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Parameterized Dataflow Scenarios

Mladen Skelin∗, Marc Geilen†, Francky Catthoor‡, Sverre Hendseth∗

Abstract

Although well-suited for capturing concurrency in streaming applications, purely dataflow-
based models of computation are lacking in expressing intricate control requirements that many
modern streaming applications have. Consequently, a number of modeling approaches com-
bining dataflow and finite-state machines has been proposed. However, these FSM/dataflow
hybrids struggle with capturing the fine-grained data-dependent dynamics of modern streaming
applications.

In this article, we enrich the set of such FSM/dataflow hybrids with a novel formalism
that uses parameterized dataflow as the concurrency model. We call the model FSM-based
parameterized scenario-aware dataflow (PFSM-SADF). Through the use of parameterized da-
taflow, the formalism can capture the application fine-grained data-dependent dynamics while
the enveloping FSM enables the capturing of the application control flow. We demonstrate the
application of our modeling framework to synchronous dataflow (SDF), for which we propose a
worst-case performance analysis framework based on the Max-plus algebraic semantics of SDF
and the theory of Max-plus automata. We show that using the novel hybrid one can give tighter
bounds on worst-case performance metrics such as throughput and latency for streaming appli-
cations exposing fine-grained dynamic behavior embedded inside a control-flow structure then
by using the existing hybrids. We evaluate our approach on a realistic case-study from the
multimedia domain.

1 Introduction and motivation

Dataflow models of computation (MoC) are widely used for modeling streaming applications typical
examples of which can be found in the multimedia and signal processing domains. This is thanks to
their simple graphical representation, compactness and the ability to expose parallelism contained
in the considered application. Furthermore, the use of dataflow in a design process encourages good
software engineering practices as modularity and code reuse. All the aforementioned, makes dataflow
a natural design tool choice for streaming application designers.

A graphical representation of a dataflow MoC is a dataflow graph. In dataflow graphs, nodes are
called actors, while edges are called channels. Actors represent computational kernels, while channels
capture the flow of streams of data values between actors. These data values are called tokens.
Tokens found in the graph before its execution commences form the set of initial tokens. Actors
communicate by firing. Firing results in tokens being consumed from and produced in channels. We
refer to token production and consumption numbers as rates. In timed dataflow, actor firing takes
a finite amount of time called the actor firing delay.

With regard to expressiveness [37], dataflow MoCs can be roughly divided into two categories:
static dataflow MoCs [24] and dynamic dataflow MoCs [7].

Most well-known examples of static dataflow MoCs are synchronous dataflow (SDF) [28], homo-
geneous SDF (HSDF), scalable SDF (SSDF) [33] and cyclo-static dataflow (CSDF) [8]. SDF is the
most widely used dataflow MoC in general. In SDF, rates are constant and known at compile-time.
HDF is a restriction of SDF composed of actors that only consume and produce one token per firing.
SSDF is an extension of SDF where each actor may consume or produce any integer multiple of the
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predefined rate in one firing. This feature leads to better utilization of a DSP’s arithmetic pipeline
in synthesized implementations as actors operate on tuples of data samples. In CSDF, rates can
vary between actor firings as long as the variation complies to a certain type of a periodic pattern.

Static dataflow MoCs, due to their restricted semantics provide predictability, enable static-
scheduling and are amenable to powerful optimization techniques. Nevertheless, modern streaming
applications are becoming increasingly dynamic. The increasing level of application dynamics ham-
pers the use of static dataflow MoCs in design, analysis and implementation of contemporary em-
bedded systems. The latter resulted in the need for expressive power well above the one obtainable
from static dataflow models. This need gave rise to the class of dataflow MoCs we call dynamic
dataflow MoCs. These models are able to capture dynamic applications, i.e. applications whose
computation and communication requirements vary over time. With dynamic dataflow MoCs, actor
rates vary in ways that are not entirely predictable at compile-time [7].

With regard to the concept used to represent the dataflow dynamics, the class of dynamic
dataflow MoCs can be further refined into two subclasses [7].

The first subclass is composed out of dataflow MoCs that are developed around an interacting
combination of finite-state machines (FSM) and dataflow graphs. Models such as heterochronous
dataflow (HDF) [22] and FSM-based scenario-aware dataflow (FSM-SADF) [19] are well-known
examples of such FSM/dataflow hybrids where an FSM is used to decouple control from concurrency.
We bring further examples of such formalisms in Section 2.

In the second subclass, dataflow dynamics are represented by alternative means [7]. In particular,
the second subclass is formed by MoCs able to express complex data-dependent application dynamics
without nourishing a particular state structure. Examples of such models are boolean dataflow
(BDF) [10], dynamic dataflow (DDF) [10] and parameterized dataflow [7]. In BDF and DDF, data
rates depend on the values of certain input tokens that are determined at run-time. In parameterized
dataflow, the dataflow dynamics is represented by varying rates too, but by the use of dynamic
parameters.

The dichotomy between the two subclasses lies in the notion of state. The MoCs of the first
subclass maintain the notion of state, while the MoCs belonging to the second subclass do not. The
need for the first subclass is justified by the existence of streaming applications with both intricate
control requirements and concurrency [22]. The use of FSMs in expressing control requirements is
justified by their finite nature and strong formal properties. The need for the second subclass stems
from the fact that application’s computation and communication requirements may depend on input
data in very complex ways.

However, there exist many applications that both have intricate control requirements and are
heavily input-data dependent in the sense that they may exhibit thousands or millions of behaviors
depending solely on the characteristics of the input signal [25]. An example of such an application is
shown in Fig. 1. The application is composed out of three modules: a control module and two data
processing modules f1 and f2. The C specification of the control module is shown in Fig. 1a, while
its FSM specification is shown in Fig. 1c. The control structure is simple and involves transitions
between states ’A’ and ’B’ depending on the current state and the value of the control input in.
Within a state, the execution of a data processing module is invoked. C specification of one of the
data modules, namely f1 is shown in Fig. 1b. The module consists of two nested loops with bounds
g and h. The loop bound values are input data-dependent as computed in the rx data submodule.
The actual implementation of the rx data submodule involves complex input data processing. The
derived bounds depend on some characteristics of the input signal. Assume that bound g can be
assigned with a value originating from the interval [0,m/2] while h can be assigned with a value
from [0,m/2]. It this case, module f1 will attain as many behaviors as there are integer points in the
rational 2-polytope Pm,n given by the set of constraints {0 ≤ m/2, 0 ≤ n/2}. With n = 4500 and
m = 2001 the specification of Fig. 1b abstracts 2, 252, 126 system behaviors [11]. Therefore, we can
say that module f1 and consequently the application as a whole expose fine-grained data-dependent
dynamics recapitulated within the superordinate control structure. The data-dependent behavior of
module f1 can be succinctly expressed using the parameterized dataflow structure of Fig. 1d where
loop bounds are abstracted into graph rates without the need for enumeration of all the rational
2-polytope Pm,n.
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extern void f1(void);
extern void f2(void);
extern bool input(void);
void main(void){

char state = 'A'; bool in;
While(1){

in = input(); 
switch(state){

case 'A':
f1(); state = in ? 'A' : 'B'; 
break;

case 'B':
f2(); state = 'A'; break;

default:
break;

} } }

(a) C specification of the control module.

extern int rx_data(uint*,uint*)
extern int pre_process(int, uint);
extern int process(int, uint);
extern void tx_data(int);

void f1(void){
uint g, h;
int res1, res2, res3;
res1 = rx_data(&g, &h);
for(uint i=0; i < g; i++){

res2 = pre_process(res1, i);
for(uint j=0; j < h; j++){

res3 = process(res2, j);
tx_data(res3);

} }    }

(b) C specification of f 1 module.

'A' 'B'

(c) FSM specification of the control module.

pre_process
g

rx_data process tx_datah

(d) Dataflow specification of f 1 module.

Figure 1: Motivational example.

For this type of dynamic applications, none of the MoCs belonging the two dynamic dataflow
subclasses provide a succinct representation. The models from the first subclass can express the con-
trol structure of Fig. 1a through the notion of state, but cannot express fine-grained data-dependent
dynamics of the subordinate data processing module of Fig. 1b. The models from the second sub-
class can express the latter, but not the former, i.e. their design interface cannot expose the control
structure directly to the programmer [7]. Therefore, we argue that a combination of the two is
needed.

In this article, we investigate an interacting combination of FSMs and parameterized dataflow.
We use FSMs to capture the application control logic thanks to their finiteness, strong formal
properties and an intuitive state abstraction that serves well for modeling control dominated parts
of the application. We use parameterized dataflow to express fine-grained data-dependent dynamics
of data-dominated parts of the application thanks to its ability to combine dynamic parameters and
run-time adaptation of parameters in a structured way.

We base the novel model on the concept of scenarios adopted from [19]. Consequently, we model
the execution of an application as a sequence of modes called scenarios, each of which is repre-
sented by a parameterized dataflow structure while the scenario occurrence patterns are given by
the superordinate FSM. We refer to the novel model as FSM-based parameterized scenario-aware
dataflow (PFSM-SADF). We demonstrate the application of PFSM-SADF concept to SDF as it is
arguably the most used, mature and stable dataflow formalism. We refer to this specialization of
PFSM-SADF as SDF-based PFSM-SADF (SDF-PFSM-SADF) for which we develop novel para-
metric worst-case performance analysis techniques based on the Max-plus algebraic [1] semantics of
SDF and the theory of Max-plus automata [16].

The remainder of this paper is structured as follows. Section 2 gives an overview of existing
parameterized dataflow models and FSM/dataflow hybrids. Section 3 introduces the preliminary
concepts the crucial one being the Max-plus algebraic semantics of SDF and FSM-SADF as it will be
of vital importance in developing the Max-plus semantics of SDF-PFSM-SADF. Section 4 presents
our parameterized dataflow modeling framework. Section 5 presents the novel PFSM-SADF model.
Section 6 defines the SDF-based specialization of PFSM-SADF and presents the Max-plus algebraic
semantics of its constituents, i.e. SDF-based parameterized dataflow graphs (SDF-PDFG). Section 7
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presents the Max-plus algebraic semantics and worst-case performance analysis techniques for SDF-
PFSM-SADF. Section 8 demonstrates the application of our modeling and analysis framework using
a VC-1 decoder case study. Section 9 concludes while setting directions to future work.

2 Related work

Parameterized dataflow as a meta-modeling technique was introduced by [6] and developed in the
context of SDF yielding parameterized SDF (PSDF). PSDF specifications can be abstracted into ac-
tors in higher PSDF levels, which enables hierarchical integration. In PSDF, it is of vital importance,
that the interface dataflow of a hierarchical actor remains unchanged throughout any iteration of its
hierarchical parent actor. An iteration of a dataflow graph is a minimal nonempty set of actor firings
that has no net-effect on the token distribution of the graph. This way, one maintains a level of
predictability and permits efficient quasi-static scheduling at least for a class of PSDF specifications
that satisfy certain technical constraints regarding the number of initial tokens placed on feedback
channels.

Schedulable parametric dataflow (SPDF) introduced in [15], is a MoC closely related to PSDF.
SPDF explicitly define requirements that a parameterized dataflow specification must satisfy so that
questions about liveness (deadlock freedom), boundedness and schedulability can be answered at
compile time. In contrast to SPDF, PSDF employs run-time mechanisms that check the consistency
and bounded memory consistency of a specification. Boolean parametric dataflow (BPDF) [3] is a
syntactical extension of SDF developed to elegantly treat cases where actor port rates may be zero.
This is achieved by the introduction of conditional channels annotated with boolean expression.
Depending on the value the expression attains at run-time, channel is to be activated or deactivated.
Deactivation infers that no consumption or production can take place at that channel.

Variable-rate dataflow (VRDF) of [42] introduces facilities for frequent changes of actor port rates
by means of parametrization. However, VRDF defines strong structural constraints that must be
satisfied for achieving boundedness. More precisely, every production of p tokens must be coupled
by exactly one consumption of p tokens. In addition, these pairs must be well-parenthesized in
the graph. VPDF [41] is a CSDF-inspired generalization of VRDF where actors operate through
sequences of phases and in each phase, the number of actor firings is parameterized along with the
rates (or token transfer quantas in the parlance of [41]). The distinction is made to model loops
for which no upper bound on their number of iterations is known. In contrast to VRDF, rates are
allowed to have zero value and VPDF can model conditional execution.

Parameterized and interfaced dataflow meta-model or shortly PiMM [14] is obtained by enriching
the meta-modeling techniques of [6] with the notion of interfaces as introduced in interface based
synchronous dataflow (IBSDF) [31]. This ways, PiMM inherits the well-establish reconfiguration
concepts of [6], while through the use of interfaces of IBSDF it defines notions to enable design
reuse, i.e. the design of independent graphs that can be instantiated in an entirely different design
layout.

To summarize, various flavour of parameterized dataflow models have been introduced as to
support the growing need for efficient modeling tools that can capture both coarse and fine-grained
reconfiguration phenomena present in modern streaming application. However, in their pure form,
they are all inadequate for abstracting application control requirements as they do not depart from
the dataflow framework and consequently do not provide interfaces to present application control
requirements directly to the programmer. In addition, all of the models described expect VPDF
and VRDF support no notion of time, i.e. they are untimed and therefore not accompanied by
techniques for the analysis of their temporal behavior.

Next, we list models that do foster provision for expressing intricate application control logic
directly to the programmer by defining precise semantics for integration of FSMs and dataflow.

Article [22] advocates the use of a combination of hierarchical state machines and various con-
current MoCs to decouple control from concurrency. The approach is referred to as *charts (pro-
nounced starcharts). When SDF is used in conjunction with FSMs, the resulting model is called
heterochronous dataflow (HDF). Two structural patterns are viable. First, an FSM can refine an
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SDF actor. In this case, the FSM must obey the SDF semantics externally. Second, an SDF can be
used to refine an FSM state. Then, SDF actor type signature (the number of tokens consumed and
produced on each input and output) changes can occur only at iteration boundaries. This is assured
by not allowing the FSM components to change state until the last actor firing within an iteration
had completed.

Scenario-aware dataflow (SADF) MoC introduced in [38] enables modeling and analysis of dy-
namic systems by allowing actors to operate in different modes or scenarios across firings. In different
scenarios, actors have different execution times and rates. SADF uses a stochastic approach to model
scenario occurrence patterns. The operational semantics is defined in terms of a labeled transition
system that can be analyzed to obtain both long-run average and worst-case performance metrics.
SADF can be considered more expressive than HDF as it allows rates to change within an iteration.

FSM-SADF [19] is a model that is from the expressiveness point of view equivalent to HDF [37].
In HDF, each FSM state is mode-refined by a submodel, where each refinement has different rates
while in FSM-SADF each FSM state is associated with an SDF model of a scenario the state
corresponds to. Unlike HDF, which disallows for pipelined execution (it enforces purely sequential
schedules) in FSM-SADF multiple scenarios can be active at the same time. FSM-SADF is a
restriction of SADF in the sense that with FSM-SADF, scenarios can change only between complete
iterations of SDF models of the respective scenarios, while with SADF, scenario changes are allowed
within an iteration of the graph. Furthermore, the Markov automata of SADF is restricted to a
(nondeterministic) FSM is FSM-SADF. On the other hand, FSM-SADF extends SADF because it
allows auto-concurrent actor firings. The overall reduction in expressive power compared to SADF
is advantageous from the analysis perspective. In particular, in FSM-SADF a clearer separation
between nondeterministic control flow and determinate dataflow computations can be made and
thus the associated max-plus spectral analysis-based algorithms for determining performance metrics
avoid the state space explosion problems that the original SADF analysis is prone to.

The DF* (pronounced “DFstar”) modeling framework of [13] is another dataflow MoC in the
family of FSM/dataflow hybrids. A DF* graph is a network of blocks where each block consists of a
set of code segments and a block controller. Each code segment specifies an alternative behavior of
the block. The block controller is captured by an nondeterministic FSM. DF* is similar to HDF and
consequently to FSM-SADF in the sense that code segments correspond to actor type signature.

Similar to other FSM/dataflow hybrids, the FunState MoC introduced in [39] defines precise
semantics for separating dataflow from control in terms of functions driven by state machines.

Article [30] adds control flow provisions to bounded dynamic dataflow (BDDF) introduced in
the same work. BDDF is an extension of SSDF allowing varying port rates with a requirement that
the upper bound of each data rate must be specified. The control flow is specified as an FSM. Each
state is defined by a network of blocks and it is executed repeatedly until a combination of multiple
events causes it to be stopped in a non-preemptive manner and another state entered.

The modeling and simulation framework called El Greco [9] provides facilities to dynamically
change specification parameters. It supports specifications given as combinations of dataflow graphs
and hierarchical FSMs. Data-dependant dynamics can be captured using the limited support for
parameterized data rates. However, the framework takes a more implementation oriented approach
and is tailored for rapid simulation-based algorithm exploration. Therefore, it is not clear from [9]
how static analysis is performed in the presence of parameters.

All the aforementioned hybrids are inadequate for representing fine-grained dataflow dynamics
of data-dominated application modules as the number of behaviors they can express is typically
proportional to the number of FSM states. Furthermore, all of them except SADF and FSM-SADF
are untimed and thus not accompanied by corresponding temporal behavior analysis techniques.

3 Preliminaries

3.1 Max-plus algebra

We briefly introduce basic Max-plus algebra notation. Define Rmax = R ∪ {−∞}, where R is the
set of real numbers. Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ Rmax. For a ∈ Rmax,
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(a) Example SDFG.

while(1){
fire A0;
repeat (2) times {

fire A1; 
}
repeat (3) times {

fire A1; 
}
repeat (3) times {

fire A3; 
}
repeat (2) times {

fire A4; 
}
fire A5;

}

(b) Schedule of the
SDFG.

Figure 2: SDF.

−∞ ⊕ a = a ⊕ −∞ = a and a ⊗ −∞ = −∞ ⊗ a = −∞, i.e. −∞ is the zero element of the ⊕
operation. By Max-plus algebra we understand the analogue of linear algebra developed for the pair
of operations (⊕,⊗) extended to matrices and vectors and denoted by Rmax = {Rmax,⊕,⊗}. The
set of n dimensional Max-plus vectors is denoted Rnmax, while Rn×nmax denotes the set of n×n Max-plus
matrices. The sum of matrices A, B ∈ Rn×nmax , denoted by A⊕B is defined by [A⊕B]ij = aij ⊕ bij
while the matrix product A⊗B is defined by [A⊗B]ij =

n⊕
k=1

aik⊗bkj . For a vector a and scalar c we

use c⊗a or a⊗c to denote a vector with entries identical to entries of a with c added to each of them,

i.e. c ⊗ a = a ⊗ c = [ai + c]. For a vector a, ||a|| denotes the vector norm, defined as ||a|| =
n⊕
i=1

ai.

For a vector a with ||a|| > −∞, we use anorm to denote a − ||a|| = [ai − ||a||], i.e. the normalized
vector a. With A ∈ Rn×nmax and c ∈ R, we use denotations A⊗ c or c⊗A for [aij + c]. The ⊗ symbol
in the exponent indicates a matrix power in Max-plus algebra. For A ∈ Rn×nmax , A⊗k =

⊗
k

A. For

scalars c and α, c⊗α = α · c.

3.2 Synchronous dataflow

This article investigates scenarios of parameterized dataflow graphs (PDFGs) later applied to SDF.
Therefore, it is first needed to introduce the basic concepts of SDF. SDF as introduced in [28] is
the most widely used dataflow MoC. Thanks to its static nature it is compile-time analyzable and
characterized by large optimization potential. Fig. 2a shows an example of an SDF graph (SDFG)
with six actors, while Fig. 2b specifies the graph’s static schedule. Actors are depicted by rectangles
while the production and consumption rates are annotated next to channel ends. If the value is
omitted, a rate value of 1 is assumed. In SDF all input channels must contain enough tokens for
the actor to fire. Every firing results in consumption and production of a fixed amount of tokens
that is known at compile-time. Actor firing delays are denoted alongside actors names. Because of
monotonic temporal behavior of SDF [18], one typically uses the worst-case execution times of code
blocks that implement the actor’s functionality for the actor firing delay. These can be obtained
using state-of-the-art static timing analysis tools [43]. Existence of feedback loops in SDFGs will
cause deadlock unless initial tokens (black dots in the figure) are appropriately placed on graph
channels forming feedback loops. In SDF, initial tokens can be thought of as initial conditions for
the execution rather than a part of the execution itself [32]. It is the schedulers responsibility to
assure that all initial tokens are in place before the execution starts. We formally define an SDFG
in Definition 1.

Definition 1 (SDFG). An SDFG G = (A, C, d, r, i) is a tuple where A is the set of actors, C ⊆ A×A
is the set of channels, d : A → R≥0 returns for each actor its associated firing delay, r : A×C → N>0

returns for each actor port its associated rate and i : C → N0 returns for each channel its number
of initial tokens.

SDFGs can be scheduled at compile-time and thus implemented with minimal run-time overhead.
Schedule for an SDFGs is a loop over a series of actor firings completing an iteration. Recall that,
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an iteration of a dataflow graph is a minimal nonempty set of actor firings that has no net-effect
on the token distribution of the graph. The schedule for the running example SDFG is shown in
Fig. 2b. The same schedule can be denoted via the term A1

1A
2
2A

3
3A

3
4A

2
5A

1
6 where exponents represent

actor repetition counts. We consider SDFGs that are consistent and deadlock-free. The graph that
is inconsistent may deadlock or be unbounded which means that it has no unbounded execution
with bounded buffers [32]. Paper [28] shows how to compute the minimal numbers of times that an
actor needs to be fired in a valid schedule by using the so called balance equations. The solutions
to the balance equations are stored in the repetition vector of the graph which we define as a map
Γ : A → N>0. With the abuse of notation, for the running example, Γ(A1, A2, A3, A4, A5, A6) =
(1, 2, 3, 3, 2, 1). The existence of the repetition vector implies consistency. However consistency
does not imply that a valid schedule exists. If a graph contains cycles, it may deadlock although
consistent. That is why sufficient numbers of initial tokens must be placed in feedback channels.
Checking the deadlock-freedom of an SDFG is performed by computing an iteration by abstract
execution [28].

3.3 Max-plus algebra for SDF

Max-plus algebra [1] is used to capture the semantics of self-timed execution od SDF. Self-timed
execution is a schedule where every actor fires as soon as possible, i.e. immediately when all in-
put channels contain a sufficient number of tokens. These numbers are specified by rates. The
self-timed execution defines the tightest bound that can be given on the temporal behavior of the
system captured by an SDF model [18]. In relation to Max-plus algebra, two fundamental concepts
that determine the self-timed execution of an SDFG are synchronization and delay. Synchronization
manifests itself when an actor waits for all input tokens to become available. The delay manifests
itself through the fact that the tokens that are the result of an actor firing will be available after an
amount of time following the firing start time. This amount of time is equal to the actor firing delay.
The two concepts described correspond to the two operators of Max-plus. Synchronization corre-
sponds to the max operator while delay corresponds to the + operator of Max-plus. To exemplify,
we follow [18]. Let T be set of tokens an actor requires to start its firing. Let tτ be the availability
time of token τ ∈ T . Let d be the firing delay of the actor. In this case the output tokens produced
by the actor will become available at time

max
τ∈T

tτ + e =
⊕
τ∈T

tτ ⊗ e. (1)

In (1) and in the remainder of this paper for max we use the symbol ⊕ (pronounced “o-plus”) and
for + we use the symbol ⊗ (pronounced “o-time”).

SDFGs evolve in iterations. Therefore, the beginning and the end time of any SDFG iteration
are fully determined by the availability times of initial tokens. Recall that initial tokens represent
initial conditions for execution. If the production timestamps of initial tokens after the kth graph
iteration are collected in the vector γ(k) the evolution of an SDFG under self-timed scheduling policy
is given by the following recursive Max-plus linear equation

γ(k + 1) = MG ⊗ γ(k). (2)

In (2), MG ∈ R|I|×|I|max is the SDFG Max-plus matrix, I is the set of initial tokens of the SDFG and
γ(k) is the timestamp vector of the kth SDFG iteration. Matrix MG is a square matrix, which
follows from the fact that each initial token has one entry in γ(k+ 1). For initial tokens, throughout
this article, we use the notation il where l ∈ {1, . . . , |I|}, so that l specifies the position of the initial
token’s timestamp in the timestamp vector and notation I for the set of graph’s initial tokens.

To exemplify, consider the running example graph with I = {i1, . . . , i6}. The initial vector is
γ(0) = [0, 0, 0, 0, 0, 0]T . After one iteration γ(0) becomes γ(1) = [10, 18, 16, 22, 22, 0]T ; after two
iterations γ(2) = [20, 30, 26, 34, 34, 22]T and so on. From the recursion of (2), we can derive an
explicit function for γ(k) as follows

γ(k) = MG
⊗k ⊗ γ(0). (3)
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Figure 3: Execution of the SDFG of Fig. 2a.

Fig. 3 shows the evolution of the timestamp vector for the first five iterations of the running example
SDFG.

Time is depicted horizontally and the six tokens of the timestamp vector are depicted vertically
so that lines visualize the timestamp vectors of (2), i.e. (3). The sequence γ(0), γ(1), γ(2), . . . defined
by (2), i.e. (3) is ultimately periodic so that the following recursive equation holds for all k ≥ k0

γ(k + σ) = λ⊗σ ⊗ γ(k). (4)

In (4), k0 is the transient time of MG, σ is the cyclicity of MG and λ is the eigenvalue of MG.
Moreover, (2) and (4) define an alternative iteration-based operational semantics of SDF in

contrast to the traditional actor firing-based operational semantics of [20] that cannot separate
iterations. The periodicity of SDF expressed via (4) is reflected in the existence of the periodic phase
in the state-space of the SDFG constructed by the use of its traditional operational semantics. If we
define throughput of an SDFG as the long-run average of completed iterations per time-unit [21], it
straightforwardly follows (4) that the inverse of λ defines the throughput of the graph.

Matrix MG of (2) can be derived by symbolically executing one iterations of the corresponding
SDFG with the intention of relating the entries of γ(k + 1) = [t′i1 , . . . , t

′
i|I|

] and γ(k) = [ti1 , . . . , ti|I| ]

where t′il and til are the timestamps of the corresponding initial tokens after the (k + 1)st and the
kth SDFG iteration embodied into the timestamp vectors of the (k + 1)st and the kth iteration,
respectively.

First, consider the following. It was shown in [18], that the production timestamp t of any token
can be represented as a Max-plus scalar product

t =
⊕
ij∈I

mj ⊗ tij = [m1, . . . ,m|I|]⊗ γ(k). (5)

between a vector of suitable constants called the initial token dependency vector or shortly the
dependency vector and the timestamp vector of the kth iteration. Then, also the entries of γ(k+ 1)
can be written as linear combinations of entries of γ(k) as follows

t′il =
⊕
ij∈I

ml,j ⊗ tij = [ml,1, . . .ml,|I|]⊗ γ(k). (6)

It straightforwardly follows from (2) and (6) that dependency vectors [ml,1, . . .ml,|I|] define the rows
of MG. These vectors are determined by symbolic execution of one iteration of the graph. We show
this with an example. Running example SDFG has six initial tokens. We represent the timestamp
vector of the kth graph iteration as γ(k) = [ti1 , ti2 , ti3 , ti4 , ti5 , ti6 ]T . Similarly, the timestamp vector
of the (k + 1)st iteration is represented as γ(k + 1) = [t′i1 , t

′
i2
, t′i3 , t

′
i4
, t′i5 , t

′
i6

]T . According to the
periodic schedule (cf. Fig. 2b) actor A1 fires first. In order to fire, A1 must consume token i6.
Therefore, the tokens produced by its firing are determined by the timestamp vector ti6 ⊗ 0 =
[−∞,−∞,−∞,−∞,−∞, 0]⊗γ(k). Note that we express timestamps til as Max-plus scalar products
too. In this case, ti6 = [−∞,−∞,−∞,−∞,−∞, 0]⊗γ(k). Thereafter, actor A2 fires two times. The
first firing produces the tokens determined by the timestamp vector ([−∞,−∞,−∞,−∞,−∞, 0]⊗
γ(k)⊕ [0,−∞,−∞,−∞,−∞,−∞]⊗γ(k))⊗5 = [5,−∞,−∞,−∞,−∞, 5]⊗γ(k). The second firing
produces tokens carrying the timestamp vector [10,−∞,−∞,−∞,−∞, 10]⊗γ(k). Furthermore, the
second firing of A2 restores i1 and therefore t′i1 = [10,−∞,−∞,−∞,−∞, 10]⊗ γ(k). By continuing
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Figure 4: FSM-SADF.

the symbolic execution until the completion of the iteration we will obtain the new timestamps of
remaining initial tokens. By collecting the corresponding dependency vectors, we obtain MG of (7).

MG =


10 −∞ −∞ −∞ −∞ 10
18 12 −∞ −∞ −∞ 18
16 −∞ 9 −∞ −∞ 16
22 16 14 8 −∞ 22
22 16 14 8 −∞ 22
−∞ −∞ −∞ −∞ 0 −∞

 (7)

3.4 Synchronous dataflow scenarios

The concept of synchronous dataflow scenarios [18] extends the expressive power of SDF by combin-
ing streaming data and finite control into a MoC called FSM-SADF [19]. More precisely, application
behaviors are clustered into a group of static modes of operation called scenarios each modeled by
an SDFG, while scenario occurrence patterns are constrained by a nondeterministic FSM. Consider
the example FSM-SADF graph (FSM-SADFG) of Fig. 4a. The graph has two scenarios: s1 and
s2 modeled by two SDFGs. The scenario FSM has two states where each of the states corresponds
to one scenario. In the figure, state φ1 corresponds to s1, while φ2 corresponds to s2. The sce-
nario FSM defines admissible scenario sequences that can be denoted via the regular expression
(s1 | s1s2)∗ where | denotes a nondeterministic choice. The operational semantics of the model is as
follows: every transition in the scenario FSM schedules the execution of one iteration of the SDFG
that models the scenarios corresponding to the transition’s destination state. We formally define
the scenario FSM in Definition 2.

Definition 2 (Scenario FSM). Given a set S of scenarios, a scenario FSM F on S is a tuple
F = (Φ, φ0, δ,Ψ), where Φ is the set of states, φ0 is the initial state, δ ⊆ Φ × Φ is the transition
relation and Ψ : Φ→ S is the scenario labeling.

9



The formal specification of FSM-SADF follows in Definition 3.

Definition 3 (FSM-SADF). FSM-SADF F is a tuple F = (S, F ) where S is the set of scenarios
and F is an FSM on S.

3.5 Max-plus algebra for synchrnous dataflow scenarios

The execution of an FSM-SADFG translates to nothing but a sequence of executions of its con-
stituents, i.e. scenario SDFGs. The sequences are defined by the scenario FSM. A sequence of
scenarios can be associated with a sequence of timestamp vectors γ(0), γ(1), . . . where

γ(k + 1) =M(ζ(k + 1))⊗ γ(k). (8)

In (8), M : S → R|I|×|I|max , returns the Max-plus matrix of the scenario SDFG, ζ : N>0 → S returns
the scenario of the (k + 1)st FSM-SADFG iteration. Timestamp vector γ(k) of the kth FSM-
SADFG iteration provides the initial conditions for the execution of the next one. It is known [19],
that sequence γ(0), γ(1), . . . defined by (8) is an upper bound on the self-timed execution of the
respective FSM-SADFG. Fig. 4b shows the execution of the running example FSM-SADFG for the
scenario sequence s1s2s1s2s1s1. One can notice that consecutive scenarios can be active concurrently,
i.e. they are pipelined. E.g. at t = τ , three scenarios are active at the same time. An interesting
phenomena caused by pipelining that may be puzzling for a noninitiated reader is that token i5 is
recreated in scenario s2 first, although scenario s2 always follows s1. This is due to the fact that in
scenario s2 the firing of A6 takes place sooner than the corresponding firing of A6 in scenario s1. It
had been shown in [19] that the completion time of a sequence σ = s1, . . . , sk ∈ S∗ of scenarios can
be defined as follows

A = αT ⊗ µ(σ)⊗ β, (9)

where α is the final delay, µ : S∗ → Rn×nmax is the morphism that associates sequences of scenarios
with Max-plus matrices as follows

µ(σ) =M(sk)⊗ . . .⊗M(s1) (10)

and β is the initial delay. The initial delay β specifies the initial enabling time of initial tokens and
typically β = 0, while the final delay α serves as a mean to specify the metrics we are interested
in. E.g., if we are interested in the makespan of a sequence of scenarios, we set α = 0. The triple
A = (α, µ, β) defines a Max-plus automaton [16]. The theory of Max-plus automata had been used
in [19] to analyze worst-case performance of FSM-SADFG. We leave this matter aside now and
explain it in detail in Section 7. Last thing we bring out is the fact that scenarios do not necessarily
need to share the same set of initial tokens which is the case with the running example FSM-SADFG
too. In the recursion of (8) and (10), particular scenarios matrices and timestamp vectors need to
be expanded so that the right-hand side product remains well-defined. More details can be found
in [36]. The intuition behind the formalization of [36] is that every scenario that “misses” some of
the initial tokens from the overall union defined over all scenario graphs, needs to be supplemented
with the tokens it misses as follows: each missing token is placed on a self-edge of a subsequently
added disconnected “dummy” actor. This actor has the firing delay equal to zero.

4 Parameterized dataflow

In this section we elaborate our parameterized dataflow modeling framework which is the crucial
milestone towards the definition of parameterized dataflow scenarios that is to follow in Section 5.

Inspired by the approach of [6], we too set up our parametrization framework as a meta-modeling
technique that enables integration of parameters and run-time adaptation of parameters into a wide
range of dataflow models referred to as base models. The integration of parameters increases the
expressive power of the model and renders it capable of capturing fine-grained application dynamics
in a succinct manner without departing from the dataflow framework. Within our framework, we

10



limit our attention to timed uninterpreted base models with conjunctive firing rules [27]. With such
models, the actual meaning of computations and semantics of data tokens are not relevant. This
means that actor firing rules do not depend on the values of tokens but only on their availability
under a conjunctive firing rule. A conjunctive firing rule implies that all actor input channels must
contain enough input tokens for the respective actor to fire. In addition, given a particular base
model, we require it has a well-defined notion of a graph iteration while parameters are allowed to
change only in between iterations. SDF, CSDF and SSDF discussed earlier are all examples of such
base models.

Although inspired by it, as we will show, our modeling framework is different than that of [6] as it
abstracts from the parameter reconfiguration mechanisms used in that work. These mechanisms are
conceived around the initflow concept that introduces auxiliary graphs (init graph and subinit graph)
that specify configuration delivery mechanisms to the functional part of the application modeled by
the body graphs. The addition of these graphs increases complexity and compromises the intuitive
appeal of the technique due to complex interactions between the three types of graphs. In our
approach we favor a monolithical approach where all actors are treated on equal footing which
avoids the need for the partitioning of the structure according to the functionality of particular
structure parts. This does not hamper the use of parameter reconfiguration concept as it had been
shown that in a parameterized context it can be straightforwardly added to the original structure
in a purely dataflow manner [15][3].

We proceed by defining our parametrization context. By focusing on uninterpreted base models
the scope of our parametrization naturally narrows to graph rates and actor firing delays. Both
rate parametrization and firing delay parametrization serve the purpose of capturing fine-grained
data-dependent application dynamics but at different levels. Rate parametrization concerns data-
dependent dynamics that the designer wishes to expose at a module, i.e. actor level. Therefore,
parameterized rates capture data-dependent variation of communication patterns between actors.
On the other hand, parameterized firing delays are used to capture the temporal effect of data-
dependent dynamics within modules represented by actors on the overall composition, i.e. the
graph. Moreover, we may say that in this way the designer hides module implementation details
irrelevant at a particular abstraction level. E.g., if actors are implemented in software, their firing
delays correspond to worst-case execution times (WCET) of modules they represent. These in turn
may be represented as parametric expressions including input parameters to the module, or maximal
iteration counts of module loops [29].

We parametrize rates using strings containing parameters. We let the string production be
governed by an arbitrary grammar R. Similarly, we let actor firing delays be parameterized by
an arbitrary grammar D. Using R and D we define a parameterized dataflow graph (PDFG) in
Definition 4.

Definition 4 (PDFG). An PDFG is a tuple G = (A, C,Pi,Pd, r, d, i,XG), where A is the set of
actors, C ⊆ A × A the set of channels, Pi is the set of nonnegative integer parameters, Pd is the
set of nonnegative real parameters, r : A×C → R returns for each port its (possibly symbolic) rate,
d : A → D returns for each actor its associated (possibly symbolic) firing delay, i : C → N0 returns
for each channel its associated number of initial tokens while XG is the domain of the graph.

Aside the typical dataflow graph constituents such as actors, channels, rates, firing delays and
initial tokens, Definition 4 introduces the concept of PDFG domain adopted from [6]. The domain
XG of an PDFG G is the set of all complete configurations of G. A complete configuration of
a PDFG is determined by assigning concrete values to all parameters defined by the sets Pi and
Pd. We denote a configuration of G with xGi ∈ XG where i ∈ {1, . . . , |XG|}. Once a configuration
is routed through the grammars R and D and applied to the PDFG, an instance of that graph
emerges, denoted ιG(xGi ). An instance of a PDFG is nothing but a base model graph. E.g., if the
parametrization of Definition 4 is applied to SDF, an instance ιG(xGi ) is an SDFG.

Parameterized dataflow paradigm of Definition 4 offers a high modeling flexibility. Firstly, this
is due to the fact that rates and firing delays can be expressed via arbitrary expressions containing
parameters. Secondly, this is due to the fact that the PDFG domain XG can be used to define the
admissible configurations in a variety of ways, e.g. as a set of mathematical expressions capturing
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(b) PCSDF specification of an artificial application.

while(1){
fire A1;
repeat (p) times {

fire A2;
repeat (q) times {

fire A3;
repeat (r) times {

fire A4;
}

} 
}
fire A5;

}

(c) Schedule for the SPDF specifica-
tion.

while(1){
fire A1;
fire A2;
repeat (q) times {

repeat (q) times {
fire A3; 

} 
}
fire A2;
repeat (s) times {

fire A3;  
}
fire A4;
fire A5;

}

(d) Schedule for the PCSDF specifi-
cation with p = qr + s.

Figure 5: SPDF and PCSDF specifications.

possible complex relationships between graph parameters and characteristics of the input signal
and/or the implementation platform.

However, increased flexibility almost immediately implies decreased analyzability. Different
works on parameterized dataflow modeling outlined in Section 2, place different restrictions to Def-
inition 4 to make the underlying model fully (e.g. SPDF and BPDF) or at least partly decidable
(PSDF). In general, no general decidability criteria can be derived for the structure of Definition 4.
Instead, analysis needs to be performed for a particular definition of R.

We exemplify how the parameterized dataflow modeling of Definition 4 can be used to express
different existing parameterized dataflow models by merely defining R in an appropriate way. We
use two examples: SPDF introduced in [15] and parameterized CSDF (PCSDF) introduced in [6].

In SPDF, by definition, R := k | p | R1 · R2 where k ∈ N>0 and p ∈ Pi with Pi a set of
symbolic variables. Consequently, in SPDF rates are products of positive integers and/or symbolic
variables by default constrained to N>0. Fig. 5a shows an example SPDF graph with an arbitrarily
defined domain XG = {p ∈ [1, 100], q ∈ [1, 12], a1 = a2 = a3 = a4 = 1.0, a5 = 2.3x1 + 3.1x2, x1 ∈
[0.2, 1.9], x2 = 1.0}. An example of a configuration that can be extracted from XG is xG = {p =
1, q = 3, a1 = a2 = a3 = a4 = 1, x1 = 1.0, x2 = 1.0}. Note that XG enables accommodation of
parameters not present in the graph itself but that parameters present in the graph may depend on
in various ways. These dependencies are naturally specified by arithmetic expressions, we choose to
call constraints. Once xG is applied, a pure SDFG emerges.

With the given definition of R, existence of a repetition vector that implies consistency for SPDF
specifications can be easily verified by a straightforward generalization of the SDF algorithms of [2].
For the example graph, Γ(A1, A2, A3, A4, A5) = (1, p, pq, pqr, 1). Except for consistency, paper [15]
defines criteria for assuring deadlock-freedom and presents an algorithm for schedule generation for
SPDF specifications. The schedule for the example graph is displayed in Fig. 5c. Last but not least,
SPDF also defines criteria that constraints parameter change patterns so that all rates will always
remain well-defined. Within the scope of our work, it is sufficient to say that it is always sate to
change parameters in between graph iterations. For more details, we refer the interested reader
to [15].
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(a) Example PFSM-SADFG

while(1){
fire A0;
repeat (q) times {

fire A1; 
}
repeat (p) times {

fire A2; 
}
repeat (p) times {

fire A3; 
}
repeat (q) times {

fire A4; 
}
fire A5;

}

(b) Scenario sp1 qss

while(1){
fire A0;
repeat (u) times {

fire A2; 
}
fire A5;

}

(c) Scenario sp1 qss

Figure 6: PFSM-SADF.

For PCSDF of [6], we set R as follows R := k | p | R1(R2) | R1,R2 where k ∈ N>0 and p ∈ Pi
with Pi a set of symbolic variables by default constrained to N>0. E.g., notation q(r), s for the
PCSDF model of Fig. 5b denotes the parameterized cyclo-static dataflow sequence r, r, r, . . . , r, s.
In the sequence, r is repeated q times. Notice that the with such a definition of R, we both
parametrize the phase (length) and particular phase rates. For the example graph, XG = {p ∈
[50, 100], r ∈ [3, 20], q ∈ N>0, s ∈ N>0, p = qr + s, a1 = a2 = a3 = a4 = a5 = 1.0}. How to assure
boundedness, liveness and how to schedule PCSDF specification is to the best of our knowledge an
open problem. For the simple structure of Fig. 5b with a requirement p = qr+ s stemming from the
graph domain definition, the quasi-static schedule of Fig. 5d can be easily derived.

5 Integration of parameterized dataflow and finite-state ma-
chines

In this section we investigate the integration of parameterized dataflow and FSMs in a concept we
refer to as parameterized dataflow scenarios. More precisely, we propose a hybrid framework that
combines finite-state control expressed via an FSM and streaming data expressed via parameterized
dataflow introduced in Section 4. We achieve this by generalizing the concept of FSM-SADF (HDF)
to one which allows to express fine-grained data-dependent dynamics and control requirements of
modern streaming applications. More precisely, we model the execution of an application as a
sequence of parameterized scenarios or shortly scenarios. The sequencing of scenarios is dictated
by the control structure captured by the scenario FSM while internal fine-grained data-dependent
dynamics of a particular scenario is captured by the scenario PDFG. From now on, we use the terms
scenario, PDFG and scenario PDFG interchangeably. We refer to the new model as FSM-based
parameterized scenario-aware dataflow (PFSM-SADF).

We exemplify using the structure of Fig. 6a. The composite PFSM-SADF graph (PFSM-SADFG)
in the figure is defined over two parameterized scenarios sp1 and sp2, each of which is modeled by a
scenario PDFG. Sequencing of scenarios is dictated by the parameterized scenario FSM or shortly
scenario FSM, where each state corresponds to one scenario. The example scenario FSM has two
states: φp1 and φp1. State φp1 corresponds to sp1 and state φp2 corresponds to sp2.

The operational semantics of the PFSM-SADF model is as follows. Each reaction/transition of
the scenario FSM incurs the execution of one iteration of an arbitrary instance of the scenario PDFG
that the transition destination state corresponds to. An execution of one iteration of the scenario spi
PDFG, translates to the execution of one iteration of an arbitrary instance of the scenario spi PDFG
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Figure 7: Comparison of operational semantics of FSM-SADF and PFSM-SADF.

defined by some configuration xs
p
i originating from the scenario PDFG domain Xspi

and denoted

ιspi (xs
p
i ). Therefore, the model fosters nondeterminism at two levels. The inter-scenario level, where

the parameterized scenario to be activated next is chosen and at the intra-scenario level where one
of the instances of that scenario is chosen to carry out the actual execution of the scenario. Fig. 7b
illustrates the operational semantics of the PFSM-SADF of Fig. 6a. Scenario PDFG domains are
depicted as 2-dimensional planes in the p−q−u space (we omit actor firing delay parameters). E.g.,
every time a transition φp1 → φp2 is taken, one iteration of the scenario sp2 PDFG is executed. This
corresponds to the execution of one iteration of an arbitrary instance of scenario sp2 PDFG defined
by the configurations found in the Xsp2

hyperplane.
We use the opportunity to compare the operational semantics of PFSM-SADF to that of FSM-

SADF. Consider the FSM-SADFG of Fig. 4a. Note that the FSM-SADFG of Fig. 4a can be obtained
by applying configuration xs

p
1 = {q = 2, p = 3, a1 = 5, a2 = 4, a3 = 3, a4 = 4} to sp1 PDFG and by

applying the configuration x = {u = 2} to sp2 PDFG of the PFSM-SADFG of Fig. 6a. Thus, the
illustration of Fig. 7a that illustrates the operational semantics of the FSM-SADFG of Fig. 4 can
be obtained by collapsing the hyperplanes of Fig. 7b to one point. E.g., the transition φ1 → φ2 is
refined by the execution of one iteration of the scenario s2 SDFG (which can be obtained by applying
the configuration {u = 2} to the sp2 PDFG of the PFSM-SADFG of Fig. 6a). This informally proves
that PFSM-SADF generalizes FSM-SADF (HDF) as FSM-SADF can be instantiated from PFSM-
SADF if the base model of the scenarios PDFGs is SDF. In that case, a PFSM-SADFG with only
one configuration per scenario is nothing but an FSM-SADFG. Moreover, in contrast to FSM-SADF
whose underlying concurrency model (SDF) is fully static, PFSM-SADF via parameterized dataflow
modeling of Section 4 allows scenario representations that are necessarily not fully static through the
use of base models different than SDF. A good example is PCSDF, that when used as the base model
of PFSM-SADF is at run-time instantiated into a CSDF graph. A reader may be sceptical towards
the claim that the concept of parameterized dataflow scenarios also generalizes HDF because HDF
unlike FSM-SADF (where the FSM is flat and sequential) enforces a hierarchical FSM discipline.
This is not an issue because as stated in [22], hierarchy adds nothing to the model of computation
but is used to reduce the number of transitions and makes the FSM more intuitive and easier to
understand.

We formally define the new model. First, we define the parameterized scenario FSM in Defini-
tion 5.

Definition 5 (Parameterized scenario FSM). Given a set Sp of parameterized scenarios, a para-
meterized scenario FSM F p over Sp is a tuple F p = (Φp, φp0, δ

p,Ψp), where Φp is the set of states,
φp0 is the initial state, δp ⊆ Φp × Φp is the transition relation and Ψp : Φp → Sp is the scenario
labeling.
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Thereafter, we expose the definition of PFSM-SADF.

Definition 6 (PFSM-SADF). PFSM-SADF Fp is a tuple Fp = (Sp, F p) where Sp is the set of
SDF-PDF scenarios and F p is an FSM on Sp.

We briefly discuss the consistency, deadlock freedom and scheduling properties of PFSM-SADF.
A PFSM-SADF progresses in iterations of its PDFG scenario instances like a FSM-SADF model
progresses in iterations of its scenario SDFGs. It is natural to define scenarios at dataflow graph
iteration granularity because an iteration typically represents a coherent set of computations, e.g.
decoding a video frame. Like in FSM-SADF, the synchronization between consecutive scenarios is
achieved using the common initial tokens of those scenarios. These tokens have the same designators
(names) across scenarios. This is natural, as scenarios are represented by dataflow graphs and in the
parameterized dataflow (PDF) domain of Definition 4, initial tokens represent initial conditions for
execution of the graph. Typically, but not required [36], common tokens reside on common channels
(a channel that shares the same source and destination actor in both scenarios) and common channels
have the same number of initial tokens in all scenarios.

Given the operational semantics of PFSM-SADF and its synchronization principles described
above, the same criteria for the consistency of applications modeled by PFSM-SADF as for those
modeled by FSM-SADF applies, i.e. consistency of the application is guaranteed if all individual
scenarios are consistent [35]. Deadlock freedom is a more subtle concept. Since our modeling targets
streaming applications, we consider infinite traces of the scenario FSM. Therefore, an application
modeled by PFSM-SADF is deadlock-free if all individual scenarios are deadlock-free and there exists
no state in the scenario FSM with no outgoing transitions. As PFSM-SADF is a dynamic dataflow
model - it cannot be statically scheduled. Still, as PFSM-SADFG progresses in scenario sequences,
given a trace of the scenario FSM a schedule for the trace can be constructed by concatenating
schedules of particular scenario graphs. Therefore, we deem a PFSM-SADFG schedulable if for all
its scenario graphs considered in isolation a (quasi)-static schedule can be found.

Determining whether a particular scenario PDFG is consistent, deadlock-free and schedulable
is not an easy task. In general, no general decidability criteria can be derived for the structure of
Definition 4. Instead, analysis needs to be performed for a particular definition of R.

6 Analyzing parameterized synchronous dataflow scenarios

In this section we apply the concept of parameterized dataflow scenarios of Definition 6 to SDF which
is the most mature and stable dataflow formalism. We refer to this specialization of PFSM-SADF
of Definition 6 as SDF-based PFSM-SADF (SDF-PFSM-SADF) for which we develop worst-case
performance analysis algorithms. An example of an SDF-PFSM-SADF graph (SDF-PFSM-SADFG)
is shown in Fig. 6a. In SDF-PFSM-SADF, scenarios are represented using SDF-based parameterized
dataflow (SDF-PDF), i.e. SDF-PDF graphs (SDF-PDFG).

6.1 SDF-based parameterized dataflow

SDF-PDFGs are basic constituents of our parameterized synchronous dataflow scenarios as they
capture the data-dependent dynamics of a SDF-PFSM-SADF scenario. An SDF-PDFG is derived
from a general PDFG by applying the definition of R shown in (11) to Definition 4.

R := k | p | R1 · R2. (11)

In (11), k ∈ N>0 and p ∈ Pi with Pi a set of symbolic variables, i.e. rates are defined as products
of positive integers and/or symbolic variables by default constrained to N>0. As firing delays do
not influence the dataflow behavior of the graph, in principle in Definition 4, we could allow for an
arbitrary D, but for simplicity and some purely technical constraints to be explained in Section 7 we
choose to consider actor firing delays as linear expressions of parameters as defined by D of (12).

D := k | k · d | D1 +D2. (12)

15



In (12), k ∈ R≥0 and d ∈ Pd, i.e. actor firing delays can be nonnegative real constants or linear
combinations of parameters constrained by default to R≥0. With the definition of R of (11), one
can decide on consistency, deadlock-freedom and schedulability of SDF-PDF specifications using the
results of [15] and consequently on the same properties of the enveloping SDF-PFSM-SADFG.

6.2 Modeling SDF-PDF with Max-plus

In this section we study how Max-plus algebra can be used to model the temporal behavior of
SDF-PDF under self-timed execution.

6.2.1 Opening remarks

In accordance with the Max-plus semantics of SDF [18], as the base model of SDF-PDF, the evolution
of an SDF-PDFG G can be given as a recursive Max-plus linear equation relating the timestamps
vectors γ(k + 1) and γ(k) of initial tokens after the (k + 1)st and the kth SDF-PDFG iteration,
respectively, as follows

γ(k + 1) =MG(ζ(k + 1))⊗ γ(k). (13)

In (13),MG : XG → R|I|×|I|max denotes a mapping that for each xG ∈ XG returns the associated Max-
plus matrix of the instance SDFG, i.e. MιG(xG). Mapping ζ : N>0 → XG returns the configuration

that determines the instance ιG(xG) that is executed as the (k + 1)st iteration of the SDF-PDFG.
Therefore, the temporal behavior of an SDF-PDFG, can be fully described by a set of Max-plus
matrices of all its instances. The number of such matrices equals to the cardinality of XG, i.e.
|XG|. However, |XG| is typically very large and proportional to the cardinality of the product set of
parameter ranges. This renders the generation of this set via enumeration of XG often infeasible in
practice. This is because of the high time penalty incurred by the generation of these matrices for
SDFGs with very large repetition vectors (cf. Fig. 11 in [19]).

Instead of enumeration, with the overall goal of compacting the representation while retaining
relevant information, we advocate for the characterization of temporal behavior of SDF-PDF models
using a set of parameterized Max-plus matrices, i.e. matrices whose entries will be parameterized
expressions in Pi and Pd (cf. Definition 4). In the light of aforementioned, the evolution of an
SDF-PDFG can be described via

γ(k + 1) = [Mpar
G (ζ(k + 1))] (ζ(k + 1))︸ ︷︷ ︸

MG(ζ(k+1))

⊗γ(k). (14)

In (14), Mpar
G : XG → EI×I denotes a mapping that for each xG ∈ XG returns the associated

parameterized Max-plus matrix corresponding to a particular xG ∈ XG, that when evaluated for
that xG is nothing but the Max-plus matrix of the instance SDFG, i.e. MιG(xG). Notation E
defines the set of all arithmetic expressions defined on (Pi ∪ Pd ∪ −∞) which in turn is used to
define EI×I the set of all I by I Max-plus matrices with entries in E. The semantics of mapping
ζ : N>0 → X stays the same as in (13). Once such a parameterized characteristic matrix is evaluated
for a concrete configuration that defines the (k + 1)st iteration of the structure, i.e. at ζ(k + 1),
a concrete Max-plus matrix MG(ζ(k + 1)) emerges, i.e. (14) reduces to (13). Therefore, (14) is a
compact representation of (13) developed around the mapping Mpar

G . This way, one needs not to
perform an enumeration of XG. The difficulty is moved, however, to determining the mappingMpar

G

defining the collection of parameterized matrices as constituents of its codomain. It is a collection
(and not a single parameterized matrix) because in a parametric (general) setting, the partitioning
of XG occurs naturally due to the max operator in Max-plus.

Because SDF is the base model of SDF-PDF, the timestamp t of any token produced within the
(k + 1)st SDF-PDFG iteration can be written as a Max-plus scalar product

t =
⊕
ij

mpar
j ⊗ tij = [mpar

1 , . . . ,mpar
|I| ]⊗ γ(k), (15)
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Figure 8: Latency-rate abstraction

where tij are the timestamps of initial tokens after the kth graph iteration and mpar
j are now

parameterized expressions in E. Therefore, the timestamps of initial tokens at the end of the
(k + 1)st iteration embedded in γ(k + 1), can be denoted as follows

t′il =
⊕
ij∈I

mpar
l,j ⊗ tij = [mpar

l,1 , . . . ,m
par
l,|I|]⊗ γ(k). (16)

In this case, dependency vectors [mpar
l,1 , . . . ,m

par
l,|I|] where l = 1, . . . , |I| will form the rows of the

parameterized Max-plus SDF-PDFG matrix as an element of the codomain of Mpar
G . Thus, the

challenge lies in determining expressions of type (16). In the remainder of this section we show how
to do this for a type of graphs that in addition to being consistent, deadlock free and quasi-static
schedulable satisfy the following two requirements.

Requirement 1. For all SDF-PDFG channels c ∈ C such that src(c) 6= dst(c) and i(c) > 0,
i(c) > Γ(dst(c)) must hold, i.e. if c has initial tokens, there must be enough of them for actor dst(c)
to complete all its firings within the iteration. Functions src : C → A and dst : C → A return for
each channel its source and destination actor, respectively.

With this requirement, we limit our attention to feed-forward structures where initial tokens in
graph channels (other than self-edges) are not reproduced more than once within an iteration. This
way, in cyclic graphs, feedback loops can be broken resulting in acyclic specifications. Fortunately
a large number of streaming applications fall under this requirement that is typically enforced in
literature to enable effective quasi-static scheduling [5][15][6]. In the context of our Max-plus analysis
we impose this requirement as it is not clear how to deal with schedule loops of length grater than
one [2] with parametric repetition counts.

Requirement 2. For all SDF-PDFG channels c ∈ C such that src(c) = dst(c), i(c) = 1 must hold.

This requirement disables the bounding of auto-concurrency. Auto-concurrency of actors can be
bounded by inserting a particular number of tokens on their self-edges. With Requirement 2 we allow
either full auto-concurrency for an actor or no auto-concurrency at all. This is because we during
the process of determiningMpar

G with regard to (15) wish to avoid situations where tokens produced
by the actor depend on different self-edge tokens from one actor firing to the next. This requirement
is not restrictive in practice as any such actor in the graph can be replaced by its latency-rate
abstraction [40] that conservatively captures its temporal behavior. Fig. 8b shows such a conservative
latency-rate based abstraction of an actor with auto-concurrency bounded to n displayed in Fig. 8a.
Note that the collection i1, . . . , in of Fig. 8a is collapsed into a single token i1,...,n of Fig. 8b. Actor A
itself is expanded into two actors A1 and A2 with firing delays a and a

n , respectively. We believe the
same principle could be straightforwardly applied to cyclic graph substructures with channels not
compliant to Requirement 1 using the notion of local iterations [15]. The “problematic” subgraphs
would then be replaced by their latency-rate abstractions. The procedure could be recursively
repeated in a bottom-up fashion in line with different levels of substructure nesting. This is, however,
a subject of future work.
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Figure 10: Relevant SDF-PDF structures.

6.2.2 Max-plus model of SDF-PDF execution

To determine Mpar
G , as with SDF [18], we need to compute one iteration of the considered SDF-

PDFG, i.e. the production times of restored initial tokens after one iteration of the graph expressed
via the scalar product of (16).

With SDF it is straightforward to keep track of timestamps of tokens produced by actor firings
on channels within a simple FIFO container. This is due the fact the channel quantities are finite
and known. Each FIFO element stores the dependency vector of the token it refers to (cf. (5)).
With parameterized rates, the situation is more subtle. The channel quantities will still be finite but
unknown as they are determined by parameters. Therefore, it would become cumbersome to define
such a FIFO structure. Instead, we capture the ordering of tokens using the firing indices of their
producing actors as a mapping τ : A×Z→ En×1. The nonpositive firing indices are reserved for the
initial tokens themselves. As initial tokens represent the initial conditions for the execution of the
graph, they are therefore assumed to be produced by some past actor firing. We give the following
definition of τ time as follows from the Max-plus algebraic semantics of self-timed execution of SDF
that SDF-PDF inherits:

τ(Aj , n) =
⊕

Ai|(Ai,Aj)∈C

τ

(
Ai,
⌈n · r(Aj , (Ai, Aj))− i((Ai, Aj))

r(Ai, (Ai, Aj))

⌉)
⊗ d(Aj). (17)

The timestamps of tokens produced by the nth firing of actor Aj will correspond to the maximal
arrival times of all input tokens (over all input channels) to be consumed by the firing (synchroniza-
tion) increased by the firing delay of Aj itself (delay). Notice that the firing indices of feeding actors
need to be adjusted according to the respective channel rates and any presence of initial tokens. An
example SDF-PDF structure illustrating the semantics of (17) is available in Fig. 9.

Equation (17) reveals that in computing the response of an actor, different inputs (channels) can
be treated in isolation. Ultimately, particular contributions need to be superposed. This corresponds
to the Max-plus superposition principle [1]. We first show how to apply (17) to one input channel.
For that purpose, we consider a minimal but a general (for the purpose) SDF-PDF structure of
Fig. 10. We compute the response of actor Y for two cases. First (on the left), when Y has no
self-edge. Second (on the right), when Y has a self-edge with one initial token. These are the only
two types of actors allowed in our input specifications (cf. Requirement 2). Furthermore, we only
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treat the case when in the figure, ι = 0. The case where ι > 0 is trivial due to Requirement 1.
More precisely, within one iteration of the graph, actor’s demand for input tokens on that channel
will always refer to one of those ι initial tokens, i.e. no firings of X within the iteration need to be
considered. We apply (17) to the structure of Fig. 10a. We obtain

τ(Y, n) = τ(X,
⌈n · q
p

⌉
)⊗ y. (18)

Equation (18) reveals that in the case when Y has no self-edge, Y only delays the input by y. A
more interesting case arises when Y has a self-edge with one initial token (cf. Fig 10b). In this
case, (17) transforms to

τ(Y, n) =

(
τ(Y, n− 1)⊕ τ(X,

⌈n · q
p

⌉
)

)
⊗ y. (19)

We treat (19) using backward substitution. Backward substitution is a well-known method for
solving recurrence equations and it works exactly as the name implies. In particular, starting from
the equation itself, we work backwards substituting the values of the recurrence for previous ones.
E.g., if we substitute

τ(Y, n− 1) =

(
τ(Y, n− 2)⊕ τ(X,

⌈ (n− 1) · q − ι
p

⌉
)

)
⊗ y (20)

into (19), we obtain

τ(Y, n) =

((
τ(Y, n− 2)⊕ τ(X,

⌈ (n− 1) · q − ι
p

⌉
)

)
⊗ y ⊕ τ(X,

⌈n · q − ι
p

⌉
)

)
⊗ y

= τ(Y, n− 1)⊗ y⊗2 ⊕ τ(X,
⌈ (n− 1) · q − ι

p

⌉
)⊗ y⊗2 ⊕ τ(X,

⌈n · q − ι
p

⌉
)⊗ y.

(21)

If we continue, i.e. unfold (19) for k times and substitute it back, we obtain

τ(Y, n) = τ(Y, n− k)⊗ y⊗n ⊕
k⊕
i=1

τ(X,
⌈ (n− i+ 1) · q − ι

p

⌉
)⊗ y⊗i. (22)

We obtain the base case when k = n from (22) as follows

τ(Y, n) = τ(Y, 0)⊗ y⊗n ⊕
n⊕
i=1

τ(X,
⌈ (n− i+ 1) · q − ι

p

⌉
)⊗ y⊗i︸ ︷︷ ︸

conv(τ(X,
⌈
n·q−ι
p

⌉
),y⊗n)

. (23)

In the second term of the Max-plus summation of (23) we recognize the Max-plus convolution of
the input token timestamp sequence and the impulse response of actor Y , denoted h(Y, n) where
h : N>0 → Rmax is the timestamp sequence belonging to tokens produced by the actor in response
to the impulse input token timestamp sequence

u(n) =

{
0 if n = 1

−∞ otherwise
, for all n ∈ N>0. (24)

For a complete presentation we refer to [17]. When the actor has a self-edge with one initial token,
its impulse response takes the form

h(Y, n) = y⊗n , for all n ∈ N>0. (25)

When an actor is without a self-edge,

h(Y, n) =

{
y if n = 1

−∞ otherwise
, for all n ∈ N>0. (26)
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An actor without a self-edge can be interpreted as an actor with a self-edge with an infinite stock
of initial tokens all available at t = −∞. Then, when (26) is applied to (23), (23) reduces to (18).
We formally define the previously used concept of Max-plus convolution.

Definition 7. Let σ1(n) and σ2(n) be two sequences in Rmax, i.e. σ1,2 : N>0 → Rmax. The
convolution of the two, denoted conv(σ1, σ2) is defined as

conv(σ1, σ2)(n) =

n⊕
i=1

σ1(n− i+ 1)⊗ σ2(i). (27)

To tightly bound the Max-plus convolution of (23) using a closed form expression, we use the
proposition to follow.

Proposition 1. Let σ1(n) and σ2(n) be two periodic sequences in Rmax such that σ1(n) = δ1 ⊗
π1
⊗dr·ne and σ2(n) = π2

⊗n, where n ∈ N>0, r ∈ Q≥0 and δ1, π1, π2 ∈ Rmax. Then, the following
inequality holds:

conv(σ1, σ2)(n) <

{
δ1 ⊗ π1

⊗(1+r) ⊗ π2
⊗n if π2 ≥ r · π1

δ1 ⊗ π2 ⊗ π1
⊗(1+r·n) if π2 ≤ r · π1

(28)

Proof. We prove this by induction using the argument

x ≤ dxe < x+ 1. (29)

First, we consider the case where π2 ≥ r · π1. We prove the induction base case, i.e. when n = 1.
By substituting σ1(n) = δ1 ⊗ π1

⊗dr·ne and σ2(n) = π2
⊗n into (27), we obtain

conv(σ1, σ2)(n) = δ1 ⊗
n⊕
i=1

π1
⊗dr·(n−i+1)e ⊗ π2

⊗i. (30)

For n = 1, (30) reduces to
conv(σ1, σ2)(1) = δ1 ⊗ π1

⊗dre ⊗ π2. (31)

By combining (29) and (31) we obtain the following inequality

conv(σ1, σ2)(1) = δ1 ⊗ π1
⊗dre ⊗ π2 < δ1 ⊗ π1

⊗(1+r) ⊗ π2 (32)

that proves the case case. We continue with the induction step, i.e. evaluate (30) for (n + 1) with
the induction hypothesis of (28) where π2 ≥ r · π1. We obtain

conv(σ1, σ2)(n+ 1) = δ1 ⊗
n+1⊕
i=1

π1
⊗dr·(n−i+2))e ⊗ π2

⊗i

= δ1 ⊗
n⊕
i=1

π1
⊗dr·(n−i+1)e ⊗ π2

⊗i ⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1)

= δ1 ⊗ conv(σ1, σ2)(n)⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1).

(33)

By substituting the induction hypothesis into (33) we obtain the following inequality

conv(σ1, σ2)(n+ 1) ≤ δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n ⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1). (34)

If we use (29) to get rid of the ceiling in (34), we obtain

conv(σ1, σ2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n ⊕ δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗(n+1)

conv(σ1, σ2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗(n+1).
(35)

Inequality (35) shows that the induction hypothesis holds for (n+ 1) too which completes the proof
for the case where π2 ≥ r · π1. The proof procedure for the remaining case, i.e. π2 ≤ r · π1 is
similar.
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Figure 11: Periodic sequences in Rmax.
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Figure 12: Convolution illustration structure.

Proposition 1 operates on periodic sequences in Rmax and defines a tight bound on the convolution
of the two. The bound attains the period (growth rate) of the sequence with the lower period (the
slower one). In addition, it is conservatively delayed to account for the noncontinuity of the ceiling
function using the relation x ≤ dxe < x + 1. For a growing value of n the relative error due to
conservativity decreases.

A more intuitive interpretation of Proposition 1 can be adopted from [12]. In Max-plus, as in
conventional linear system theory the output of a system can be calculated as a convolution between
the input to the system and its impulse response. If both input and the impulse response are
periodic, then they can be represented in the N>0 × R plane (where the x-axis is the index domain
and y-axis is the time domain) by a line with any rational slope (r in Proposition 1) shifted along
the two axis. E.g., in Fig. 11, the sequence σ1(n) is shifted along the y-axis by 2 and has a slope of
1.

The slope represents the asymptotic growth rate. Their counterpart in conventional linear system
theory are sine functions, while their slope is counter-parted with the frequency of those sine waves.
If the input slope is strictly smaller than the slope of the impulse response (smaller slope means
faster input rate), then the output of the system will be a periodic sequence that inherits the slope
of the impulse response and this is a kind of the “lowpass” effect. If opposite, the slope of the output
will attain the slope of input.

These are in essence two cases that Proposition 1 treats. We demonstrate the application of
Proposition 1 to the structure of Fig. 12. With regard to Proposition 1, in the figure, δ1 = 0, π1 =
x, π2 = y, r = q

p . Fig. 13 shows the execution of the structure with: p = 3, q = 2, x = 3, y = 5. In

t

X X X X X

Y Y Y Y

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13: Self-timed execution of the graph of Fig. 12 with p = 3, q = 2, x = 3, y = 5.
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Figure 14: Self-timed execution of the graph of Fig. 12 with p = 2, q = 3, x = 3, y = 1.

this case, with regard to Proposition 1, π2 ≥ r ·π1, i.e. actor Y is the bottleneck and its firing delay
defines the period of the token sequence produced. According to Proposition 1, this sequence can
then be bounded with

τ(Y, n) = 3⊗(1+ 2
3 ) ⊗ 5⊗n. (36)

On the other hand, consider the execution of the structure when p = 3, q = 2, x = 3, y = 1 shown
in Fig. 14. In this case, with regard to Proposition 1, π2 ≤ r · π1, i.e. actor X is the bottleneck
and its firing delay normalized to r defines the period of the output token sequence (defined by Y ’s
output channels). According to Proposition 1, this sequence can then be bounded with

τ(Y, n) = 1⊗ 3⊗(1+ 3
2 ·n). (37)

Equation 37 shows the importance of the added delay (addition of 1 in the Max-plus exponent) to
account for the noncontinuity of the ceiling function. Namely, without it, (37) transforms to

τ(Y, n) = 1⊗ 3⊗( 3
2 ·n). (38)

which would then underaproximate the sequence of Fig. 14, which is not what we wish in the scope
of worst-case temporal behavior analysis.

From Proposition 1 and the fact that the impulse response of an actor with a self-edge with one
token is a periodic sequence too (cf. (25)) it follows that the response of a arbitrary actor Ak of an
SDF-PDFG compliant to Requirements 1 and 2 within an iteration can be tightly bounded by a
delay-period (δ, π) abstraction as follows

τ(Ak, n) =
⊕
ij

(δk,j ⊗ πk,j⊗n)⊗ tij

= [(δk,1 ⊗ πk,1⊗n), . . . , (δk,|I| ⊗ πk,|I|⊗n)]⊗ γ(k).

(39)

A delay-period (δ, π) abstraction defines the dependency vector entries as linear functions of n,
i.e. the actor firing index. Given a dependency vector entry that represents the minimal temporal
distance of some arbitrary token and an initial token, its period will be determined by the scaled
(via rate ratios) firing delay of the slowest actor in the path defined by the producing actors of the
two tokens. A delay-period (δ, π) abstraction of (39) defines a tight bound due to Requirement 1
that renders the graph acyclic within an iteration. In case of an actor with multiple input channels,
ultimately, the contributions of different input channels need to be superposed. Per dependency
vector entry of each contribution, the following propositions defines a tight bound for the output
dependency vector entry.

Proposition 2. Let S = {σ1(1), . . . , σN (n)} be a set of periodic sequences in Rmax such that
σi(n) = δi ⊗ πi⊗n. Let δ = max(δ1, . . . , δN ) and π = max(π1, . . . , πN ) and let Σ(n) =

⊕
i

σi(n).

Then, Σ attains the following periodic conservative tight bound for all n ∈ N>0

Σ(n) = δ ⊗ π⊗n. (40)

Proof. Follows straightforwardly from the illustration of Fig. 11. By taking π for the growth rate
(period) of Σ(n) and 0 for the initial y-axis shift (delay), Σ(n) will eventually (for some n0 ∈ N>0)
compensate for the initial y-axis shift (delay) difference. By taking δ for the delay of Σ(n), Σ(n)
will dominate for all n ∈ N>0.
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The result of (40) defines a periodic sequence that attains the period of the slowest input sequence
(highest period) and the delay of the most delayed sequence. By using (18) and (23) in conjunction
with Proposition 1 and Proposition 2 we can compute the response of any graph actor within an
iteration expressed in the form of (39) that we use to render Mpar

G . We show how to do this in the
section to follow.

6.2.3 Example

We exemplify using the SDF-PDF specification of scenario sp1 of the PFSM-SADFG of Fig. 6a. We
compute the iteration using the schedule of Fig. 6b. The timestamp vector of the kth scenario
SDF-PDFG iteration is specified as

γ(k) = [ti1 , ti2 , ti3 , ti4ti5 , ti6 ]. (41)

Furthermore, every entry of γ(k) can be written in terms of (17) by associating it with the corre-
sponding producing actor and onwards as the Max-plus scalar product of (15).

ti1 = τ(A1, 0) = [0,−∞.−∞,−∞,−∞,−∞]⊗ γ(k), (42)

ti2 = τ(A2, 0) = [−∞, 0,−∞,−∞,−∞,−∞]⊗ γ(k), (43)

ti3 = τ(A3, 0) = [−∞,−∞, 0,−∞,−∞,−∞]⊗ γ(k), (44)

ti4 = τ(A4, 0) = [−∞,−∞,−∞, 0,−∞,−∞]⊗ γ(k), (45)

ti5 = τ(A5, 0) = [−∞,−∞,−∞,−∞, 0,−∞]⊗ γ(k), (46)

ti6 = τ(A5,−1) = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k). (47)

According to the quasi-static schedule of the specification of Fig. 6b, actor A0 fires first. It has only
one input channel (A5, A0), i.e. we need to consider only one contribution. It fires a nonparametric
number of times within an iteration and does not have a self-edge. Channel (A5, A0) forms a directed
cycle (feedback loop) and due to Requirement 1 it must host a sufficient number of initial tokens
to fire A0 at least Γ(A0) times. This is the case because Γ(A0) = 1 and i((A5, A0)) = 2. Thus, we
use (18) to compute τ(A0, n) for all n = 1, . . . ,Γ(A0) one-by-one. In (18), the right hand side will
always refer to one of the timestamps of initial tokens. This way the feedback is effectively broken.
We evaluate (18) for A0 with n = 1 using (47).

τ(A0, 1) = τ(A5,−1)⊗ 0 = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k). (48)

A more interesting case is that of actor A1 which fires a parametric number of times within an
iteration, i.e. Γ(A1) = q and has a self-edge. Then τ(A1, n) cannot be derived in a one-by-one
fashion, but we need to express the analytical relation between τ(A1, n) and n. We use (23) in the
context of A1. The input token sequence to A1 is defined by the vector (48). By substituting (48)
and (42) into (23) we obtain

τ(A1, n) = [0,−∞,−∞,−∞,−∞,−∞]⊗ γ(k)⊗ a1
⊗n

⊕ [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k)⊗ a1
⊗n

= [a1
⊗n,−∞,−∞,−∞,−∞, a1

⊗n]⊗ γ(k). (49)

Even a more intriguing case arises in the consideration of the next actor in the quasi-static schedule,
i.e. A2 with Γ(A2) = p. Actor A2 has a self-edge and one input dependency defined by tokens
produced by A1 on channel (A1, A2). From (23) using (49) we derive

τ(A2, n) = [−∞, 0,−∞,−∞,−∞,−∞]⊗ γ(k)⊗ a2
⊗n

⊕ [conv(a1
⊗d qp ·ne, a2

⊗n),−∞,−∞,−∞,−∞, conv(a1
⊗d qp ·ne, a2

⊗n)]⊗ γ(k). (50)

Every entry of the dependency vector of (50) needs to be treated by Proposition 1 one-by-one. For
an entry, Proposition 1 gives rise to two cases that split the original parameter space (the graph
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domain) into two exclusive parts. For each of these parts, the iteration computation continues in
a separate branch. In case of actor A2 only one split will occur as for the two dependency vector
entries of (50) defined by a convolution, these convolutions are identical. The parts of the parameters
space to be considered are defined by inequalities p · a2 ≥ q · a1 and p · a2 ≤ q · a1. We continue the
computation in the part of the space defined with

C1 ≡ p · a2 ≥ q · a1. (51)

With (51), using (28), (50) transforms to

τ(A2, n) = [a1
⊗( qp+1) ⊗ a2

⊗n, a2
⊗n,−∞,−∞,−∞, a1

⊗( qp+1) ⊗ a2
⊗n]⊗ γ(k). (52)

A similar case to that of actor A2 is the one of actor A3 with Γ(A3) = p. From (23) using (49) we
derive

τ(A3, n) = [−∞,−∞, 0,−∞,−∞,−∞]⊗ γ(k)⊗ a3
⊗n

⊕ [conv(a1
⊗d qp ·ne, a3

⊗n),−∞,−∞,−∞,−∞, conv(a1
⊗d qp ·ne, a3

⊗n)]⊗ γ(k). (53)

Equation (53) mandates a further split of the parameter space with p · a3 ≥ q · a1 and p · a3 ≤ q · a1.
We proceed with

C2 ≡ p · a3 ≤ q · a1. (54)

With (54),using (28), (53) reduces to

τ(A3, n) = [a1 ⊗ a3 ⊗ a1
⊗( qp ·n),−∞, a3

⊗n,−∞,−∞, a1 ⊗ a3 ⊗ a1
⊗( qp ·n)]⊗ γ(k). (55)

We proceed with actor A4 with Γ(A4) = q. This actor has two input channels, and therefore to com-
pute its outputs we apply the Max-plus superposition principle. First we consider the contribution
of channel (A2, A4) whose token timestamps are defined by (52). By substituting (52) into (23) we
obtain

τ (A2,A4)(A4, n) = [−∞,−∞,−∞, 0,−∞,−∞]⊗ γ(k)⊗ a4
⊗n

⊕ [a1
⊗(1+ q

p ) ⊗ conv(a2
⊗d pq ·ne, a4

⊗n), conv(a2
⊗d pq ·ne, a4

⊗n),−∞,

−∞,−∞, a1
⊗(1+ q

p ) ⊗ conv(a2
⊗d pq ·ne, a4

⊗n)]⊗ γ(k). (56)

The convolutions of (56) split the parameter space with q · a4 ≥ p · a2 and q · a4 ≤ p · a2. We
arbitrarily choose to proceed with

C3 ≡ q · a4 ≤ p · a2. (57)

With (57), via (28), (56) becomes

τ (A2,A4)(A4, n) = [a1
⊗(1+ q

p ) ⊗ a2 ⊗ a4 ⊗ a2
⊗( pq ·n), a2 ⊗ a4 ⊗ a2

⊗( pq ·n),

−∞, a4
⊗n,−∞, a1

⊗(1+ q
p ) ⊗ a2 ⊗ a4 ⊗ a2

⊗( pq ·n)]⊗ γ(k). (58)

Similarly, we calculate the contribution of channel (A3, A4).

τ (A3,A4)(A4, n) = [−∞,−∞,−∞, 0,−∞,−∞]⊗ γ(k)⊗ a4
⊗n

⊕ [conv(a1 ⊗ a3 ⊗ a1
⊗( qp ·d

p
q ·ne), a4

⊗n),−∞, conv(a3
⊗(d pq ·ne), a4

⊗n),

−∞,−∞, conv(a1 ⊗ a3 ⊗ a1
⊗( qp ·d

p
q ·ne), a4

⊗n)]⊗ γ(k) (59)

In (59), two convolutions define the further split in the parameter space. The first one (first and last
entries of the dependency vector) proposes the following split: a4 ≥ a1 and a4 ≤ a1. We proceed
with the option

C4 ≡ a4 ≤ a1. (60)

24



With (60), (59) becomes

τ (A3,A4)(A4, n) = [a1
⊗(1+ q

p ) ⊗ a3 ⊗ a4 ⊗ a1
⊗n,−∞, conv(a3

⊗(d pq ·ne), a4
⊗n), a4

⊗n,

−∞, a1
⊗(1+ q

p ) ⊗ a3 ⊗ a4 ⊗ a1
⊗n]⊗ γ(k). (61)

The remaining convolution of (61) defines a further split along the current branch of exploration via
options q · a4 ≥ p · a3 and q · a4 ≤ p · a3. By selecting

C5 ≡ q · a4 ≤ p · a3, (62)

from (61) we derive

τ (A3,A4)(A4, n) = [a1
⊗(1+ q

p ) ⊗ a3 ⊗ a4 ⊗ a1
⊗n,−∞, a3 ⊗ a4 ⊗ a3

⊗( pq ·n), a4
⊗n,

−∞, a1
⊗(1+ q

p ) ⊗ a3 ⊗ a4 ⊗ a1
⊗n]⊗ γ(k). (63)

To finalize the computation of response of A4 now we need to superpose the contributions of A2 and
A4. Thus

τ(A4, n) = τ (A2,A4)(A4, n)⊕ τ (A3,A4)(A4, n). (64)

The computation of (64) involves an iterative approach where each entry of the dependency vector
of the first contribution is paired with the corresponding entry of the second contribution and the
combination is treated by Proposition 2. By considering all combinations of maximal delays and
periods between corresponding dependency vector entries, Proposition 2 further splits the parameter
space. For the concrete examples of (58) and (63) only the first and the sixth entry of dependency
vectors are to be treated as the others are either equal (the fourth and the fifth entry) or one
immediately dominates because the other equals to −∞ (second and third entry). For the first and
the sixth entry (note these are equal in the respective dependency vectors of (58) and (63)) in the
light of Proposition (2) we define the corresponding delay-period abstractions as follows

δ1 = a1
⊗(1+ q

p ) ⊗ a2 ⊗ a4

π1 = a2
⊗( pq ) (65)

δ2 = a1
⊗(1+ q

p ) ⊗ a3 ⊗ a4

π2 = a1 (66)

Now, Proposition 2 mandates four splits in the parameter space defined as follows

δ = δ1 = max(δ1, δ2),

π = π1 = max(π1, π2)

}
δ1 ≥ δ2, π1 ≥ π2 (67)

δ = δ1 = max(δ1, δ2),

π = π2 = max(π1, π2)

}
δ1 ≥ δ2, π1 ≤ π2 (68)

δ = δ2 = max(δ1, δ2),

π = π1 = max(π1, π2)

}
δ1 ≤ δ2, π1 ≥ π2 (69)

δ = δ2 = max(δ1, δ2),

π = π2 = max(π1, π2)

}
δ1 ≤ δ2, π1 ≤ π2 (70)

However, in the current part of parameter space, constrained by (51), (54), (57) (60) and (62) it is
easy to see that only (67) does not conflict with the previously made assumptions. Therefore, the
computation only continues for (67), with regard to which, (64) transforms to

τ(A4, n) = [a1
⊗(1+ q

p ) ⊗ a2 ⊗ a4 ⊗ a2
⊗( pq ·n), a2 ⊗ a4 ⊗ a2

⊗( pq ·n),

a3 ⊗ a4 ⊗ a3
⊗( pq ·n), a4

⊗n,−∞, a1
⊗(1+ q

p ) ⊗ a2 ⊗ a4 ⊗ a2
⊗( pq ·n)]⊗ γ(k). (71)

Note that delay-period pairs of the first and the sixth entry of (71) stem from the entries of the
dependency vector of a single contribution of (63) that dominates for all n ∈ N>0 within an iteration.
Thus, they are not a conservative approximation but an exact representation of the dependence. The
last remaining actor in the quasi-static schedule is A5, with Γ(A5) = 1. As for all actors with a
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Figure 15: Exploration tree.

constant repetition count, we evaluate (18) for all n up to the repetition vector entry for the actor.
We obtain

τ(A5, 1) = τ(A4, q) = [a1
⊗(1+ q

p ) ⊗ a2
⊗(1+p) ⊗ a4, a2

⊗(1+p) ⊗ a4,

a3
⊗(1+p) ⊗ a4, a4

⊗q,−∞, a1
⊗(1+ q

p ) ⊗ a2
⊗(1+p) ⊗ a4]⊗ γ(k). (72)

The computation of (72) completes the iteration. What remains to be done is to determine the
entries of

γ(k + 1) = [t′i1 , t
′
i2t
′
i3 , t
′
i4 , t
′
i5 , t
′
i6 ] (73)

with regard to the computed iteration in terms of actor responses. For initial tokens placed on actor
self-edges it is clear that they are rebuilt after the number of actor firings equal to the entailing
actor’s repetition count, i.e. repetition vector entry for that actor. Other initial tokens experience a
shift along the channel depending on the repetition count of the consuming actor. As these repetition
counts are constant (cf. Requirement (1)), so is constant the number of firings of the producing actor
due to consistency. Therefore, it is trivial to calculate those shifts. For the example graph

t′1 = τ(A1, q), (74) t′2 = τ(A2, p), (75) t′3 = τ(A3, p), (76)

t′4 = τ(A4, q), (77) t′5 = τ(A5, 1), (78) t′6 = t5. (79)

Note that token i5 is not consumed in the current iteration and at the end of the iteration it
become token i6. Thus, (79) holds. If we match the timestamps of (74), (75), (76), (77), (78)
and (79) with the producing actor responses (49), (52), (55), (71), (72) and (46), respectively and
collect the dependency vectors in a matrix in a row-by-row manner (according to the semantics of
the Max-plus scalar product of (16)) we obtain

Mpar
G (x

G
) =



a1
⊗q −∞ −∞ −∞ −∞ a1

⊗q

a1
⊗(

q
p
+1) ⊗ a2⊗p a2

⊗p −∞ −∞ −∞ a1
⊗(

q
p
+1) ⊗ a2⊗p

a1
⊗(1+q) ⊗ a3 −∞ a3

⊗p −∞ −∞ a1
⊗(1+q) ⊗ a3

a1
⊗(1+

q
p
) ⊗ a2⊗(1+p) ⊗ a4 a2

⊗(1+p) ⊗ a4 a3
⊗(1+p) ⊗ a4 a4

⊗q −∞ a1
⊗(1+

q
p
) ⊗ a2⊗(1+p) ⊗ a4

a1
⊗(1+

q
p
) ⊗ a2⊗(1+p) ⊗ a4 a2

⊗(1+p) ⊗ a4 a3
⊗(1+p) ⊗ a4 a4

⊗q −∞ a1
⊗(1+

q
p
) ⊗ a2⊗(1+p) ⊗ a4

−∞ −∞ −∞ −∞ 0 −∞


(80)

where xG ∈ XG ∩ (p · a1 ≥ q · a1) ∩ (p · a3 ≤ q · a1) ∩ (q · a4 ≤ p · a2) ∩ (a4 ≤ a4) ∩ (q · a4 ≤
p · a3), i.e. xG belongs to the part of the original graph domain refined by the set of constraints
of (51), (54), (57), (60) and (62). Recall that Mpar

G is a mapping that for each xG ∈ XG returns
the associated parameterized Max-plus matrix, depending on the affiliation of xG to a particular
partition ofXG, i.e. the parameter space. Furthermore, there exists a finite number of such partitions
XG =

⋃n
i=1XGi that we call natural SDF-PDFG domains. Each subdomain XGi ⊆ XG defines one

parameterized matrix. Collected, matrices form the codomain of Mpar
G . Fig. 15 illustrates the

partitioning of the parameters space (domain) X for the running example. The matrix of (80) is
defined by the path determined by the black nodes of the exploration tree.

At this point it is opportune to recall the semantics of an entry of the matrix. In particular,
[Mpar

G (xG)]m,n represents the minimal time distance between token im of the (k + 1)st SDF-PDFG
iteration and token in of the kth SDF-PDFG iteration. The parametric representation of the matrix
elements gives clear insight into the structure of the graph and temporal relationships of actors in
the graph. Basically, [Mpar

G (xG)]m,n defines the latency of the slowest path in the graph connecting
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ALGORITHM 1: Compute iteration of an SDF-PDFG.
1 Function ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx, curr init tok dep ndx, curr init tok dep delay ndx, curr init tok dep period ndx,

in contr comput completed, constraints, ref res)

2 if (Feasible(constraints) == false) then /* check feasibility of constraints encountered so far */

3 return;

4 end if
5 if (curr actor == null) then /* pick the next actor from the Qss we have finished with the previous one */

6 curr actor = G.Qss[curr actor ndx];

7 end if
8 if (curr actor) then /* process actor, by first considering input contributions */

9 if (curr input chan = curr actor[curr in chan ndx]) then
10 if ( curr input chan[curr init tok dep ndx]) then
11 options = compute output(T[curr in chan ndx][curr init tok dep ndx], curr actor.impulse response);

12 i = 0;

13 while (i < options.num options) do
14 curr actor.contributions[curr in chan ndx][curr init tok dep ndx] = options[i].solution;

15 ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx, curr init tok dep ndx + 1, 0, 0, false, constraints +

options[i].constraint, res);

16 i++;

17 end while

18 else
/* completed one input contribution, go to the next */

19 ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx + 1, 0, 0, 0, false, constraints, res);

20 end if

21 else
/* completed all contributions, proceed with Max-Plus superposition of contributions by combining all delay and period relationships

over all initial token dependencies */

22 if (in contr completed == false) then
23 curr init tok dep ndx = 0;

24 curr actor.dp = sort delays and periods(curr actor.contributions);

25 end if
26 if (curr actor.dp[curr init tok dep ndx]) then
27 if (curr delay = curr actor.dp[curr init tok dep ndx].delays[curr init tok dep delay ndx]) then
28 if (curr period = curr actor.dp[curr init tok dep ndx].periods[curr init tok dep period ndx]) then
29 T[curr actor output chan ndx all][curr init tok dep ndx].delay = curr delay.value;

30 T[curr actor output chan ndx all][curr init tok dep ndx].period = curr period.value;

/* next period for current delay */

31 ExploreGraph(G, T, curr actor, curr actor ndx, 0, curr init tok dep ndx, curr init tok dep delay ndx,

curr init tok dep period ndx + 1, true, constraints + options[i].constraint);

32 else
/* next delay */

33 ExploreGraph(G, T, curr actor ndx, 0, 0, curr init tok dep ndx, 0, curr init tok dep delay ndx + 1, true, constraints,

res);

34 end if

35 else
/* next initial token dependency */

36 ExploreGraph(G, T, curr actor, curr actor ndx, 0, curr init tok dep ndx + 1, 0, 0, true, constraints, res);

37 end if

38 else
/* done with this actor, do the next one */

39 ExploreGraph(G, T, null, curr actor ndx + 1, 0, 0, 0, 0, false, constraints, res);

40 end if

41 end if

42 else
/* no more actors in the qss, this is a leaf node - build the matrix associated with a set of constraints */

43 res += process(G,T,constraints);

44 end if
45 return;

46 end

two initial tokens. This path is determined by the delay that all actors along the path contribute to
and by the period of the slowest actor in the path. E.g. if we consider [Mpar

G (xG)]4,1 as obtained
from (71), we see that actor A2 is the bottleneck of the path from i1 to i4, i.e. it has the highest
period (or in the light of conventional linear system theory it has the lowest cutoff frequency). On
the other hand from a concrete Max-plus matrix obtained by the procedure of Section 3.3 such
relationships cannot be studied.

6.2.4 Computation of the SDF-PDFG iteration

Algorithm 1 specifies the previously described procedure for the computation of one iteration of a
SDF-PDFG.

It is defined by a recursive function ExploreGraph that explores the tree-like structures like that
of Fig. 15 in a depth first search manner. The inputs to the function are G the SDF-PDFG itself
with all associated meta-data like the quasi-static schedule of the structure, T the set of dependency
vectors of all graph channels, curr actor the structure containing all required meta-data for the
actor being currently evaluated, curr actor ndx the index of the current actor under processing
in the quasi-static schedule, curr in chan ndx the index of the currently processed input of the
currently processed actor, curr init tok dep ndx the index of the currently processed entry of
the dependency vector either within a Max-plus convolution or Max-plus superposition context,
curr init tok dep delay ndx the index of the currently set maximal delay among all the delays
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observed for the currently processed dependency vector entry, curr init tok dep period ndx the
index of the currently set maximal period among all the periods observed for the currently processed
dependency vector entry, in contr comput completed the flag denoting whether or not all input
channel contributions have been considered for the currently processed actor, constraints the set
of constraints defining the parameter space partition of the current exploration path and res (passed
by reference) the result set containing parameterized matrices governing the behavior of the SDF-
PDFG in a partition of the initial domain defined by all the constraints encountered along the
exploration path.

In the function, actors are processed as ordered in the quasi-static schedule (cf. Line 6). Once the
last actor had been processed, the dependency vectors are composed into the related parameterized
matrix and along with the constraints encountered added to the result set (cf. Line 43). In the
processing of a particular actor the contributions stemming from all its input channels are processed
one by one (cf. Line 9). This may incur as many Max-plus convolutions as there are entries in
the input dependency vector (cf. Line 10). As a convolution (cf. Line 11) incurs splitting of the
parameter space, the search is recursively continued for each splitting option (cf. Line 15) while
proceeding with the next dependency vector entry (note the increment of curr init tok dep ndx

in the recursive call). Note that there are maximally two options per dependency vector entry. Of
course, newly added constraints should not conflict with the previous ones, i.e. their feasibility needs
to be verified (cf. Line 2). If the combination is not feasible this branch of exploration is left all
together (cf. Line 3). Once all entries of the dependency vector of one input channel have been
processed, the algorithm continues with the next input channel (cf. Line 19).

Once the contributions of all inputs have been computed, the algorithm performs the bounding
of delay-period pairs over all corresponding entries of dependency vectors of different contribu-
tions according to Proposition 2. This is marked by resetting curr init tok dep ndx if the flag
in contr comput completed is set to false to denote that the actor had not yet been treated by
Proposition 2. Note that in later recursive calls, the flag in contr comput completed will be set
to true (cf. Lines 31, 33 and 36). All combinations are considered, i.e. for each dependency vector
entry (cf. Line 26) a different pivot delay (cf. Line 29) and a pivot period (cf. Line (30)) are set and
the search is continued for the next period that is to be deemed maximal (cf. Line 31). Once all
periods have been exhausted (cf. Line 28), we proceed with the next pivot delay (cf. Line 33). Once
all delays have been exhausted, we proceed with the next dependency vector entry (cf. Line 36).
Note that after every recursive call the feasibility is verified with the newly added constraint. The
search is aborted in the current branch if the feasibility check fails (cf. Line 3). Once ending with
the current actor, we proceed to the next one (cf. Line 39) until the quasi-static schedule has been
entirely processed and the matrix added to the solution set (cf. Line 43) . The algorithm has expo-
nential time complexity in the worst case. However, practical application may be expected to have
only a few critical parameters while the graph structures can expose sparsity in the sense that there
will be no dependencies between many initial tokens in the graph. Furthermore, the definitions of
the domains may be such that many exploration paths will be pruned out due to infeasibility.

The set of matrices obtained via Algorithm 1 when evaluated at a corresponding xG ∈ XG are
actually conservative approximations of the corresponding Max-plus instance matrices. This is due
to the conservativity entailed by Propositions (1) and 2. Therefore, the following inequality holds[

Mpar
G (xG)

]
(xG) ≥MG(xG) = MιG(xG) (81)

for all xG ∈ XG. The approximation of (81) is tight as per matrix entry it only incurs an added
element of delay while the period of the sequence used to obtain the actual matrix value is exact and
captures the slowest actor in the path between two tokens (cf. Propositions (1) and 2). We show
this by example. E.g., we mentioned in the prelude that when we evaluate G = sp1 SDF-PDFG of
Fig. 6a at the configuration xG = {p = 3, q = 2, a1 = 5, a2 = 4, a3 = 3, a4 = 4} its instance SDFG
emerges, denoted ιG(xG). In particular, this instance corresponds to the SDFG of Fig. 2 whose
Max-plus matrix is given by (7). We consider an arbitrary element of the two matrices. With (80),[
(Mpar

G (xG))(xG)
]
4,1

= 28.3, while with (7), [MιG(xG)]4,1 = 22. For growing values of p and q, i.e. for

the growing repetition vector the period component becomes dominant and the relative error shrinks.

28



E.g, with xG = {p = 300, q = 200, a1 = 5, a2 = 4, a3 = 3, a4 = 4},
[(
Mpar

G (xG)
)

(xG)
]
4,1

= 1216.3,

while [MιG(xG)]4,1 = 1210.

7 Worst-case performance analysis of parameterized synchro-
nous dataflow scenarios

In this section we investigate the performance analysis problem for SDF-PFSM-SADF specifications.
In particular, we are interested in deriving tight worst-case throughput and latency estimates. The
problem at hand is challenging due to several reasons.

First, SDF-PFSM-SADF is a dynamic dataflow model able to express data dependent behavior
within its concurrency model called SDF-PDF and intricate control logic captured at the level of the
enveloping FSM. Therefore, its temporal behavior is from an observer’s point of view is irregular,
i.e. it show no periodicity properties like that of, for instance, SDF. Thus, simple approaches to
analysis not accounting for scenario transitions such as analyzing the worst-case scenario (the one
with the lowest throughput and highest) or deriving a SDF-PDFG from all scenario SDF-PDFGs
by taking the worst-case firing delays over all parameterized scenarios and subjecting it to analysis
may not provide conservative and tight bounds [19].

Second, the model’s execution progresses at a scenario granularity where scenarios may be con-
currently active, i.e. pipelined.

Third, consecutive scenarios are inter-dependent and require synchronization. This synchroniza-
tion is achieved by the use of initial tokens that exist in between scenarios.

7.1 Max-plus albebraic semantics of SDF-PFSM-SADF

By Definition (6) an SDF-PFSM-SADF is determined by a set of parameterized scenarios Sp and
an FSM on that set. Every parameterized scenarios spj ∈ Sp is represented by an SDF-PDFG and
an associated domain of the scenario SDF-PDFG Xspj

. Let

M = {Mpar
sp1
, . . . ,Mpar

|Sp|} (82)

be the set of all mappings of that per particular scenario given the scenario SDF-PDFG configura-
tion return the associated parameterized scenario matrix (recall the semantics of Mpar

G from (14)).
Now, the operational semantics of SDF-PFSM-SADF says that an SDF-PFSM-SADFG evolves in
iterations of its scenario SDF-PDFG instances where the scenario occurrence patterns is given by
the scenario FSM. Scenarios are synchronized the set of initial tokens whose production times are
in turn captured by the initial token timestamp vectors.

Therefore, the timestamp vectors of initial tokens after the (k + 1)st iteration can be related to
the timestamp vector of initial tokens after the kth iteration as follows

γ(k + 1) =
[
(M(πl(ζ(k + 1))))(πr(ζ(k + 1)))

]
(πr(ζ(k + 1))︸ ︷︷ ︸

Mιπl(ζ(k+1))(πr(ζ(k+1)))

⊗γ(k). (83)

In (83), mapping ζ : N>0 → (Sp×X) returns the active scenario of the (k+1)st SDF-PFSM-SADFG
iteration as well as its configuration from the set X = Xsp1

∪ . . .∪Xsp|Sp|
, while M : Sp → M returns

the configuration to parameterized Max-plus matrix mapping of a particular scenario and πl and
πr are the left and right projection functions, respectively. Finally, the matrix of the underbrace
of (83) is the Max-plus matrix of the SDFG instance running as the (k + 1)st iteration of the
SDF-PFSM-SADFG. To explain the cumbersome notation of (83), we use (84).

(k + 1)
ζ(k+1)−−−−→ (spj ∈ S

p, xs
p
j ∈ Xspj

)
M(spj )
−−−−→Mpar

spj

Mpar

s
p
j

(x
s
p
j )

−−−−−−−→ [Mpar
spj

(xs
p
j )]

[Mpar

s
p
j

(x
s
p
j )](x

s
p
j )

−−−−−−−−−−−→Mιπl(ζ(k+1))(πr(ζ(k+1)))

(84)
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Starting from the SDF-PFSM-SADF iteration index (k+1) by applying ζ, the running parameterized

scenario and its running configuration are determined as a pair (spj ∈ Sp, x
spj ∈ Xspj

). Thereafter

spj is used as an argument to M to determine the mapping from configurations to parameterized
matrices within the scenario (cf. (82)), i.e. Mpar

spj
. After the mapping had been determined, it is

used to determine the parameterized matrix corresponding to the configuration xs
p
j from the initial

pair. This matrix is denoted [Mparspj (x
spj )]. Finally, this matrix is evaluated at xs

p
j which gives us

the conservative approximation of Max-plus matrix of the running scenario SDFG instance, denoted
Mιπl(ζ(k+1))(πr(ζ(k+1))).

The recursion of (83) can be used to define the completion time of a sequence of parameterized
scenarios

σ = sp1, . . . , s
p
k (85)

that we consider a part of the scenario FSM trace. As an activation of the scenario entails the
activation of an arbitrary scenario SDFG instance (nondeterministic choice), we expand (85) as
follows

σ = (sp1, x
sp1
1 | . . . | x

sp1
|Xsp1

|), . . . , (s
p
k, x

spk
1 | . . . | x

spk
|Xsp

k
|), (86)

where bar | denotes a nondeterministic choice. Then, the completion time of (86) can be defined as
follows

Ap(σ) = αpT ⊗ µp(σ)⊗ βp (87)

where αp is the final delay, βp is the initial delay and µp : Sp∗ → RI×Imax is a morphism that associates
sequences of scenarios σ with Max-plus matrices as follows

µp(σ) = µp((sp1, x
sp1
1 | . . . | x

sp1
|Xsp1

|), . . . , (s
p
k, x

spk
1 | . . . | x

spk
|Xsp

k
|))

=

[
(M(sp1)) (x

spk
1 | . . . | x

spk
|Xsp

k
|)

]
(x
spk
1 | . . . | x

spk
|Xsp

k
|)⊗ . . .

⊗
[
(M(sp1)) (x

sp1
1 | . . . | x

sp1
|Xsp1

|)

]
(x
sp1
1 | . . . | x

sp1
|Xsp1

|)

(88)

The triple Ap = (αp, µp, βp) defines the Max-plus automaton structure of [16]. In (87), βp captures
the initial enabling times of graph’s initial tokens, i.e. βp = γ(0) and typically γ(0) = 0. On the
other hand αp specifies the metrics we are interested in. E.g., if we are interested in the makespan
of the scenario sequence, we set αp = 0.

The Max-plus automaton structure of (87) with (88) can be used to study the performance of
SDF-PFSM-SADF in a similar fashion as it had been used to study the performance of FSM-SADF.
By comparing the Max-plus automata structure of FSM-SADF (cf. (9) and (10)) and SDF-PFSM-
SADF (cf. (87) and (88)) we observe a striking resemblance. Both in FSM-SADF and PFSM-SADF
the Max-plus automata structures are defined on a finite number of scenarios. However the crucial
difference lies in the definition of automata morphisms of (10) and (88). In FSM-SADF, the Max-
plus automata morphism µ returns for a scenario the corresponding scenario SDFG matrix and
for each scenario there is only one such matrix. With SDF-PFSM-SADF, the mapping µp for a
parameterized scenario returns the Max-plus matrix of an arbitrarily chosen parameterized scenario
SDFG instance. Further comparison of the morphisms reveals that (88) can be unfolded into (10)
in a way that every parameterized scenario instance would become a scenario in an equivalent FSM-
SADF. This follows straight forwardly from the discussion on operational semantics of PFSM-SADF
compared to that of FSM-SADF of Section 5. Then the equivalent structure could be used to
analyze the original parameterized specification for worst-case performance. However, in practice,
this is not feasible because Max-plus automata-based techniques for throughput analysis of FSM-
SADF rely on the automata product structure which would explode in size due to unfolding. The
same effect would incapacitate the use of state-space-based latency analysis techniques. This does
not mean we actually give up on the FSM-SADF techniques, but we only need to find a way
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ALGORITHM 2: Worst-case evaluation of a parameterized scenario.

Data: Mapping M(spk)

Result: Worst-case evaluation matrix of a parameterized scenario Mw−c
s
p
k

1 for i = 1 to |I| do
2 for j = 1 to |I| do
3 [Mw−c

s
p
k

]i,j = −∞;

4 foreach Mpar ∈ cod(M(spk)) do
5 if [Mpar]i,j 6= −∞ then
6

tmp = maximize
x

[Mpar(x)]i,j

subject to x ∈ dom(M(spk)) s.t. M(spk)(x) = Mpar (92)

[Mw−c
s
p
k

]i,j = [Mw−c
s
p
k

]i,j ⊕ tmp

7 end if

8 end foreach

9 end for

10 end for

how to compact the representation of (88), i.e. remove the need for explicit consideration of all
nondeterministic choices. As we are interested in the worst-case performance metrics, the theory of
Max-plus automata provides the solution to the problem.

In particular, every element of the product in (88) is replaced by its worst-case evaluation ac-
cording to Theorem 2 of [16] as follows[

(M(spk)) (x
spk
1 | . . . | x

spk
|Xsp

k
|)

]
(x
spk
1 | . . . | x

spk
|Xsp

k
|) =

⊕
x
s
p
k
i ∈Xsp

k

[
(M(spk))(x

spk
i )
]

(x
spk
i ), (89)

Mw−c
spk

=
⊕

x
s
p
k
i ∈Xsp

k

[
M(spk)(x

spk
i )
]

(x
spk
i ). (90)

In, (90), we call Mw−c
spk

the worst-case evaluation matrix of a parameterized scenario. With (90), (88)

transforms to

µp(σ) = Mw−c
spk
⊗ . . .⊗Mw−c

sp1
. (91)

The actual Mw−c
spk

of (90) per parameterized scenario can be obtained by solving a sequence of

optimization problems specified by Algorithm 2. The input to the algorithm is the mapping M(spk),
while the output is the desired Mw−c

spk
of (90). We use the notation dom and cod for the domain

and codomain of a mapping, respectively. Each entry of Mw−c
spk

corresponds to the maximal entry

among all corresponding maximal entries of parameterized scenario matrices defining the codomain
of M(spk) (cf. Line 4). These entries on the other hand correspond to the maximum value an entry
of the parameterized matrix attains when evaluated for all configurations within the subdomain the
matrix is defined in. It is obtained by solving the optimization problem of (92) where the objective
function is the entry of the considered parameterized matrix, i.e. a parameterized expression. Recall
that Algorithm 1 returns a set of parameterized matrices valid in different subregions of the scenario
domain. These subregions we called natural scenario subdomains.

The type of optimization problems encountered in (92) depends on the formulations of R and D
in the definition of the parameterized scenario (cf. Definition 4) as well as on the specification of the
scenario domain. With the formulations of (11) and (12) and with regard to Propositions 1 and 2
and the discussion of Section 6.2, the objective function of (92) will fall into the class of polynomial
programming problems. Techniques exist for producing global solutions to such problems which is

31



of crucial importance as we are to give worst-case guarantees. We refer to [34] for more details
on how to solve polynomial programming problems. The global solvability poses a vital technical
constraint. When it comes to the definition of the scenario domain that with the definitions of R and
D determines the type of the optimization problems we encounter, it is the designer’s responsibility
to specify the domain in a way that a global solver for the problem of (92) exists.

7.2 Performance metrics for SDF-PFSM-SADF

Now, given an SDF-PFSM-SADFG with the associated Max-plus automaton with µp as represented
by (91), we proceed with throughput analysis. First, we define this metric of interest.

Definition 8 (Throughput). Throughput of an PFSM-SADFG is defined as the largest value ρ ∈ R
s.t. for every possible sequence of PDFG scenarios to which we associate the corresponding timestamp
vector sequence vector sequence γ, for every ε ∈ R s.t. ε > 0, there is some K ∈ N>0 s.t. for all
L ∈ N>0, L > K, L

||γ(L)|| > ρ− ε.

The throughput is defined in terms of number of iterations per time unit in correspondence with
the definition of throughput used for SDF [21] and FSM-SADF [19][36]. Although, it would be
more intuitive to define the throughput as the limit of the long-run average number of completed
iterations per time unit, this definition would not suffice as this long-average may not exist for all
scenario sequences. In reality, it may bounce between superior and inferior limiting bounds [19][36].
Therefore, we have adhered to a somewhat cumbersome Definition 8 adopted from [19].

As it may be, the worst-case throughput of an SDF-PFSM-SADF specification can be determined
by using the associated Max-plus automata triple restricted to a regular sublanguage of Sp∗ defined
by the parameterized scenario FSM similarly as done for FSM-SADF in [19]. We adopt the context
to that of SDF-PFSM-SADF. In particular, the worst-case throughput of an SDF-PFSM-SADFG
is equal to the maximum cycle mean (MCM) of the so called throughput graph of that SDF-
PFSM-SADFG. In parlance of Max-plus automata theory, the throughput graph corresponds to
the communication graph of the maximal matrix among the tensor product matrices of particular
worst-case evaluation matrices of (90). For more details we refer to [16]. However, these products
need not to be computed and the throughput graph can be constructed directly using the worst-case
evaluation matrices and the scenario FSM as follows.

Traverse over all scenario FSM states φpu ∈ Φp and add a node to the throughput graph for each
initial token iv ∈ I of the SDF-PFSM-SADFG and label the node with (φpu, iv). Then for every
transition (φpr , φ

p
s) add an edge from node (φpr , im) to node (φps , in) if [Mw−c

Ψp(φps)
]n,m 6= −∞ and set

the weight of the edge to [Mw−c
Ψp(φps)

]n,m.

These weights represent minimal distances between initial tokens between consecutive scenarios.
Over infinite sequences of scenarios these distances will be part of the throughput graph cycles.
Therefore, the inverse of the MCM of the throughput graph defines the worst-case throughput
value.

We exemplify using the running example SDF-PFSM-SADF of Fig. 6. Assume that the respective
scenario SDF-PDFG domains are given as follows

Xsp1
=C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5∩{

p = w1 · w2, w1 + w2 = 2 · x1 − x2,

p ∈ [1, 10], q ∈ [1, 10], w1 ∈ [1, 3], w2 ∈ [1, 4],

x1 ∈ [1, 3], x2 ∈ [1, 5], a1 ∈ [1, 7], a2 = 4,

a3 ∈ [1, 5], a4 = 4
}

(93) Xsp2
= {u = 30} (94)

Equation (93) is a very illustrative example of a domain specification because it shows how graph
parameters (rates and actor firing delays) may exhibit arbitrary dependence on parameters not
present in the graph itself in a nested fashion. E.g. parameterized rate p nonlinearly depends on
parameters w1 and w2 which in turn depend on parameters x1 and x2. The domain (93) in addition
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Figure 16: Performance analysis structures.

defines a default parameter interval for each parameter, e.g p ∈ [1, 10]. For illustration purposes,
in (93) we assume that the scenario SDF-PDFG domain is a subset of the natural scenario subdomain
defined by the constraints encountered while producing the matrix of (80). This way, during the
generation of Mw−c

sp1
, Algorithm 2 needs only to maximize over the entries of (80). The domain

of sp2 encloses only one configuration specified by (94). After running Algorithm 2, we obtain the
worst-case evaluation matrices of the respective parameterized scenarios as specified by (95).

Mw−c
sp1

=


24 −∞ −∞ −∞ −∞ 24

34.5 24 −∞ −∞ −∞ 34.5
34 −∞ 24 −∞ −∞ 34

42.5 32 32 24 −∞ 42.5
42.5 32 32 24 −∞ 42.5
−∞ −∞ −∞ −∞ 0 −∞

M
w−c
sp2

=


0 −∞ −∞ −∞ −∞ −∞
−∞ 30 −∞ −∞ −∞ 30
−∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞
−∞ 30 −∞ −∞ −∞ 30
−∞ −∞ −∞ −∞ 0 −∞


(95)

Using the matrices of (95) we now construct the throughput graph which is partially displayed in
Fig. 16a. The critical cycle of the throughput graph is depicted using bold arrows. The critical cycle
defines the MCM of the throughput graph which attains the value (30 + 24)/2 = 27. The worst-case
throughput ρ equals to the inverse of the MCM, i.e. ρ = 1/27 iterations per time-unit.

At this point one might argue, that given the relatively small cardinality of the scenario domains
of (93) one could enumerate the domains and use techniques of FSM-SADF to obtain the worst-
case throughput value. This claim holds for the running example, but in practice the respective
domains can be vast and enumeration infeasible. Another might argue that instead of computing the
worst-case evaluation matrices of parameterized scenarios via Algorithms 2 and 1, one could simply
construct the worst-case SDFG of a parameterized scenario graph by taking the upper endpoints of
default parameter intervals which would in turn define a worst-case FSM-SADF that can be analyzed.
In response to this, we argue that such an approach (although straightforward) which disregards
complex parameter dependencies defined by the parameterized scenario domain specifications might
incur to much pessimism. For the running example, by merely taking p = 10, q = 10 and u = 30
with a1 = 7, a2 = 4, a3 = 5 and a4 = 4 we obtain an FSM-SADFG with the worst-case throughput
value of 1/70 iterations per time unit which is an over-approximation of the actual throughput value
of 1/24 iterations per time-unit.

The remaining performance metric to be discussed is latency. As for throughput we adopt the
definition from [19].

Definition 9 (Latency). Latency of an PFSM-SADFG relative to the desired period π ∈ R is
defined as the smallest vector λ such that for every timestamp vector sequence γ, for every k ≥ 0,
γ(k) ≤ k · π + λ.

Using the worst-case evaluation matrices of the parameterized scenarios along with the scenario
FSM we obtain latency estimates via the analysis of the reachable part of the state space of all
timestamp vectors γ(k). State space is constructed in a bread-first search manner from the para-
meterized scenario FSM. The state itself is defined as a tuple (Ψp(φp), γ, w) where φp ∈ Φp, γ is
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a Max-plus timestamp vector which is used to initialize the next scenario execution and w is the
state weight. Let tuple (Ψp(φp′), γ′, w′) define a state that is directly reachable from (Ψp(φp), γ, w).
In that case, γ′ = (Mw−c

Ψp(φp′) ⊗ γ)
norm

and w′ = ||Mw−c
Ψp(φp′) ⊗ γ||. Continuation of the state-space

construction will eventually result in revisiting an already existing state if the reachable part of the
state space is finite. The exploration terminates, when there are no more new states. For any path
of length k leading to state (Ψp(φp), γ, w), the actual γ(k) of the associated parameterized scenario
sequence is given by T ⊗γ where T equals to the sum of the weights of the path states. Assuming we
know the throughput of the graph, we can determine the latency in a single traversal of state space
by finding the smallest vector λ such that γ(k) ≤ λ + k

ρ . This equals to determining the maximal

value of γ(k)− k
ρ observed. The exploration needs to consider only acyclic paths in the state space

as any cycle will not be faster than determined by the throughput. We demonstrate this for the
running example in (96) over the state space path of Fig. 16b.

λ =
⊕{

[0, 0, 0, 0, 0, 0], [0, 30, 0, 0, 30, 0]− 27,

[24, 54, 35, 62, 62, 30]− 54, [24, 84, 35, 62, 84, 62]− 81,

[86, 108, 97, 116, 116, 84]− 108,

[86, 138, 97, 116, 138, 116]− 135
}

= [0, 3, 0, 8, 8, 0]

(96)

Paper [19] in Proposition 4.1 gives a practical condition under which the reachable part of the state
space is finite. It says (recast in the context of PFSM-SADF) that for every possible scenario sequence
σ allowed by the FSM and any k > 0 there is some m > 0 such that the matrix µ(σ) contains no
entries −∞. We argue that this condition is too restricting. Imagine a PFSM-SADF/FSM-SADF
with only one scenario defined by an actor with two initial token in the feedback loop. The Max-
plus representation of such a scenario is a 2 by 2 Max-plus matrix with −∞ on the diagonal. And
therefore, any power of this matrix has entries −∞ on the diagonal too and this structure cannon
satisfy the finiteness conditions of [19] although the state-space of such a specification is finite
(we leave it to the interested reader as a small exercise to generate the state space of this simple
structure). We give a new and less restricting condition for fitness of the reachable part of the state
space by following the observation of [36] that any scenario sequence can be formed by concatenation
of cycles of the scenario FSM. First we briefly elaborate on the concept of irreducibility in Max-plus.
A matrix M ∈ Rn×nmax is called irreducible if its communication graph G(M) is strongly connected [26].
The communication graph of M ∈ Rn×nmax , denoted G(M), is a graph with the set of nodes given by
N (M) = {1, . . . , n} where a pair (i, j) ∈ N (M)×N (M) is an edge of the graph if mj,i 6= −∞. For
more details we refer to [26].

Proposition 3. Let Fp = (Sp, F p) be an SDF-PFSM-SADFG. Let C = {ci} by the set of all simple

cycles of F p. If the matrix Mci =
length(ci)⊕
n=1

MΨp(ci(n)) is irreducible for every ci ∈ C where MΨp(ci(n))

is the matrix of an arbitrary instance of scenario Ψp(ci(n)), then the reachable part of the state space
is finite.

Proof. Irreducibility of a Max-plus matrix Mci implies that its eigenvalue is unique [26]. The eigen-
value on the other hand specifies the asymptotic growth rate of a timestamp vector produced by this
matrix (cf. (4)). Therefore, entries of the normalized timestamp vectors generated by M can only
take values from a bounded range because the growth rate is the same for all the entries. Therefore,
in consideration of a scenario sequence as a repetitive pattern consisting only of one FSM cycle,
there will be a finite number of timestamp vectors within the sequence which implies the finiteness
of the state space over one cycle. The argument straightforwardly carries over to concatenations of
different cycles as they are all individually bounded, i.e. no token timestamp can diverge.

Note that to check for finiteness of the state space, it is enough to take the Max-plus matrix
of arbitrarily chosen parameterized scenario instance as the irreducibility criteria only considers the
structure of the matrix (e.g. sparsity), and not the values of particular entries. If we verify the
example with an actor with two initial tokens in a feedback loop where the finiteness criteria of [19]
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Figure 17: Case study.

fails to give an answer against Proposition 3, we see that Proposition 3 gives a positive answer to
the question, which is the correct one.

8 Case study

In this section, we demonstrate the application of our parameterized scenario modeling and analysis
techniques to a realistic case study from the multimedia domain. In particular, we consider the case
of a VC-1 video decoder used in a region of interest (ROI) coding scheme.

ROI coding [23] is a feature of modern video codecs that allows to independently store and
transmit a video in a variety of regions of interest. This feature is useful for achieving higher error
resilience as errors cannot cross ROI boundaries or for saving bandwidth as a ROI can be coded
with more bits to obtain a much higher-quality than that of the non-ROI which is coded with fewer
bits. Typical way of representing ROIs in a video picture is by the use of a rectangular region
that corresponds to a picture slice. Slice is a group of macroblocks. The rectangular mapping of
ROI macroblocks to slices corresponds to the foreground mapping type defined within the flexible
macroblock ordering scheme (FMO), know as FMO Type 2 [23]. We exemplify using the the picture
from the Foreman sequence shown in Fig. 17b. In the sequence the region of interest is the fore-
man’s face represented by the rectangular “ROI slice”, while the background is represented by the
“Background slice”. To achieve this representation, at the encoder side the video is preprocessed
by a face detection algorithm, which gives the relative position of the foreman’s face. Thereafter,
the face and the background regions are embodied into separate slices, encoded (possibly by using
different quality settings) and stored/transmitted.

In VC-1 coding, three different types of slices are supported: I, i and Ii slices. In an I-slice
all macroblocks are encoded in the Intra mode. In an i-slice all macroblocks are encoded in the
Inter mode. In an Ii -slice all macroblocks are both Intra and Inter coded. The types of slices
naturally represent three modes of operation of the decoder shown in Fig. 17a adopted from [4]. Each
mode is represented by a different SDF-PDFG according to our parameterized scenario modeling
technique. Each SDF-PDFG iteration corresponds to decoding of one slice. Actor VLD implements
the variable length decoder, actor SMB splits macroblocks into blocks, actor MBB splits macroblocks
into blocks, actor INTRA performs intra decoding at the block level, IQUIT implements inverse
integer transform at the block level, actor LOOP implements the deblocking filter at the macrblock
level, actor MC performs motion compensation at the macroblock and actor OUTPUT stores the
decoded slice into the output frame buffer. Graph rates p and q denote the number of macroblocks
in a slice and the number of blocks within a macroblock, respectively. Actor execution times (not
displayed) are adopted from the profiling results of [4].

We proceed in the context of face detection of Fig. 17b where the decoder’s task is to decode
a sequence of images where each image is split into two slices, one being the ROI (foreman’s face)
and the other being non-ROI (background). With two slice types amenable to processing (ROI and
background) and in consideration of the nature of the slices (I, i and Ii), we obtain six decoder
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scenarios: I pROI, ipROI, IipROI, I pbackground, ipbackground and Iipbackground. E.g., scenario I pROI models the
decoding of an I slice capturing the ROI, i.e. the foreman’s face. Relative to the given input frame
resolution, the slice sizes expressed in macrobolocks (parameterized rate p) will differ at runtime,
depending on the distance of the foreman’s face from the capturing device, i.e. camera.

We assume the ROI can be abstracted into an ellipse of known characteristics, i.e. of known
circumference o and eccentricity ε where ξM and ξm are the major and minor axis of the ellipse,
respectively. The ellipse abstraction is a natural representation for a face where eccentricity can be
thought of as a characteristic of a particular face (some faces are more oval than the others) while
the circumference models the distance of the face from the capturing device. The bounding rectangle
of the ellipse defines the actual slice to be decoded. These consideration lead to the definitions of
respective scenario domains. We exemplify with scenario I pROI domain definition (within a picture
of w × h) shown in (97).

XIpROI
=
{
p = (2 · ξM · 2 · ξm)/(16 · 16), p ∈ [1, P ], (97a)

q ∈ [1, 16] (97b)

p′ ≥ µ · P, p+ p′ ≤ P (97c)

o2 = 4 · π2(ξ2
M + ξ2

m), o ≥ O (97d)

ε2 · ξ2
M = ξ2

M − ξ2
m, ε = E, 2 · ξM ≤ w, 2 · ξm ≤ h (97e)

a = aref , b = bref , c = cref , d = dref , (97f)

e = eref , f = fref , g = qref , h = href

}
(97g)

The number of macroblocks p within the slice is given by the area of the ellipse’s bounding rect-
angle (cf. (97a)). Note that the size of a macroblock is 16 × 16 pixels. Depending on resolution,
the picture/frame consists of maximally P macroblocks (cf. (97a)). The number of blocks within
a macroblock q is constrained by (97b). It is known that o is always greater than a certain pre-
defined constant O (cf. (97d)), i.e. O defines the maximal distance from the face to the camera.
Furthermore, ε is equal to a constant E and the ellipse is entirely contained inside the picture/frame
(cf. (97e)). Within a picture, it is assumed that the background always occupies the portion µ of
the picture/frame comprising p′ macroblocks (cf. (97c)). Referent actor execution times (cf. (97f)
and (97g)) were taken from [4] and are expressed in cycles of the STMicroelectronics STxP70 pro-
cessor.

Slices are sequenced as follows. First, I slices of both ROIs are decoded. This corresponds to
the decoding of a complete I picture/frame. Thereafter, a number of i and Ii slices forming i and Ii
picture/frames are decoded. This is first done for ROI and thereafter for the background. In reality,
the number of i frames following I and Ii frames is bounded by the Group of Pictures length. For
simplicity, we approximate this conservatively by allowing an arbitrary long sequence of i slices that
is always followed by one Ii slice for both ROIs. Finally, the FSM revisits the initial state.

From the case study we see the two-level modeling flexibility our parameterized dataflow scenario
concept offers. At the bottom level, within parameterized scenarios, it allows to express data depe-
ndent behavior using parameters, i.e. the behavior of a scenario is defined by the values parameters
attain at run-time. These values depend on the characteristics of the input data (the input signal).
In the case study, this is the relative displacement of the tracked object (face) and the camera and
the ovality of the face. At the top level, the enclosing FSM is used to specify intricate control logic.
In the case study, the control concerns the ordering of different types of slices.

In the exercise, we assume SDTV input format with signal type 480i 16:9 and resolution 720x480
pixels. Thus, w = 720, h = 240 and P = 1620. Furthermore, O = 700, E = 0.6 and µ =
30. For these values using our performance analysis technique presented in Section 7 we obtain a
conservative throughput estimate of 1.44252 ·10−7 slices per cycle. If we were to use the FSM-SADF
techniques using the upper endpoints of default parameter intervals we obtain a throughput estimate
of 1.78516 · 10−7. The comparison shows that our results tightens the FSM-SADF result by 19.19%
due to the fact that FSM cannot be used to express complex data-dependent dynamics of a scenario.
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9 Discussion and Conclusion

In this article, we have presented a novel dataflow formalism that combines FSM with parameterized
dataflow as the underlying concurrency model. An FSM has the natural capability of expressing
intricate control logic governing the application behavior, while parameterized dataflow is very fit
in expressing fine-grained data-dependent application dynamics. The domain concept entails a
modeling flexibility which allows to express analytical relationships between input data (signal)
characteristics and their graph manifestations, i.e. graph rates and actor firing delays.

The model adopts the scenario-based modeling abstraction where the execution of an applica-
tion is interpreted as a sequence of scenarios each modeled by a parameterized dataflow structure
with the attached domain that captures the complex relationships between input signal and graph
parameters. The scenario occurrence patterns are given by the scenario FSM. For a subclass of para-
meterized graphs where SDF serves as the base model, we developed novel techniques for worst-case
performance analysis that by working directly with graph parameters avoid the need for enumeration
of the respective domains.

As future work we plan to fully automate our technique (the exploration Algorithm 1 is performed
manually) and perform detailed scalability analysis. We believe that our technique except in the
tightness of generated worst-case performance estimates can outperform the existing techniques
of FSM-SADF when analysing graphs with large repetition vectors. This is because simulation
of graphs with large repetition vectors incurs a high penalty in time. Furthermore, we want to
remove the restrictions concerning the structure of the input SDF-PDF specifications by performing a
compositional analysis. In the analysis, “problematic” graph substructures would be abstracted into
corresponding two-actor latency-rate structures. Furthermore, using the latency-rate abstraction
as a key part of the compositional analysis approach we aim to explore worst-case performance
analysis of parameterized scenario graphs with a less restrictive parameter change pattern, i.e. where
parameters can change even within the graph iteration.
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