, joint coordinates of truss elements and

thickness of plate elements) are considered in this section. The first two examples are small-size

for the purpose of verifying the accuracy of derivatives (d [k Ce_] / d b) generated by ADIFOR I61

as compared to the ones obtained by finite difference technique. The last example is medium-size

for the purpose of evaluating the parallel-vector performance of the entire finite element and

Design Sensitivity Analysis (DSA) process.

Example 1: Plate-Structure With (Non-Shape) Thickness Design Variable

In this example, 32 plate elements [_ are used, a point force is applied at the center of the fixed

plate (see Figure 5). Thickness of a plate is selected as (non-shape) design variable in this case.

The original thickness is 0.03 and a perturbation of 0.5% is used in the finite (central) difference

scheme.

The derivatives of element stiffness matrix (in global reference and using ADIFOR) with

respect to the thickness t for typical members such as members 5, 12, and 19 ar presented in

Table 1. These derivatives are in good agreement with the ones obtained by finite (central)

difference scheme.

Example 2: Truss-Structure With (Shape) Joint Coordinate Design Variables

In this example, a 1 bay x 1 story truss structure is shown in Figure 6. This small-scale

structure has 4 joints and 5 members. All joint x-coordinates of this structure are selected as

(shape) design variables. A horizontal force F is applied at node 1. The dimensions for each base

and height of this structure are 12" and 9", respectively. Young modulus and cross-sectional area

are 29000 Ksi and 4 in", respectively. A perturbation of 1% is used in the finite (central)

difference scheme. The derivatives of element stiffness matrix (in global reference and using

ADIFOR) with respect to a typical x-coordinate of joint 2 for members l and 5 are presented in

Table 2. Again, these derivates are in good agreements with the ones obtained by finite (central)

187

differencescheme.

Example 3: A 2-D Truss Structure With 80 Bays and 190 Stories

In this example, a 80 bay x 190 story truss structure is also shown in Figure 6. A horizontal

force F is applied at node 100. All other datas are the same as in Example 2. There are 96 cross-

sectional areas selected as (non-shape) design variables in this example. This structure has 60,990

elements. The resulted structural stiffness matrix has 30,780 degree-of-freedom. Using the

variable bandwidth storage scheme lsl will require a real 1-dimensional array with 5,171,574 words

to store the stiffness matrix in the core memory. The average bandwidth for this stiffness matrix
is 168.

The performance of the entire finite element analysis and design sensitivity analysis (using

ADIFOR tool) on i, 8, and 16 Cray-C90 processors are shown in Table 3. The total speed-up

for the ENTIRE PROCESS are 7.32 and 12.93 when 8 and 16 Cray-C90 processors are used,

respectively.

VI. Conclusions

Based upon the numerical results presented in this paper, the following conclusions can be
made:

i. Automatic Differentiation (ADIFOR) [61 tool has been successfully applied to both simple
PLATE/SHELL finite elements.(TRUSS) and complex --t_t]

2. Both non-shape and shape design variables can be successfully treated.

3. For the first time (to the authors' knowledge), ADIFOR tool can be applied in a parallel-

vector computer environment for non-shape and shape sensitivity analysis.

4. The entire finite element and sensitivity analysis can be done with excellent parallel and

vector speed (using all 16 Cray-C90 processors).

VII. Acknowledgments

The financial support from NASA grant NAG1-858 are acknowledged. The authors are also

deeply indebted to Drs. L. Green, P. Newman, J. Barthelemy (all from NASA Langley Research

Center), C. Bischof (from Argonne National Laboratory) and A. Carle (from Rice University) for

helpful discussions during the ADIFOR user workshop (September 13-14, 1993), held at Building

1192C-E, the CFD Laboratory, NASA LaRC). Helpful discussions with Dr. A. Tessler on using

his plate/shell element (NASA Langley Research Center) is also appreciated.

VIII. References

1. T.J.R. Hughes, The Finite Element-Method, Prentice-Hall, Inc., (1987).

2. J.S. Arora and E.J. Haug, Applied Optimal Design, John Wiley & Sons, Inc., (1979).

3. R.T. Haftka, Z. Gtirdal, and M.P. Kamat, Elements of Structural Optimization, Kluwer

188

Academic Publishers (1990).

. R. Thareja and R.T. Haftka, "A Modified Version of NEWSUMT For Inequality and

Equality Constraints," VPI Report 148, (March 1985).

. G.N. Vanderplaats, "CONMIN: A Fortran Program for Constrained Function

,Minimization", NASA-TM X-62282, (1973).

. C.H. Bischof and A. Griewank, "ADIFOR: A Fortran System For Portable Automatic

Differentiation", Proceedings the 4 _ AIAAfUSAF/NASA/OAI Symposium on

Multidisciplinary Analysis and Optimization, Cleveland, OH, pp. 433-441, AIAA 92-4744-

CP, (September 1992).

. J. Qin and D. T. Nguyen, "A New Parallel-Vector Finite Element Analysis Software on

Distributed Memory Computers," Proceedings of the AIAA/ASME/ASCE/AHS 34 'h SDM

Conference, La Jolla, CA (April 19-22, 1993).

. T.K. Agarwal, O.O. Storaasli, and D.T. Nguyen, "A Parallel-Vector Algorithm for Rapid

Structural Analysis on High-Performance Computers," Proceedings of the

AIAA/ASME/ASCE/AHS 31 th SDM Conference, Long Beach, CA (April 2-4, 1990).

. J.F. Barthelemy and L.E. Hall, "Automatic Differentiation As A Tool In Engineering

Design," NASA-TM 107661, (August, 1992).

10. C. Bischof, G. Corliss, L. Green, A. Griewank, K. Haigler and P. Newman, "Automatic

Differentiation of Advanced CFD Codes for Multidisciplinary Design," Computing

Systems in Engineering, Vol. 3, No. 6, pp. 625-637, (1992).

11. A. Tessler, "A C ° Anisoparametric Three-Node Shallow Shell Element for General Shell

Analysis," MTL-TR-89-72, (August 1989).

189

- 20 b,_ - 20 b,
Figure 1: Computational Graph for Y3 = =

(2 b 1b___- v-2-- b?)

I b = a

b, (2*,: • eT b,)

Figure 2: Computational Graph for dy 3 40 b,_b I

db,. (2bib, "- v_- b{')2

d y 3 _ (20 b,)db2 --_ (1) (2bt) +

dY3

db I

dY3

db x

__.1

(20 * b 2) (2b 2

- 2O

2bxb2 _" _ b()

20

- 2_/7 b_)

[b I (2b, + ¢_- bl)] 2

20,/(1) (2bz) + --_
(I) (2 v/2 bt)

190

Figure 3. Block-skyline columnsstorageand blockrowsstorageschemes

P1

P2

,-- k ---

lock
_lumns

atet)

"P3
\

Block rows
(Cray)

P1

P2

Figure 4: Information required to update row i

m

Row I-NP

P-" Row !

m

191

Figure 5: Clamped Plate - Structure

/

/
/

S

/
/
/

\
\-
\
\ \\\

I
¢,
e-

,m

f
f

f

f

f

f

Figure 6: 2-D Truss Structure

F

i,

h

80 bays

L

I_o

)<

190 storles

9,.-_
!
I

i

Z /
12" 192

C

0

z

a [k(Sq
0 t - [5576.925, -4780.2198, O, O, O, - 15934.066,]

a [k _12_]
O t - [15934.068 , 5576.923 , O, O, O, - 5576.923 ,]

O [k(tg)] - [21510.99, 5576.925, O, O, O, 8.268E-12]
Ot

Table 1: ADIFOR Derivatives of Plate Element Stiffness Matrix with Respect to Thickness

(Non-shape) Design Variable

193

Table 2: ADIFOR Derivatives of Truss Element Stiffness Matrix with Respect to x-coordinate

of Joint 2 (Shape) Design Variable.

el. stiff [k] tbr member l

0.966667E+04 0.000000E+00 -0.966667E+04

0.000000E+00 O.000000E+O0 0.000000E+O0

-0.966667E+04 O.000000E+O0 0.966667E+04

0.000000E+00 O.000000E+O0 0.000000E+00

Gradient of stiff [k_D'_ 2 -

-805.55555555556 0.

0. 0. 0. 0.

805.55555555556 0.

0. 0. O. 0.

of,/,)]
c3x.

805.55555555556

O.000000E+00

0.000000E+00

0.000000E+O0

0.000000E+00

.

-805.55555555556 0.

el stiff [k] for member 5

0.494933E+04 0.371200E+04-0.494933E+04 -0.371200E+04

0.371200E+04 0.278400E+04-0.371200E+04 -0.278400E+04

-0.494933E+04-0.371200E+04 0.494933E+04 0.371200E+04

-0.371200E+04-0.278400E+04 0.371200E+04 0.278400E+04

Gradient of stiff [k] w.r.t DV 2 = 0 [k (5)]

Ox 2

32.995555555555

-284.58666666667

-32.995555555555

284.58666666667

-284.58666666667

-445.44000000000

284.58666666667

445.44000000000

-32.995555555555

284.58666666667

32.995555555555

-284.58666666667

284.58666666667

445.44000000000

-284.58666666667

-445.44000000000

194

Table 3: Parallel-Vector Performance For DSA of 80 Bays x 190 Stories Truss Structure Using
ADIFOR Tool on Multiple Cray-C90 Processors

Number of Cray-C90 Processors

Tasks 1 proc.

(A) 0.4855 s_

0.9582 s=
(B)

(0.9906*)

(C) 2.629O s=

(D) 0.1019 _

(E) 2.3717 s_

(F) 9.6934 '_

Entire

Process

Speed-Up Factors

8 proc. 16 proc. 8 proc. 16 proc.

0.09954 s" 0.07854 s_ 4.88 6.18

0.1320 _ 0.073 lS_
7.26 13.11

(0.1433") (0.1547")

0.3568 s_ 0.2026 s_ 7.37 12.98

0.1015 s_ 0.1018 _ N/A N/A

0.3034 _: 0.1558 _ 7.82 15.22

1.2128 _'_ 0.6047 s_ 7.99 16.03

1.259P _16.2740 s_ 2.2221 s_ 7.32 12.93

Notes:

(A) To generate column heights of stiffness matrix

(B) To generate and assemble stiffness matrix

(C) To factorize stiffness matrix

(D) To get static (forward/backward) solution (sequential computation)

(E) To generate the right-hand-side vectors for sensitivity equations

(F) To solve for displacement sensitivity vectors
* Wall-Clock-Time

195

Automatic Differentiation for

Design Sensitivity Analysis of
Structural Systems Using

Multiple Processors

by

Duc T. Nguyent, Olaf Storaasli '_,

Jiangning Qin*, and Ramzi Qamar*

tMultidisciplinary Parallel-Vector Computation Center,

135 KDH Building,

Old Dominion University,
Norfolk, VA 23529-0241

•_Computational Structures Branch,
NASA Langley Research Center.

Hampton, VA 23681

196

OBJECTIVES

1. To obtain accurate derivatives of
complex finite elements and/or
complex design variables

2. Design variables can be either
non-shape (such as areas,
thickness) or shape types (such as
joint coordinates)

3. The entire solution process should
be parallelizedd and vectorizedd to
reduce solution time

4. Numerical Validation and

performance evaluation for the
proposed procedure.

197

MOTIVATION

Analytical (hand-coded)
d " "erlvatlves

feasible
finite

for

elements

are not
complex

and

shape variables

•
Finite difference
derivatives are
ex_p_ensive and can be
inac_

198

mo
°-- C)

-__-==

r_ -.

• U

o--- (_)

G:) o

NI ¢_
• m

m

m

m

i_ rQ

oI>

199

UNIQUE FEATURES OF
THIS WORK

1. Both simple and complex finite
elements (2-D truss, and 3-D
plate/shell) are treated.

2. Both (non-shape)design variables
(such as areas of truss members,
or thickness of plate and shell
members),
variables

and shape design
(such as ;o_nt

coordinates) are considered

3. The entire solution process has
been parallized and vectorized

4. EXCELLENT speed-up has been
achieved even on "small-scale"

example.
2OO

GENERAL FORMULATION FOR
DESIGN SENSITIVITY ANALYSIS

(D.S.A.)

Equilibrium Equations
[K]{z}--{_} (1)

Take derivatives of both sides

of Equation (1)with res.l:zect todesi n variable vector b

-"*"_£[*u, {z} +[K] • o{z} =[o]
8b--019

(2)

Sensitivity Equation:s
_ _"...: r,,-]a{z} _ • {z}/_-w .Ix _ _ ""

_;',1 _ L _ "'-

,._._,.j a,.:,.,-,,/,-_._ 8 b O b '- "

pa_pJ|,l-_/ec|or E_. solv, r is

_.oi.I 1o,-¢sM g cFD !

(3)

201

Z

&

©

c'q

I

q-

¢q

_1_v

H
H

N

I
I

I

.%,-

X

g_.,.._...2

!

I1

L3

_g

II

202

(A) Non-Silape Design Variables

- _ , rlL.:r,=_ASY!
_" L

'a_

(B) Shape Z _._signVariables

0 [k (_)]_tob,,l = VERY TEDIO US v

X°

J

X k

yj

Yk l

203

204

Then

Functions

rk<..=.],,o_,.,- 1,<o1,.o:._,,. 1/]
7 ..._.

;"

of element nodal coordinates also!

(A) Nor,-Sllape Design Variables
I"

0 Lk<'>J_,o_o,_ E A S _" ,
"I

at

(B) Shape Design Variables

X i

xj

X k

0

Z i

zj

Z k
L

=VERY TEDIO US i

205

Zz

Z

_CZ

c_

C
_ tm

'4--

0
Z

206

I/_t"FL.ZcArioN S

F

I_O

J
.)

NEL = Go,?7o _k.,,.,o,,,}',"(TR.,

NrER_I_S = 5", 171, S74 Fcr_,,_"

AVEBW = IG& cv_.-,.___.,,Iw;J,V_

_o,,j,,,,Z,;,,},i,>-

N E(..I, -" 4

,/

./

,/

/
/

.// /J

\
\
\

////"

/

/-

I.,

/

/

f

¢

;-
f

207

m

<

Q.) kJ
,- Z '_'--J

_- _ R_ g S N E N

o

0
©

t--
i

208

nel,ndofpe,nodes,ndofpn,nunrol,nummat,ir_bays,7,4, 2*2, 8, !000, 0, i0, 300, nstory,ndv

_design variable, total memory needed= i000, 7881649

max. wall clock timer for gen+assem = 0.250323822

(z}/d(b) with respect to DV _ i000

d{zJ/d{h) = 0.463915E-02 0.197448E-03 0.463915E-02 0.127947E-03 0.463915E-02

d(z}/d(b} = 0.584470E-04 0.463915E-O2-0.110535E-04 0.463915E-O2-0.805540E-04

d{z}/d{b) = O.463915E-O2-O.150054E-03 0.46391SE-O2-O.219555E-03 0.463915E-02

d(z)/d(b) = -0.289055E-03 0.463915E-O2-0.358556E-03 0.463915E-02-O.428056E-03

ME, time for generate SD=I,

ME, time for generate K =i,

ME, time for Factori. =i,

ME, time for Solution =i,

ME, time for (dK/db)*X =i,

ME, time for dX/db

** Time in houndc

** Time in jointc

** Time in apload

** Time in elconn

** Time in materp

Time in colht

TIME: (nel,neq, ielm,nterms)28.991996244,

2.465475E-2

0.250328442

0.234019218

2.2428906000002E-2

6.526009938

=l, 21.726178002

=4.737786E-3

=3.0296399999999E-4

=4.8300000000001E-5

=3.33129E-3

=4.7050644E-2

=0.1528ggoR6

12300, 6600, 12300, 186;32_

J

nel,ndofpe,nodes,ndofpn,nunrol,nummat,irea/__3_bays, nstory,_n_

4, 2*2, 8, I000, 0, i0, 300, _t

design variable, total memory needed= i000, 7881649

max. wall clock timer for gen+assem = 0.143736066

d{z}/d[b} with respect to DV # I000

d{z}/d(b) = 0.463915E-02 0.197448E-03 0.463915E-02 0.127947E-03 0.463915E-02

d(zl/d(b} = 0.584470E-04 0.463915E-O2-0.110535E-04 0.463915E-O2-0.805540E-04

d(z}/d(b) = 0.463915E-02-O.150054E-03 0.463915E-02-O.219555E-03 0.463915E-02

d(z}/d(b) = -0.289055E-03 0.463915E-02-0.358556E-03 0.463915E-02-0.428056E-03

ME, time for generate SD=I

ME, time for generate K =i

ME, time for Factori. =i

ME, time for Solution =i

ME, time for (dK/db)*X =I

ME, time for dX/db =I

ME, time for generate SD=2

ME, time for generate K =2

ME, time for Factori. =2

ME, time for Solution =2

ME, time for (dK/db)*X =2

ME, time for dX/db =2

** Time in boundc

** Time in jointc

** Time in apload

** Time in elconn

** Time in materp

2.466528E-2

0.125706372

0.141787986

2.2426734E-2

3.275844468

10.83518028

1.816800G000429E-5

0.12609603

0.141645408

5.1287999999872E-5

3.28376691

10.836083088

=4.723914E-3

=3.0290400000002E-4

=4.8348000000004E-5

_3.331998E-3

=4.7076264E-2

lht =3-3666912000001E-2

l, neq, ielm,nterms) 14.514775074,

__OTAL TIME:(nel,neq, ielm,nterms)14.528120334,

12300,

12300,

6600,

6600,

6150,

6181, 186_

2O9

nstory_nd_
al,ndofpe,modes,ndofp,,nunrol,nummat,i_bays,7, 4, 2"2, 8, iOOO, o, I0, 300,

@design variable, total m_mory needed= I000, 7881649
max. wall clock timer for _en+assem = 0.106087758

d(z)/d(b) with respect to DV _ I000

d(z}/d|b) = 0.463915E-02 0.197448E-03 0.463915E-02 0.127947E-03 0.463915E-02 /
d(z)/d(b) = 0 58447OE-04 0.463915E-02-0 II0535E-04 0.463915E-02-0 805540E-04

d(z)/d(b) 0 463915E-02-O.150054E-03 0 463915E-O2-O.219555E-03 0 463915E-02_

d(z)/d(b) -0 289055E-03 0.463915E-02-0 358556E-03 0.463915E-02-0 428056E-03J

time for generate SD=3,

time for generate K =3,

time for Factori. =3,

time for qenerate SD=I

time for generate SD=2

time for generate K =i

time for generate K =2
time for Factori. =I

time for Factori. =2

time for Solution =I

time for Solution =2

time for (dK/db)*X =i

time for (dK/db)*X =2

time for dX/db =i,

time for dX/db =2,

time for Solution =3,

time for (dK/db)*X =3,

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

_r

E,

E,

2

8

9

2

2

8

8

9

9

6

5

2

2

7

7

2

2

441805E-2

4435756E-2

3954744000001E-2

206860OOOO003E-4

5296000000008E-5

4171846000001E-2

452527E-2

3851616E-2

3939270000001E-2

4373999999923E-5

441399999917E-5

156280738

168834262

22125122

196945016

2304856E-2

163674568

ME, time for dX/db =3, 7 211424354
** Time in boundc =4.723506E-3

_* Time in jointc =3.0207599999998E-4

** Time in apload =4.8342000000007E-5
** Time in elconn =3.328746E-3

** Time in materp =4.6941834E-2

** Time in colht =I.0283598E-2_ _

TOTAL TIME: (nel,neq, ielm,nterms_.62149216Z i_6537\

TOTAL TIME: (nel,neq, ielm,nterms_9.607627608, 12300, 6600, 4131, 186532

TOTAL TIME: (nel,neq, ielm,nterm_721047816, 12300, 6600, 4131, 1865y

210

CONCLUSIONS

1 Automatic Differentiation (ADIFOR)
tool has been successfully applied to
both simple (TRUSS) and complex
(Alex Tessler's PLATE/SHELL) finite
elements

2. Both non-shape
variables can be

and shape design
successful ly treated.

3. For the first time (to the author's
knowledge), ADIFOR tool can be
applied in a parallel-vector computer
environment for non-shape and
shape sensitivity analysis.

4. The _ finite element

sensitivity analysis can be done with
excellent parallel and- vector speed
(using all 16 Cray-C90 processors)

211

SESSION 6 Mosaic and the World Wide Web

Chaired by

Clyde R. Gumbert and John W. McManus

6.1 Introduction to the World Wide Web and Mosaic -Jim Youngblood

6.2 Use of World Wide Web and NCSA Mosaic at Langley -Michael Nelson

6.3 How To Use the WWW To Distribute Scientific & Technical Information (STI)

-Donna Roper

212

3 5607 '_ IloO#

Introduction to the World Wide Web and Mosaic

by Jim Youngbiood, Lockheed Langley Program Office

Special thanks to Earl Spratley of Lockheed Langley Program Office for

assistance with the graphics.

N95.16463

F

6/13/94 5:30 p. m.

IMPORTANT: This document is a hypertext file. If you are reading it in

printed form you can get an electronic version by using your Mosaic

browser's "Open URL" feature. This document's URL is

"http://sti.larc.nasa.gov/demos/mosaic-general.htmr'. The electronic version

contains Hyperlinks that allow you to access reference documents in other

parts of the World Wide Web. (All of this is explained in more detail below.)

Introduction

This tutorial provides an introduction to some of the terminology related to

the use of the World Wide Web and Mosaic. It is assumed that the user has

some prior computer experience. References are included to other sources of
additional information.

The concepts are:
• The World Wide Web

• Browsers

• Mosaic

• Hypertext

• Hypermedia

• Distributed Hypermedia

• Hyperlinks

• HTML

• URL

• Hotlist

• Hints

213

If you are reading this document from within Mosaic and you are familiar

with some of these concepts and want to skip to an unfamiliar section just

place your mouse cursor on the section you wish to read and click the mouse

button. If you are reading this document in printed form, the sections proceed

in the order given above.

o

zard \. _\

N

GOPHER

, WAIS

What is the World Wide Web (WWW or W3)?

The world wide web was first conceived at the CERN high energy physics

research laboratory in Switzerland as a way to quickly share physics research

results over the Intemet. The shared data was often graphical in nature so

existing methods of distributing text were not adequate. CERN defined

standards for uniform access methods to all forms of media on the net. There

are several different WWW clients; Mosaic is emerging as the most popular.

The WWW attempts to find uniform ways to access all of the current Internet

resources including:
214

• Gopher (An on-line card catalog of many on-line libraries.)

• WAIS (An on-line catalog browser and retrieval mechanism)

• FTP (File Transfer Protocol) -- A way to transfer files to and from

other computers to your computers.)

• Usenet (The worlds LARGEST computer bulletin board)

• telnet (A way to log into other computers)

• hytelnet (A menu driven version of telnet)

• hyper-g (A hypermedia system built on existing large databases,

Computer Aided Instruction lessons and a general purpose hypermedia

encyclopedia)

• techinfo (Another Intemet based information -- similar to Gopher)

• texinfo (Based on Donald Knuth's TeX typesetting system, texinfo

allows one file to produce both on-line help files and a printed manual)

• man pages --UNIX manual pages on-line (help files)

• hypertext documents

• "Phone book" services (On-line "White" and "Yellow" pages)

Browsers

A browser is simply a_software application that recognizes the standards that

define the World Wide Web. Mosaic is not the only browser for the World
Wide Web. Some of the other browsers are:

• Cello for Microsoft Windows

• DosLynx for MSDOS

• Samba and MacWeb for the Macintosh

• Chimera, tkWWW.and MidasWWW for X Windows System

• _ text mode browser for UNIX

215

What is Mosaic?

Mosaic is a distributed hypermedia browser for the World Wide Web

(WWW or W3). Mosaic was originally developed in the USA at the

National Center for Supercomputer Application (NCSA) at the University of

Illinois at Urbana/Champaign, and is in the public domain. Mosaic was

originally X-mosaic for X Window System for UNIX. Mosaic has become so

popular that it has been renamed from X-mosaic because it is now available

for X Window System, PCs and Macs. Mosaic is available in version 2.0 for

X Window System and PCs. Version 2.0 Alpha for the Mac was released on

June 10, 1994. It is not known how stable and usable this release is. Version

1.0.3 for the Mac is the current fully released version. This version does not

have "Forms Support".

Mosaic provides a more "user friendly" interface to existing Internet services

such as Archie, Gopher and WAIS, which allow users to search for and

retrieve data from sources throughout the world. Mosaic provides for direct

transfer and display of images, motion pictures and sound.

216

I clicked here...

]A Hypercard I
..=i;,_./====iii_i,_i_iilt:_dii_iiH:_i:_iii;iij:..i==..=j..ili_ii,_-

Main Topics for Audio Help

AboutSound
UsingSound inStacks

Editing Sound

Recording Features

...................
i/_d touse Audio Palette
r • Opening the Audio Palette

I , Audio Palettecommands

":':'.:Leave Help Qulck View Overview ;:::
";'" - __""" "):' " "" _'_"" " _;''- - "";-" " "-_'rl- -i i_ - "'""'-- ""_- - "'" :"

What is hypertext?

Hypertext is text in a document that is highlighted in some way. When the

text is selected, with a single mouse click you will be taken somewhere else

in that document or to another related document. We have all probably had

some experience with hypertext. PC users have seen hypertext in Microsoft

Windows Help--you can click on highlighted text and get more detailed

information about that text. Macintosh users first experienced hypertext with

the product HyperCard. Many Macintosh products now have hypertext
interfaces.

217

jl

What is hypermedia?

Hypermedia is an extension of hypertext that include pictures, sound, and

motion pictures. After a single click on an icon (also called hyperlink -- see

below) that represents a picture, sound or motion picture, the object will be

displayed, the movie played or the sound produced.

218

• URL (Uniform Resource Locator) specification (CERN)

• A Beginner's Guide to URLs

• URLCurling Up to Universal Resource Locators, by Eric S. Theise

Hotlist

Using the hotlist is usually the safest way to be sure that you can come back

to interesting information that you have found with Mosaic.

Depending on your version of Mosaic, Hotlist will have its own pull down

menu or be found under the "Navigate" pull down menu. If you find a

particularly interesting Mosaic screen that you would like to view again, pull

down the hotlist menu and add the document to the hotlist. (When you quit

Mosaic on the Macintosh, remember to save the changes to the hotlist.) Other

WWW browsers may call this same feature "Bookmarks".

Hints

liThe "S" with a globe in it the NCSA Mosaic symbol and is an

indicator that a file transfer is taking place between your computer and a

remote computer. This gives you status information on what Mosaic is doing.

If a transfer seems to be taking too long or not doing much, you can click on

the globe symbol to abort the transfer. (What is too long will depend on the

speed of your network connection and how heavily loaded the network is,)

PC Mosaic has a number of problems including being difficult to configure.

If you can use X-windows from your PC, it is best to start an X-windows

session and use a UNIX version of Mosaic from your PC.

Forms Support is a feature that makes searching for information much

easier. The best way to use forms is with X-Mosaic on a UNIX platform.

Mosaic for the Macintosh is currently out in version 1.0.3 and does not
221

support forms. (Mac Mosaic 2.0 Alpha was released on June 10, 1994. At

this time it is not known how stable this release is.) PC Mosaic has problems

as stated in the paragraph above.

JARGON

Here is some of the jargon you will encounter while using Mosaic and my

attempt to explain its meaning:

• Archie - Certain Internet sites maintain lists of the files available at all

Intemet FTP sites. When you request an Archie search for a given file at

one of these servers it responds with a list of all known FFP sites that

have the file.

• FAO- (Frequently Asked Question) Questions that are often asked

by new users of the Usenet news services. Many of the Usenet groups

create FAQ files to keep network traffic down and avoid repeatedly

responding to common questions.

• FTP (File Transfer Protocol) The method used most commonly to

transfer files from one computer to another on the Internet. WWW gives

FTP a user friendly interface.

• Gopher - A client/server distributed information delivery service.

Gopher is like a library where you can browse other librarie's card

catalogs and have the material you want automatically sent to you. A

deficiency is that one library may have a subject called "Folklore,

American" and another may call the same category "Funny Old

Stories". (Adapted from The Whole Internet User's Guide & Catalog by

Ed Krol)

• HTFP (HyperText Transfer Protocol) A protocol used by the WWW

to transfer hypermedia.

• URL - (Uniform Resource Locator) An extended form of file names

that locates files and other resources anywhere on the Internet.

• WAIS - (Wide Area Information Service) A client/server distributed

information retrieval service. WAIS is like walking into a library with a

quote and have the library automatically check out everything that

contains it. Think of WAIS databases as private libraries devoted to a

particular topic. "In Gopher, you find resources by looking through a

222

Distributed Hypermedia

Computers have become more sophisticated and able to handle graphical

and sound programs. Distributed hypermedia is merely hypermedia (text,

sound, picture or movie files) that resides on multiple machines and is
accessible via a network.

Hyperlinks/Home Page

•Hyperlinks are highlighted text, pictures or symbols in a document that

indicate a connection (or link) to other material. When you click on a

hyperlink with your mouse you directly access the item that the hypedink

refers to. These documents, pictures, videos, or sounds are files that may

reside anywhere on the Internet. Your computer retrieves them as files and

opens the proper application to display them as documents, pictures, videos,

219

or sounds.

A "Home Page" is a hypermedia document that is on the World Wide Web

to give information about the posting organization or project. Usually the

home page will aim to be eye catching by including a logo for the

organization and some picture of the organization's activities. Most home

pages also include hyperlinks to other multimedia documents about the

organization and related organizations.

HTML

HTML stands for Hypertext Markup Language -- a meta language used to

write the hypertext pages of the WWW. The easy to read text that you see on

your screen actually comes to you in a format that your computer must then

read and format into a form suitable for your display. For example: the title of

this section actually looks like:

 <h3> HTML </h3>

HTML is important in other ways that Donna Roper will cover in her

presentation.

Click here for Donna Roper's presentation on HTML

URL

URL stands for Uniform Resource Locator. A URL may be thought of as an

extended filename that lets you find a file anywhere on the Intemet. The

URL also can have information about what kind of a file it is and other

information. All versions of Mosaic have the option "Open URL" under their

"File" pull down menu. The URL becomes useful when you see a statement

in your email like "The LaRC home page URL is

http://www.larc.nasa.gov/larc.htmr' To access the LaRC home page all you

need to do is pull down the Mosaic "File" menu and select "Open URL"

then type the string "http://www.larc.nasa.gov/larc.html" (without the quotes).

220

sequence of menus until you find something appropriate. WAIS does

the same thing, but it does the searching for you. You tell it what you

want: it tries to find the material you need." (Adapted from The Whole

Intemet User's Guide & Catalog by Ed Krol)

Ways to find out more about the WWW:

• The WWW FAQ (Frequently Asked Qestions with answers) is very

good.

• Read the LaRC Usenet news group "larc.users.mosaic".

• Read the NASA Usenet news group "nasa.infosystems.www".

• Read the Usenet news group "comp.infosystems.www".
• The tutorial at URL

http://matrix.ssd.intel.com:8008/BmwnBa_q"orownBag.html is excellent.
• A tutorial at URL

http://navigator.jpl.nasa.gov/section314/papers/www-seminar/

www-seminar.html is more technical but still good.

Jim Youngblood (j.r.youngblood@larc.nasa.gov)

223

I1_ Oqq N95. 16464

Use of World Wide Web and NCSA Mosaic at Langley

CSTC Workshop, H. J. Reid Conference Center, 06/16/94

Michael Nelson, Information Systems Division

http://blearg.larc.nasa.govl~mln/cst¢/

224

Use of World Wide Web and NCSA Mosaic at Langley

• A Brief History of WWW at Langley Research Center
• The Impact of WWW at Langley

• Various Projects That Have Used WWW Successfully

o Technology Opportunities Showcase
o Langley Distributed Active Archive Center - EOSDIS

o Langley Technical Report Server

o Langley High Performance Computing and Communications K-12 Program
o COSMIC Replacement

• The Future of WWW at Langley
• What's Next?

225

[]m[B

A Brief History of World Wide Web (WWW) at Langley

Langley's Leadership Role

• Langley Home Page became public on July 25. 1993
• The initial set of pages were quickly followed by a number of other contributors

• The Langley Home Page is almost a year old

• The Langley Home Page was the first NASA center home page

• Why is the "75 Years" logo used?
o To remind ourselves and others that leading the way is nothing new for

Langley

o And while the technology may be new, the innovative spirit is not

NASA's Leadership Role

• Archie Warnock and Jim Gass of GSFC lead NASA Home Page effort, with input
from all of the centers

• Communication through the NASA USENET newsgroup, nasa.infosystems.www
• The first version of the NASA Home Page became public on September 8, 1993.

• NASA continues to lead federal agencies in deployment and use of WWW

• The NASA Web is a model for grass-roots involvement and inter-agency
collaboration

226

[][][]

Charateristics of the Langley Web

Architecture of the Langley Web

• Canonical list - "one stop shopping"

• Logically central, physically distributed
• Langley home page is largely a collection of pointers to other WWW servers at

Langley and beyond
• Mats, PCs, and UNIX workstations have HTTP servers

The Langley Web Benefits From a Large Number of Contributors

• Over 20 public HTTP servers (plus several others in testing or private)

• Everyone is responsible for maintaining the information they know the most about

• It encourages experimentation
• Everyone is involved with the new information distribution methodology: Its not just

"send me an e-mail", its now also "send me the URL"

227

Impact of World Wide Web at Langley

No Longer the "Best Kept Secret in the Government"

• Statistics not kept until August 27, 1993

• Number of Langley home pages served:

• At one point, the Langley home page was the "18th Most Linked to Home Page" (source: a Univ.
of Washington Web Crawler)

• 797000+ H'ITP connections with main Langley WWW server
• Accesses to the main Langley WWW server (www.larc.nasa.gov)

o 1700+ Langley Computers
o 5100+ NASA Computers

o 62000+ Computers World-Wide
• www.larc.nasa.gov is currently a non-dedicated, SPARCstation flaX, 64 Mbytes memory, 1.5

Gbytes disk

What Ls the Impact on the WWW Users ?

Move from zero-sum to non-sum information distribution model

Perhaps most importantly, connecting:
o People with technologies
o People with people

228

[][][]

Some Langley Projects that have employed WWW

These Projects Have Increased Awareness and�or Usage with WWW

• Technology Opportunities Showcase (TOPS_

• l,,angley EOSDIS Distributed Active Archive Conter

• l,,alaglev Technical Report Server (LTRS_

• High Performance Computing and Communications K-12 Pro m'am
• COSMIC Replacement

Important Notes About the Above Projects

• Each represent "firsts" in their respective areas
• The projects are accessible through a common interface

A Number of Braches, Divisions, Groups, Teams, and Initiatives Use WWW

• Check the Langley home page for a complete and current list?

229

Technology Opportunities Showcase

A Diverse and Dynamic N-team Assembled to Contruct the TOPS Database

• Number of TOPS home page visitors since 6/01/94:

• TOPS builds upon other on-line databases, such as the X.500 phone book information,

the Langley Technical Report Server, and existing Langley organization home pages.

• Team members: Kennie Jones (ISD), Jim Fenbert (ASAD), Kathy Stacy (ISD),
Gretchen Gottlich (PRMO), Kurt Severance (ISD), Michael Nelson (ISD), Rick Hoff

(STID), Dan Axelrad (STID co-op), Chris Matthews (CSC), David Bianco (CSC),
Tricia Smith (ISD)

• Others latered contributed tours, reports and other information

• Features: all data sheets; keyword searching; photographs; "clickable" TOPS
floorplan; automated metrics; and on-lne requests for more information forms

• POC: Kennie Jones, K.H.JONES @LaRC.NASA.GOV, 864-6720

• http://www.larc.nasa.gov/tops/tops.html

230

Langley Distributed Active Archive Center (DAAC)

A Component of the Earth Observing System Data Information System (EOSDIS)

• The Langley DAAC uses a home page to:

o Increase awareness of the Langley DAAC
o Provide various documentation sets

o Provide user services information

o Launch the innovative Langley DAAC Data Ordering System X Window
System/Motif client

• Some projects currently served with DAAC: ERBE, SAGE, FIRE, SRB, ISCCP
• DAAC use of WWW has enabled several hundred more data set transfers

• POC: Roy Dunkum, R.C.DUNKUM@LaRC.NASA.GOV, 864-6589

• http:lleosdis.larc.nasa.govl

231

The Langley Technical Report Server (LTRS)

LTRS is an Experimental Report Distribution Project

• Distributes "unclassified, unlimited" technical reports and papers

• Began January 1993 as an Anonymous FTP server only - (WAIS searching adding

shortly thereafter)
• In the first 6 months (1/93 - 7193), 2400+ reports distributed (pre- WWW)

• WWW enabled integrated searching and retrieving in October 1993

• As of 6/94, 10000+ reports distributed

• WWW provides a more intuitive and friendly interface to LTRS
• LTRS concept is being replicated across NASA via the NASA Technical Report

Server (NTRS_

• RPPB (former - Technical Editing Br.) provides formal publications; others are

contributed by the authors
• LTRS team members: Michael Nelson (ISD), Gretchen Gottlich (PRMO), David

Bianco (CSC)
• POC: Michael Nelson, M.L.NELSON@LaRC.NASA.GOV, 864-8511

• http://techreports.larc.nasa.gov/ltrs/ltrs.html

232

The Langley High Performance Computing and

Communications K-12 Program

The Langley HPCCP K-12 Program is Active/

• Five area high schools are currently class C registered networks on the internet

(e.g., patriot.denbigh.nn.k12, va.us is a valid lnternet address)
• Three new schools are scheduled to be online this fall

• Each school currently receives its network connection from Langley over standard

phone lines, and has a collection of donated Sun UNIX workstations and Apple
Macintoshes

• The teachers are learning about computation, and integrating it into the curiculum

• All volunteer effort: Gary Warren (FMAD), Leon Clancy (ICASE), Kelvin

Edwareds (AS&M), plus others

The Langley HPCCP K-12 Program Has Received Broad National Recognition

• The Langley K-12 program is a fixture on educational WWW pages

• The Langley host machine for K-12 has registered over 20000 individual file
accesses

• POC: Gary Warren, G.P.WARREN@LaRC.NASA.GOV, 864-2162

• http://kl 2mac.larc.nasa.gov/hpcckl 2home.html

233

A Langley COSMIC Replacement is Planned

The WWW is a Natural Medium for Langley Computer Program Distribution

• A prototype is planned for this summer
• All non- sensitive, classified, or controlled programs would be available for free and open

distribution

• Inspired by Oak Ridge National Lab's Netlib, which processed over 1.8 million requests in 1993
• Implemented by a TAG-lead N-team
• Will build upon work already done with the Langley Technical Report Server
• Sample codes arc sought
• POC: Dan Sydow, P.D.SYDOW@LaRC.NASA.GOV, 864-3180

234

[][][]

The Future of WWW and Mosaic at Langley?

Complete the Langley Web

• Currently, only a portion of Langley's activities are represented
• Everyone should be able to maintain at least minimal information about their

organization or project

• Automated inclusion of on-line organization trees, functional statements, etc.

Further in the Future...

• A wider choice of WWW clients, both commercial and freeware

o Mosaic has been licensed to several companies for commercial development

o NCSA Mosaic will continue to develop and remain freely available
• Tighter integration of all WWW documents

• Better searching tools

• Better authoring and data management tools

• Sophisticated "Knowledge Robots" that search, retrieve, and filter various

information sources according to personal preferences

235

Concluding Remarks

The World Wide Web and NCSA Mosaic Have Changed the How Langley Does Business

• Langley and NASA lead in the adoption of WWW technology to accomplish our
• Several projects and programs have already enjoyed tremendous success using WWW

• WWW is now an integral tool for technology transfer both out of an into Langley

• Langley is no longer a "secret"; and less and less means Air Force or CIA
• Langley must continue to increase the number of its WWW providers and users

Being on the WWW is Simple, Effective, and Fun/

• Some instructions are available from the Langley home page
• Find a branch, project or other home page that you like and adapt it
• Come to the Internet Fair, June 28, H. J. Reid Conference Center, Langley Research Center, 8am -

3pro for more information

• And the next presentation will explain how to get started if you can't walt!

236

ss6 /\OOr
How To Use the WWW To Distribute STI

by Donna G. Roper

N95- 16465

This presentation explains how to use the World Wide Web (WWW) to distribute your scientific

and technical information (STI) as hypermedia. WWW clients and servers use the HyperText

Transfer Protocol (HTTP) to transfer hypermedia documents, that is, documents containing links to

other text, graphics, video, and sound. The standard language for these documents is the

HyperText MarkUp Language (HTML). HTML documents are simply text files with formatting

codes that contain layout information and hyperlinks. To make your scientific and technical

information available to the WWW as hypermedia documents, you must learn how to create HTML

documents and make them available on an HTTP server. You can create HTML documents with

any text editor or with one of the publicly available HTML editors or conveners. You can also use

HTML to include links to image formats such as XBM, GIF, TIFF, JPEG, MPEG. Most of the

information that you need to get started is available on the Internet. This presentation is available

on-line. The URL is http:llsti.larc.nasa.govldemoslworkshoplintrote.u.html

237

Using the WWW for STI Allows Users To

• Refer back to equations, figures, and text in previous sections

• Access references that are available on-line

• Attach personal, group, or public annotations to documents

• Download figures for manipulation or inclusion in other reports

• Download computer codes, programs, and documentation

• Access simulation models, data files, and videos

• Browse files in HDF (Hierarchical Data Format). a machine-independent file format that

allows arbitrary grouping and annotation of heterogeneous data elements.

• Send scientific data in a hypermedia document across the network for graphical and statistical

inspection and analysis on programs such as

• Colla_,e. NCSA's synchronous collaboration tool for scientific data analysis and

manipulation.

• Polyview, NCSA's collaborative tool for three-dimensional geometric and polygonal

data analysis.

• Data Management Facility (DMF), NCSA's scientific data management and archival

system.

Distributing STI on the WWW as Hypermedia

• Learn How To Create HTML Documents

• Make Documents Available on an _ Server

d.g.roper@larc, nasa.gov

238

Hypermedia Documents Contain Links To

• Text

(7-bit ASCII)

• Graphics

(e.g., Graphs, Photos, Line Drawings)

• Video

(e.g., Crack Propagation or Air Flow Over Wing Configuration)

• Sound

(e.g., Engine Noise, Narration)

HyperText Transfer Protocol (HTTP)

H'ITP is a stateless search, retrieval, and manipulation protocol with the speed necessary for a

distributed hypermedia information system.

These HTTP Servers Are Available on the Internet

• NCSA httpd

• GN (a _opher/http server from

• CERN HTTP _erver

• MacHTI'P - a Macintosh HTTP server

• serweb - Windows 3.1/NT HTrp _a-vgr (requires winsock)

• HTrPS - Windows biT HTrp _rver (for PCs and Alphas)

• NCSA h _ttpd for Windows

Your system administrator should be able to help you set up the http server. If not, contact

m.l.nelson_larc.nasa.gov about serving files from www.larc.nasa.gov

239

HyperText MarkUp Language (HTML)

HTML documents are 7-bit ASCII files with formatting codes that contain layout information and

hyperlinks to text, graphics, video, end sound.

How To Create HTML Documents

• Create HTML Documents With any Text or

• Create HTML Documents With a Word Processor and Export as ASCII

• Create Documents With a Word Processor and Convert tO HTML

Samnle HTML Document

HTML References

• A Be_mer's Guide to HTML

•Crash Courseon WritingDocunwnt_ fQr th_ W_b

• Elements of HTML SWIc

• I-H'ML Tutorial

Tips For Writing HTML

• Save As HTML Option

• Open LocalOption

240

Sample HTML Document

<hl> Heading Level One </hl>

This text is a san_le paragraph. Paragraphs n_st be separated

with the html paragraph tag because

blank lines and tabs are ignored.

<ID>

This text is another sanlole paragraph. You can use html tags to display <i> italic text</

<h2> Heading Level Two </h2>

This text contains an unordered list.

 Item 1

 Item2

Heading Level One
This text is a sample paragraph. Paragraphs must be separated with the hunl paragraph tag because

blank lines and tabs are ignored.

This text is another sample paragraph. You can use html tags to display italic text and bold text.

Heading Level Two

This text contains an unorderexi fist.

• Item 1

• Item 2

HTML Link To Another Document

You can link regions of text or images to another document or image as well as to a specific section

in a document. Here is a hypertext link (called an anchor) to the llg_MJ_£_lll_

Here is the HTML tag:

 next document

241

Mosaic Can Display Inline Images in Two Formats

• XBM (X Bitmap)

• GIF (Graphic Image Format)

For example, here is the logo for our division

m
al ii

11111.411#lll_llll 41111 II!

Here is the HTML tag:

Mosaic Can Open External Images in These Formats

• XBM (X Bitmap)

• GIF (Graphic Image Format)

• HDF fflierarchical Data Format)

• PS (PostScript Format)

• TIFF (Tagged Image File Format)

• ;PEG (Joint Photographics Expert Group)

• MPEG (Motion Pictures Expert Group)

• Any Format For Which You Have a Viewer

Here is an inlined image (thumbnail) with a hypertext link to a higher resolution photo in JPEG

format_

242

Hemis the HTML tag:

Displaying Scientific Equatigns

243

Display Scientific Equations As Inline Images

Here is an example of an equation in XBM format:

_ J _ l 2)l/h l.i A
(14 K)

Here is an example of the same equation in GIF format:

A separate _ connection must be made to retrieve each inline image, which is stored in a separate

file. Thus, documents with multiple images take longer to download and require more storage for the

document elements.

Sample Documents With 21 Equations

• Equations converted to X Bitmaps: 229 KB total: 16 seconds

• Equations converted to GIFs: 13.8 KB total: 11 seconds

(Source: "Thoughts On Scientific HTML Documents" by M.C. Gram from Stanford University.)

Problems With Displaying Scientific Information

• HTML Does Not Support Greek & Mathematical Symbols.

• Equations Are Stored in Multiple Fries.

•Some HTML ConvertersIgnoreEquations.

•EquationsAxe DifficultTo AlignWith Text.

•EquationsAre Not ScaledTo Match Text.

244

• Superscripts & Subscripts Are Not Supported.

• Tables Are Difficult To Format.

The next version of HTML (called HTML+) will address some of these issues.

Sample Table

Table 6. Parallel Golden Block Method

No of NO. of Time Speedup for

Proc. Points (sec) PGB GS

1 2 0.355 1.00 1.00

1 12 0.540 1.00 0.66

2 12 0.277 1.95 1.28

3 12 0.187 2.89 1.90

4 12 0.144 3.76 2.47

245

SESSION 7 Graphics and Image Processing

Chaired by

David C. Banks

7.1 Image Tools for UNIX - David Banks

7.2 From Computer Images To Video Presentation: Enhancing Technology Transfer -
Sheri Beam

7.3 Data Visualization and Animation Lab (DVAL) Overview - Bill Von Ofenheim,

Kathy Stacy

7.4 Data Visualization and Animation Lab Applications - Kurt Severance and Mike
Weisenborn

246

3 s [/ ;z 0 5 / N95.16466

Image Tools for UNIX

David Banks, ICASE

There are many tools available for digital image processing in the UNIX environment. This talk

features two tools that are simple and useful: xv and pbmplus.

The xv image viewer runs under the X window system. It reads images in a nurnber of different

file formats and writes them out in different formats. The view area supports a pop-up conta'ol

panel (activated by pressing the right-most mouse button). This control panel has a file selector, a

menu bar, and several buttons at the bottorn. The "Algorithms" menu item lets you blur an image.

Why would you want to blur an image? One reason to blur is that you might Wish to shrink the

image. Without blurring first, a "shrink" operation generally obliterates any of the fine details that

are in the full-size image. The bottom buttons let you flip, crop, and resize an image.

The "xv" control panel can also activate the Color Editor. The Color Editor displays the image's

colormap (if it has one). You can select individual elements of the colormap and change their

color. This is especially useful if the image has a solid-color background that you wish to change.

The Color Editor also applies global changes to the image color. These changes include re-map-

ping the hues, setting the white-balance, setting the color saturation, and changing the overall

intensity mapping. These operations are useful for preparing an image to be printed on a medium

that has special color characteristics. As a simple example, color monitors have a wide range of

brightness characteristics. An image can be adjusted to match the settings on different display
devices.

The xv image viewer is available from the internet at various ftp sites. A postscript manual is

available on the world wide web (WWW). It describes a licensing arrangement with the author (at

$25 per machine), but his phone number is no longer valid and neither is his e-mail address. Pre-

vious versions of the viewer (before version 3.0) did not mention a license.

The "pbmplus" package is a set of tools designed to perform image processing jobs from within a

UNIX sheU. The acronym "pbm" stands for "portable bitmap." A bitmap is a straightforward

encoding of a black-and-white image. In a pbm file, zeros and ones represent black and white dots

in a rectangular array. A portable graymap uses a larger set of values to encode different levels of

gray from black to white. A portable pixmap uses triples of integers to encode the red, green, and

blue components of each pixel in an image. A portable anymap encodes any prescribed number of

integer values for each pixel.

Like "xv", the pbm tools can convert images from and to many different file formats. There are

more than 100 individual executable programs in the toolkit; most of them convert images from

one format to another. The "pbm" tools do not provide a stand-alone interactive program like

"xv" does. Instead they act as filters, taking images as input and producing images as output.

The source code and man pages for "pbmplus" are available by ftp. This software is in the public
domain.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

3 / z / / oo N95- 16467

From Computer images to Video Presentation:

Enhancing Technology Transfer

Sheri Beam

Hampton University

With NASA placing increased emphasis on transferring technology to

outside industry, NASA researchers need to evaluate many aspects of their

efforts in this regard. Often it may seem like too much self-promotion to

many researchers. However, they should first take a long, hard look at how
industry promotes itself.

Industry has been in the video production business for years. Upon

a close examination of sales, advertising, public relations and training,

video is used everywhere. In fact, in many cases, the quantity of outside

production has often dictated the need for many industries to build their

own in-house production facilities. In marketing themselves and their

products through the use of videotape, industries have been educated by

film and video professionals to expect a certain level of quality and

sophistication. In addition, industry professionals are familiar with

current television programs, like NOVA, which reinforce what they know

about the state of the art of video. Therefore, anyone who wants to do

business with them, must meet on a level playing field by emulating these

very same video production standards.

Today the most typical presentation method at NASA is through the
use of vu-graphs (overhead transparencies), which can be effective for text

or static presentations. However, for dynamic, full-blown color and sound

presentations, the best method is videotape. In fact, it is frequently

more convenient, because of portability and the availability of viewing

equipment. Due to the nature of its ease of operation, both in the

recording and playback, coupled with the fact that viewing television is

passive, many people suffer from the misconception that creating a video

production is also a simple and passive activity.

Although a NASA researcher may not use the same approaches to

create a computer-generated presentation as an entertainment program, some

aspects are essential for both if they will eventually be viewed on a video

monitor. The intended audience must be identified, as _his will help to

determine the level of technical content, as well as the length of the

presentation. A good presentation can be compared to a good story. It has

a beginning, a middle and an end. For technology transfer purposes, a

researcher should try to introduce the research images, give the details of

the research, and review the images and information presented.

When creating the computer images for the presentation, a major

consideration is the viewing environment. The size of the space, plus the

size of the monitor screen, plus the number of people viewing the

presentation should determine the number of screens necessary for an

effective presentation. Since the most common videotape used in the United

States is still VHS (1/2") NTSC (National Television Standards Committee)

format, the computer images will have to meet certain requirements in order

to maintain the possible bes_ quality through the transfer process.

Although the computer has the ability to accurately reproduce a multitude
of colors in intense saturation levels, the video monitor has much more

limited capabilities. Primary colors, often the first choice of the

researcher, are particularly difficult to reproduce.

266

Screen composition is another important consideration. At present,

video monitors typically have a three by four screen ratio. With this

basic horizontal format in mind, a researcher can create more aesthetically

pleasing images by following established principles from great artists,

including foreground, middle ground, background, balance and lighting. If

the image is animated, employing accurate simulation to reality, including

initiation, direction, smoothness, and completion are important criteria to
follow.

It may take many hours to create and render just one frame of the

image, but real time video runs at 30 frames per second. A researcher

needs to keep this in mind when generating animations and determining how

long they should run. One that runs slowly due to a lack of frames

(e. g. 6 fps) will also not run smoothly. It is better to play it more

frequently at a faster rate.

Since a researcher may not always be available for the actual

presentation, professionally edited audio narration on the videotape can

make it an effective stand-alone product. Writing the script before

editing the images facilitates matching picture and sound. Although a

technical paper of the research may have been previously published, it will

have been written for the eye and not for the ear. For this reason, a

collaboration with someone trained in writing for broadcast is necessary.

The researcher and the video professional combine to form a unique

team, blending the scientific with the aesthetic, where all the necessary

detailed steps take shape in a creative concept. This concept ultimately

becomes a video presentation at the level of quality expected by outside

industry.

267

0
nm

=_ >,,

0")

01_

E
0
s.__

I.I=

0
r-

.=_

>,
"0

(1)
L-

m

>.,

"0
r-

im
.=

,<
>
0
Z

"0
(1)
O)
r"

0
0

==1

E
O

I.I.

E

,I,,,I

e-

in

im

e-

269

E
0

ml

"0 >,

tO

E
0
x.._

II

270

I

E
0
tO

x__

0
l

0
tO

¢-
0

in

¢..

8"'
E
0

m

"0
¢..

t--

iE

0

271

II oo
N95- 16468

The Role of Computers in LaRC R&D

Graphics and Image Processing Session
June 16, 1994

Data Visualization and Animation (DVAL) Overview

Presented by Kathy Stacy and Bill von Ofenheim

Abstract :

The Data Visualization and Animation Lab is an open shop facility

created and supported by the Scientific Applications Branch of the

Information Systems Division. The DVAL is located in Building 1268,

Room !101A. An experienced team of visualization experts is available

to help researchers import, visualize, and interpret data derived from

a wide variety of sources including in-flight experiments, wind tunnel

tests, computer simulations, and atmospheric studies.

The general capabilities of the DVAL include digital image processing, 3-D

interactive computer graphics, data visualization and analysis, video-rate

acquisition and processing of video images, photo-realistic modeling and

animation, video reports generation, and color hardcopies. The hardware

resources of the facility cover a variety of computer platforms including

Sun workstations, SGI workstations, PCs, and Macs. The Video Image

Processing System (VIPS) is a specialized system designed for post-

processing of images recorded to videotape. The system supports the

common video formats used at the Center, including VHS, S-VHS, U-Matic,

U-Marie SP, and Betacam. The most common application of VIPS is the

processing and analysis of video images produced by wind tunnel or

in-flight flow visualization experiments. The system allows for

video-rate (or 30 frames per second) digitization, processing, storage

and retrieval of video frames. The real-time digital disk can store

up to eight minutes of digital image data. The video-rate processing

includes frame averaging, running averages, frame-by-frame subtraction,

pseudocoloring, and spatial convolutions with a kernel size up to eight

by eight. The Scientific Visualization System (SVS) is another specialized

system for generating broadcast quality video productions. Hardware

resources also include a film scanner and flatbed scanner for image input,
and graphics hardcopy devices for image output. The software resources

include major commercial visualization packages such as PV~WAVE, KB-Vision,

SGI Explorer, WAVEFRONT, TECPLOT, Mathematica, and Fieldview, as well as

public domain packages and software packages developed in-house.

A sample application which utilizes most of the capabiliites of the DVAL

is the F-!06B Leading-Edge Flow Visualization Experiment. The original
data from this experiment were vapor screen images recorded on black

and white VHS videotape. Select frames from the videotape were digitized

in DVAL using the VIPS system. The 2-D digital images could then be

enhanced, and vortex core locations could be located, using PV-WAVE software.

A geometric mapping model was developed to accurately map 2-D vapor screen
images into 3-D space. The Flow Analysis Software Toolkit (FAST) was used

to interactive!y visualize the 3-D vapor screen image data along with the

numerical surface geometry of the F-106B. Computer animations were generated

using FAST, and a broadcast quality video containing these animations was
produced on the SVS.

One component of DVAL is the Scientific Visualization System (SVS) which

272

consists of a state-of-the-art digital video editing suite for creating

broadcast-quality videos from computer-generated results. These videos

are used for analysis, presentation, and dissemination. Video helps

the analysis process by providing real-time playback of images which

may take hours to create thereby allowing researchers to get a better

understanding of their time-dependent results. Video is also a highly

portable and universal media for presenting dynamic data at conferences

and meetings. Lastly video is an effective mechanism for abetting the

technology transfer process by virtue of its inexpensive and self-
contained nature.

The philosophy behind the Scientific Visualization System is the

preservation of the original image quality.

This is accomplished by using digital component video equipment.

Digital component video is compatible with digital computers and
digital networks so image data suffers no loss during transmission.

Also editing and special effects are performed digitally so the

integrity of the original image is always maintained.

There are three phases to the video creation process: I) Pre-Production,

2) Production, and 3) Post-Production. The pre-production phases in-

volves creating a storyboard, writing a script, narrating the script, and

adding music. Not all of these steps are required for each video but

at minimum each video should start from a storyboard. The production

phase involves creation of the images or animations using existing

packages (e.g. FAST, Wavefront, and TECPLOT) or special purpose codes

written by SVS personnel. The created images/animations are then trans-

ferred to SVS either digitally using LaRCNET or via analog means such

as SVS's transportable laser disk recording system. Video tapes created

using a video camera such as used in wind tunnel and in-flight experiments

are another means for production. Finally, the video is

editted together in the post-production phase using editing techniques

(e.g. fade, dissolve, wipe, etc.), special effects (e.g. warps, split

screens, layering, etc.), title generation, paint, and graphics.

273

o_._- o_

o_

r_

0

o

274

a

275

mm

"13
li

>

-- = I I _ "I"a3 c _> 0 0 0

1:_ a *" 0
•-- I a3 "13 ..C: "0 0

276

277

278

u._- -_ .- _)

"0 C_ 03 0

"0 _. tg :3
C_ C_ Cg "0
_ "C3 0

--I !.-
C_ _-

rn C C ..j
om _

I 0 !-"
u.,er 0
o

279

V

O
I.H im

/

/

m

J

/

D_

w

280

281

O!ll_N.At.. PACE IS

282

(/)

0
elm

Um

llm

0
(/)

"0

o' Eo
o

m o _o

.__ _

• "0

. _ _ _._
0 l i l

_) I
r- m

o

o_ m°

m_
o ID_ 0 m

¢/)a _nr
• II

TFPoo _a_r'r'Y
283

..,I

0
III_I

u_

I/)
B_

<

g

l

l

S

_o

>_

0

"0 o
• _ _,_
>n-

¢,_ e-
s_

0 0

L_

I-

284

LU

(b
,.,,I

==

0

(D
s__

0
0

"(3
ll_

(/)

• •

(/)
rJ)
G)

O

=l=d

(/)

s_..

0

(.,I

s.__

s._

0

(.,I

s._

0

(3

I._

=Id
(/)
0

rs

285

.,.I

c_

0
l/

4,,,I
0

(/)
>
(/)

o
ii

L _Li L_I ;,_t. _ !!l|tliii!||':_l i _.

._.IiiiiiHi!',_i!ili_!P,i!_ii}!i_ii!< : =

_:.I • _-_ _ -,

• i i_-. ,_ _ ;i
(/'l

i=
0

iig

I1,,

Z

286

,.,j

o
o=
-g

f

(/)

I-
z
0
rr
I!
I.!.i
>
<

287

¢)

......I

0
l_llU

"0

o

,,I,,,I

0

f

=_o_
,,i5_

0 I I I I

"0

>

im

q.--

'L_

0
Ii

_L--

E

0

m

ii

I-"

e-
lm

288

"0
0
x_.

0
ft.

¢.0
>

289

-U

C_

290

c_

291

Z
llOdSq N95-16469

Data Visualization and Animation Lab: Applications

Kurt Severance, Mike Weisenborn

A wide variety of software tools in DVAL have been successfully used to

visualize, analyze, and present computational and experimental data at

Langley Research Center. These tools can be roughly categorized according

to five primary uses: 2-D image analysis, conventional 3-D visualization,

volume visualization, photo-realistic rendering, or special-purpose

applications. Software in each of these categories is accessible to

LaRC personnel free of charge, and training or consultation can be

arranged with the DVAL staff.

Two-dimensional image analysis software is supported on many platforms

and provides several fundamental capabilities. The input is generally a

2-D array of bits, bytes, integers, floating-point, or even complex numbers.

These arrays can then be represented as color images from which features

can be enhanced, extracted, and statistically analyzed. Images can also

be represented as contour plots or, by correlating height with a scalar

quantity, as 3-D surfaces. Most image analysis tools in use today support

two levels of users: the programmer, who intends to incorporate their own

algorithms usually through a command-line interface, and the novice end-

user who usually prefers to work with a straightforward menu interface.

Advanced features include image segmentation and pattern recognition

capabilities.

The two primary image analysis packages available in DVAL are PV~WAVE and

KB-Vision, both of which have been successfully applied to several LaRC

projects. PV~WAVE, a product of Visual Numerics Inc. runs on most UNIX

workstations, and multiple licenses are available which can be shared among

LaRC researchers. A more advanced product, KB-Vision from Amerinex Artificial

Intelligence Inc., employs artificial intelligence techniques _o provide

state-of-the-art feature extraction and pattern-recognition capabilities.

KB-Vision has been used to analyze and reduce images acquired from an in-flight

experiment which utilized tufts, and from a spin-tunnel test which utilized

retro-reflective targets.

Software which allows interactive visualization of 3-D data was originally

specialized for computational fluid dynamics solutions on high-end

workstations. Today, tools are available even on modest computing platforms

for visualizing dense data from either computational or experimental sources.

These conventional tools generally input volume grids, scalar quantities, and

vectors in either structured or unstructured format. Arbitrary cross-sectional

surfaces through the data can be displayed and colored according to a selected

parameter. Advanced features include iso-surfaces (the 3-D extension of a

contour), transparency, thresholding, stereo display, and animation.

Three primary scientific visualization packages used at the Center include

the Flow Analysis Software Toolkit (F.A.S.T.), Tecplot, and Fieldview.

Although these tools were originally intended for CFD research, they have

been successfully used to analyze a variety of datasets including those

from wind tunnel or in-flight tests, atmospheric simulations, structural

analyses, and medical scans. F.A.S.T., a highly interactive environment

often used in DVAL to produce animations of 3-D data, is supported on

Silicon Graphics (SGI) workstations and is free to all NASA personnel

and contractors. Tecplot is free of charge to LaRC personnel and is

available on SUN, SGI, DEC, HP, IBM, and PC platforms. Fieldview, by

Intelligent Light, Inc., is supported on all major UNIX workstations, and

a limited number of licenses are available at LaRC upon request.

Volume visualization techniques offer an alternative to the more traditional

visualization tools. Whereas the conventional tools require the user to

extract polygonal approximations such as cutting planes and iso-surfaces

from their data, volume visualization tools can potentially render an entire

volume of data, allowing simultaneous examination of surfaces and internal

292

structures. This technique is particularly applicable to the analysis of
diffuse or "fuzzy" 3-D phenomenon which have no clear boundaries, such as

electromagnetic fields. Current volume rendering technology requires the
volume to be a rectangular parallelepiped (a box) which is furthermore

subdivided into cubic building blocks, called voxels. A value (upto 16 bits)

for some measured or calculated property is associated with each voxel.
The usefulness of volume visualization has been demonstrated in a number

of fields including cell biology, medical imaging, nondestructive testing,

molecular modeling, astrophysics, and multi-dimensional mathematics.
A high-end volume rendering package called VoxelView by Vital Images, Inc.

is supported on SGI and Macintosh platforms and is available for use in DVAL.

When a very high-quality computer-generated image or animation is necessary

to describe an otherwise abstract idea or phenomenon, photo-realistic rendering

software is required. The Wavefront Advanced Visualizer available in DVAL

serves this purpose by providing a menu-driven environment in which such

effects as textures, shadows, reflection, refraction, and transparency can

be simulated and applied to complex, moving objects. The objects can be

modeled within Wavefront or can be imported from other packages such as

PLOT3D or IDEAS. This software has proven useful in several areas, primarily

in the description of an experimental facilities such as wind tunnels in which
interior structures of interest are often inaccessible to conventional cameras.

Similarly, many phenomenon which are too small, too large, too abstract, or

simply non-accessible have been simulated with this rendering package.

Specific applications have included the depiction of a water tunnel experiment,

the simulation of shuttle arm flexing due to heavy payloads, the internal

structure of multi-layered I-beams, and the simulated take-off of the High

Speed Civil Transport. Two copies of the Wavefront Advanced Visualizer are
available on DVAL SGI workstations (with 4-CPUs each), and staff is available

to produce requested animations or train interested individuals.

A special-purpose application program has been designed in DVAL to support
flow visualization experiments which utilize cameras and lightsheets.

The software, termed ILLUME (Interactive Lightsheet Locator Utility and

Modeling Environment), provides an interactive capability for determining

suitable placement of cameras and lightsheets well in advance of the actual

experiment and before any instrumentation is configured in a tunnel or on

an aircraft. The software allows the user to position cameras and light

sheets with respect to the test object or model and see simulated camera

views. Adjustments can be made to the camera and light sheet positions
and orientations until the desired view is obtained. In addition, roll,

pitch, and yaw adjustments can be made to the model to determine whether all

desired regions of the model remain visible to the recording camera for a

range of test conditions. ILLUME is an OSF/Motif-based program which runs

on most SGI workstations, accepts PLOT3D grid and function files, and is
freely availabe to LaRC researchers.

Information about all of the packages mentioned can be obtained through the

following e-mail addresses:

PV~WAVE

KB-Vision

Tecplot
Fieldview

F.A.S.T.

VoxelView

Wavefront

ILLUME

pvwave-request@hojo.larc.nasa.gov

isdcs+iphelp@larc.nasa.gov

tecplot@eagle.larc.nasa.gov

j.t.bowen@larc.nasa.gov

isdcs+vizhelp@larc.nasa.gov

isdcs+vizhelp@larc.nasa.gov

isdcs+vizhelp@larc.nasa.gov

isdcs+vizhelp@larc.nasa.gov

293

_-.__.

fl=

0
__m

Z
0
I

.c
_,_o

294

P-.

C_

i °
0 .0

0
if)

t-
O

me

N
in

_0

0

L_

:3

I
m

on

0

if)

or) _ _ ri-

m _ .N o
"S __ --

-_ g, _ ._-_

,_ _ ,0g = *-.
_ _ - o,_ 0 e-
-- m > n

295

"S

296

t3

-,,I

.,..I

t_

(D
n

m

t_
X

IJJ

iim

n

0')

_lm

n

297

I

X

_WF-
Q;
I,._

Q;

"_-E
O--

<

0
N

298

...J

....I

/

Q.

x_

mmI

I- c_

IL

o
sD

l

c=
im

299

300

L_

|l

|/

qm

m

@
m

N
ml

+

im

m

@

0

l

@
_u

0
l

_m

< _,_, _ ,___,_
• (_ • •

301

Q..

302

OI_i,_NAL PAGE lira

oF Poc_ Ol.t_rl,,y

<

303

304

.....I
Q..

305

00

0
¢..

E

<

E
0

0 ""
I1 1

In

1

0
x..._
0
•w "I_
0 Q)

n

0
ii

nl

r"
ll

N1

¢}
r_
(-
0

ll

0

r"
ml

ml

I.U
1

(II
ml

a)

r"
ml
1

a)

o

o

0

306

A

i

313

C)

.,.,.I
c_

c_

o _ _

0 _
0 _ c_ 0 0

.c:_ ¢0 .c: '-
e-

• O0 0 • C,./_ ,.j..,,

314

¢3
P-..

,..4

.=_o

e-
(J

0 ¢0
•-- ¢.0

¢-_ ¢.= _ ,_,

r-cj 0 0(5 e_
re o..

e= = c0 =
0 I=. ==I ¢n

._o __ o "o
- ¢ ,_, ¢-
O0 > ¢V

¢=' ¢0 ¢"a_

0 ¢_ e=

0

¢o _>, _d
= "_ _ <

rr < u. Q

315

SESSION8 SystemDesignandIntegration

Chairedby

JerryH. Tucker

8.1 TheDesignManager'sAid for IntelligentDecompositionDeMAID - Jim Rogers

8.2 RDD-100andtheSystemsEngineeringProcess- RobertAverill

8.3 ComputerTools for SystemsEngineeringatLaRC- J.Milam Walters

8.4 A DistributedComputingEnvironmentfor Multidisciplinary DesignFIDO - Robert
Weston

8.5 An Overviewof theComputerAidedEngineeringandDesignfor Electronics
LaboratoryCAEDE- ShelleyStover

8.6 TheSoftwareEngineeringand/orAdaLab (SEAL) - RobertKudlinski

316

0

o_ o

307

' o_-

_ O

308

i E 8_
B • •

309

,.,,.I

...I .e"> -

310

(n

•_ •

o
r..

o
(n
o
Q..

I-

•_ X

0 >

0 0

C (_ (n

C (n _.I
,- ._ <

311

o

Q)
_I 0. 0 0

(1) ._ I ,_-
Q) Q) _-
r- _0 ._I Q)

"-- (P r- m
•_ Or- "-- _)

.l.a
(I) _0 "0

:,_ Qj r- C). 0
0 (- _3_ 0 "--

•- .-- QJ O.

_-, Qj r" Q) _..

• • •

312

 5g/3q //oo55 N95-16470

The Design Manager's Aid for Intelligent
Decomposition

DeMAID F

James L. Rogers
Ext. 42810

Many engineering systems are large and multi-disciplinary. Before
the design of new complex systems such as large space platforms
can begin, the possible interactions among subsystems and their
parts must be determined. Once this is completed the proposed
system can be decomposed to identify its hierarchical structure.

DeMAID (A Design Manager's Aid for Intelligent Decomposition) is a
knowledge-based system for ordering the sequence of modules and

identifying a possible multilevel structure for the design problem.
DeMAID displays the modules in an N x N matrix format (called a
design structure matrix) where a module is any process that requires
input an generates an output. (Modules which generate an output
but do not require an input, such as an initialization process, are also
acceptable.) Although DeMAID requires an investment of time to

generate and refine the list of modules for input, it could save a
considerable amount of money and time in the total design process,
particularly in new design problems where the ordering of the
modules has not been defined.

The decomposition of a complex design system into subsystems
requires the judgment of the design manager. DeMAID reorders and

groups the modules based on the interactions among the modules,
helping the design manager make decomposition decisions early in
the design cycle. These interactions can be deleted interactively.
The modules are grouped into circuits (the subsystems) and
displayed in a design structure matrix format. Feedbacks, which
indicate an iterative process, are minimized and only occur within a
subsystem. Since there are no feedback links among the circuits, the

circuits can be displayed in a multilevel format. Thus, a large
amount of information is reduced to one or two displays which are

stored for later retrieval and modification. The design manager and
leaders of the design teams then have a visual display of the design
problem and the intricate interactions among the different modules.

317

The design manager could save a substantial amount of time if

circuits on the same level of the multilevel structure are executed in

parallel. DeMAID estimates the time savings based on the number of

available processors. In addition to decomposing the system into

subsystems, DeMAID examines the dependencies of a problem with

design and behavior variables and creates a dependency matrix.

This matrix shows the relationship among the independent design

variables and the dependent constraint and objective functions.

DeMAID is based on knowledge base techniques to provide flexibility

and ease in adding new capabilities. Although DeMAID was

originally written for design problems, it has proven to be very

general in solving any problem which contains modules (processes)

which take an input and generate an output.

The user begins the design of a system by determining the level of

modules which need to be ordered. The level is the "granularity" of

the problem. The design manager may wish to examine disciplines

(a coarse model), analysis programs, or the data level (a fine model).

Once the system is divided into these modules, the user determines

each module's input and output, creating a data file for the main

program. DeMAID is executed through a system of menus. The user

has the choice to plan, schedule, display the design structure matrix,

display the multilevel organization, examine parallelism, examine the

dependency matrix, or trace the effects of a change in the design

process. The main program calls a subroutine which reads a rule file

and a data file, asserts facts into the knowledge base, and executes

the CLIPS inference engine. All DeMAID code is in C for portability.

There are several new capabilities planned for DeMAID. Currently,

interactions either exist or not with no quantification as to their

strength. Sensitivity analysis is to be used to determine whether or

not the interface between two modules is strong or weak. Weak

interfaces may be deleted or suspended, thereby reducing iteration

times. A second capability will allow the user to breakdown the

output of a module into several important pieces so individual pieces

can be traced as opposed to the entire output. Currently, DeMAID

orders modules within a circuit based on minimizing the number of

feedbacks. Since several different orderings may produce the same

number of feedbacks, a genetic algorithm is being considered to find

the optimal ordering based on a user-defined cost function. Finally, a

graphical user interface is being added to make DeMAID more user-

friendly.

318

Z
0
/

/
/

0

w 0
_U
<w
ZQ
<

I I

u.!
_W

I

0
l[

a
l

<

V

0

J

E

0 o
o..n-
Ot_

•.o 0 e"

cO

319

I,I

l

0

E
Q;

m

0
s_

O.

Q;
r-

X
ml

E < .__

_ ,--

r- ._ C C

•--. L_ _ ,,-.

r_ 0 CO r_

mm

ll

I

mm

O. L_

320

_. ,N

321

322

323

324

I

I

A
W

A
W

A
W

JL
_F

7

d •

I

E--

_]

i

W Iv

E

L

"" 1717IF

325

X
m

m

111
0

IL_

0

|m

m

0

E

_C

0"_

0

,0
"0

326

m

n-

m

A
v

A
v

I
i

I
I

A
v

I

E

i-r-

• I

i-I- --
r--'-

J k dll
, F qF

c_

c_

C_

LL!

327

X
mmmm

LLI
rr

m

(/)

m

(/)
LU
a

=
Q.

mllum

0
!--

0

32.8

/

Ill

0
O.

E
0
¢0

a

l

x_

m

a "

¢_
0")

6)

l

"I3
----- 6)

¢-
U

¢-
m

i

O.

IZI

"13

I.l.I

¢0
C--

L_

¢-
m

i

-J
¢0

329

330

0
m

m

<

13.

C
0

II

m

0 D

C
m_

0

g_*
IlU

*dO0

_'oO
m

m

|m

0

• m ,4,,,o
m C
I

=E
Ill

_.. im

O23
O"

C_

0:3
C_
C_C

m

D
_3
0

E
";3
_3
<

331

Z
O
m

m

m

E
O
s_.

Bm

:3
O"
O
s._

:3
Q.

:3
O

Q.
C

IIm

t-
O

"O

t_
.Q

O

O
E
!._
O

"O

O

m

c_
.Q
"O
O
O

O
N

E

m
IBm

IIm

O

t-
iim

m
o

m

"O
0
E

X
mm

0
!....

E
0
!.__

L. "_"

m m

Bm

mo
• '*"

a_

.=: 0
m
o

IIImBB

::3
"0
0
E
0

t_

332

m

I--

_a
_W

_a

t-O

Z

m

Ill

dL

dh
_F

0

sm

t._
smm ¢_..,

°-"

uDfq

333

0
0
W
a

I.I.J

E-

X
BIm

.,9,==
.
_0

go

a

334

14')
I,,,- X X

X
m

¢0

X X

X X

>-
(D
Z
LIJ
C_
Z
LU
i1.
LU
a

U]

m

im

>
C

C_

CO

m

O

X

X

X

X

X

X

X

X

C

X

X

X

X

X

X

X

X

X X

335

iii
¢3

/I

Ll.I
a

¢3
Z
/

<

"0

E
0

0 _

"0 o

El2.

03_
e-. o

¢0¢"

::3

¢0

:3
-3

1,,-

c-

G) .l-,
-" ::3

OX

E?
e"

m

(_.-,

_'E
=E

E_

0
"¢3

I IIIIll

.(Z
'481

336

X
I

n"

Z

F

AL
qF

d&
qF

dh
qF

dL
• •

I

Ii

I

I

C
I

337

ILl

,<

(/)
/

LU

Z
,<

A

::3
Q.
e"

ll

I,n

I

>1"
_0")

ll

C:
• 1 (_

"(30

E _

ll

C

e-

<

e,,

0>0
"" _ 1::
"0 r" ,
(1) ,,-,
,,_ (/)

X _

1

_ ll II

e,,

338

X
/

rr

E!
art
U.i_

--0
a_
Off"

Z

I

a

F

I

I""
I

¢

0
¢)
X

0
C

0
"0

339

U)
LuZ

0
1

340

I.I.
IJ=
0

C3
<
rrC3

m

Z_
Ow
O0 I_
W'T"

I

/

Z
l

<
X
W

m

ma3

_0
mm

.ore
"a2

'*'0

• I
• I

411 L

l

341

m

m

m

ft.

O

C

_3
O
O

c-
O
L__

"O
¢-
t_

n
m

¢..

L.

mm

_3
O
!__

IIm

t_

c-
iim

¢=

m

"t3
O

E

O

¢..
iim

!-_

"C3
!-_

O

A_

N

E
II

O

_3
m

t_

_3

_3
O

O
C

O
23

L__

rn

342

(D
Z
m

0
0
LI.
0

LU
IZ

03
C

..Cm

m

::3
0 C
0

o o

14,,,,
(_ (_ ,,,,,-,

0 .C'O0_- _-

•,-. _ o=
m¢/3 0:3 "_0

•--::3 t_ "-_

=-_ E ==

C O0

01_ -Ore
•m 0OC O&:

03m
C_

m

_ _ _ 0._ ._.,.,
m .,_._ m..(3

"0 m Q__

343

/

l

I

• d&

• 'qF

344

I

N
I

I

13.
O

0
UpJ s_.._

"0 _ 03.._-'_
O0 u)

 -uEo

II

O
RI

O

ml

, •
mn

O
OO

Ul

OO

O

345

O
I

I

I

m

t_

Q.
t_

a3
I

"O
O
E
a3

m
a3
E

..C

>.,

U)
a3

l

_O
a.E
Q.
t_a3

II

q_
O ,--O

C: C:

_.m m 4-m

o

(I)
E

II

m

t_

O

..C

"O

II

O

E

U3

¢N

II

_,,
0

II

II

C
0

II

0

II

C
0

im

0

m

(I)
>
0
m
m
0
L.

m
t_

..c:

o4

c:
O

II

O

346

0

0

_0_1

II II

O0
+ ÷

I U

C3_-
÷ -I-

ll II

v--Od
r"oP,

tl mm

347

0
LI.
0
Z

0
a
v
<
UJ
rr

0

E
a3
c:

I

C
Ell

l

a3-_

o

o
u) ._.,

4z._

mo
o

_....c:

C m

L_ L_
!_.

m

L_

>

m
(I)
rj
C

I_

(I)

i_

0

E
a_
c:

l

[31
C:

IIII

m

0
l

I

4= m

_.=

O

348

W
.J
Q.

<
X

0

349

Ill

0 _
ll

350

%S ,t37
Ng5. 16471

RDD-100 and the Systems Engineering Process

Robert D. Averill, Systems Engineering Office, AMSD, lOG

Efforts to implement an effective systems approach to NASA programs are in progress

Agency-wide _ At Langley we are trying to define an enhanced systems engineering process

for in-house flight projects to assure that each system will achieve its goals with quality

performance and within planned budgets and schedules. An effective systems engineering

approach applied throughout tile project life cycle can help Langley produce a better product.

This paper will show how this can be done by utilizing a systems engineering process in

combination with available software tools such as RDD-100 2. To accomplish this, I will,

first, briefly discuss the systems engineering process and then show how RDD-100 has been

applied as a pilot effort in the early phases of the SABER 3 instrument development.

(Chart 2) The objective is to show you how RDD-100 can be used as a systems engineering

tool throughout the project life cycle and to challenge you to consider using this tool with

your project team.

(Chart 3) Systems engineering may mean many different things to different people but this is

tile way it is defined in the Langley Systems Engineering Handbook 4 which is currently

pending publication. The systems engineering process is really the key to how we approach

the problem. There are many different procedures, methodologies, and models being used for

systems engineering. It is important that each project define how systems engineering will be

managed and conducted throughout the project life cycle.

(Chart 4) Tile Systems Analysis and Design Procedure is proposed for use at Langley during

the Forrnulation Phases of the project when the systems engineering activity is the most

intensive. This procedure provides a focused and structured systems engineering method and

is a problem solving approach which can be tailored to project needs.

(Chart 5) The Systems Analysis and Design Procedure is a ten step process applied

iteratively during each phase of the project. The concentric circles represent each phase; for

example, the inner circle symbolizes the Pre-Phase A effort which has the purpose of quickly

assessing the feasibility of a proposed project to determine if it justifies further development.

The detailed activities of each step of the process are developed in more detail in LHB 7122.1.

However, they can be quickly summarized as follows. The Initialization step includes a

management decision to initiate the study and provide skills and resources necessary to do the

job on a timely basis. The determination of User Needs and Goals is perhaps the most

important step in scoping the effort; this leads directly to a definition of Systems Requirements

to achieve the goals. Performance Measures are defined to provide a quantitative standard to

assess system performance. Next, potential System Concepts are generated, Analyzed, and

Ranked to determine system t_asibility. Further Systems Development may be needed to

bring the proposed system approaches to the level of maturity desired for this initial stage of

development. The final step in the process provides for technical and management reviews to

assess tile status of the development. This represents a Decision Point which will determine if

351

the system will repeat the iterative development process or pass to the next phase of project

development. It is believed that the use of such a customized systems engineering process

with well defined tasks, products, and controls will help the Project Team perform most

effectively. It should be emphasized that the systems engineering process is a team effort and

is dependent upon project teamwork and communication throughout the process.

(Chart 6) The goal of the process is to enhance communication between different technical

disciplines on the project. For example, the relationship between systems engineering and

software engineering is vital to the success of the project. These two groups must work

closely together to defne their mutual information needs. Are the typical systems engineering

"products" in tile left colunm useful to the software engineering function? Are the typical

software engineering "products" in the right column a logical and related extension of the

systems engineering requirements? Tile project can operate most efficiently if a common

technical language is used by all of the project team.

(Chart 7) There are ctu-rently available several computer aided systems engineering tools

which propose to provide a common technical language for use throughout the project life

cycle. One of these is the Object Modeling Technique developed by General Electric 5 and

currently being marketed as StP/OMT 6 This tool is being evaluated for use at Langley but

is not currently implemented The RDD-100 tool is being used in the Systems Engineering

Office at Langley. RDD-100 utilizes an object oriented methodology with a symbolic

language designed to be useful to all technical disciplines.

(Chart 8) RDD-100 is an extension of the earlier Entity-Relationship Model (developed

originally for information modeling use 7) into an object modeling concept. Tile power of the

RDD-100 concept is that the Elements (Entities) are linked by binary relationships such that

changes to any element are transferred to its related Elements; thus continuously updating the

database. The tool also provides for requirements tracking throughout the system life cycle.

Another powerful feature of RDD-100 is its modeling capability.

(Chart 9) The Integrated System Model is an evolutionary development which begins with

the most rudimentary concept of system objects and progressively evolves into a complete

model representing overall system dynamic performance. This provides continuity through

the project life cycle and offers a "seamless" transition fiom phase-to-phase.

(Chart 10) We will now present a brief overview of RDD- 100 capabilities.

(Chart 11) RDD-100 is a menu driven application and provides ready access to all of its

features. It can be seen that the emphasis of the program is on system Elements. The Multi-

Element View and the various Editors permit easy manipulation and editing of the system

Elements.

(Chart 12) An example of the Multi-Element View concept is the SABER Requirements

hierarchy. The Element-Relationship aspect is shown as, for example, Operational Objective:

Interface Constraints incorporates Operational Objective: Instrument Mass. ,,

352

(Chart 13) Shown here is a section of the requirements Custom Hierarchy which provides a

visual display of the relationships between requirements.

(Chart 14) The modeling capability of RDD-100 is implemented by Behavioral Diagrams

which incorporate all of the system functional and dynamic relationships on one diagram. This

is a major advantage over other concepts which separate, for example, control and data

functions on two unsynchronized models. The RDD-100 approach provides one self-

contained Integrated System Model which demonstrates system dynamic response.

(Chart 15) This is the overall SABER Operational Model based on the five key objects

selected for the system: User, Ground Station, Spacecraft, SABER Instrument, and

Atmospheric Scene. The purpose of this Operational Model is to demonstrate tile flow of top

level control and data messages.

(Chart 16) The SABER instrument is shown here in more detail with tile operational

functions of current interest. The behavioral diagram includes Time Functions, Time Items,

and, in this case, an Iterate Function, represented by the loop, which repeats the scan

sequence for a specified number of cycles.

(Chart 17) The scenario shown is a running model and can be evaluated by the Dynamic

Verification Facility. The system runs on an arbitrary time base which can represent any

desired time scale. Various functions can be selected to display an Events Transcript, Time

Lines, and System Resources. The Facility identifies any dynamic inconsistencies in the
model.

(Charts 18 & 19) Shown are sections ofthe Event Transcript showing the beginning and end
of the run.

(Charts 20 and 21) Shown are the Function Time Line and a history of the Scene Radiance

resource. The instrument, in this example, accumulates ten data samples and then transmits

them to the spacecraft.

(Charts 22 &23) The Summary concludes that the use of a structured systems engineering

process in conjunction with a powerful computer aided systems engineering tool is believed to

provide the most effective approach to achieving project success at LaRC.

NASA Systems Enginecring Handbook, Draft, September 1992, JPL.

RDD-100 - Requiremenls Driven Development, Ascent Logic Corporation.

Sounding of the Atmosphere using Broad band Emission Radiometry..

LttB 7122.1, Systems Engincering tlandbook for In-House Space Flight Projects.

Rumbaugh, James; ct al: Object Oriented Modeling and Design. Prentice Hall, 1991.

StP/OMT - Software through Pich|rcs/Object Modeling Technique, Marlin Marietta Advanccd

Concepts Center and lnlcraclive Development Eiwironmcnls.

Sage, Andrew P., and Palmer. Jamcs D.: Software Systems Engincering Jolm Wile)' and Sons, 1990.

353

!

om

om

r_

L_

m ¢,,,_

d
¢D

©
L_

E o l

_D

x..

l

354

©

v--,-t

0
©

op-,q

E

>._

!

l

o

°,_

u

355

0 _ "-"
•_ _ ._

©

< "_ _ _ _ _ _.__

l

C _
C

/

ml

356

G
• ©

II
m

e_

o_._

C

357

Z

0

Z
©

II

u

L,

358

em

i i.-=..

1= °.

i
/

359

360

|1

=,
/

oN

m

361

_6

' 0

I.

- _ _ _ _ _ c

!

m

l
I

m

o

>

>

m

362

• m,,.q

°,jiq

©
• i,..u

"_

I. >

E,

i 0

__ _ o

m

0

Jl

363

fn v,

.----. a.l

CIJ

L. _

A vB

0 0 0

0 0 0

X X X >>_'5

\
\

c_

o Ol

A Ai

C

• °.

J _

: °.

;x

_ C

C_

iI'-

•,t rO'l

_lo _IIU .--

:'_

:1"_ =

)1_

I_._J

_ _ -_.- _ _,,o,

i'

A!/

I

_=

em

r_

r_

r._

I

I

[,-

=,
i

N

@

o,,,,_

i I-,

al

364

0

CO

z

b
(D
0
O_
O.

LU

o
m

c

e-

_ >

g _

N N
e-.

g _

O

7 _

n ._

llJ

z

_4

E

V O

O _

E

e..- >

o o

o _

m _

1"-

O

I_ V

"_- O

e-"

o_

Z o
_ O-

(,9

"_ UJ

Z r_

Qm

<

m

o

o.=(

om

mllmmmmm

II

365

I

t_

t_

uI

I

=_

om
N

l

=_

r_

_E
! x...

l

ml

366

E

e_

367

=_

J

_o

368

! t,-p-

i

L

L
[
t i

i

L

z
m

o_

a_
O

SABER Instrument

I

1 I 4.A

Command _ Command
Sequence ' , Queue ,

2

Start Scan
I

For All Scan Sequences

,
4.B

" Scene

Acquire Data1 '41-" Radiance
!

AUTHOR:

System User

3 3.B

i I Formatted "
P rocess/Trans_.p Data
mit Flight Data

m

L I

i

SABER INSTRUMENT

Behavioral Diagram

NAME:

S3:SABER Instrument

NUMBER:

4

16

369

I

G)
r--

J3.

n

0
s_

,4,,,

t-
o

ii

r_

i!!i._._i:i._.__ :::m iii!i!iii!i!i!i!iii!iii!i!l

_!:! _ _ !:!: _ a, ::: ,., _ ::::::::::::::::::::::::::

• I':': :.. 0 I.'. .'........:..-.'--:..-.-.-• J= ¢., c • cu_ !:: • - i:i: c_ -l i:! *"- i:!:!-'!:!'!:i:!:i:i:i:i:!:
._ !:::_ ::::._i::i._.i:i:::: :_:i:i::::i:_:
.....................i;i.....................iii...................i::_.....................!iii::i::i::iii::iiiii::i!il;::i'

......................._i._..iiii!._.:i-i:...:..........-.:.:.-.:
"-'--" :::_ :::i!_ ::::_ _:_:i:!:_:i:_:i:i:_:_:!::'

::::i _j i:::: _ ::: _ ::::::::::::::::::::::::

° i ii iiiiii!iiii!iiii',ii

q _

0 0

m

N

N

m
.m

.m
w

t_.

_ I[
m

N _

_ 0

--lg--

370

c-

l--

Q)
>

W

ooooooooooooooooooooooO_oooo _

C_

.m

L

_J

_J

m

=

N

m
I

371

-r"

L

,<
oO

E
O

°_

m=

N

II

372

t-
O

0
-O _ Q)
Q) _ X

Q)

C_ cO (D

c- 0
0g C_

0 _ "m"

0
O--
CO

0
0
0,1

C
-7

ic

•_- r"
°-- 0

._ _ E°--

°--

0
C

LL

m

-0
C

E : c c
E • o D
o "E" E co°

0 : _ >

_. "o o rr cz rr
C q_ W

o _ m E a_

"7 (5 03 03 <

l
m

>
v

c-
O :

°--

"0 0
C

r,,3

: : :

.,-. (D _-"
: C C c-

O (D (D

c E _

"o CC o. CE
- W u W
"7 0

o _ o rn E co
(.5 03 L5 cO < cO

373

O O O O O O O O O O
O CO r_D '_" OJ O CO (.D _ O4

O_

O

OJ

O
C_
OJ

O
O
O4

O
CO

O
_D

E
0 o_

0

0
0

0

0

0

0

0
-£xl

-0

_.UnOLUE

374

:" 0

375

¢',1

i

II

376

N95- 16472

COMPUTER TOOLS FOR SYSTEMS ENGINEERING AT LARC

J. Milam Waiters, Systems Engineering Office
Aerospace Mechanical Systems Division

p,

The Systems Engineering Office (SEO) has been established to provide lifecycle
systems engineering support to LaRC projects. Over the last two years, the computing
market has been reviewed for tools which could enhance the effectiveness and efficiency
of activities directed towards this mission. A group of interrelated applications have been
procured, or are under development including a requirements management tool, a system
design and simulation tool, and a project and engineering database. This paper will
review the current configuration of these tools and provide information on future
milestones and directions.

377

The Role of Computers In LaRC
R&D

Computer Tools for Systems

Engineering

Presented by

J. Milam Waiters

June 16, 1994

AMSD Systems Engineering Office

AMSD Systems Engineering Office

• Established via Center Reorganization after

approximately 3 years of ground laying

• Current staffing level - 5 CS

• Chartered to guide application of systems

engineering to LaRC flight projects

• Process detailed in LHB 7122.1, currently in
approval cycle

• Process applied to various projects, most recently
JADE and SABER

AMSD Systems Engineering Office

378

Systems Engineering Process
G_I* Analysis

Researcher

Systems Engineering Office Tools

• Workstation Based tools consist of the

following:

- Oracle SE Project & Engineering Database

- Excalibur Scanning/Recoginltion Software

- RTM (Requirements Traceability & Management)

- RDD-100 (Rc_iuirements Driven Design)

- Interleaf 6.0

- Matlab with following toolboxes:

• Simulink option

• System Identification

• Control System

• Optimization

AMSD Syst_n$ Engineerin E Office

379

Oracle SE Project & Engineering Database

• Oracle RDBMS Version 7 relational database on

SUN Sparcstation 10, Model 41

• Oracle*Forms Version 4 provides graphical user
interface for record & graphic viewing

• Oracle Data*Query performs complex searches

• Database consists of pre-set form types, with the

capability to quickly generate any new table type

• Database will store project documentation and

graphics as well as engineering data tables

AMSD Systems Engineering Office

Excalibur Scanning/Recoginition Software

• Interfaces with document scanner to read and

interpret input

• Contains an adaptive search engine to retrieve
desired document

• Displays original image upon match of a given
search

• Provides the capability to scan and store input
documents

AMSD Systems Engineering Office

380

RTM Requirements Traceability &

Management

• Application developed especially for tracking and

managing project requirements

• Utilizes Oracle database to store requirement
information

• Provides special tools for:

- extracting requirements from source documents

- expanding and focusing requirements

- general requirements maintenance

• Includes output bridges to RDD-100 and Interleaf

AMSD System_ Engineering Office

RDD-100 Requirements Driven
Design

• Facilitates the construction, maintenance, display,

and documentation of design objects that specify
behavior

• Objects are created and edited by graphics or text,

with multiple generated views available to gain

different perspectives

• Includes a simulator which directly executes the

design objects

• Templates and consistency checks verify system

design sufficiency

• Bridge to Interleaf is included

AMSD Systmas Engineering Office

381

Matlab

• Interactive software program for scientific and
engineering numeric computation

• Combines numerical analysis, matrix computation,

signal processing, and graphics with a user

interface through standard math notation.

• Functions include differential equation solution,
polynomial operations, matrix computation,

complex arithmetic and signal processing tools

• To view data graphically, MATLAB provides 2-D

linear, log, semilog, and polar plots, and 3-D mesh

and contour graphs

• Works with MATLAB numeric CO_Jk_I_ugi.eerittg Office

software package to build mathematical models of

Database Population

Database
Electronic Files Administrator

SUN Sparcstation 10
(se..sunl)

Hard copy
documents

=libur OCR
Software

AMSD Systems Engineering Office

382

Requirements Management

Electronic Files Systems Engineers

SUN Sparcstation 10

(se_sunl or se_sun2)

Hard copy

Requirements

documents

L_

m

Document Scanner Interleaf

AM SD Systems Engineering Office

System Modeling & Simulation
SUN Sparcstation 10

(se_sunl or se_sun2)

Systems Engineers

Behavior Diagram

System Atudyzer (SA)
Dynamic Verification

Facility (DVF)

Interleaf

AMSD Systems Engineering Office

383

Tool Interface Overview

UNIX

System

AMSD Systems Engineering Office

Summary

• The Systems Engineering Office of AMSD has been

established to provide for computer aided:

- systems level behavior modeling and simulation of new concepts
(RDD°100)

- subsystem mahematical modeliug and simulation (Matlab)

- requirements tracking and management (RTM)

- storage of project and engineering documentation (SEDB)

• Interested parties should contact Richard Foss at
4-7049 or Milam Waiters at 4-3014

AMSD Systems Engineering Office

384

A Distributed Computing Environment for Multidisciplinary Design

Tile Framework for Interdisciplinary Design Optimization (FIDO) project has the goal of devel-

oping a general disu'ibuted computing system for executing multidisciplinary computations on a

networked heterogeneous cluster of workstations and vector and massively parallel computers.

This project is a part of the Computational Aerosciences (CAS) project in tile High Performance

Computing and Communications (HPCC) program. The FIDO system provides a means for auto-

mating the total design process. It facilitates communication and control between components of

the system, which include the diverse discipline computations involved in a design problem and

the system services that facilitate the design. In its current state of development, the prototype

FIDO system is being applied to a token example of the optimized design of a high-speed civil

transport (HSCT), involving a simplified problem that includes the disciplines of aerodynamics.

performance, propulsion, and structures, but with very few design variables. However, it has

already demonstrated the ability to coordinate multidisciplinary computations and communica-

tions in a heterogeneous distributed computing system.

The concept being used in FIDO is course-grained parallelism, with instances of the disciplinary

codes (aero, structures, etc.) running on separate processors, under control of an executive on

another processor, and exchanging data through a single data base manager (on yet another pro-

cessor). To allow the user to monitor the progress of the design iterations, there is a graphical user

interface (which tracks the execution of codes performing the design iterations) and a separate

process, called SPY, which allows its user to extract and plot data produced during current and

previous design cycles. In fact, multiple instances of SPY can be executing at once, so that the

designer can call on discipline experts and they (possibly fiom some remote location on the Inter-

net) can examine the results being produced and provide advice. SPY is currently being upgraded

to provide tile capability for tile designer to make changes in variable values during execution and

so guide the design process.

The distributed computing system currently includes Sun, Silicon Graphics, and Digital Equip-
ment Co. workstations. Provision has been made for adding connections to Cray vector comput-

ers and Intel parallel computers, and preliminary checks of connection procedures have been

carried out. A communications library has been written (implemented using the PVM basic

library developed at Oak Ridge National Lab) to provide the versatility for transferring data pack-

ages ranging from single variables or file names to large data arrays.

The current Motif-based Graphical User Interface (GUI) consists of three separate elements:

setup, application status, and data display. The setup GUI provides the user with a convenient

means of choosing the initial design geometry, material properties, and run conditions fi'om a pre-

defined set of files. The interface displays the choices using a series of pop-up Motif data win-

dows, and allows the user to modify and store new condition files. The application status GUI

allows the user to monitor the status of a design run. An example of this display is shown in the

slide entitled "FIDO User Interface Concept". Within the screen on the left part of the slide, the

upper left window displays current run parameters and contains pull-down menus for setting vari-

ous options. The right window graphically displays the state of the overall design process by

changing the color of each labelled box accoreding to the work being done. A color key is shown

in the lower left window. Additional detail of the system state can be obtained by selecting the

385

boxeswitha3-Dappearance.Doingsobringsupanassociatedwindowthatdisplayssub-detail
for thatbox.ThedatadisplayGUIis thethirdinterfaceelement,calledSPY,thatprovidestheuser
withavarietyof waysto plotdataduringthedesignprocess.Therightpartof slide isanexam-
pleof acolor-codedcontourplotof wingsurfacepressures.Thebuttonsatthetopof theplotwin-
dowprovidetheuserwitha varietyof viewcontrols.In additionto contourplotsof aerodynamic
pressuresandstructuralstresseson thewing, SPYprovidesline-plotsof cyclehistoryfor avari-
ety ofdesignparametersanddataresults.Anexampleof thisfor a20-cycledesigniterationis
showninalaterslide. Thisslideillustratesresultsof usingFIDOto minimizethetotalweightof
theHSCTfora6000-milerangeandMach2.4cruisespeed.Disciplinesensitivityderivativesare
calculatedusingfinitedifferences,andalinearizedmodelbasedontheseisusedwith theoptimi-
zationsubroutineCONMINtodeterminenewvaluesfor thedesignvariablesateachdesign
cycle.Theslide illustratesthecomponentweightreductionovera20-cycledesigniterationsub-
ject todesignconstraintsonstructuralstressanddeflection.Weightshavebeennon-dimensional-
izedbynominalpayload.Theslidealsoshowsthechangesto thethreeaerodynamicdesign
variables(lengthsnon-dimensionalizedbywingspan)andtwostructuraldesignvariables(non-
dimensionalizedby initial skinthickness).

386

387

388

.. df_/_

O)

O)

op,lq

.... _ _ 389

(n
El

Q.
E

ILl

Q.
(.)
0
Q.

0

m

E
.=

0

390 GI_IGI_NAtL PAGE r_

I II

°
Q.
E
0

m

iii,_i_i__i_!'!_ii_!!:iiii_i_:,_i_/_:i__:_,_,_,_

(1)

I _ <
I

391

0

0

o_

O_
o_

o

_0
OJ

r_ 13

o_
tO r- .

3 =o_o

0 _

00_

O_
tO

0

tO
L_

M.-..

f-
0
fJ

u I

•-_ I=

•-- >_ m 0_

o _= ._
• llJ _

X_8
_00 "13 r- _ ,_

_j _ _0

q_

E

0
0m

>
t-

O
_N

em
|m

n

o_
0-"
._.am

I=_
_0

Eo
e_ _M

_L
im

392

O
iim

iim

x._.

O
¢O
¢D
a
¢D

am

m

¢D
¢,0
t_

113
I--
¢D

i_l !!

393

394

I

395

0

||

i
I

I
I

)

_r-

396

8

.Id

i

k

m

1,1,,

!

C
0
U

iim

Itt

a

397

E

398

I I I I I

399

8A" - ._

0 • • • • 0 • • • • _:_ • •
'-- "- 0

400

401

402

w ttl ¢0

403

0

IIm

i

O"0 E
|m

I.I. _"
0

tm

m

¢-_
O o

x_

£2.

y.-.

m

(D

(1)
.-.-I
0

404

0
im

0
NIm

NIm

I.LI
N

Nlan_

,4-,,P

0
om

m
0 t m

,,,.,,,i

405

406

I

im

Ill

x_.

0
q.-

m

n

.Emil

.___ I.IA
f'l" --ID"
m

o
fl=

_r

J
0
I..

i!

407

408

409

oj_ (j_

¢0

©

o_

410

O0

0
L_

411

t_

C

rj

e-

¢.
L

,b

t_

C

412

413

oO

0°

zo.._

m

d_

(D

cr_

o_0

414

415

°ro,_

•

L) O • • • • • ° ° ° • •

416

I : I I

• ii |

_i_i̧ ,.,?_._

'._, ___

417

418

rn n:l p_

0

_s o
.- . °o

: _ °_e

.__ __°__ .._o_

419

420

Wml
_|
ml

_|

klml!

J_ml

_illl

,,gndl

C

0
i-
.I_

t-
O

O_
no

E

i

N
-r-

0

0

-0
0

0

-0
, Q

0
+

-0

/ °04
/

! o-00
0

i i i i
0 0 0 0 0 0 0 0

o _ o o d o o
I I I I _

I !

I

..C
,4)
i.

0
3
f.
OJ
4-;
4a

In:

i.

aJ !

LL

n _ _ L

0 .
_J

N
"-I-

(-
C
0

.C_

(-
O_

0
tO

0

-0
0

0

m

_4

+

!

I I 1 I I

L

._rrr_ v _
O _

0"_ -I_ "'_

I,

N N

I

421

M

E

t_

J
o_

C

E
t_

om

C
J

.,.._

1

O_

t_
t_f)

422

423

\

424

425

426

427

o o=f_

I _ _ o=_

428

The Software Engineering
and/or Ada Lab (SEAL)

Presented at the

"Role of Computers in LaRC R&D" Workshop

June 16, 1994

Robert Kudlinski

Information Systems Division

Software Engineering and/or Ada Lab (SEAL)

I BACKGROUND (and HOME PAGE)

1989: ACD (now ISD) was charged to manage, develop, and assure
mission critical software systems for several on-going and all new
LaRC soace-flioht Dro!ects

1990: The SEAL was a new-start to meet this requirement by
implementing a common software engineering process (_.=9J2/._,
procedures ,_ across these projects

1992: Selected to participate in the NASA Software Enoineerino
proFrem

Since inception, the SEAL has received increasing requests from
other LaRC software organizations/domains seeking to improve
their processes. _ and future plans to help transfer software
engineering technologies are presented.

' 7 I '

429

Software Engineering and/or Ada Lab (SEAL)

LaRC SPACE-FLIGHT PROJECTS

• The SEAL has supported numerous projects at various lifecycle phases:
CERES. CSI, DGV, JADE. LifE. MIDAS. RAME, ROVER, _ SAFIRE,

SEDS, SUNLITE, and TRACER

- Primarily remote sensing, active control of space structures and

technology demonstration experiments

- On-board, embedded flight computers (primarily 80x86) for real-time

instrument control and data acquisition (3,000 - 25,000 SLOC)
- GSE computers (primarily 80x86 PC's) for instrument development,

test, calibration and mission operations (5,000 - 70,000 SLOC each)

- Missions from 3 days to 5 years, development schedules of 2-5 years

• Many technical and management challenges:

- Real time, embedded, and non-deterministic systems require
specialized tools and practices

- Physical constraints (power, weight, radiation) severely limit computer

resources (CPU speed, memory, I/O) and demand optimization
- Insufficiently defined, continually expanding requirements

Trading off quality and reliability with tight manpower and schedules

- Short term vision of projects does not help process improvement

Software Engineering and/or Ada Lab (SEAL)

HUMAN RESOURCES

• Education and training

Offering 10-15 classes per year through Training Office such as Ada,

objected oriented design, CM, real-time programming, rate monotonic
analysis and system engineering

- Developing, documenting, and video taping specialized in-house

training such as Ada programming, formal inspections, and using real-
time, embedded systems tools

• Information Resources

,, Library (books, periodicals, standards, guidebooks)

- Electronic information exchange and communications network
- Providing ISD user consultation service for Ada and software

engineering questions

• Projects were assigned and the SEAL became a new start one year before
the current climate of decreasing civil service and NPS, which has curtailed
planned activities

430

Software Engineering and/or Ada Lab (SEAL)

PROCEDURE GOALS

Standardize on and reuse common procedures, expertise, tools, end
products across projects

- NASA and other software standards as available and appropriate
• Object-oriented requirements analysis and design methods
- Ade used as the primary programming language, some C, C++

Define and document key, repeatable software development procedures as
baseline for future process improvement and training new employees

- Formal inspections guidebook completed
- Configuration Management Guidebook in review process
• Guidelines for selected real-time, embedded system tools completed
- Evaluating existing, documented IV&V procedures
- Other procedures under development

Moving toward a complete software lifecycle approach based on
evolutionary spiral model

Contact Pat Schuler at 4-6732 for more information on SEAL procedures

Software Engineering and/or Ada Lab (SEAL)

TOOLS

• Operating a distributed software development environment via LaRCNET
- Compilers, CASE, CM, and project management tools in place
• Beginning to use InQuisix Reuse tool
• Reverse engineering and code analysis tools
- Electronic information management and communication tools

Plan to increase use of automated code generators and testing tools
- Work from desk, SEAL, hardware development labs and test facilities

- Standardized environment allows sharing of tools to reduce project
cost and effectively shift personnel in response to changing priorities

• Real-time, embedded analysis tools
- Embedded system cross compilers

Emulators and logic analyzers for 80x86 end 1750A processors
- Functional equivalent 80x86 and 1750A flight computers

• Contact Jerry Garcia at 4-5888 for more information on SEAL tools

431

Software Engineering and/or Ada Lab (SEAL)

[S/W DEVELOPMENT ENVIRONMENT I

i
GJUlJJLE&I WindoM NT oom¢_

no
w_=t=uone 144N;Pc'o) I Nx _,,_.d I_i _a

• " I_._';_-_, L_J jii_ _-
• _,_o.,,_os ._o,_., I _ _ _ I
• _.,,, _.,,o,-,= I. _:;_ ;_- _ i I • srlL.,,_
• x-,_,,..o_,.,. I_ i I • Fu_,..*,_o,=
• TCPnP i,oftw_ve b¢_ hf',TKmSDmC

• ,krc_e, Momu¢_

• Lo_n Server • "X.Nwnmal- • DECNe(eccee=
• Sun OS _ • /monymo_eIt= • VIALS_pltcelione

• mS

Software Engineering and/or Ada Lab (SEAL)

• One Code QE mission has been to improve the quality and reliability of

software products developed for space flight projects, both manned and
unmanned, at the NASA Centers

• The NASA Software Engineering Program was initiated in 1991 to establish

and grow Centers of Excellence across the Agency:

- JSC: Shuttle Data Systems Branch

. GSFC: Flight Dynamics Division (Software Engineering Lab)

- LaRC: Flight Software and Graphics Branch (SEAL)

• Long term vision of the Program is to put self-sufficient, continually
improving processes in place, establish standards, and then use these

organizations to transfer effective technologies to other NASA domains

• LaRC tasks have been primarily in the areas of:
- Capturing and documenting the SEAL software development process

for small Ada projects and assessing Ada's impact

Improving software technology transfer methods and software reuse
- Evaluating IV&V procedures on LaRC projects and research teatbeds

432

Software Engineering and/or Ada Lab (SEAL)

EXISTING GENERAL SUPPORT

• Coordinate 10-15 widely attended software engineering courses per year

and sponsor educational presentations (e.g., LaRC/NASA management,

LCUC, Local Universities, Conferences)

• Implement and fund formal inspections program widely used across LaRC

(training, pilot projects, implementation guidebook)

• Serve on numerous review panels, technical committees and QAT'z

• Transferring software technologies to other domains, such as NTF DAS,

flight simulation, HSR, and TAP programs - currently manpower limited

• Open access to SEAL tools via LaRCNET - currently manpower limited for

training and consulting on these tools

• Access to real-time, embedded system tools possible, but requires proper
training and procedures to be followed

• Open access to library (books, periodicals, standards, guidebooks)

• Started the Software Quality, Productivity and Reliability Team to promote
communication and coordination of software engineering efforts at LaRC

Software Engineering and/or Ada Lab (SEAL)

I FUTURE GENERAL SUPPORT

Continue existing work on previous chart, expanding where possible:

- Proposal accepted by Code Q that 90% of SEAL funding (FY 95-98)

specially targeted for manpower to transfer software engineering

technologies to on-going LaRC research programs

• Decreasing project load should provide ISD opportunity to shift

resources from space-flight projects to general support

, Partnerships are welcomed

• Increase use of electronic information dissemination, particularly MOSAIC

433

SESSION 9 CAE Tools

Chaired by

Carol D. Wieseman

9.1 Digital Control of Wind-Tunnel Models Using LabVIEW - Sherwood T. Hoadley

9.2 Electronic Engineering Notebook: A Software Environment for Research Execution,
Documentation, and Dissemination - Dan Moerder

9.3 IDEAS2 Computer Aided Engineering Software - Pat Troutman

9.4 Matlab as a Robust Control Design Tool - Irene Gregory

9.5 Simulation of the Coupled Multi-Spacecraft Control Testbed at The Marshall Space
Flight Center - Dave Ghosh, and Raymond C. Montgomery

434

Digital Control of Wind-Tunnel Models Using LabVIEW

by

Sherwood T. Hoadley

presented at the

LaRC Computer Systems Technical Committee Workshop on

The Role of Computers in LaRC R&D

June 15-16, 1994

Digital controller and data acquisition and analysis systems were developed for several

wind-tunnel models which use National Instruments LabVIEW® Software and National

Instruments Hardware within a Macintosh environment. The objective of this presentation is to

illustrate the use of LabVIEW for interactive animated display of acquired experimental data and

real-time control of some wind-tunnel models.

The first system illustrates a flutter suppression system (FSS) which was used to suppress flutter

for a small piezoelectrically actuated wing in a small flutter research and experiment device (FRED)

with a 6"x6'" test section. The following illustrations are included which show various aspects of

the FSS system:

• A photo of FRED and a flow diagram of the wind tunnel

• A block diagram of the closed-loop system

• The digital control system software schematic of the LabVIEW user interface routines

on the Macintosh and the real time system comprised of boards plugged into the

Macintosh Nu-bus but sharing their own real-time RTSI bus.

• The front panel of the FSS LabVIEW Controller virtual instrument (VI) interface to the

real-time controller digital signal processor (DSP)

• Results of open and closed loop strain response to wind-tunnel turbulence

The next LabVIEW VI which is illustrated is an instrument which interfaces with a data logger

which samples various thermocouples and sends the requested data to the Macintosh for display

and storage. Two figures included are:

• The front panel depicting a beam clamped to a table with thermocouples placed at

various locations and a strip chart displaying the data.

• The block diagram of the code for the data logger which shows the way in which

LabVIEW is coded. As indicated, the code is a flow diagram of itself.

The last system illustrated is a system which provides passive control of three different

aerodynamic control surfaces for a Benchmark Active Controls Testing (BACT) model in the

435

TransonicDynamicTunnel(TDT). ThisPassiveDigitalControllerSystem(PDCS),developedfor
theBACT,wasusedin thetunnelin November1993andwill beusedagainin November1994.

It interfaceswithareal-timeDMA controllertocommandcontrolsurfacepositionsandexcitations,
butdoesnotactivelyemploysensorsignalsfromthewingfromwhichto computecontrolsurface
commandsin order to suppressaeroelasticphenomenasuchas flutter. It doesprovide the
followingfunctions:

• Staticcommandof controlsurfacespositions
• Excitationof controlsurfaces,singlyor incombination

Monitoringof controlsurfacepositionsanderrorsignals,actuatorhydraulicpressures,
andhingemoments
'Trip' System control for wind-tunnel safety

436

DIGITAL CONTROL OF WIND-TUNNEL MODELS
USING LabVIEW

by

Sherwood T. Hoadley

LaRC Computer Systems Technical Committee Workshop
on

The Role of Computers in LaRC R&D
June 15-16, 1994

OBJECTIVE

DEMONSTRATE THE USE OF LABVIEW ®

FOR

INTERACTIVE ANIMATED

DISPLAY OF ACQUIRED EXPERIMENTAL DATA

AND

REAL-TIME CONTROL OF WIND-TUNNEL MODELS

437

r

TABLE TOPWlND TUNNEL FACILITY
FLUTTER RESEARCH AND EXPERIMENT DEVICE

WIND TUNNEL FACILITY

FLUTTER RESEARCH AND EXPERIMENT DEVICE

CONTRACTION

SCREEN (6" x

WIND

TUNNEL

TEST SECTION

6" CROSS-SECTION)

FAN
&

MOTOR

CEILING MOUNTING FOR MODELS

LIMITS:

VELOCITY 1500 inches/second

MACH .112

438

BLOCK DIAGRAM OF CLOSED LOOP SYSTEM

Voltage Applied Voltage
to Piezoelectric Proportional

Actuators to Strain

Operational
Amplifier

Strain Gage

Amplifier

ZERO
ORDER
HOLD

DIGITAL CONTROL COMPONENTS

IMPLICIT CONTROLLER
DYNAMICS

ONEI C01VrROLISTEP _
DELAY

DIGITAL CONTROL SOFTWARE SCHEMATIC

DATA TRANSFER__
(

TIME-SHARE SYSTEM
LabVIEW

USER/CONTROLLER IINTERFACE

INFORMATION DISPLAY

REAL-TIME SYSTEM
(DEDICATED PROCESSOR - DSP)

Macintoshoperatingsystem(nofixed rate)
...ram.,. Real-timeSystem(200hz)

439

LabVlEW FLUTTER SUPPRESSION CONTROLLER
VIRTUAL INSTRUMENT FRONT PANEL

10.0-

_0-

2_0i-

DEMONSTRATION CONTROLLER

,v

.External_ Ex:citatiOn_:

r " / :,_.i, :_._"]'_

/

Cont ol;:i a w exci_on _ .l':lo.9s4 I 11.-o.07s I I':lo.ooo 'i 1":10.0031 [

Ilo.oso] 1":10.99e] _ I':10.0001 I
Actuator I l

I.'1o.ooo I Ho.ooo I Ho.ooo I1_1o.oooo I G.in +,

_1-13.s3o I I:l-==.=so I _ t:11.oooo t +

I1o.ool
Command

Bias
-10. -5.0 0.0 5.0 10.0

OPEN AND CLOSED LOOP STRAIN RESPONSE
TO WIND TUNNEL TURBULENCE

Wind Tunnel Velocity 575 inches /second

440

r

Initialize Serial
Port & HYDRA

9c_c

Pathname

BMGQHD:Desktop
[Folder-. ' J

LabVlEW DATA LOGGER
VIRTUALINSTRUMENTFRONTPANEL

Number of _[_
Thermocouples

Delay BetweenSamples, sec.

_1Temp 1
Tamp Z

Tamp 3

Temp 4

Tamp 5

Tamp 6

• °o-.-o

.....-.

Sensor 4

68.00

Sensor 3

67.8O
Sensor 1 I

67.90
Sensor 5 1

168.10 I Sensor 2

67.80

Read Data

Save Data
Stream

Open New
Data File

X

67.60

Sensor 6 !

Hyd_ Dm logger 0AQ._FjO
Wed114Nldly, June 15. 1994 5:05

_ocl(Oiagrlmt

Inltlsllze Serll

Port & HYDRA

Numl=er of

Thermocouple:

OiIsy

Between

Smplei, xc.

....................................... -,_JasJu'--- -- - - J-

_] Strip Chart

Flleneme
0

I _Pathnime

i i

L

m
, , P

i i
Opel1 New Dire FI_J[_ !

441

BACT Digital Controller System

Passive Digital Controller
(No Feedback)

LabVlEW

Program

Computer

override

Manualoverride

Active Digital Controller

w:U: o.
M_.-F.n_o. 1::::1::1

Cont °ooooooo

f LabVIEW PASSIVE DIGITAL CONTROLLER & DATA ACQUISITIOI_
VIRTUAL INSTRUMENT FRONT PANEL

BIAS Positions and Peak Amplitudes I

__'_'__''_'_I_' __'_:!ii

im¢. ';:i

Command BIAS Positions i

0 0

Setup Excitation J

442

35 IV0 11O05

Electronic Engineering Notebook: A Software Environment
For Research Execution, Documentation, and Dissemination

N95- 16473

F.
by Dan Moerder

The Electronic Engineering Notebook (EEN) is a byproduct of several years of
collaborative work between LaRC and Martin Marietta Astronautics Group. The EEN
consists of a free-form research notebook, implemented in a commercial package for
distributed hypermedia, which includes utilities for graphics capture, formatting and

display of LaTex constructs, and interfaces to the host operating system. The latter
capability consists of an informal Computer-Aided Software Engineering (CASE) tool,
and a means to associate executable scripts with source objects. The EEN runs on Sun
and HP workstations.

The EEN, in day-to-day use, can be used in much the same manner as the sort of research
notes most of us keep during development of our projects. Graphs can be pasted in,
equations can be entered via LaTex, and so on. In addition, the fact that the notebook is
hypermedia permits easy management of "context": e.g. derivations and data can contain
easily formed links to other supporting derivations and data. The CASE tool also permits
development and maintenance of source code directly in the notebook, with access to its
derivations and data.

The EEN is currently in day-to-day use in the Guidance Group of the Guidance and
Control Branch, and at Martin Marietta Astronautics Group.

443

0
0

C_

'_..

Q)

_-

e_
..d

e-

.

444

ta

0
tn

¢-

445

\

C

446

"0

r_

I,,i qD

_°

o

n n"x"

fl null
i i nu II

1-

_ _ •

-

__ __.__:__._

o_ ii,
o

i_. :

:!i

)

!°
i

f

• _ _,_

ii !

__ _ 0 0

447

I I I I I

c

448

,:?:
I I I I I I I

449

450

|
1

li

!
li

!
I--

o

fi
lit

,,ill

I

.!
K
@

|
II,

m
ill
Ill
Ill

Ill

m

v v
LO 1"_ O0

cu li -_

%

VI VI

VI VI

_4
VI VI

_ v

VI Vl

v

it

li

I
.t

!
,i

451

a.)

0 o

o

E

• _ _Jl_J! _

;" _, b _ _
"_ _'_,._ _ +

•_'_ ,._,._ _ _" ._,

i.-a

E
°..._

' _ _ 8

""= ._ 6_ = ._._

Z

• _... _ ,_

"_ II _ Vl Vl Vl Vl
II

- _ _s @_._
_ _ Vl Vl Vl Vl

II

m" -_ -'..._ _ "--"

_ II

+

II

%

I-.---

II

0

@

1

I--

@
o

|

i

l ii liii

o

452

todinotes31

This frame summarizes the details needed to run the single-phase direct NLP

shooting code. The code uses NPSOL to minimize a cost function subject to plant

dynamics, boundary conditions, and miscellaneous user-specified inequality

constraints. Note that, for this version of the code, no interior boundary conditions,

e.g. staging, are permitted. In addition, the problem is assumed to be cast in Meyer

form, with unity duration. The problem statement is

. Problem Statement Here

and its representation in the code is laid out here:

. Derivation Here...

In order to run the code, the user supplies a main routine, and five subroutines:

boundary conditions, RHS of the plant ODE's, state inequality constraints, and

control inequatlity constraints. Templates for these routines are given below:

cost,

Template for the main routine, madsl.f
Template for cdsl.f (Cost Function)

Template for bcdsl.f (Boundary Conditions)

Template for pltdsl.f (RHS of plant ODEs)

Template for scndsl.f (State Inequality Constraints)

Template for ccndsl.f (State�Control Inequality Constraints)

@LaTeX

@UTILS DIR

@MATLAB

@XWD

@1 MAGE MGR

@FONT

NPSOL

o cstdsl,f npoptn.f
/

cdsl.f * dslcon.f

/,/1 dsltraj.f
o dsltra_.f o dsftraj.f "X_

/ 1 . od_ds,,., o_
o tin 1.f * sindsl.f i

0.7
• rt_$1.f ok

scndsl.f pltdM.f

ccndsl.f

• M-File Tool * FORTRAN Tool • Get Back to Title

• NP SO

_MbRE

453

Set up the code structure

_c_dl

NPSOL

cdsl.f odslcon.f

bcdsl.f_///l

°ds l traj.f °dsl traj.f

°cind_s1.f
° mpdsl.f ok

ccndsl.f

. sinds 1.f

scndsl.f

%1tra].f

°odedsl.f ok

ompdsl.f ok

/
plCdsl .f

@LaTeX

@UTILS DIR

@MATLAB

@XWD

@1MAGE MGR

@FONT o M-File Tool o FORTRAN Tool o Get Back tO Title
• @P_ent

@MORE

454

@Top of File

ii il i,i i 4 o@EXECUTE.... •..._:_-..................._:::::_:: ,-,:_,__:._<_:._;,_:,___.,=_:SCRIPT

@
This is a template for mads.f; which catts NPSOL for doing
single-phase discretized direct NLP, Here's a map of the code:

program roads1 "_ _"'°,'
° "°'_'_,'t_

implicit double precision (a-h, o-z) °..4=.L4.,_,_.

oC***Declarations and User-Defined Parameters

@ @
NPLNTP NROWA
NUP NROWJ

NROWR

@ @
maxpval MAXWKP
maxwk ndint
nu nis
nplnt niu
nbc

nparms

oC***User Defines Logic for getting plant I
C parameters and initial state and

C control guess

@ @ C_
NCNLN NROWA maxpval
NCNLIN NROWJ maxwk
NCON NROW nu

N MAXWKP nplnt
LWORK nbc

LIWORK nparms

@ @
ndint parms
nis x
niu

° C***Execute NPSOL

@
parms=plant parameters
x=initial guess for state,control history anfJ

parameters.

@x=solution?
c=final value of constraint vector.

cdsl.f

bcdsl.f

pltdsl.f
ccndsl.f

scndsl.f

I oC***User Defines logic to save results

C

stop ° Clone this frameset ,_
end •@Parent

455

C***Set NPSOL execution parameters
o @EXECUTE

SCRIPT

C

@Calculate derivatives numerically

call npoptn ('derivative level

call npoptn (' difference

/
0')

inte_al .0000001')

c***Diagnostic

call npoptn('print level 2

@Hardwired interval for numerical
differentiation. If this isn't used,
NPSOL will waste time figuring this out
on a case-by-case basis.

i_.!::_:::i_:i:_i_:_]_i_i::iiii:]

• @Parent

456

Lastfde export on: 28 January 94 at 10:49:57, current version

• Info

• Info

• Info

• Info

• Info

• Info

• Info

• Info

• Info

• Top frame of tree to write: todi0001a2

• File:]moerder]usrl/moerder/TODI-II/ds 1/mads 1.f

• Add blank line between items: yes

• Follow tree items linking to other framesets: no

• Follow annotation items linking within the frameset: no

• Time version number:

• Preserve relative indentation of items: no

• Template frame:

• Remove 1st character of each line during export: no

• Info • Program to execute script: shell script

• Info

• Info

• Info

• Info

• Toggle text 1, family: Times

• Toggle text 1, size: 16

• Toggle text 2, family: Courier

• Toggle text 2, size: 14

• This script initially cloned from 'shootOOl9a' 27 December 93 10:33:32

• @Parent

457

@Top of startup script

cd/moerder/usr 1/moerder/TODI-II/fighter

t77 -02 -o madsl madsl.f

getprm.o ficof.o \
../dsl/dslcon.o \

../dsl/cstdsl.o \

../dsl/dsltraj.o \

../dsl/odedsl.o \

../dsl/cindsl.o \

../dsl/sindsl.o \

../dsl/mpdsl.o \

-inpsol -Ilinpackd

cdsl.o bcdsl.o pltdsl.o ccndsl.o scndsl.o \

• @Parent

458

0

li

"it

t.I

' ' ! !I ili- iI I!ii!, iii"- h_---
-"i:i -a!,I i_i

_ U

i

1

i
!

i---__ _,=
ili '

._ .-,

II 0

.w
II

All

1=,
%
el
al

.=

l"

I
l'.-

.,-.,

A

I:_ II
I ""_

II

Ill

----- _, ._ l._i"- _ _i _

_ _ .
I _, II _l__ U II
II '_ _ "4- _. _ II

N

II

o

f

|
0

!
I

1:
i

|:

_!i

i
!

459

iiiiii!ii_.l
@Top of File

i',__i',iiil i__ _ o @EXECUTE._......................... _ SCRIPT

* Miscellaneous Constants

. ay
@These are constants for the Hans F15
model

,az

. aO

, acdO
, bcdO

• ak

. Drag Model

* ao

• @Parent

460

_ii___i iiiiiii_iil _;',___ iii.{__i.il i_iii_4 .@EXECUTE.................. :_:!i:::i:i:::i...................i:::::::!_::J SCRIPT

_@ 29821847 e__I

-3.2_ 9o9_2o
+5. 727_77344

-4.5__16Z_752

9,(-373 68 651

+1.37368651246

-4.57116286752

+5.72789877344

-3.25219000620

+7.29821847445e-I

"@Parent

461

462

463

I::1
_J

"a

8

z

8
13

,P

o

|

i

o

464

@Top of File
• @EXECUTE

SCRIPT

• %Header

•%Introduction

• %Single-lmpulse Problem Statement @FIG 4

° %Result s

@FIG 9

o%Two-Impulse Problem Statement

• %Figures and Tables

o % Bibliography

\end{document}

• @Parent

465

%Single-Impulse Problem Statement

ii_a °_ExEcu_SCRIPT

\section{Vehicle Model and Mission Description}

• % Vehicle Model

• % Mission Parameters

• % Constraints

• % Optimization Formulation

• @Parent

466

state

!

I

O£t_ I

x31

!

independent variable
>

state
I !

i_o F i .1,
:a _ O^

_)x21

>

independent variable

@LaTeX

@UTILS DIR

@MATLAB

__XWD

MAGE MGR

__FONT
o M-Rle Tool • FORTRAN Tool o Get Back to Title

o Link to

467

468

469

IDEAS 2 Computer Aided Engineering Software
by Pat Troutman

IDEAS 2 is a multidisciplinary Computer Aided Engineering (CAE) software tool that
was developed for systems engineering and integration analysis of spacecraft. The name

IDEAS 2 was derived from the two software packages that were integrated to form the
tool. Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) was a NASA
spacecraft-specific analysis software tool that was combined with a commercially
available product called Integrated Design Engineering Analysis Software (I-DEAS). I-
DEAS is a Structural Dynamics Research Corporation (SDRC) product that provided
capabilities lacking in NASA IDEAS such as solid and finite element modeling, thermal

analysis and advanced graphics.

IDEAS 2 utilizes a common database structure which facilitates the integrated flow of
data between the various analysis modules. All analysis is based on information derived
from a three dimensional solid math model that is created in the commercial solid

modeling program. The combination facilitates traceability and ensures all analysis is
based on the same information. Once the model has been generated and stored in the

common database, a wide range of analysis can be performed. IDEAS 2 has several

orbital dynamics modules that can simulate/analyze spacecraft characteristics such as
controllability in the presence of dynamic operations (solar array articulation, robotic
arms, etc.), orbit lifetime/reboost requirements and micro gravity environment. Structural
analysis capabilities are also available ranging from finite element modeling to forced
response analysis. The impact of the local spacecraft environment can also be evaluated

by utilizing the IDEAS 2 thermal and plume impingement analysis capabilities.

The common database and integrated analysis environment allow IDEAS 2 to be used

both for high level short term studies and large program systems integration. Several
NASA centers utilize the software for advanced concept analysis dealing with space

platforms or Lunar/Mars exploration. The Space Station Freedom program has

established IDEAS 2 as its primary Level II integration software package. IDEAS 2
models are commonly used to disseminate the latest Freedom element weights and

configuration updates.IDEAS 2 has recently been upgraded to allow the entire software
package to be ported to a UNIX workstation along with a new graphical user interface.

This will allow smaller organizations to utilize the IDEAS 2 capability without a

significant investment in computer hardware.

IDEAS 2 was initially developed from 1985 to 1986 and has continuously been enhanced
to include the most up to date analysis tools and graphics interfaces

470

3

¢q

iim

iim

'U t_

" O

q.m

471

Ill

l

0

l
472

0
1

I I I

474

475

0

476

e_

t_

,..J

,,,,J

t_

477

t

|m

m
|m

.Q

o

t_
<

m

!_iiWiii!_

iiii_ii_i!iiiiiii

478

o_

=

l

479

f

fl=

480

L
482

i

WW

>

>., n'.o = c c _
--- --._-_ (n mmm

--" U)
= C 0 "-- .--

m Imlm IN

llmi

m_ _ c ce •

or) ,- _; E e m_ E
Ilmmm iN

_ _® _, ,. o
• (_'0 (_(_ '-

.__ _- .O_ 0" 0 >', 0

G).,, 0 "_ "1_ "_' "1_ ._ "_

1 0_) _0 m_ t_m
• • lm

mmc m m m I
mm

'- 0 0 n"

m ...,_ o (.) <:

__ _ < < <

or)

484

11ooS

Matlab as a Robust Control Design Tool

Irene M. Gregory

Dynamics and Controls Branch

N95-16474

This presentation is geared towards introducing Matlab as a tool used in flight control research.

The example problem used to illustrate some of the capabilities of this software is a robust

controller designed for a Single-Stage-To-Orbit airbreathing vehicle's ascent to orbit. The details

of the problem and the control law design are available from reference 1. The global requirements

on the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric

disturbances and strong dynamic coupling between airframe and propulsion. Hence, the need for a

robust controller.

Matlab is an interactive program designed for numerical computation, data analysis and

visualization as well as a philosophy of open architecture. Fundamentally, Matlab is built upon a

foundation of sophisticated matrix software for analyzing linear systems of equations. The

relevance of this is that matrices are useful because they can describe so many things in a

mathematically efficient and highly flexible way. Matlab serves as a kernel from which several

toolboxes are linked. Application toolboxes as the name implies are a collection of predefined

functions intended to solve more application-specific problems such as a control design problem

that requires system modeling, controller synthesis and analysis. One of the most important tools

for modeling complex nonlinear systems and simulating them is Simulink. An example of such a

system is presented here. The model consists of an integrated aerodynamics/propulsion database,

various information for use with a pilot on approach and landing, and a full 6 d.o.f, rotating earth

equations of motion along with an atmospheric model. Not only does Simulink provide a straight

forward way to easily build this system, but it also incorporates files written in different languages,

in this case FORTRAN and C, in the model without any modifications.

Given the nonlinear system we proceed with trimming the vehicle and deriving linear models.

Both of these are predefined functions that can be executed in a single line. Since the system is

unstable, the controller is required to both stabilize the vehicle and follow the prescribed trajectory.

Typically synthesizing a controller is an iterative procedure and it becomes advantageous to

automate the process. An m-file consisting of Matlab commands can be used to define scaling for

optimized variables, construct the new linear system that includes these scaling, and perform

controller synthesis and analysis. This system model would also include uncertainty that may arise

from various physical considerations. Once written, the iterative process can be completed in a

few key strokes per iteration. These m-files serve as an example of yet another language that can

be utilized in Matlab.

485

Thiscontrollerexampleutilizessomemoderncontroltechniquesthatareavailablefrom I.t-tools
andto someextentfrom Robustcontroltoolbox. Thecontrollersynthesisproblemissolvedusing

HoooptimizationandanalysisareperformedusingIt, alsoknownasstructuredsingularvalue, la

is analogousto Bodeplotsin theclassicalcontrolmethodologies.Thelaplot allowsanimmediate
assessmentof whetheracontrollerhasfulfilled thespecifiedrequirements.Oncethedesired

controllerhasbeenfound,amodelreduction,to reduceits dynamicorder,is performedusinga

numberof techniquesamongthemHankelsingularvaluesandresidualizedtruncation.A reduced
ordercontrolleris thenintegratedinto thenonlinearsimulation.Timeresponseof thesystemis

evaluatedasbothaconfirmationof frequencydomainp analysisandanotherwayof evaluating
results.

Matlab/Simulinkcombinationalsohasthecapabilityof automaticallygeneratingC codefor any

blockin adiagram.Thiscapabilityisveryusefulfor transferringcontrollerfrom thedesign

environmentintonon-Matlabenvironmentssuchasrealtimesimulationor evenflight test. These

capabilitiesarebeingcurrentlyevaluated.

In summary,a numberof differentcapabilitiesof Matlabwereillustratedin thisexample.We

find Matlaba powerfulyet very flexible tool to usein controlsresearch.

References:

Gregory, Irene M.; McMinn, John D.; Chowdhry, Rajiv S. and Shaughnessy, John D.:

Hypersonic Vehicle Model and Control Law Development Using Hoo and u-Synthesis.

NASA TM-4562, July 1994.

486

Matlab as a Robust Control
Design Tool

Irene M. Gregory
Dynamics and Controls Branch

presented at
The Role of Computers In LaRC R&D

1994 Workshop

June 15 - June 16

Presentation Outline

• Robust control law problem

• Introduction to Matlab

° Nonlinear system simulation

• Linear model derivation

• Sample command file

• Controller synthesis and analysis

• Concluding remarks

487

Robust Control Law Framework

Airframe/Propulsion
Nonlinear Model

\
Linearized Uncertainty Model

Robust Control System
Design & Analysis

\
I Framework for explicitly including structured Robust Stabilityuncertainty in control law synthesis and analysis & Performance

Introduction to Matlab

• Matlab

- For numeric computation, visualization, and data analysis

- The basis of Matlab is matrix manipulation end matrix
solving.

- Metlab is a kernel from which several toolboxes, a
collection of predefined functions, ere linked

• Simulink

- For advanced nonlinear modeling and simulation

• Application Toolboxes
- For customizing your Matlab environment with special

tools to solve more application-specific problems.

- e.g. Controls, l_-Tools, Signal Processing, Neural Nets

488

Matlab Nonlinear Simulation

I[AI* _IR _,*.lm. ilnui*tim Slid* red*

B

Eqn's of Motion Block

{Ilock nine: BIH

Sub_j=t_:
oMl_run(t ,x.u, f llo,pl-lito..)

function name:

I*_ 1
Function parlmot.rs:

[J

* mdilnltiallzeSlzse - initialize the sizes err

• The eizel array is used by SiMULINK to
determ

• charectedstice (number of inputs, outputs, s

./

#define EOMDEBUG

#define NSTATES 7

#define NOUTPUTS 115

#define NiNPUTS 39

Mltic void mdllnitielizeSIzes(S)

SimStruct *S;

(
esSetNumContSteles(S, NSTATES); P

numb

ssSetNumDiscStates(S. 0); P numb

siSetNumlnputs(5, NINPUTS); P numb

esSetNumOutputs(S, NOUTPUTS); P
numb

ssSetDireclFeedThrough(S, 1); P dire

ssSetNumSampleTimes(S, 1); P numb

489

Aero/Propulsion Model

dels

--_ UX30dat _1_

Aero/PropStability Derivatives

I Database I

Aero/Prop Model Block

UX30 dat

Aero/Prop

_Um Function r.m*:

Function paraMter.=:

[l
_1

cc perform table iook..upe

ceil ux3Od(mach,weight,alphl,delm,dele,

tclel/f,clelf2,nta,specv2S,m#no,vele,

c Mess Of vehicle
C

mess = weight,'32.1?
C
c mlm nero forces and moments
c

cliff • cl1 ÷ Cldnt + cldnt
¢dmg • cdt ÷ cddnt + ¢ddet ÷ cdllt + ¢df2t

C
Idnllf ==sln(lllphil*ci2r)
Cos•if = cos(alpha*d2r)

c
CZ • -¢drllg*comiff + cllft*elnml/
cy • cybt*betll + cydat + cydet + cy?lt + cyf2t
cz • -(:ilft*collalf * cdrllg*smmff

cil = cilbt*bets + ctidllt ÷ clldot + cliff t + cii
1 (cllpt * pbody + ciirt * rbody) * boplm/(2.0*vhv)

m mcruet + cmdnt + cruder + cmflt + cmf21 ÷
1 cm_*qbody * cbmr/(2.0"vrw)

¢n • cwbt*betm ÷ ¢wdat + cwde_ + cwflt + cwf2t ÷
t (cwpt'pbody ÷ cwrt * rbody) * bspan/(2.0"vrw)

c
c final outputs from user code block
C

lift • dynp*ssrss*cilfl

=v_ • dynp*anrss*cdra9• IIfVdrlg
c

xssro : dynp°ssrss*cx
yssro = dynp*anrss*cy

490

Linear Model Derivation

>> [ad,bd,cd,dd] = linmod('ux30');
>> ad
ad =

-2.2037e-02 6.9900e-03 0 -5.6189e-01 -8.4104e-03
-3.7593e-05-9.7957e-02 1.0000e+O0-4.2937e-05 2.8210e-04
•3.7335e-02 3.8823e+00 -1.2216e-01 0 -3.8333e-04
2.7302e-06 3.9183e-06 1.0000e+O0-3.9183e-06 1.6346e-14
1.0472e-02 -1.3703e+02 0 1.3703e+02 0

>> bd
bd =

4.5324e-02 4.1653e-01
-9.4348e-03 -2.1950e-03
-2.4606e+00 -2.4238e-03

0 0
0 0

Linear Model Evaluation

>> eig(ad)

-2.0772e+00
1.8636e+00

-5.4707e-02
1.3076e-02 + 1.9857e-01i
1.3076e-02 - 1.9857e-01 i

° Unstable system=> controller requirements
- Controller stabilize vehicle

- Controller follows prescribed path

491

System Block Diagram

wI w=

-'----J I J Loq_tudlnd
l'rl "":r _ ._. _0vf ucmi

e

.-[_._ -

6! I|

'--1 _r IZp

T J'_l _ _p

_,fp

Controller Synthesis

>> Olplant_UXl

system: 12 states 16 outputs 11 inputs

Test bounds: 0.SO00 < gamma <= 10.0000

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy
p/f

10.000 3.9e-02 3.3e-10 9.6e-04 0.Oe+00 0.0000 p

5.250 3.9e-02 3.3e-10 9.6e-04 0.0e+O0 0.0000 p

0.648 3.9e-02 -5.8e-05# 9.6e-04 0.0e+00 0.0003 f

0.723 3.9e-02 3.9e-10 9.6e-04 0.0e+00 0.0005 p
0.686 3.9e-02 -2.2e-02# 9.6e-04 0.0e+00 0.0419 f

0.704 3.9e-02 4.0e-10 9.6e-04 0.0e+O0 0.0009 p

0.695 3.9e-02 4.0e-10 9.6e-04 0.0e+00 0.0017 p

Gamma value achieved: 0.6948

492

M-file Example

% Performance WeighUng FuncUons on Actuators

Wpe - daug(20,S); % weighUng on dele, deleta

Wpact • daug_l,1); % weighting on elevon rate

systemnames • 'ac Wpv Wph Wpa Wpq Wpo Wpe Wn se0 sel ce5 se6 Wpact
Fv Fh Wcmdv Wcmdh ';

inputvar ,, '[xt_inp(11)]';

outputvar,,'[Wpv;Wph;Wpa;Wpq;Wpo;Wpe;Wpact;ac+ Wn;Wcmdv;Wcmdh]';

input_to_ac,,'[Fh;Fv;sel ;se6]*;

input_to_Wn,:'[xt_inp{ 1:5)]';

input_to_Fh ,, _[xt_inp(6)]';

% H ocontroller ©alculaUon

[kl,clpl],=hinfsyn(acolpl,nmeas,ncon,0.S,10,0.01);

Controller Evaluation Tools

16

14

12

1

01

0s

04

O2

001

.... Nomml_ Per tocmenc*

..:::::::::i.l.i...._.....................................

01 1 10

;2

I

OI

0S

04

02

0

Ool

.... Nom0na¢ Per_o_ance

-- - RobU=l S;I_hW

"'''.°

01 _ 10

F mm_lcy, te¢ute¢

• Frequency domain I_-based performance
evaluation plots

493

Controller Order Reduction

• Nominal controller - 23 states

• Balanced realization and Hankel singular
values

- >> [Kbal, hanksv] = =ysbal(Khinf);

- >> [Kred,Kunst] = hankmr(Kbal,hanksv,13);

• Final reduced-order controller - 13 states

Nonlinear Simulation
{ _.,tlo F,,pit, gpttn LLaulstl¢_ $_,,t_le Code

l L

494

Controller Evaluation

• Reduced order controller evaluation in
frequency and time domain

- H(closed loop system)

- nonlinear simulation time response

12

1

08

OS

04

02

0

O01

.... Ncmma Peno.m_ce

-- -- _Ii Sl|l}ly

•°*

0_ t lo

F rlque-cy, rl_:lc

l0

SO

40

20

0

20 40 SO 8O 100

T,me. lec

Controller Evaluation

• Reduced order controller evaluation in
frequency and time domain

14

.... NO.Y_I_ P_lr k,n_lrlce

I 2 -- -- I_Sl $_hly

t ...

OS _" "'''°'

O4

02

0

0 01 0 I _ 10

Frequency, rIO/NC

80

|
© $0

i
I[40

I

20

0

20 40 G0 S0 100

495

Concluding Remarks

Matlab capabilities utilized
- Link together FORTRAN, C, and Matlab functions

- Nonlinear simulation

- Trim vehicle

- Derive linear model

- Control application toolboxes for controller synthesis
and analysis

496

110060

N95-16475

Simulation of the Coupled Multi-Spacecraft Control Testbed at the Marshall Space Hight Center

D. Ghosh and R.C. Montgomery
NASA Langley Research Center, Hampton VA 23681

1994 NASA Langley Workshop on Software Systems
June 15-16, 1994
Hampton, VA

The capture and berthing of a controlled spacecraft using a robotic manipulator is an important
technology for future space missions and is presently being considered as a backup option for direct
docking of the Space Shuttle to the Space Station during assembly missions. The dynamics and control
of spacecraft configurations that are manipulator-coupled with each spacecraft having independent
attitude control systems is not well understood and NASA is actively involved in both analytic research

on this three-dimensional control problem for manipulator-coupled active spacecraft and experimental
research using a two-dimensional ground based facility at the Marshall Space Flight Center (MSFC).
This paper first describes the MSFC testbed and then describes a two-link arm simulator that has been

developed to facilitate control theory development and test planning. The motion of the arms and the
payload is controlled by motors located at the shoulder, elbow and wrist.

A symbolic manipulator, MAPLE, is used to derive the equations of motion based on a Lagrangian
formulation. The equations are programmed using the autocode feature of MAPLE in FORTRAN and are

then embedded in a usercode block of MatrixX which is the primary simulation software engine. The
simulator implements a digital joint motor controller. The joint motor conlrol scheme generates
commands for the motor based on the difference between the joint angles derived from telerobotic
translational command inputs using inverse kinematics and joint angle measurements.

497

498

m

0

Z
0
m

I-
Z
UJ

UJ
a:
a.

E

.0
0

O_

lm

m

ii

0

LL

co

,rr

0

m

E
im

O0

0 _

L_

E

C

0
C
0

0

499

e

|

/

5OO

ILl
m

501

\

502

I1

°E

X

503

O
F-
<

m

G)
mm

>
L_

>
O

UJ
_J
O.
<

I

A

O
ILl
v

im

O

O

O
nlmml

O"
UJ

X
X

Im

z._

(g

I

Q.
C

|m

C

Iml

(g
z_
O

O
LU

cg

O1

,W
e.

in

>,
m

m

(g
O

mm

!.._

5O4

• • • •

505

I

0

C
0

im

0

M.--
0

u)
C
0

om

t3-
UJ

co co

li

cO cO
I

f

cO cO
J

>
I

il

c-

t3_
c-

C_

-.I

LI.

c-
O

O.
am

u)

a

c-
t3_

Ill

8)
m

rr

0

506

23
¢D

m

"0
0

(/)
I-n"

_0

507

A

W_
¢-

ao

x__

¢=
I.IJ

¢O
IIm

g:
IIm

+
t",4v"-4

t'4,.-_

,'-_ f'4

+

.v-,_

II

t"4

O

.<I:)

+
v-..S

O

v--4

-CD
Vl-4

v'--4

t"4 t"4

"(:D
©

+ +
I--"l

t"4

<:1:>

ov-_

+

.v-4

.CI:>
v--.4

V-'-4

+

O
_O
t"4

t',l
v---I

+

¢:D

O

.¢:D

+

t"4

.v.-I

.<Z:>

+
t"4

o1=-,(

.<I:_
t"4

+
v-..4

°v'_

. c:l:>
v,.-4

v"--4

+

508

C,4

C_I L'M
(::D Or)

I

(',7 I

"EY

v
E-_

(:I:) <:D
(M

o > 1:: -_
a. _ rr

509

Z
0
m

0

Z
0
m

0
ILl

W
t_
0
L_

e..
iamm

m

0
e-

m

e_

0
0

e-
0

"0

e"

gm

--F , 0_

II e.

II

,i,d

510

0

t_
m

t_

"el °r._ "

t_
!

!
(¢J

"il
4 _ 4

4 _ 4-
L

C

511

in
o

f_

..Q

• I I I

512

m

0

0
0

l--
Z
I.Ll
_E
I.i.I
n,,

<
l.IJ
_E

513

514

II

0

O0
Uj

0
m

I:Z.

I

.. _.

! Ii

"0

o_
,,C r',

c:c_

515

ILl o oi

8

d

gm

"13

X

Im

516

t_

lira

23

m

em

_D

:3
0

_..

m

:3

n-

>
mm

0

"0

U}
::3

m

0
0

C
0

llm

=l==f

m

:3
E

l;m

(/)

|m

m

m

¢)
"13
0
E
C

llll

"(3

"0
¢)
¢)
C

C
¢)
E
>
0

Q.

l

517

SESSION 10 Languages

Chaired by

Robert F. Estes

10.1 Object Oriented Numerical Computing in C++ - John Van Rosendale

10.2 Hardware Description Languages - Jerry H. Tucker

10.3 High Performance FORTRAN - Piyush Mehrotra

518

6/ ce' N95-16476

199 Workshop on The Role of Computers in LaRC RS/D

Object Oriented Numerical Computing in C-+-+

John Van Rosendale
f%

Computer Applications in Science and Engineering -_Institute for

jvr(_icase.edu %

Synopsis

C++ is an efficient object-oriented language of rapidly growing popularity. It can be of real value in a

wide range of disciplines, including numerical computing, where it seems to offer important advantages over
most competing languages.

Object-oriented languages

What exactly is an object-oriented language? The most important defining characteristic is support for

"polymorphic data types." Procedural languages, like Fortran and C, contain built-in types such as integers,

reals, characters and so on. The integer type, for example, consists of the requisite bits of data, a set of
associated operations, +, *, / , and coercions to and from the other built-in types. One can build data

structures of arbitrary complexity in Fortran, but these are not "first class" types, like integers.
For example, one can form a "sparse_matrix" from arrays of integers indexing into arrays of reals. But

Fortran 77 does not let one declare several of these as

sparse_matrix A,B,C

and then perform operations such as:

A=B+C

Languages like Clu and Ada, supporting "abstract data types," let one do precisely this. One can, for

example, in Ada define a "set_of_words" abstract data type. This would be a user defined type which might
be useflll in comparing documents. Once the type is defined, one can then declare several such sets

set_of_words A,B,C

One can also operate oil them just as with the built in types

A := B .+. C

where .+. might be a user-defined union operation.

OO languages push this concept further, allowing one to define a "set_of_<type T>", where T can be

any type in the language. This new type, a "set_of_<type T>", is "first class" in OO languages, one can use
variables of that type exactly like those of the built-in types. To make this clear, types are called "classes"

in the O0 world, while values of those types (classes) are called "objects," though whehter these new terms
do more to clarify or obfuscate is not clear.

To see how 00 ideas might be used in numerical computing, it might, for example, be useful to define
a class "mesh_cell" which would be the basic unit of an unstructured mesh. Mesh cells come in a number

of varieties, which can be thought of as subtypes (subclasses) of the type (class) "mesh_cell", as shown in
Figure .

All mesh cells share certain properties, volume, temperature, pressure etc. declared as part of class

"mesh_cell." Cubes and tetrahedrons share these properties, but have their own unique properties as well.
They have different numbers of faces and vertices for example.

The ability to allow useful computing on a set of related but not identical user-defined types is the defining
characteristic of O0 languages. In the above case, one can make an array of "mesh_cells", consisting of prisms,

tetrahedrons, and cubes. One can access the volume of any element of this array, since all "mesh_cells"

have volume. To access specialized properties, one may have to select on the particular subclass of each
"mesh_cell".

519

mesh__cell

tetrahedron cube

Figure 1: Mesh cell type hierarchy

C++ in numerical computing

How useful will C++ be in numerical computing? C++ contains most of the useful new features in Ada

or Fortran 90, and is easily extensible in a number of ways. People around the world are rapidly developing

class libraries for finite element analysis, for sparse matrix arithmetic, and so on. C++ together with a new
class library is essentially a new application-specific language, and one that may have a powerful impact on

a particular subdiscipline.

To see how this could have an impact, one need only realize that there are, for example, at least a dozen

different unstructured grid codes here at Langley, with relatively little code shared between them. Given the

appropriate class library supporting unstructured grids, one should be able to prototype new unstructured

grid algorithms much faster, by borrowing large chunks of previously written code. This is the promise of

OO computing in C++. Efficient execution, compatibility with previously written C and Fortran, and the

OO approach are the major advantages to C,++.

(_++ also has its problems. One is that its syntax and semantics, inherited from C,, are needlessly

complex, significantly steeping the learning curve for new programmers. Another problem is that, like Ada
and Fortran 90, C++ is a large language, full of complexities most programmers will never master. Only

experts will master the full language, with most programmers limping along on their own particular subset.

These problems are real, but clearly not fatal, given the exponential growth of C,++. From one perspec-

tive, C++ is essentially a halfway point between traditional procedural languages, like C and Fortran, and

"rapid prototyping" languages like Smalltalk. Over the longer term, as computer power increases and our

algorithms become more complex, one expects research numerical computing, like that done at Langley, to

shift in the "rapid prototyping" direction. Use of C,++ is an important step in that direction.

520

©

521

o __

© _ ._

522

©
©

0
r_

523

i,-,-,I o_=1

o,--I I

0 _
_ m

o_1 _

.el

4-_

I
_P
U3

+

II

52,4

_p

raO ¢_ -4_
_P

©

r._ 1--,,4 _

_0 _ °

I

r_
4_

0

I

0
I

_)

L_

+

II
oo

©

c_

0

0

n_
_P

_P

tip
r_

r_
o_l

_P

_P

525

00

epll

PlU

Illl

m

elml

I

elll

O

eJlt

em

"O
cD

cD

526

I I I 4._

. .-

.

527

c_

c_

C_Q

,, m,-,,I

© A
E-,

¢.)

_ _r a
c_

c_ U U ,,,
V _ N

c_ "_ _ 1>

r--I

r_

II

N
ul

I1_ eM

1 i

4-_

e-t

• el _

u

• . _
u 4-_ c_

r_

II "-
+
-I- I
I:_ t
•x- ,,X-

:::t

C_
0

o

I
g_

0
u

(1)
N

-r--I

528

r_

tip

(_ '-'-°

° F,.-I

t_ 0
0

0 _

o

0

©
°r-.I

©

©
C_

00

+

o;

+

II

c_

Ol

0

0

II

_

er)

0

0

It

529

op_l

=
ep-q

=

ee

r--I

U

r-I

.r-I

_>

r--'l 0
0
_>

I I

U
•r-I ff_
4J

U

I I

ee

,.Q

u

ee

U
.r-.I

U

_>

_D LO

I I

530

oN

I
I

I
I

I
I

V

I

I
I

I

I,,,,,

ca

I
I

IV

531

|

_M

• r,,-I

0

0 _

%-I

_ ®r_

o c_

_,.e o
m b.O

4- _._
nt_ ,--_ _

& _e._

0 _._ _

4__ o _
-F o ,.._ -_

,..0

I

°_-.I

_P

,.o
* P,.,.I

_>

CD

0 ;>

m _

0 0

• ,--_ _

b.O -,-_

_ .,-_
o,-.I _.)

532

©

533

m

.=.

534

535

6:4S IloOU N95-16477

Hardware Description Languages

Jerry H. Tucker

©

Hardware description languages are special purpose programming

languages. They are primarily used to specify the behavior of digital systems, and

are rapidly replacing traditional digital system design techniques. This is because

they allow the designer to concentrate on how the system should operate rather than

on implementation details. Hardware description languages allow a digital system to

be described with a wide range of abstraction, and they support top down design

techniques. A key feature of any hardware description language environment is its

ability to simulate the modeled system.

The two most important hardware description languages are Verilog and

VHDL. Verilog has been the dominant language for the design of application

specific integrated circuits (ASIC's); however, VHDL is rapidly gaining in

popularity. VHDL was developed for the DOD and then transferred to the IEEE in

1986. The language is defined by IEEE standard 1076. Since 1988 the DOD has

required all of its digital ASIC's to be supplied with VHDL descriptions.

By describing a digital system in VHDL at a behavioral level, the effect of

different architectural decisions can be simulated and evaluated early in the design

process. Once an architecture has been selected the various circuits in that

architecture can be described using a restricted subset of VHDL. It is then possible

to synthesize that VHDL description to obtain the actual implementation of the
circuit.

536

Hardware Description Languages
by

Jerry H. Tucker
Presented at the Workshop on

The Role of Computers in LaRC R&D

June 15-16, 1994

Questions Addressed

• What are HDL's?

• Why use HDL's?

• What HDL's are available?

• How do HDL's differ from other

languages?

537

What are HDL's?

• A special purpose programming language.

• Primarily for specifying behavior and

structure of digital systems.

- Replaces traditional digital design techniques.

- Supports wide range of system abstraction.

- Supports top down design.

• Running the HDL program simulates the

modeled system.

Why use HDL's?

• Old design methods are inadequate to

satisfy demands on digital systems.

- Increasing complexity.

- Decreasing development time.

• Automates design process.

- Requires digital hardware designers to also be

programmers.

• HDL synthesized to implement design.

538

Types of HDL' s

• Two dominant HDL's.

• Verilog

• VHDL

• A key component of both is the simulator.

Verilog

• Developed 1983-1984.

• Originally proprietary.

• Now IEEE 1364.

• Dominant language for ASIC's.

- More "real" designs in Verilog.

• Inherently faster simulation than VHDL.

539

VHDL

• DOD required common HDL to support

designs from different vendors.

• DOD contract awarded in 1983.

• Strong Ada influence.

• Public released 1985.

VHDL (cont.)

• Transferred to IEEE in 1986.

• IEEE standard 1076 in 1987.

• Revised standard IEEE 1076-1993.

• Since 1988 DOD requires all its digital

ASIC's to be supplied with VHDL

descriptions.

540

VHDL (cont.)

• VHDL more verbose than Verilog

• Example in VHDL

IF ((clk'EVENT) and (elk=' 1') and

(clk'LAST_VALUE='0')) then...

• Example in Verilog

@(posedge(clk)) ...

VHDL (cont.)

• VHDL more flexible than Verilog.

• Momentum seems to be with VHDL.

541

Levels of Design

• Behavioral

- Highest level, Most general.

• Register Transfer Level (RTL)

- Defines registers, counters, I/0 buffers etc.

- Can be synthesized to specific devices.

• Gate Level

- Defines design in terms of logic primitives.

VHDL Example mod 3 counter

-- MOD 3 counter VHDL example for

-- The role of computers in LaRC R&D

-- workshop June 15-16, 1994.

use work.all;

entity CNT is

port(CLK: in BIT; Q1, Q0: out BIT);

end CNT;

542

mod 3 counter (cont.)

architecture BEHAVIOR of CNT is

begin

CNT3: process(CLK)

variable COUNT: INTEGER := 0;

begin

if CLK = '1' then

COUNT := COUNT + 1;

mod 3 counter (cont.)

if (COUNT > 3) then

COUNT := 0;

end if;

Q0 <= bit'val(COuNT mod 2) after 10 ns;

Q1 <= bit'val(COuNT/2) after 10 ns;

end if;

end process CNT3;

end BEHAVIOR;

543

VHDL example test bench

-- Test bench for MOD 3 counter VHDL example for

-- The role of computers in LaRC R&D

-- workshop June 15-16, 1994.

use work.all;

entity TB is end TB;

test bench (cont.)

architecture TEST of TB is

-- Signal declaration.

signal CLOCK, Q1, Q0: BIT;

-- Component declaration.

component CNT

port(CLK: in BIT; Q1, Q0: out BIT);

end component;

544

test bench (cont.)

for UI: CNT use entity work.CNT(BEHAVIOR);

begin

-- component instantiation statement.

U1: CNT port map(CLOCK, Q1, Q0);

CLOCK <= not CLOCK after 50 ns;

end test;

Simulation of example

545

5 5 / / o o (3 N95- 16478

199 Workshop on The Role of Computers in LaRC

High Performance Fortran

Piyush Mehrotra

Institute for Computer Applications in Science and Engineering
I)m((__.icase. edu

Introduction

Recently an international group of researchers from academia, industry and government labs formed the

High Performance Fortran Forum aimed at providing an intermediate approach in which the user and the

compiler share responsibility for exploiting parallelism. The main goal of the group has been to design a

high-level set of standard extensions to Fortran called, High Performance Fortran (H PF), intended to exploit

a wide variety of parallel architectures [2, 4].
A major performance issue of most parallel machines including distributed memory machines and non-

uniform access shared memory machines, is the locality of data. The HPF extensions allow the user to

carehllly control the distribution of data across the memories of the target machine. However, the compu-

tation code itself is written using a global name space independent of the distribution of the data. As HPF

is targeted towards data parallel algorithms, it supports forall loops and array statements to specify the

data parallelism. However, there are no explicit constructs for management of tasks or for communication of

data. It is the compiler's responsibility to analyze the distribution annotations and generate parallel code,

generally SPMD, inserting synchronization where required by the computation. Thus, using this approach

the programmer can focus on high-level algorithmic and performance critical issues such as load balance

while allowing the compiler system to deal with the complex low-level machine specific details.

The HPF design is based on language research done by several groups, in particular, Kali [5, 6], Vienna

Fortran [l, 7] and Fortran D [3], the first two of these were partially developed at ICASE.

HPF Overview

High Performance Fortran is a set of extensions for Fortran 90 designed to allow specification of data parallel

algorithms. The programmer annotates the program with distribution directives to specify the desired layout

of data. The underlying programming model provides a global name space and a single thread of control.

Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism, in particular

data l)arallelism. Thus, the code is specified in high level portable manner with no explicit tasking or

communication statements. The goal is to allow architecture specific compilers to generate efficient code for

a wide variety of architectures including SIMD, M IMD shared and distributed memory machines.

Fortran 90 was used a base for HPF extensions for two reasons. First, a large percentage of scientific

codes are still written in Fortran (Fortran 77 that is) providing programmers using HPF with a familiar
base. Second, the array operations as defined for Fortran 90 make it eminently suitable for data parallel
algorithms.

Features of High Performance Fortran

In this subsection we provide a brief overview of the new features defined by HPF.

,, Dala mapping dzrectives: HPF provides an extensive set of directives to specify the distribution and

alignment of arrays. The distribution directives can be used to specify the layout of data arrays on an

underlying set of abstract processors. The alignment directives allow the arrays to be aligned so that

specified elements are placed on the same abstract processors.

546

Data parallel execution features: The FORALL statement and construct and the INDEPENDENT

directive can be used to specify data parallel code. The concept of pure procedures callable from
parallel constructs has also been defined.

New intrinsic and library functions: HPF provides a set of new intrinsic functions including system
functions to inquire about the underlying hardware, mapping inquiry functions to inquire about the

distribution of the data structures and a few computational intrinsic functions. A set of new library

routines have also been defined so as to provide a standard interface for highly useful parallel opera-

tions such as reduction flmctions, combining scatter functions, prefix and suffix functions, and sorting
functions.

Extrinsic procedures: HPF is well suited for data parallel programming. However, in order to accom-

modate other programming paradigms, H PF provides extrinsic procedures. These define an explicit

interface and allow codes expressed using a different paradigm, such as an explicit message passing
routine, to be called from an HPF program.

Full details of the language can be found in the HPF Language Specification document [2] which is also
available via anonymous ftp from public/HPFF/draft at titan, cs .rice. edu.

There is a second round of meetings of the High Performance Fortran Forum being currently held in
(',hicago to consider clarifications of HPF 1 and to chart out requirements for future extensions to HPF.

Further information about these meetings and HPF in general can be found on Mosaic through the URL
http ://www. ere. msstale, edu/hpff /honte. html

References

[1] B. C,hapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming,
1(1):31-50, 1992.

[2] High Performance Fortran Forum. High Performance Fortran Language Specification Version 1.0. Sci-

entific Programming, 2((1-2)):1-170, Spring and Summer 1993.

[3] (_. Fox, S. Hiranandani, K. Kennedy, C,. Koelbel, U. Kremer, C,. Tseng, and M. Wu. Fortran D language

specification. Department of Computer Science Rice COMP TR90079, Rice University, March 1991.

[4] (:. Koeibel, D. Loveman, R Schreiber, G. Steele, and M. Zosel. The High Performance Fortran Handbook.
The MIT Press, 1994.

[5] P. Mehrotra. Programming parallel architectures: The BLAZE family of languages. In Proceedings of

the Third SlAM Conference on Parallel Processing for Scientific Computing, pages 289-299, December
1988.

[6] P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures using Kali. In

A. Nicolau, D. Gelernter, T. (;ross, and D. Padua, editors, Advances in Languages and Compilers for
Parallel Processing, pages 364-384. Pitman/MIT-Press, 1991.

[7] H. Zima, P. Brezany, B. Chal)man, P. Mehrotra, and A. Schwald. Vienna Fortran - a language specifi-
cation. Internal Report 21, ICASE, Hampton, VA, March 1992.

547

2:
.<

©

Z
.<

©

I--4

v--4 ql_

°_-_

°_.-q

°¢-._

•= .._

.<

©

°_--I

549

b.O

¢)

550

0
o

•._ "1_
0 •
o.- o

.._

551

0
r4

0

552

553

• • • • • • •

554

°p-S

_ °

•_ ._

_ ° o

555

0

¢,2
q2

q2

• ,...s

Z.2

556

557

O

0
ep-4

,.Q

cr_

ero
cro

E

_,] -

i_..q -

O

_._4

558

v--4

° i °
+ ,._

I

X

°_._

q2

559

560

561

SESSION 11 Advanced Topics

Chaired by

Susan Voigt

11.1 Current Research Activities at the NASA-sponsored Illinois Computing Laboratory of
Aerospace Systems and Software - Kathryn Smith

11.2 Epistemology, SoftwareEngineering, and Formal Methods - C. Michael Holloway

562

3 s _;/'/7 I toa (_,./ N95- 16479

Current Research Activities at the NASA-sponsored
Illinois Computing Laboratory of
Aerospace Systems and Software

Kathryn A. Smith
Assessment Technology Branch

Information and Electromagnetic Technology Division
Research and Technology Group

The Illinois Computing Laboratory of Aerospace Systems
and Software (ICLASS) is a NASA center for excellence in
computer science. ICLASS was established in 1985 with

two objectives:

(1) to pursue research in the areas of aerospace

computing systems, software and applications of
critical importance to NASA; and

(2) to develop and maintain close contacts between
researchers at ICLASS and at various NASA centers to

stimulate interaction and cooperation, and facilitate

technology transfer.

Current ICLASS research activities are in the areas of

parallel architectures and algorithms, reliable and fault-

tolerant computing, real-time systems, distributed
systems, software engineering, and artificial intelligence.

563

ICLASS - March 20, 1992

National Aw_mutics randSpeoe Admmitmhon __
langley Remmr¢l_ Centw

Illinois ComDutin9 Laboratory_ for Aerospace
Systems and Software (ICLASS)

• NASA Center for excellence, establlshed 1985

• ObJectlves
-> Pursue research in aerospace computing systems, software and

applications important to NASA
-) Develop close contacts and stimulate interactions between faculty and

students at ICLASS and reseamhers at NASA

• Performance period Dec. 31, 1993- Dec. 30, 1994
• Annual review, May 24-25, 1993

•-) Attended by 13 NASA people (2 centers & JPL),

1 US Navy, and 4 from industry
-) Panel presentation by NASA at al.

-_ Presentations by ICLASS researchers

-# Poster sessions presented by students during breaks
• Over 70 recent publications

K.A. Smilh

J

Nadlonll Aqwormubos and Space Admm_tration

- langley Rlmmrch Center

ARPARALLELa_rrEcTU_)

COMPUTING

SOFTWAR£
ENGINEERING

DISTRIBUTED
SYSTEMS

INTARTIFICIAL

E,,_E.CE) I,,
(R_L-T,.E
. SYSTEMS .

ENLARGED

TECHNOLOGYBASE
IN

AEROSPACE

COMPUTERSCIENCE

f

ICLASS

SCIENTIFIC

_] COMMUNITY- PUBLICATIONS

- CONFERENCES

_COM HIGH

RFORMANCE
PUTINGIN

SPACE

"_ FUTURENASAMISSIONS

NASA CENTER_SURE TO LEADING
CS RESEARCH

• Focus attention of CS researchers on NASA related problems

• Involve graduate students and research faculty

• Enhance NASA Computer Science understanding

t_ LaRC coordinates and maintains close technical communication

K.A. Smith

564

ICLASS -March 20, 1992

N4dmmd Aammufi_m and Space AdmmBtration

l.mngleyRwee_ Cemer

Typical ICLASS Project Lifecycle
¢.

f

Transferred

tTechnologies

".,..

(one student)

Year 0

ISF

NASA ICLASS

(A few students)

NASA ICLASS

-- ['=-10-I0+ students
& professional staff)

K.A. &mith

NMJofwl Agr_nauti_l and Speoe A_ht'_tilB_ II

- langley Rosesrch Center
II II IIIIII I I I

ICLASS Overview

IICLASS (J. Llu, R. lyer Co-Dlrecton) I

I Coordinated Computer

/ \

K.A. Smilh

565

ICLASS - March 20, 1992

Nltionll Aix'onautu:s and Space AdmmiltrltOn

I L_no;_/IR4Nsr_ Cent*r
ICLASS RESEARCH A_TIVITIES - 1994

Developmentof ParallelProgramslot
DisldbuledMemo_ Muiticompulers

MuitlprocessorArchiteclures

AdvancedCompnallonandArchllectum
Technology

ResourceManagementfor Paralleland
DislrlbuledSyslems

ParallelSystemPedormanceAnalysls
ElllclenlExecutionof Fine-Grained

Concun'entPrognln_

HighPedommnceMemorySystemsfor
AdvancedMultlproceuom

A Design Environment for Faull Tolerant Systems

OependablUlyValidationof HighPedormance
Systems

rlflcallonof VHDLDigitalSystems

K, A. Smilh

FuncllonalProgramn_g and Sofentlllc
Combing

Folm_zJlon of Code Re-Uim Through
Al_racl Algorllhme

Throe DimensionalVisionSyslems

EnglneedngInlegraledCAD/CAMSyslems
forReducedCoalManufacturing

Rellable,I:)isldbuted,DatabaseManagement
Syslems

Real-limeMunlproces_)rOperatlngSystems

A ProlotypeEnvironmentforReal-TimeSystems

_.J

National Aeronautics and Space Administration IIIII
- Langley Rmeerch Centlr

Parallel Architecture and Alaorithms
• Development of Parallel Programs for Distributed Memory

Multicomputers

-), Design of efficient parallel algorithms to run on a variety of parallel
architectures

•-> Develop algorithms on top of abstract parallel programming framework
(Chare Kernel)

• Multiprocessor Architectures

-> Develop, model and analyze high performance muitiprocessor
architectures that are fault tolerant and highly mission adaptive

-.> Refine, test and port methodology for modeling and analyzing the
performance of parallel processors under real workloads

• Advanced Compllatlon and ArchltectureTechnology

-> Focus on the architecture and compiler techniques required to close the
gap between peak performance and sustained performance of high
performance multiprocessor systems

• Resource Management for Parallel & Dlstrlbuted Systems

-> Develop more efficient algorithms for combinatorial searches on sequential
. and parallel computers __f

K. A. Smilh

566

ICLASS - March 20, 1992

Natimmd A_onautios and Speoe AdminbtrJimttangley _ Center -_

Parallel Architecture and Aloorithm_

• Parallel System Performance Analysis

e

e

-_ Software tool set, Pablo, that supportssource cede performance
instrumentation and graphical performance analysis
Focus of ICLASS student input-output performance optimization

Efflclent Executlon of Flne-Grslned Concurrent Programs
-> Focus on howto implement line-grained, object-opriented concurrent

programs to execute efficiently on a variety of parallel architectures,
from small-scale, shared-memory mutliprocessorsto fine-grained,
massively concurrent multicomputers

High-Performance Memory Systems for Advanced Multiprocessors

-> Research aims at improving speed of large-scale muitiprocessors
-> Focus of ICLASS student - memory hierarchy performance of the operating

system

K. A. $mirn

NadaonalAeronautics Im¢l Span Admmiltmt_e

" tangle,/Rmeerch CNIw

Reliable and Fault Tolerant ComDutino
I • Recovery in Dependable Parallel Archltectures

-) Develop new concepts in reliable memory management for dependable
operation of parallel architectures

• A Deslgn Environment for Fault Tolerant Systems

-_ Investigate the development of a highly instrumented simulation-based
CAD environment

-.> Environment allows a designer to intersctively evaluate the reliability and
performance characteristics of proposed designs during the design process

• Verlflcstlon of VHDL Dlgltal Systems

-) Development of System-level verificationtools capable of handling large
systems

-) Emphasis on early detection of design errors

• Dependability Validation of High Performance Systems

@ Improve memory management performance in object-oriented, dynamically
allocated, garbage collected virtual memory systems

J_..-> Evaluate reliabilityby fault simulation

K. A. 8milh

567

ICLASS - March 20, 1992

National Awonaut¢# end Spaoe Adminmtration
Langley Reeeemh Cent_

Software Enaineerino_ and Artificial Intelligence

• Functional Programming and Scientific Computing

-.> Address the problems of expressiveness and efficiency in functional
programming languages, emphasizing their use for sclantific computation

• Formalization of Code Re-Un Through Abstract Algorithms
-) Study form and use of new abstraction method, using data structure

Independent algorithm skeletons
• Three Dimensional Vision Systems

-) Computer vision systems capable of three-dimensional
interpretation of "fiat" video images

• Engineering Integrated CAD/CAM Systems for Reduced Cost

Manufacturing

-) Develop tools which improve interface between design and manufacturing

-.) Move more manufacturability information into the design phase

ij I
K.A. Smith

National Awonautcs and Space Admmistmtioh -_

- Langley Research Centw

Distributed Systems and Real-Time Systems
• Reliable, Distributed, Database Management Systems

Design a reliable, distributed database management system

• Multiprocezsor Operating Systems

-.), Design and implement of customizable operating systems for real-time and
high-performance muitiprocessor applications

• A Prototyplng Environment for Real-Time Systems

-_ Build the Prototyping Environment for Real-Time Systems (PERTS)
PERTS an environment for

- Evaluation of new design approaches

- Experimentation with alternative system building blocks

- Analysis and performance profiling of prototype real-time systems

K.A. S_dth

568

ICLASS - March 20, 1992

_ Nitional Awonautcs and Spaoe AdrrunBtmtlon

Lmngley Remmrch Center

_t

__ Transferred I

(/_LTechnolog ies I

/ --" _-10-10+ students u
& professional staff)

ONR, AFOSR, Industry

NASA ICLASS

(A few students)

(one student)

Year 0 1-3 4-6

K.A. Smith

NNional AeronautCs and Space Admmmtrldion

" Langley Reeeer_t Center

ICLASS Technolooy Transfer

DEPEND, Dependability Analysis Tool - IBM,Raytheon, Boeing

PERTS, Real-time PrototypingTool- Tri-Pacific (to market), IBM,
NASA Ames,NSWC

Pablo, Parallel System Performance - NASA GSFC, ARPA

Concert, Efficient Execution of Fine-Grained Concurrent Programs -
Caterpillar

TEACHER, Resource Management for Parallel and Distributed Systems -
NASA ARC

IMPACT, Compilation for Superscalar and MultiprocessorArchitectures -
HP Labs., Intel, Sun Labs.

A_Aa,,ka, AAAAAAAAA a,A AAAAAA A AAAAA_A A_AAAAAAAAAA

For more information contact: KathrynSmith, X41699kas@sunspot.larc.nasa.gov

K.A. Smilh

569

3 6' N95- 16480

Epistemology, Software Engineering, and Formal Methods

Abstract of Presentation

C. Michael Holloway

One of the most basic questions anyone can ask is,
"How do I know that what I think I know is true?" The

study of this question is called epistemology. Tradi-

tionally, epistemology has been considered to be of
legitimate interest only to philosophers, theologians,

and three-year-old-children, who respond to every

statement by asking, "Why?" Software engineers need
to be interested in the subject, however, because a lack

of sufficient understanding of epistemology contributes

to many of the current problems in the field.
Epistemology is a complex subject, one to which

many philosophers and theologians have devoted their
entire careers. The discussion here is necessarily brief

and incomplete; however, it should be sufficient to

demonstrate the critical importance of the subject to
software engineering.

To the fundamental question of how do we know

what is true, there are three basic answers: authority,

reason, and experience. An epistemology based on
authority states that truth is given to us by someone

more knowledgeable than ourselves. The two primary

variations of authority-based epistemologies are omni-

scient authority (the authority is God), and human

authority (the authority is a human expert).

An epistemology based on reason claims that what
is true is that which can be proven using the rules of

deductive logic. Finally, an epistemology based on

experience claims that what is true is that which can be
encountered through one or more of the senses.

Several different variations of experience-based

epistemoiogies exist. The two variations relevant to
this discussion are anecdotal experience and empirical

evidence. The first states that truth for any particular

individual or group of individuals is that which the

individual, or group, personally experiences. The sec-
ond states that truth is that which can be verified

through carefully controlled experiments.

The relative strengths of these epistemological

approaches are as follows. Omniscient authority pro-

vides absolute truth; if there is a God and He has spo-
ken on something, then what He says must, by

definition, be true. Reason yields conditional absolute

truth; ff the premises on which a valid deductive argu-
ment are known to be true, then the conclusion of the

argument must also be true.

Empirical evidence provides probable truth; if con-

trolled experiments are designed properly and repeated
enough times, then it is highly probable that the results

accurately describe reality. Anecdotal experience
yields possible truth; if something happened for one

person, it is possible it might happen to others also.

Finally, human authority provides opinion.

On which of these approaches to epistemology is

software engineering mostly based?
The software engineering literature is filled with

pronouncements about how software should be devel-

oped (e.g., "Object-oriented development is the best
way to obtain reusable software"). Rarely, if ever, are

these pronouncements augmented with either logical or

experimental evidence. Thus, one is forced to conclude
that much of software engineering is based on a combi-

nation of anecdotal experience and human authority.

That is, we know that a particular technique is good
because John Doe, who is an expert in the field, says

that it is good (human authority); John Doe knows that

it is good because it worked for him (anecdotal experi-
ence). This is a weak epistemological foundation on

which to base an entire discipline.

This current state should not be surprising; the

development of software engineering is following the

same pattern as the development of many other disci-

plines. Civil engineering, chemical engineering, aero-
nautical engineering, and others all had periods in

which they relied almost exclusively on anecdotal

experience and the subsequent authority of the

"experts". Often, it took major disasters before practi-
tioners in such fields began to investigate fully the
foundations on which their field was based.

To date, although there have been many, many
software problems, there have been no major disasters

that have been directly attributed to software. How-

ever, unless a sound epistemological foundation is

established for software engineering, disasters will
come one day. To avoid this, research is needed to

develop valid approaches to answering questions about

both software products (e.g., are these requirements

consistent?) and software processes (e.g., is method A
better than method B?).

The Assessment Technology Branch (ATB),

which is part of the Information and Electromagnetic

Technology Division, Research and Technology Group,

is currently investigating empirical methods to answer

process-type questions and logical methods to answer

product-type questions. The remainder of the presenta-
tion discusses the second of these two avenues of

research.

570

A team led by Ricky W. Butler has been studying

the discipline of formal methods for over 6 years.
Other civil-servants on the team are Jim L. Caldwell,

Victor A. Carrei_o, C. Michael Holloway, and Paul S.

Miner. Vigyan, Inc., Stanford Research Institute Inter-

national (SRI), Odyssey Research Associates (OR.A),

and Computational Logic, Incorporated (CLI) conduct
research under conU'act.

Formal methods is I the applied mathematics of

computer systems engineering 2. Formal methods aims

to be to software engineering what fluid dynamics is to

aeronautical engineering and what classical mechanics

is to civil engineering. The mathematics of formal

methods includes predicate calculus (first order logic),
recursive function theory, lambda calculus, program-

ruing language semantics, and discrete mathematics
(e.g., number theory, abstract algebra). To this mathe-
matical base, formal methods adds notions from pro-

gramming languages such as data types, module
sU'ucture, and generics.

There are many different types of formal methods

with various degrees of rigor. The following is a useful
classification of the possible degrees of rigor in the

application of formal methods:

• Level 0: No use of formal methods

• Level l: Formal specification (using mathematical

logic or a specification language with formal seman-
tics) of all or part of a system

• Level 2: Formal specification at two or more levels
of abstraction and paper-and-pencil proofs that the

detailed specification satisfies the abstract one

• Level 3: Like level 2, except paper-and-pencil

proofs are replaced by formal proofs checked by a

semi-automatic theorem prover.

Presently, a complete (level 3) verification of a large,

complex system is impractical; however, application of

formal methods to critical portions of a system is prac-
tical and useful.

The specification of a simple phone book provides

a suitable simple example of many of the basic ideas
and benefits of formal methods. Please see the presen-

tation visuals that follow this abstract for this example.

Because of the promise that formal methods offers,

a considerable amount of high-quality research is being
conducted or sponsored by ATB. This research

includes, but is not limited to, the following projects:

• Detailed design with complete level 3 verification of

the Reliable Computing Platform, which is a fault-

tolerant computing base able to recover from both

permanent and transient faults

• Design with level 2/3 verification of a transient fault-
tolerant clock synchronization circuit; this circuit has

also been fabricated, but the layout was done by
hand without formal verification

• in cooperation with SRI and Rockwell-Collins, level

3 specification and verification of the microcode of
the AAMP5 microprocessor

• In cooperation with ORA and Union Switch and Sig-

nal, level 3 specification and verification of a next-

generation railroad control system
• Under contract, ORA is working with Honeywell on

level 3 specification and verification of aircraft navi-

gation functions
• Under contract, Vigyan and SRI are working with

Loral, Johnson Space Center, and the Jet Propulsion

Laboratory on level 3 specification and verification

of some Space Shuttle functions
• Under contract, SRI is working with Allied-Signal

on level 3 specification and verification of important

algorithms for fault-tolerance

In addition to these, and other, projects, the branch

conducts periodic workshops on formal methods. Pre-
vious ones were held in 1990 and 1992; the next one is

planned for 1995. Also, an extensive collection of
information on the research is available through the

World Wide Web at the following Universal Resource
Locator.

http://shemesh.larc.nasa.gov/fm-top.html

Interested individuals are encouraged to explore this

collection.

A lot of ground has been covered in this presenta-

tion, but the most important point is simple:

Epistemology: It's important, learn about it
Software Engineering: It's immature, work on it

Formal Methods: It's promising, look for it

I. Justlike mathematics,formalmethodsshouldbe ureatedas a
singular,notplural,noun.

2. The ideas applyequally well to bothsoftwareand complex
hardwaredevices.

571

Epistemology
Software Engineerin

and
Formal Methods

g

C. Michael Holloway
A&.eea_ment Technology Branch

Information & Electromagnetic Technology DMsion
Re4march & Technology Group

Langley Research Center
National Aeronautics and Space Admin_ttation

United State_ Government

TIW Re_I ef P,,¢mpum_ In IJmRCR & O (Ju_ 16..16. t _4)

Introduction

• One of the most basic questions anyone can ask is

"How do I know that what I think I know is true?"

• The study of this question is called epistemology

• Traditionally, epistemology has been considered to be of
legitimate interest only to philosophers, theologians, and
three-year-old children

• At least one other group should be very interested in
epistemology - software engineers - because lack of
understanding in this area plagues the field

572

The Basics of Epistemology

• There are three basic answers to the question of how do we
know what is true

-- Authority: truth is given to us by a knowledgeable person

-- Reason: truth is what can be proven using the rules of
deductive logic

-- Experience: truth is what can be encountered through
one or more of the senses

• Anecdotal experience: truth is what an individual or a
group of individuals experiences personally

• Empirical evidence: truth is what can be verified
through carefully controlled experiments

Examples of Truth by Authority

• The Ten Commandments

(omniscient authority)

• 1-year-old, pointing to the family cat:
"Whatsthat?"

father: "Kitty"
(human authority)

573

Examples of Truth by Reason

• If that creature is a tove, then it is slithy

That creature is a tove

Therefore, that creature is slithy

• If the airplane was built by Boeing, then it is a jet

The airplane is not a jet

Therefore, the airplane was not built by Boeing

• X+ Y=7

3Y - 2X = 1

Therefore, X -- 4 and Y = 3

Examples of Truth by Anecdotal
Experience

• Smoking doesn't shorten your life because my
father smoked all his life and lived to be 95.

• Whenever I have the hiccups, I hold my breath
and count to 10 and they go away. Therefore,
holding your breath and counting to 10 cures
the hiccups.

• We used method M and had 40% fewer bugs in
testing• You should use method M, too.

574

Examples of Truth by Empirical
Evidence

• The dive-recovery flap for the P38 in World War
II developed through tests in Langley's 8-Foot
High Speed Tunnel

• 5,000 patients were given drug X. 5,000
patients were given no drugs at all• 4,998 of
the patients given drug X got better within 1
week. 3 of the patients given no drugs at all got
better within 1 week. Drug X helps•

Relative Strengths

• Omniscient Authority: absolute truth

• Reason: conditional absolute truth

• Empirical Evidence: probable truth

• Anecdotal Experience: possible truth

• Human Authority: opinion

575

How Does This Apply to
Software Engineering?

• The software engineering community is full of claims

"The best way to develop reusable software is to use object-oriented design."

"Programmers should never be allowed to test their own code."

"Getting control of the software process is the key - SEI's CMM is the way to do
this."

"We need more standards/"

"Much progress has been made in the last few years in improving the way we
develop software."

"GOTO's are harmful"

"CASE tools are the best way to improve software productivity."

• Many people accept these, or other similar, claims as being
true

The Fundamental Question

What is the

epistemological foundation

for accepting

these claims?

576

The Answer

• Logically sound arguments are rarely given

• Virtually no empirical evidence is cited

• Instead, software engineering is based almost entirely on a
combination of human authority and anecdotal experience

-- We know that technique C is good because Jane Doe,
who is a recognized authority in the field, says that it is
good (human authority)

-- Jane Doe knows that it is good because she used it on a
project once and got good results (anecdotal experience)

• This is a weak epistemological foundation, one on which no
legitimate claims of success can be based

Implications of This Epistemological
Weakness

• Until we get adequate evidence, we should be very
cautious in the claims we make and the standards we set

-- It is fine to say, "Method M seems to have improved our productivity, so you
might want to try it."

But it is dishonest to say, =If you want to improve your productivity, you must
use Method M."

-- =Company R used method F and found errors they don't think they would
have found using their old methods," is fine

=Method F finds en'ors that other methods do not find," is dishonest

• The software engineering community should be
investigating methods for obtaining strong (that is, logical or
empirical) evidence

577

Why Has More Not Been Done?

• The development of software engineering is following the
same pattern as the development of other disciplines

-- Civil engineering, chemical engineering, aeronautical engineering, etc. all
had periods in which they relied almost exclusively on anecdotal evidence

-- Often, it took major disasters to prompt changes

• It is hard

• It is expensive

• It is not glamorous

• Few people care: We haven't had a major disaster yet

Why Must More Be Done?

• Without adequate evidence, we are easily influenced by the
latest bandwagon that goes rumbling by

• Without adequate evidence, we may well "cast-in-concrete"
something that ought not even be "cast-in-mud"

• Without adequate evidence, the following two statements
are equally as meaningless:

-- You shall use method M in developing your software

-- 'Twas brillig by the sfithy tove

• Without adequate evidence, disasters are inevitable

578

Towards Establishing a Valid
Epistemological Foundation

• Recognize the fundamental need for such a foundation

• Understand the different approaches needed for process
and product

-- Process questions (e.g., Is method A better than method
B_ need to be answered empirically

-- Product questions (e.g., Are my requirements
consistent?) need to be answered by an appropriate
combination of logical and empirical methods

• Refuse to accept claims based on insufficient evidence

Current Research at LaRC

• Kelly Hayhurst (IETD/ATB) is leading an effort to develop
an empirical evaluation of a particular approach to IV & V

For more information, contact Kelly

Email: k.j.hayhurst@LaRC.NASA.GOV

Phone: 46215

• The formal methods team led by Ricky Butler (IETD/ATB) is
investigating logical methods for answering product-type
questions

-- Other team members are Jim Caldwell, Victor Carre_o,
Michael Holloway, and Paul Miner

-- Remainder of talk concerns this work

579

Further Reading on Epistemology

• If you are interested in more information on epistemology, I
recommend you start with the following two books:

-- Thales to Dewey, by Gordon H. Clark, 2nd edition, 1989,
ISBN 0-940931-26-5

-- The Philosophy of Science, by Gordon H. Clark, 2nd
edition, 1987, ISBN 0-940931-18-4

• These two books contain pointers to most of the important
philosophical works throughout the ages

Singular or Plural?

• Which of the following is correct?

Formal methods is the applied mathematics ...

OR

Formal methods are the applied mathematics ...

• Answer depends on the writer or speaker

• I will tend to use "formal methods" as singular

580

What is Formal Methods?

• Formal methods is the applied mathematics of computer
systems engineering

• The mathematics of formal methods includes:

-- predicate calculus (1st order logic)

-- recursive function theory

-- lambda calculus

-- programming language semantics

-- discrete mathematics: number theory, abstract algebra,
etc.

What is Formal Methods?
(continued)

System Designed

Bridge

Airframe

Nuclear Reactor

Digital Avionics
System

Engineering

Civil

Aeronautical

Nuclear

Software

Theory

Classical Mechanics

Fluid Dynamics

Quantum Mechanics

Formal Methods

581

Classical vs Computer Systems

Classical Systems
illllll

continuous state space

'"smooth transitions "
i ii i

finict:t_g & interpolation

mathematical modeling
i .lllllll 11

build to withstand additional
stress

predictable

Computer Systems

discrete state space

abrupt transitions
i illl ii i i illllll

finite testin.g inadequate,
interpolation unsound

i

prototyping & testing
iii

build to specific
assumptions

lllLllll i ill m,i

surprising
ii ii ii iiiii Bii

What Makes a Technique a
Formal Method?

• Formal method = logic + programming language concepts

• Important attributes:

-- logic based

-- programming language concepts (e.g., data types,
module structure, generics)

-- fully and formally specified semantics

-- should be able to express what is done without saying
how it is done (i.e., non-procedural)

-- supports the building of useful tools for analysis

582

Levels of Rigor of Formal Methods

• Level O: No use of formal methods

Level 1: Formal specification (using mathematical logic or
a specification language with formal semantics) of all or
part of a system

• Level 2:. Formal specification at two or more levels of
abstraction and paper-and-pencil proofs that the detailed
specification satisfies the abstract one

• Level 3: Like level 2, except paper-and-pencil proofs are
replaced by formal proofs checked by a semi-automatic
theorem prover

Extent of Application

• Formal Methods is not an all-or-nothing approach

• Complete formal verification of a large complex system is
impractical at this time

JFormal Requirements I

proof

[High Level Design J

proof

[DetailedDesign J

proof

1 Implementation J

• Application of formal methods to critical portions of a
system is practical and useful

583

Extent of Application (example)

• In the Reliable Computing Platform, we use formal methods
to establish:

ENOUGH WORKING HARDWARE

PROPER_OPERATION

• We use reliability analysis to calculate:

Probability[ENOUGH_WORKING_HARDWARE]

• Reliability analysis relies on physical testing of devices to
establish some important parameters

Level 1 Example: Phone Book
English Requirements

• The phone book shall store the phone numbers
of a city

• Given a name, there shall be a way to retrieve
an associated phone number

• It shall be possible to add and delete entries
from the phone book

584

Level 1 Example: Phone Book
Choosing a Specification Approach

• How do we represent the phone book mathematically?

1. A set of ordered pairs (name, number). Adding and
deleting entries is by set addition and deletion.

2. A function whose domain is all possible names and
range is all phone numbers. Adding and deleting entries
is by modification of function values.

3. A function whose domain is only names currently in the
phone book and range is phone numbers. Adding and
deleting entries is by modification of the function domain
and values. (Z style)

• We choose to use approach 2

Level 1 Example: Phone Book
Specifying the Book

• Using traditional mathematical notation, we would write:

Let N -- set of names

I, - set of phone numbers

book: N --> P

• To indicate that we do not have a phone number for all
possible names, but only for names of real people, we
decide to use a special number: p _ P

• An empty phone book is specified as follows:

emptybook. N --) P

emptybook(nm) -- p

585

Level 1 Example: Phone Book
Accessing an Entry

Let _r -- set of names

P - set of phone numbers

book. N .--) P

s -- set of functions: N _ P

FindPhone: B X N-_ P

FindPhone (bk, name) = bk (name)

Note that FindPhone is a higher-order function, because its
first argument is a function

Level 1 Example: Phone Book
Adding/Deleting an Entry

Let N = set of names

P = set of phone numbers

book" N -_ P

pep

s = set of functions: _r -_ P

AddPhone: B x N x P -_ B

bk(x) ifz_ name

AddPh°ne(bk'name'num)(z)=Lnum ifx= name

DelPhone : B x N -_ B

bk(x) ifz name

DelPhone (bk, name) (z) = _p ifz = name

586

Level 1 Example: Phone Book
Complete Specification

Let N = set of names
P = set of phone numbers
book" N -_ P

pEP

s = set of functions: _ -_ P

emptybook. N -_ P

emptybook (nm) = p

FindPhone: B x N _ P

FindPhone(bk, name) = bk(name)

AddPhone. S x N x P -_ S _bk (x) ifx _ name
tw

AddPhone(bk, name,num) (z) _num if x= name

DelPhone : B × N -_ B _bk (x) if x _ name

DelPhone(bk, name) (x)
=_p if x=name
L,

Level 2 Example: Phone Book
Putative Theorems

A putative theorem is a theorem that we know must be true if
we have formulated the specification correctly.

Lemma putative 1:

FindPhone (AddPhone (bk, name, hum), name) =num

Proof:

FindPhone (AddPhone (bk, name, num) ,name) =num

AddPhone (bk, name, hum) (name) =num

hum = nMm

Q.E.D.

587

Level 2 Example: Phone Book
Putative Theorems (continued)

Lemma putative2: bk (name) - p D

DelPhone (AddPhone (bk ,name, num) ,name)

Lemma putative 3: (Vitnam_ ¢ name) A

= bk

book = AddPhone(bk, name, num) ^

boo_ = AddPhone(book, namq, nun_) ^

boo_- AddPhone(boo_, nam_, hum 2) ^

boo_ = AddPhone(book . , name., num.)

FindPhone (book , name) = num

Formal methods can establish that a property holds even in
the presence of an arbitrary number of operations; testing
can never establish this.

Level 3 Example: Phone Book
PVS Specification

phonebook: THEORY

BEGIN

name8 : TYPE

name0 : _s

ph_number = TYPE

p_O z ph__number

book: TYPE- [name8 -> ph_numbez]

name: VAR names

emptybook(name): ph_number - p_0

bk: VAR book

FindPhone(bk, name)= ph__numbez - bk(name)

n,,-= VUph_nunber

AddPhone(bk, name, nus)= book - bk WITH [name =- hum]

DelPhone(bk, name)= book - bk WITH [name :- p_0]

putatlve_1: LEMMA FindPhone(AddPhone(bk, name,num),name) -num

putative_2t LEMMA bk(name) - p_0 IMPLIES

DelPhone(AddPhone(bk,name,num),name) - bk

END phonebook

588

Level 3 Example: Phone Book
Proof Using PVS

putative_l :

I
[I] (FORALL (bk: book), (nm: names),(num, ph_number):

FindPhone(AdaPhone(bk, nm, num), nm) -num)

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

putative I =

I
[1] FindPhone(AddPhone(bkll, nmll, numll), nmll) - numll

Rule? (expand _FindPhone")

Level 3 Example: Phone Book
Proof Using PVS (continued)

Rule? (expand "FindPhone")

Expanding the definition of FindPhone,this simplifies to:

putative 1 :

I
[I] AddPhone(bkll, nmll, numll)(nmll) - numll

Rule? (expand "AddPhone")

Expanding the definition of AddPhone,this simplifies to:

putative_1 :

I
[1 } TRUE

which is trivially true.

Q.E.D.

Run time - 1.02 secs.

Real time - 20.00 secs.

589

Level 1 Example; Phone Book
Deficiencies in the Specification

• Our specification does not rule out the possibility of
someone having a "p" phone number

• We have not allowed multiple phone numbers per single
name

• Our specification does not say anything about whether
there should be a warning if a deletion is requested on
name that is not in the phone book

How do we remedy these deficiencies ?

Level 1 Example: Phone Book
Overcoming Deficiencies 1 & 2

Let N --- set of names
P -- set of phone numbers
book" N -_ 2 p

B = set of functions: N --) 2P

emptybook (name) =-

FindPhone: B x N-_ 2 p

FindPhone (bk, name) = bk (name)

AddPhone. B × N x P _ B _bk(x) ifx_name

AUdPhone (bk, name, num) (x) - _ bk (name) u [num }

if x= name

DelPhone. B × N -_ B _bk(z) ifz_name

DelPhone(bk, name) (x) =_ ifz= name

590

Level 1 Example: Phone Book
An Additional Deficiency

Notice that the function DelPhone deletes all of the phone
numbers associated with a name

There is no way to remove just one of the phone numbers
that is associated with a given name

The original requirements did not address this situation; to
address it, we must define an additional function:

DelPhoneNumt B x N x P _ B

DelPhoneNum (bk, name, hum) (z) =
bk(x) if x_= name
bk (name) \{num}

if z = name

Example: Phone Book
Revised Requirements

Original Requirements

• The phone book shall store the phone numbers of a city

• Given a name, there shall be a way to retrieve an associated phone number

• It shall be possible to add and delete entries from the phone book

Revised ReQuirements

• For each name in the city, a set of phone numbers shall be stored

• Given a name, there shall be a way to retdeve the associated phone numbers

• It shall be possible to add a new name and phone number

• It shall be possible to add new phone numbers to an existing name

• It shall be possible to delete a name from the phone book

• It shall be possible to delete one of the phone numbers associated with a name

• A warning need not be given for a requested deletion of a name not in the city

• A warning need not be given for a requested deletion of a non-existent phone
number

591

Example: Phone Book
Observations

• Our specification is abstract. The functions are defined
over infinite domains.

• In translating the requirements from English into a more
formal notation, many things that were left out of the
English were explicitly enumerated.

• The formal process exposed ambiguities and deficiencies
in the requirements. E.g., we had to choose between

book: N-_ P

book: N --_ 2 p

• Putative theorem proving and scrutiny revealed deficiencies
in the formal specification

Example: Phone Book
More Observations

• There are many different ways to formally specify

• No matter what representation you chose you are making
some decisions that bias the implementation

• The goal is to minimize this bias and yet be complete

• The process of formalizing the requirements can reveal
problems and deficiencies and lead to a better English
requirements document also

• The formal specification process is similar to the
mathematical modeling process of engineering disciplines

592

Formal Methods Research at LaRC

Detailed design with complete level 3 verification of a
Reliable Computing Platform

Design with level 2/3 verification of a transient fault-tolerant
clock synchronization circuit and fabrication of the circuit

With SRI International & Rockwell-Collins, level 3
specification and verification of the microcode of the
AAMP5 microprocessor

With Odyssey Research Associates & Union Switch and
Signal, level 3 specification and verification of next-
generation railroad control system

ORA & Honeywell, level 3 specification and verification of
aircraft navigation functions

Formal Methods Research at LaRC
(continued)

Vigyan & SRI working with Loral, JSC, JPL on level 3
specification and verification of some Space Shuttle
functions

• SRI working with Allied-Signal on level 3 specification and
verification of important algorithms for fault-tolerance

• Conduct periodic workshops on formal methods; previous
ones in 1990, 1992, with next one planned for 1995

• Maintain extensive collection of information on the

research, accessible through the World Wide Web at URL

http://shemesh.larc.nasa.gov/fm-top.html

593

594

O_N._L PAG_ I_

O_ Pooll QU_ITY

Epistemology
It's Important, Learn About It

Software Engineering
It's Immature, Work On It

Formal Methods
It's Promising, Look For It

595

REPORT DOCUMENTATION PAGE Fom,_
OMS No. 0704-0188

1._mEm;¥USEONLY(L_w _ 2. REPORTD_TE _. REPORTTYPE_ OATESCOVERSO

October 1994 Conference Publication
4. "m'LEANDIUBlITI.E

The Role of Computers in Research and Development at Langley
Research Center

L _nHo_l)
Carol D. W,)seman, Compiler

7. _,J_omm_eO_m_UCZA_ON._.tS) _) _U)ORESS(EB)
NASA LangleyResearch Center
Hampton, VA 23681-0001

L _SOmN_ / uoNrron._ A_J_CVN_UE(S)*NO_u)oREs_ss)
National Aeronauticsand Space Administration
Washington,DC 20546-0001

11. 81AI'PLEMENTARY

8. FUNDING NUMBERS

WU 505-90-53

& PERFORMING ORGANIZATION
REPORT NUMBER

I
tl0. SPONSORING I MONITORING

AGENCYREPORTNUMBER

NASA CP-10159

1_. _o_m,T.;_/AVACASCmr STATEMENT

Unclassified - Unlimited

Subject Category 62

121=. DISTRIBUTION COOE

a.A-_r_m'r(uaxknun_

This document is a compilationof the presentations given at the workshop,"The Role of Computersin
Research andDevelopment at Langley Research Center," on June 15-16, 1994. The objectivesof the
workshop sponsoredby the Computer SystemsTechnical Committee were to informthe LaRC community of the
current softwaresystemand software practices beingused at LaRC. To meet these objectives,there were talks
presentedby members of the Langley community, Naval Sudace Warfare Center, Old Dominion University,and
Hampton University.

The workshop was organized in 10 sessionsas follows: Software Engineering;Software Engineering
Standards, Methods, and CASE Tools; Solutions of Equations;Automatic Differentiation;Mosaic andthe World
Wide Web; Graphicsand Image Processing;System Design Integration;CAE Tools; Languages; and Advanced
Topics.

14. SUBJECTTERMS

Software Engineering

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

illL SECURITY CLASSIFiCATiON
OF TH_ PAGE

Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

16. NUMBER OF: PAGER

604

16. PRICE COOE

A99

20. UMITATiON OF ABSTRACT

S,,,,d,rd_ m (_,v_:_
pmscrlbecl W N_Sl 8IcL Z_-ll
2M-10_

