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Abstract

On a multi-radio baseband system, multiple independent transceivers must
share the resources of a multi-processor, while meeting each its own hard
real-time requirements. Not all possible combinations of transceivers are
known at compile time, so a solution must be found that either allows for
independent timing analysis or relies on runtime timing analysis.

This thesis proposes a design flow and software architecture that meets
these challenges, while enabling features such as independent transceiver
compilation and dynamic loading, and taking into account other challenges
such as ease of programming, efficiency, and ease of validation.

We take data flow as the basic model of computation, as it fits the appli-
cation domain, and several static variants (such as Single-Rate, Multi-Rate
and Cyclo-Static) have been shown to possess strong analytical properties.
Traditional temporal analysis of data flow can provide minimum throughput
guarantees for a self-timed implementation of data flow. Since transceivers
may need to guarantee strictly periodic execution and meet latency require-
ments, we extend the analysis techniques to show that we can enforce strict
periodicity for an actor in the graph; we also provide maximum latency
analysis techniques for periodic, sporadic and bursty sources.

We propose a scheduling strategy and an automatic scheduling flow that
enable the simultaneous execution of multiple transceivers with hard-real-
time requirements, described as Single-Rate Data Flow (SRDF) graphs.
Each transceiver has its own execution rate and starts and stops indepen-
dently from other transceivers, at times unknown at compile time, on a
multiprocessor. We show how to combine scheduling and mapping decisions
with the input application data flow graph to generate a worst-case tempo-
ral analysis graph. We propose algorithms to find a mapping per transceiver
in the form of clusters of statically-ordered actors, and a budget for either a
Time Division Multiplex (TDM) or Non-Preemptive Non-Blocking Round
Robin (NPNBRR) scheduler per cluster per transceiver. The budget is com-
puted such that if the platform can provide it, then the desired minimum
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throughput and maximum latency of the transceiver are guaranteed, while
minimizing the required processing resources. We illustrate the use of these
techniques to map a combination of WLAN and TDS-CDMA receivers onto
a prototype Software-Defined Radio platform.

The functionality of transceivers for standards with very dynamic be-
havior – such as WLAN – cannot be conveniently modeled as an SRDF
graph, since SRDF is not capable of expressing variations of actor firing
rules depending on the values of input data. Because of this, we propose
a restricted, customized data flow model of computation, Mode-Controlled
Data Flow (MCDF), that can capture the data-value dependent behavior of
a transceiver, while allowing rigorous temporal analysis, and tight resource
budgeting. We develop a number of analysis techniques to characterize
the temporal behavior of MCDF graphs, in terms of maximum latencies
and throughput. We also provide an extension to MCDF of our scheduling
strategy for SRDF. The capabilities of MCDF are then illustrated with a
WLAN 802.11a receiver model.

Having computed budgets for each transceiver, we propose a way to
use these budgets for run-time resource mapping and admissibility analysis.
During run-time, at transceiver start time, the budget for each cluster of
statically-ordered actors is allocated by a resource manager to platform re-
sources. The resource manager enforces strict admission control, to restrict
transceivers from interfering with each other’s worst-case temporal behav-
iors. We propose algorithms adapted from Vector Bin-Packing to enable the
mapping at start time of transceivers to the multi-processor architecture,
considering also the case where the processors are connected by a network
on chip with resource reservation guarantees, in which case we also find
routing and resource allocation on the network-on-chip. In our experiments,
our resource allocation algorithms can keep 95% of the system resources
occupied, while suffering from an allocation failure rate of less than 5%.

An implementation of the framework was carried out on a prototype
board. We present performance and memory utilization figures for this
implementation, as they provide insights into the costs of adopting our ap-
proach. It turns out that the scheduling and synchronization overhead for
an unoptimized implementation with no hardware support for synchroniza-
tion of the framework is 16.3% of the cycle budget for a WLAN receiver
on an EVP processor at 320 MHz. However, this overhead is less than 1%
for mobile standards such as TDS-CDMA or LTE, which have lower rates,
and thus larger cycle budgets. Considering that clock speeds will increase
and that the synchronization primitives can be optimized to exploit the
addressing modes available in the EVP, these results are very promising.



Samenvatting

Op een basisbandsysteem van een smartphone met multi-radio onders-
teuning delen meerdere gelijktijdig actieve, onafhankelijke radiozenders en
ontvangers onderdelen van de multi-processor hardware. Daarbij moet elke
zender of ontvanger aan strenge real-time eisen voldoen. Omdat niet alle
combinaties van zenders and ontvangers bekend zijn tijdens de ontwerp-
fase, moet er een oplossing gevonden worden voor onafhankelijke analyse
van temporele eigenschappen, dan wel moet die analyse in de smartphone
zelf plaats vinden. Dit proefschrift beschrijft een ontwerpaanpak en soft-
warearchitectuur die aan deze uitdagingen voldoen. Deze maken het mo-
gelijk om diverse ontvangers en zenders onafhakelijk te compileren en dy-
namisch te laden. Bovendien wordt voldaan aan eisen ten aanzien van pro-
grammeerbaarheid, efficiëntie, en effectieve validatie. We kiezen dataflow als
het basis rekenmodel. Dataflow blijkt goed te passen bij het toepassingsge-
bied (radioontangers/-zenders). Ook is van verschillende statische varianten,
zoals enkelvoudig tempo (single rate), meervoudig tempo (multi-rate) en cy-
clostatisch, bekend dat zij sterke analytische eigenschappen hebben. Tra-
ditionele temporele analyse van dataflow kan garanties geven ten aanzien
van minimale gemiddelde doorvoersnelheid van een self-timed implementatie
van dataflow. Omdat ontvangertaken vaak strict perodiek moeten worden
uitgevoerd en bovendien binnen een gegeven maximale wachttijd, breiden
we deze analysetechnieken hiertoe uit, zowel voor periodieke als voor on-
regelmatige bronnen. Ook stellen wij een aanpak voor om de tijdsplanning
(scheduling) te bepalen van de taken van meerdere gelijktijdig aktieve ra-
dioontvangers met in achtname van de hard-real-time eisen. Elke ontvanger,
beschreven als een dataflow graph, heeft hierbij een eigen tempo, en kan
onafhakelijk van andere ontvangers gestart en gestopt worden op de multi-
processor hardware. Wij laten zien hoe de tijdsplanning- en de afbeeldings-
beslissingen kunnen worden gecombineerd, gebaseerd op de analyse van een
afgeleid dataflowmodel , onder veronderstelling van worst-case omstandighe-
den. Daarnaast stellen wij algorithmen voor die voor elke ontvanger een
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tijdsbudget vinden voor statisch geordende clusters van dataflowactoren.
Daarnaast kunnen wij budgetten bepalen voor tijdgebaseerde multiplexing
(TDM) en voor niet-onderbroken, niet-blokkerende Round Robin tijdsplan-
ning per cluster, per ontvanger. Het budget wordt bepaald zodanig dat,
mits de hardware hiertoe uigerust is, de gewenste minimale doorvoer en
maximale wachttijd kan worden gegarandeerd, en zodanig dat de hardware
minimaal wordt belast. Wij lichten een en ander toe aan de hand van
een combinatie van WLAN en TDS-CDMA ontvangers op een prototype
Software Defined Radio platform. De functionaliteit van ontvangers met
dynamisch gedrag, zoals WLAN, kan echter niet eenvoudig worden gemod-
elleerd als een enkelvoudig-tempo dataflowgraaf, omdat in dergelijke grafen
de vuringsregels niet dataafhankelijk kunnen zijn. Daarom stellen wij een
aangepast dataflowmodel voor: Mode-Controlled Data Flow (MCDF), waar-
bij een beperkte vorm van dataafhankelijk gedrag mogelijk is, en tegelijk-
ertijd rigoreuze temporele analyse en budgetering mogelijk blijven. Hiertoe
ontwikkelen wij een aantal technieken om analyse van het temporele gedrag
van dergelijke grafen mogelijk te maken, in termen van maximale wachtijden
en minimale doorvoer. Ook melden wij een uitbreiding van onze tijdsplan-
ningaanpak naar MCDF, en illustreren wij dit aan de hand van een WLAN
802.11a ontvangermodel. Wij stellen een aanpak voor om op basis van de
uitgerekende tijdsbudgetten voor alle ontvangers hulpbronnen (resources)
toe te wijzen en te bepalen of een ontvanger gestart kan worden. Tijdens
het gebruik (run time), wanneer een ontvanger gestart moet worden, wordt
voor elk cluster van statisch geordende actoren bepaald op welke hulpbron-
nen die dient te worden uitgevoerd, zodanig dat verschillende ontvangers
elkaar niet in de weg zitten. Algoritmen gebaseerd op vector bin-packing
maken het mogelijk om, na activering van de ontvanger, deze afbeelding op
de multi-processor uit te voeren, inclusief routering en hulpmiddeltoewijz-
ing op een network-on-chip. In onze experimenten kunnen tot 95% van de
hulpmiddelen worden bezet, waarbij de afbeelding in minder dan 5% van de
gevallen mislukt.

De bovenstaande aanpak is uitgevoerd op prototype hardware. Wij pre-
senteren de prestaties en benuttingsgraad van het geheugen van deze imple-
mentatie, en verschaffen daarmee ook inzicht in de kosten van onze aanpak.
Het blijkt dat de kosten van tijdsplanning en synchronizeren, zonder pro-
cessorspecifieke optimalizaties en zonder specifieke hardwareondersteuning
voor synchronizatie 16.3% van het rekenbudget bedragen voor een WLAN
receiver. Voor TDS-CDMA en LTE is deze overhead minder dan 1%, om-
dat de synchronizatiefrequenties lager liggen. Gegeven de mogelijkheden tot
verdere optimalizaties beschouwen wij deze resultaten als veelbelovend.



Sumário

Num sistema de banda base multi-rádio, múltiplos receptores e transmis-
sores independentes têm de partilhar os recursos de um multi-processador,
ao passo que cada um deve ser executado em conformidade com os seus
requisitos de tempo-real estrito. Como não são conhecidas em tempo de
compilação todas as combinações posśıveis de receptores e transmissores
que serão activadas durante a utilização do dispositivo, uma solução deve
ser encontrada que seja capaz de permitir análise temporal independente de
cada aplicação, ou que, por outra, consiga levar a cabo a análise temporal
em tempo de execução.

Esta tese propõe um método de programação e uma arquitectura de soft-
ware que respondem a estes desafios, permitem a compilação independente
de aplicações e o carregamento dinâmico de código, e tomam em consid-
eração outros desafios, tais como a facilidade de programar a plataforma, a
eficiência da implementação e a facilidade de validação do sistema.

Escolhemos os grafos de fluxos de dados (“data flow graphs”) como base
para o nosso modelo de computação, visto adequarem-se ao domı́nio de
aplicação, e tendo em conta que as suas variantes estáticas (“single-rate”,
“multi-rate” e “cyclo-static”) exibem robustas propriedades anaĺıticas. As
técnicas tradicionais de análise temporal de grafos de fluxos de dados po-
dem fornecer garantias de taxa de transferência mı́nima para execução auto-
temporizada. Visto que as aplicações de rádio podem precisar de garantir
execução estritamente periódica e garantir requisitos em termos de latências,
extendemos as técnicas de análise temporal para mostrar que, em certas
condições, podemos forçar periodicidade estrita na execução de um actor na
execução auto-temporizada do grafo de fluxo de dados, e propomos técnicas
de análise de máxima latência para fontes periódicas, esporádicas e “bursty”.

Além disso propomos uma estratégia e algoritmos de escalonamento
que permitem a execução simultânea de varas aplicações com requisitos
de tempo-real estrito, descritas enquanto grafos “Single Rate Data Flow”
(SRDF). Cada aplicação tem a sua própria taxa de transferência de dados
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e começa e acaba a execução independentemente das outras, em momentos
que não são conhecidos em tempo de compilação, num multi-processador.
Mostramos como combinar decisões de escalonamento e mapeamento com
o grafo funcional da aplicação para gerar um grafo que pode ser utilizado
para uma análise conservativa (“worst-case”) do comportamento temporal
da aplicação mapeada. Propomos algoritmos para encontrar um mapea-
mento parcial para cada aplicação através da criação de agrupamentos de
actores ordenados estaticamente, e da computação de um orçamento de re-
cursos que assume a utilização de um escalonador dinâmico “Time Division
Multiplex” (TDM) ou Round-Robin Não-bloqueante e Não-preemptivo para
cada agrupamento.

Os orçamentos são calculados de tal forma que, caso a plataforma seja
capaz de fornecer a quantidade de recursos estipulados pelo orçamento à
aplicação, então serão garantidas a taxa de transferência mı́nima e a latência
máxima desejadas. Em paralelo, tentamos seleccionar os orçamentos com
vista a minimizar a quantidade de recursos de computação requeridos. Ilus-
tramos a utilização destas técnicas no mapeamento de uma combinação de
receptores para WLAN e TDS-CDMA numa plataforma usada para a pro-
totipagem de soluções para Rádio Definido por Software (Software Defined
Radio – SDR).

A funcionalidade de receptores e transmissores para normas de rádio com
comportamento muito dinâmico – como, por exemplo, WLAN – não pode ser
convenientemente modelada com grafos SRDF, visto que SRDF não é capaz
de exprimir variações de regras de activação de actores que dependam dos
valores dos dados recebidos. Por causa disso, propomos um modelo de com-
putação restrito e adaptado às necessidades do nosso domı́nio de aplicação,
que denominámos Fluxo de Dados com Controlo Modal, ou “Mode Con-
trolled Data Flow” (MCDF), que pode capturar o comportamento depen-
dente dos valores de dados de um transmissor ou receptor de rádio, sal-
vaguardando ao mesmo tempo a habilidade de levar a cabo uma análise
rigorosa do comportamento temporal e a computação de orçamentos de re-
cursos computacionais. Desenvolvemos várias técnicas de análise para carac-
terizar o comportamento temporal dos grafos MCDF, em termos de latências
máximas e taxa de transferência de dados mı́nima. Também fornecemos uma
extensão para MCDF da nossa estratégia de escalonamento para SRDF.
Ilustramos as capacidades de MCDF com um modelo de receptor de WLAN
802.11a.

Tendo calculado os orçamentos de recursos por aplicação, propomos
uma forma de utilizar esses orçamentos para o mapeamento de recursos
e análise da admissibilidade das aplicações em tempo de execução. Quando
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é necessário executar uma nova aplicação, o orçamento para cada agrupa-
mento de actores ordenados estaticamente que pertence a essa aplicação é
mapeado por um gestor de recursos aos recursos existentes na plataforma.
O gestor de recursos garante controle estrito na admissão de aplicações, para
impedir novas aplicações de interferir com a realização do comportamento
conservativo em tempo-real de aplicações que já estão a executar. Propomos
algoritmos adaptados de “Vector Bin-packing” para permitir o mapeamento
de aplicações à arquitectura multiprocessador, considerando também o caso
em que os processadores estão conectados por um “network on chip” com
garantias de reserva de recursos, para o qual fazemos encaminhamento e
mapeamento no “network on chip”. Nas experiências que levámos a cabo,
os nossos algoritmos de alocação de recursos podem manter 95% dos recur-
sos ocupados, sofrendo de uma percentagem de falhas em encontrar uma
alocação exeqúıvel em menos de 5% das tentativas.

Uma implementação da nossa arquitectura de software foi levada a cabo
numa plataforma de prototipagem. Apresentamos resultados em termos de
desempenho e utilização da memória, visto que nos ajudam a compreender o
custo de adoptar a nossa solução. Os custos acrescidos da nossa solução em
termos de escalonamento dinâmico e sincronização para uma implementação
que não dispõe de quaisquer optimizações do hardware para melhorar o
desempenho da sincronização de tarefas é de 16.3% do orçamento de ciclos
de execução para um receptor de WLAN num processador EVP a 320 MHz.
Contudo, os custos acrescidos são menos de 1% para normas de comunicação
móveis tais como TDS-CDMA ou LTE, que têm śımbolos de mais longa
duração, e portanto maiores orçamentos de ciclos de execução por śımbolo.
Considerando que as velocidades de relógio ainda vão aumentar e que as
funções primitivas de sincronização podem ser optimizadas para explorar
os modos de endereçamento dispońıveis no EVP, estes resultados são muito
prometedores.
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Chapter 1

Setting the Stage

There was a time when the access to a computer was a luxury shared by
few. A single computing machine owned by an university or business would
service many users, each of which would carefully prepare the programs he
or she wished to submit to the machine. After doing the submission, the
user would have to wait until the machine could find the time in its busy
schedule to process that particular program, and deliver the desired results.

In less than half a century, we find ourselves in a completely different
situation. Computers are everywhere. Many common day tasks, like with-
drawing money, scheduling an appointment, reading the news or listening
to music are handled by computers. We are so used to computers taking
care of things for us that we would have severe problems handling our daily
routine without them. Besides the conspicuous desktops and laptops, there
is a multitude of computers discretely operating inside special-purpose de-
vices. These are the computers in cars, mobile phones, CD/DVD-players,
navigation systems, personal digital assistants, and games consoles, to name
but a few. In technical circles, it is common to refer to computers included
in such devices as “embedded systems.”

Some of the most widespread computer systems in our time are those
residing in cellular phones. The most recent report from the International
Telecommunication Union [45], indicates that, in 2009, there were 67 mobile
phone subscriptions per 100 inhabitants worldwide. The same report indi-
cates that in developing countries this percentage has more than doubled
since 2005. This incredible level of popularity makes the mobile phone a
primary means for deploying new computer-based products and services to
the world population at large. Current high-end cellular phones are capable
of much more than simple wireless voice communication, including function-

1
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alities such as media playing, gaming, personal digital assistant, messaging,
satellite navigation, and Internet browsing. However, all this extra function-
ality still requires connectivity. In fact, a lot of the functionality of most
computing machines these days is somehow related with communications.
This has to do with a new emerging trend referred to as “cloud computing”
[48, 42], where computing resources are virtualized and provided as a ser-
vice across a network to the user devices. If this trend is to gain traction,
as it seems likely, the functionality of consumer devices will tend to become
even more dependent on how well they handle communication. For portable
devices, this communication must be wireless.

This thesis is about solving a design problem on an embedded com-
puter system designed to handle wireless communications. The application
domain is commonly referred to as radio baseband processing. It is an appli-
cation domain where solutions up to this point have mainly been designed
following a very focused constraint-driven approach, using mostly dedicated
hardware, but where the need for an increase in flexibility – the shift from
single-radio to multi-radio systems - leads to an increase in unknown factors
that will require us to employ more software and adopt more optimality-
driven techniques, while trying to preserve as much as possible the essential
characteristics of a constraint-driven design.

One of the main requirements of this application is with respect to its
timing behavior, and because of that, radio baseband processing is said to be
a real-time application. Because of its iterative and data-centric structure,
radio baseband processing is also a streaming application.

In the reminder of this chapter, we will define what a streaming applica-
tion is, what a real-time application is, what is involved in radio baseband
processing, and how it is implemented in hardware. We will then be able to
define the problem that this thesis addresses.

1.1 Streaming Applications

As in [90], we will define streaming application as an application that
operates over a long (potentially infinite) sequence of input data items. The
data items are fed to the application from some external source, and each
data item is processed for a limited time before being discarded. The result
of the computation is a long (potentially infinite) sequence of output data
items. Most streaming applications are built around signal-processing func-
tions applied on the input data set with little if any control-flow between
them.
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Besides software-defined radio, examples of streaming applications in-
clude other communication protocols, radar tracking, audio and video de-
coding, audio and video processing, cryptographic kernels, and network pro-
cessing.

1.2 Real-Time Applications

Many embedded applications are Real-Time (RT) applications. This means
that the correctness of the results produced by executing these applications
depends not only on the functional correctness of the values produced, but
also on the time at which these values are produced. Many computer appli-
cations we see in our everyday life have RT requirements. To enumerate but
a few, we can refer action computer games, video and audio players, GSM
cellular phone transceivers, and controllers for DVD player drives.

The reader may wonder if it is not the case that any computer applica-
tion is an RT application. As a counter-example, we may give a text editor.
Although it is certainly annoying if it takes a long time to re-paginate a
document when the user, for example, changes the font type for the whole
document, the obtained result – a re-paginated document – is still altogether
correct and useful. Per opposition, a first-person shooter game that fails to
produce a certain number of frames per second is unplayable; a Wi-Fi mo-
dem that fails to acknowledge packet reception to the base station within
the time interval specified by the standard will cause the base station to
retransmit the same packet over and over again, effectively making commu-
nication impossible; a DVD lens focus controller that fails to compute in
time the adjustments to the distance between the lens and the disk surface
causes the DVD player drive to be incapable of reading the DVD.

RT applications are a heterogeneous bunch. Classifying an application
as real-time is normally not enough. It tells us only that the time at which
results are produced matters. But what type of timing requirements are
there? And how important is it that we meet them?

To put it simply, timing requirements come in two basic types: through-
put and latency. If we have a throughput requirement, then the rate at
which an iterative application produces results is important, but there may
not be any imposition on the time interval between the arrival of an input
and the production of a dependent output. If the requirement does prescribe
a minimum or maximum time between the arrival of an input data iten and
production of a related output data item, then it is a latency requirement. A
receiver for television broadcast is a good example of an application with a
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throughput requirement, but without a latency requirement. It is important
that the images arrive at a certain rate, in such a way that the illusion of
movement is kept for the viewer, at the right pace, but how much time it
takes for the image to travel from the broadcast source to the TV screen is
not so important (to an extent, as anybody who has experienced hearing the
neighbors celebrate a goal before seeing it ’live’ on her TV set may attest
to). A networked multi-player first-person shooter game is a good example
of an application with a latency requirement: the actions of each player
must affect the game world in such a way as to seem almost instantaneous
to all players.

Temporal requirements can be in the form of a required worst-case tim-
ing, a required best-case timing, or both. Sometimes, the worst-case and the
best case timing requirements coincide. This is sometimes referred to as an
on-time requirement. We will not discuss on-time requirements or best case
timing requirements on this thesis. We will assume that it is always possible
to delay an output event, if that is necessary. In the general case, an RT
application can come with several throughput and latency requirements.

Another important classification of RT applications is related with how
strict the timing requirement is. There are several classifications of RT
applications according to the strictness of the timing requirements. One of
the simplest, and still very useful, divides RT applications into two types:
soft real-time and hard real-time. Hard real-time applications are those
where requirements cannot be infringed under any circumstances, or the
results of the computation will be completely useless, and failure may, in the
case of a life critical system, have catastrophic consequences. In soft real-
time applications, timing requirements can be occasionally disrespected, but
the rate of failures must be kept below a certain maximum.

There is also a class of applications where failing to meet the temporal
requirements may imperil lives. Such applications are often referred to as
critical RT applications. Some authors [52, 12] will only consider hard RT
applications the ones that are critical, and prefer to refer to other applica-
tions with strict requirements as firm RT. From the experience of the author
of this thesis, the latter term is rarely if ever used in industrial settings.

It is important to keep in mind that the classification of a particular
application may be in itself a choice that the designer must make. It is a
choice where the trade-off is between the delivered quality and the cost of
the solution. For instance, because human perception is relatively tolerant
of frame loss in a video signal, and since there is a wide variation between
the average case and the worst case computational load, it is common to
treat video decoding as a soft real-time application, whereas audio decoders,
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since the variation of computational load is much lower and the effects of
losing a sample very noticeable by the user, are more frequently treated as
hard RT applications.

1.3 Software-Defined Radio

Software-Defined Radio (SDR) is a streaming application domain where RT
behavior is often crucial. The term Software-Defined Radio was used for the
first time by Joseph Mitola in 1992 [68]. The idea of SDR is that of relying on
programmable processors to implement, by means of software programming,
some of the stages of the processing involved in the reception/transmission
of a stream of wireless messages, modulated and coded according to a given
radio transmission protocol.

Independently of the particular protocol being implemented, digital radio
transceivers have a similar flow of data through a number of basic functional
blocks, as depicted in Figure 1.1. They are typically implemented in a
number of stages, which include:

• Radio-frequency filtering and conditioning stage, normally done in the
analogue domain;

• Conversion stage, where the analogue signal is sampled and quantized
to a digital signal (in the case of the receiver) or converted from digital
to analogue (in the case of the transmitter);

• Baseband processing stage, where the digital signal is (de)modulated
and (de)coded;

• Application layer, which may include higher layer communication pro-
tocols (eg: a TCP/IP layer on a WLAN), or simple direct use of the
raw received data for some user application, such as voice communi-
cation.

In this thesis, we are interested in software-defined implementations of
the real-time baseband processing stage of digital radio transceivers. The
baseband processing stage of a digital radio is completely done in the digital
domain. It has strict temporal constraints that imply its treatment as a hard
RT application. However, in particular cases, such as Wireless LAN, we will
assume that our concern extends to higher level protocols, as these constitute
jointly with the baseband a single chain of functional dependencies over
which a strict end-to-end real-time requirement is defined.
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Table 1: Layers of a future seamless network.

Layer Link range (log10 m) Up/down Mobility Standards (examples)

Positioning 6-7 d Full GPS, Galileo
Distribution 5-6 d Full DAB, DVB-T/H
Cellular/2G 4-5 d,u Full GSM, IS95, PHS
Cellular/3G 3-4 d,u Full UMTS, CDMA2000, TD-SCDMA
Hot-spot 2-3 d,u Local 802.11 a,b,g, wifi
Personal 1-2 d,u Local Bluetooth, DECT
Fixed 0-1 d,u None POTS

802.11a

UMTS

GSM

DVB-T

GPS

Load estimates (GHz)

11n(MIMO)

HSDPA, MIMO

EDGE, GPRS

Doppler
compensation

Galileo

0.1 0.3 1 3 10 30

Figure 2: Load estimates for various SDR standards.

of acceptable efficiency for some algorithms, we rely on man-
ual vectorization for the time being. Vectorization of several
key algorithms is presented below. In the sequel we assume
a vector processor that supports P (P a power of 2) identi-
cal operations to be executed in parallel (single-instruction
multiple-data (SIMD)), as well as load (store) operations of
P adjacent values from (into) a vector memory.

3.1. Golay correlator for UMTS-FDD

In a UMTS-FDD receiver, a Golay correlator is used for initial
acquisition of a basestation signal. It is basically a filter (1)
designed specifically to detect correlation peaks of the 256-
chip long primary synchronization code (PSC [3]) transmit-
ted during the first 10% of each timeslot on the primary syn-
chronization subchannel (P-SCH) [4]:

y(k) =
255∑

n=0

PSC(255− n)× x(k − n) (1)

with PSC(i) ∈ {−1, +1} and x is one of the sample phases
of the over-sampled input stream of complex (I,Q) numbers.
The structure of PSC(i) allows a factorization of the Golay
correlator into five stages, as shown in (2). The alternative
output stage y′(k) is used only during initial frequency offset
estimation.

Input x, output y, and intermediate signals ys can be
stored in cyclic buffers of appropriate sizes. With sharing of
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Figure 3: A crude SDR architecture with the baseband section split
into filters, modem, and channel codec.

subexpressions, each output y(k) requires 13 complex addi-
tions/subtractions, 14 memory reads, and 14 memory writes
(of complex values). In principle, these operations can be ex-
ecuted in parallel. However, as all operands reside in different
locations of the various buffers, the resulting parallel accesses
to memory become highly irregular, incompatible with vec-
tor processing:

y1(k) = x(k − 6) + x(k − 4) + x(k − 2)− x(k),

y2U(k) = y1(k − 1) + y1(k),

y2L(k) = y1(k − 1)− y1(k),

y3(k) = y2U(k − 8) + y2L(k),

y4U(k) = y3(k − 48) + y3(k − 32) + y3(k − 16)− y3(k),

y4L(k) = y3(k − 48)− y3(k − 32) + y3(k − 16) + y3(k),

y(k) = y4U(k − 192)− y4L(k − 128)

+ y4U(k − 64) + y4L(k),

y′(k) =
∣∣y4U(k − 192)

∣∣2 −
∣∣y4L(k − 128)

∣∣2

+
∣∣y4U(k − 64)

∣∣2 +
∣∣y4L(k)

∣∣2
.

(2)

Vectorization of the Golay correlator becomes rela-
tively straightforward when P successive output symbols
y(k), y(k + 1), . . . , y(k + P − 1) are computed in parallel.
The resulting program follows the sequence of stages of (2),

Figure 1.1: The stages of a radio transceiver (adapted from a table provided
by NXP Semiconductors).

1.4 Multi-standard Multi-channel Radio

In many devices, there is a huge variety of radio standards that need to be
supported. This is both because different standards are developed to handle
different types of data transfers, such as audio and video broadcast, two-
way telephony, two-way data-link, navigation, and because for each type
of communication link there may be several different standards either due
to their different technical merits (range, data rate, latency, vulnerability
to noise, etc) or political and intellectual property-related issues. Differ-
ent standards are also used for different categories of devices. There are 3
main market segments for this type of technology: mobile phones, cars, and
domestic appliances (home). Table 1.1 gives an overview of standards by
market segment and application.

Without an SDR solution, handset makers build their systems by includ-
ing a dedicated solution for each of the standards they wish to support. This
makes the devices inflexible, and does not allow for post-design updates of
the functionality.

Modern smartphones must not only support multiple standards, but
must also allow for multiple standards to be simultaneously active on a sin-
gle mobile handset. To illustrate this point, consider an use-case: a hiker
using her mobile phone to listen to a digital radio station, via a cordless
Bluetooth headset, at the same time using GPS to keep track of her po-
sition for posterior plotting of her itinerary, while in the background her
phone keeps listening to the cellular network for incoming calls, and an
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Type Mobile Car Home

Positioning GPS, Gallileo GPS, Gallileo

Broadcast
FM, DAB, DVB-T,
DVB-H, STiMi

AM, FM, DAB,
ISDB-T,ATSC, DVB-
C, DVB-T, DVB-
HT2,DMB-T

AM, FM, DAB, T-
DMB, DRM, XM, Sir-
ius, ISDB-T, DVB-
T, DVB-H, HD-Radio,
SDARS

Cellular: 3G+

UMTS, HSDPA,
HSUPA, MBMS,
LTE, TDS-CDMA,
CDMA2000, LTE
Advance

Cellular: 2G+
GSM, IS95, IS136,
PHS, EDGE, GPRS

WLAN:
802.11a, 802.11b,
802.11g, 802.11n,
WiMax

802.11a, 802.11b,
802.11g, 802.11n,
WiMax

802.11a, 802.11b,
802.11g, 802.11n

WPAN Bluetooth, UWB, NFC
DECT, Bluetooth,
UWB, Zigbee

Bluetooth

Table 1.1: Profusion of Radio Standards

email client periodically checks for incoming emails. This is hardly a far-
fetched example, and it requires at least 4 independent radio systems to be
active simultaneously.

1.5 Baseband Hardware Architectures

Different types of programs have different patterns of control flow and data
manipulation. A filter function, for instance, is typically computed by sum-
ming up the results of multiplying 1-to-1 the elements of two long vectors
of numeric values; a decoder, on the other hand, normally involves many
bit manipulation operations; a finite-state machine may be dominated by
jumps in the program’s control flow caused by testing the values resulting
from relatively simple arithmetical operations. By designing a processor to
excel at one specific type of function, one can achieve better performance,
at lower area and power cost. This has led to the development of highly
heterogeneous computation platforms, with a set of different programmable
cores optimized to handle domain-specific tasks, combined with Application-
Specific Integrated Circuits (ASIC) accelerators designed to dramatically
speed-up a small set of application-specific functions.

Embedded multiprocessors are not strictly heterogeneous: it often makes
sense to employ several cores of the same type. This is done to exploit
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thread-level parallelism and allow for higher computational capability than
would be allowed in a power-efficient manner by increasing the clock speed
of a single core (this assuming that an increase in clock speed is possible).

In the case of baseband processing, both academia and industry have
independently proposed hardware platforms that follow the general trend
of combining homogeneous and heterogeneous multiprocessing, employing
multiple vector processors, general-purpose processors and hardware accel-
erators.

As described in [8], the baseband processing stage can be further split
into three sub-stages: Digital Filtering, MoDem, and CoDec. These 3 sub-
stages have very different computational characteristics. The Digital Fil-
tering stage has very high computational load (up to 5 billion operations
per second for UMTS), and since the algorithms involved change little from
standard to standard, full programmability is not required, and a simple
configurable filter is sufficient. The MoDem stage (often referred to as the
“inner receiver”) is the most diverse among standards. Algorithms in this
stage often include heavy processing of vectors and matrix operations. This
is typically implemented by means of a vector processor such as the EVP
[8], capable of handling multiply-accumulate operations on many input val-
ues simultaneously. The CoDec stage (also known as the “outer receiver”)
is more oriented towards manipulation of bits and ordering of data, and,
because there is less variety in algorithmic implementation, it is typically
handled by a number of ASIC accelerators. The flow control decisions taken
by the application are typically handled by general-purpose cores, such as
the ones from the ubiquous ARM processor family.

One example of a system architecture for baseband-processing is the Mu-
SIC software-defined baseband chip from Infineon [80], depicted in Figure
1.2. This platform includes 4 digital signal processors – Single-Instruction
Multiple Data (SIMD) cores, which handle vector operations, a programmable
processor, two programmable accelerators, one dedicated to Turbo/Viterbi
(de)coding and the other to FIR Filtering, and an array of RF interfaces.
Each processor has its own dedicated memory, and a common memory is
provided for communication between the cores. The common memory is
multi-banked, thus allowing simultaneous accesses from the various bus mas-
ters through a multi-layer bus.

Another architecture proposed for SDR is the SODA architecture [60]
from the University of Michigan. It has many similarities with MuSIC. It
has recently been redesigned as a commercial ARM Ltd prototype, called
Scotch [94]. Both are depicted in Figure 1.3. As MuSIC, SODA employs
four SIMD cores, marked as PEs (Processing Elements) in the figure, each
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tocol stack software. External memories provide the code
and data storage. A couple of RF interfaces connect the
baseband processor to the digital front ends and provide

66 Computer

for filtering operations as well as channel encoding and
decoding. A general-purpose processor along with a set
of standard peripherals executes the L1 control and pro-
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Figure 1.2: The MuSIC architecture, an SDR solution from Infineon (picture
taken from [80]).

with its own local memory, and a control processor. The Scotch prototype
introduces changes to the communication and memory hierarchy, including
a DMA to handle data transfers between the background memory and the
local memories, and hardware acceleration for Turbo decoding.
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Figure 1: SODA and Ardbeg architectural diagrams, and a summary of the key architectural features of the two designs.

erator dedicated to Turbo decoding. In comparison, in the
SODA system, Turbo decoding is allocated to one of the
four PEs. Both the Ardbeg and SODA PEs have three major
functional blocks: SIMD, scalar, and AGU.

The SODA and Ardbeg PEs both support 512-bit SIMD
operations. The SODA PE only supports 16-bit fixed point

operations, whereas the Ardbeg PE also supports 8-, 32-bit
fixed point, as well as 16-bit block floating point operations.
Support for 8-bit helped lower the power for many of the
W-CDMA kernels that only needed 8-bit precision. Legacy
wireless protocols like 802.11b have many kernels that
operate on 8-bit data and do not require the 16-bit precision

Figure 1.3: The SODA architecture, an SDR solution from the University
of Michigan, and the Scotch prototype (picture taken from [94]).

1.6 Problem Statement

The MuSIC and SODA hardware architectures described in the previous
section were designed with single radio operation in mind. As we have
seen, most of nowadays applications already require several radio standards
to be simultaneously active in the same handset. While it is feasible to
deploy one independent programmable platform per standard, it is more
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than reasonable to expect that, in order to allow maximum flexibility at
the lowest cost, radio transceivers will be required to share computation,
storage, and communication resources.

The problem we wish to address is as follows: given a heterogeneous
multiprocessor hardware platform, designed for baseband processing, how to
manage the hardware resources to allow the simultaneous execution of several
hard-real-time applications, in combinations potentially unknown at compi-
lation time, to provide the guarante that each running application will meet
its temporal requirements, while using as few resources as possible?

Most of the challenges in tackling this problem are related with the
necessity of providing individual temporal guarantees to each one of the
applications. We divide the characteristics that affect the temporal behavior
of an application in two main categories: the algorithmic characteristics of
the application itself and the characteristics of the execution environment,
including both the execution platform and the input stream.

We will discuss these two categories in detail, but to frame that discus-
sion, we need to introduce the notions of determinism and predictability.

1.6.1 Determinism and Predictability

Strictly speaking, a system is said to be deterministic if, for a given input,
every one of its executions will go through the same exact sequence of states.
It is rather useless to rigorously want to apply such a definition to practical
computer systems, which must execute in a world whose fundamental phys-
ical principles are, as far as we know, non-deterministic [43] . As Henzinger
points out in [44], we can often abstract from types of indeterminism that
do not affect program execution in any relevant manner: non-observable
indeterminism in the implementation (i.e. indeterminism, for instance, at
the electronic level that does not affect the behavior of logic gates, or in the
order of execution of non-dependent instructions on a processor), and don’t
care indeterminism (i.e. indeterminism that only affects parts of the state
that we are not interested in). Moreover, Henzinger argues that leaving
non-observable determinism out of the scope of our concerns is useful, as it
prevents over-specification. For the purposes of this thesis, we will assume
that a program or system is deterministic if every time it is executed for
a given input sequence, it produces the same output sequence. By defining
what we consider part of the output sequence we implicitly define what is
left out (the region where ”don’t care” indeterminism may reside).

Another important related notion is the one of predictability. In one
of the few attempts we have seen at formalizing the concept, again in [44],
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predictability is equated to time-determinism, that is, a form of deter-
minism where both the input and output sequences are time-stamped. In
our opinion, this definition is a good starting point, but it is too strict and
misses a couple of important points. As we discussed in section 1.2, for
many RT systems there is no interest in defining the exact times at which
outputs must be computed. Instead of this, one wants to guarantee that
outputs are produced within certain temporal bounds. Another problem
with Henzinger’s definition is that it does not take into account whether
the system can be analyzed for temporal behavior or not. Saying that a
given program is time-deterministic does not imply that general guarantees
can be given about its timing behavior, as providing these guarantees could,
for instance, require executing the program for all the (potentially infinite)
time-stamped input sequences and retrieving all the (potentially infinite)
time-stamped output sequences.

We will consider a system predictable if there is an algorithm that can
provide bounds on the times at which outputs are produced, when a char-
acterization of the timing of the input events is given. This definition still
needs qualification regarding two aspects. The first concerns the tractability
of the analysis algorithm. If the determination of bounds cannot be done
efficiently in time, the system may be predictable, but no temporal guar-
antees can be computed. Because of this, we will only consider a system
usefully predictable if it allows us to compute temporal bounds to its
outputs within reasonable time. This definition is necessarily ambiguous.
We could restrict ourselves to tractable algorithms, but this would leave out
techniques such as the one described in [24] for determining the throughput
of a timed synchronous data flow graph, which is theoretically intractable,
but arguably useful in practice.

The second refinement of the definition is with respect to the tightness
of the temporal bounds that one can determine. Tighter temporal bounds
allow a much better prediction of behavior then bounds that are less tight.
Predictability is therefore not a property that a system either has or not.
Although there are systems that are not predictable at all, some systems
are more predictable than others.

We will illustrate this point with an example. Consider two single-
processor architectures that make use of the same processor core, but with
different memory hierarchies. In the first of them, the processor accesses the
main memory through a cache. Say that, in this case, a memory read can
take anywhere between 2 and 50 processor cycles, depending on whether the
access is a cache hit or a cache miss. The read operation in such an architec-
ture is clearly predictable, as we can bound the time it takes to completion
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of the operation. Now consider the second architecture, where the access to
the main memory is direct, and due to the arbitration technique employed,
it takes exactly 100 cycles for every access. According to our definition (and
according to any intuitive notion of predictability), the second system is
more predictable than the first, as the bound on timing behavior is tighter
(0 cycles of variance against the 48 cycles of variance in the first case).

But this example also illustrates another important point. It is common
for RT practitioners to justify their design decisions in terms of increasing
the predictability of the system. This is often a misleading statement. When
designing an RT system we are, more often than not, interested in the worst-
case temporal behavior of the system. In our example, the worst-case timing
of the read operation is much worse for the second architecture (100 cycles)
than for the first architecture (50 cycles). The second architecture is more
predictable, but the first has a better worst-case behavior. This is another
aspect to take into account. Often we will not be interested in the most
predictable system or implementation, but in the one that provides the best
worst-case temporal behavior. Often the reason why a processor’s data cache
is not a good option for RT systems is not its unpredictability, but the fact
that it does not provide an efficient worst-case temporal behavior.

There is one more thing we wish to say about the relation between
predictability and determinism. Functional determinism (i.e. determinism
in terms of input and output values, without the added complication of
time stamps) is an important enabler of predictable temporal behavior: if
the times at which internal actions take place do not influence the outcome of
the computation, as it is implied by functional determinism, we may make
decisions about scheduling to obtain the desired bounds on the temporal
behavior without worrying about affecting the functional behavior of the
application. This is an important case of separation of concerns, and a
strong reason for preferring functionally deterministic systems over non-
deterministic ones.

1.6.2 Algorithm Specification and Temporal Behavior

It is very difficult to infer anything about the timing behavior of an arbi-
trary concurrent application. One of the most general models for a concur-
rent application is the multi-threading programming model. It essentially
assumes a number of independently executing sequential programs that can
read from and write to the same data storage. The problem with such a
model, as Edward Lee puts it in [56], is that it is “’wildly non-deterministic”.
Lee describes the work of the programmer of a multi-threaded program as
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“to prune away non-determinism”. Reasoning about the functional and
temporal behavior of even the simplest of multi-threaded programs can be
extremely challenging. As anedoctal evidence of this, Lee tells the following
story:

A part of the Ptolemy Project experiment was to see whether
effective software engineering practices could be developed for an
academic research setting. We developed a process that included
a code maturity rating system (with four levels, red, yellow,
green, and blue), design reviews, code reviews, nightly builds,
regression tests, and automated code coverage metrics. The por-
tion of the kernel that ensured a consistent view of the program
structure was written in early 2000, design reviewed to yellow,
and code reviewed to green. The reviewers included concurrency
experts, not just inexperienced graduate students (Christopher
Hylands (now Brooks), Bart Kienhuis, John Reekie, and myself
were all reviewers). We wrote regression tests that achieved 100
percent code coverage. The nightly build and regression tests
ran on a two processor SMP machine, which exhibited different
thread behavior than the development machines, which all had
a single processor. The Ptolemy II system itself began to be
widely used, and every use of the system exercised this code.
No problems were observed until the code deadlocked on April
26, 2004, four years later. It is certainly true that our relatively
rigorous software engineering practice identified and fixed many
concurrency bugs. But the fact that a problem as serious as a
deadlock that locked up the system could go undetected for four
years despite this practice is alarming. How many more such
problems remain? How long do we need test before we can be
sure to have discovered all such problems? Regrettably, I have
to conclude that testing may never reveal all the problems in
nontrivial multi-threaded code.

Lee’s story also illustrates how trying to deal with the difficulties associ-
ated with programming concurrent applications by developping best coding
practices, performing extensive testing, and extensively reviewing the code
can fail.

There is a more formal approach to this problem. We can define a restric-
tive Model of Computation (MoC). A MoC specifies a number of restrictions
to programming that guarantee that any program built according to that
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MoC possesses a number of useful formal properties. Moreover, a well-
designed MoC helps the programmer by providing separation of concerns,
through the definition of a component model.

A very popular MoC for concurrent applications is the Kahn Process
Network (KPN) [49], proposed by Gilles Kahn. A Kahn Process Network
consists of a set of deterministic sequential processes (computing stations)
executing in parallel and communicating through unbounded FIFO channels
(communication lines). Computing stations read and write atomic data to-
kens from and to the communication lines. The read operation is blocking,
meaning that if the reading computing station tries to read from an empty
communication line, it will wait and only resume execution once the com-
munication line contains sufficient data tokens to satisfy the read request.

The main formal property that a KPN possesses is determinism: the
observed output (the sequences of values written to each communication
line) of a KPN is unique for a given input sequence.

Another benefit of KPN is that it provides a separation of concerns
between communication and computation, by defining a component model
with two types of components, computing stations and communication lines.

The temporal behavior of a KPN application is still difficult to infer.
For instance, the problem of determining whether an arbitrary Kahn process
network is deadlock-free or not is undecidable [78] (a problem is undecidable
if it is impossible to construct an algorithm that leads to a correct answer
to the problem for every instance).

Consider the KPN depicted in Figure 1.4. It consists of two computing
stations (CS1 and CS2) and two communication lines (CL1 and CL2). CL1
is written by CS1 and read by CS2, while CL2 is written by CS2 and read
by CS1. It is impossible to determine if this graph deadlocks or not without
fully characterizing the pattern of communication between CS1 and CS2.
For instance, assume that CS2 reads one token from CL1, then writes a
token to CL2, then reads again, and writes again, and so on. Assume that
CS1 operates in a similar way, first reading from CL2, then writing to CL1,
and so on. In this case, both tasks will immediately block in the first reading
attempt, as no data is available. And since both are waiting for the other
to produce data, they will both wait forever and the graph will deadlock. If
instead one of the tasks is changed such that it first produces and only then
consumes, and so on, the graph will never deadlock. This example is very
simple. In practice, a deadlock of this type can occur every time there is
a chain of cyclic dependencies between computing stations, and the actual
occurrence of the deadlock depends on the pattern of reads and writes at
each computing station, which may be non-trivial. In our example, if the
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number of data tokens written or read by any of the tasks would change
for each write or read operation, it would be much more difficult, even
impossible, to determine whether the graph deadlocks or not.

CS1 CS2

CL1

CL2

Figure 1.4: A Kahn Process Network.

The fact that it is impossible to devise a single procedure to determine
whether an arbitrary KPN is deadlock-free makes it difficult to infer any-
thing about timing behavior in a structured manner.

This problem can be addressed by further restricting the MoC. A pop-
ular model for expressing streaming applications is the Single-Rate Data
Flow (SRDF) model [81], also known as Homogeneous Data Flow [58]. In
SRDF, an application consists of a number of sequential processes (actors),
communicating through unbounded FIFO queues (arcs). The difference be-
tween KPN and SRDF is that an actor has well-defined activation and data
consumption/production rules: an SRDF actor only starts executing when
one token is available on each of its input arcs. Once activated, it consumes
exactly one token on each of its input edges and produces exactly one token
on each of its output edges. Also the initial state of each one of the arcs is
part of the specification. Please note that a data flow actor further separates
communication from computation. In KPN, although connectivity is inde-
pendent from computation, the read and write primitives are still expressed
as part of the algorithm of the computing stations. In data flow, the read
and write behavior of the actor is external to (and defined independently
of) its functionality.

Figure 1.5 depicts a simple SRDF graph. It is composed of two actors,
A and B, and two arcs, one written by A and read by B and another arc
written by B and read by A. The number of data tokens present in an arc
at the beginning of the execution must be specified by the programmer.
In graphical notation this is commonly represented by black dots on the
arcs. In our example, there is one initial token in the arc from B to A. It is
easy to determine that our example SRDF graph does not deadlock: at the
beginning of execution, only A can execute, since only A has enough input
data (the initial token in the arc). A activates, consumes the token in the B
to A arc and produces a token in the A to B arc. This ends the activation of
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A. B can now activate, consumes the token in the A to B arc and produces
a token in the B to A arc. The graph is back at its initial state. Since we
have explored all possible states of the graph, it cannot deadlock. It is easy
to see that the graph will never deadlock if one or more initial data tokens
are present in any the arcs. Also, if more then one initial token is present in
these arcs, both A and B can activate at the same time, resulting in parallel
execution.

A B

Figure 1.5: A Single-Rate Data Flow Graph.

SRDF graphs have a number of interesting formal properties. For in-
stance, it is very simple to determine whether an SRDF graph deadlocks or
not [82]. Furthermore, if worst-case execution times are available for each
actor activation, then it is possible to compute a fundamental limit to the
rate of activation of SRDF nodes [82], sufficient buffer space to guarantee
rate-optimal execution and determine rate-constrained static schedules [77].
However, this rich set of formal properties comes at a steep prize: SRDF is a
very restrictive MoC in terms of what it can express, requiring every actor to
always produce and consume the same amount of data for every activation.
Many extensions to SRDF have been proposed to relax these constraints
(see, for instance [58, 10, 9, 26]). However, by relaxing constraints, one
also loses some of the formal properties. This is essentially the balancing
game one plays when selecting or defining a MoC. An important thing one
should have in mind is that a MoC should be designed to target a certain
application domain. This will ultimately define what formal properties are
necessary, and what constraints to what can be expressed are tolerable. As
we shall see, our SDR domain is challenging, since it requires more expres-
sivity than SRDF can handle, and requires almost all the formal properties
of SRDF. We will further discuss the properties and limitations of SRDF
and other data flow MoCs in Chapter 3.

1.6.3 Resource Sharing and Timing Behavior

The Dining Philosophers Problem [18] was originally proposed by Edsger
Dijkstra in 1965 as an examination question. It is one of the most famous
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concurrency problems, and it illustrates some of the difficulties related with
resource sharing by non-communicating concurrent processes.

Five philosophers are sitting at a table doing one of two things: eating or
thinking. While eating, they are not thinking, and while thinking, they are
not eating. The philosophers sit around a round table. Each philosopher has
a bowl of spaghetti that always replenishes itself automatically. There is a
fork between each pair of adjacent philosophers. Since spaghetti is difficult
to eat with just one fork (these are clearly not Italian philosophers!), each
philosopher must use two forks to eat. Each philosopher can only use the
forks on his immediate left and immediate right. This is depicted in Figure
1.6.

Figure 1.6: The dining philosophers problem (as illustrated by Dijsktra in
[18]).

The problem consists in determining how should we manage the forks
(the shared resources) in such a way that none of the philosophers will starve.

The danger of deadlock exists because when a philosopher decides to
eat, he needs to obtain two shared resources to proceed. One deadlock state
occurs, for instance, when each philosopher is holding his right fork, waiting
for the philosopher on his left to release the other fork.

A solution involving a time-out of the wait is not without problems. Let
us assume that there is a rule stating that a philosopher puts down a fork
after waiting one minute for the other fork, and waits a minute further before
making his next attempt at seizing the forks. Such a scheme eliminates
deadlocks, strictly speaking, as the system can always advance to a different
state, but it suffers from the problem of livelock: if all five philosophers
pick up their left forks at the same time, then all will wait one minute until
releasing their forks, then all will wait for one more minute, then all will
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pick their left fork once again, and so on.
A simple solution has been proposed for the Dining Philosophers Prob-

lem: introduce a waiter. Every time a philosopher wishes to eat, he must ask
permission to the waiter before taking any forks. Every time a philosopher
finishes eating, he must inform the waiter. The waiter knows where all forks
are. He can deny a philosopher his request if four forks are in use at that
time. It is still necessary that the waiter grants requests in such a way as
to guarantee that all philosophers get their chance to eat (by, for instance,
giving priority to new requests from philosophers that had their previous
request denied). Moreover, this solution is still dependent on the behavior
of each of the philosophers. If one of the philosophers, for instance, never
stops eating, or forgets to return the forks to the table when he goes back
to thinking, the adjacent philosophers will never be able to eat, because the
waiter has no means to enforce good philosopher behavior.

The Dining Philosophers problem shows how it is important to carefully
manage sharable resources to avoid (potentially system wide) deadlocks,
but it does not directly involve quantitative temporal requirements, only
the qualitative requirement that eventually all threads (philosophers) must
continue to make progress.

We will now provide a small quantitative example that illustrates the
dependence of the timing behavior of a streaming application on another
one, when a processing resource is shared between the two.

Consider a processor running an application A. Assume that A is a
streaming application that must execute the same function f() within 4µs
of the arrival of each token of input data. Say that the input stream is
strictly periodic, with a token arriving every 5µs, and that we know that
f() takes exactly 2µs to execute. If A has a processor fully dedicated to
it, then it is easy to see that A will be able to always meet its temporal
requirement: in the initial state, the processor is idle when the first input
token arrives, so it can start executing f() immediately; f() then takes 2µs
to execute, producing output within the required 4µs interval; after this,
the processor is back to the idle state; a new input will only arrive 3µs after
f() has finished executing for the first input. At that moment in time, the
system is in the same state as at the beginning, and the processing of the
second token (and any token after that, for that matter) will just repeat the
same sequence of steps as for the first.

Consider now that at a certain point in time, a function g belonging to
a second application B starts running on the same processor. Can we still
say anything about the temporal behavior of A? This will depend primarily
on the way that the sharing of resources is handled. Let us assume that
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the processor uses a simple non-preemptive round-robin schedule: f() gets
to execute, and after f() is done, g() gets to execute and so on. If no
input data is available, then the application blocks until data arrives. Can
we still say anything about the temporal behavior of A? Well, not without
saying something about the temporal behavior of B. If, for instance, g()
takes 100µs to execute for each input data token, it is guaranteed that
A will fail to meet its requirement, since every time the processor is busy
executing g(), as many as 100/5 = 20 input tokens will arrive for application
A, and will have to wait to be processed much more than 4µs. But if g()
takes only 1µs to execute, any bounding of the temporal behavior of A will
still depend on characterizing the activation pattern of g() If, instead, g()
receives a new input token every 1µs, A will always meet its requirement,
while if g() receives a new input every 100µs, A will not be able to keep up
with its source, since either the first or the second time that B gets access to
the processor, input tokens for A will be accumulating while the processor
is blocked waiting for the next input token for g() to arrive. If nothing is
know about the pattern of input token arrival for B, then the behavior of A
becomes unpredictable.

It is important to keep in mind that the temporal dependence of A on
B is introduced by a specific scheduling policy applied to a specific shared
resource. If instead we would have chosen to use a time-sliced preemptive
scheduler, we would be able to specify the temporal behavior of A by know-
ing the temporal arrival pattern of its input, the execution time of f(), the
period of the time slicer and the size of the time slice allocated to A. For
instance, if the period of the time slicer is 4µs and A gets a slice of 3µs, then
A would always be capable of meeting its time requirement independently
of the behavior of B. By choosing an appropriate scheduler, we no longer
have to worry about the properties of other applications, and our problem
becomes how to determine the amount of resources (the size of the slice)
that we must allocate to A in order for it to meet its real-time requirements.

This example illustrates another important point: if independence of
temporal behavior per application can be guaranteed, then guaranteeing
the temporal behavior of each application is much easier. This, again, is a
case where we can profit from separation of concerns. Systems where the
temporal behavior of each application is completely independent of others
are often referred to as composable (with respect to temporal behavior)
[52, 6, 39]. Multi-processor embedded systems have been proposed [41] that
exhibit this property. One pre-requisite of such a system is that either pro-
cessors only service one application or must be capable of implementing
pre-preemptive scheduling policies. As we shall further explain in Chapter
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2, it is one of the original requisites of our software architecture that it must
be able to support non-preemptive schedulers, largely because of hardware
legacy issues - the SDR multi-radio software architecture should be deploy-
able in existing platforms designed for single radio operation. We will define
our ambition in terms of application independence as to provide a platform
that is composable in terms of worst-case temporal behavior. This
means that, although a running application execution time may be affected
by other running applications, its worst-case behavior can be inferred in-
dependently. Such property is enough to provide the temporal guarantees
that our radio applications require. We will come back to this subject in
Chapter 2.

1.7 Sketching an approach

In the previous sections, we have discussed how the algorithm and the exe-
cution platform affect the temporal behavior of an application.

Our approach to the design of the software architecture directly addresses
these two main sources of unpredictable behavior. We address algorithmic
(application intrinsic) unpredictability by employing a strict Model of Com-
putation. We address resource sharing (inter-application) unpredictability
by carefully designing the run-time resource management framework to pre-
serve the composability of worst-case temporal behaviors of individual ap-
plications.

Our main decision in terms of resource management is that we will use
a central resource manager (equivalent to the waiter in the Dining Philoso-
phers example) and a budget-based approach, i.e., applications must explic-
itly request to a centralized manager for any resources needed to meet their
real-time requirements (such as the Dining Philosopher had to ask to the
waiter for the forks). A consequence of this is that it must be possible to
determine beforehand the amount of resources that an application needs to
execute within its real-time requirements.

This need makes data flow MoCs specially interesting. The reason for
this is that data flow graphs can be used both as a programming paradigm
with strong analytic properties, and as a temporal analysis technique. Start-
ing from a data flow model of the application, one can apply data flow to
data flow transformations that represent the temporal behavior caused by
specific aspects of the implementation. To illustrate this, consider the SRDF
graph represented in Figure 1.7(a). It consists of just two actors. A is a pro-
ducer and B is a consumer. This graph represents how data flows between A
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and B without making any assumptions about the timing of operations. Let
us now assume we implement the functions that correspond to the activation
of A and B in a specific type of processor core. We can now measure the
execution time of both functions, and annotate the graph with these. This
is depicted in Figure 1.7(b). We can now make predictions about execution
times. For instance, for each activation of A and the subsequent activation
of B that consumes the token produced by that activation of A, we can
conclude that the complete time from start to finish is of 100 + 200 = 300
processor cycles. This assumes that communication is instantaneous and
that both B and A have full access to the resources of their specific pro-
cessors. Since no cycles are present, A and B can execute in parallel, the
maximum throughput of the system is conditioned by the slowest of the two
(we will assume that only one activation of B can be active at a time, which
can be modelled in the graph by an edge from B to B with one token). The
period of production of outputs (the results of each activation of B) is 200
processor cycles.

Other details of the implementation can be modeled with an SRDF
graph. In Figure 1.7(c), we have added an arc from B to A with three
initial tokens on it. Such an arc models a limitation to the capacity of the
buffer of the arc from A to B: because of the fixed rate of production and
consumption of actors, the number of tokens on a cycle is always conserved
[82]. Therefore, if B to A starts with 3 tokens and A to B with 0, there can
never be more than three data items in the arc from A to B, in any valid
state of the system. A buffer space of 3 does not affect the throughput of
the system, and the period will still be 200 cycles. However, if this buffer
space had been 1, A and B would not be able to execute in parallel, as
each would need to wait for the other to transport to each input arc the
single token present in the cycle to proceed, and the period would be 300
cycles. More refinements are possible. In Figure 1.7(d), we add to our graph
an actor called BUS to represent the latency of communication between A
and B through a system bus. Also, the buffering between A and BUS is
represented by an arc from BUS to A (A must block while waiting for the
transfer operation to start, therefore there is a buffer size of one between
A and BUS) and the buffering at the side of the consumer is represented
by an arc from B to BUS with 3 initial tokens (the amount of buffer space
reserved for the arc at the side of the consumer).

Having our MoC coincide with the timing analysis model, which can
also be used to model the attributes of the hardware resources, is a very
powerful technique. It allows us to use the same abstraction through the
whole programming chain; it allows us to drive the whole process from
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Figure 1.7: Four different SRDF models of the same application, each refin-
ing the assumptions about implementation of the previous one.

programming to compiling and scheduling to resource allocation and actual
implementation in a correct-by-construction manner.

We also want that as many decisions about resource usage as possible
are taken during compilation, in order to alleviate the amount of work that
needs to be done at runtime, and allow for the utilization of more complex al-
gorithms. Therefore, our problem involves deciding what should be done by
an online resource management framework – essentially an embedded real-
time multi-processor multi-tasking operating system – and what should be
done by the compilation chain that produces the resource budgets. The solu-
tion to our problem is a proposal for a comprehensive software architecture,
including an application programming model, a programming/compilation
flow, and an operating system.

1.8 Contributions

To find a solution to our problem that meets the application requirements,
we must extend the state of the art in many aspects, including real-time pro-
gramming and analysis models, real-time analysis techniques, and real-time
scheduling and resource management techniques. Specifically, the contribu-
tions to the state-of-the-art presented in this thesis are the following:

• Software Architecture Design: We propose a comprehensive soft-
ware architecture, including an input language, a programming model,
a compilation flow and runtime support, that allows running multiple
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hard-real-time radio applications, which may start and stop indepen-
dently of each other, on a multiprocessor system.

• Data Flow Analysis: We show that a rate-optimal static periodic
schedule can always be found to bound the start times in the self-timed
execution of any synchronous data flow graph. We use this property
to determine tight worst-case bounds on actor firing times of any self-
timed execution of a data flow graph. We establish a property that
allows us to characterize the temporal behavior of the self-timed ex-
ecution of an MRDF graph in the presence of external sources with
periodic, sporadic and bursty behavior. By applying these two prop-
erties we develop techniques for analyzing latencies and the transient
behavior on the self-timed execution of synchronous data flow graphs.

• Data Flow Modeling: We define a new data flow model – a re-
striction of Integer-Controlled Data Flow [11], which we call Mode-
Controlled Data Flow. It allows deadlock-free execution, static buffer
size dimensioning, and quasi-static scheduling, while being able to ex-
press the typical data-dependent operation of radio baseband trans-
ceivers. We develop a new technique to analyze the temporal behavior
of a Mode-Controlled Data Flow graph across data-dependent transi-
tions. We show the usage of Mode-Controlled Data Flow by using it
to model a WLAN 8.11a receiver and a DVB-T receiver.

• Data Flow Scheduling: We develop algorithms for static-ordering
of actors in MRDF graphs and quasi-static-ordering scheduling of ac-
tors in MCDF graphs. We also propose algorithms to determine how
to allocate resources to these (quasi-)static-ordered schedules in such
a way as to guarantee the hard RT requirements, while minimizing
resource usage.

• Resource Management: We propose algorithms for run-time real-
time processor allocation at application start time on a multiprocessor.
These algorithms combine processor allocation, network routing, and
the allocation of time slices for a multiprocessor system with a network
on chip.

• Demonstration of Concepts: We designed a prototype implemen-
tation of the proposed software architecture on a demonstration board.
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1.9 Thesis organization

The remainder of this thesis is organized as follows: in chapter 2, we make
an evaluation of the problem as a whole, derive a set of design requirements
from product requirements, and propose an overall structure for the compi-
lation flow and runtime software infrastructure of our solution. In chapter
3, we review data flow models, and their analytical properties, and intro-
duce mathematical notation for representing data flow graphs. In chapter 4,
we present our methods for temporal analysis of the self-timed execution of
synchronous data flow graphs, and how they can be used to give throughput
and bounded latency guarantees for self-timed execution of a synchronous
data flow graph. Chapter 5 proposes a method to compute, at compile-time,
resource budgets per radio, based on their Single-Rate Data Flow representa-
tion. Chapter 6 proposes a new data flow analysis model, Mode-Controlled
Data Flow, that enables the expression of the data-dependent functional
behavior of some radio transceivers, while still allowing for strict real-time
analysis. This chapter also extends the scheduling techniques presented in
Chapter 5 to handle Mode-Controlled Data Flow. Chapter 7 discusses the
problem of allocating resources to a transceiver at run-time, based on pre-
computed budgets. Chapter 8 describes a prototype implementation of the
software architecture, including the resource manager, run-time application
support, and compile-time compiler/scheduler. Chapter 9 states our con-
clusions and suggests future work.



Chapter 2

Software Framework

We present and analyze the requirements of our problem and design a Soft-
ware Framework (SF) that addresses all of them. We start the chapter by
defining terminology and describing our hardware architecture model. We
then inventorize the requirements that the SF must address. This is fol-
lowed by a discussion of the chosen Model of Computation and the overall
resource management strategy, including the choice of local schedulers and
task synchronization techniques. From this, we identify the main software
components of the solution and present an overview of the complete SF,
including the compilation chain and the runtime support. We then give a
quick overview of components such as the programming language and code
generator, which will not be discussed in further detail in this thesis. We
compare our proposal with related work and close the chapter by stating
our conclusions.

2.1 Terminology

We will generically refer to a program that processes the baseband layer of a
wireless communication channel as a transceiver. A transceiver can be in-
stantiated independently of other transceivers. We will refer to a transceiver
instance as a job. Each transceiver is programmed as a set of concurrently
executing tasks. Since transceivers are streaming applications, the topol-
ogy of the communication (i.e. the flow of data and control) between tasks
is rather rigid. We refer to the set of tasks and the set of communication
channels between them as the task graph of the transceiver. We say that
a transceiver is installed in a device if the device is capable of instantiating
the transceiver and executing that instance. We say that a transceiver is

25
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activated in a device when at least one instance of the transceiver is cur-
rently prepared to execute – i.e. all its processes and data structures have
been instantiated and the transceiver instance is only waiting for input data
– or executing.

It is also useful to define more precisely what we mean by Software
Framework. We consider part of the software framework all the software-
related concepts and components that are required in order to program,
compile and run applications on the hardware platform. This includes:

1. A model of computation;

2. A programming language;

3. A scheduling and resource management strategy;

4. Application runtime support libraries (e.g., for inter-task communica-
tion and synchronization, for job and task instantiation);

5. The runtime resource management and scheduling programs;

6. A temporal analysis model;

7. Temporal analysis algorithms and tools;

8. Compilation/mapping algorithms and tools;

9. Interfaces to the external world.

Our Software Framework must contain all of these components.

2.2 Hardware Architecture

In this thesis, we will assume as target template architecture a heterogeneous
multiprocessor system with many similarities to the architectures presented
in Section 1.5.

Our multiprocessor system template for baseband decoding, as depicted
in Figure 2.1, includes one or more general-purpose ARM cores, to handle
control and generic functionality, one or more vector processors, each an
instance of the EVP [8] core, to handle detection, synchronization and de-
modulation, and one or more Software Codec processors, that take care of
the baseband coding and decoding functions. Besides these, the system has
an array of RF interfaces, and a memory-mapped interface to the external



2.2. HARDWARE ARCHITECTURE 27

world. Each processor has its own data and code memory, and caching is
not employed. The processors are interconnected by a multi-layer AHB bus,
with every processor having both a master and a slave port connected to
this multi-layer bus. All masters are connected to all slaves, and therefore
communication via posted writes to the consumer’s memory is always pos-
sible between any two cores. This system template contains the essential
characteristics of a programmable platform for baseband. It does not use
caches because the improvement on average memory access performance
that they provide is not interesting for a hard RT system, that must be
designed assuming worst-case timings. Our system employs dedicated local
memories per processor core and a simple, fully-connected multi-layer bus
with slave-side arbitration to keep the communication flexible, predictable,
and easy to handle.

A fully connected multi-layer bus architecture will not scale well with the
increase in the number of processors. In later sections of this thesis, we will
extend our architecture with a Network-On-Chip, the Æthereal [31], that is
designed to scale with the number of processors, since it does not require
full connectivity. The Æthereal Network is particularly interesting for hard
RT applications since it allows for the reservation of network resources per
channel to provide connections with guaranteed throughput and latency.

SOC Architectures and Infrastructures, Orlando Moreira, 31, January, 2008 
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2.3 Requirements

In this section we will inventorize a number of important concerns that our
SF must address. These will be listed together, categorized only by domain
of concern, to avoid over-categorization. It should be obvious from the
language employed whether a specific item relates to a strict requirement, a
directive, or a nice-to-have property.

1. Application requirements

(a) The temporal behavior of jobs must be guaranteed. A
proof must be given that a transceiver meets the RT requirements
of the specific radio standard it implements.

(b) Jobs must be able to start and stop independently. Dur-
ing device operation, a request to start executing a job may be
randomly issued by an external source, at unknown times. Other
jobs may already be active at the time. For instances, a user is
transferring information with a wireless LAN and tracking her
position with GPS, when a phone call arrives. A new transceiver
instance has to be activated, but the other radios should continue
to operate without hiccups.

(c) The observable behavior of a running job cannot be af-
fected by other jobs. This relates to our discussion on in-
dependence of behavior in Section 1.6.3. The SF must assume
that a different set of jobs may be present in each device, and
that the composition of this set may change dynamically due to
post-deployment upgrades. This implies that worst-case tempo-
ral behavior has to be defined independently of the particular
combination of transceivers installed. Also, combining jobs in
an execution environment should not result in changes to their
functional behavior (for instances, we should prevent that a job
corrupts the memory space of another job).

(d) Transceivers must be independently deployable. This is
because post-hardware deployment upgrades (such as new trans-
ceivers being downloaded into the device by the end-user) and
differentiated user settings (different set of transceivers per de-
vice) must be possible. It implies that we either resort to sepa-
rate compilation of transceivers, or transceivers are compiled in
the embedded platform itself.
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2. Hardware requirements:

(a) The SF must cope with the limitations of the hardware.
Some processing cores cannot support preemption. Because of
this, and although preemptive scheduling is desirable in the sense
that it allows us to more effectively isolate the behavior of trans-
ceivers, the SF must provide both preemptive and non-preemptive
scheduling mechanisms. If available, memory virtualization can
be used to guarantee that a job cannot corrupt the memory of an-
other job, protecting the system against violations of requirement
1c. Many embedded processors, however, do not have support for
memory virtualization or even memory protection. This means
that requirement 1c cannot be fully met without rigorously in-
specting the code that runs on these processors.

(b) Transceivers must be programmed in such a way as to
allow efficient mappings of algorithms. Programming re-
strictions and primitives provided to the programmer should al-
low optimized usage of the hardware resources. This includes,
for instances, the ability to exploit core intrinsics such as the
special-purpose instructions of a vector processor.

3. Software Productivity requirements:

(a) Programming transceivers should be easy and intuitive.
The goal of the system is to process baseband radio. The common
structure of a baseband processing algorithm should be expressed
in a natural and concise way.

(b) The SF should make it simple to re-use software com-
ponents. Identical software functionality that is required by
many transceivers (such as inter-process communication libraries)
should be provided as runtime support libraries, and not require
repeated independent coding for each transceiver.

(c) Mapping should be as much as possible a “push button”
process. Although it is easy for engineers to understand intu-
itively the major concepts behind temporal analysis of concurrent
applications, many of its intricacies are difficult to understand
and even more difficult to keep in mind at all times. Moreover,
the more human intervention we have in the design flow, the
more likely it is that errors are introduced. We want our SF to
encapsulate as much as possible the RT analysis techniques, and
require as little error-prone manual work as possible.
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(d) Porting transceivers to a different hardware platform
should be easy. Headset makers do not want to be tied to a spe-
cific hardware platform, fearing to lose technological leadership
of the headset market to a single hardware supplier, as happened
to PC makers with respect to Intel in the 80s/90s [65]. Because
of this, companies like Nokia and Samsung have relied on the
strategy of having more than one hardware supplier for modems.
To make this strategy work, headset makers must have the abil-
ity to quickly adapt software to a different hardware platform.
However, in the last few years, the industry has moved more and
more to a model where the handset maker expects the provider of
the modem hardware to also provide all the modem software, and
portability may become less of an issue for the headset maker. In
this case, portability becomes an internal issue for the hardware
provider, who must internally handle several different hardware
architectures, both to the need for different architectures corre-
sponding to different capability classes and price points, the on-
going evolution of the hardware architectures, caused by changes
and additions to the radio standards.

(e) Testing and debugging should be simple and manageable.
The complexity of the verification process increases rapidly with
the amount of use-cases that must be supported. Our applica-
tion requires support for a very large number of combinations
of transceivers installed in a device, and an even larger number
of combinations of active jobs. If a specific bug happens for a
specific combination of jobs, it may be very difficult to detect it
and localize it. Debugging becomes easier when behavior inde-
pendence, as per requirement 1c, is guaranteed.

4. Deployment requirements

(a) It should be possible (and reasonably easy) to port the
SF to a different platform During the development process of
a hardware platform, many architectural decisions may change.
The SF should be designed to adapt easily to hardware platform
changes. Moreover, it is frequent for subsequent releases of the
same embedded architecture to feature more cost-efficient hard-
ware solutions. The SF should remain usable through these iter-
ations. Another aspect of this is that a headset maker is likely to
employ different hardware architectures from different hardware
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suppliers, as explained with respect to requirement 3d. An easily
portable SF also makes transceivers easier to port.

(b) All components of the SF should be useful in isolation,
to allow for partial or phased adoption. One of the main
problems in trying to popularize a new framework is that it is of-
ten difficult for the potential adopters to accept at once a drastic
change to their way of working. If there is a specific advantage
for the potential adopter in a single component of the SF, adop-
tion can be phased. The fact that the adopted component offers
palpable benefits individually, but larger (synergistic) benefits as
part of a whole integrated SF makes it a good introduction to (or
a “Trojan horse” for) the complete framework.

2.3.1 Addressing the Requirements

Because timing predictability (item 1a) is the most important and strictest
of our requirements we will take our major decisions in such a way as to
address it, while taking the others into account whenever possible. We
have identified in Chapter 1 that the choice of Model of Computation and
Resource Management framework are the essential ingredients in defining
a predictable system. We will discuss these two choices in the following
sections.

2.4 Model of Computation

We opt to use SRDF as our base MoC, with extensions added to fit the
application domain and fix the shortcomings of the model, without losing
its valuable formal properties. Our extension to SRDF is called Mode-
Controlled Data Flow and will be extensively discussed in Chapter 6. As a
MoC, Single-Rate Data Flow has many advantages. We already hinted at
this in Chapter 1. For now, we will simply list its advantages and disadvan-
tages without further discussion (a more in-depth look at the properties of
data flow models will be postponed to Chapter 3). The main advantages of
Single-Rate Data Flow are:

• The execution model is data-centric, which follows the natural struc-
ture of streaming applications (therefore fitting requirement 3a);

• It separates the specification of the activation rules and data produc-
tion/consumption patterns of a task (an actor) from its functional
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specification; this separation of concerns eases the programming effort
(requirement 3a) and improves transceiver portability (requirement
3d);

• Strong formal properties: SRDF is functionally deterministic, tempo-
rally monotonic and amenable to temporal analysis techniques, which
addresses our main requirement, predictability (requirement 1a); more-
over, schedules can be statically ordered, reducing runtime scheduling
overhead, in accordance to our need for efficient mappings (require-
ment 2b);

• SRDF can be both employed as a timing analysis model and a pro-
gramming model; the same abstraction can be used for all stages of
the mapping process; a correct-by-construction analysis model can be
easily and automatically derived from the specification, and resource
allocation decisions can be modeled as SRDF components; this allows
for resource budgeting – enabling our strategy to accomplish indepen-
dent job behavior (requirement 1c) – and automation of the mapping
process (requirement 3c)

The main limitations of Single-Rate Data Flow are:

• Shortcomings of the analysis techniques. At the moment we
started our work, the temporal analysis of SRDF graphs which were
not fully-statically scheduled was limited to the analytical determina-
tion of a minimum guaranteed throughput on long execution runs. La-
tency analysis techniques were not available, nor were there any ways
to guarantee strictly periodic behavior of output production without
applying a fully static schedule. In Chapter 4, we propose extensions
to existing analysis techniques to deal with these shortcomings.

• Limited expressive power. SRDF actors must have fixed rates of
data production/consumption. Many extensions to SRDF have been
proposed that improve on this limitation. These, however, tend to
lose all the interesting temporal properties. We will give an overview
of these data flow models in Chapter 3. In Chapter 6, we will pro-
pose Mode-Controlled Data Flow (MCDF), a extension designed to
conveniently express SDR applications, without losing the ability to
perform temporal analysis.

To use our extension of SRDF as a programming model, we must enforce
the usage of SRDF constructs. This calls for a programming language that
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restricts the user to specify valid data-flow programs. For this effect, we will
employ the LIME [55] language. We will give a quick overview of the basic
syntax of LIME in section 2.7 of this chapter and extend it to MCDF in
Chapter 6.

2.5 Resource Management Options and Choices

The decisions involved in scheduling the resources of a multi-processor sys-
tem include deciding where to execute tasks (processor assignment) and
when to execute tasks (task ordering and task start times). It is common to
classify resource management frameworks with respect to when each decision
is taken, that is, whether it is done when the application code is generated
(compile time) or while the system is in operation (runtime). When a deci-
sion is made at compile time, it is referred to as a static decision. When a
decision is made at runtime, it is referred to as a dynamic decision. We will
discuss options and motivate the choice taken for our SF design in Section
2.5.1.

Another decision to be taken is with respect to the way in which task
synchronization is achieved across the multi-processor system. This is re-
lated with the decision on whether scheduling is handled in a centralized,
global fashion, or in a distributed, local way. We wiil discuss our choices in
Section 2.5.2.

2.5.1 Deciding when to decide

A survey of the traditional techniques to handle resource management and
scheduling of data-flow graphs in a hard-real-time multi-processor system
can be found in [82]. These techniques range from fully static to fully dy-
namic scheduling. Our particular scenario, where jobs are expected to enter
and leave the system at any time during operation (stated in requirement
1b), is not considered.

At one end of the range, we have fully static scheduling. In fully static
scheduling, the time at which all activities concerning the execution of a pro-
gram happen is decided at compile time. Combined fully static scheduling of
all jobs does not work here because it requires that an exact, unchangeable
combination of jobs is known at compile time, fixed execution times for all
tasks, fixed communication times for all channels, and a global concept of
time across the system.

At the other end of the range, we have fully dynamic scheduling, were
all activities are scheduled at runtime. Fully dynamic scheduling is in gen-
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eral possible but impractical. One reason is that it causes high runtime
overheads and makes it particularly difficult to give guarantees of temporal
behavior. Another reason is that it requires the system to efficiently handle
task migration, without affecting the worst-case temporal behavior of jobs.

A traditional way of scheduling a single job is by employing static as-
signment. In static assignment, processor assignment is done at compile
time, but local scheduling is handled at runtime. This does not work in our
case, as this strategy cannot take into account that, at the time that a job is
activated, an unknown mix of jobs is already running, and using resources.
For static assignment to work, the state of the system at the time that the
job is started must be known.

An extension of the previous solution that is used in cases where several
different combinations of jobs need to be supported is the configuration-
based approach (used, for instances, in CPA [85]). For each job combination,
a separate optimal static schedule is derived at compile time and stored in
a look-up table. During operation, when there is a request to start a job,
the runtime system checks which jobs are active and selects the appropriate
configuration. This approach has insurmountable problems with respect to
our requirements. First, a different configuration has to be stored for each
combination of jobs, and therefore the number of configurations may grow
exponentially with the number of jobs that must be supported (although
in practice there are many job combinations that do not need to be sup-
ported). Second, according to our requirements, not all jobs are known at
design-time, which means that every time a new job is added to a system,
it will force a whole new set of configurations for all jobs to be compiled.
Third, as different configurations must assign different resources to each
job, it becomes difficult to assure continuity of execution of already running
jobs during reconfiguration. If continuity is required, as stated on our re-
quirement 1c, then either there are means for task migration with real-time
guarantees,or a configuration must be generated for each transition of a job-
mix to another, instead of for each job-mix, which becomes unpractical for
even very small sets of jobs.

Our approach is derived from static assignment. However, whereas in
traditional static assignment the mapping of tasks to processors is done at
compile time, in our case this is done at a specific phase during runtime. At
compile time, we calculate independent resource budgets per job. During
runtime, two distinct types of temporal phases alternate: reconfiguration
phase and steady-state execution phase. During reconfiguration phases,
resources are allocated to jobs, while during steady-state phases resource
allocation is fixed. Our strategy can also be compared with semi-static tech-
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niques [16], where system execution is divided in phases and the resource
allocation is redone at the beginning of each phase. But while in semi-static
systems phases are typically periodical, in our case reconfiguration phases
are triggered when there is a request to start a job.

Our strategy has some similarities with time-multiplexing scheduling
strategies such as gang scheduling [19]. Our jobs correspond roughly to
a gang in gang scheduling, i.e. a group of tasks with data-dependencies.
There is, however, an important difference in granularity: in gang schedul-
ing, time-multiplexing is global, i.e., the temporal slots are uniform across
all processors, and synchronized context-switching is required. In our case,
time-multiplexing is local to each individual processing element and may be
obtained by using any single-processor scheduling mechanism such as Time
Division Multiplex (TDM), Round-Robin or even Rate-Monotonic. Our
scheduling strategy has several advantages over gang scheduling: it does not
require the global synchronization of context switching that gang scheduling
needs and which hinders design scalability; it leaves less unused resources
because its time-sharing is very fine-grained; and it allows for different local
scheduling mechanisms to be used in different processors.

In Table 2.1 we summarize the scheduling strategies we inventorized.
From left to right, decisions become more dynamic. The more dynamic the
scheduling decisions become, the more difficult it is to give guarantees of
timing behavior. With our approach, it is impossible to guarantee that a
job can always be started, as it may be the case that there are no resources
available at the time the start request arrives or, even in the case that the re-
sources are available, it may be that it is impossible to find the solution: the
resource allocation problem, as we shall show in Chapter 7 is NP-complete,
even when we disregard memory fragmentation, and, therefore, it is not pos-
sible to exhaustively search for all possible resource allocations in efficient
time.

This level of dynamicity, however, is necessary because of requirements
1b and 1d. However, it must be noted that these requirements are only with
respect to the scheduling between different jobs. Since we know at compile
time each job in its entirety, we can alleviate the amount of work that must
be done at runtime by statically clustering and ordering tasks within a job.
This will be discussed at length in Chapters 5 and 6. For the moment, we
just would like the reader to retain the idea that task ordering is handled
dynamically between jobs, but as statically as possible within a job.
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Fully Static Static Configuration Our Fully
Static Order Assignm. Based Approach Dynamic

Processor Static per Semi-
Assignment Static Static Static Configuration Dynamic Dynamic
Task Static per Semi-
Ordering Static Static Static Configuration Dynamic Dynamic
Task
Scheduling Static Dynamic Dynamic Dynamic Dynamic Dynamic

Table 2.1: Scheduling strategies with respect to the time of decision.

2.5.2 Task Synchronization

On a typical embedded heterogeneous multiprocessor platform, a general-
purpose processor is used to start task executions on all processing ele-
ments (accelerators and digital-signal processors), employing the assistance
of DMAs to transfer data from one local memory to another. The basic
model of execution is essentially single-threaded, with the application con-
trol residing singly on the general-purpose processor, acting as a master. All
other processing elements are slaves, their tasks being activated by remote
procedure calls. Some concurrency can be exploited since the control thread
does not need to wait for a remote procedure call to terminate before invok-
ing another procedure call on a different processing element. This strategy
may work well when a single, static job is being executed, since not many ac-
tivities are executed in parallel, and they are all part of the same application.
The main limitation of such an approach is that the master is a centralized
resource that stands in the critical path of all data transactions and control
flow going on in the system. Every time a slave finishes an activity, either it
must report it to the master (normally through an interrupt), or the master
continuously polls the slaves for events. This does not scale well with an
increase in the number of parallel tasks. We opt for distributed data-driven
synchronization, where producing tasks inform their consuming tasks about
availability of data through a FIFO abstraction, and consuming tasks are
activated once data is available. If more than a single task is available at a
time, a scheduler local to the processing element decides according to some
pre-defined policy what task should execute. Not only does this solve the
problem of scalability well, it also fits much better our chosen programming
model.

However, not all accelerators are “smart” enough to be used in this
way, as their only mode of operation is based on the remote procedure call
model, that is, a master indicates to them where input data in memory, were
output data must be placed, and starts execution. Such hardware does not
support a distributed synchronization model. In such cases, the master/slave
interface must be applied. We will say that in such a case the schedule of
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the slave is hosted by a master, meaning that the master activates a task in
the slave and then waits for the task to complete. It is assumed that each
slave has a single master, and, since the master waits for task completion,
reservation of the host’s resources corresponds to reservation of the slave’s
resources.

2.5.3 Choice of Local Schedulers

It is important to choose well the scheduling policies of the local task sched-
ulers. In a budget-based approach, the local schedulers must enable the
reservation of resources and give subsequent guarantees of worst-case com-
pletion times. In other words, there must be a direct computable relation
between a resource allocation and the worst-case completion time of the
task. Also, it is necessary that a schedulability check can be performed such
that, knowing all the tasks allocated to a processor, their timing require-
ments and their resource allocation, one can infer whether all tasks will be
able to meet their real-time constraints. This requirement rules out popular
schedulers, such as preemptive fixed-priority. In a preemptive fixed-priority
scheme, each task is assigned a priority and, whenever a task is ready, it will
run once no tasks of higher priority are ready. In this scheme, a very high
priority task can effectively delay indefinitely the execution of other tasks,
depending on the time it becomes active and on how often it is activated. It
is therefore impossible to give any guarantees of timely completion to any
other tasks in the system without fully characterizing the best and worst
case of the activation pattern of the high priority task. Consider for in-
stances that the highest priority task on a given processor, task A, is ready
whenever a task B running on a different processor generates data. If B gen-
erates data faster, then task A becomes ready more often, and less resources
will be available to any other ready task running on the same processor as
A, potentially resulting in these other tasks missing their deadlines. This is
what is called a timing (or scheduling) anomaly [64], i.e., situations where
local worst-cases do not entail a global worst-case.

Although there are many schedulers that fit our requirements, in this
thesis we will consider just two, not so much because of their efficiency, but
for their simplicity. In processors that support preemption, we will employ a
Time-Division Multiplex (TDM) scheduler, also known as a slicing scheduler.
A TDM scheduler has a period P and a list of assigned tasks. Any task A
assigned to the scheduler is assigned a time slice SA. For every period, the
scheduler will allow the task to run for a time interval equal to SA, before
preempting it to execute the next task in the list. Knowing the period
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of the TDM scheduler, the worst-case execution time of a task – the time
interval between the moment when the task becomes ready and termination
when the task runs alone in the processor without resource sharing – and
its allocated slice, one can compute the task’s worst-case response time –
the time interval between the moment when the task becomes ready and
termination when running under supervision of the local scheduler – see [7].
Also, checking if a slice SA can be mapped to a TDM scheduler with period
P amounts to checking if the sum of SA with all other slices already allocated
to the processor is lesser or equal to P.

TDM requires a preemptive scheduler. For processors not capable of
implementing a preemptive scheduler, we will use a Non-Preemptive Round
Robin (NPRR) scheduler. An NPRR scheduler keeps a list of the tasks
allocated to it. It constantly goes through that list, checking at each time if
a task is ready. If it is, it allows it to execute until it terminates. If the task
is not ready, it checks the next task for readiness, and so on. If we know the
worst-case execution time of a task we know that the worst-case response
time of the task is equal to the sum of the worst-case execution times of all
tasks allocated to the processor.

We will discuss how to compute response times and assign resource bud-
gets to tasks on TDM and NPRR schedulers in Chapter 5.

2.6 Proposed Solution Overview

Our approach addresses the two main sources of unpredictable behavior. We
address algorithmic (application intrinsic) unpredictability by employing a
strict concurrent Model of Computation (MoC). The restrictions of the MoC
are enforced by a programming language, LIME [55].

We address resource sharing (inter-application) unpredictability by de-
signing the runtime resource management strategy to preserve the worst-case
temporal behavior of each application. A centralized resource manager en-
forces admission control and budget-based resource allocation. Jobs (trans-
ceiver instances) explicitly request at start time for the resources they need
to meet their HRT requirements. Our MoC supports this, by doubling as a
temporal analysis model where budgeting decisions can be represented, as
already explained in Chapter 1.

We will now give an overview of the proposed Operating System and
Programming Flow.
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2.6.1 Operating system

Figure 2.2 depicts the software stack running on our system. Accelerators
are not depicted as their schedule is hosted by the programmable cores.
The interface to start/stop baseband jobs is done via the Resource Manager
(RM). The RM receives requests from a Central Resource Manager (CRM),
as specified in the multi-radio functional architecture proposed in [1]. Upon
an admission control request, the RM demands the Configuration Manager
(also specified in [1]) for a transceiver budget, precomputed by our program-
ming flow (described below). The RM tries to find a mapping that fits the
available platform resources. If it finds one, it informs the CRM that the
job may be started. The CRM can now instruct the RM to start the job.
The RM invokes the Network Manager API to resume all tasks of the job.
All cores support a FIFO API, and a local scheduler. In our demonstrator,
the Network Manager, local Schedulers and the FIFO API are part of NXP
Semiconductors’ Sea-of-DPSs (SoD), a lightweight streaming framework for
multi-DSP systems. It provides three OS modules: Streaming Kernels
are single-core task schedulers; the Streaming API provides FIFO read-
/write primitives; the Network Manager API creates and destroys tasks
and FIFOs on the streaming kernels.
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Figure 2.2: Multi-radio runtime.
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2.6.2 Programming and Mapping Flow

The resource budget of a transceiver is computed at compile time as depicted
in Figure 2.3. The input consists of LIME-compliant C components, imple-
menting DF actors, and the Transceiver Graph, a LIME file that describes
how components communicate and synchronize with each other. From these,
the front-end extracts a DF model, which is fed to the scheduler. The sched-
uler also requires a machine description file, describing types and number
of cores in the multiprocessor, their local scheduling mechanism, memory
segments available, and their sizes. Another input of the scheduler is a
partial mapping that provides the scheduler with bindings of LIME compo-
nents to processor types, and worst-case execution times for all (compiled)
components. This file can also be used by the designer to constrain the
DF scheduler, by providing maximum values for any budgeted resource.
The scheduler also requires the programmer to specify timing requirements.
These are minimum throughput and/or maximum latencies.

The scheduler searches for a resource budget for each task and channel
that meets the HRT requirements and fits in the multiprocessor resources.
It clusters tasks, and computes, per cluster, a quasi-static execution order
(explained in Chapter 6), on-line scheduler settings, and, per inter-cluster
FIFO, a buffer size requirement. It outputs these as a Transceiver Budget.
It also generates a description of how the original software components are
ordered within the clusters. The Code Generator uses this to generate a
task wrapper per cluster, with calls to the Streaming API for inter-cluster
communication and synchronization. Each task wrapper is fed to a core-
specific C compiler to generate dynamically loadable object code.

In summary, the DF scheduler solves resource conflicts within a trans-
ceiver through clustering and ordering, while the Resource Manager and the
Streaming Kernels resolve resource conflicts among transceivers, based on
budgets computed at compile time. This division of tasks is done consider-
ing that extensive analysis of dependencies cannot be performed efficiently
at runtime, and that the set of transceivers is not known at compile time.

2.7 Programming Language

LIME [55] is designed to express applications in multiple data flow MoCs.
LIME uses two distinct formats. The graph is specified by an XML schema
called GXF. Communication and synchronization are modeled through ports
attached to LIME components.
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A component is a C module, corresponding to a DF actor. The signal-
processing algorithms are specified in C99. Processor-specific intrinsics
and platform-specific accelerators can be used. This organization isolates
platform-specific functionality in some components and supports portabil-
ity of others.

The signature of the top-level C function in a module declares the ports
and firing conditions of the actor. Each argument corresponds to a port
and it is declared as an array of the type of data received. The variable
name provides the name of the port; the array size specifier represents a
production/consumption rate, while the presence/absence of the const type
modifier indicates whether the port is input or output. For example, a Gain
actor that outputs the value of the input sample multiplied by 5 can be
written like this:

void Gain ( const i n t in [ 1 ] , i n t out [ 1 ] )
{out [0 ]= in [ 0 ] ∗ 5 ; }

Since arguments are arrays and C arrays are pointers, the Code Gener-
ator is free to decide how to implement data acquisition and pass pointers
to the C function. It can use any FIFO implementation (blocking/non-
blocking, in-place/double buffered, with/without synchronization), or even
replace FIFOs for local buffers when combined with clustering. This enables
automatic code generation of all the communication primitives, allowing re-
use and improving efficiency of the implementation. It also makes the code
easier to port, as different, hardware-specific implementations of FIFO com-
munication can be generated by simply re-writing the Code Generator.

Consider the SRDF graph in Figure 1.7(a). Assume the prototypes of A
and B are

void A ( i n t out [ 1 ] ) ;
void B( const i n t in [ 1 ] ) ;

If the DF scheduler creates separate tasks for A and B, the generated
task wrappers, using the Streaming API, are:

void taskA ( channel f i f o ){
i n t ∗p ;
i f ! ( p = checkWrite ( f i f o ) ) re turn ;
A(p ) ;
Write ( f i f o , p ) ;
updateWrite ( f i f o ) ; }

void taskB ( channel f i f o ){
i n t i ;
i f ! ( checkRead ( f i f o ) ) re turn ;
i=Read( f i f o ) ;
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B(& i ) ;
updateRead ( f i f o ) ; }

Instead, A and B can be clustered and statically ordered and the Code
Generator instructed to produce a single task wrapper:

void taskAB (){ i n t i ; A(& i ) ; B(& i ) ; }

In this example, clustering saves 1 task wrapper, 6 API calls per firing,
and 1 FIFO, and reduces the number of task to be scheduled (and therefore
the scheduling overhead) by 1 task.

The output port of actor A can be connected to the input port of B by a
GXF statement equivalent to “FIFO f1 connects port A.out to port B.in”.

Besides FIFOs, LIME allows actors to connect to initialization edges,
for delay initialization; and to state edges, to carry actor state across firings
(actors are otherwise stateless).

LIME can express several DF flavors. Strict compliance to MCDF is
verified by checking the construction rules described in Chapter 6. Since
actors are written in C, processor intrinsics and core-specific C compiler
optimizations can be exploited. This cannot be done for dedicated languages
like StreamIt [90]. As it does not explicitly code communication with API
calls, nor allows interleaving of communication with computation, LIME
enables automatic extraction of MCDF analysis models, and generation of
tasks per cluster with platform-specific communication. This is not possible
for API-based extensions of C such as MPI [37] (although MPI could be
used as target for code generation instead of SoD).

2.8 Related Work

There have been a few programming models and software architectures pro-
posed for SDR.

One software architecture that is widely used for SDR for military ap-
plications is the Software Components Architecture (SCA) [47], proposed
by the the United States Army. Its uses an object-oriented programming
model. It allows allocation of resources to a transceiver at start time. It
does not require a disciplined use of concurrency, relying on general-purpose
multi-threading. Consequently, temporal analysis is not possible, and timing
must be verified through exhaustive simulation of use-cases.

Another software architecture for SDR is proposed in [36]. It uses a
dependency graph for compile time scheduling. The graph is drawn man-
ually by the designer, and may not conform to the actual implementation,
which is programmed using multi-threading primitives. Real-time analysis
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is not performed, and validation is done by extensive simulation. For run-
time support, it employs a multi-threaded operating system, and time-sliced
schedulers. This work does not address multi-radio. The authors stress that
verification of the multi-threaded program is the most complex, time con-
suming part of the design.

In [61], a programming language and flow that handle single-radio are
presented. HRT behavior is specified by a synchronous language. Syn-
chronous languages have difficulties in dealing with multiple independent
applications: separate compilation, if not impossible, is difficult; pipelined
behavior and the effect on timing of runtime schedulers is not handled. The
argument against using synchronous languages in this context is rather long,
mostly because many attempts have been made recently to partially fix the
shortcomings of the approach; in [92] the subject is discussed in more detail.

2.9 Conclusions

HRT multi-radio requires a budgeted, admission-controlled approach to re-
source management, that isolates the worst-case behavior of transceivers.
Furthermore, a choice must be made about what part of resource allocation
is done at compile time, and which part of resource allocation must be done
at run time.

HRT guarantees require a Model of Computation amenable to tempo-
ral analysis. We depart from Single-Rate Data flow which we will extend
to Mode-Controlled Data Flow, which is customized to express the limited
data dependent behavior of transceivers. The MoC must provide a tempo-
ral analysis model that can double as a programming model to express the
limited concurrent behavior of transceivers and hardware budgeting deci-
sions. DF also acts as a component model that isolates computation from
communication, making task interfaces explicit, and improving code porta-
bility. With LIME, the programmer can write highly optimized sequential
code for each task, and specify communication at an abstract level. This
reduces concurrency coding errors, and saves programming effort, as calls
to communication APIs are automatically generated at compile time.

The importance of combining a strict MoC with a programming language
that enforces it to provide correct-by-construction models for temporal anal-
ysis and scheduling cannot be overemphasized. We previously tried direct
usage of concurrent libraries such as SoD’s by the programmer, with manual
extraction of a DF model by an expert. This was a long and hard process,
riddled with errors and wrong assumptions. Furthermore, as mapping deci-
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sions were manually implemented, guarantees of a correct final implementa-
tion could not be given, and extensive testing was required. Our approach
greatly reduces the verification effort and enables HRT guarantees.
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Chapter 3

Data Flow Computation
Models

In the previous chapters, we justified our choice for data flow as the basis
for our model of computation. There are many flavors of data flow. The
ones that are interesting to our work are mostly the variants that exhibit
behavior which is independent of data values, because of their analytical
properties and the variants with deterministic, data value dependent behav-
ior, because of their expressivity. In this chapter, we present the notation
for data flow models that we will use throughout the thesis, and the proper-
ties of several data flow computation models that are relevant to our work.
This is reference material and can, for the most, be found elsewhere in the
literature [81],[58],[82], [10].

3.1 Graphs

A directed graph G is an ordered pair G = (V,E), where V is the set
of vertexes or nodes and E is the set of edges or arcs. Each edge is
an ordered pair (i, j) where i, j ∈ V . If e = (i, j) ∈ E, we say that e is
directed from i to j. i is said to be the source node of e and j the sink
node of e. We also denote the source and sink nodes of e as src(e) and
snk(e), respectively.

3.1.1 Paths and Cycles in a Graph

A path in a directed graph is a finite, nonempty sequence (e1, e2, ..., en) of
edges such that snk(ei) = src(ei+1), for i = 1, 2, ..., n− 1. We say that path

47
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(e1, e2, ..., en) is directed from src(e1) to snk(en); we also say that this path
traverses src(e1), src(e2), ...src(en) and snk(en); the path is simple if each
node is only traversed once, that is src(e1), src(e2), ...src(en), snk(en) are all
distinct; the path is a circuit if it contains edges ek and ek+m such that
src(ek) = snk(ek+m),m ≥ 0; a cycle is a path such that the subsequence
(e1, e2, ..., en−1) is a simple path and src(e1) = snk(en).

3.2 Multi-Rate Data Flow Graphs

A Multi-Rate Data Flow (MRDF) graph —also known as Synchronous Data
Flow [58], [82] — is a directed graph, where nodes are referred to as actors,
and represent time consuming entities, and edges are referred to as arcs and
represent FIFO queues that direct values from the output of an actor to
the input of another. Data is transported in discrete chunks, referred to
as tokens. When an actor is activated by data availability it is said to be
fired. The condition that must be satisfied for an actor to fire is called
the firing rule. MRDF prescribes strict firing rules: the number of tokens
produced (consumed) by the actor on each output (input) edge per firing is
fixed and known at compile time. During an execution of a data flow graph,
all the actors may fire a potentially infinite number of times.

In a timed MRDF graph, actors have a valuation t : V → N0; t(i) is the
execution time of i. Arcs have a valuation d : E → N0; d(i, j) is called the
delay of arc (i, j) and represents the number of initial tokens in arc (i, j).

Arcs have two valuations associated with them: prod : E → N and
cons : E → N. prod(e) gives the constant number of tokens produced by
src(e) on e in each firing and cons(e) gives the constant number of tokens
consumed by snk(e) in each firing.

A timed MRDF is defined by a tuple (V,E, t, d, prod, cons).
Figure 3.1, we depict a MRDF graph with three actors A, B and C.

Arrows represent arcs, with the arrowhead indicating the direction from
production to consumption. Both arrow endpoints are annotated with the
production/consumption rate of the producing/consuming actor in that arc.
The black dots in an arc represent the delay (the number of initial tokens)
on the arc.

Radio transceivers are applications that process data streams. This often
involves computations on indefinitely long data sequences. Because of this,
we are mainly interested in MRDF graphs that can be executed in a non-
terminating fashion. Consequently, we must be able to obtain schedules that
can run infinitely using a finite amount of physical memory. We say that
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Figure 3.1: Multi-rate data flow example.

a MRDF is correctly constructed if it can be scheduled periodically using a
finite amount of memory.

If there exists a fixed number of firings of each actor in a given MRDF
graph that brings the graph to its initial token distribution and the graph
is deadlock-free (how to check this will be explained in Section 3.3, then it
can be scheduled periodically, and thus it can run within a finite amount of
memory. If r is a vector of integer values such that each r(i) represents the
number of times that an actor i must be executed to bring the graph to its
initial token distribution, then, for each edge (i, j) ∈ E it must hold that
the number of tokens produced over r(i) firings of the producing actor i,
and the number of tokens produced over r(j) firings of the consuming actor
j is the same, that is:

r(i).prod(i, j) = r(j) · cons(i, j). (3.1)

The set of equations thus obtained is normally referred to as the balance
equations of a graph.

It is convenient to represent the balance equations in matrix form.
The MRDF graph G(V,E, t, d, prod, cons) can be represented by its

topology matrix, T . The topology matrix contains one column per each
node b in N and one row per each edge a in E. The value of element (a, b)
is given by:

T (a, b) =


prod(ea) if src(ea) = vb ∧ snk(ea) 6= vb

−cons(ea) if snk(ea) = vb ∧ src(ea) 6= vb

prod(ea)− cons(ea) if snk(ea) = src(ea) = vb

0 otherwise

(3.2)

where ea ∈ E and vb ∈ V , a ∈ 1, 2...|E| and b ∈ 1, ...|V |.
The system of balance equations of Equation 3.1 can then be expressed

in matrix form as:

T .~r = ~0 (3.3)
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where ~0 is a column vector full of zeros, and ~r is a column vector.
The repetition vector for a correctly constructed MRDF graph with

|V | actors numbered 1 to |V | is a column vector of length |V |, and cor-
responds to the smallest positive integer vector ~r which is a solution of
Equation 3.3. If each actor va is fired a number of times equal to the ath

entry of ~r, then the number of tokens per edge of the MRDF graph is equal
to what it was in the initial state. The repetition vector r is useful for gen-
erating cyclic schedules for MRDF graphs. In addition, it will only exist if
the MRDF graph is correctly constructed (see [57]). The repetition vector
can be computed in polynomial time [57].

For the graph in Figure 3.1 the repetition vector is [3 2 1]. If the
production rate of actor C were 4 instead of 3, the balance equations would
not have a solution other then a null vector.

An iteration of an MRDF graph is a set of actor firings such that each
actor in the graph executes a number of times equal to its repetition vector
entry. Therefore, in an iteration, each actor fires as many times as indicated
by the repetition vector.

In this thesis, we will consider only correctly constructed MRDF graphs.
An MRDF is said to be First-In-First-Out (FIFO) if tokens cannot over-
take each other in an actor. This means that between any two firings of the
same actor, the first one to start is always the first one to produce outputs.
If s(i, k) is the start time on a given execution of an MRDF graph of iter-
ation k of actor i and t(i, k) is the execution time of iteration k of actor i,
then the MRDF is FIFO if for any execution of the MRDF graph it holds
that

s(i, k) + t(i, k) < s(i, k + 1) + t(i, k + 1). (3.4)

If an actor either has a constant execution time or belongs to a cycle
with a single delay for the MRDF, it conserves the FIFO property (see [79],
[3]). We will only consider MRDF graphs that have the FIFO property.
FIFO MRDF graphs are deterministic, since for each actor, independently
of the time of arrival of tokens to the input queues, for the same values in
the input queues, the same values are produced in the output queues.

An MRDF graph is monotonic in time execution. Consider a FIFO
MRDF graph G = (V,E), with time valuation t(i). Say that schedule
function s(i, k) represents the time at which the instance k of actor i ∈ V
is fired on a valid schedule of G. Consider now that t(i) is replaced by a
new valuation t′(i), such that t′(i) ≤ t(i),∀i ∈ V . Monotonicity in time
execution of G means that any valid schedule s(i, k) for time valuation t(i)
is also admissible for time valuation t′(i). Intuitively, earlier termination of
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an actor firing cannot cause other firings to occur later. This is because the
firing rule of an MRDF actor is determined by the latest required input token
to arrive and firing rules are fixed. If an input arrives earlier, it cannot cause
the actor to fire later, and therefore it cannot cause the actor to produce
outputs later.

3.3 Single Rate Data Flow

An MRDF graph in which, for every edge e ∈ E, it holds that prod(e) =
cons(e), is a Single Rate Data Flow (SRDF) graph. Any MRDF graph
can be converted into an equivalent SRDF graph. Each actor i is replaced
by r(i) copies of itself, each representing a particular firing of the actor
within each iteration of the graph. That is, for any given actor i in the
MRDF graph with an r(i) entry in the repetition vector, if its copies in the
equivalent SRDF graph are represented as ip, p = 0, 1...r(i)− 1, the firing k
of ip corresponds to the firing k.r(i) + p of the original MRDF actor i. The
input and output ports of these nodes are connected in such a way that the
tokens produced and consumed by every firing of each actor in the SRDF
graph remains identical to that in the MRDF graph (see [82]).

Figure 3.2(a) depicts an MRDF graph. The SRDF-equivalent of this
graph is depicted in Figure 3.2(b). The repetition vector of the MRDF
graph is [3 2]. The SRDF-equivalent graph has as many copies of each
actor as the number of repetitions of that actor in the repetitions vector.
Each arc in the MRDF graph is represented by arcs between the copies. The
4 initial tokens on the (A,B) edge are consumed by the first 4 consumptions
of tokens by copies of B. This essentially determines which copies of A
provide tokens for which copies of B.

SRDF graphs have very useful analytical properties. A SRDF graph is
deadlock-free if and only if there is at least one delay in every cycle [82].
A graph is deadlocked when there is a cyclic dependency where two actors
cannot fire because each requires the other one to fire in order to obtain
the data required for it to fire itself. The cycle mean of a cycle c in a
SRDF graph is defined as µc =

P
i∈N(c) tiP
e∈E(c) de

, where N(c) is the set of all nodes

traversed by cycle c and E(c) is the set of all edges traversed by cycle c.
The Maximum Cycle Mean (MCM) µ(G) of a SRDF graph G is

defined as:

µ(G) = max
c∈C(G)

∑
i∈N(c) ti∑

(e∈E(c) de
(3.5)
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Figure 3.2: An MRDF graph and its SRDF-equivalent graph.
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where C(G) is the set of simple cycles in graph G.
As we shall discuss in Chapter 4, the MCM of a SRDF graph is equivalent

to the inverse of its maximum attainable throughput. Many algorithms of
polynomial complexity have been proposed to find the MCM (see [17] for
an overview).

3.4 Integer Data Flow

In his PhD thesis, Buck introduces Boolean Data Flow and Integer Data
Flow. In Integer Data Flow (IDF), the ports of actors are labeled as be-
ing either data ports or control ports. If an actor has no control ports, it
behaves just like a MRDF actor. If an actor has a control port, however,
the consumption rates are no longer fixed. We shall refer to these actors as
variable-rate actors.

Buck defines two types of control tokens:

• Type 1 - case control : the number of tokens transferred by the
variable-rate actor receiving this type of control token from/to each
of its data in/out ports is either constant or zero, depending on the
value of the control token.

• Type 2 - repeat control: the number of tokens transferred by the
variable-rate actor receiving this type of control token is determined
by the value of the control token.

Although many variable rate actor behaviors are possible, we will only
describe the canonical constructs employed by Miyazaki and Lee [69]: Switch
(Case), Select(End-Case), Repeat Begin and Repeat End. These are de-
picted in Figure 3.3. The control port is marked with a triangle. Any IDF
behavior can be represented employing only these canonical variable-rate ac-
tors and MRDF actors. The behavior of the canonical variable rate actors
is defined as follows:

• Switch has one input control port that reads type 1 control tokens,
one data input port with a fixed rate of one and a number of variable-
rate output ports. Each output port is keyed to a specific integer
value, with the exception of one output port, the “default” output
port. The actor is fired whenever one input token is available in both
input ports. When the actor fires, it consumes both input tokens and
copies the value of the data input token to the output port keyed to
the value of the control token. If there is no port keyed to the value
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Switch 
1      2       3     DEF

(a)

 1      2       3    DEF       
Select

(b)

Repeat
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1

N
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Repeat
   End

N

1

(d)

Figure 3.3: Four variable-rate actors used in IDF graphs.

of the control token, then the input data token is produced in the
“default” output port.

• Select has one input control port that reads type 1 control tokens, it
has a number of variable-rate input ports, and one output port with a
fixed rate of one. Each input port is keyed to a specific integer value,
with the exception of one input port, the “default” input port. The
actor is fired whenever one input token is on the control port, and
one input token is available in the input port keyed to the value of
the input token on the control port. If no input port exists keyed
to the value of the input token on the control port, then the actor
requires one token on the “default” input port. When the actor fires,
it consumes both input tokens and copies the value of the data input
token to the output port.

• Repeat Begin has one input control port that reads type 2 control
tokens, one data input port with a fixed rate of one, and one data
input port with a variable rate. Repeat Begin fires when a token is
available in each of its input ports. It consumes both input tokens and
produces as many copies of the data input token as the integer value
of control input port.

• Repeat End has one input control port that reads type 2 control
tokens, one data input port with variable rate, and one output port
with a fixed rate of one. Repeat End fires when a token is available
in the control input port and N tokens are available in the data input
port, where N is the integer value of the token in the control input
port. When it fires, it consumes all the input tokens required for the
firing and produces one single token in the output port.

IDF graphs are still deterministic: the series of values produced in all
its FIFOs is always the same, given the same series of input values. Also,
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given a specific series of input values, the behavior of IDF is monotonic. The
firing time of an actor instance is dependent on the maximum of the arrival
times of the input tokens. Since IDF is deterministic, the time at which a
token arrives cannot change the values of tokens, including control tokens.
Therefore, all actor firings have the same firing rules independently of the
time at which each firing happens. Therefore, the earlier arrival of a token
can still only cause its consuming actor to fire earlier, and IDF graphs are
monotonic.

Note that actors whose consumption rates depend on the value of the
input control token, such as Select and Repeat End, must be evaluated in
two phases, since the firing rules can only be determined by reading the
input control token.

In terms of expressivity, Integer DF is Turing-complete. This means that
not all IDF graphs can be statically scheduled, and for many IDF graphs it
is impossible to say whether they can execute within bounded memory, or
whether they deadlock or not, because cyclic schedules that are unbounded
in length, or that may require unbounded memory on arcs, may occur or
not, depending on the values of control tokens.

Buck [10] shows how to solve the balance equations of an IDF graph to
determine whether bounded-length schedules exist. We will briefly show how
this is handled since this concept will be necessary to prove the properties
of our own model, Mode-Controlled Data Flow, in Chapter 6.

Buck solves the balance equations for dynamic data flow graphs by using
symbolic expressions for the number of tokens produced and consumed on
conditional arcs. For IDF, these symbolic expressions are of the form pij ,
and represent the proportion of integer control tokens on control stream ci

whose value is j.
The repetition vector can then be obtained by solving symbolically the

balance equations. This will result in a repetition vector ~r that is a function
of all the pij variables. If there are nonzero solutions for the repetition vector
regardless of the value of all the pij , then the graph is said to be strongly
consistent. A strongly consistent IDF graph has a balance of long-term flow
rates. If we interpret the pij expressions as long-term average rates, strong
consistency asserts that the rates are in balance regardless of the precise
proportions of the control tokens that assume each integer value. This,
however, says nothing about the existence of bounded-length schedules or
bounded-memory implementations. In [10], examples of strongly consistent
graphs that require unbounded memory are given.

Buck also introduces the concept of bounded complete cycle. A
complete cycle of an IDF graph is a sequence of actor firings that returns
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the graph to its original state. A null sequence is a trivial solution. A
minimal complete cycle is a non-null complete cycle with no non-empty
sub-sequence that is also a complete cycle.

To determine the properties of complete cycles, one must solve the bal-
ance equations. Since T.~r = ~0, if we fire actors such that each actor i is
fired ri times, the system returns to the original state. If there is only a
trivial solution to the balance equations (i.e. 0 firings for all actors) then
we conclude that no minimal complete cycles exist. If the balance equations
have nontrivial solutions, then either the graph deadlocks, or schedules that
are bounded both in length and in memory requirements exist.

If the pij expressions are interpreted as the fraction of control tokens on
control stream ci during a complete cycle that have value j, then pij = tij

ni
,

where ni is the total number of control tokens produced on a complete cycle,
and tij is the total number of these that have value j. The properties of
complete cycles can then be analyzed by symbolically solving the balance
equations as explained before, then replacing pij by tij

ni
and then constraining

the number of actor firings, control tokens, and all tij variables to be integral.
Minimal complete cycles must satisfy the balance equations.

Even if bounded solutions exist for the balance equations, it may be that
there is no schedule for the thus obtained repetitions vector that is deadlock-
free. Verifying deadlock freedom of the minimal complete cycles is done by
checking if precedence constraints cannot prevent the firing of each actor
for the number of times required by the minimal complete cycle. This is
done by specifying the exact values of the emitted control tokens, for every
control sequence that realizes the minimal complete cycle. The IDF graph
is therefore transformed onto a set of MRDF graphs, one for each control
sequence, and for each deadlock-freedom can be independently verified.

If an IDF graph has even a single arc of type 2, it immediately has
unbounded memory, because there is no limit on how large an integer control
token can be. Bounds can only be given by knowing the maximum value of
the control tokens.

Consider the example in Figure 3.4 (taken from [10]). All actors are
SRDF except for the CASE (Switch) and ENDCASE (Select).

By solving symbolically the balance equations as explained, we obtain
the following expression for the repetitions vector:

~r(~p) = k[1 1 p10 p11 (1− p10 − p11) 1 1 1]T . (3.6)

As explained, p10 can be interpreted as the number of tokens on control
stream 1 (i.e. the tokens produced on edge 8) with value 0, during a complete
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cycle divided by the number of tokens n1 on stream 1 in a complete cycle.
We can then find the smallest integer solution. We find out that there is
only one control token per complete cycle and the repetition vector is

~r(~p) = [1 1 t0 t1 (1− t0 − t1) 1 1 1]T , (3.7)

where t0 is 1 if the control token is 0 and 0 otherwise, and t1 is 1 if the
control token is 1 and 0 otherwise.

There are three complete cycles. One where control sequence c1 = 0,
another where c1 = 1 and another where c1 = X, where X is any integer
value other than 0 or 1.

It is easy to verify that all complete cycles are deadlock-free, since the
graph has no cycles. Please note that if the control streams on n1 and n2

were independent, then there would not be any bounded complete cycles,
and the graph would not be strongly consistent.

is repeated in the each cycle of the iterated schedule. Then

it must be true that

; (2)

We can construct a topology matrix  that contains the

integer  in position  if the i th actor produces

tokens on the j th arc. It also contains the integer  in

position  if the i th actor consumes  tokens from

the j th arc. Then the system of equations to be solved is

(3)

where  is a vector full of zeros, and  is the repetition

vector containing the  for each actor. Printz calls (3) the

“balance equations” [5]. If this procedure were carried out

for the graph in figure 6, one solution would be

. (4)

This solution is the smallest one with integer entries.

For a connected SDF graph, it is shown in [3] that a

necessary condition to be able to construct an admissible

periodic schedule is that null space of  has dimension

one. From (3) we see that  must lie in the null space of

. When this condition is met, there always exists a vector

that contains only integers and lies in this null space. If

there are nonzero solutions to the balance equations and

there are enough initial tokens in any cycle of the graph to

avoid deadlock, there are always bounded-length sched-

ules (the length is the sum of the elements of the repetition

vector) and there are always bounded-memory implemen-

tations.

4. Dynamic graphs with integer control

For dynamic dataflow graphs, the analysis questions

concerning schedule length and bounded memory become

more interesting, because cyclic schedules that are

unbounded in length, or that may require unbounded

memory on arcs, may occur. The techniques used to

extend SDF graph theory to include some dynamic actors

were first proposed in [2] and developed more fully in [1].

Of the methods presented in [1], we will principally be

concerned with extending the following two:

• Solving the balance equations in symbolic form to

determine whether bounded-length schedules exist, and

• Clustering the graph to find control structures.

4.1. Solving the balance equations

We solve the balance equations for dynamic dataflow

graphs by using symbolic expressions for the number of

tokens produced and consumed on conditional arcs. For

BDF, these symbolic expressions were of the form ,

which expressed the proportion (over some interval) of

tokens on the Boolean control stream  with value

TRUE. When BDF is extended to support IDF actors with
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type 1 control arcs, such as the CASE and ENDCASE

actors in figure 8, we have quantities of the form

instead, designating the proportion of integer control

tokens on control stream  whose value is j.

Using the CASE and ENDCASE actors, we can pro-

duce the three-way branch analog to the canonical if-then-

else construct, as shown in figure 9. The topology matrix

for this graph can be written down easily by recording the

number of tokens produced or consumed by each actor on

each arc. If the resulting system is solved, we can deter-

mine that the repetition vector for the graph is

(5)

Note that there are nonzero solutions for the repetition

vector regardless of the value of . Graphs that have this

property are called strongly consistent in [2]. Strong con-

sistency implies a balance of long-term flow rates, but says

nothing about bounded-length schedules or bounded-

memory implementations: strongly consistent graphs can

still require unbounded memory (see [1] for examples).

Finding bounded complete cycles will assure bounded

memory, so we shall now show how to find them.

We are interested in determining the properties of mini-

mal complete cyclic schedules of the graph. To do this we

note that quantities like  must be the ratio of two inte-

gers: the number of tokens on control stream 1 with value

0 during a complete cycle divided by the number of tokens

on stream 1 in a complete cycle. Let n be the number of
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Figure 3.4: Integer data flow example (taken from [10]).

The considerations we made for IDF also hold for Boolean DF, which
can be seen as a special case of IDF where the control tokens are limited to
having values of 1 or 0. The main difference is that in Boolean DF there are
no type 2 control edges. Besides that, all properties are the same.

To summarize, in order to analyze the execution behavior of IDF graphs,
one must first symbolically compute the repetitions vector. If the graph is
strongly consistent, one can proceed to find minimal bounded cycles. If
these exist, the graph can execute in bounded memory. Therefore, for some
graphs, deadlock-freedom, and bounded memory execution can be proved
to exist. For others, it is not even possible to say whether they deadlock or
not, as this is fully dependent on the values of the control tokens produced
in each control stream.
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3.5 Conclusion

When choosing a data flow model as a programming or analysis model,
one essentially must make a trade-off between expressivity and analytical
properties. An essential difference between data flow flavors is whether the
chosen model allows for data dependent behavior or not. If all production
and consumption rates of all firings of all actors can be determined inde-
pendently of the values contained on the input streams, then a Static Data
Flow variant will suffice. These include the SRDF and MRDF models that
we reviewed here, but also models such as Cyclo-static Data Flow [9], which
can also be converted to a SRDF-equivalent graph. These models allow
automatic checking of deadlock freedom in polynomial time on the size of
the SRDF-equivalent graph, static scheduling and timing analysis, if actors
are time-annotated. If the firing rules of actor firings are dependent on the
values of the input data, then we need a flavor Dynamic Data Flow. Models
such as IDF and BDF are Turing-complete, meaning that it may not be
possible to even check whether a specific graph may deadlock or not, let
alone perform timing analysis. The model we will propose in Chapter 6
tries to retain the analytical properties of static data flow while allowing for
a controlled amount of data dependent behavior.



Chapter 4

Temporal Analysis

Due to the application requirements described in Chapter 2, we concluded
that we cannot statically schedule jobs. There are several reasons for this:
first, actors have variable execution times, second, the execution of the graph
is performed across the multiprocessor, and it may be difficult to guaran-
tee that all processors are synchronized at all times, and also, we cannot
statically schedule together two independent transceiver jobs. Therefore,
synchronization in our implementation is, at the essence, self-timed: a data
flow actor fires immediately whenever its firing conditions are met.

Temporal analysis is required in order to verify whether a given timed
data flow graph can meet a required throughput or latency requirement of
the application. In Chapter 5 we will show how we are able to model map-
ping decisions on a data flow graph that represents the temporal behavior
of a given mapping to a platform of an application graph. This will allow
for a mapping flow where every mapping decision can be translated onto a
transformation of the application graph, and evaluated with respect to its
temporal behavior, using data flow analysis techniques. In other words, we
derive from the functional graph of the transceiver an implementation-aware
graph where we model worst-case assumptions about the timing of actor fir-
ings and communication in a given platform. Since the execution model of
our platforms of interest (see Chapter 1 and 2) is self-timed (i.e., execution
of actors is triggered by arrival of data and availability of output space), we
are mostly interested in analyzing the temporal behavior of the self-timed
execution of data flow graphs.

In this chapter, we propose techniques that extend the wealth of methods
for the analysis of the self-timed behavior of the data flow variants with
static rates - predominantly Multi-Rate and Single-Rate Data Flow. Our

59



60 CHAPTER 4. TEMPORAL ANALYSIS

techniques operate directly on Single-Rate Data Flow graphs, and can easily
be adapted to any other static data flow variant that can be converted to
Single-Rate Data Flow, such as Cyclo-Static Data Flow.

Previous techniques for the characterization of the temporal behavior of
the self-timed execution of SRDF graphs were geared towards giving guaran-
tees with respect to guaranteed throughput [82] over a long run of iterations
of the graph. This is not enough for wireless transceivers. For a radio trans-
mitter, we may need to guarantee that we can generate output at a strictly
periodic rate, from the first output on, without experiencing any hiccups at
the output. In some cases, such as for a TDS-CDMA or WLAN receiver,
we need to guarantee a certain maximum latency between the reception of a
message and the production of an acknowledgment. State-of-the-art analysis
of self-timed schedules can only tell us about average throughput, and only
after the execution has converged into periodic behavior. Although it has
been proven that the self-timed execution of a data flow graph will even-
tually reach a regime with periodic behavior [24], determining how many
actor firings are required for this to happen is not efficiently computable [3].
Moreover, periodic behavior can only be attained if the actors have constant
execution times.

The problem becomes more complex because a receiver job may be driven
by an external source that does not exhibit a periodic behavior. For instance,
in WLAN 802.11a, packets arrive sporadically, i.e., we know the minimum
time interval between the arrival of packets, but not the maximum time
interval.

In this chapter we will develop techniques that allow us to reason about
the temporal behavior of the self-timed execution of static data flow graphs,
even when considering the transient phase and/or varying execution times
per actor firing. We will define sufficient conditions to achieve a strictly
periodic behavior for an output, while respecting the behavior of an external
source that forces its own strictly periodic behvaior. We will provide a
definition of latency and techniques to characterize maximum latencies in the
self-timed execution of the data flow graph, even in the presence of aperiodic
external sources. To do this, we will establish an important relation between
self-timed execution and static periodic schedules, that allows us to use the
generation of static periodic schedules as a means to bound the behavior
of a self-timed execution. We will enunciate and prove the existence of
an important property of the self-timed execution of data flow graphs, the
linear timing property. A form of this property is essential to handle external
sources with sporadic behavior.

Almost all of the material presented in this chapter constitutes contribu-
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tions to the state-of-the-art. The theorem about the relation between Static
Periodic Schedules (SPS) and the MCM re-states in a different form a result
first published in [81]. The theorems concerning relations between Static
Periodic Schedules (SPSs) and Self-Timed Schedules (STSs) are, to the best
of our knowledge, original contributions of this thesis. The same applies to
the techniques to enforce an actor’s periodic behavior within a self-timed
execution, the linear timing property and theorem, the definition of latency,
and its characterization.

4.1 External Sources in Data Flow

In our data flow graphs, we will model external sources and sinks as actors.
External sources and sinks are different from other actors in that the time at
which the firing of such actors occurs may be imposed by the environment.
One cannot delay the firing of an external source actor. It is important
that we have this in mind when we talk about analysis and scheduling.
A schedule that does not allow an external periodic source to execute in a
strictly periodic regime from the first firing is not valid. In fact, the external
source actor firing pattern is defined independently of the schedule of the
data flow, and it is the schedule that either accommodates for the behavior
of the source or it will be invalid. We can also think of it as the timing
behavior of the external source effectively imposing a timing constraint on
the execution of the graph. Another problem with external sources is that
they may not have a worst-case execution time – such is the case for a
sporadic source. It must be also noted that the function of a source actor
cannot be assumed to be deterministic, as the stream of tokens produced by
the source can be different from one execution to another.

Moreover, although the firing of the source cannot be controlled, its
correct operation may still be dependent on values produced by the data flow
graph. This is the case, for instance, when the source of the system is the
output of an amplifier and the gain of that amplifier needs to be adapted by
feedback from the function being computed by the digital transceiver. Still,
the firing of the actor that represents the amplifier cannot be delayed, and
for correct operation, the new gain must be available in time. This means
that, although the firing of the source is in practice independent from any
internal event, there can be edges in the data flow graph from another actor
to the actor that represents a source. It is part of the temporal requirements
of the application that the data dependencies described by such edges are
met in such a way that guarantees that the source has the correct input
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tokens ready at its forced start time.

4.2 Schedules

As discussed in Section 3.2, MRDF graphs where actors have constant ex-
ecution times can be statically scheduled because the firing conditions of
each actor are independent of the values of the data tokens consumed, and,
for well-constructed graphs that are deadlock-free, it is possible to find a
number of firings per each actor that allows the graph to return to its initial
state, thus guaranteeing that there is a static schedule that can be executed
continuously within bounded memory.

However, as discussed in Chapter 2, the fact that we must cope with
variation of the execution times of actors, the effects of synchronization
across a multi-processor, and of local inter-job schedulers, we cannot rely on
static scheduling. Our analysis strategy is based on representing the worst-
case behavior of all implementation details of data flow, and then performing
analysis of the self-timed execution of such a graph. In self-timed execution,
each actor fires immediately whenever possible. If all timing constraints
have been conservatively expressed in the data flow model, the self-timed
execution of the graph will reflect the worst case temporal behavior of the
implementation. In order to bound the start times of firings on a self-timed
execution, we will determine in this section a relation between self-timed
execution and static periodic schedules. Before that, however, we must
introduce our scheduling notation, and the definition and properties of both
self-timed and static periodic schedules.

4.2.1 Notation

Schedule function s(i, k) represents the time (we will use positive real num-
bers to represent time) at which the instance k of actor i is fired. The
instance number is counted from 0 and, because of that, the instance k cor-
responds to the (k+1)th firing. Furthermore we denote the finishing time of
firing k of actor i by f(i, k) and the execution time of firing k of i by t(i, k).
It always holds that f(i, k) = s(i, k) + t(i, k). If t(i) is the WCET of actor
i, then t(i, k) ≤ t(i),∀k ∈ N0.

4.2.2 Admissible Schedules

A schedule is admissible if, for every actor in the graph, and every firing of
the actor, start times do not violate the firing rules. In [33] a theorem is
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given that states a set of necessary and sufficient conditions for an admissible
schedule, assuming constant execution times:

Theorem 4.1. A schedule s is admissible if and only if for any arc (i, j) in
the graph and any k ∈ N0:

s(j, k) ≥ s(i,
⌈

(k + 1) · cons(i, j)− d(i, j)− prod(i, j)
prod(i, j)

⌉
) + t(i). (4.1)

When applied to an SRDF graph, this inequality becomes simply

s(j, k) ≥ s(i, k − d(i, j)) + t(i), (4.2)

as productions and consumptions are 1 in all arcs. Since the schedule func-
tion is not defined for iterations lower than 0, an arc (i, j) only results in a
constraint on the start time of j if k ≥ d(i, j).

We also assume that time starts at t = 0, and therefore, for a valid
schedule we will require that, for any i ∈ V , and for any iteration k ∈ N0,
the start time s(i, k) ≥ 0. Moreover, we will make the assumption that time
is continuous, i.e. s(i, k) ∈ R.

For an MRDF graph converted into SRDF for analysis purposes, a rela-
tion between the start times of the SRDF copies of an original MRDF actor
can be established easily. Say that ip is the copy number p of an MRDF
actor i in the equivalent SRDF graph. Then s(ip, k) = s(i, k · r(i) + p).

From here on, scheduling will be discussed, for the sake of simplicity, on
SRDF graphs. We will, when appropriate, explain how concepts translate
to MRDF graphs.

4.2.3 Self-Timed Schedules

A Self-Timed Schedule (STS) of an SRDF graph is a schedule where each
actor firing starts immediately when there are enough tokens on all its input
edges.

The Worst-Case Self-Timed Schedule (WCSTS) of an SRDF is the
self-timed schedule of an SRDF where every iteration of every actor i takes
t(i) time to execute. Note that the WCSTS of an SRDF graph is unique.

In an STS, the start times of actors occur as soon as all precedence
constraints (as given by Equation 4.2) are met, that is, for any given actor
i ∈ V , the start time of firing k in the worst-case self-timed schedule s is

s(i, k) = max
(x,i)∈E


s(x, k − d(x, i)) + t(x, k − d(x, i)), k ≥ d(x, i)

0, k < d(x, i)
(4.3)
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For the WCSTS, t(x, k − d(x, i)) is a constant equal to the worst-case exe-
cution time of x, denoted by t(x).

The WCSTS of a strongly-connected SRDF graph has an interesting
property: after a transition phase of K(G) iterations, it will reach a periodic
regime. K(G) is a constant for a given timed SRDF. It can be determined
by simulating the execution of the timed SRDF and detecting the start of
the periodic behavior. This periodic regime has a period of N(G).µ(G) time
units, where N(G) is the cyclicity of the SRDF graph, as defined in [3]. For
a strongly-connected SRDF graph, N(G) is equal to the greatest common
divisor among the sums of delays of all its cycles (see [3]).

The schedule for the periodic regime is:

s(i, k + N(G)) = s(i, k) + N(G) · µ(G),∀k ≥ K(G). (4.4)

During periodic execution, N(G) firings of i happen in N(G) · µ(G) time,
yielding an average throughput [3, 24] of 1/µ(G). For the transition phase,
that is, for k < K(G), the schedule can be derived by simulating the exe-
cution of the data flow graph, given WCETs of all actors. Another known
method for calculating K(G) is presented in [3].

4.2.4 Static Periodic Schedules

A Static Periodic Schedule (SPS) of an SRDF graph is a schedule such
that, for all nodes i ∈ V , and all k > 0

s(i, k) = s(i, 0) + T · k, (4.5)

where T is the desired period of the SPS. Please note that an SPS can be
represented uniquely by T and the values of s(i, 0),∀i ∈ V .

Theorem 4.2. For an SRDF graph G = (V,E, t, d), it is possible to find an
SPS schedule, if and only if T ≥ µ(G). If T < µ(G), then no SPS schedule
exists with period T .

Proof. Recall that according to Equation 4.2 we know that every edge (i, j)
in the data flow graph imposes a precedence constraint of the form s(j, k +
d(i, j)) ≥ s(i, k) + t(i) to any admissible schedule. Since the start times in
an SPS schedule are given by 4.5 we can write for every edge (i, j) ∈ E a
constraint in the form:

s(j, 0) + T · (k + d(i, j)) ≥ s(i, 0) + T · k + t(i)
⇔ s(i, 0)− s(j, 0) ≤ T · d(i, j)− t(i) (4.6)
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These inequalities define a system of difference constraints – a special case
of linear constraints where all constraints are constant differences between
two variables. According to [15] this system has a solution if and only
if the constraint graph does not contain any negative cycles for weights
w(i, j) = T.d(i, j)− t(i).

Since the MCM µ(G) is defined as (see Section 3.3):

µ(G) = max
∀c∈C(G)

∑
c t(i)∑

c d(i, j)
(4.7)

then, for each cycle c ∈ C(G) it must hold that:

T ≥
∑

c t(i)∑
c d(i, j)

(4.8)

The inequality 4.8 can be rewritten as∑
c

(T · d(i, j)− t(i) ≥ 0, (4.9)

that is, if T ≥ µ(G), there are no negative cycles for weights w(i, j) =
T · d(i, j)− t(i) and, therefore, the system given by 4.6 has solutions.

Therefore, 1/µ(G) is the fastest possible rate (or throughput) of any
actor in the strongly-connected SRDF. For an actor a of MRDF graph G,
it means that each one of its copies ai in the SRDF-equivalent graph G′ can
execute at most once per µ(G′). Therefore, the average rate of a per graph
iteration is upper-bounded by r(a) · 1/µ(G′), although the execution is not
necessarily strictly periodic (see below).

If a SPS has a period T equal to the MCM of the SRDF graph µ(G),
we say that the schedule is a Rate-Optimal Static Periodic Schedule
(ROSPS). An SPS for a given G and T can be found by solving the system
of linear constraints given by Equation 4.6.

A solution can be found for any given T ≥ µ(G) by using a single-
source shortest-path algorithm that can cope with negative weights, such as
Bellman-Ford [82], but many other solutions may exist for any given graph
and period.

Notice that, for an MRDF graph, the SPS schedule of its SRDF-equivalent
graph specifies an independent periodic regime for each SRDF copy of an
original MRDF actor, but it enforces no periodicity between firings of dif-
ferent copies. If a strictly periodic regime with period T/r(a) is required
for actor a, extra linear constraints must be added to the problem. In some
cases, this will result in an infeasible problem.
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Figure 4.1: An MRDF graph and its SRDF-equivalent graph.

Consider the MRDF graph in Figure 4.1(a), and assume that all actor
firings take 1 unit of time. The repetition vector for this graph is [1 2 1].
The SRDF-equivalent of the graph is depicted in Figure 4.1(b). The MCM
of this graph is 4, given by the cycle c = ((A,B1), (B1, B2), (B2, C), (C,A)).
If we try to impose a static period of 4/2 between the firings of B, one must
require that s(B1, k) = s(B2, k) + 2. Such schedule does not exist because
forcing a distance of 2 time units between the two firings of B will always
force cycle c to take at least 5 units of time to execute, thus effectively
making it impossible to find a SPS with period equal to the MCM of the
SRDF-equivalent graph.

4.2.5 Monotonicity

We have already seen that it is possible to construct an SPS of any SRDF
graph with a throughput equal to 1/µ(G) and that the WCSTS will even-
tually settle into periodic behavior with an average throughput equal to
1/µ(G). Calculating µ(G) or trying to find an SPS schedule with period
µ(G) are two ways to check for desired throughput feasibility. Two essen-
tial questions are yet to be answered: what happens during the transition
phase, and how does STS behave with variable execution times? One prop-
erty of SRDF graphs that allows us to give answers to these questions is
monotonicity.

Because of the monotonicity of self-timed execution, if any given fir-
ing of an actor finishes execution faster than its worst-case execution time
(WCET), then any subsequent firings in any self-timed schedule can never
happen later than in the WCSTS, which can be seen as a function that
bounds all start times for any self-timed execution of the graph. We can
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enunciate this as a theorem:

Theorem 4.3. Monotonicity of self-timed execution: For an SRDF
graph G = (V,E, t, d) with worst-case self-timed schedule sWCSTS, for any
i ∈ V , and k ≥ 0, it holds that, for any self-timed schedule sSTS of G

sSTS(i, k) ≤ sWCSTS(i, k). (4.10)

Proof. The start times of all firings of actor i in any self-timed schedule are
given by Equation 4.3. Since for all edges (x, i) ∈ V it is true, by definition,
that t(x, k − d(x, i)) ≤ t(x), then it is true that

sSTS(i, k) ≤ max
(x,i)∈E


sSTS(x, k − d(x, i)) + t(x), k ≥ d(x, i)

0, k < d(x, i)
(4.11)

If the theorem holds for the predecessors of firing k of i, we may write
s(x, k − d(x, i))) ≤ sWCSTS(x, k − d(x, i)). Then it is true that

sSTS(i, k) ≤ max
(x,i)∈E


sWCSTS(x, k − d(x, i)) + t(x), k ≥ d(x, i)

0, k < d(x, i)
(4.12)

and this inequality is equivalent to

sSTS(i, k) ≤ sWCSTS(i, k). (4.13)

Therefore if the theorem is valid for all the firings on which firing k of i
depends, it is also valid for firing k of i. As for the initial elements, the first
actors to execute are the ones that do not have initial edges, or only have
initial edges with initial tokens. For those, the start times are 0 for both
any sSTS and for the sWCSTS .

4.2.6 Relation between the WCSTS and SPS

Because of monotonicity, assuming worst-case execution times, the start
time of any actor cannot happen earlier than in the WCSTS: since in a STS
firings happen as early as possible, there is no way to schedule anything
earlier without violating the firing rule. In other words, any valid sched-
ule of a data flow graph that assumes worst case execution times for all
firings must have its start times later or equal to the start times given by
the WCSTS. Since valid Static Periodic Schedules must assume worst-case
execution times, the following theorem holds:
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Theorem 4.4. In any admissible SPS of an SRDF graph G = (V,E, t, d),
all start times can only be later or at the same time than in the WCSTS of
that graph, that is, for all i ∈ V , k ≥ 0, and all admissible static periodic
schedules sSPS of G, it must hold that

sWCSTS(i, k) ≤ sSPS(i, k) (4.14)

From this we draw an important conclusion: for a given SRDF graph,
any SPS start time can be used as an upper bound to any start
time of the same firing of the same actor in the WCSTS and, due
to Theorem 4.3 in any STS of the graph).

This means that, given an SRDF graph for which we know the worst-
case execution times of all actors, we can obtain a linear conservative upper
bound on the output production times of any given actor i during self-timed
execution. This bound is given by the expression s(i, 0)+ t(i)+µG.k, where
s(i, 0) is the start time of the first firing of i on a Rate-Optimal Static
Periodic Schedule (ROSPS).

To find the lowest bound, one can compute a ROSPS that minimizes
s(i, 0). A single schedule can jointly minimize s(i, 0) for all actors because,
by inspection of the sequence constraints given by Equation 4.6, one can see
that reducing the initial start time of an actor can never constrain the start
time of another actor with a higher lower bound. We can formulate an LP
program that accomplishes the lowest linear bounds and minimizes the sum
of start times of first firings of actors, subject to the sequence constraints in
Equation 4.6 and positive start times:

Let G = (V,E, t, d).
Minimize

∑
i∈V s(i, 0)

subject to
∀(i, j) ∈ E, s(j, 0)− s(i, 0) ≥ t(i)− µG · d(i, j),
∀i ∈ V , s(i, 0) ≥ 0.

Note that we also can use a LP to find an SPS that minimizes only one
particular start time (in a LP, the optimization function is a sum of variables
multiplied by real coefficients - we can make all but one equal to 0). Doing
this for each start time will provide us with the tightest linear bound for the
firings of each actor in the graph.
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4.3 Linear Timing of Self-timed execution

We will now introduce the Linear timing property. This property will allow
us to infer how forcing an actor to fire later than its self-timed firing time
will affect the timing of other firings.

Definition 4.1. Linear timing A data flow graph G = (V,G, d, t) is
linearly-timed if, given a schedule s(i, k) where all firings are self-timed,
and actor execution times are given by t(i, k), then, if a new schedule s′ is
constructed where all firings are self-timed, except for the firing p of actor
n ∈ V , which is given by s′(n, p) = s(n, p) + δ then, for all i ∈ V and all
k ∈ N0, s′(i, k) ≤ s(i, k) + δ.

Theorem 4.5. A well-constructed, deadlock-free SRDF graph G=(V,E,t,d)
is linearly-timed.

Proof. Consider a STS schedule s for G, with execution times given by
t(i, k) ≤ t(i). Then, for all actors i ∈ V , and for all k ∈ N0, the start times
are given by Equation 4.3.

For the schedule s′ in Definition 4.1, the start times are given by

s′(i, k) = max
(x,i)∈E

(s′(x, k − d(x, i)) + t(x, k − d(x, i))), (4.15)

with the exception of s′(n, p) = s(n, p) + δ.
We can now prove by induction: if any number of the direct predecessors

of firing k of i is delayed by at most δ, we may write that s′(x, k−d(x, i)) ≤
s(x, k − d(x, i)) + δ, for all predecessors. It is then true for any i that

s′(i, k) ≤ max(x,i)∈E(s(x, k − d(x, i)) + t(x, k − d(x, i)) + δ) (4.16)

Since δ is added to all arguments of the max expression, we may pull it
outside of the max expression and rewrite the inequality as

s′(i, k) ≤ max(x,i)∈E(s(x, k − d(x, i) + t(x, k − d(x, i))) + δ (4.17)

and due to Equation 4.3 we may replace the max expression in Equation
4.17 by s(i, k) to obtain

s′(i, k) ≤ s(i, k) + δ (4.18)

The linear timing property allows us to establish relations between self-
timed schedules: the effect on all other firings of delaying the (n, p) firing
by δ is equivalent to increasing the execution time t(n, p) by δ. It can also
be easily proven that a negative δ can maximally decrease the start times
of all actors by δ.
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4.4 Dependence Distance

Not all firings can be affected by a change in the start time of firing (n, p).
In fact, only firings that are dependent on tokens produced by firing p of
actor n can be affected by the increment. We will capture this notion in
the concept of dependence distance. Intuitively, the dependence distance
dd(i, k) tells us which is the highest iteration number k′ of actor j that can
fire before iteration k + 1 of i fires, thus dd(i, j) = k′ − k.

Definition 4.2. The Dependence Distance dd(i, j) represents the number
of firings of actor j ∈ V that can occur before the the first firing of actor
i ∈ V , in an admissible schedule. That is, for any admissible schedule,
s(j, dd(i, j)) ≥ s(i, 0) + t(i, 0). Because SRDF actors have unary rates of
production and consumption, it also means that s(j, k + dd(i, j)) ≥ s(i, k) +
t(i, k).

How can we compute the dependence distance between two actors? In-
tuitively, in a strongly connected graph, if we try to execute all firings of all
actors in the graph in a self-timed manner, except for i, which we do not
allow to fire, then we can simply count the number of firings that where pos-
sible for each other actor before the graph deadlocks, thus obtaining dd(i, j)
for all j ∈ V − {i}.

If there is no path from i to j (and the graph is therefore not strongly
connected) the dependence distance is infinite (an infinite amount of firings
of j can occur before any firing of i).

If i never fires, the maximum amount of tokens that can reach an input
arc of j that belongs to a direct path from i is equivalent to the amount of
tokens in that path. If there are many such paths, then j can only fire a
number of times equal to the minimum amount of initial tokens in any of
those paths.

The value of dd(a, c) is therefore equivalent to the shortest-path in the
graph for weights equal to the delay of edges. Since delays are always non-
negative, the shortest paths can only be non-negative, and all dependence
distances can be efficiently computed in polynomial time by an all-pairs
shortest-path algorithm [15]. If the SRDF graph is not strongly-connected,
there may not be a path between two actors. In such case, we define the
dependence distance as infinite.

The linear timing of an SRDF graph can thus be further refined if we
take into account the dependence distance. Given a schedule s(i, k) where
all firings are self-timed, and actor execution times are given by t(i, k), then,
if a new schedule s′ is constructed where all firings are self-timed, except for
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the firing p of actor n ∈ V , which is given by s′(n, p) = s(n, p)+δ then, for all
i ∈ V , s(i, k) ≤ s′(i, k) ≤ s(i, k) + δ, if k− p ≥ dd(n, i) and s′(i, k) = s(i, k),
if k − p < dd(n, i), because a change in the execution time of iteration p of
i will only affect the firings of i from iteration dd(n, i) + p on.

4.5 Strict Periodicity on a Self-Timed Schedule

There are situations where it is essential to guarantee that an actor has a
strictly periodic behavior. For instance, an audio output should not experi-
ence any hiccups due to the aperiodic behavior caused by either the initial
transition phase of the STS or by the variation of the execution time for
different firings of the same actor.

There are two reasons that make it difficult for an actor to be able to
execute in strict periodicity within a self-timed implementation. One is the
variation of execution times of its predecessors. Another is the transient
phase of the self-timed execution.

Consider the graph in Figure 4.2(a). Actor B represents a strictly peri-
odic external source. Lets say we want to guarantee that actor D executes in
a strictly periodic regime. The worst-case self-timed schedule for this graph
(up to t = 8) is depicted in Figure 4.2(b). After 3 firings of D, a required
input from actor C is still not readily available, and D must wait for one
cycle. After this, D executes periodically. The example employs an actor,
C, that allows for self-concurrency (multiple firings of C can occur simulta-
neously), but a similar behavior would be observed for a graph where C is
replaced by a chain of four actors with execution time of one, and each with
a self-edge with one delay, i.e. the four actors do not allow self-concurrent
firings.

A solution to the problem of making D fire in a strictly periodic regime
can be found by delaying for some time the first firing of D relative to the
first firing of the source (at time 0), but how much time must it be? If we
delay the first firing of D for too much time, the strictly periodic execution
of the source is violated. For instance, in Figure 4.2(c) the first firing of
D (D1) is postponed to occur at time t = 4. In this case, external source
B will not be able to execute in strict periodicity, because its 5th firing is
dependent on the first firing of D.

In this case, a correct solution would be to delay the first execution of
D to t = 2. This is depicted in Figure 4.2(d). Delaying the first execution
of D to t = 3 would also work.

There is also the problem with variable execution times. In Figure 4.2(e)
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Figure 4.2: A SRDF graph (a), its worst-case STS (b), a worst-case STS
with D1 forced to start at t=4 (c), a worst-case STS with D1 forced to start
at t=2 (d), and a STS with D1 forced to start at t=2, where D has variable
execution time.
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we depict the case where D1 and D2 execute in less than the maximum
execution time of D. Since the token required from B2 is already present,
D2 can execute earlier, resulting in aperiodic behavior.

Lets now look for a general solution to the problem of guaranteeing
strictly periodic behavior of an actor within a self-timed execution of an
SRDF graph. We have already established that for any given period T ≥
µ(G), it is possible to generate an SPS such that all actors are strictly
periodic. On the other hand, we know that in an STS start times can only
be equal or earlier than in an SPS with the same (or a longer) period, i.e.

sSTS(i, k) ≤ sSPS(i, k) = sSPS(i, 0) + T · k (4.19)

Assume that we force only a minimum time interval of T between suc-
cessive starts of an SRDF actor by introducing two additional actors, i0 and
q, with constant execution times t(i0) = 0 and t(q) = T . All input edges
to i are re-routed to i0. We further insert edges (i0, i) with d(i0, i) = 0,
(i0, q), with d(i0, q) = 0 and (q, i0), with d(q, i0) = 1 as depicted Figure 4.3,
for an actor i with an input edge coming from an actor a, and an output
edge going to actor c. Actor i0 merely forwards the consumed tokens to its
output edges (notice that it must forward to i all the inputs from all its in-
put edges). The implementation of actor q can be easily accomplished with
a programmable timer. Notice that the inclusion of the extra actors only
introduces one cycle with cycle mean T , allowing for our required period.

Then, for any self-timed schedule, i0 can only be fired once every period
T, and, since i0 is the source of i and t(i0)=0, all start times of i in a self-
timed execution occur at the same time as the start time of i0 for the same
iteration and it holds that:

sSTS(i, k) ≥ sSTS(i, k − 1) + T ⇒ s(i, k) ≥ sSTS(i, 0) + T · k. (4.20)

From 4.19 and 4.20 it follows that

sSTS(i, 0) + T · k ≤ sSTS(i, k) ≤ sSPS(i, 0) + T · k. (4.21)

Therefore, if we can set the start time of the first firing of the self-timed
schedule such that it matches the static periodic schedule, i.e.

sSPS(i, 0) = sSTS(i, 0), (4.22)

we can make it such that

sSTS(i, k) = sSTS(i, 0) + T · k (4.23)
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Figure 4.3: Adding actors and arcs to enforce a minimum time interval T
between successive firings of actor i.

What does this imply? That if we fix the start time of its first firing
such that the condition in equation 4.22 holds for at least one ROSPS of G,
we can guarantee i to execute in a strictly periodic fashion, independently
of any timing variations that occur in the rest of the graph.

We do not have to enforce an exact initial start time, but guarantee that
s(i, 0) is equal to any of the admissible sROSPS(i, 0). This means that s(i, 0)
must be between its earliest and latest start times in admissible ROSPS
schedules — any value in this interval is valid since linear programs have a
convex solution space, i.e. any point on the line between two points that
meet the linear constraints must also meets the linear constraints. These
earliest and latest start times can be computed by finding two ROSPS via
LP formulations: one that minimizes i’s start time, and another one that
maximizes it.

However, if no other condition is imposed, the LP formulation for maxi-
mum start time would always result in an unbounded solution, as the start
times of all actors can always be shifted to a later time to produce a feasible
SPS schedule. In practice, an external source cannot be controlled. In most
cases, it is the first firing of the external source that defines the beginning of
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execution, t = 0. This means that in such a case an extra restriction must
be placed to the LP: the start time of the first firing of the external source
must be equal to 0.

In the implementation, actor i must wait for a time equal to the com-
puted minimum s(i, 0) before firing the first time. After this, the actor may
need a local timer (the implementation of actor q) that enables its execution
every T units of time, and releases outputs of the previous iteration, such
that it exhibits a constant execution time. Essentially, we can statically
schedule all firings of one actor (relatively to the start of time t = 0) while
allowing the rest of the actors to still execute in a self-timed manner and
guaranteeing that all data flow dependencies are satisfied.

4.6 Latency Analysis

We will now proceed to present techniques for latency analysis of static DF
graphs.

4.6.1 Definition of Latency and Maximum Latency

Latency is the time interval between two events. We measure latency as the
difference between the start times of two specific firings of two actors, i.e.:

L(i, k, j, p) = s(j, p)− s(i, k) (4.24)

Where i and j are actors, p and k firings. We say that i is the source of the
latency, and j is the sink.

Typically, our data flow applications execute for very long sequences of
input data, we are interested in cyclic latency requirements. That is, we
can define that between the pth firing of actor i in any given iteration k and
the qth firing of j in iteration k + n, where n is a fixed iteration distance, a
maximum latency interval is preserved:

L̂(i, p, j, q, n) = max
k≥0

L(i, r(i) · k + p, j, r(j) · (k + n) + q) (4.25)

= max
k≥0

(s(j, r(j) · (k + n) + q)− s(i, r(i) · k + p))

with 0 ≤ p < r(i) and 0 ≤ q < r(j). Please note that we use L̂ to signify
the maximum value of the latency across all iterations.
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In order to make the following discussion simpler, we will restrict it to
SRDF graphs, where the p and q firing numbers relative to the start of an
iteration can be omitted since they are always equal to 0:

L̂(i, j, n) = max
k≥0

L(i, k, j, k + n) = max
k≥0

(s(j, k + n)− s(i, k)). (4.26)

Notice that any latency constraint of the type of Equation 4.25 can
be converted directly into a constraint of the type of Equation 4.26 in the
SRDF-equivalent graph, by applying the relation between MRDF actors and
their SRDF copies.

Self-timed scheduling with variable execution times makes latency anal-
ysis difficult. The problem is that, while it is easy to find an upper bound
for s(j, k + n) using the relations between STS, WCSTS and SPS that we
developed in section 4.2, it is still difficult to find a lower bound for s(i, k).
In many cases, however, the best-case execution time of the source can be
inferred. The simplest case happens if the job has a strictly periodic external
source. We will start by analyzing that case.

4.6.2 Maximum Latency from a Periodic Source

The start times of a periodic source are given by:

s(i, k) = s(i, 0) + T · k. (4.27)

Note that the earliest possible value of s(i, 0) is given by the WCSTS of
the first iteration. Also, note that the period of the execution of the graph is
imposed by the source, i.e. because the source executes with a period of T,
the period of execution of the graph is lower bounded by the period of the
source. If on the other hand, the graph has a longer period, then it cannot
keep up with the source, and infinite token accumulation on some buffer will
happen for the WCSTS. Therefore, we will perform latency analysis under
the assumption that µ(G) = T . Because of Theorem 4.4, the start times of
j executing in STS are bounded by the start time of any ROSPS schedule,
i.e.

sSTS(j, k + n) ≤ šROSPS(j, 0) + µ(G) · (k + n), (4.28)

where šROSPS(j, 0) represents the smallest start time of j in an admissible
ROSPS. Equation 4.27 gives us an exact value of s(i, k), while 4.28 gives us
an upper bound on sSTS(j, k +n). By taking the upper bound for sSTS(j, k +
n), and the lower bound for s(i, k), we get:
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L̂(i, j, n) = max
k≥0

(sSTS(j, k + n)− s(i, k)) ≤ šROSPS(j, 0)− s(i, 0) + µ(G) · n

(4.29)
Therefore, we can determine the maximum latency from a periodic source

just by calculating an ROSPS with the earliest start time j and a WCSTS
for the earliest start time of i.

4.6.3 Modeling Latency Constraints from a Periodic Source

We can also represent the latency constraint in terms of a throughput con-
straint. This is useful when employing an MCM algorithm to check for
constraint violation.

We add to the graph an actor l with constant execution time t(l) and
an edge (j, l) and an edge (l, i) with d(l, i) ≥ 1 as shown in Figure 4.4. The
actor l does not have a self-edge. The period of the source actor i is µ(G).

Modeling a latency constraint in this way is only possible between ac-
tors with equal repetition vector entries, since we cannot have arcs between
specific firings of actors. However, if such model is required, one can always
convert the MRDF graph onto its equivalent SRDF.

We will assume, for simplicity sake, that the sink actor of the latency
constraint has a constant execution time. At the end of this section we will
explain how to handle a sink actor with variable execution time. For this

j

l

i
d(l, i)

Figure 4.4: Modeling a latency constraint in an SRDF graph.

model, it holds that

s(i, k + d(l, i)) ≥ s(j, k) + t(l) + t(j) (4.30)

By replacing 4.5 in 4.30 we obtain:

s(j, k)−s(i, k) ≤ µ(G)·d(l, i)−t(l)−t(j) ⇔ L̂(i, j, 0) ≤ µ(G)·d(l, i)−t(l)−t(j)
(4.31)

By setting adequately the values of t(l) and d(l, i) we effectively model a
latency constraint in terms of the throughput: an infringement of the latency
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constraint will be detected as an increase of µ(G), that is, an infringement
of the minimum throughput constraint. The parameters can be set for any
values of d(l, i) and t(l) = µ · d(l, i)−L− t(j), as long as t(l), d(l, i) ≥ 0, but
choosing a low value for d(l, i) may constrain the pipelined execution of the
iterations of the graph, for analysis purposes. Actor l and edges (j, l) and
(l, i) do not need to have any equivalent in the implementation.

If j does not have a constant execution time, then we need one more new
actor to model the latency constraint. Lets call this actor j′, with execution
time t(j′) = 0. All input arcs of j are redirected to j′. We then add a
delay-less edge from j′ to j, and build the latency model as described above
with j′ as the sink, instead of j.

4.6.4 Maximum Latency from a Sporadic Source

In reactive systems, it frequently happens that the source is not strictly
periodic, but produces tokens sporadically, with a minimal time interval µ
between subsequent firings. Typically, a maximum latency constraint must
be guaranteed. This will be the case, for instance, for the WLAN receiver we
will show in Chapter 5. It is easy to see that in such case, the MRDF graph
has to sustain a throughput of 1/µ in order to guarantee that it cannot be
overran by such a source, operating at its fastest rate. This means that
the MCM of the graph, µ(G), is such that µ(G) ≤ µ. Our proof relies on
the possibility of bounding the self-timed behavior of a graph by a static
periodic schedule with period µ, which is possible as long as µ(G) ≤ µ. In
the following text, we will assume for simplicity, that µ(G) = µ, without
loss of generality

In this section, we derive the maximum latency of an actor relatively to
a sporadic source. First, we define a sporadic source more formally.

Definition 4.3. A source is sporadic if it fires with a forced schedule s′ such
that s′(i, k) ≥ s′(i, k − 1) + µ.

Furthermore, we introduce a strictly periodic reference schedule s of
source i with period µ, i.e.

s(i, k) = s(i, 0) + µ · k (4.32)

We define δ(k) as
δ(k) = s′(i, k)− s(i, k), (4.33)

that is, delta is the difference between the actual time at which the sporadic
source has fired and the time at which our strictly periodic reference schedule
of source i fires.
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Lemma 4.1. If a source is sporadic then δ can only increase with every
subsequent iteration:

δ(k + 1) ≥ δ(k). (4.34)

Proof. We replace the definition of δ in 4.34:

(s′(i, k + 1)− s(i, k + 1))− (s′(i, k)− s(i, k)) ≥ 0. (4.35)

As s(i, k + 1) = s(i, k) + µ, Equation 4.35 becomes:

s′(i, k + 1)− s′(i, k) ≥ µ, (4.36)

which is true by hypothesis, since our source is sporadic.

Theorem 4.6. Consider an SRDF graph G = (V,E, t, d) and a schedule
s′ of that graph where all start times are self-timed, except for an external
sporadic source n whose forced schedule behaves according to Definition 4.3,
with interval µ, and all execution times are worst case. Consider also the
schedule s where the sporadic source is replaced by a periodic source s(i, k) =
s(i, 0) + µ, with s(i, 0) = s′(i, 0), and where the firings of all other actors
are self-timed. Then, for all actors j ∈ V , it holds that:

s′(j, k) ≤ s(j, k) + δ(k − dd(n, j)). (4.37)

Proof. For any actor other than the source, all start times in both schedules
are self-timed. It therefore holds for any actor j ∈ V other than the source
that

s′(j, k) = max
(x,j)∈V

(s′(x, k − d(x, j)) + t(x)) (4.38)

and
s(j, k) = max

(x,j)∈V
(s(x, k − d(x, j)) + t(x)) (4.39)

If we assume that the theorem applies to all the firings that precede the
(j, k) firing, then s′(x, k) ≤ s(x, k) + δ(k − dd(n, x)), and it is true that

s′(j, k) ≤ max
(x,j)∈V

(s(x, k − d(x, j)) + t(x) + δ(k − d(x, j)− dd(n, x))). (4.40)

Now, recall that dd(n, x) is the shortest path in delays from n to x. Through
the triangle inequality of shortest paths [15], we know that

dd(n, x) + d(x, j) ≥ dd(n, j), (4.41)
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for all x. Therefore, recalling Lemma 4.1, it is true that

δ(k − dd(n, x)− d(x, j) ≤ δ(k − dd(n, j)), (4.42)

and therefore

max
(x,j)∈V

(s(x, k − d(x, j)) + t(x) + δ(k − d(x, j)− dd(n, x))) (4.43)

≤ max
(x,j)∈V

(s(x, k − d(x, j)) + t(x) + δ(k − dd(n, j))).

Then, because of the inequality in Equation 4.40 we can write

s′(j, k) ≤ max
(x,j)∈V

(s(x, k − d(x, j)) + t(x) + δ(k − dd(n, j))). (4.44)

and since δ(k− dd(n, j)) is constant inside the max expression we can yank
it out to have

s′(j, k) ≤ max
(x,j)∈V

(s(x, k − d(x, j)) + t(x)) + δ(k − dd(n, j)). (4.45)

Since s(j, k) = max(x,j)∈V (s(x, k − d(x, j) + t(x))

s′(j, k) ≤ s(j, k) + δ(k − dd(n, j)) (4.46)

We can now inspect the latency between an actor j and an external spo-
radic source i, at an iteration distance of m. The definition of the maximum
latency is:

L̂(i, j, m) = max
k≥0

(s′(j, k + m)− s′(i, k)) (4.47)

It follows directly from Lemma 4.1 that maxp≤k δ(p) = δ(k). It follows from
Theorem 4.6 that:

s′(j, k + m) ≤ s(j, k + m) + δ(k + m− dd(i, j)) (4.48)

We know that the maximum start time in an STS is not later than the
earliest possible start time in an SPS with period µ – which always exists,
since µ(G) ≤ µ – thus

s(j, k + m) ≤ šµ(j, k + m) (4.49)

where šµ is a static periodic schedule of G with period µ.
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Given 4.49 and by definition of SPS, we can rewrite 4.48 in:

s′(j, k + m) ≤ šµ(j, 0) + µ · (k + m) + δ(k + m− dd(i, j)) (4.50)

Equation 4.47 implies that, it holds for all k ≥ 0 that

L̂(i, j, m) ≤ s′(j, k + m)− s′(i, k). (4.51)

Now, by replacing in this inequality the expressions we obtained for an
upper and a lower bound, respectively, for s′(j, k + m) and s′(i, k):

L̂(i, j, m) ≤ šµ(j, 0) + µ · (k + m) + δ(k + m− dd(i, j))− s(i, 0)−µ · k− δ(k)

We then simplify the right-hand-side expression to obtain:

L̂(i, j, m) ≤ šµ(j, 0) + µ ·m + δ(k + m− dd(i, j))− s(i, 0)− δ(k) (4.52)

For m ≤ dd(i, j), since δ(k) ≥ δ(k + m− dd(i, j)), we can write:

L̂(i, j, m) ≤ šµ(j, 0)− s(i, 0) + µ ·m

The latency L̂(i, j, m) is not defined for m > dd(i, j) because the start time
of execution k + m of j is dependent on the start time of execution k + 1
of i, which is unbounded, since the maximum difference between s(i, k + 1)
and s(i, k) is undefined for a sporadic source.

When defined, the latency L̂(i, j, n) with a sporadic source has the same
upper bound as the latency for the same source, sink and iteration distance
in the same graph with a periodic source with period µ.

4.6.5 Maximum Latency from a Bursty Source

We characterize a bursty source as a source that may fire at most n times
within any T time interval, with a minimal ∆t interval between consecutive
firings. A job that processes such a source must have µ(G) ≤ T/n to be
able to guarantee its processing within bounded buffer space. Moreover, if
µ(G) ≤ ∆t, then we have the previous case, i.e., maximum latency from a
sporadic source. If µ(G) ≥ ∆t then latency may accumulate over iterations,
as the job processes input tokens slower than the rate at which they arrive.
The maximum latency must occur when the longest burst occurs, with the
minimum interval between firings of the source, that is a burst of n tokens
with ∆t spacing. Because of monotonicity, making the source execute faster
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Figure 4.5: Arrival times of tokens of a bursty source relatively to strictly
periodic source.

cannot make the sink execute slower, but it also cannot guarantee that it
executes faster.

As depicted in Figure 4.5, the tokens of the bursty source i will arrive
earlier than for the periodic source i′. Therefore, iteration n − 1 after the
beginning of the burst (iteration 0) happens the earliest time s(i, n − 1) =
sROSPS(i, 0) + (n − 1) · ∆t. The firing n − 1 of j happens the latest at
s(j, n−1) ≤ šROSPS(j, 0)+(n−1)·µ(G). Therefore, a bound on the maximum
latency is given by:

L̂(i, j, n) ≤ šROSPS(j, 0)− sROSPS(i, 0) + (n− 1)(µ(G)−∆t) (4.53)

4.7 Related Work

This chapter is an updated version of the work we previously presented in
[73]. We are not aware of any other work on forced periodic sink behavior.

In [82], latency is defined as the time elapsed between periodic source
and sink execution. This book also shows how this can be calculated by sym-
bolic simulation of the worst-case self-timed schedule of the job graph. This
method requires symbolic simulation of the job graph, which is in general
intractable, even for Single Rate Data Flow graphs. Its definition of latency
is not as general as ours, since it only works if there is at least one delay-less
path between source and sink. More importantly, it is only applicable if
the external source is strictly periodic. In [25], a method is proposed for
measuring the minimal achievable latency of a self-timed implementation of
a MRDF graph. This work does not address the problem of bounding the
maximum latency.
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In [28], latency and buffer sizing are studied in the context of PGM
graphs, which are comparable in expressivity to MRDF graphs. The anal-
ysis done in this work, however, limits itself to graphs with chain topology.
Moreover, [28] does not allow for feedback loops, does not model inter-
processor communication, requires EDF scheduling and a strictly periodic
source.

The event model used in the SYMTA/S tool [46] cannot cope with crit-
ical cycles (i.e., they are not taken into account), and latency can only be
measured as a result of a complete mapping, never taken into account as a
constraint during the mapping processes, as our analysis method allows.

There is recent work that confirms some of our results. In [22], a proof is
given that a periodic linear bound exists on consecutive production times of
tokens that occupy the positions of initial tokens for a MRDF graph. These
are equivalent to the linear bounds that can be obtained with our method for
the firing times of the producers of such tokens. This paper also proposes
a way of computing these bounds through a simulation-based technique.
A comparison between our technique and this in terms of efficiency and
tightness of the bounds could be interesting future work. In [92], the timing
linearity property is also shown to hold for Variable-Rate Data Flow.

4.8 Conclusion

In this chapter, we developed temporal analysis methods for static data
flow, that are derived from the monotonic property of MRDF graphs and
especially on the relation between self-timed and periodic schedules. We
use this relation to reason not only about average throughput — to which
analysis of self-timed schedules of MRDF graphs traditionally limits itself —
but also about maximum latency and periodic behavior. These techniques
allow us to provide conservative linear bounds for all firings of actors of the
MRDF graph — even during the transient phase of self-timed execution,
and bound the effect of an increase of the worst-case execution time of an
actor on the behavior of the graph.
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Chapter 5

Compile Time Scheduling

In our approach to Software-Defined Radio, a radio transceiver is a concur-
rent software program expressed by means of a data flow graph. In this
chapter, we show how such a data flow graph can be partially scheduled at
compile time to a heterogeneous multiprocessor platform, in such a way that
guarantees of Hard Real-Time performance can be given. The scheduling
decisions taken at compile time are not complete, since, as already explained
in Chapter 2, the assignment of actors to processors in the physical plat-
form must be done at runtime, to preserve the flexibility in the mapping
that allows for multiple instances of multiple transceivers to run simulta-
neously. Nonetheless, we take as many scheduling decisions as possible at
compile time to decrease the complexity of the runtime mapping algorithm
that assigns hardware resources to each transceiver instance.

Accordingly, we take at compile time all the scheduling decisions that
require complex end-to-end temporal analysis of the graph. These include
the computation of buffer sizes, clustering of actors and static ordering of
actors per cluster, and the resource requirements towards the local runtime
schedulers of each processor.

Our strategy is to take the original actors of the data-flow graph and
group them in clusters of statically-ordered actors. Each cluster will be
assigned as one entity to one processor by the online processor allocation
algorithm. We then determine for each of these clusters the amount of pro-
cessor resources, including scheduler settings for a Time Division Multiplex-
ing (TDM) or a Non-Preemptive Non-Blocking Round Robin (NPNBRR)
scheduler, and for all inter-cluster channels all buffer capacities, in such a
way that they are sufficient for the transceiver to meet its end-to-end Hard
Real-Time (HRT) requirements.

85
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We form clusters by mapping actors to virtual processors, and statically
order all the actors mapped to each given virtual processor. Each virtual
processor represents a fragment of the resources of a physical processor in
the target platform. The designer must specify to the scheduler a target
platform file containing a list of all virtual processors and their resources.
We assume that all virtual processors of a given type can be mapped to
a physical processor of the same type. For the sake of simplicity, we will
assume that all physical processors of a given type have the same clock
frequency, and the same dynamic scheduler with the same settings.

We have shown in Chapter 3 and Chapter 4 that the self-timed execution
of Single Rate Data Flow (SRDF) and Multi Rate Data Flow (MRDF) can
be analyzed for worst-case temporal behavior, assuming sufficient buffer
sizes. Our compile time scheduling algorithm requires the generation of
a data flow graph that models the temporal behavior of the input graph
including the effects of each scheduling decision we take. Since scheduling
decisions can only decrease the throughput or increase the latency of the
graph execution, we can take decisions in incremental steps, and check,
at each step, if each new decision still allows for a valid schedule. We
can then exhaustively search the tree of scheduling decisions for solutions,
backtracking each time an infeasible branch is found.

Our data flow scheduler is designed to schedule both single-rate (SRDF)
and multi-rate (MRDF) graphs. MRDF graphs are first converted onto an
SRDF equivalent, but special care must be taken to take into account the
fact that multiple arcs in the converted graph correspond to a single buffer
FIFO. For any actor in the input data flow graph that keeps state over
consecutive iterations (or equivalently has a self edge with unitary delay),
we will require that the SRDF copies are mapped onto the same processor,
to avoid state migration.

We will first explain how the scheduler works for input graphs that are
already single-rate (SRDF). We will then dedicate a section to explaining
what must be changed in the scheduler to accommodate for graphs that were
originally multi-rate (MRDF). In Section 5.1 we will describe and provide
notation for the inputs of our scheduler. In Section 5.2 we describe and pro-
vide notation for the outputs of our scheduler. In Section 5.3, we will show
how the compile time scheduling decisions can be modeled conservatively by
means of a data flow graph, and how a temporal model for a partial sched-
ule of a graph can be constructed. After this, in Section 5.4 we motivate
the need for applying a combination of clustering and static ordering with
a runtime scheduler. In Section 5.5 we define the compile time scheduling
problem and propose strategies to tackle it. In Section 5.6 we apply our



5.1. SCHEDULER INPUTS 87

techniques to obtain schedules for a TDS-CDMA receiver and a WLAN re-
ceiver, that must share resources of a multi-processor platform. In Section
5.7 we discuss related work and in Section 5.8 we state our conclusions for
this chapter.

5.1 Scheduler Inputs

Our scheduler requires three inputs: the task graph of the transceiver, a
description of the target platform onto which the transceiver is going to
be mapped, and a set of timing requirements. Furthermore, the user can
optionally specificy additional constraints to the mapping. In the following
sections we detail these inputs.

5.1.1 Target Platform

We model the hardware platform to which the application graph is going to
be mapped as a set of virtual processors. Each virtual processor represents
a quantity of processing resources made available by the physical hardware
platform. We chose to allocate resources of virtual processors at compile
time because this still allows the binding of virtual to physical processors to
be done at runtime, resulting in more mapping flexibility. Each virtual pro-
cessor may represent all or a fraction of the resources of a physical processor.
For example, we may map our application to a family of hardware platforms
that include two to four ARM processors. The virtual platform described as
input to the compile time scheduler can contain two (virtual) ARM proces-
sors. At runtime, the resource manager may decide to allocate each of the
virtual processors to any two of the four physical processors, if the particular
instance of the hardware platform contains four ARM processors.

A virtual target platform is described by a set of virtual processors Π.
The processors are described by a tuple (τ, sched, P, Ŝ). The valuation τ :
Π → T , where T is the set of processor types, represents the type of the
processor (for instances, an ARM or an EVP). The valuation sched : Π →
{tdm, rr, off} represents the type of the dynamic scheduler that is running
on the processor. In the current implementation, this type can be tdm, if
the processor implements a TDM scheduler, rr if the processor implements
a NPNBRR scheduler, or off, if the processor has no dynamic task scheduler
running. The valuation P : Π → N0 represents the period of the scheduler
(in a round-robin scheduler, this is the sum of the worst-case execution
times of actors that can at any time be mapped onto the processor). The
valuation Ŝ represents the maximum amount of processor resources that
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a single job can use per period. Therefore it must always hold that Ŝ ≤
P . Furthermore, we assume that all processors of a given type have the
same value for sched and P , and we can therefore refer to the valuations
sched : T → {tdm, rr, off} that, given a processor type, returns the type of
scheduler used in those processors, and valuation P : T → N0 that, given a
processor type, returns the period of the scheduler for that type of processor.

One more observation about the relation between virtual processors and
physical processors is needed: two virtual processors can map onto a single
physical processor during runtime mapping. If, for example, we have two
virtual processors with the same scheduler and period, and both with a max-
imum utilization lower than half the period, the runtime resource allocator
will always be able to map both virtual processors to the same physical
processor, if resources are available at the time of the allocation. By decid-
ing how the target platform is described in terms of virtual processors to
the compile time scheduler, the designer can effectively control the cluster
granularity.

5.1.2 Task Graph

A timed SRDF graph, annotated with processor type per actor and token
size per arc, G = (V,E, d, t, τ, β) represents the data flow program that
corresponds to a transceiver. V is the set of actors, E is the set of arcs. Each
actor in V corresponds to an invocation of a computational task in the input
LIME program. We call this graph the Task Graph of the application. The
t(i) valuation of actors corresponds to the WCETs of the computational task
invocation on a specific processor type. We assume that each actor in the
task graph can only be mapped to a specific type of processor. The type
of processor on which a particular actor runs is given by an extra valuation
τ : V → T . The valuation β : E → N0 represents the size β(i, j) in bytes of
each token produced/consumed in arc (i, j) ∈ E.

5.1.3 Timing requirements

Input timing requirements are both throughput and latency constraints. An
actor i ∈ V may be required to have a minimal guaranteed throughput of
θ(i), and maximum latency requirements can be expressed as described in
Chapter 4. The throughput requirements are used to determine a required
maximum cycle mean µD for the graph. The maximum period has to be
such that all nodes meet their throughput requirement and therefore µD =
mini∈V θ(i)−1. Latency constraints are expressed in the temporal analysis
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graph in terms of µD by using the latency modeling technique described in
Section 4.6.3, on top of the temporal analysis model that will be described
in Section 5.3.

5.1.4 Additional Constraints

The scheduler accepts a number of additional mapping constraints. These
will not be discussed in the rest of this chapter, as adding verification of these
constraints to the scheduler is conceptually straightforward, while including
them in the remainder of the text will make all explanations and notations
much longer. These constraints are the following:

1. Memory space: besides cycles, actors consume memory space. De-
pendent on the processor architecture, these may include several differ-
ent memory pools, such as Instruction and Data Memory for Harvard
architectures, or Instruction, X-Data and Y-Data for Dual-Harvard
architectures. The data memories can be further subdivided in read-
write, stack and read-only memories, for instances. Our scheduler al-
lows for actors to be annotated with a vector of memory requirements,
and virtual processors in the target architecture to be annotated with a
vector of memory provisions. Any valid schedule must respect that the
sum of memory requirements of all actors mapped to a given processor
is lower than the memory provided for each pool in that processor.

2. Forced Mapping: the designer can constrain the mapping of actors
to a specific processor in the virtual target platform.

3. Forced Co-mapping: the designer can instruct the scheduler to force
a set of actors in the task graph to be mapped to the same processor,
i.e. the designer imposes that the set of actors belongs to the same
cluster.

4. Forced Ordering: the designer may specify a order of execution
between firings of two actors by adding an extra arc between them.

5. Buffer size restriction: the designer can instruct the scheduler to
assume that the maximum buffer space between two actors is limited
by a given value. This will be further discussed in Section 5.3.2.
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5.2 Scheduler Output

The output of the compile time scheduler is given as a static order, a slice
size per processor, and a buffer capacity per edge in the input graph. The
static order is represented by the valuation so : Π → αn, where αn is the
set of actor sequences of the type, [i1, i2, ...in], where i1, i2, ..., in ∈ V , and
the slice size for the cluster is given by valuation S : Π → N0. The static
order also implies a processor allocation π : V → Π, such that, if, for a
given i ∈ V , if i ∈ so(p) =⇒ π(i) = p, meaning that actor i is mapped to
processor p. In a complete compile time schedule, for any actor i ∈ V there
must exist a single processor p such that i ∈ so(p). The buffer capacity is
represented by valuation b : E → N0, and represents the amount of tokens
allocated to the edge.

5.3 Modeling Resource Allocation

In order to check whether a particular compile time schedule meets the tim-
ing requirements, we generate a temporal analysis graph G′ that represents
the effects on the temporal behavior of graph G of the compile time schedule
described by (so, S). We must be able to conservatively model the effects
of actor ordering, local dynamic schedulers, communication channels and
buffer sizing. We will discuss first each one of these and then provide a
transformation that, given the input data flow graph G, a target platform Π
and a (partial) compile time schedule (so, S), generates the temporal anal-
ysis graph G′(G, Π, so)

5.3.1 Communication channels

Depending on the target architecture and the level of detail required, com-
munication channels between actors executing in different processors might
be modeled in different ways. In [71] and [79] models are derived for the
Æthereal network. Many different models for the same network are possible,
depending on the level of abstraction. In the remainder of this chapter, we
will assume that communication between actors is done via remote stores
whose worst case time is accounted for in the execution times of the produc-
ing actors. The reader is encouraged to consult [71] and [79] to find more
precise and detailed models of communication. Any of these models is para-
metric, depending on token size and the characteristics of the inter-processor
communication hardware.
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5.3.2 Buffer size restriction

A buffer capacity constraint can be modeled in an MRDF graph by adding
to the input graph a back-edge from the consumer of a FIFO to its producer
with production/consumption rates that match the consumption/produc-
tion rates of the forward edge. As the number of tokens in the cycle between
producer and consumer can never exceed the number of initial tokens in that
cycle, the edge that models the actual data FIFO can never have more then
the number of tokens initially placed in the “credits” back edge plus the
number of initial tokens in the forward edge. This also means that an ac-
tor cannot fire without enough space being available in each of its output
FIFOs, which represents the worst-case effect of back pressure.

5.3.3 Task Scheduling

There are two types of task scheduling mechanisms that we are interested
in modeling: Compile Time and Runtime Scheduling.

Compile Time Scheduling (CTS) encompasses scheduling decisions
that are fixed at compile time, such as static order scheduling.

Runtime Scheduling (RTS) refers to scheduling decisions that can-
not be fully resolved at compile time, because they depend on the runtime
task-to-processor assignment, which in turn depends on the dynamic job-
mix. This is handled by the local scheduling mechanism of the processor.
Modeling the worst-case effect of the local scheduler on the execution of an
actor is needed to include in the compile time analysis the effects of sharing
processing resources among jobs. If the WCET of the task, the settings of
the local dispatcher, and the amount of computing resources to be given to
the task are known, then the actor execution time can be set to reflect the
worst-case response time of that task running in that local dispatcher,
with that particular amount of allocated resources. In [7], we show how this
can be computed for a TDM scheduler and, in [75], for a NPNBRR sched-
uler. We will present these models in the following subsection and extend
them to handle its combination with static order scheduling.

5.3.4 TDM Scheduling

In [7], it has been shown that the effect of TDM scheduling can be modeled
by replacing the worst-case execution time of the actor by its worst-case
response time under TDM scheduling. The response time of an actor i is
the total time it takes to fire i , when resource arbitration effects (scheduling,
preemption, etc) are taken into account. This is counted from the moment
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the actor meets its enabling conditions to the moment the firing is completed.
Assuming that a TDM wheel period P is implemented on the processor and
that a time slice with duration S is allocated for the firing of i, such that
S ≤ P , a time interval equal or longer than t(i) passes from the moment an
actor is enabled by the availability of enough input tokens to the completion
of its firing. This is due to what can be seen as two different effects of TDM
arbitration. The first of this is the arbitration time, i.e. the time it takes
until the TDM scheduler grants execution resources to the actor, once the
firing conditions of the actor are met. In the worst-case, i gets enabled when
its time slice has just ended, which means that the arbitration time is the
time it takes for the slice of i to start again. If we denote the worst-case
arbitration time as rA then:

rA(i) = P − S. (5.1)

The second effect has to do with the fact that the time slice may be too
small for the firing of i to be executed in a single slice. We shall call the time
between the moment that the actor starts execution and finishes execution
the processing time of the actor, and denote it by rP . The time i will
take to fire, in the worst-case, is equal to

rP (i) = b t(i)
S
c · P + (t(i) mod S). (5.2)

Since t(i)modS = t(i) − S.b t(i)
S c, the previous expression can be re-written

as:
rP (i) = b t(i)

S
c · (P − S) + t(i). (5.3)

The total worst-case response time of i is then given by the sum of these
two values:

r(i) = rA(i) + rP (i) = (P − S) · (b t(i)
S
c+ 1) + t(i) (5.4)

By replacing the t(i)s of all actors scheduled under TDM by their worst-
case response times, r(i)s, temporal analysis of the timed SRDF graph thus
obtained will yield the minimum guaranteed throughput that is attainable
by such an implementation.

In later work [92] it was shown that a more accurate model of a TDM
scheduler can be built by modeling by a generic data flow model for a latency-
rate server [84]. The effect on the timing of an actor i with execution time
t(i) of executing it under a latency-rate server can be modeled in data flow
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by replacing the actor by two actors: an actor iL and an actor iR. All the
input edges of actor i are connected as inputs to iL, and all output edges of
actor i are connected as outputs to the rate actor iR. Furthermore, an edge
(iL, iR) with no delays and an edge (iR, iR) with one delay are added to the
graph. The execution times of the actors in the model are given by

t(iL) = P − S (5.5)

and

t(iR) = P.
t(i)
S

. (5.6)

5.3.5 NPNBRR Scheduling

In a Non-Preemptive Non-Blocking Round-Robin (NPNBRR) Scheduler, all
clusters assigned to the same processor are put in a circular scheduling list.
The runtime scheduler goes through this list continuously. It picks an actor
from the list and tries to execute it. The actor (or the scheduler, depending
on the implementation) checks for input data and output space availability.
If there are sufficient input data tokens available in all input FIFOs and
output space available in all output FIFOs such that the actor can consume
and produce tokens according to its firing rules, the actor executes until the
firing is over, if not, the actor is skipped. The process is repeated for the
next actor in the circular scheduling list, and so on.

The worst-case arbitration time of an actor is given by the sum of the
execution times of all other actors mapped to the same NPNBRR-scheduled
processor. The processing time is equal to the actor’s execution time, since
there is no preemption. The total response time is therefore equal to the
sum of the execution times of all actors mapped to the NPNBRR-scheduled
processor.

As for the representation of scheduler settings for an NPNBRR scheduler,
we will take the maximum allowed sum of worst-case execution times of
tasks per turn of the Round-Robin wheel as the chosen maximum period
P and the maximum sum of worst-case execution times for a given cluster
of statically-ordered actors as the maximum slice Ŝ(p) of the resources of
processor p by a task graph G.

5.3.6 Static Order Scheduling

A static order schedule of a set of actors A = {a0, a1, ..., an} mapped to the
same processor is a sequence of execution so = [ak, al...am] that generates
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extra precedence constraints between the actors in A such that from the
start of the execution of the graph, ak must be the first to execute, followed
by al and so on, up to am. After am executes, the execution restarts from
ak for the next iteration of the graph.

Any static order imposed to a group of SRDF actors executing on the
same processor can be represented by adding edges with no tokens between
them. From the last to the first actor in the static order an edge is also
added, with a single initial token. This construct reflects the fact that, the
graph execution being iterative, when the static order finishes execution for
a given iteration, it re-starts it from the first actor in the static order for
the next iteration.

Notice that the new edges represent a series of sequence constraints en-
forced by the static order schedule and do not represent any real exchange
of data between the actors. In the data flow diagrams that follow, for ease
of reading, every time there is more than one edge from the same source to
sink, only one edge with the lowest d(i, j) is represented, as it imposes the
tightest sequence constraint between the actors.

5.3.7 Combining Static Order and TDM

Let’s assume that instead of attributing a separate TDM slice to each actor
we attribute a single TDM slice to a group of actors and we statically order
these actors. The reasons why we may want to do this are exposed in
section 5.4. For now we will focus only on how such a mixed schedule can
be modeled for the purpose of worst-case analysis.

Consider a set of actors {a1, a2, a3}, belonging to the same job, and
mapped to the same processor p. Consider that a static order of execution
so = [a1, a2, a3] has been imposed on them, and that this static order exe-
cution is allocated to a time slice of S time units within a time wheel with
a period P .

Since the actors are guaranteed to be mutually exclusive because of the
static order, it turns out that whenever one of them is activated none of
the remaining others is. Thus, we can conservatively assume that the TDM
scheduling will affect the timing of executing each actor in the same way as
it would if the time slice were allocated exclusively to it. We can therefore
model the combined effect of the static order and TDM scheduler by adding
to the scheduling analysis graph the edges that represent the imposed static
order and replacing each actor by the latency-rate model of its execution
under a budget scheduler, as described in section 5.3.4. This is depicted in
Figure 5.1 for three actors a1,a2 and a3, statically ordered and assigned a



5.3. MODELING RESOURCE ALLOCATION 95

slice with time S.

a1R

a2R

a1L

a2L

c

d

a1

a2

c

d

a3e a3Ra3Le

Figure 5.1: Modeling the combined effect of static order and TDM schedul-
ing

5.3.8 Mixing Static Order and NPNBRR scheduling

Modeling the effect on timing of NPNBRR scheduling over a cluster of
statically-ordered actors is somewhat similar to the previous case. The main
difference is that each actor will run to completion once its input is available,
without being preempted by the scheduler.

Consider C = {a1, a2...an}, a set of actors belonging to the same job
G, and mapped to the same processor p. Consider that a static order of
execution so = [a1, a2, ...an] has been imposed on them, and that the total
sum of execution times of actors in the Round-Robin list of processor p is P .
This includes the actors belonging to this cluster and any other clusters that
the runtime resource manager has allocated to the same processor. Under
these conditions, the first actor in the cluster, a1, will be able to fire for the
first time, in the worst case, after the time at which its first input token
has been produced plus an arbitration time equal to P −

∑
an∈C t(an). This

time may be used by actors from other jobs running on the same physical
processor. Note that actors belonging to the same cluster as a1 are not
accounted for here, since those dependencies are modeled with edges in
the graph, and enforce mutual exclusivity. After a1 finishes firing, a2 can
immediately fire if input data is available. If not, the firing will be delayed,
and the Round Robin scheduler moves to the next cluster. Once an input
token has become available, the NPNBRR can take, at most a time equal
to P −

∑
an∈C t(an) to allow a2 to fire. The same is true for a3 and all
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other actors in the cluster. This effect can be modeled by introducing in
the analysis model, for each actor ai ∈ C, a latency actor aiL with t(aiL) =
P −

∑
an∈C t(an), adding edges (aiL, ai), with d(aiL, ai) = 0, and further

replacing all edges in the set (j, ai) ∈ E : ai ∈ C, j /∈ C, by edges (j, aiL)
each with the same delay as the corresponding (j, ai).

Since each actor in the static order is still limited to execute at most once
per period, it occurs that in the worst case, after the last actor has executed,
the first can only execute again after a time interval of P −

∑
an∈C t(an) has

elapsed, even if input tokens are readily available. This can be modeled
by adding an actor with execution time P −

∑
an∈C t(an) at the end of the

cluster. Figure 5.2 depicts the conversion to the analysis model for a cluster
of three statically ordered actors a1, a2 and a3.

a1R

a2R

a1L

a2L vp

c

d
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c

d

a3e a3Ra3Le

Figure 5.2: Modeling the combination of static order and NPNBRR

5.3.9 Temporal Analysis Model

Having defined how to model the effects of our compile time scheduling
decisions on an SRDF graph, we are ready to present a graph transformation
that allows us to obtain a temporal analysis model SRDF graph G′, from
the knowledge of the original task graph G, the target platform Π, and the
compile time schedule (so,S).

We first define the set of edges in G internal to virtual processors:

Eint = {(i, j) ∈ E | π(i) = π(j)}, (5.7)

and the set of edges between virtual processors

Eext = {(i, j) ∈ E | π(i) 6= π(j)} = E − Eint. (5.8)
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The reason why we separate the treatment of external and internal edges is
that we do not need to assume that internal edges must wait for the latency
term in the response model, as both producer and consumer actors must
belong to the same cluster, and their dependencies are already modeled in
the graph. The analysis model G′(G, Π, so, S, P ) = (V ′, E′, t′, d′) is then
given by replacing all actors in G for their latency-rate models as described
above, adding edges to represent the static ordering, and computing the
execution times of these new nodes:

V ′ = {iL | i ∈ V } ∪ {iR | i ∈ V } ∪ {vp | p ∈ Π};
E′ = {(iL, iR) | i ∈ V } ∪ {(iR, iR) | i ∈ V }
∪ {(iR, jR) | (i, j) ∈ Eint} ∪ {(iR, jL) | (i, j) ∈ Eext}
∪ ∪p∈Π∧so(p)=[i1,i2,...,in]{(i1R, i2R), (i2R, i3R), ...,

(i(n−1)R, inR), (inR, vp), (vp, i1R)};
d′ = ∪i∈V {((iL, iR), 0), ((iR, iR), 1)}
∪ ∪(i,j)∈Eint

{((iR, jR), d(i, j))}
∪ ∪(i,j)∈Eext

{((iR, jL), d(i, j))}
∪ ∪p∈Π∧so(p)=[i1,i2,...,in]{((i1R, i2R), 0), ((i2R, i3R), 0), ...,

((i(n−1)R, inR), 0), ((in, vp), 0), ((vp, i1), 1)};
t′ = {(iL, lat(i)) | i ∈ V } ∪ {(iR, rat(i) | i ∈ V } ∪ {(vp, pro(p) | p ∈ Π}

where the functions lat, rat and pro are given, respectively, by

lat(i) =


P (π(i))− S(G, π(i)) if sched(π(i)) = tdm
P (π(i))− S(G, π(i)) if sched(π(i)) = rr
0 if sched(π(i)) = off

rat(i) =


P (π(i)).t(i)
S(G,π(i)) if sched(π(i)) = tdm

t(i) if sched(π(i)) = rr
t(i) if sched(π(i)) = off

pro(p) =


0 if sched(π(i)) = tdm
P (π(i))− S(G, π(i)) if sched(π(i)) = rr
0 if sched(π(i)) = off

where we simply used the formulas for the two terms of the latency rate
models for TDM and NPNBRR schedulers.
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5.3.10 Temporal Analysis Model for Partial Schedules

The construction of the temporal analysis model as given in the previous
section assumes that the whole graph has been scheduled onto the target
platform. During scheduling, we will need to check whether a partial sched-
ule is feasible or not. In partial schedules, some actors may not yet have been
mapped and the size of slices S(p, G) allocated to the graph on a specific
processor may not be yet known.

Our strategy when analyzing the temporal behavior of a partial sched-
ule is to always take the most optimistic assumption about the overhead
caused by the mapping of any actor that has not yet been yet assigned to a
processor, with the objective of not excluding any feasible complete solution
a priori. Sometimes, a particular combination of optimistic assumptions is
clearly not feasible in practice. Say that actor B, which is yet unmapped,
communicates both with actor A and actor C, which are respectively mapped
to processor 1 and 2. Furthermore, A, B and C all map to the same pro-
cessor type. We will assume that B communicates without inter-processor
overhead with both A and C, although it is patent that, once mapped, B
can be mapped to processor 1 or to processor 2, but not both. The rea-
son for taking always optimistic assumptions for partial schedules, is that
our scheduler, which we will present in detail in Section 5.5, searches for
feasible schedules by assigning actors to processors one by one, and check-
ing at each assignment whether the cumulative set of assignment decisions
has not created an infeasibility. Taking pessimistic assumptions about un-
mapped actors would leads us to potentially exclude feasible schedules from
the search.

If the processor allocation of an actor i ∈ V is known, and the slice size
S(π(i), G) has not yet been determined, then we make the slice size equal to
the maximum slice Ŝ(π(i)), since the final slice can never exceed that value,
in the computation of the functions rat and lat.

As for an actor i ∈ V yet unmapped, the π(i) is undefined, which we
will denote by π(i) = ⊥. We must redefine the analysis model for this case.
Edges where one of the endpoint actors is still unmapped are considered
internal edges, if the processor type of the two is the same, and external
if the processor type is different (independently of what mapping eventu-
ally is chosen, it is guaranteed that the two actors will not be in the same
processor). Therefore, in generating a temporal analysis model for a partial
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schedule, the sets Eint and Eext are given by

Eint = {(i, j) | (i, j) ∈ E ∧ (π(i) = π(j) ∧ π(i) 6= ⊥)}
∪ {(i, j) | (i, j) ∈ E ∧ (π(i) = ⊥ ∨ π(j) = ⊥) ∧ τ(i) = τ(j)};

Eext = E − Eint.

Furthermore, we must define the values of lat and rat for unmapped actors.
In the best case, an actor i ∈ V for which π(i) = ⊥ will be mapped to the
processor of type τ(i) that offers the highest maximum slice size, that is,
in this case, we make S(π(i), G) = maxp∈Π∧τ(p)=τ(i) Ŝ(p) in the equations
for lat and rat. This is possible since we assume that all processors of the
same type have the same dynamic scheduler settings (i.e. scheduler type
and period).

As an example, we depict in Figure 5.3 a data flow graph representing
the application(on the left) and its analysis model (on the right). The input
graph has 4 actors a, b, c and d. The processor types to each this actors
map are τ(a) = τ(c) = ARM and τ(b) = τ(d) = EV P , that is a and c
run on ARM processors, whereas b and d run on EVP processors. Further-
more, we are mapping this application to a virtual platform that includes
several ARMs and EVPs. One of the ARMs is named ARM1 and one of
the EVPs is EVP1. Assume that the current partial schedule includes only
mappings to these two processors, and it is the following: the static order
for ARM1 is so(ARM1) = [a, c], and, for EVP1, is so(EV P1) = [b]. Since
each processor runs a scheduler (for the topology it does not matter whether
it is TDM or NPNBRR), we insert a latency-rate model for each actor. We
add edges (aR, cR), and edges (cR, vARM1) and (vARM1, a), to represent the
static order. The processor actor is required to accurately model the budget
replenishment interval for NPNBRR, and its execution times is 0 for a TDM
scheduler. Application edges between actors mapped to different processors
(such as (a, b)), or between actors mapped to different processor types (such
as (c, d) are represented in the model by edges between the R actor of the
producer and the L actor of the consumer. An application edge between
actors mapped to the same processor, or, alternatively, having the same
processor type, where at least one of the actors has not been mapped yet
(such as (b, d)), are represented in the model by an edge from the R actor of
the producer to the R actor of the consumer, since it may still be possible
for the two to be mapped to the same processor.
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Figure 5.3: Example of the generation of an analysis model for a partially
scheduled graph.

5.4 Why we combine CTS and RTS

Although static order scheduling is a popular strategy for scheduling data
flow graphs [82], it cannot singly solve our mapping problem. Since jobs start
and stop independently, a static order schedule would have to be computed
at design time for every combination of jobs that can be active simultane-
ously. This problem is aggravated by the fact that, when a transition occurs
from a job-mix to another, remaining jobs must not experience any discon-
tinuity caused by the change of configuration. Secondly, as different jobs
can have very different rates, a static schedule could only be realized if the
faster jobs where almost completely latency-insensitive, which is certainly
not the case with jobs such as Wireless LAN and, even if this were the case,
the length of the static order schedule and the amount of buffering of inputs
required could easily become prohibitive.

One could think of simply using local TDM or NPNBRR schedulers per
processor and relying on FIFO communication for actor synchronization.
The main problem with such a strategy is that the bounds on the worst-
case response times of actors executing on independent slices completely
overlook the fact that, within a job, we have more information about the
interdependence of actors. For instances, a set of actors may be mutually
exclusive – in an SRDF graph this happens when the actors belong to the
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Figure 5.4: Three job fragments.
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Figure 5.5: Two schedules of three actors.

same single-delay cycle – and allocating a different slice to each of these
wastes resources, since, if all share the same slice, each can use the whole
slice when enabled.

To illustrate this, we compute the worst-case latency from input to out-
put for three groups of three actors, where all three actors belong to the
same job and are allocated to the same processor. These are shown in figure
5.4. In two of the cases, there are direct dependencies amongst them. In
the third case no such dependencies exist. Edges without a source receive
their input tokens from actors executing on other processors, which are not
depicted.

Assume that each actor has an execution time of t = 1. Figure 5.4 shows
two different schedules, both valid for all of the three cases, assuming a TDM
wheel period P = 4. In schedule 5.5(a) each actor gets its own time slice of
S = 1 duration. In schedule 5.5(b), the actors are statically ordered, and a
slice of S = 3 duration is allocated to the statically scheduled group. Both
schedules require exactly the same amount of processing resources (3/4 of
the time wheel), but worst-case response times are much smaller for the
combined scheduling strategy.

If the actors in Figure 5.4(a) are scheduled according to the schedule in
Figure 5.5(a), the output of B will be produced, in the worst-case, after A
and B have both executed once. A will take r(A) = 4 to execute, because in
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TDM Comb.
Job a Job b Job c All

Out A 4 4 4 2
Out B 7 7 4 3
Out C 10 7 4 4

Table 5.1: TDM vs Combined scheduling.

the worst-case A has to wait for 3/4 of the wheel to turn to get its slice, and
then take 1/4 of the wheel to process. Now B has to execute once. That
takes r(B) = 4 − 1, since B can execute sooner that waiting for a full turn
after A has completed – we know that B is not allocated to the same slice as
A. The output of B will therefore be generated after r(A) + r(B) = 7 units
of time. The output of C will still have to wait for the response time of C,
which will be again less than one period, since the slice allocated to C will
certainly be reached before the slice of B, which just finished. Therefore
r(C) = 3, and C will produce output after r(A) + r(B) + r(C) = 10 time
units. On the other hand, the combined TDM/static order schedule 5.5(b)
takes as worst-case the time from the end of the slice allocated to the group
to the next end of the slice allocated to the group, since the 3 actors all
execute in sequence within one slice. Therefore, A ends execution at time
2, the output in B is produced at time 3 and the output of C has a response
time of 4.

For job 5.4(b), the TDM schedule in figure 5.5(a) will yield a response
time of 4 + 3 = 7 for both external outputs, while the combined schedule
will yield the same values as for job 5.4(a).

For job 5.4(c), the combined schedule imposes an arbitrary order be-
tween 3 independent actors, and thus creates extra scheduling dependencies.
However, the worst-case production times, assuming all external inputs are
available, are still 2, 3, 4, for the outputs of A, B and C, respectively, while
for the TDM schedule, the worst-case production times are 4, 4, 4. Note
however that in this case the combined schedule imposes an extra depen-
dency on the arrival of the input of A to the production of B’s output,
which did not exist before. If the input of B is ready before the input of A,
this particular schedule may be quite inefficient. However, this is a prob-
lem of choosing the “right” static order. The results of this example are
summarized in Table 5.1.

The point we want to make is that the combination of TDM with static
order schedule allows, when applicable, the determination of much tighter
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bounds on worst-case response times for the same amount of allocated re-
sources than TDM. A similar example could be given for NPNBRR sched-
ulers. Since at compile time we know only about one single job, it is at this
level that static order can be used to shorten worst-case bounds on response
times.

Because of this, we use different scheduling methods to schedule among
tasks within a job (intra-job scheduling) and to reserve resources among
jobs (inter-job scheduling) such that each running job can meet its timing
requirements independently of any starts/stops of other jobs.

Intra-job scheduling is handled by means of static order, i.e., per job
and per processor, a static ordering of actors is found that respects the Real-
Time requirements while trying to minimize processor usage, while inter-job
scheduling is handled by means of local TDM/NPNBRR schedulers. In the
case of TDM, scheduling, per job and per cluster of statically-ordered actors,
a slice time with duration S must be determined.

An admission controller is needed to start jobs upon the arrival of a start
request. It is similar to the one we suggested in [74], in that it must check if
enough memory, communication and computing resources (enough time in
the TDM wheel of the processor) are available for the requirements of the
job. If not, the start of the job is refused. The mapping algorithms used by
the admission controller are described in detail in Chapter 7.

5.5 The Scheduling Problem

Our objective is to schedule each job in such a way that we guarantee real-
time constraints and minimize processing resource usage, such that resources
can be shared with other running jobs, both increasing the probability of
starting the job on an already running system, and the probability that
jobs requested to start later will find enough resources to start. We need
to define the period P (p) of the time wheel on each processor p ∈ Π , the
slice time S(p, G) attributed to job G on processor p, a static order schedule
so(p, G) per processor p and job G and sizes for all buffers. The maximum
acceptable period between consecutive executions of an SRDF actor for a
given job graph G is given by µD.

In order to propose a solution for this problem, we must first discuss
optimization criteria. After this, we will discuss how to decouple different
decisions in the scheduler, and we will then describe our proposed solutions
for each phase.
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5.5.1 Optimization Criteria

For each job, the schedule should use as few cycles per period as possible,
as this will increase the percentage of the processor available to other jobs.
A good measure of the amount of processing resources used by a job G on
a processor p is the processor utilization U(p, G), which can be defined, for
TDM, as the ratio between the time reserved on the processor for the job
and the total number of cycles per time wheel period:

U(p, G) =
S(p, G)
P (p)

. (5.9)

The processor period P (p) is, as we have seen, defined per processor as
a fixed system parameter which is considered an input by the scheduler.
We will discuss in Section 5.5.3 how to appropriately chose the value of this
parameter.

For a heterogeneous multiprocessor, we try to reduce the utilization of all
processors. This is done in a weighted way, since it is possible that certain
processors types are in general more required than others, and thus their
utilization should be kept lower. We introduce a processor cost coefficient
c(p).

Our optimization criterion is the minimization of the weighted sum of
the utilizations:

minimize
∑
p∈Π

U(p, G) · c(p) (5.10)

This function still disregards the fact that, although the resources of
a processor may be scarcer than of another, if the ”cheaper” processor is
fully occupied, several jobs may become impossible to start – e.g. a sec-
ond instance of an already running job. This could be accounted for by
an optimization criterion that makes the cost of a processor increase with
utilization, but that would yield a complex, non-linear objective function.
Instead, we rely on defining our maximum slice size per job, Ŝ(p) per pro-
cessor as part of the input to the scheduler, and enforcing that S(p, G) must
be kept lower than Ŝ(p) for any valid schedule.

Another potentially important optimization criterion is the amount of
buffering required in total and by processor. In our work we decided to
assume that buffering was less important than processor utilization. This is
because in the radio models that we studied buffer sizes were typically small
and mostly independent from the other resource allocation decisions, as we
shall see in the results section.
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5.5.2 Phase decoupling

The problem of trying to find P (p), S(p, G) , so(p, G), and b(i, j), subject to
the afore-mentioned constraints and optimization criterion is complex. It is
therefore necessary, when designing the scheduler, to try to define a number
of phases in which each of the decisions is taken.

The choice of the periods of the schedulers, P (p), should be independent
of the actual jobs, and these values should simply be given as inputs to the
scheduler. Nonetheless, the choice of periods is a very important decision,
and one that can be made much easier by taking into account the charac-
teristics of the transceivers that one knows will be required to run in the
platform. Section 5.5.3 discusses how to chose these values.

For NPNBRR schedulers, the choice of S(p, G) is made along the choice
of so(P,G). This is because, for a NPNBRR scheduler, since preemption
is not possible, the slice sizes are simply equal to the execution times of
the tasks allocated to the processor. For TDM schedulers, we have an extra
phase of the compiler dedicated to trying to reduce the size of the slices, after
a feasible so(P,G) has been found. A third phase takes care of computing
feasible buffer sizes for all FIFOs, and can be applied before, after or in-
between the two other phases, depending on how many buffering resources
are available in the platform.

5.5.3 Determining Scheduler Settings

For an NPNBRR scheduler, we do not have many options in the choice of
the period P (p) of processors. Say that we want to be able to run a number
of different jobs, each with a different µD. Since for the lowest µD it is
still required that each actor fires once per period, we should set P (p) at
most to the value of the lowest µD across all the jobs we intend to map
in the platform. This value is likely to make other jobs unschedulable, if
they are composed of actors, with execution times too high to fit in a single
turn of the Round Robin wheel. In such a case, one can consider that when
such a job is running, there can be no sharing of resources with the faster
job, and the compile time scheduling can be carried out with a higher µD.
This will, however, make it impossible for this job to share resources with
any job with a faster µD for that processor type. Also, since one of our
given requirements (see Chapter 2), is that we cannot know at compile time
all other transceivers that may be mapped in the platform, our choice of
P (p) can only be based on the jobs that are known at design time, and on
known characteristics (such as sampling rates) of transceivers that may in
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the future be added to our platform.
For TDM schedulers, assuming a constant processor utilization, we no-

tice by inspecting Equation 5.4 that when the time wheel period decreases,
the worst-case response time of an actor becomes closer to its execution
time. This suggests that the processor period of a TDM scheduler should
be as small as possible, while still allowing partitioning of processing re-
sources among the maximum amount of job instances one wishes the plat-
form to be able to run simultaneously. However, this neglects the overhead
caused by the context-switching time at the change of time slice: since the
context-switching time is constant, a smaller time wheel period implies a
higher absolute number of context switches and, thus, a lower utilization of
the processors. We can chose P (p) in such a way that we guarantee that
the overhead of context-switching does not exceed an arbitrary percentage
pcc(p) of the processing cycles of p. If cc(p) is the cost of a context-switch
for processor p and nj(p) is the maximum number of job instances we wish
to run simultaneously, and since per each period each job gets one time
slice, then the number of cycles per period spent on context switching is
cc(p) · nj(p) and the value of P (p) should be set such that:

P (p) ≥ cc(p) · nj(p)
pcc(p)

(5.11)

On the other hand, since any actor in a timed SRDF graph must be
able to execute once per µD of its job to meet the temporal constraints, the
time wheel period must be such that allows this for all jobs, and therefore
P (p) ≤ µD(G) for any job G the system must run. If the two inequalities are
not compatible, one must accept a higher percentage of context-switching
overhead.

5.5.4 Finding Static Order Schedules

Our data flow scheduler groups actors into clusters, while simultaneously
ordering actors statically within each cluster.

The first thing to notice about the static order schedules is that the
only precedence constraints that need to be respected are the ones inside
one iteration. This is because the static order imposes an execution order
with no iteration overlap per cluster (but notice that between two different
clusters there may still be iteration overlap). Therefore, for the purpose of
the static order schedule, only edges in the input graph that have the delay
equal to 0 need to be taken into account.
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To give an idea of how the static order of actors on a processor influences
the temporal behavior, we will give an example. Figure 5.6 depicts the timed
SRDF model of a job. Assume that actors A, B and C are allocated to a
cluster and D to another. Assume also that t(A) = t(B) = t(C) = t(D) = 1
and that µD = 3. The MCM of the job is µ = 3, because of the ACD cycle.

Now inspect the two clustered static order schedules in Figure 5.7. Both
of them respect the precedence constraints defined by the 0-delay edges, but
while the schedule depicted in 5.7(a) has an MCM of 3, from cycles ACD
and ACB, the schedule depicted in 5.7(b) exceeds µD since the cycle ABCD
has µc = 4, due to the extra dependency caused by the static order on the
first cluster.

A

B C D

A

B

C D

A

C

B

DP1

P2

P2

P1

Figure 5.6: A job.

The data flow scheduler works thus: first, a Direct Acyclic Graph (DAG)
representing the dependencies between actors within an iteration is gener-
ated, by removing all edges with delays from the input graph. Then the
scheduler starts. It picks an actor without dependencies. It generates a list
of processors to which the selected actor can be mapped. It then selects
one of these processors, and tries to map the selected actor to the selected
processor. This appends the actor to the statically-ordered sequence of a
given processor.

After each mapping attempt decision, a temporal analysis model for the
obtained partial schedule is constructed, and an MCM computation checks
whether the MCM of the temporal analysis model is lower than the required
µD. For MCM computation, we implemented the Howard algorithm [13],
since it is one of the fastest, according to the benchmark provided in [17]
and, being a policy-improvement algorithm, it is easy to write an incremental
version of it: at each step we can start the search of the MCM for the new
model graph by the MCM cycle which was the solution in the previous step.

If the MCM of the temporal analysis model is below µD the last schedul-
ing decision is kept, the DAG is updated by removing the actor that was
mapped, a new actor the is considered from the fireable nodes in the DAG. If
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Figure 5.7: Two schedules for the same job.

the mapping fails to meet the timing requirements, the scheduler undoes the
last actor to processor mapping and tries another of the possible processor
mappings for the actor. If no possible allocations are left for this actor, it
backtracks, undoing its previous last successful actor to processor mapping,
and trying another one.

The algorithm finds a solution if it runs out of actors to allocate, and all
actors are allocated to a processor. It fails if no valid solution can be found
after all sequences of mappings have been tried.

This algorithm guarantees that actors are presented to the scheduler in
all possible orders that respect the intra-iteration dependencies (as given
by the DAG), and that all processor mappings for every ordering are con-
sidered. The problem is that the same static order schedule can be tried
several times. For instances, reversing the order of mapping two actors with
different processor types will result in the exact same static order schedule.
To avoid this, we can keep a hash table with all the static orders that we
have encountered before, and backtrack every time we find ourselves in a
previously explored state.

Pseudo-Code for the scheduler

In what follows, we will present the scheduler functions in a pseudo-code
that is mostly composed of valid Objective Caml functions, except for the
statements starting by “for each” which we use as an easier to read place-
holder for what in the Objective Caml implementation is a call to List . iter .
The top-level schedule function works as the external call point for the sched-
uler. Its input argument is a graph. A graph is an ordered pair of nodes
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and edges. The function extracts the inital DAG from the graph and ini-
tializes an empty list of binds, after which it makes the initial call of the
scheduling step function. The call will always return an exception that can
be caught by the caller. If the call to scheduling step succeeds, it will throw
the exception Solution found s, where s is the complete valid schedule, if not,
schedule will throw the exception No Solution Found.

l et s chedu le graph=
(∗ s chedu l i n g dag i s the graph wi thout edges wi th de l a y s ∗)
l et dnodes= nodes graph
and dedges= f i l t e r ( fun e −> delay e < 1) ( edges graph ) in
let dag= ( dnodes , dedges )
and binds= [ ] in
(∗a schedu l e i s the pa i r i n g o f a dag wi th a l i s t o f b inds ∗)
l et empty schedule= (dag , binds ) in
s ch edu l i n g s t ep empty schedule ;
r a i s e No Solution Found

The recursive function scheduling step goes through all the actors that are
ready to be mapped in the current partial schedule and tries to map each
to each processor where it can run. If a mapping does not infringe the tem-
poral requirements, which is checked by calling eval schedule, scheduling step
invokes itself to continue the mapping procedure. If the mapping fails, the
next (actor,processor) pair is evaluated. If a complete valid schedule is found,
it raises the exception Solution found s, where s is the complete valid sched-
ule. If a mapping is invalid, the call to scheduling step will simply return.
Note that we left outside of this description the hashing of the static or-
der schedule that allows us to recognize a scheduling branch that has been
previously evaluated. This was omitted to make the program easier to read.

l et rec s ch edu l i n g s t ep schedu le =
l et ( dag , binds ) = schedu le in
(∗an ac tor i s f i r e a b l e i f i t has no predece s so r s in dag ∗)
l et f i r e a b l e a c t o r s = ge t s ou r c e s dag in
i f dag = ( [ ] , [ ] ) then r a i s e ( Solut ion Found schedu le ) ;
for each ac to r in f i r e a b l e a c t o r s do

for each pro c e s s o r in ( pos s ib l e mappings ac to r ) do
let new schedule = map actor p ro c e s s o r schedu le in
let eval outcome = eva l s ch edu l e new schedule graph in
match eval outcome with
| Valid −> s ch edu l i n g s t ep new schedule
| I nva l i d −> ( )

done
done



110 CHAPTER 5. COMPILE TIME SCHEDULING

The eval schedule function generates an analysis model for the given schedule
and graph and evaluates wether the analysis model meets the temporal re-
quirements, returning either Valid or Invalid. The possible mappings function
returns a list of processors in the multiprocessor architecture that match the
type of processor of the actor in the function argument. A scheduling heuris-
tic can be defined by reordering the fireable actors list, the possible mappings
list, or both. For instances, ordering the fireable actors list such that the
actor with the longest path to the sinks of the DAG is mapped first can sig-
nificantly improve the number of steps the scheduler takes to find a solution,
at least for some graphs. The map function adds the new actor to processor
mapping to the bind list. Binds are represented as (actor, processor) pairs.

l et map actor p ro c e s s o r ( old dag , o ld b ind s ) =
l et new binds = ( actor , p ro c e s s o r ) : : o l d b ind s
and new dag = remove node o ld dag acto r in
( new dag , new binds )

The static order on a processor can be extracted from the binds list by
going through the binds list and obtaining a list (in reverse order, since the
scheduler always adds the last bind at the head of the list) of all actors in
pairs (a,p) where p = proc.

l et so proc binds =
f o l d l e f t ( fun l ( a , p)−> i f p=proc then a : : l else l ) b inds

5.5.5 Finding the Slice Times

For a TDM scheduler, we can try to reduce the size of the slices allocated to
a given job on a given processor. This is not possible for NPNBRR, because
of the lack of preemption – the size of the slice in this case matches the sum
of the execution times of tasks mapped to the processor.

Convex Programming Formulation

If we write all the SPS precedence constraints (Equation 4.5) for the tem-
poral analysis graph, as a function of the start times and the slice sizes, we
obtain a set of constraints that limits our choice of the slice sizes at each
processor, while meeting the desired period µd. If we couple this with an
objective function that minimizes the sum of slices, we obtain something
that resembles the structure of a linear program. Given the static order per
processor so(p) (we drop the job parameter G, since when solving the slice
time problem this can be kept implicit, and we will do the same for slice
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size S) and actors i and j belonging to the input graph, let sc(so, i) = j
if j is the actor after i in one of the static orders in so. Also, let tl(so, p)
provide the last actor in the static order of processor p, and hd(so, p) pro-
vide the first element in the static order for processor p. We then write a
constraint requiring every start time to be greater or equal to zero, every
slice to be greater or equal to zero, and lower than the maximum slice size
of the processor, and an equation derived from Equation 4.5 for each edge
in the analysis model. Then the following non-linear program accurately
represents all the sequence constraints in the temporal analysis graph, and
the execution times of all actors in the analysis model:

Minimize
∑

∀p∈Π S(p)
subject to
∀i ∈ V s(iR) ≥ 0
∀i ∈ V s(iL) ≥ 0
∀p ∈ Π s(vp) ≥ 0
∀p ∈ Π S(p) ≥ 0
∀p ∈ Π S(p) ≤ Ŝ(p)
∀(i, j) ∈ Eint s(jR)− s(iR)− t(i).P (π(i))

S(π(i)) ≥ −µd ∗ d(i, j)

∀(i, j) ∈ Eext s(jL)− s(iR)− t(i).P (π(i))
S(π(i)) ≥ −µd ∗ d(i, j)

∀i ∈ V s(iR)− s(iL) + S(π(i)) ≥ P (π(i))
∀i, j ∈ V : sc(so, i) = j s(jR)− s(iR)− t(i).P (π(i))

S(π(i)) ≥ 0
∀p ∈ Π : i = hd(so, p) and
j = tl(so, p) s(iR)− s(jR)− t(j).P (p)

S(p) ≥ −µd

The objective function minimizes the sum of TDM slices. An arbitrary
weight can be multiplied by each S(p), in the objective function, such that
we introduce different costs for using processing resources on different virtual
processors. The variables of this formulation are the slice times S(p) and
the start times s(i).

The constraint set is non-linear, as the S(p) variables appear inverted in
some of the constraints. Therefore, a linear programming solver cannot han-
dle this problem. We can however, use the results of the work in disciplined
convex programming [35], which defines a set of rules for the constraints
and objective function that, if followed, allow the non-linear program to be
classified as belonging to a subset of non-linear programs, so-called convex
programs, because they have a convex solution space, and solved by a convex
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programming solver, which can be implemented with polynomial complex-
ity on the size of the technology matrix (ie, on the number of variables and
constraints).

Our problem is in fact a Disciplined Convex Program (DCP). We will
proceed to show that this is the case according to the requirements of DCP
as stated in [35]. First, for the program to be a valid DCP, the objective
function must either be the minimization of a convex expression or the max-
imization of a concave expression. According to DCP rules, a sum of convex
expressions is a convex expression; a variable multiplied by a constant is an
affine expression, and affine expressions are both convex and concave. Our
objective function is the minimization sum of affine expressions, therefore a
valid DCP objective function.

As for the the constraints, DCP rules prescribe that the constraints must
have the structure where a convex expression is lesser or equal than a concave
expression.

We’ve already seen that variables multiplied by constants are affine, and
may be interpreted as either concave and convex. A DCP construction rule
specifies that the sum of affine expressions is also affine. So many of our
constraints are of the type affine expression is greater or equal to affine
expression, which are valid DCP constraints (concave ≥ convex).

Our only problem is the expression − t(i).P (π(i))
S(π(i)) where S(π(i)), a vari-

able, is inverted. According to DCP rules, inversion is a function that is
neither convex nor concave. More specifically, it is convex for positive val-
ues of the variable, and concave for negative values of the variable. In our
case, however, our variable S(p) must always assume positive values, since
a negative slice has no meaning. CVX, a DCP solver [34], allows us to use
a function called pos_inv to indicate an inverted variable that can only as-
sume positive values. Thus all our occurrences of 1

S(π(i)) can be recognized
by CVX as being convex. A DCP rule states that a convex expression mul-
tiplied by a negative constant results in a concave expression. Thus all our
left hand sides can be construed as concave expressions (by being sums of
affine and concave expressions) and all our right hand sides are affine, and
therefore convex. Since constraints of the type (concave ≥ convex) are valid
DCP constraints [35], we have shown that all our constraints are valid DCP
constraints, and our problem can be solved with polynomial complexity on
the size of the technology matrix by DCP – and therefore on the number of
actors in the graph, for a fixed number of processors in the virtual platform.

Our convex program will provide a solution that is optimal for the
weights we provided for the processor slices, in polynomial time.



5.5. THE SCHEDULING PROBLEM 113

Linear Programming Formulation

If a DCP solver is not available, we can derive a Linear Program that pro-
vides a conservative approximation. We can linearize the problem as follows.
First, we remove all the non-inverted occurrences of S(p) from the con-
straints in our convex program – we do this because, looking at our analysis
model – we are simply overestimating the latency in the latency-rate model
from P (p) − S(p) to P (p), so the result is conservative. Furthermore, the
smaller the slices are, the smaller the overestimation will be. Then, we make
a variable substitution: N(p) = P (p)/S(p, G). Instead of maximizing the
total amount of used time slack, we maximize the sum of N(i), weighted
by the processor costs as defined in section 5.5.1. Since all expressions in
both the objective function and constraints are affine, the problem is a linear
program.

A problem with this linear programming approach is that the approxi-
mation of P − S by P may incur in very conservative results in cases where
latency is the dominant factor. We tried two different ways of optimizing
the slice sides that can be used to further reduce the size of slices with-
out requiring the use of a DCP solver, or the approximation and a linear
programming solver.

Binary Search Slice Allocator

This algorithm performs a binary search on each of the scheduled clusters of
actors to try to allocated as much of the deadline extension to it as possible.
Clusters are sorted according to the weight of the processor where they
are mapped. The maximum deadline extension is calculated per group,
using an all-pairs shortest path algorithm. Starting with the group with
the highest priority, we calculate the new slice time using a binary search
between maximum and minimum slice values. A minimum slice value can be
inferred from the minimum deadline extension pool across all actors mapped
to the same virtual processor. In pseudo-code, the code of the binary search
slice allocator is:

l et b in s ea r ch ( graph , m in s l i c e , max s l i ce , l a s t s l i c e ) =
i f max s l i c e <= min s l i c e then l a s t s l i c e
else

let new s l i c e = ( max s l i c e + m in s l i c e )/2 in
let new mcm = compute mcm ( graph , n ew s l i c e ) in
i f new mcm > max mcm then

b in s ea r ch ( graph , n ew s l i c e +1, max s l i ce , l a s t s l i c e )
else
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b in s ea r ch ( graph , m in s l i c e , new s l i c e −1, n ew s l i c e )

The algorithm can be sped up by not using the MCM computation algo-
rithm, but instead relying on using a negative cycle detection algorithm such
as Szymanski [17] to check if the current MCM is still below the maximum
MCM allowed (i.e. µD).

The results for this algorithm, however, will depend heavily on which
processor and group we start the binary search. The algorithm lowers as
much as possible the slice time for the first cluster it performs the binary
search on, sometimes leaving little or no slack that allows the remaining
clusters to use to lower their slice times. In fact, its performance is in
practice very similar to the linear program, with the advantage that it does
not use an approximation for the execution time of the latency actor.

This allocator applies cycle detection at every iteration of a binary
search. It has polynomial complexity since both cycle detection and binary
search have polynomial complexity.

Randomized Slice Allocator

We observed that the binary slice allocator depends quite heavily on the
clustering ordering on which the search is performed. To overcome that
weakness this algorithm randomly selects clusters to decrease their slice
time by a specific amount, thereby trying to be fair to all clusters. As in the
previous algorithm, if the scheduled graph respects the specified throughput
for some predefined slice times, this algorithm will find smaller or equal slice
times for the graph thereby decreasing the throughput to as close as possible
to the specified minimum throughput.

The random slice allocator adds all clusters to an open list (i.e. a list
of clusters where we may still decrease the slice) and will select a cluster
from there. The probability of a cluster being chosen for slice decrease is
dependent on its weight. That cluster sees its slice time decreased by a
specified amount (pre-defined step of the algorithm) and the graph is tested
for compliance with the throughput constraints. Should the smaller slice
result in a violation of imposed constraints, that cluster is removed from the
open list and its slice value restored to the previous amount. This select and
decrease step is repeated until there are no clusters in the open list, which
means it is not possible anymore to lower slice times while respecting the
throughput constraints.

This algorithm depends also on a cycle detector. Essentially it runs the
cycle detector a number of times which depends on the step size and on
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initial cluster’s slice times. The maximum running time for this algorithm
can be bounded and is also a class P algorithm.

5.5.6 Buffer Sizing

Ning and Gao [77] proposed an approach to compute minimal buffer sizes
for an SRDF graph G to allow for rate-optimal execution of the graph, that
is, such that the graph can execute a static-periodic schedule with period
equal to its MCM. Ning and Gao propose a linear program formulation for
this problem which they claimed to be optimal, implying that the prob-
lem is solvable in polynomial time, since linear programming is solvable in
polynomial time.

In [72], we have shown that Ning and Gao’s formulation is not optimal,
and that the buffer sizing problem is, in fact, NP-complete. Furthermore,
we have shown that the constraints of the linear program used by Ning and
Gao are too conservative: it is relatively simple to derive exact constraints,
obtaining a more accurate linear program. In our paper, we have also shown
that, for a randomized input data-set, while the linear program does not
yield optimal results, the difference to the optimal solution appears to be
relatively negligeable. For a randomized set of connected graphs with 40
nodes, only in 50% of the cases did we get overestimation of the buffer sizes,
and for these, the average overestimation was 2.1%. The results also seemed
to indicate that with the increase of the size of the graphs, the likelihood
of overestimation would increase, while the amount of overestimation would
decrease.

In our toolset, we implemented our improved version of the buffer sizing
linear program. Other approaches could also be applied, such as the one
presented in [88], which can yield optimal buffer sizes but suffers from ex-
ponential complexity, or the approach taken in [92], that applies heuristics
to minimize the buffer size. These approaches were developed at the same
time as the work presented in this thesis. A comparative study of all the
proposed solutions still needs to be carried out.

5.5.7 Scheduling Multi-rate graphs

A Multi-Rate Data Flow graph (or, for that matter, a Cyclo-Static Data
Flow graph) can be scheduled using our framework, by converting the orig-
inal MRDF graph to its equivalent SRDF graph. The conversion does not
have polynomial complexity – the number of copies per actor in the MRDF
graph is given by the number of repetitions in the repetition vector (see
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Chapter 3).
Care must be taken to ensure that when a SRDF copy a0 of a MRDF

actor a is mapped to a virtual processor p ∈ Π during the static ordering
phase, all other SRDF copies ai of the same MRDF node are allocated to
the same processor. The analysis model is also changed to reflect this fact:
the values of lat and nat functions for all ai must be computed assuming
an allocation to p. If, due to backtracking, the decision to map a0 to p is
undone, the allocation of all copies must also be undone.

No changes are necessary to the slicing algorithms.
As for buffer sizing, a separate buffer b(ik, jl)can still be calculated for

each arc (ik, jl) ∈ E, where ik is the copy number k of an MRDF actor i, and
jl is the copy l of an MRDF actor. Since in the implementation a single buffer
is shared to connect all copies of i to j, the static-periodic schedule resulting
from the buffer sizing linear program is no longer buffer optimal. However, if
we simulate this static periodic schedule, and count the maximum number
of tokens that are accumulated in every edge during the simulation, we
obtain a feasible buffer size for each one of the buffers in the MRDF graph.
Govindarajan et al propose another linear-programming approach [32] that
obtains better results by directly deriving buffer constrains from the MRDF
graph. According to the authors, this approach can obtain, in some cases
buffer sizes that are about half of the buffers sizes obtained by the approach
we sketched above. The problem with this approach however, is that the
number of constraints in the linear program for each edge (i, j) in the is
given by the product of the repetitions vector entries r(i) and r(j), and this
means that the linear program can in some cases become too large for the
solver we used in our implementation – the GNU Linear Programming Kit
[27] – to handle. Our toolset implements both approaches and leaves to the
user the choice on which to use. Only one of the transceiver graphs we used
in our experiments is a MRDF graph, namely the WLAN receiver presented
in Section 5.6. In this case, the two approaches delivered the same results.

One more remark is needed on buffer sizing. While the work that is
being reported here was performed, two new approaches have been devised
to solve the buffer sizing problem for MRDF graphs. In [88], an approach
is described that provides optimal results. Although the complexity of the
algorithm is exponential, the authors argue that for the extensive set of
random graphs that were used to test the approach, the algorithm is in
practice very fast. A heuristic approach has been proposed in [92]. We are
not aware of any extensive comparative study of these approaches.

One possibility that arises from the fact that we can formulate both
the slicing problem and the buffer sizing problems as convex programming
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problems with a conservative linear programming approximation, is that
the two can be combined onto a single convex programming problem that
solves the two in tandem. A recently published paper [93] proposes exactly
such a formulation, although it does not realize that the problem can be
exactly solved (for time expressed as a real number) by a convex solver (at
least by CVX), and instead uses an approximation to get rid of the inverted
appearances of the slice variables (as we have shown, inversion is a convex
function for variables that are guaranteed to be positive).

5.5.8 Phase Ordering

It is not trivial to chose in which order to perform the determination of the
slice times and the computation of the static order schedule, since these two
steps are strongly interdependent. If one determines the slice times first, the
determination is based on partial constraints since the schedule is yet to be
derived. It may be that there is no valid static order schedule that meets
the tighter scheduling constraints caused by replacing the original execution
times by the larger response times due to the chosen time slicing.

An important consideration is that all the algorithms we propose are
polynomial, except for the static order scheduler, which has exponential
complexity, and the MRDF to SRDF expansion, if the starting graph is not
single-rate.

We can determine the static order schedule first, using response times
based on the maximum allowed slice per processor, Ŝ(p), and only afterwards
try to find slice times that are compatible with that static order schedule.
Thus, we firts approach the problem as a constraint satisfaction problem, to
which the static order scheduler delivers a feasible solution, if there is one,
and then try to optimize this solution by reducing utilization. This has the
advantage that, provided there is a feasible static order schedule, there is
always a solution. However, it may be that the static order schedule chosen
is not optimal in the sense that it does not allow for the lowest possible
utilization that meets all the constraints.

A problem with this approach is that the static order scheduler does
not necessarily produce the solution that allows for the smallest slice sizes.
For cases, as in our example, where the execution time of the static order
scheduler permits it, we can run the scheduler inside a loop that searches for
lower slice sizes in a way similar to the binary and random slice allocators,
with the difference that the whole static order schedule is recomputed instead
of just the MCM, for each attempted combination of slice sizes.
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5.6 Example

We will now show how to apply these scheduling techniques to an actual ap-
plication in the Software-Defined Radio domain. Assume a multiprocessor
system designed for baseband decoding. It includes a general-purpose core,
an ARM, to handle control and generic functionality, a vector-processor
core, the EVP [8], to handle detection, synchronization and demodulation,
and an application-specific Software Codec processor that takes care of the
baseband coding and decoding functions. All these processors are inter-
connected via an Æthereal Network-On-Chip [31]. The platform is used to
handle several radio standards (Wireless LAN, TDS-CDMA, UMTS, DVP-
H, DRM). In our example we will assume that we want to derive scheduler
settings such that we are able to run Wireless LAN (WLAN) 802.11a and
TDS-CDMA simultaneously, with independent start and stop, and allow for
up to 2 job instances to be active at a time, including configurations with
two WLAN instances and two TDS-CDMA instances.

Figure 5.8 depicts the timed data-flow model of a WLAN 802.11a job.
Execution times (indicated under the actor names) are given in nanosec-
onds. The different shading of nodes indicates the different cores to which
the actors are assigned. Nodes with names starting by “Src” model the
source (inputs from an external RF unit), the nodes “LatencyHeader” and
“LatencyPayload” and their adjacent edges are used to convert latency into
throughput constraints, as described in Chapter 4. The source is in this
case sporadic, but we have seen in Chapter 4 that the maximum latency
associated with a sporadic source can be bound by the maximum latency
associated by a strictly periodic source with a rate equal to the minimal
interval between activations of the sporadic source, and therefore we treat
the source as periodic.

For space reasons, the Synchronization step is represented in Multi-Rate
Data flow syntax: 5 “CFESync” nodes process the output of 5 “Src” nodes
in a chain of sources and synchronization nodes. The number of “Payload-
Demode” actors and respective sources may vary between 1 and 255. We
only depict the case where there is only one “PayloadDemode” actor. Source
and Latency actors are not scheduled. This graph has a required maximum
production period of µD(WLAN) = 40000ns.

Figure 5.9 depicts the timed data-flow graph model of a TDS-CDMA job.
The ”Rx” nodes represent the source. The ”Latency” nodes and adjacent
edges are used to convert latency into throughput requirements as described
in Chapter 4 (we assume, in this case, a strictly periodic source). The
required maximum production period is µD(TDSCDMA) = 675000ns.
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Figure 5.8: A Wireless LAN 802.11a receiver job.
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Weights Utilization (%)
EVP SwC ARM EVP SwC ARM

1 1 1 45 45 21
2 1 1 28 45 45
2 2 1 28 45 45
1 2 1 45 28 45

Table 5.2: WLAN scheduling results.

We start by choosing time wheel periods. We assume a worst-case
context-switch time of 100ns for all processors. We want to support two
jobs at a time and we would like to spend less than 10% of our time context-
switching, so we set our wheel time to 2000ns. Therefore, P(EVP)=2000,
P(SWC)=2000, P(ARM)=2000.

As we want to be able to run two WLAN or two TDS-CDMA jobs si-
multaneously, we set the maximum utilization per processor at 45%, (half
processor utilization minus context-switching overhead). That is, the maxi-
mum slice size for any processor is Ŝ(p) = 0.45× P (p).

For both jobs, we first computed static order schedules and then time
slice extensions. In both cases, a static order schedule that meets the timing
constraints (including the Ŝ(p) limitation on slice size per processor) was
found. These schedules were used to calculate slice time optimizations. We
varied the values of the costs of the three processors to search for trade-offs.
It turns out that the algorithms tends heavily towards allocating all slack
to a particular processor. A change in weights typically forces a drastic
change from allocating slack to one processor to another, making this ap-
proach essentially equivalent to a binary search with weights associated with
processor types.

In the case of the WLAN – the results are shown in Table 5.2 – varying
the weights for each processor type allowed us to decrease the utilization of
one of the processors from 45% to 28%. The table pretty much exhausts
the possible trade-offs. It suggests that it makes sense to keep a table with
several configurations and allow the admission controller to chose different
TDM settings for a job instance taking into account the current level of
resource utilization.

The results for the TDS-CDMA are shown in Table 5.3. One thing to
notice here is that the optimal slice times for the ARM and the Software
Codec are obtained for equal weights. Increasing the weights of either ARM
or Software Codec by any amount didn’t further decrease their slice times.
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Weights Utilization (%)
EVP SwC ARM EVP SwC ARM

1 1 1 45 15 2
100 1 1 43 15 2
1000 1 1 33 15 45

Table 5.3: TDS-CDMA scheduling results.

Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

3 X X 25 45 45
X 3 X 45 25 45
2 1 3 44 45 18
1 2 3 45 44 18

Table 5.4: WLAN scheduling results with binary search slicer.

By comparing the results in the first and the second entries of this table,
we observe one of the problems with our linear programming formulation:
the optimized value of N(ARM) in the first entry does not allow a smaller
slice time than the much lower value obtained in the second entry; it does
however prevent the slice time for the EVP to be decreased from 900 to
860. This example does not allow many trade-offs: to allow a decrease from
900 to 660 on the EVP, we had to increase its weight to 1000. Moreover,
this came at the cost of changing the utilization of the ARM from 2% to
45%. Although not perfect, our slice time optimization based on the linear
programming formulation allows a decrease of the utilization to 15% for the
Software Codec and 2% for the ARM, from the imposed maximum 45%.

Since the execution times of the scheduler were very fast for these ap-
plications , ranging from a few milliseconds for the TDS-CDMA and for
the WLAN when considering payloads of 1, to a little more than a minute
for the largest WLAN payload size (256), we decided to run the scheduler
within a loop, and search for improved slice sizes.

If we apply the binary search slicer algorithm on a loop where for each
stage we run the static order scheduler, we obtain, for the WLAN transcei-
ver, the results presented in table 5.4, where 3 is the highest priority, 1 is
the lowest, and X is any priority lower than 3.

For the TDS-CDMA example, we obtained the results presented in table
5.5.

As for the randomized slicer, it yields the same result for TDS-CDMA
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Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

X X X 21 8 1

Table 5.5: TDS-CDMA scheduling results with randomized search slicer.

Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

1 1 1 33 36 36

Table 5.6: WLAN scheduling results with binary search slicer.

as the binary slicer since, for this transceiver, the minimum slice values for
each processor are seemingly independent of the others. This has to do with
the fact that the cycle that becomes the most critical when we reduce the
resource allocation for each of the processors is different. For the EVP, this
is a cycle that includes the edge between Latency2 and Source1. For the
Software Codec, it is the cycle between DecodeCRC1 and DecodeCRC2. As
for the ARM, we obtained in both cases the lowest utilization we considered
(1%).

In the WLAN case, the randomized slicer yields other slice allocations
depending on the weights given to the processor types. By giving the same
weights to the 3 processor types, and using a step equal to 1% of the period,
we obtained a slice distribution such as the one shown in table 5.6.

As for the buffer sizing, we ran the buffer sizing algorithm before and
after static ordering and slicing, and obtained exactly the same results.
This may be accounted for by the relatively few possibilities for pipelined
execution within the graphs of these applications. Most radio applications
we studied (UMTS, LTE, DVB-T, DVB-H), however, seem to have relatively
similar structures.

The best choice for ordering the stages in the scheduler may be very
dependent on the characteristics of the specific application and platform. In
this case, the relatively small execution times of the static order scheduler
allowed us to run a full search for schedules to optimize the slice sizes.
The relatively small search space for optimal buffer allocation made moot
the choice of when to perform buffer sizing. This may vary widely from
application to application, requiring flexibility in the implementation of the
scheduler. Since the temporal impact of all the decisions can be simply
modeled in a data flow graph, all scheduling decisions can be imposed as
pre-conditions to any stage of the scheduler, making it simple and easy to
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re-order the stages of the scheduler, or even merging them.

5.7 Related Work

Much work has been published on the scheduling of data flow graphs with
real-time requirements. The level of dynamicity we allow in the start and
stop of jobs is what basically differentiates our problem from other multipro-
cessor real-time scheduling problems. We will review proposed approaches
that could be adapted to solve our problem.

The most viable alternative to our solution is to use pre-compiled re-
source allocation configurations, such as in CPA [85]. For each job-mix, a
separate optimal static schedule is derived at compile time and stored in
a look-up table. During operation, when there is a request to start a job,
the runtime system checks which jobs are active and selects the appropriate
configuration. This approach is not without problems. First, a different
configuration has to be stored for each combination of jobs, which means
that the number of configurations grows exponentially with the number of
jobs. Second, if a job is not known at design time, it will force a whole
new set of configurations to be compiled later. Third, it is difficult to as-
sure continuity of execution of already running jobs during reconfiguration.
For continuity, a configuration should be generated for each transition from
a job-mix to another which easily becomes infeasible because of the large
amount of configurations that may need to be generated.

We calculate scheduling budgets per job at compile time. During runtime
two distinct temporal phases alternate: configuration phase and steady-state
execution phase. During configuration phases, resources are allocated to
jobs; during steady-state resource allocation is fixed. In this, our strategy
can be compared with semi-static techniques [16], where system execution
is divided in phases and resource allocation is redone at the beginning of
each phase. But while in semi-static systems phases are periodical, in our
case reconfiguration phases are triggered by an external request to start or
stop a job. Also, in our approach, an actor, once placed cannot be moved
to another processor.

Our strategy has similarities with other time-multiplexing strategies such
as gang scheduling [19]. Our jobs correspond roughly to a ’gang’, i.e. a group
of tasks (actors in our case) with data dependencies. There is, however,
an important difference: in gang scheduling, time-multiplexing is global,
i.e., the temporal slots are uniform across all processors, and synchronized
context-switching is required. In our case, time-multiplexing is local to
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each individual processing element. Our strategy has several advantages
over gang scheduling: it does not require global synchronization of context
switches, which hinders design scalability; it leaves less unused resources
because its time sharing is more fine grained; and it also allows for a different
scheduling mechanism per processor.

Stuijk[88] describes a method with many similarities to ours, since it
also mixes static order and TDM scheduling for homogeneous multiprocessor
systems. It does not consider non-preemptive scheduling or heterogeneous
systems. It does not address different start/stop times. To account for the
effect of TDM on the response times, simulation of the self-timed execution
of the data flow graph with worst-case response times is performed, while
keeping track of the state of the TDM wheels. For this to yield conservative
response times, all possible states for a worst-case, self-timed schedule should
be simulated, which seems to imply that conservative results require that
simulation continues until the same token positions and the same position
on all TDM arbiters is reached simultaneously, which can lead to an expo-
nential blow-up. This work also differs from ours in that actor to processor
mapping and static ordering are decoupled. First an heuristic is applied
to find a processor mapping, and then static order schedule is determined
by a ready-list scheduler with no backtracking and no timing constraints,
which means that the static order schedule has one single chance at finding
a feasible order. No explicit heuristic is proposed to decide which of two si-
multaneously ready actors mapped to the same processor is scheduled first.
If the static order scheduler fails, the tool simply does a new mapping and
tries again to statically order it. Slice minimization is done using binary
search after static ordering, using data flow simulation to check for timing
constraint violation at each step. In this approach, only TDM schedulers
can be supported as timing analysis is dependent on the simulation of the
TDM time-wheels.

5.8 Conclusion

In this chapter we present a scheduling strategy and a scheduling flow to
solve the problem of running multiple jobs with different rates and different
start/stop times on a heterogeneous multiprocessor. The scheduling strat-
egy involves a combination of static order scheduling per job per processor,
and TDM or Non-preemptive Non-blocking Round Robin scheduling to ar-
bitrate between different jobs in each processor. We have shown how the
combination of dynamic scheduling with static order scheduling is desirable
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and can be modeled for the purpose of temporal analysis. We have shown
how the temporal analysis model can serve as a basis for a scheduling flow.
We have proposed algorithms to estimate the temporal slack that can be
allowed per actor for a timed SRDF, and how to exploit this time slack by
decreasing slice times. This flow solves a practical problem arising in real-
time streaming platforms (Software-Defined Radio, Car Radio, Digital TV)
and is unique in that it is able to find both TDM settings and static order
schedules per job per processor, to handle a dynamic job-mix on a multiple
processor and provide hard real-time guarantees for all admitted jobs.

Although we present our flow using Time-Division Multiplex and Non-
Preemptive Non-Blocking Round Robin for inter-job scheduling, this does
not present an essential limitation of the techniques: any scheduler that can
be represented by a latency-rate model can be used, although changes may
need to be made to the computation of scheduler settings. Also, any new
data flow model of a scheduler can be easily supported by simply changing
model generation to create different actors and edges.

There are several open issues we wish to address in future work. One is
proposing a heuristic approach to perform the clustering and static ordering
of actors, since the current algorithm is exponential and, although it is man-
ageable in the relatively small graphs of the transceivers we studied, it does
not scale easily to larger graphs (and larger graphs can arise from MRDF
to SRDF conversion for even relatively small MRDF graphs). Furthermore,
the current approach allows communication and buffer capacity constraints
to be taken into account, but it is also interesting to search for scheduling
settings that optimize for low communication requirements and/or small
buffer sizes.
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Chapter 6

Mode-Controlled Data Flow

In the process of choosing a Data Flow (DF) programming model for de-
scribing an application, one must make a difficult trade off between expres-
siveness and analytical properties. At one extreme, a Dynamic Data-flow
(DDF) model is expressive enough to mimic the behavior of a Turing ma-
chine [10], but lacks many useful analytical properties; for instance, for an
arbitrary DDF graph it may be impossible to verify if it is free of dead-
locks, or if it can execute for indefinite time on bounded buffer space [10].
On the other hand, Static Data flow (StDF) variants (such as Synchronous
DF [58], Homogeneous Synchronous DF [81], or Cyclo-Static DF [9]) allow
for powerful analysis, such as the verification of deadlock-freedom, determi-
nation of maximum achievable throughput, and verification of latency and
throughput constraints, but have limited expressivity: they can only express
applications that work with fixed data rates, i.e., all quantities of data sen-
t/received per actor firing cannot be dependent on the values of the input
data. Because of these limitations, StDF models tend to be reserved for ap-
plication domains where task activation is data-driven, data rates regular,
and real-time guarantees required.

For the most, this is the case for Base-Band Software-Defined Radio
(SDR) [8]. On a typical digital baseband algorithm, data flows through three
processing stages: filtering, modulation/demodulation and coding/encod-
ing. Broadcast standards typically have throughput requirements that must
be met, while bi-directional communication standards also impose maximum
latencies.

StDF computation models have already been proposed [62] for usage in
this domain. One problem with such an approach is that some SDR appli-
cations are subject to occasional changes of operation mode, i.e. changes in

127
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the sequence of algorithms that must be executed to process the incoming
stream. A DVB-H receiver, for instance, executes the same demodulation-
decoding flow of streaming tasks during most of its operation, but during
initiation and occasionally during its active state it needs to execute a differ-
ent sequence of tasks in order to achieve synchronization with the incoming
stream. This synchronization mode takes an unknown number of iterations
to succeed. Therefore, while static data rates can be used to represent the
message passing within each synchronization attempt, the same cannot be
done to represent the dependencies and data communication between syn-
chronization and decoding modes.

A more severe problem can be observed in another SDR application:
Wireless LAN (WLAN). On a WLAN 11a receiver, packet detection is per-
formed in a loop in the RF interface until it succeeds. Then, the baseband
starts executing. First, synchronization is performed. If this is success-
ful, a demode-decode sequence will be executed for each received symbol,
until the variable-sized payload of the packet is fully processed. Each of
these operation modes can be expressed as an (analyzable) StDF graph.
The change from mode to mode, however, cannot be expressed within the
confines of StDF. In terms of DF, a change of operation mode is more like
a change of the computation graph. However, for SDR applications, hard
real-time requirements may be defined across operation mode transitions
and therefore temporal analysis is only useful if mode transitions can be
taken into account. Such is the case with the WLAN 11a example, where
there is a maximum allowed latency from the time when the packet starts
to be sent and the moment when the receiver sends an acknowledgment of
packet reception to the sender. To make the problem more complex, there
are data dependencies between modes, such that the execution of each mode
is conditioned by the schedule of the previous one.

The behavior during one of these mode transitions cannot be conve-
niently expressed in StDF. One solution that we have used in the past is for
an analysis specialist to design an StDF model that represents worst-case
assumptions about the execution of a given, concurrent WLAN receiver
implementation that does not necessarily conform to the strict StDF con-
struction rules. The StDF model can then be used for temporal analysis and
scheduling purposes. One such model was used for our WLAN 11a example
in Chapter 5.

This approach is slow, difficult, and requires both data-flow modeling
expertise and in-depth knowledge of the application. Furthermore, it is
impossible to guarantee that the model does indeed conform to the actual
implementation. What we would like to have is a programming model that
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enables the automatic extraction of an analysis model. However, for that
the programming model has to be powerful enough to describe these mode
transitions and still allow for hard-real-time analysis.

In this chapter we propose a DF programming model that can be seen as
a restriction of Boolean DF that allows for mode switching without compro-
mising the properties that make the graph amenable to temporal analysis,
and keeping the programming model as simple as possible. For need of a
name, we refer to this restricted model as Mode-Controlled DF (MCDF).
The chapter is organized as follows: in the next section, we present an
overview of our data flow model; in the following section, we describe in de-
tail the new types of data flow actors we introduce; in Section 6.3 we present
the rules to construct a well-constructed MCDF graph; Section 6.4 shows
how radios can be modeled in MCDF, by providing two examples, a DVB-T
receiver and a WLAN 802.11a receiver; Section 6.5 discusses the basic an-
alytical properties of well-constructed MCDF graphs; Section 6.6 provides
techniques for temporal analysis of MCDF graphs; Section 6.7 describes the
scheduling techniques we developed for MCDF graphs; Section 6.8 describes
the results we obtained from scheduling a WLAN receiver modeled as an
MCDF graph on a multiprocessor platform; Section 6.9 discusses related
work; and Section 6.10 concludes the chapter.

6.1 Model Overview

Intuitively, a Mode-Controlled DF graph is a data flow graph where for
each firing of a designated actor, called the Mode Controller (MC), actors
belonging to a specific, pre-defined subgraph of the complete MCDF graph
are fired. A specific subgraph is chosen for firing, depending on an output
value produced by the Mode Controller. Therefore there are data-dependent
actor firings. After all actors in the chosen subgraph have fired, the graph
returns to the initial token distribution. An iteration of an MCDF graph
corresponds to the firing of all actors in one of these subgraphs. The model
allows verification that no deadlocks can occur and behavior is kept deter-
ministic in the Kahn Process Network [49] sense, i.e., provided that FIFO
communication is blocking, and that the internal functionality of actors has
no notion of time, the outcome of the computations is independent of the
time at which the actors are activated.
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6.2 MCDF Constructs

In this section we will describe the main building blocks of a Mode-Controlled
DF graph.

6.2.1 The Mode Controller

The Mode Controller (MC) is a special node in MCDF. The special charac-
teristic of the MC is that one of its outputs drives the control input ports
of all data-dependent actors in the MCDF graph. We refer to this special
output port as the mode control port. At each firing, the MC produces
a single token in the mode control port, and there are no delays on the
edges that connect the mode control port to the control input ports of all
data-dependent actors.

For any given MCDF graph, there is a fixed number of modes, M . The
value of the token produced by the MC in the Mode Control port has to
be an integer within the closed interval from 1 to M . This value represents
the mode selected for the current iteration of the MCDF graph. Tokens
produced through the mode control port are referred to as control tokens.

6.2.2 Data-dependent Actors

Besides SRDF actors, an MCDF graph allows the usage of three types of
data-dependent actors. These are the Mode Switch, Mode Select and Mode
Tunnel actors. However, as we shall see, the Mode Tunnel, can be repre-
sented by using both a Mode Switch and a Mode Select actors, and should
be regarded as a convenient short-hand notation that we offer to the pro-
grammer to allow inter-mode communication.

The data-dependent actors have in common the fact that they all have a
control input port. A control token is read from this port for each firing of
the data-dependent actor. That value determines which other ports of the
actor are producing/consuming data during this firing. Control tokens are
produced and consumed as normal tokens.

Definition 6.1. A port is said to be associated with mode m if the con-
sumption of a token with value m on the control input port causes data to be
produced/consumed on this port, while the consumption of any other value
will not cause data to be produced/consumed on this port.

Definition 6.2. A Mode Switch actor (Figure 6.1(a)) has, besides the
control input port, one data input port and M output ports. Each output
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port is associated with a mode. When a token is present on the control input
port and on the data input port, the Mode Switch actor is fired. It consumes
both input tokens and produces a token in the output port associated with the
Mode indicated by the token consumed on the control input port. The output
token has the same size and value as the token consumed on the data input
port.

Definition 6.3. A Mode Select actor (Figure 6.1(b)) has, besides the
control input port, M data input ports and one output port. Each input port
is associated with a mode. When a token is present on the control input
port, its value is read and used to decide from which input port to consume
a token. The actor is fired when a token is present in the control input port
and in the data input port associated with the mode indicated by the token
in the control input port. When fired, it consumes both of these tokens. At
the end of the firing, it produces on the output port a token with the same
size and value as read from the modal input port. If the input port was not
connected, the output token will have some pre-defined default value, which
can be mode dependent. Note that, as in the BDF Select, the firing rule must
be evaluated in two steps.

Besides these two canonical types of data-dependent actors, we introduce
a third type, the Mode Tunnel. Mode tunnels are in fact a shorthand for a
construct involving both a Mode Switch and a Mode Select actor, and for
that reason, they will be absent on our study of the properties of MCDF
graphs. They are, however a very useful construct for programmers, as they
allow the communication between different modes.

Definition 6.4. A Mode Tunnel actor (Figure 6.1(c)) has, besides the
control input port, one data input port and one data output port. The data
input port is associated with an arbitrary mode m of the graph, and the
data output port is associated with a mode n of the graph, different from m.
When the token read at the control input port has the value m, the Mode
Tunnel fires and consumes a token from the control input port and from
the data input port. It stores the token read from the data input port in its
internal state. When the control input port has value n, the Mode Tunnel
fires, consuming that value and copying the token stored in its internal state
to the data output port. The initial value of the internal state is graph-
specific. In this way, the Mode Tunnel always delivers to its consumer the
value produced by the last previous execution of the source orchestrated by
the Mode Controller. As with Select and Mode Select, the firing rule of Mode
Tunnel must be evaluated in two steps. We refer to a Mode Tunnel as an
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Figure 6.1: Variable rate nodes in MCDF.

m-to-n Tunnel, if its input port is associated with mode m and its output
port is associated with mode n.

Any of the data-dependent actors can be used without connecting all of
its ports. In that case, an unconnected input port is considered to automat-
ically meet its firing rules and an unconnected output port produces tokens
that are lost. If the input port of a Mode Switch or the input port of a
Mode Select associated with the mode selected for the presented iteration
is unconnected, then the output for that firing of the data-dependent actor
is a token with a pre-defined value.

6.2.3 Mode Tunnel Conversion

A Mode Tunnel can be represented as an MCDF construct containing one
Mode Switch, one Mode Select and two other actors, as represented in Figure
6.2 for a mode 1 to mode 2 tunnel. The edge labeled as “data in” represents
the data input arc of the Mode Tunnel. The edge labeled as “data out”
represents the data output arc of the Mode Tunnel. The two “control in”
arcs receive the value in the control input arc of the Mode Tunnel. When
fired, actor “a”, connected to the data input arc, copies the value received
from the data input arc to its output arc. Actor “b” copies the value received
from Switch to its output arcs. The arc that connects the output of the Mode
Select to the input of the Mode Switch has a delay of one, and it is here that
the last datum read from the input arc of the Mode Tunnel is stored. The
example depicts the case where there are only two modes. For other modes
not involved in the tunnel, a direct edge with zero delay would connect the
output of the Mode Switch to the input of the Mode Select. From here
on, we will not refer to Mode Tunnels when discussing MCDF properties,
analysis and scheduling, as we will assume that these have been previously
converted into this construct, but we will use it in describing applications
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modeled as MCDF, as it greatly simplifies models where values must be
communicated between modal actors from different modes.

Switch
      1                          2                         

ba

     1                         2
Select

data in data out

control in

control in

Figure 6.2: Construct to represent Mode Tunnel in terms of Mode Switch,
Mode Select and SRDF actors.

6.3 MCDF Construction Rules

The rules we will present for the construction of a well-constructed MCDF
graph are designed to guarantee that it can always return to the initial state
of token placements independently of the sequence of mode control tokens
generated by the Mode Controller. More specifically, we want to ensure
that each firing of the MC enables all actors pertaining to a mode and all
actors not specifically pertaining to any mode to fire until all edges return
to the initial state, without any other activation of the Mode Controller
being required. Here we will assume that all actors that do not have data-
dependent behavior are single-rate. In Section 6.9 we will discuss how the
model can be extended to multi-rate actors.

An MCDF graph with M modes is composed of:

• A Mode Control actor (MC);

• an arbitrary number of Mode Select, Mode Switch actors;

• an arbitrary number of static, single-rate actors

Now, we will define some terminology which will help us specify the con-
struction rules.

Definition 6.5. Two ports are said to be connected if and only if there
is an arc between them in the graph. In the same way, two actors are said
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to be connected if and only if there is an input port of one of them and an
output port of the other that are connected.

Definition 6.6. An edge is said to be delay-less if its delay valuation is
zero. A path is said to be delay-less if all the edges that it traverses are
delay-less.

Definition 6.7. Actor Modality Actors in an MCDF graph are annotated
with a valuation mode: V → {1, ...M}. Since only some actors execute for
specific modes, mode is a partial function. If mode(i) is defined, then the
actor is said to be modal and we can say that actor i belongs to mode(i).
If mode(i) is undefined, denoted by mode(i)= ⊥, the actor is said to be
amodal.

Please note that modal actors do not have a mode control port. The only
actors to have a mode control port are the data dependent actors, Mode
Switch and Mode Select (and Mode Tunnel), which are always amodal, i.e.
are fired in all iterations, independent of the value of the mode control token.
The Mode Controller itself amodal, and its firing condition is data-value
independent.

Definition 6.8. Actor Type There are some actors in MCDF that have
special attributes, these are the Mode Controller, the Mode Switch and the
Mode Select. We use valuation atype: V → {mc, switch, select, normal}, to
indicate any special attributes of an actor.

An MCDF graph is defined by the tuple G = (V,E, t, d,M,mode, atype),
where V is the set of actors, E is the set of edges, t is the timing valuation of
actors, d is the integer-value delay of edges, and M is the number of modes
in the graph, mode is the mode valuation of actors and atype is the actor
type valuation for actors.

Definition 6.9. The Mode m Subgraph of G is a sub-graph Gm =
(Vm, Em, t, d) of MCDF graph G = (V,E, t, d,M,mode, atype), such that
its vertex set Vm is composed of all amodal actors, and all actors that belong
to mode m, and its edge set is composed of all edges which are in E and
whose sources and sinks both belong to Vm, and where t and d are restricted
to Vm .

To simplify the notation, we will not explicitly model ports. We follow
a number of assumptions about ports: if a modal node is connected to a
data-dependent actor such as a Mode Switch or Mode Select, it is always
to a port associated with its mode. Furthermore, an output port can be
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connected to multiple edges – i.e. the value produced through that port is
produced onto all edges connected to it – such a port can be referred to as a
multi-port. The mode control port is a multi-port if there are more than one
data-dependent actors (i.e. Mode Switches and Mode Selects). An input
port can only be connected to a single edge.

The construction rules that must be respected by a MCDF graph for it
to be considered well-constructed are as follows:

Rule 1. There is only one mode controller.

Rule 2. Modal actors can either be connected to other modal actors, as
sinks to the output ports associated with their mode on Mode Switches, or
as sources to the input ports associated with their mode on Mode Selects.
On the other hand, the ports of amodal actors other than the output ports of
Mode Switches and the input ports of Mode Selects, can only be connected to
fixed rate ports of other amodal actors. This means that, if G is an MCDF
graph, for edge (i, j) ∈ E it must hold that

(mode(i) = mode(j)) ∨ (atype(i) = switch ∧mode(j) 6= ⊥)
∨(atype(j) = select ∧mode(i) 6= ⊥)

Rule 3. The mode control output port of the Mode Controller is connected
to all control input ports in the graph through delay-less edges. This means
that for any edge (i, j) ∈ V where atype(i) = mc it must hold that

d(i, j) = 0 ∧ (atype(j) = switch ∨ atype(j) = select) (6.1)

Rule 4. There are no delay-less cycles in the graph.

Rule 3 ensures that there is a single condition that drives all data-
dependent actors. Furthermore, it guarantees that for the same firing count
the same mode control token is read by all data-dependent actors, i.e. if the
nth firing of a given data-dependent actor activates its ports associated with
mode m, then we can expect the nth firing of another data-dependent actor
in the graph to activate its own ports associated with mode m.

The concept of iteration for MCDF is the same as for SRDF: a sequence
of actor firings that brings the graph back to the initial token distribution.
The difference is that in MCDF not all actors fire on each iteration. In fact,
as we shall prove, only amodal actors fire once per each iteration, and the
count of completed iterations of the graph is equal to the number of firings
of MC.

Rule 4 is needed to obtain deadlock-free graphs. A cycle with no delays
would create a cyclic dependency between firings on the same iteration which
would eventually deadlock the execution of the graph.
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6.4 Radio Modeling in MCDF

MCDF was designed to allow the easy expression of modal behavior in trans-
ceivers. In this section, we will provide two examples of how radios can be
modeled in MCDF: a DVB-T receiver and a Wireless LAN 11a receiver.

6.4.1 Example Application: DVB-T receiver

Figure 6.3 depicts our MCDF model for a DVB-T receiver application. The
DVB-T receiver requires an MCDF graph with 3 modes: mode 1 handles
synchronization, mode 2 simply drops input data and mode 3 demodulates
and decodes the input data and sends it to the output stream. Both in syn-
chronization and demodulation modes, the DVB-T receiver must regulate
the timing and frequency of the receiver analog front-end. This is repre-
sented by an analog control that is issued by the “sync” actor in mode 1
and by the “dem” actor in mode 3, that is sent through a mode select back
to the source. As for the operation of the mode controller, it selects, in the
first iteration, the synchronization mode. It will continue to operate in this
mode until synchronization with the incoming stream is detected. In that
case, the receiver must align itself with the beginning of a DVB-T frame,
and, for a number of rounds determined by the outcome of synchronization,
it will drop input data. It will then go into demodulation mode (mode 3),
where it will stay until either the receiver is stopped or synchronization is
lost, in which case it will go back to the synchronization mode. The require-
ment for this receiver is that no matter what mode it is running, it keeps
up with the period of the source (about 900 µs).

6.4.2 Example Application: Wireless LAN receiver

Figure 6.4 depicts the timing of a WLAN 802.11a packet. In a WLAN
802.11a receiver, baseband processing starts once a packet is detected at
the RF. First, synchronization is performed over the first 8µs. These are
two groups of 5 short symbols – 5 short symbols are equivalent to one long
symbol. If this is successful, the packet header is demodulated and decoded
to determine the size of the payload. After this, the OFDM symbols of the
variable-sized payload – from 1 to 256 OFDM symbols, each with a length
of 4µs – are processed one by one by a demode-decode loop, followed by a
Cyclic-Redundancy Check (CRC). If CRC is successful, an acknowledgment
packet must be sent within 16µs of the end of reception. This time guard
of 16µs is known as the Short Intra-Frame Spacing (SIFS).
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Figure 6.3: MCDF graph for a DVB-T receiver.
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Figure 6.5 depicts our MCDF model for a Wireless LAN receiver ap-
plication. Arcs that communicate control tokens are depicted by dashed
lines. The graph has 4 modes: Synchronization (mode 1), Header Process-
ing (mode 2), Payload Processing (mode 3) and CRC (mode 4). The input
from the RF source (“source” actor) is sent to the “shift” actor, which per-
forms alignment at the start of each OFDM symbol, by pre-pending the
end of the previous token to the current one, and storing the remainder of
the current token to pre-pend to the next. The length of the prefix is first
set to 0, and is later determined during synchronization, and transmitted
to “shift” through the Mode Controller, that received it from the Mode Se-
lect “select” actor. From “shift’,’ data is sent through the Mode Switch
“switch” to the mode selected by “mc.” The decoding of a packet starts
with “mc” selecting mode 1. At the end of each firing, “sync” informs “mc”
through “select” whether it succeeded to synchronize. Depending on the
outcome, “mc” will choose whether to fire mode 1 again, or start process-
ing the header. Also,“mc” sends to “shift” the current value of the offset,
as given by the return value of mode 1, received from “select”. Mode 2
fires two modal actors: one on the EVP (“hdem”) and the other on the
software codec (“hdec”). The status sent by “hdec” to “mc” via “select”
indicates the length of the payload. Also, through a Tunnel from mode 2 to
3, several demodulation parameters for this message are communicated to
the “pdem” actor that does the demodulation of payload symbols in mode
3. For a number of firings equal to the length of the payload, “mc” will
select mode 3, firing actor pdem in the EVP followed by actor “pdec” in the
Software Codec. Once the full payload has been received, “mc” will select
mode 4 for execution, activating the consumer side of the Tunnel between
actors “pdec” and “crc”. The “crc” actor executes in the ARM processor.
After the CRC check is completed, a response message is encoded in the
Software Codec (actor “code ack”), modulated in the EVP (actor “mode
ack”), and sent to the base-station through the RF. Notice that only when
modes 1 or 2 are selected is the decision of the Mode Controller dependent
on the last input data. For modes 3 and 4, decisions can be taken ahead
of this, and in the graph this is reflected by the fact that “select” can im-
mediately generate a data token to fire again “mc” without waiting for any
of the modal actors. Notice also that for the execution where “mc” selects
mode 4, data from the source is discarded, since the output port of “switch”
for mode 4 is not connected.

In the next iteration, “mc” reverts to its initial state and the graph is
ready to process a new incoming packet.



6.5. PROPERTIES 139

switch
      1                          2                         3                    mc

hdem

sync

   1                           2
select

hdec

pdec

source

data
out

pdem

crc

code
ack

mode
ack

send
header

send
payload

shift

2:3                          
Tunnel 3:4                          

Tunnel

Figure 6.5: MCDF graph for a WLAN 11a receiver.

6.5 Properties

In this section we will discuss relevant analytical properties of MCDF graphs.
Some important temporal properties of Mode-Controlled Data-Flow stem

from two facts: 1) MCDF is a subset of Integer-Controlled DF (IDF) ([10] –
see Chapter 3), and therefore inherits all its properties; 2) a tight worst-case
timing model of its execution can be built that conforms to the SRDF model
and allows us to transpose some SRDF properties to MCDF graphs.

Other properties stem from the choice we made on defining the con-
struction rules. In the following sections, we will present some important
properties of MCDF, and provide proofs that they hold.

6.5.1 Notation

Consider an MCDF graph G = (V,E, t, d,M,mode, atype), where V is the
set of actors, E is the set of edges, t is the timing valuation of actors, d is the
integer-value delay of an edge, and M is the number of modes in the graph,
mode is the mode valuation of actors and atype is the actor type valuation
for actors.
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Let a sequence c = [m1,m2, ...,mn], with mk ∈ {1, ...,M} represent the
mode control sequence, i.e., the sequence of values of the tokens produced
by the mode controller on a given execution of the MCDF graph. Let c(k)
return the value of the tokens produced by the mc node on its (k + 1)th

firing, or the kth element of c.

6.5.2 Determinism

Any MCDF graph is also an IDF graph, and has all the properties of IDF
graphs. Therefore, it is deterministic, in the same sense as Kahn’s Process
Networks [49]: given the same input history (i.e given a specific sequence of
values produced by the firings of the source actor), an MCDF graph always
produces the same exact output, independently of the time at which each
actor firing happens.

6.5.3 Linear Timing

Another interesting property of MCDF is the linear timing of its sched-
ules. We proved that this property holds for self-timed schedules of SRDF
graphs in Chapter 4. Take a self-timed schedule s(i, k) of a data-flow graph
G = (V,N, t, d) . Then, if the (n+1)th firing of a given actor a ∈ N is delayed
by a time interval of ∆ such that its new firing time is s′(a, n) = s(a, n)+∆,
then s′ is guaranteed to be an admissible schedule of the graph if, for all
firings dependent on firing (a, n), s′(i, j) = s(i, j) + ∆, while for firings in-
dependent of (a, n), s(i, k) = s′(i, k) . Note that in SRDF an actor firing
(i, k) is dependent on (a, n) if, by recursively applying 4.2 we find an ex-
pression dependent on s(a, n). This theorem holds because the firing rule
for the activation of an SRDF actor is lower-bounded by a max function:
when all the inputs are available, the actor can fire. If an input is available
later than predicted, then the actor can, in the worst-case, be delayed by the
same amount of time. In the best case, the input still arrives in time for the
firing of the actor to be possible at the predicted time. Conversely, if a start
time is anticipated by a time interval of ∆ (assuming that no dependen-
cies are broken, for instance, because the execution time of a producer was
shortened), one can only expect any other firing dependent on that firing to
happen at most ∆ earlier than predicted, and never later. Since MCDF is
deterministic, the sequence of mode control signals does not change when
a given firing is delayed, and, for a given fixed sequence of mode control
signals, since the firing rule of an MCDF actor is also based on a max rule
on the arrival of inputs, the theorem will still hold for an MCDF graph.
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6.5.4 Iterative behavior and Deadlock Freedom

In this section, we show that a well-constructed MCDF graph is deadlock-
free, and that its execution exhibits a behavior where the graph always
returns to the initial token distribution after a well-defined firing sequence,
by stating and proving the following theorem:

Theorem 6.1. For a well-constructed Mode-Controlled Data Flow graph
G = (V,E, t, d,M,mode, atype) there is a non-empty firing sequence for
each possible value of the mode control token that will bring the graph back
to its original state (i.e. the initial token distribution). In each such firing
sequence, all the amodal nodes fire once, all the modal nodes of a mode m
selected by the Mode Controller fire once, and all other modal nodes do not
fire.

Proof. We will first compute how many firings of each actor are necessary
to bring the graph back to its initial state. Let r(i) denote the number of
times that actor i must be fired on a firing sequence to bring the graph back
to the initial token distribution. Then, for all edges (i, j) ∈ E it must hold
that at the end of the firing sequence the net increase of tokens in (i, j) is
zero, i.e. per FIFO, for each token produced, a token has been consumed.
This is normally expressed by the balance equations [58]:

∀(i, j) ∈ E, r(i) · prod(i, j) = r(j) · cons(i, j) (6.2)

where prod(i, j) and cons(i, j) represent, respectively, the number of tokens
produced/consumed on the edge per firing of the producer/consumer.

On an MCDF graph, by construction, any non-data-dependent actor
produces/consumes exactly 1 token per output/input port.

For data-dependent actors ( switches and selects) we need to represent
symbolically the productions and consumptions on data-dependent ports.
We use a similar convention as Buck [10] for representing IDF consumption
and production rates for variable-rate ports. Then p(c, j) designates the
number of control tokens on a given mode control sequence c whose value is
j, with j ∈ {1, 2, ...,M}.

We can categorize the edges of an MCDF graph, and try to solve the
the balance equations with respect to the number of repetitions r(i) sym-
bolically. There are four types of edges to be considered:

1. Edges (i, j) between amodal nodes: The balance equation is r(i) =
r(j), since prod(i) = cons(j) = 1 by construction.
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2. Edges (i, j) between modal nodes: As in the previous case, the
balance equation becomes r(i) = r(j).

3. Edges (w, j) from a switch actor w to a modal actor j: Since w
will produce a token in the output port associated with mode m every
time it reads a mode control token with value m, if mode(j) indicates
the mode value associated with the variable-rate port to which j is
connected, then the balance equation becomes p(c,mode(j)).r(w) =
r(j).

4. Edges (i, s) from a modal actor i to a select actor s: Since s will
consume a token in the input port associated with mode m every time
it reads a mode control token with value m, if mode(i) indicates the
mode value associated with the variable-rate port to which i is con-
nected, then the balance equation becomes r(i) = p(c,mode(i)).r(j).

This is an exhaustive enumeration since, by construction, switches and
selects must be amodal, and the construction rules do not allow edges be-
tween modal actors and constant-rate amodal actors.

Lets now assume a valid mode sequence c = [m]. According to our
hypothesis, a solution of the balance equations must exist such that:

r(i) = 1, if mode(i) = ⊥
r(i) = 1, if mode(i) = m
r(i) = 0, if mode(i) 6= m ∧mode(i) 6= ⊥

It is easy to verify that this solution satisfies the balance equations for
type 1 edges. It also satisfies the equations for type 2 edges, since these are,
by construction, either between edges of mode m, in which case r(i) = r(j) =
1, or between edges of a mode p 6= m, and, in that case, r(i) = r(j) = 0. For
type 3 edges, we have two cases: 1) if mode(j) = m, then p(c,mode(j)) =
1, and the balance equation becomes r(w) = r(j) = 1, which is satisfied
by our solution, since j is an actor of mode m, or 2) mode(j) 6= m, and
p(c,mode(j) = 0, and the balance equation becomes 0.r(w) = r(j) = 0,
which again is satisfied by our solution. For type 4 edges, the argument
is similar as for type 3 edges: there are two cases: 1) mode(i) = m, then
p(c,mode(i)) = 1 and the balance equation becomes r(i) = r(s) = 1, where
both values of r(i) and r(s) are satisfied by our solution and 2) mode(i) 6= m,
then p(c,mode(i)) = 0 and the balance equation becomes r(i) = 0.r(s) = 0,
which is satisfied by our solution. Therefore, our solution satisfies all balance
equations on a well-constructed MCDF.
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Please notice that a consequence of this theorem is that to each firing of
the MC and to each mode control value produced corresponds one iteration
of the graph.

Theorem 6.2. A well-constructed MCDF graph is deadlock-free.

Proof. We only need to show that the graph will not deadlock during one
iteration since, by definition, the graph will return to the initial state after
concluding a full iteration.

We have already established that every switch actor fires once per iter-
ation. For such one firing, it acts as a single-rate actor that produces one
token at the output port associated with the mode m selected for the cur-
rent firing. In the same way, a select actor acts like a single-rate actor that
consumes one token at its input port associated with mode m.

Furthermore, starting from the initial token distribution, the MC can fire
before any data-dependent actor, since there is a delay-less path from mc to
all switches and selects, and the graph has no delay-less cycles. Therefore,
for the current iteration, the firing of mc is only dependent on initial tokens
and the firing of amodal nodes that cannot be reached through a delay-less
path from modal nodes, again, because the graph has no delay-less cycles.
For this reason, it is guaranteed that mc is able to fire at least once.

An SRDF graph Gmcan be built that represents the execution of the
current iteration of the original MCDF graph G. The vertex set Nm of this
graph is composed of all amodal actors and actors belonging to mode m.
Its edge set Em is composed of all edges in the original MCDF graph whose
sources and sinks belong to Nm.

In[82], it is proven that an SRDF graph is deadlock-free if it does not
have any delay-less cycle. According to construction rule 4, Gm has no
delay-less cycles. Since Gm is a subgraph of G, it cannot have any delay-
less cycles and is thus deadlock-free. Therefore, G does not deadlock when
executing the iteration corresponding to the mode sequence {m}, for any
m ∈ {1, ...,M}. Any iteration brings the graph back to the initial state.
Since G does not deadlock for any single iteration, it cannot deadlock for
any mode sequence, even if the execution of iterations is pipelined.

6.5.5 FIFO ordering, Firing and Iteration counts

In SRDF graphs where all actors respect FIFO ordering of firings, the firing
count of a particular firing of an actor indicates to which iteration it belongs.
That is, the first firing of an actor will belong to the first iteration of the
graph, the second firing of the actor to the second iteration of the graph,
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and so on. This is because, due to FIFO ordering, the tokens produced by
an actor follow the same order as the tokens consumed by that actor, and
every actor fires exactly once for each iteration, consuming exactly a token
from each of its input FIFOs, and producing exactly a token on each of its
output FIFOs.

As for SRDF graphs, we will only accept as well-constructed, MCDF
graphs that respect FIFO ordering of actors. In MCDF, however, the count
of iterations of the graph does not match the count of the number of firings
for all modal actors, since they only fire in iterations where their mode
has been selected by the MC. Nonetheless, for each modal actor, a firing
belonging to iteration n can only happen after a firing of the same actor
belonging to an iteration k, if k < n. This is because all actors respect
FIFO ordering. In other words, the completion order of firings of an actor
corresponds the starting order.

6.6 Schedules and Temporal Analysis

We will represent MCDF graph schedules as we did for SRDF graphs by
employing a function that gives the start time of an actor for a specific
iteration of the graph. There are however, two major differences. First, the
schedule is now dependent on the mode sequence c. Second, the schedule
is now a partial function, since, as we have seen in the previous section,
for each graph iteration, only amodal actors and actors belonging to the
particular mode that was selected for that iteration fired.

We will therefore represent an MCDF schedule as a partial function
s(i, k, c), where i ∈ V is an actor, k ∈ N0 is the number of this iteration of
the MCDF graph, starting from 0 for the first iteration, and c is the mode
sequence.

This is a partial function since the start time s(i, k, c) is only defined if
mode(i) = c(k) or mode(i) = ⊥, where c(k) represents the (k +1)th element
of mode sequence c. If mode(i) 6= c(k) ∧ mode(i) 6= ⊥, then s(i, k, c) is
undefined, or s(i, k, c) = ⊥.

In order to present the precedence constraints for MCDF graphs, we
need to determine on what firing of a producing modal actor is the firing
of its consuming modal actor dependent. If the delay of the edge between
producer and consumer is 0, then, it is the same firing. If the delay of the
edge is greater than 0, then it is dependent on the mode sequence. If, for
instance, the delay is one, then the value produced by the first firing of the
producer is consummed by the second firing of the consumer, and so on.
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However, the first firing of the consumer does not necessarily happen in the
iteration before the second firing of the producer, since the mode of the
two actors is not necessarily selected for two consecutive iterations. In fact,
given the iteration at which the second firing of the consummer occurred,
we must find in the mode sequence the previous iteration at which the same
mode was selected to identify the related firing of the producer. In general,
given the initial delay of the edge and the mode sequence, we must be able
to count back, for a specific iteration, an amount of firings of the producer
equal to the delay of the edge to determine what was the iteration at which
the value consummed in the present iteration was produced. We represent
this iteration dependence by the following definition:

Definition 6.10. Modal Delay δ Let G = (V,E, d, t,M, amode, atype) be
a well-constructed MCDF graph. Let c be a valid mode sequence for graph
G. Let n be the number of times mode c(k) has been selected from iteration 0
to iteration k of an execution of G, for a mode sequence c. Let k′ ≥ 0 be an
integer such that c(k) = c(k′) and the number of times mode c(k) has been
selected between iterations 0 and k′ is n − y, where y is a positive integer.
If k′ exists, then the modal delay δ(k, c, y) = k − k′. If k′ does not exist,
then by definition, we will say that δ(k, c, y) = k + y + 1.

Lemma 6.1. For any given integer k ≥ 0 , mode sequence c, and integer
y ≥ 0, it holds that δ(k, c, y) ≥ y.

Proof. If k′ as defined in Definition 6.10 does not exist, then δ(k, c, y) =
k+y+1 > d, since k ≥ 0. Assume that c(k′′) = m for any k′′ ∈ N0 and k′′ ∈
[k−y, k]. Under this assumption k′ = k−y′ ⇔ k−k′ = y ⇔ δ(k, c, y) = d. If
mode m is not selected for all iterations in the mode sequence from c(k− y)
to c(k), then it must be that k′ < k − y ⇔ k − k′ > y ⇔ δ(k, c, y) > y.

Another useful definition is the modality of an edge. In MCDF, the
state of any edge (i, j) ∈ E where either mode(i) 6= ⊥ or mode(j) 6= ⊥
only changes during the execution of an iteration k where c(k) = mode(i)
or c(k) = mode(j). Note that if both mode(i) and mode(j) are defined, it
follows from the MCDF construction rules that mode(i) must be equal to
mode(j).

Definition 6.11. Edge Modality The mode of an edge (i, j) ∈ V is rep-
resented by the function emode : E → {1...M}, which is given by

emode(i, j) =
{

mode(i) if mode(j) = ⊥
mode(j) otherwise

(6.3)
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An edge is said to be modal if emode(i, j) 6= ⊥. The edge is said to belong to
mode m if emode(i, j) = m. The edge is said to be amodal if emode(i, j) =
⊥.

6.6.1 Precedence constraints

The start time s(i, k, c) of actor i in iteration k of mode sequence c is only
defined for iterations where c(k) = emode(i, j) or emode(i, j) = ⊥. In all
other cases s(i, k, c) = ⊥. Every edge (i, j) ∈ V implies that a firing of j
requires the consumption from a firing of i. In SRDF, knowing the delay of
the edge is enough to know which firing of j is dependent on which firing
of i, because exactly one token is consumed and produced in the edge per
iteration. If there are no initial tokens on the edge, i.e. d(i, j) = 0, then at
iteration k, firing k of j must consume the value produced by firing k of i. If
there are initial tokens on the edge, then the first d(i, j) iterations of j will
consume initial tokens and therefore iteration d(i, j) (i.e. the 1 + d(i, k)th

iteration, since we are counting from 0) must consume the output produced
by the iteration 0 (i.e., the first iteration) of i, the iteration d(i, j) + 1 of
j consumes the output of iteration 1 of i, and so on. In MCDF, the same
rule applies to amodal edges, since, according to Theorem 6.1, one input is
produced and an output is consumed from these edges for every iteration of
the MCDF graph. Therefore, the precedence constraint due to an amodal
edge (i, j) is given by

s(j, k, c) ≥ s(i, k − d(i, j), c) + t(i), d(i, j) ≤ k. (6.4)

For modal edges, however, things are different. Modal edges only have pro-
ductions and consumptions on iterations where the mode controller selected
their mode for execution. Take an edge (i, j) such that (i, j) ∈ E and
emode(i, j) = m. If such an edge has an initial number of tokens d(i, j) > 0
in it, the first d(i, j) iterations where mode m is selected, j will not require
any token produced by i, as it will be consuming one by one the initial tokens
in (i, j). Say that for a specific mode sequence c, the (d(i, j)+n)th selection
of mode m happens at iteration k. Then the firing of actor j at iteration k
is dependent on the firing of i that occurred at an iteration k′ where mode
m was selected, such that d(i, j) selections of mode m happen between c(k′)
and c(k). This is given by k − δ(k, c, d(i, j)). So, the precedence constraint
due to a modal edge (i, j) is given by

s(j, k, c) ≥ s(i, k − δ(k, c, d(i, j)), c) + t(i) (6.5)

when emode(i, j) = c(k) ∧ δ(k, c, d(i, j)) ≤ k.
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6.6.2 Self-Timed Execution

As for SRDF, a self-timed schedule of an MCDF graph is a schedule where
all firings of all actors happen as soon as possible, taking into account their
precedence constraints. For MCDF, however, a different worst case self-
timed schedule exists for each different mode sequence. The start time for
the firing of actor j ∈ V on iteration k ≥ 0 for a mode sequence c, is defined
only if mode(j) = c(k) ∨mode(j) = ⊥. In this case the start time function
is given by:

swcsts(j, k, c) = max
(i,j)∈V



swcsts(i, k − δ(k, c, d(i, j)), c) + t(i),
if k ≥ δ(k, c, d(i, j)) ∧ emode(i, j) = c(k)

swcsts(i, k − d(i, j), c) + t(i),
if k ≥ d(i, j) ∧ emode(i, j) = ⊥

0,
otherwise

(6.6)
If mode(j) 6= c(k) and mode(j) 6= ⊥, then swcsts(j, k, c) = ⊥.

6.6.3 SRDF bound

In this section we will show that a conservative, periodic bound exists on
the times of all firings of an MCDF graph that is given by worst-case self-
timed schedule of an SRDF graph obtained by replacing all conditional
productions/consumptions by unconditional ones.

Theorem 6.3. Let G = (V,G, t, d, M, amode, atype) be an arbitrary, well-
constructed MCDF graph, an let G′ = (V,G, t, d) be an SRDF graph obtained
by taking all actors and arcs from G, that we refer to as the rate-equivalent
SRDF graph of G and their respective timing and delay annotation, but
where all actors are assumed to have fixed production and consumption rates
of 1 per firing on all edges. Then, for any actor i, and for any mode sequence
c and iteration k such that c(k) = mode(i) ∨mode(i) = ⊥, it holds that

swcsts(i, k, c) ≤ s′wcsts(i, k) (6.7)

where s′wcsts(i, k) is the worst-case self-timed schedule of graph G′ as defined
in Chapter 4.
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Proof. Recall from Chapter 4 that the WCSTS of SRDF graph G′ is given
by:

s′wcsts(j, k) = max
(i,j)∈V


s′wcsts(i, k − d(i, j)) + t(i), if k ≥ d(i, j))

0, otherwise
(6.8)

We will prove the theorem by induction on the length of the chain of depen-
dencies.

1) Base step: We must prove that for actor firings (i, k) (i.e. the firing of
actor i at iteration k) that are not dependent on other actor firings, it holds
that swcsts(i, k, c) ≥ s′wcsts(i, k). This happens for actors that have no delay-
less input edges and for iterations where these actors can fire by consuming
initial tokens only. For amodal actors, one can see by inspection of the
formulas for swcsts and s′wcsts, that the start time of such firings happens at
time 0 for both graphs and schedules, thus upholding the desired property.

For modal actors, if the firing (i, k) occurs and is independent of other
firings, its start time for the MCDF schedule is swcsts(i, k, c) = 0. The (i, k)
firing for SRDF graph G′ always exists and must be either 0 or positive
s′wcsts(i, k) ≥ 0, therefore upholding the desired property.

2) Induction step: for any actor firing (i, k) that is dependent on previous
firings, we must prove that if, for all the firings (j, k′) that it depends on, it
holds that s(j, k, c) ≤ s′(j, k′), then it follows that s(i, k, c) ≤ s′(i, k).

The right-hand side of the equation that defines swcsts, as given by Equa-
tion 6.6 is a max expression on all the predecessor edges of j. The contribu-
tion to the max expression of each predecessor edge is dependent on whether
the edge is modal or amodal, an on whether the firing count k is high enough
that iteration k of j is not consuming initial tokens on arc (i, j). We will
show that none of these contributions can cause swcsts(j, k′, c) > s′wcsts(j, k)
when the inductive assumption s(j, k′, c) ≤ s′(j, k′) holds.

If for an edge (i, j) and iteration k, the contribution of the edge to the
max expression is given by the otherwise branch, then that contribution is
0. Since scheduling times for SRDF graphs are always positive or 0 (which
can be easily verified by inspection of Equation 6.8, this contribution cannot
cause swcsts(j, k, c) > s′wcsts(j, k).

For amodal edges (i, j) and iterations k such that k > d(i, j), it is simple
to see that if our induction hypothesis holds, i.e. swcsts(i, k − d(i, j), c) ≤
s′wcsts(i, k−d(i, j)), then the contribution of this edge to swcsts(j, k, c), given
by swcsts(i, k − d(i, j), c) + t(i) is upper-bounded by s′wcsts(i, k − d(i, j)) +
t(i). Therefore, if one such contribution is dominant, then swcsts(j, k, c) ≤
s′wcsts(j, k).
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For modal edges (i, j) and iterations k, such that at k > δ(k, c, d(i, j), the
contribution to the max expression in Equation 6.6 is given by swcsts(i, k−
δ(k, c, d(i, j), c)+t(i). Because of our induction hypothesis, this contribution
to the max expression is upper-bounded by s′wcsts(i, k − δ(k, c, d(i, j), c)) +
t(i). For the same edge(i, j) and iteration k, there is a contribution to the
max expression that defines s′wcsts(j, k, c), as given by Equation 6.8, that
is given by s′wcsts(i, k − d(i, j)) + t(i). Now, due to Lemma 6.1, it always
holds that δ(k, c, d(i, j)) ≤ d(i, j) ⇔ k − δ(k, c, d(i, j)) ≤ k − d(i, j). Due
to FIFO ordering of SRDF, s′wcsts(i, k − δ(k, c, d(i, j)) ≤ s′wcsts(i, k − d(i, j)
and, therefore swcsts(i, k− δ(k, c, d(i, j), c) + t(i) < s′wcsts(i, k− d(i, j) + t(i).
Therefore, if one such contribution is dominant in the max expression of
swcsts, then again it holds that swcsts(j, k, c) ≤ s′wcsts(j, k).

We have covered all three types of terms that contribute to the max
expression in Equation 6.6. We conclude that no matter which of the edges
defines the value of the max expression in Equation 6.6, the induction holds
for all edges and iterations on any well-constructed MCDF graph.

A direct consequence of this theorem is that, if the rate-equivalent SRDF
graph G′ has a finite MCM of µ(G′), then all amodal actors in the original
MCDF graph will be able to fire at least once every µ(G′) time units. Modal
actors will be able to do the same as long as the mode to which they belong
is repeatedly selected for consecutive iterations.

6.6.4 Mode-Sequence Specific Reference Schedule

In the previous section we saw how a periodic bound that is guaranteed
to be met by all modes can be obtained by applying SRDF analysis to
the MCDF graph as a whole. Although such analysis may be sufficient if
our intention is to guarantee that, no matter what mode is executed for
a particular iteration or how transitions between modes occur, the graph
still meets an overall throughput requirement, this may not be enough for
all intended usages of MCDF. One of the problems is that such analysis
doesn’t take into account that each mode has a different latency from source
to sink. If, as in the case of the WLAN, we are interested in bounding the
latency of a particular sequence of mode executions, this method will grossly
over estimate this latency, since it will represent every iteration as taking
the time of the mode with the longest latency. Also, in some cases it may
be acceptable that the execution of a certain mode cannot really meet the
minimum period requirement of the source, when such mode is only executed
for a small finite number amount of times in a mode sequence of interest
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(fort instances, the mode sequence necessary to decode a complete WLAN
packet), and the graph has a recovery time after such a sequence where it
can flush the input buffer and catch-up with the source. This is actually the
case for the WLAN: after a complete packet is received, the sender goes on
a hiatus that allows the receiver to recover any extra latency it incurred by
executing a number of iterations at a rate slower than the source. In such a
case, we are interested in calculating a bounded buffer that can handle the
largest mode sequence of interest, and provide a certain bound to the total
latency of executing the sequence, but different modes may have different
periods.

Moreover a tight bound on the latency of data flow execution for a par-
ticular mode sequence can be obtained by resorting to worst-case self-timed
simulation of the MCDF graph for a specific mode sequence. This method
will yield tighter performance results than the method of computing the
MCM of the MCM-equivalent SRDF graph, since the latter method essen-
tially results in the equivalent of assuming that the mode with the slow-
est initiation interval is selected for all iterations. Since MCDF graphs are
monotonic, the firing times in any execution of the graph with maximum ac-
tion urgency (i.e., self-timed), but with potentially varying execution times,
for a given mode sequence of interest are guaranteed to be earlier than in
the worst-case self-timed simulation.

Although this simulation method works for many practical cases where
the number and length of all the mode sequences of interest are relatively
low, in this section we will present a third technique that can be used to
quickly obtain a mode-sequence-specific upper bound on the firing times of
actors on an MCDF graph.

We start by observing that, if an MCDF graph G is executing for a
number of iterations in the same mode m, this is equivalent to executing for
those iterations the mode m subgraph Gm of G.

This SRDF graph Gm has its own MCM, say µm. Therefore, every actor
in it can fire periodically with a minimum period given by µm, and at least
one rate-optimal SPS can be built that bounds the firing times of all actors
in any of its self-timed schedules, as shown in Chapter 4. We will call one
such SPS a reference schedule for mode m, denoted as sm, where sm(i)
yields the firing time of the first iteration of actor i ∈ Gm. In Chapter 4,
we always assumed that such a schedule would start executing from time
0, but if in any such schedule we shifted all execution times by adding a
positive constant, we would also have a valid SPS schedule of the SRDF
graph, starting from the initial token distribution. This is easy to verify by
inspecting the precedence constraints (add the same constant to sSPS(i) for
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all i ∈ G and all precedence constraints are preserved). Incidentally, this
also means that we can always obtain an SPS schedule of a graph where
there is at least one actor that starts at time 0 (take any SPS schedule of
the graph, determine which actor has the lowest start time and subtract
that value from the start time of all actors in the SPS to obtain a new SPS
where at least one actor starts at time 0). We will assume that all SPS
schedules we generate have at least one actor i such that s(i) = 0 (and no
actor j has s(j) < 0).

Now say that we want to provide a bound for the firings at the k iteration
of graph G, and that we know that mode m will be selected for that iteration.
We will first assume that we only need to care about the dependencies for
the previous iteration. Later, we will take into account dependencies for the
previous iteration of the current mode. Assume that we also know all the
finish times (or conservative bounds for all finish times) of actor firings in
the previous iteration, k − 1. The execution of Gm at iteration k will have
dependencies from previous iterations. These will be due to arcs (i, j) ∈ G,
such that d(i, j) > 0, j ∈ Vm1 . To simplify the problem, we will consider
that, if d(i, j) > 0, then d(i, j) = 1. This is because any MCDF graph
where d(i, j) > 1 can be converted onto a graph where d(i, j) ≤ 1 with the
same timing constraints, by replacing any arc with d(i, j) > 1, by inserting
d(i, j) − 1 new SRDF actors {a1, a2, ..., ad(i,j)−1}, each with an execution
time of 0, and edges {(i, a1), (a1, a2), ..., (ad(i,j)−1, j)} each with a delay 1,
for a total delay of d(i, j) in the path between i and j. By assuming that
we make this transformation before analyzing the temporal behavior of the
graph, we need only to look at the dependency of the current iteration to
the previous one.

Say that we shift all starting times in this schedule forward in time
by a positive constant K, such that all start times in the SPS schedule are
guaranteed to happen after all data dependencies from the previous iteration
have been satisfied. We then have a valid bound for the execution time of
any actor i ∈ G at iteration k, given by s(i) + K. So the question is now
how to chose a valid value for K.

Now, let’s assume we have a similar upper bound on s(i, k − 1), that
is, we have an SPS schedule for the mode given by c(k − 1) = m2, given
by sm2(i) for all i ∈ Vm2 , and we know that constant K ′ meets equivalent
requirements with respect to all s(i, k − 1) as K meets for s(i, k).

Since sm2(i) is an SPS schedule with MCM µm2 we know that any actor
in this schedule is ready to execute again after µm2 time units after the
previous one, therefore, for valid K, K ′, and for every amodal actor in the
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MCDF graph it must hold that

sm1(i) + K ≥ sm2(i) + K ′ + µm2 ⇔
K −K ′ ≥ sm2(i)− sm1(i) + µm2 (6.9)

What is interesting about this expression is that it provides a difference
between a valid K bound and a valid K ′ bound for the transition between
modes m1 and m2 that is only dependent on the SPSs we chose as reference
schedules for mode m1 and m2, and not on the particular iteration at which
the transition happens. Given that we know K ′, i.e. a time shift that can
be added to s2 in order to provide a valid bound for the firing of actors
in mode m2 on a particular iteration of the MCDF graph for a particular
mode sequence, we can compute a bound for the subsequent iteration. We
will call the difference K−K ′, the mode transition interval κm2m1 , from
mode m2 to mode m1, defined by:

κm2m1 = max
i∈Gm2∩Gm1

(sm2(i)− sm1(i) + µm2) (6.10)

Notice that Equation 6.10 implies that κm2m1 ≥ µm2 since, because of
our choice of reference SPS schedules, there must be an actor i such that
sm1(i) = 0 and for such actor, it is true that sm2(i)− sm1(i) + µm2 ≥ µm2 ,
as sm2(i) ≥ 0.

What about transitions from a mode to itself? Since sm is a SPS for Gm,
we know that a second iteration in the same mode can start after an interval
of time equal to µ(Gm). And in fact, equation 6.10 gives us κmm = µ(Gm).

We have shown how a static periodic schedule can be delayed to account
for inter-mode dependencies, and provide a bound for the execution of the
graph with mode m at iteration k, based on a bound for the start of the
execution of the previous iteration k − 1 . We know a valid starting time
K(k, c) for iteration k and mode sequence c must be such that

K(k, c) ≥ K(k − 1, c) + κc(k−1)c(k). (6.11)

However, we have only considered amodal actors. For modal actors, the
dependency is towards the last iteration at which mode m was chosen for
execution. In fact, K(k, c) must be such that

K(k, c) ≥ K(k − δ(k, c, 1), c) + µc(k). (6.12)

If we chose to compute the bounds as

K(k, c) ≥ K(k − 1, c) + κc(k−1)c(k) (6.13)
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we comply with both constraints. This is self-evident for the constraint given
by the inequality in 6.11. The second inequality is also taken into account,
since the iteration that follows an iteration k− δ(k, c, 1) as in Equation 6.12
has a bound, as given by equation 6.13 of

K(k − δ(k, c, 1) + 1, c) = K(k − 1, c) + κc(k−1)c(k) (6.14)

Since we already established when discussing equation 6.10 that κmn ≥ µm,
then the previous equation implies that

K(k − δ(k, c, 1) + 1, c) ≥ K(k − δ(k, c, 1)) + µm (6.15)

Since a positive k is always greater or equal to k − δ(k, c, 1) + 1 and
K(k, c) is always greater or equal to K(k− 1, c) according to 6.13, then any
K(k, c) as given by Equation 6.13 respects the constraint given by Equation
6.12.

Having computed the upper bound K(k, c), the start time of a given
actor i, amodal, or of mode c(k) = m, at iteration k can be bounded by
s(i, k, c) ≤ K(k, c) + sm(i), where sm is a chosen static periodic schedule
of mode m subgraph Gm. This provides a way of computing upper bounds
for all start times in the self-timed schedule by computing the MCMs of all
mode subgraphs, one static periodic schedule per mode graph, and the κmn

mode transition intervals for all mode transitions from mode m to mode n.
This method can, for long mode sequences, be much more efficient than

data flow simulation. Also, it allows for the fast temporal analysis of multiple
mode sequences.

6.6.5 Temporal Analysis of Variable-length Mode Sequences

The technique described in the previous section can be extended to handle
mode sequences of variable length. Suppose we are interested in analyzing
the temporal behavior of a family of mode sequences where a mode transition
sequence is given by ~m = [m1,m2, ...,mn], but where each mode is executed
for a number of times before each mode changes. Let ~p = [p1, p2, ..., pn] such
that m1 is executed for p1 > 0 iterations, mode m2 is executed for p2 > 0
iterations and so on. Any two subsequent modes in the sequence of mode
transitions is different, i.e. mq 6= mq+1 for all q < n. Let the family of mode
transitions defined in this way be denoted by C, and C(~m, ~p) is the mode
sequence for the mode transition sequence ~m with the number of executions
by transition given by ~p.

We are interested in bounding the latency of s(i, k, C(~m, ~p)), where
k =

∑n
q=0 pq, and i ∈ Vmn . We do this by summing up the values of
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K(k, C(~m, ~p)) for all transitions. However, since we do not know the exact
number of iterations that are executed between two transitions, we have to
conservatively approximate the value of the second term of the max expres-
sion in Equation 6.13. Since we assume that all pq > 0, we know that at
least all mode transitions have occurred between the mode of the current
iteration and the previous selection of that same mode, although we do not
know how many iterations were executed in each mode. We can then infer
that the distance between two consecutive iterations of the same mode has
to be at least equal to the number of modes visited between the two. This
distance is equivalent to the modal distance for a mode sequence where each
mode in the mode transition sequence executes exactly once, that is C(~m,~1),
where ~1 = [1, 1, ..., 1]. This modal distance is given by δ(k, C(~m,~1), 1) and
therefore a conservative approximation of s(i, k, C(~m, ~p)) is given by

s(i, k, C(~m, ~p)) ≤ µm1 .(p1 − 1) + κm1m2

+ µm2 .(p2 − 1) + κm2m3

+ ...

+ µmn .(pn − 1) + κmn−1mn

+ smn(i). (6.16)

This can be factored into:

s(i, k, C(~m, ~p)) ≤
n∑

q=0

µmq .(pq − 1) +
n∑

q=1

κmq−1mq + smn(i) (6.17)

We can now analyze the graph for temporal requirements of the type

s(i, k, C(~m, ~p)) ≤ L(~m, ~p), (6.18)

where L is a function that provides a temporal bound that is parameterized
on the number of repetitions of each mode in the family of mode transitions
C(~m, ~p).

6.6.6 Temporal Analysis Summary

We proposed four different techniques to perform worst-case temporal anal-
ysis of MCDF graphs:

• Bound on overall throughput and start times of all actor firings as
given by MCM analysis and SPS scheduling of a rate-equivalent SRDF
graph;
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• Worst-case Data Flow simulation of all mode sequences of interest;

• Generation of reference schedules per mode and mode transition in-
tervals, to be composed through Equation 6.13 for mode sequences of
interest; note also that the worst case mode transition interval provides
an upper bound to the period of any mode sequence;

• Generation of symbolic expressions on the number of executions of
each particular mode, for parameterized mode sequences of interest.

Each technique has its own advantages and limitations. The first tech-
nique is simple, as it re-uses without significant changes the techniques used
for SRDF analysis. The problem with this technique is that it always takes
the worst-case throughput across all modes as the worst-case throughput of
the graph when executing in any mode. The second technique allows the
most accurate bounds, but it requires a complete data-flow simulation of the
MCDF graph for all mode sequences of interest, which may be too costly
in terms of computation time if many and/or very long sequences need to
be considered, not to mention the fact that it cannot cope with virtually
infinite sequences, at least not in the general case. The third technique
reduces the accuracy of the analysis, since it resorts to static periodic sched-
ules as bounds on the temporal behavior of the self-timed execution, but
allows much faster computation of bounds per sequence. The fourth tech-
nique is an extension of the third, and allows the analysis of sequences of
variable length. It also provides, for virtually infinitely repeating sequences,
a general expression for the bounds on firing times.

One further elaboration of the two last analysis techniques is possible.
We can generate all the reference SPS as a single Linear Program formula-
tion, including the expressions for the mode transition intervals, and mini-
mize the weighted sum of the mode transition intervals. The weight of each
mode transition interval is chosen such that the most common transitions
(according to the mode sequences of interest) have heavier weights in the
objective function.

6.7 Scheduling MCDF graphs

We wish to compute schedules by extending to MCDF the techniques we
proposed for SRDF schedules in Chapter 5. With that in mind, we will
proceed to explain how our techniques to generate static-order schedules,
budgets for Run-Time Schedulers (RTSs) and sufficient buffer sizes can be
extended for MCDF.
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6.7.1 Generating Quasi-Static-Order Schedules

In order to extend the scheduling framework described in Chapter 5 so that
it accommodates for MCDF graphs, we need to make a number of changes.
First, the data-dependent nature of the MCDF execution model does not
allow for static-order schedules. A body of work exists in creating a schedule
as close as possible to static by leaving only data-dependent decisions to be
performed at run-time. This is referred to as quasi-static scheduling [10, 38].
In quasi-static scheduling, the start times of all actors are still fixed, as in
a static schedule, but depending on a data value, the actor is either fired or
not at the pre-determined time, that is, we decide at run-time whether the
actor fires or not, but, if so, the time of the firing was chosen at compile
time. For reasons already explained in Chapter 2, we do not want to fix
the start times of all actors, but rather use a self-timed approach to actor
firing, where actor ordering plays the role of reducing the uncertainty caused
by local arbitration. Because of this, our local scheduling of each mode is
not static, but statically-ordered, and thus we call our local, compile-time
generated, intra-job scheduling policy Quasi-Static Ordering (QSO), ie, a
schedule that is as close as possible to statically ordered, where only the
data-dependent decision on what mode to execute is left to be performed at
run-time.

A QSO is very similar to a static ordering. For each MCDF iteration, all
actors mapped to a given processor are given the right to fire in a sequence
predefined at compile-time. When an actor is given the chance to fire, it will
wait for its input data dependencies, as specified by the DF input graph to
be met (also, output space dependencies for bounded output buffers must be
met). Once the firing conditions are met, the actor fires, and the next actor
in the QSO is given the right to fire. This is the same as static-ordering,
except that in QSO, modal actors whose mode was not selected for execution
in this iteration are skipped.

Such execution model assumes that the local scheduler is aware of the
mode control signal by the time it decides to schedule the first modal actor
in the QSO sequence.

Because of this, we must change the DF scheduler we presented in 5, in
that the DF now automatically inserts in every processor’s static order a
newly created Mode Switch that is responsible for splitting the schedule in
modal branches. This Mode Switch is inserted just before the first modal
actor is inserted in the QSO, and it must be connected to the control output
of the Mode Controller, just like any Mode Switch in an MCDF graph. We
will refer to such a Mode Switch as the Processor Switch of a given processor
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for a given QSO of an MCDF graph.
Since, according to the construction rules, in any valid MCDF any modal

actor on a given iteration can be scheduled after the MC, any QSO thus
generated results in a valid schedule.

Therefore, our DF scheduler can, with one minor change, generate valid
QSO schedules. An issue that we must still address is how to model the
temporal behavior of the execution of the MCDF graph, subjected to the
generated QSO.

6.7.2 Modeling Quasi-Static Order Schedules in MCDF

As we have seen for static order schedules in Chapter 5, the static ordering
of amodal actors can be represented in the temporal analysis model by
inserting an edge from each actor to its direct successor. Between modal
actors of the same mode, the same modeling construct patently holds, that
is, we insert an edge between any modal actor and the next modal actor
of the same mode in the QSO. Between modal actors of different modes,
no such dependency exists, since at each iteration actors of modes which
have not been selected are skipped (i.e., they do not even check for firing
conditions). Also, for each mode and each processor, the first modal actor
in the QSO must be connected to the Processor Switch that was inserted
during generation of the QSO.

If the QSO ends with a modal actor, we add a select to join all branches
and we insert an edge with one delay between the last actor and the first
actor in the QSO, to represent the no-overlapping, one-iteration-at-a-time
behavior of the QSO.

What if the QSO imposed precedence constraint from a modal actor to
an amodal actor? Such dependency can happen, since the DF scheduler is
free to place an amodal actor i to follow a modal actor j in the QSO. Note
that such dependency in the order of execution is only valid while executing
an iteration for which the mode of j is selected for execution. For any other
mode, i will have to wait for the last previous actor that belongs to that
particular mode, or is amodal.

To better illustrate the problem assume that the QSO ordering for a
given processor p is qso(p) = [A,B, C, D, E], where A, B, C, D, E are
actors on an MCDF graph, and m(A) = m(B) = m(D) = ⊥, m(C) = 1
and m(E) = 2. Furthermore, B is the Processor Switch of processor p. The
meaning of the QSO is that, for an iteration where mode 1 is selected by
the mode controller, the execution order is A, followed by B, followed by
C, followed by D; for an iteration where mode 2 is selected, the execution
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order is A, B, D, E; for all other iterations, the order is A,a1,a4.
To represent the conditional dependency of amodal actor firings on modal

actor firings, we have two options:

1. Interpolation of branches and merges We fix the QSO by in-
serting a Select before every amodal actor that appears right after a
modal actor in the QSO, except if that actor is a Select, since selects
can merge the schedule. Conversely, every time a modal actor appears
after an amodal actor in the QSO, we insert before it a Switch to
branch the schedule in modes, except if the actor is a Switch, since
switches can branch the schedule. Figure 6.6(a) depicts this way of
modeling QSO for the previously described example. We omitted the
edges from the MC for simplicity sake.

The Processor Switch is the first of the Switches. It marks the point
from which the execution of the iteration is dependent on the output
of the MC.

2. “Modalization” of amodal actors. Any amodal actor that appears
after a Processor Switch in the QSO is replaced by its set of modal
copies, one for each mode. Figure 6.6(b) depict this way of modeling
QSO for the previously described example. D1 and D2 are the copies
of actor D, where m(D1) = 1 and m(D2) = 2.

We proceed to explain how an amodal actor can be converted to a set
of modal actors. A copy of the amodal actor is created for every mode
in the MCDF graph. Then, any incoming edge of the original amodal
actor is connected to the data input port of a newly created Switch.
Each output of this Switch is connected to t the input of the copy of
the amodal actor associated with the mode of that port. Any outgoing
edge of the original amodal actor is connected to the output port of
a newly created Select. Each input port of that select is connected to
the output of the copy of the amodal actor associated with the mode
of that port. Figure 6.7 depicts how an amodal actor B with one input
edge and one output edge can be converted to a modal representation
on an MCDF graph with two modes. Please note that this conversion
makes each firing of B data-dependent on the firing of the MC on the
same iteration due to the control input of the Switch. The MC and
the edges from MC to the switch and select actors are not depicted.

The conversion of an amodal actor to a modal representation is going to
cause the creation of many new switch and select actors and their associated
edges in the analysis model.
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Figure 6.6: Two options for modeling quasi-static ordering in MCDF.
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Figure 6.7: An amodal actor is converted to a modal representation.
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However, many of these can be removed through two simplification tech-
niques: join-followed-by-branch removal and tunnel removal.

Join-followed-by-branch removal removes a switch followed by a select,
when the edge between them has no initial tokens in it. This is depicted in
Figure 6.8.

      1       Select       2                         

A B

      1       Switch       2                         

C D

A B

C D

Figure 6.8: Needless “Select followed by Switch” constructs can be removed
to simplify the analysis graph.

Tunnel removal removes from the temporal analysis graph tunnel con-
structs (see Section 6.2.3) between modal actors that are mapped in the
same processor. This is possible because if the order of execution between
two actors of different modes executing on the same processor is already
defined by the combination of the mode sequence and the QSO, that is, it
is guaranteed that the producer will always execute before the consumer,
since, within a processor, there is no iteration overlap.

Figure 6.9(a) depicts an example MCDF graph, and Figure 6.9(b) shows
its possible QSO schedule on a two processors system derived by applying
the strategy we describe above. The dashed edges indicate the extra inter-
actor dependencies generated by the quasi-static ordering.

For instance, if in the QSO of a given processor, actor a succeeds to actor
b, then an edge is added from b to a in the analysis graph. When a Switch
actor is added to the schedule in order to split mode-specific branches, it is
also added to the analysis graph.

As in the original backtracking scheduler presented in [76], each order-
ing decision triggers a test to see if there was no infringement of temporal
requirements, by using one of the 4 analysis techniques for MCDF that were
previously presented in this chapter.
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Figure 6.9: An MCDF graph and its quasi-static order schedule on two
processors.
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6.7.3 Determination of Run-Time Scheduler Settings

Run-time scheduler settings can be modeled in a similar way as we described
for SRDF. If the RTS is a TDM scheduler, then we can simply compute the
execution of the actors in the model exactly as in SRDF. For a round-robin
scheduler, it is necessary to remember that the size of the slice is equal to
the maximum sum of execution times across all modes, that is

S(p) = max
m∈M

∑
i∈Vm
π(i)=p

t(i). (6.19)

The determination of the RTS settings can be performed by using either
the Binary Search Slice Allocator or the Random Slice Allocator, where at
each step the temporal analysis is performed using one of the four methods
described in this chapter.

6.7.4 Determination of Buffer Sizes

With respect to buffer sizing, [10] proved that the problem of finding a
schedule that guarantees execution in bounded buffer size is, in general,
undecided for a BDF. The same does not apply to our model. As we have
seen, for any MCDF graph, we can generate a rate-equivalent SRDF graph
that assumes conservative bounds on the start times of all actors in the
original MCDF graph. Since SRDFs can be executed in bounded buffer
space [81], we know that we can implement our MCDF graphs in bounded
buffer space. Moreover, any of the existing means to compute a throughput-
optimal buffer distribution for SRDF graphs[77, 32, 20, 86], will provide a
sufficient solution for buffer distribution in MCDF for the optimal rate of
the throughput-equivalent SRDF graph.

For SRDF graphs, we proposed that sufficient buffer sizes could be com-
puted by using the linear programming formulation originally described in
[77] and corrected by us in [72]. The idea behind that technique to com-
pute buffer sizes is that the maximum amount of tokens b(i, j) that needs
to be stored in the FIFO corresponding to arc (i, j) ∈ G must be such
that, between the start of any firing of the producer i and the end of the
correspondent firing of the consumer j, is lower-bounded by the amount of
firings of i that occur in that interval. If the desired maximum period of the
execution is µD, this is given by the inequality

b(i, j) ≥ s(j, k + d(i, j)) + t(j)− s(i, k)
µD

(6.20)
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We can then compute an SPS schedule of G that minimizes all such
distances taking the linear program we presented in Chapter 4 for the con-
struction of rate-optimal SPS schedulers of G for adding a constraint for
each edge (i, j) of the following form

b(i, j) ≥ sSPS(j) + t(j)− sSPS(i) + µD.d(i, j)
µD

(6.21)

and replace the objective function by one that optimizes the sum of all buffer
sizes weighted by the size of the tokens that are produced in that arc

maximize
∑

(i,j)∈G

b(i, j).z(i, j) (6.22)

where z(i, j) is the size of the tokens produced in arc (i, j).
There are some difficulties in adapting such technique to MCDF graphs.

The main problem is that in some cases, as we already stated, we are in-
terested in the temporal behavior of a particular mode sequence, and not
in a fixed, desired maximum period between firings. If however, our only
requirement is a maximum period µD between firings, we can simply com-
pute the buffer sizing as for SRDF, by converting the MCDF graph into its
rate-equivalent SRDF graph as described in Section 6.6.3.

If, on the other hand, our temporal requirements are relative to a spe-
cific mode-sequence, then we must compute specific bounds for modal and
amodal edges. In the case of modal edges, a bound can easily be computed,
since consumptions and productions in these edges only occur when this
mode is selected for execution. As such, the producer can never fire at a
rate higher than µm, if emode(i, j) = m. Therefore, we can simply compute
the bound for the SPS schedule of Gm, as if for an SRDF graph:

b(i, j) ≥ sm(j) + t(j)− sm(i) + µm.d(i, j)
µm

(6.23)

where emode(i, j) = m.
As for amodal edges, the story is a bit more complicated. A bound to the

required buffer size may be derived from our knowledge that the producer
can never execute faster than the lowest MCM amongst the MCMs of all
mode sub-graphs, say µ̌(G) = minm∈Mµ(Gm). For arcs with 0-delay, the
bound on the buffer size becomes

b(i, j) ≥ sm(j) + t(j)− sm(i)
µ̌(G)

(6.24)
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for all modes m ∈ M such that emode(i, j) = m or emode(i, j) = ⊥. If
d(i, j) 6= 0, then we again have the same problem we encountered with
respect to temporal analysis, ie, that the execution of a previous iteration of
an actor is subject to the dependencies of a different mode sub-graph and,
therefore to a different rate. In that case, we use the same expedient as
before, where we convert the input graph such that for all edges the delay
is one or 0, and we now have to consider as a bound on the buffer size the
maximum bound amongst all the possible mode transitions

b(i, j) ≥ max
m∈M
n∈M

(
sm(j) + κnm + t(j)− sn(i)

µ̌(G)
) (6.25)

We can now, given an MCDF graph, compute sufficient buffer size by
simply computing first the MCMs for all mode sub-graphs, then all SPSs
for all the mode sub-graphs, then all the transition intervals, then all the
bounds for the buffer sizes of all arcs, and then, per arc, take the lowest
integer value that respects those bounds.

6.8 Scheduling Experiments

We applied our MCDF scheduling flow to the WLAN receiver depicted in
Figure 6.5, mapped to the same heterogeneous multiprocessor we used as
a platform in Chapter 5. We ran the MCDF graph of the WLAN through
the scheduling flow for 2 different mode sequences: one for the shortest
possible packet, i.e. a mode sequence where the synchronization mode runs
twice, the header mode once, and the payload mode once, and another for
the longest packet, i.e. the same as the previous, except that the payload
mode runs 256 times. We used both the SPS-based analysis and simulation-
based analysis for constraint verification. The results are presented in Tables
6.1, 6.2, 6.3, 6.4. In these tables, the highest priority is 3 and the lowest
priority is 1. We expected to find that the overestimation of the execution
time of the sequence with SPS-based analysis would cause final slice sizes
to be larger that for simulation-based analysis, and that was indeed the
case. We expected the worst overestimation to occur for the small sequence,
as the main overestimation is caused at the start of execution of a mode,
and during transitions, and the the proportional contribution on the small
sequence of transitions is much larger than for the long sequence, that stays
in the payload mode for 256 consecutive iterations. This was verified by
the experiment. The largest difference in required resource utilization after
scheduling and slice size determination was found for the short sequence,
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Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

3 X X 29 45 40
X 3 X 45 19 45
1 3 3 40 45 9
1 2 3 45 39 9

Table 6.1: WLAN scheduling results with SPS-based analysis, mode se-
quence with 2x synchronization, 1x header, 1x payload, 1x crc.

Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

3 2 1 23 43 43
3 1 2 23 45 39
2 3 1 41 19 43
1 3 2 45 19 34
2 1 3 41 45 8
1 2 3 45 41 8

Table 6.2: WLAN scheduling results with simulation-based analysis, mode
sequence with 2x synchronization, 1x header, 1x payload, 1x crc.

where, for the binary search slicer algorithm we give the highest priority to
minimizing the EVP utilization. In this case, with SPS-based analysis, the
utilization of the EVP resources was 29%, as opposed to 23% utilization
with simulation-based analysis, i.e. an increase in the slice size of 26%.
With the long sequence, as expected, the overestimations are much lower,
with the maximum increase of slice size being again for the cases where
we give highest priority in the slicer to minimizing EVP slices, for a total
increase in the slice of 7%. It was also noticeable that, the longer the mode
sequence is, the slower the running time of the scheduler is for simulation-
based analysis, while it remains constant with SPS-based analysis. For this
particular example, for the longer sequence, the running time of the data
flow scheduler was about one order of magnitude larger than for SPS-based
analysis, going from less than a minute to around 10 minutes.

6.9 Multi-Rate MCDF

In this chapter, we discussed only graphs where data-independent actors al-
ways produce and consume 1 token in all their output/input arcs. However,
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Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

1 X X 29 45 40
X 1 X 45 29 36
2 3 1 40 44 9
4 2 1 45 39 9

Table 6.3: WLAN scheduling results with SPS-based analysis, mode se-
quence with 2x synchronize, 1x header, 256x payload, 1xcrc.

Priority Utilization (%)
EVP SwC ARM EVP SwC ARM

3 X X 27 45 45
2 3 1 44 29 45
1 3 2 45 29 35
2 1 3 35 45 7
1 2 3 45 36 7

Table 6.4: WLAN scheduling results with simulation-based analysis, mode
sequence with 2x synchronization, 1x header, 256x payload, 1x crc.

extending MCDF to multi-rate is relatively simple, with some constraints.
Take a graph where data-independent actors, except for the mode controller,
are allowed to have rates of production/consumption on their ports higher
than one. We compute repetitions vectors for the balance equations as de-
scribed in 6.2, per each modal subgraph. If we obtain solutions such that
the MC always executes once (and therefore so do all Mode Switches and
Mode Selects since, due to the control edges, there must be a 1 to 1 ration of
firings between MC and Mode Switches and Mode Selects) per iteration for
all modal subgraphs, then there is still a number of firings for each actor per
each mode selection (ie per each firing of the MC) that returns the graph
to the initial state, and therefore the graph can still execute for one mode
selection, return to the initial state, then execute for another mode, return
to the initial state, and so on. All our analysis and mapping techniques will
still work by converting the Multi-rate modal subgraph into a Single-rate
graph, as we have done for MRDF graphs.

It is more difficult, however, to handle graphs where repetitions vectors
exist for all modal subgraphs, but the number of firings of MC is different
than one for one or more modal subgraphs. In such cases, not all mode
sequences are able to return the graph to the initial state. However, if we
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require the MC to behave such that for all valid mode sequences, each mode
is selected a number of times equal to the number of repetitions of the MC on
the repetitions vector of the modal subgraph for each mode, then the graph
is still guaranteed to be able to fire in such a way as to return to the initial
state after each sequence of firings of the same mode, and it is reasonable
to assume that all analysis and mapping techniques can still be adapted to
handle such graphs. This however, should be the subject of further study.

6.10 Related Work

We have already discussed the limitations of Static Data Flow variants and
of Integer Data Flow both in Chapter 3 and in the introduction of this
chapter. During the last few years, however, there have been attempts in
some ways similar to ours to find a better balance between expressivity and
analytical properties. In such category falls the work on Variable-Phased
Data Flow (VPDF) presented in [92]. With VPDF, actors cycle through a
list of execution phases determined at compile time. The variable runtime
behavior comes from the fact that each phase can be fired a number of
times dependent on data values that can only be known during execution.
Conditional behavior can be represent since phases can execute 0 or more
times depending on data values. In [92] it is shown how, by knowing the
maximum number of executions per phase, one can compute buffer sizes
for a VPDF graph to meet a given throughput requirement. Scheduling is
assumed to be dynamic, and no techniques have been proposed for static
or quasi-static ordering of actors, nor, for that matter, any way of taking
mapping decisions beside buffer sizing either at compile time or run time

Another approach, much closer to ours, is taken in the work on Scenario-
Aware Data Flow (SADF), first introduced in [89]. In [23], a technique is
provided for real-time analysis of SADF graphs. In SADF, an application
is modeled as a collection of SDF graphs, each representing individual sce-
narios of behavior, and a Finite State Machine (FSM) that specifies the
possible orders of scenario occurrences. The paper provides techniques to
analyze worst-case performance of such applications. These techniques can
determine the highest throughput that can be guaranteed and can determine
the minimal latency that can be attained from a state space analysis. SADF
is very similar to MCDF in many ways. In fact, according to preliminary
results of a study which was still being carried out at the time of the writing
of this thesis, it is very likely that the two models have the same expressive
power and that an automatic conversion between the two is possible. The
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analysis techniques for SADF require the same information that we use for
MCDF analysis: a graph per mode/scenario and a specification of scenario
transitions of interests. In our case, this is done with the specification of
mode sequences; in SADF, with the specification of a finite state machine for
scenario transitions. The analysis technique proposed for SADF requires the
exhaustive analysis of the state space of the execution of the SADF graph,
as specified by the FSM. Our usage of reference schedules makes the analysis
less precise, but avoids an exhaustive search space exploration, which is also
a problem we have with the analysis technique where we apply data flow
simulation for all mode sequences of interest.

A difference between MCDF and SADF is that SADF was primarily
designed as a way of modeling behavior and not as a programming model
and, because of that, the execution model is not explicit about the relation
between scenario transition decisions and data flow execution, i.e., if one
defines the FSM and each one of the graphs per scenario, there is still no
way of knowing where the decision to go from one scenario to another was
taken. Application mapping techniques for SADF were proposed in [87]. In
this work, static ordering is handled by a single attempt, heuristic algorithm
that assumes that the mode of execution is known from the start of the
iteration at each processor. It is not clear how this constrains the options
available to the scheduler. Due to the similarity between SADF and MCDF,
it is very likely that MCDF mapping techniques can be applied to SADF
graphs.

6.11 Conclusions

Transceivers are mostly iterative, repetitive applications, with little data
value-dependent behavior. However, the little data value-dependent behav-
ior there is cannot easily be accommodated by the static data flow computa-
tion models. This posed a serious problem, as, until recently, only the static
flavors of data flow were known to have the analytical properties that allows
us to guarantee hard-real time behavior. On one side we had the dynamic
data flow variants that could not be analyzed, and on the other side we had
the static data flow models that we could analyze, but were not expressive
enough to model the behavior of transceivers. The work presented in this
chapter tried to find a compromise: we allowed for a small amount of data-
dependent behavior and extended the known analysis techniques for static
graphs to accommodate for this small amount of dynamism. The result was
the Mode-Controlled Data Flow computation model. We have shown how
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MCDF can be analyzed in terms of minimum guaranteed throughput and
maximum latency bound and we have extended the techniques for applica-
tion mapping we developed in Chapter 5 so that MCDF graphs representing
radio applications can be quasi-statically scheduled onto multiprocessor sys-
tems.

There is still work to be done. Our quasi-static ordering scheduler is an
adaptation of our static ordering scheduler, and, as such, it still makes an
exhaustive search for feasible schedules, with an algorithm of exponential
complexity. For buffer sizing, we have only shown that we can compute an
upper bound to the requirements, but this upper bound is not optimal in
any sense.

The biggest challenge, however, is probably the expressivity of the model.
The expressivity of MCDF was chosen such that the transceivers that were
known to us could be conveniently expressed. There is a trend, however, for
baseband processing to become more irregular, with more complex control,
as can be seen in the evolution of 4G standards such as LTE. It is yet to
be seen whether MCDF can cope with the increase of control complexity in
baseband processing. At the time of writing, a study has been carried out
to model LTE in MCDF and MCDF seems to be capable to express all the
required behavior, but the complexity of the data flow model thus obtained
also points towards the need for multi-rate and cyclo-static constructs, as
well as more constructs such as the Mode Tunnel that, although reducible
to Mode Switches and Selects, will make the specification of radios simpler.

It is also yet to see what lessons can be learned and what techniques can
be adopted from the work on SADF and VPDF.
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Chapter 7

Resource Manager

In this chapter, we will discuss the algorithms that the resource manager
must implement to try to find a mapping for a transceiver instance (a job)
at runtime, and decide whether the job can be executed or not.

In the previous chapters, we have seen how a transceiver described by
a data flow graph can be prepared at compile time for runtime allocation
of resources. Actors are first bundled into quasi-statically ordered clusters.
Each cluster is annotated with a resource budget, which includes scheduler
settings (the size of a slice per period) and memory requirements, while
communication channels between clusters are annotated with required buffer
capacity.

As already sketched in Chapter 2, our approach to the resource man-
agement problem for a system with dynamic job-set and job-mix is to give
jobs a degree of independence from the rest of the system by using a strong
resource management policy. The resource management policy should en-
sure: a) admission control – a job is only allowed to start if the system can
allocate upon request the resource budget it requires to meet its timing re-
quirements; and b) guaranteed resource provisions – the access of a running
job to its allocated resources cannot be denied by any other job. Resource
budgets are computed offline such that jobs meet timing constraints, using
the techniques guided by temporal analysis that we described in Chapter 5.

As we have argued in Chapter 2, the enforcement of resource budgets
requires the hardware platform to provide predictable arbitration schemes,
that is, arbitration schemes that allow us to tightly bound the time that a
request takes to be served.

We designed a template for scalable multiprocessor architectures that
fits these requirements. We use global resource allocation to implement

171



172 CHAPTER 7. RESOURCE MANAGER

admission control and local schedulers to guarantee resource provision. A
simplified version of this architecture was presented in Chapter 2. In this
chapter, we extend the communication infrastructure by using an Æthereal
Network-on-Chip [29]. Æthereal fits well in this architecture template as
it allows for resource reservation by providing connections with guaranteed
minimum throughput and maximum latency.

We start our discussion assuming a target platform containing a TDM-
arbitrated router– i.e. an Æthereal network with a single router – for inter-
tile communications. We show that the problem can be seen as a gener-
alization of Vector Bin-Packing (VBP) [54] and, since the problem is NP-
complete, provide heuristic approaches to tackle it. Since a single router
architecture does not scale with an increase in the number of cores, we look
at the problem assuming a network with many (4 to 12) routers.

By adding the network, the system changes in two important aspects.
First, the resource allocator must find routes through the network and re-
serve time slots per link per router. Secondly, the network cannot be mod-
eled as a single resource, as bottlenecks between two tiles are formed de-
pending on which routes are allocated. Special care has to be taken about
which processors are used for which tasks, even though the set of processors
itself is homogeneous.

In Section 7.1, we explain how this work relates to the work of others.
In Section 7.2, we describe the assumptions about hardware, software and
scheduling mechanisms that were used in this study. In Section 7.3 we
formally model the resource allocation problem. In Section 7.4, we describes
the heuristics we propose to find a feasible allocation. In Section 7.5 we
describe our experiments and results. Finally, we state the conclusions for
this chapter in Section 7.6.

7.1 Related Work

An extensive survey or the traditional techniques for scheduling and resource
allocation in embedded multiprocessors can be found in [82]. It describes
techniques from fully static to fully dynamic scheduling. However, it does
not consider the case in which tasks arrive and leave at runtime, as in our
case. The same holds for techniques that compute task assignments at
design-time, such as [91].

In CPA [67], it is considered that jobs may start and stop at any time.
Each job mix has its own schedule, which is calculated at compile time and
stored in a look-up table. This approach is not without problems. The
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number of potential job combinations is exponential in the number of jobs,
and switching from one configuration to the other could mean a non-trivial
processor migration of running tasks. Moreover, it assumes that all tasks
are known at compile time.

The literature on task allocation for tasks with a periodic requirement
is extensive, and covers many combinations of constraints. Previous ap-
proaches either do not consider any network [4, 59, 30, 63, 95], consider only
a bus topology [5], require tasks to be migratable between processors [30],
or require a solution to be computed at compile time [67, 91]. Hansson et
al. [40] consider the network, but do an off-line computation of the network
slot tables, provided the assignment of tasks to processors is given. Our
approach does not share these restrictions. We do task assignment using
global system knowledge. Task to processor assignment is done at job start
time. Task scheduling is done locally on the processor and it can use any
predictable scheduling mechanism such as Non-Preemptive Non-Blocking
Round-Robin or TDM.

In [66], the authors propose a technique similar to ours to model the
network-on-chip resources as a graph where each node corresponds to a slice
in each one of the routers, and each edges corresponds to a link. This work,
however, does not consider processor allocation, assuming it is given a priori.

7.2 System Architecture

In this section we will describe some relevant aspects of the type of system
we consider. We will describe the hardware and software models, as well as
the scheduling mechanisms used in the processors.

7.2.1 Hardware

In Chapter 2 we propose a hardware architecture consisting of a set of pro-
cessors, of different types, fully connected through a global communication
framework. In this chapter, we will both simplify and extend this model.
First, we will consider a homogeneous system, i.e. all processors are of the
same type. The reason for this is that, since in our framework each task
can only run in one specific type of processor, the problem of allocating
resources to such a task is restricted to finding a processor of the type that
task requires. The problem of resource allocation for our heterogeneous sys-
tem can therefore be seen as jointly solving the resource allocation problem
for several homogeneous multiprocessor systems.
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On the other hand, we have not described in Chapter 2 in detail what
the communication infrastructure looks like. If for relatively small simple
architectures a multi-layer bus may suffice (provided that care is taken to
employ predictable slave-side arbiters) such a solution will not scale well
with an increase in the number of cores in the architecture.

In this chapter, the hardware under consideration consists of a homo-
geneous set of processors, connected through a network of routers. The
processors and the network are placed on a single chip, forming a Multi-
Processor System on Chip. We will consider at most 24 processors and 12
routers.

Each processor resides on its own processing tile (PT), which consists
of a processor, local memory (MEM), a communication assist (CA) and a
network interface (NI). The CA offers a fixed number of time slices that it
allocates to memory accesses between the ARM and the NI. The NI offers
a fixed number of input/output FIFO queues for accessing the channels
allocated over the network.

Figure 7.1: A processing tile.

For a model of the network we consider the Æthereal [30, 29] Network-
on-Chip. The Æthereal can use contention-free routing, based on TDM
switching and allows links with guaranteed throughput and latency. Every
router is connected to other routers and/or to NIs. Each PT has one single
NI. Due to physical constraints, the routers can have at most 8 bidirectional
connections. Every connection consists of a fixed number of links, and each
link offers a fixed amount of bandwidth.

Data are transmitted by the routers in three-words packets. All routers
and tiles send and receive data packets synchronously as if operating under
a global clock. If data arrives on an input at tick t, it will be sent through
the router to the output link and arrive at the other end of that link at tick
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t+1. Per time slice, a packet from each input link is sent to an output link,
according to a slot reservation table that specifies per time slice which input
link is connected to each output link.

Two processes on different PTs can communicate unidirectionally by
establishing a channel. This requires a send and a receive buffer to be
allocated in the data memory of their respective PTs, as well as time slices in
the CA and queues in the NI on both sides. In the network, a communication
channel must be created by finding a path across routers from source PT to
destination PT. The routers do not buffer their input packets. Therefore,
when a packet arrives to an input link in a router, it must be sent at the
end of the cycle to the output link specified for that time slot in the slot
reservation table.

Each processor runs either a TDM or a NPNBRR scheduler, and has a
(possibly empty) set of tasks assigned to it.

7.2.2 Application

As in previous chapters, we will assume that the application consists of a
number of stream-processing jobs. An unpredictable source, such as the
user, can ask to start or stop a job instance at any moment. Because the
user can typically request for more job instances than the hardware can run
simultaneously, there is a resource allocation problem. If the system can
find sufficient resources, the job is started. Otherwise, the user is informed
of the lack of resources, and the system refuses to start the job.

The jobs are modeled as directed graphs. Nodes represent computation
tasks, and edges represent FIFO communication channels. These graphs
are not data flow graphs of the same type used in previous chapters. In
fact, after our compile time scheduling techniques have been applied to a
data-flow graph, a new graph has been generated: each task in this graph
corresponds to a cluster of actors (quasi-)statically ordered and annotated
with budget requirements such as scheduler settings (for a TDM scheduler,
this is processor cycles per TDM period) and memory consumption for both
data and instructions.

Channels require memory space to store buffers, as well as network band-
width. We did not discuss how to compute the bandwidth requirements of
channels in Chapter 5, as we assumed that communication between actors
was accounted for as remote stores by the producers into buffer spaces re-
served at the side of the consumer. In this chapter, due to the introduction
of the network, we can no longer make such an assumption, and therefore
an explanation is required on where and how such bandwidth budgets can
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Figure 7.2: Data flow models for a) Communication Assist link b) Network
link c) channel from producer to consumer in different PTs.

be derived.

Determining bandwidth budgets for channels

With the introduction of the communication assists and the Æthereal net-
work, communication now requires reservation of communication resources.

In terms of the temporal analysis model, a channel between two single-
rate actors i and j through a producer-side CA, a number of network routers
and a consumer-side CA can be represented by replacing the arc between
(i, j) by a latency-rate server data flow models connected in series: a model
for the producer-side CA, followed by a model for the network and a model
for the consumer-side CA. The CAs are represented each by a latency-rate
server model (depicted in Figure 7.2(a)). The network is represented by a
single latency-rate server component followed by an actor that models the
latency caused by the synchronous transfer of packets through subsequent
routers on the path, as explained in the previous section (depicted in Figure
7.2(b)). The complete model of the temporal behavior of a channel (i, j)
implemented over the network is shown in Figure 7.2(c).

These models are parametric. The execution times of the two actors
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cL and cR in the CA model are given respectively by t(cL) = (NCA −
BCA(i, j)).PCA where PCA is the period of the CA time wheel (we as-
sume TDM arbitration on the communication assist), NCA is the fixed num-
ber of equally-sized slices per period that the CA scheduler provides, and
BCA(i, j) is the number of slices allocated for link (i, j) in the CA, and
t(cR) = z(i,j)

BCA(i,j).wCA
.PCA, where z(i, j) is the size in words of the tokens

produced by i and consumed by j and wCA is the number of words the CA
can transfer per slice.

The execution times of the three actors nL, nR and nH that represent the
network are given by t(nL) = (NNet−BNet(i, j)).PNet, t(nR) = z(i,j)

BNet(i,j).wNet
,

and t(nH) = (h(i, j) − 1) PNet
NNet

, where PNet is the period the time wheel of
each network router, NNet is the fixed number of equally-sized slices per
period that each network router provides, BNet(i, j) is the number of slices
per period allocated to link (i, j) in a network router (it must be the same for
all network routers that the connection provided to channel (i, j) traverses,
and h(i, j) is the number of network routers that each packet sent through
channel (i, j) must traverse.

If we assume a worst case for h(i, j) = h, where h is the number of
routers in the network, i.e. we assume that each channel may traverse all
routers once, and we explicitly disallow a channel from traversing the same
router twice, then all parameters in the model are application independent,
except for the BCA(i, j) and BNet(i, j) parameters, which represent the CA
and network bandwidth budgets of channel (i, j). Since in an SRDF graph
each producer produces at most once per period, and assuming that µD ≥
PNet, then can simply set the required bandwidth to z(i, j) words per µD,
which means that BNet(i,j)

PNet
≥ z(i,j)

µD
which implies that BNet(i, j) ≥ z(i,j).PNet

µD
.

Assuming that a low latency is not necessary, we can set budget BNet(i, j)
to be equal to this lower bound (same formulas and conclusion can be drawn
for BCA(i, j) budgets). If temporal analysis indicates that assuming values
thus obtained creates an unfeasibility of throughput or latency requirements,
then the budgets can be increased. Channel bandwidth budgets “withdraw”
from the same deadline extension pools as the slicing optimization phase of
the compile time scheduler, and the same methods as were described in
Chapter 5 can be used to determine instead or in combination with TDM
slices for processor schedulers.
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7.3 Resource Allocation

If a request to start a job arrives, sufficient resources need to be found and
allocated for its tasks and channels. The tasks are to be allocated to PTs,
and routes need to be allocated in the network for the channels between
tasks on different PTs.

The problem is to find such an allocation, while trying to keep as many
free resources as possible for jobs that may be started later. Also, it is a
concern that computing resources may start fragmenting across the platform
after many job starts and stops.

We first give a simplified example to highlight some of the challenges
involved in solving the allocation problem. Then, we will describe how we
formally model resource providing and resource requesting entities. We then
formally define the allocation problem, discuss its complexity and strategies
on how to solve it.

7.3.1 Motivating Example

The three jobs depicted in Figure 7.3(a) are to be placed simultaneously onto
three empty tiles. We assume a single-router network, and can therefore ig-
nore for now the problems related with network topology. To illustrate the
trade-offs involved, we depict several different allocations in Figure 7.3(b). In
this example, for the sake of simplicity, each task in a job requires only com-
putational resources and each tile provides only computational resources.
Placement strategy 1 tries to map the whole job onto a new processor to
minimize communication costs. This strategy fails to find a feasible allo-
cation by requiring four processors to be used instead of three. Placement
strategy 2 packs the tasks as tightly as possible and concentrates all the free
space in a single processor. Jobs are now scattered over the processors, lead-
ing to high communication costs between tasks. If we rearrange the tasks,
as shown in strategy 3, we lower the communication overhead, while keep-
ing the same distribution of free space. Packing strategy 4 shows another
possible free space vs. communication trade-off. It reduces the amount of
inter-processor communication at the expense of fragmenting the remaining
computing resources.

7.3.2 PT Resource Provision

A PT provides computation, memory and communication resources. This
can be represented as a resource provision vector. If p is a PT, then the re-
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(a) (b)

Figure 7.3: Three job graphs with four different allocations.

sources that p offers to the components of a job graph can be represented by
means of a vector r(p) := [D(p),M(p), N(p), S(p), I(p), O(p)]T where D(p)
is the number of CPU cycles per TDM period of the processor; M(p) is the
amount of memory the PT offers, N(p) is the number of NI queues avail-
able, from which one needs to be allocated for each FIFO channel entering
or leaving this PT, S(p) is the amount of CA bandwidth needed for each
network connection, I(p) and O(p) are the upper bounds on the amount of,
respectively, incoming and outgoing bandwidth for this PT.

7.3.3 Job Resource Requirements

Tasks and channels are resource consuming entities. A task requires CPU
cycles as well as memory space, for both state and temporary variables
(which we consider together). For a task graph J = (V,E), where V is the
set of tasks and E is the set of channels, this can be modeled as a vector
s(i) := [T (i),M(i), 0, 0, 0, 0]T where T (i) and M(i) are, respectively, the
CPU cycles per TDM period and the amount of memory that the task needs.
All other requirements are set to 0, as they are related with communication,
which will be modeled by channel requirements.

Channel requirements depend on the mapping of its source and sink
tasks. If both tasks are mapped to the same PT, the channel is implemented
by a FIFO buffer in the memory of that PT and we say that the channel is
internally mapped. On the other hand, if source and sink are mapped to dif-
ferent PTs, bandwidth in the NoC has to be allocated, as well as memory at
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both extremities, outgoing/incoming bandwidth, network interfaces and CA
bandwidth. We say that such a channel is externally mapped. The vector
that represents the resource consumption of an internally mapped channel is:
i(e) := [0,M(e), 0, 0, 0, 0]T , where M(e) is the amount of memory required
to store the FIFO relative to channel e. If the edge is externally mapped,
resources are required from both the source tile and the sink tile. This can
be expressed by two vectors, p(e) and c(e), representing respectively the
resource usage at source and sink PTs p(e) := [0,Mp(e), 1, Cp(e), 0, b(e)]T ,
c(e) = [0,Mc(e), 1, Cc(e), b(e), 0]T , where b(e) is the bandwidth required by
the channel, Mp(e) and Mc(e) are, respectively, the memory required to
store the source and sink endpoints, and Cp(e) and Cc(e) represent the CA
bandwidth required.

These four resource requirement vectors can be reduced to two by the
following transformation. Let w(i) be the amount of resources needed to
host task i, i.e.,

w(i) := s(i) +
∑

e=(i,b)∈E

p(e) +
∑

e=(b,i)∈E

c(e).

The resources that are saved when both endpoints of a channel are mapped
to the same PT is modeled by

δ(e) := p(e) + c(e)− i(e).

Then, a set of tasks A can be allocated on PT p iff:∑
a∈A

w(a)−
∑

e=(a,b)∈E
a∈A,b∈A

δ(e) ≤ r(p). (7.1)

7.3.4 Network Resource Provision

The route through which the packets of a FIFO channel flow through the
network should be allocated, and is fixed for the lifetime of the channel it
supports. Such a route through the network consists of a path through the
routers used and slot allocations for the slot reservation tables of each one
of the routers.

In previous work [40], path finding and slot reservation in NoC resource
allocation are decoupled: first a path is found in a directed graph model of
the network where nodes are routers and edges are links between routers,
and given such a path, an attempt is made to do the slot allocation. If the
slot allocation fails, then a new path is searched for.
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Figure 7.4: Example of (a) a network with two routers and (b) its network
graph model. A bi-directional, double-stroked arrow represents one edge in
each direction.

In our work we use a network graph model that includes the time slots.
Each router is represented by T nodes where T is the number of slots in the
time wheel of the router. Each node therefore represents a specific time slot
of a given router, and it has incoming and outgoing edges to every network
interface and router to which its router is connected. If there is an edge is
between two routers, it connects slot vertex t of the source to slot vertex
(t+1) mod T of the sink, which reflects the 1-slot delay introduced by each
router. If the edge is between a router and a tile, each edge connects slot
vertex t of the router to the single vertex representing the tile.

In Figure 7.4(a) we depict a network consisting of two routers and 4
network interfaces, with 2 network interfaces connected to each router (we
use bi-directional, double-stroked arrows to indicate that links exist in both
directions). In Figure 7.4(b) we depict our network graph model for this
network. Again, bi-direction, double-stroked arrows indicate the existence
of 2 links, one in each direction.

When the source and sink of a channel are mapped to different tiles, the
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channel requires a route through the network to be allocated between these
two tiles. In the network graph model, this corresponds to finding a set of
paths between the two NIs of those tiles, which together provide enough
bandwidth to support the channel. In this way, finding a path through
the network and a slot allocation become a single problem. The trade-off
is, of course, that if the original network had R routers and L links, the
corresponding graph in the traditional model has R nodes and L edges, our
network graph model has T ×R nodes and T × L edges.

For the whole job, more than one route will typically be allocated through
the network. Because in every time slice a router can only route to each out-
put link a single input link, these paths are not allowed to collide, i.e. to
share edges. Finding several paths in the network graph model that do not
collide amounts to solving the Directed Edge-Disjoint Paths Problem, which
is NP-complete even in many restricted cases [53]. Instead of solving it di-
rectly by considering all paths at once, we can approximate a solution by
finding routes one at a time using Shortest Path. In theory, this algorithm
is capable of finding at least a fraction of Ω(1/

√
|E0|) of the routes possible,

where |E0| is the number of channels allocated in an optimal solution [51].
In practice however, it usually performs much better.

7.4 Mapping Jobs

The problem of mapping a single job to the target platform can be formu-
lated in this way:

Problem 1. Single Job Resource Allocation : Given a job digraph
G = (V,E), and a network topology digraph T = (P ∪ R,N) of processing
tiles P , router nodes R and network links N . Also given a weight b(e) > 0
for each edge in E, representing the amount of bandwidth capacity required
by channel e. The topology T is restricted by the fact that each vertex in P is
only connected to exactly one router in R (assuming |P | > 1). Besides that,
P has a valuation r : P → N6, the resource provision of p, and all n elements
of V have valuation w : V → N6, the resource usage of n, and all e elements
of E have valuation δ : E → N6, the resource savings for internal mapping
of e. Does there exist an injective mapping m of tasks V to tiles P such that
there exist edge-disjoint paths through the network (through R and N nodes)
to accommodate the edges between the tasks in the mapping, knowing that
each edge e requires b(e) paths from the tile m(src(e)) to the tile m(snk(e)),
where src(e) is the source task of e and snk(e) is the destination task of e,
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while guaranteeing that for all tiles p it holds that∑
n∈A(p)

w(n)−
∑

e=(n,v)∈E
n∈A(p),v∈A(p)

δ(e) ≤ r(p), (7.2)

where A(p) = n ∈ V : m(n) = p, is the set of tasks mapped to tile p?

This problem is NP-complete. We will proceed to show this in two
steps: 1) show that the problem is in NP, that is, a solution can be verified
in polynomial time, and 2) show that all the instances of a known NP-
hard problem are an infinite subset of the set of instances of our problem.
1) Checking whether a given mapping solves 1 can be done in polynomial
time: first, per PT, calculate the total unmodified resource consumption
by summing the resource requirements w(n) of all nodes mapped to that
PT; then, for each edge, check if its endpoints are in the same PT, and,
if so, adjust resource consumption in that PT according to δ(e); for each
PT P , check if the total resource consumption is less than r(p). This has
a complexity of O(N2). Check for each externally mapped edge whether
the route exists. This has a maximum complexity O(N) for a given fixed
number of routers and slices per router in the network. 2) Any instance
of off-line Vector Bin-Packing (VBP) can be reduced to an instance of our
problem where items become nodes, bins become PTs and the edge set is
empty. In all instances of Problem 1 where there are no edges, the sum
of δ(e) in the problem formulation becomes zero in all dimensions, and the
formulation of Problem 1 becomes equivalent to the formulation of VBP.
Therefore a positive of VBP will be a positive of Problem 1 and vice-versa.
Problem 1 is thus NP-complete.

We must also take into consideration that the solution cannot be algo-
rithmically complex, because the resource manager must run on-line. The
problem resembles the Vector Bin-Packing (VBP) problem by viewing the
PTs as bins and the tasks as items. The resources provided by the PTs and
the resources required by the tasks become the bin capacities and item sizes,
respectively. However, there are non-trivial differences between our problem
and VBP. In VBP, the items to be packed have a constant size, while in our
resource allocation problem, the resources required by the endpoints of a
channel depend on whether or not they are mapped to the same PT. This
can be disregarded, but that would over-dimension the problem. Also, VBP
does not take bandwidth usage into account, nor the available routes in the
network.

Our experiments in Section 7.5.1 will show that, for a 1-router system
where topology is not an issue, the low-complexity First-Fit (FF) and First-
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Fit Decreasing (FFD) algorithms give a good performance regarding the
number of PTs needed and the bandwidth usage can be optimized by clus-
tering the most heavily communicating tasks.

We then upgrade these results such that a network can be included, in
a two-steps approach. An FF-based algorithm is used to map the tasks
onto virtual tiles (VTs), which are assumed to be connected through a bus.
Virtual tiles provide the same amount of resources as a PT would. Then,
each of these VTs is mapped to a real PT, and routes through the network
are allocated using shortest path.

We will describe some techniques that we combine in our proposed so-
lution. First, we discuss the different techniques employed for clustering
tasks. Next, we argue why it is advantageous to shuffle the input of the
FF algorithm. In Section 7.4.3, the different placement algorithms for the
virtual tiles are discussed. Finally, we show how to map the VTs onto the
PTs in Section 7.4.4.

7.4.1 Clustering Strategies

Clustering can be applied before and during packing. If applied before, a set
of tasks is replaced by a single larger task, thus forcing the set to be placed
on the same PT. We will use a greedy heuristic, which orders the channels
in order of decreasing bandwidth requirements, and replaces each pair of
endpoints by a single large task if the resulting task fits on an empty PT.
This is repeated until a predefined percentage of the number of channels in
the job is contracted, or until no more channels can be contracted. This can
lead to an increased number of required PTs if the clustering is done too
aggressively.

If clustering is applied during packing, it works together with the packing
heuristic: when the packing heuristic packs a task to a PT, it will then try to
pack adjacent tasks to the same PT before trying to pack other tasks. This
modified First-Fit packing algorithm will be called First-Fit with Clustering
(FFC). Our experiments 7.5.1 show that FFC performs significantly better
than other FF variants for virtual tile placement.

7.4.2 Shuffled Input

Both FFC and the pre-clustering strategy behave in a deterministic man-
ner and without backtracking. This gives these algorithms a single shot at
finding an acceptable solution. To incorporate backtracking is non-trivial.
The problem it has to solve is NP-complete, so a solution which uses full
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backtracking can take an exponential amount of time. Instead of backtrack-
ing, we use randomization to generate multiple distinct solution candidates.
The First-Fit algorithm considers and places the tasks one at a time, which
allows a randomization of the input to yield different mappings. An unsuc-
cessful mapping of the tasks onto a set of bins using one ordering of the
tasks can thus occasionally be corrected by considering a different ordering
of the tasks. If the First-Fit algorithm clusters during packing, it still just
starts to map the ’next’ task when it has filled a PT, which keeps it sensitive
to the original ordering of the items.

7.4.3 Virtual Tile Placement

The First-Fit packing algorithm packs tasks into the PTs, but considers
empty PTs to be equal and uses them in the order they are presented.
However, due to the presence of the network and the bottlenecks that can
be formed between two PTs, it is not efficient to use just any subset of the
empty PTs. It is favorable to map both endpoints of a channel as close
to each other as possible. If they do not fit on the same PT, they should
preferably be placed on PTs close to each other, for instance on two PTs
connected to the same router.

We want to accomplish this by employing a two-step system using virtual
tiles (VTs). The packing algorithm maps tasks to a VT, as if the VTs are
interconnected through a bus. Then, each VT is assigned to a real PT by in
the second step, and routes through the network are allocated. We compare
three methods to do this assignment:

On-line placement: as soon as the packing algorithm needs a new,
empty tile, a PT is selected. Because it is unknown which tasks are going
to be assigned to this new PT, there is little information for which PT to
select. As a heuristic, to minimize the usage of network resources, the PT
closest to those already used is chosen, using the sum of distances to the
already used PTs as the distance metric.

Semi on-line placement: the packing algorithm is capable of filling
the VTs one by one. Once filled, the content of a VT does not change, so
the VTs can be mapped to PTs immediately. This allows a full VT to be
placed near those PTs which contain tasks connected to those in it. The
number of links required in the network to allocate the channels to that VT
is used as the metric for distance.

Off-line placement: All tasks are packed into a set of VTs first. This
set of VTs is then mapped to the PTs, minimizing the number of links used.

The described placement methods assume an empty system. If the sys-
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tem is not empty, it is preferable to fill up partially filled PTs first to avoid
fragmentation of free space. To adjust all algorithms to be able to cope with
a non-empty system, the placement methods let the packing algorithm fill
up the partially used tiles first. Thus, the location and space limitations for
the VTs representing these locations are known beforehand.

7.4.4 Bisection According to Kernighan-Lin

The off-line placement algorithm maps the VTs to PTs such that the number
of links used is minimized. As will be shown, this problem contains NP-
complete sub-problems, so a heuristic is needed. For our purposes, the
network consists typically of 4 to 12 routers, with each of which is attached
to several PTs. The heuristic we use tries to map the VTs to PTs such that
most of the required links will be mapped over a single router. To accomplish
this, the placement algorithm selects a router and counts the number of
empty PTs around it. The algorithm then selects the same number of VTs,
minimizing on the bandwidth required between the selected and not selected
VTs. These selected VTs are then mapped to the empty PTs. Once such
a cut is found and the selected VTs are mapped to PTs, a new router is
selected. For example, take Figure 7.5, which shows a router surrounded by
empty PTs as well as a set of unmapped VTs to map. Because the router is
connected to three PTs, three VTs are cut off. A cut is made such that the
number of links to the rest is minimized. These VTs (a, b and c) are then
mapped on the PTs around R in any order. This process is repeated until
the placement algorithm runs out of VTs (or empty PTs, in which case the
algorithm fails to find a valid placement). The order in which the routers
are selected is predefined; we acknowledge this as a point of future research.

Figure 7.5: A router connected to three PTs (left) and four VTs connected
by channels (right).

The off-line placement algorithm is thus required to find a subset of VTs
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of fixed size, with a minimal cut to the rest of the VTs. This problem
contains the Minimal Bisection problem, which asks to divide a graph into
two equal pieces with a minimal cut and which is NP-complete [21]. In our
case, two partitions of unequal size are needed, say of sizes a and |V |−a > a.
To accommodate this, we add a clique of size |V | − 2a to the graph. The
vertices of this clique are not connected to any vertex outside the clique, and
the edges of the clique have an infinite weight. When Minimal Bisection is
applied, this clique will end up in one of the partitions, together with other
vertices. Any other solution yields a cut of infinite weight. The rest of the
vertices will thus form a a : |V | − a split.

A well-known heuristic for Minimal Bisection is the algorithm designed
by Kernighan and Lin (KL) [50]. It starts with any bisection and iteratively
improves on it as follows:

1. Create any bisection of V into P1 and P2 with |P1| = |P2|.

2. Set all vertices to ‘unlocked’.

3. Let S be a list of pairs of tasks, and let G be a list of integers. Set S
and G equal to the empty list.

4. For every pair of unlocked vertices a ∈ P1, b ∈ P2, calculate Dab, which
is the reduction of the weights of the edges in the cut, were a and b to
be swapped.

5. Find a pair a ∈ P1, b ∈ P2, for which Dab is maximal. Append (a, b)
to S. Append Dab to G. Swap and lock a and b. The value

∑|S|−1
i=0 Gi

now denotes the decrease in cutsize so far.

6. Repeat the previous two steps until all vertices are locked.

7. Find n := arg max0≤n6=|S|
∑n−1

i=0 Gi, which represents the moment at
which the cutsize was the lowest.

8. Swap back all pairs in S after index n.

9. Repeat steps 2 to 8 while there is an improvement (i.e. while
∑n−1

i=0 Gi >
0).

Further modification of the KL algorithm is needed to account for the fact
that we cannot swap VTs that are already mapped to PTs. To ignore these
tiles means to ignore their channels to VTs that still need to be mapped.
Rather, they can be taken into account by locking the already mapped VTs
at step 2.
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7.5 Experiments and Results

In this section we will present a set of experiments to evaluate the perfor-
mance of several combinations of the presented algorithms.

First, we will present results in the simplest case, where there is only
one router in the system, and therefore topology has not to be taken into
account, and there the virtual tile mapping corresponds to the physical tile
mapping. This case is relevant, because a single router is capable of handling
up to 8 tiles, which is more than enough for the size of current SDR systems.

After that, we will consider the case where more than one router is
necessary. We will start by comparing the performance of the simplest
variants on several network topologies. Then, the difference in performance
is measured between the on-line, semi on-line and off-line VT placement
algorithms. After that, we will evaluate the gain in performance when the
ordering of the input tasks is shuffled in order to obtain several solution
candidates. Finally, the best of these alternative algorithms is tested on a
system with a high load.

As a job set, we used synthetically generated graphs. These graphs have
at most 100 tasks, and contain a number of channels similar to the number
of tasks. We divided them in four test sets depending on task and channel
bandwidth requirements. Because of lack of space, we only show the results
for graphs containing tasks with resource requirements in the range of about
4–14% of the resources available by PT and edges require between 2 and 7%
of PT resources and bandwidth between routers. For smaller tasks and
edges, the results are better. The complete results can be found in [70].

All tests were performed against varying rates of clustering, from con-
tracting 0% to 60% of the channels. Trying to cluster more than 60% of the
channels failed in all cases.

7.5.1 Systems with one router

VBP Algorithm test

We first tested mappings of single jobs on an empty system for several low-
complexity VBP algorithms: First-fit (FF), First-Fit Decreasing (FFD),
Best-fit (BF) and Best-fit decreasing. To this we added our algorithm that
performs clustering while packing. It is a First-fit algorithm that assigns a
task to a PT, and then looks at the neighbors of that task and tries to put
them in the same PT. We refer to it as First-fit with Clustering (FFC).

The results were compared with an exact solution for VBP (which dis-
regards δ(e) resource savings) obtained by a Branch-and-Bound (BB) algo-
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rithm. The result is shown in Figure 7.6. The BF variants are not shown
for simplicity sake – the results were similar to the FF variants.

All algorithms performed similarly well in terms of PT usage, only using
at most about 5% more PTs than the BB algorithm. For this reason, we
decided that there was no need to experiment with more complex VBP
algorithms. We also discarded the BF variants, which are more complex
than the FF variants. FFC still got better results than other algorithms as
it allows for more resource savings. It turned out that our results were much
better than the theoretical worst-case performance [14] of FF and FFD of
about 553% increase on the number of bins used for 6 dimensions.

Figure 7.6: Percentage of tile utilization with respect to the total amount
of resources required as a function of the number of tasks per job.

Bandwidth and Clustering

We introduced clustering before packing to try to improve the bandwidth
usage of FF and FFD. We used a greedy clustering algorithm that orders
all edges non-decreasingly by their bandwidth requirement. For each edge,
it clusters the two endpoint tasks if the resulting cluster still fits in one PT.
Only a certain percentage of edges is allowed to be contracted into a single
cluster, allowing a trade-off between saved bandwidth and granularity of
the clusters. The Clustering Before Packing (CBP) algorithm attempts to
contract 0%-60% of the channels, in 1% increments. Sometimes it is not
possible to cluster the requested percentage, as clusters become too big to
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Figure 7.7: Effects of pre-clustering on bandwidth and tile usage.

fit in a PT. In that case, as many nodes as possible are clustered. Trying to
cluster more than 60% of the channels never succeeded.

Figure 7.7(a) and Figure 7.7(b) show the results of these experiments.
In Figure 7.7(a) we can see how much bandwidth gain we can achieve by
using CBP. FFC saves about 44% of bandwidth when CBP is not used, when
compared with FF and FFD. CBP also enhances the bandwidth saves that
FFC already provides. At the highest percentage of CBP, the bandwidth
usage of FFC and the other two algorithms becomes indistinguishable. The
reason for this is twofold. First, with the increase of the average size of
clusters it becomes more difficult for FFC to combine neighboring tasks
on the same PT. Second, the greedy algorithm of CBP can outperform
FFC since it uses global knowledge of the job, while FFC only tries to add
neighbors of tasks already mapped.

The gains in bandwidth usage provided by heavy clustering are coun-
terbalanced by a slight increase in PT usage, as depicted in Figure 7.7(a).
This is still less than a 5% increase even for maximum (60%) clustering.

Stress Test

The previous tests assumed an empty system and tried to reduce the resource
usage. We also need to know how the system fares under a heavy load, i.e.,
if the PTs have barely the amount of resources needed by the job that
presently tries to enter the system, what is the likelihood of a mapping to
be found. Also, we need to know how scattered allocation will affect the
capability of the system to use its resources. To answer these questions we
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designed a stress test that constantly forces the allocator to map jobs under
heavy load. This test works as follows.

First, we choose a job set J .For each job j ∈ J , the sum rj of the proces-
sor cycles and memory requirements of its tasks and channels is calculated.
Let t be the sum of all processor cycles and memory space still available
in the system. Vector t is updated whenever a job is started or stopped.
The system starts without any jobs running. A job j which is not already
running, is selected at random, and is requested to start iff (1 + σ)rj ≤ t,
where σ > 0 is an amount of slack. The slack parameter σ is introduced as
it is very unlikely that any bin-packing algorithm (even an optimal one) is
capable of filling up the PTs to 100%. If the inequality (1 + σ)rj ≤ t does
not hold , running jobs are stopped at random until the inequality does hold.
The resource allocator is then requested to start the job.

The resource allocator receives this job start request and tries to map
the job onto the unused resources. Its success or failure to do so is noted,
and the next job is randomly selected. This is repeated for 10,000 iterations
for several values of slack σ. During the first steps of the stress test the
selected jobs will gradually fill up the system. After a while, the resource
allocator will be trying to map new jobs onto a heavily loaded system. We
can then measure the number of successful mappings.

We have chosen several test job-sets. For each of these, we ran the stress
test for 10,000 iterations. The results shown are for the FFC algorithm,
which provided the best results in the previous tests. The plot in Figure
7.8(a) shows, for different percentages of CBP applied, the percentage of
successes of the FFC algorithm plotted for different amounts of allowed
slack. There are several things worth noting here. The first is that, if no
CBP is used, less than 10% of slack is enough to virtually eliminate all
mapping failures. The second is that CBP does not seem to work very well.
A case analysis showed that the reason for this is that CBP creates clusters
that cannot be combined well on half-filled tiles, thus leaving large gaps
which the similarly large clusters of the new jobs cannot fill. In the previous
experiments, with an empty system, this problem could not be seen. A
third observation is that the graph occasionally spikes downwards with the
increase of slack. Case analysis showed this is due to the stress test getting
stuck in a local minimum, and a row of jobs fails to be mapped. This effect is
magnified at high CBP percentages, where fragmented mappings pose more
of a problem.

We decided to try to fix these problems by resorting to a fall-back mech-
anism: if the RA cannot map the clustered version of the job, it tries to map
the original, unclustered version. The results can be seen in Figure 7.8(b).
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(a) (b)

Figure 7.8: Mapping successes versus slack a) without fall-back and b) with
fall-back.

With this modification, CBP does not affect negatively the performance
anymore and can even improve it slightly. Clustering optimizes bandwidth
usage, not PT usage. To see if CBP is useful, the bandwidth requirements
of all jobs were scaled up and a slack of 10% was allowed. The results are
shown in Figure 7.9. CBP does help in decreasing bus usage. With a factor
of 3 increase in the bandwidth requirements, a clustering of 60% still allows
for a success rate of 60%. Without any clustering, the success rate has gone
down to almost 0%.

Figure 7.9: Mapping successes with increased bandwidth requirements.
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Discussion of Results

For a 1-router system, the FF family of VBP algorithms provided a simple
yet effective base for an allocation heuristic. The best solution is a two-
step approach: first, apply CBP and try FFC; second, if this fails, apply
FFC with the original graph. This combined solution is capable of utilizing
at least 95% of the available PT resources, if the bus bandwidth does not
become a very scarce resource.

7.5.2 Systems with more than one router

For systems with more than one router, we tested several topologies, shown
in Table 7.1. These topologies will be compared first. In a ring topology,
routers are connected to neighboring routers in a one-dimensional grid. In a
mesh topology, routers are connected to north, south, east, west neighboring
tasks in a two-dimensional grid.

Topology Size Links/router Tiles Routers Links
ring-3 3 10 24 3 54
ring-4 4 8 24 4 56
ring-6 6 6 24 6 60
ring-12 12 4 24 12 72
mesh-6 2 by 3 6 22 6 58

Table 7.1: The topologies considered.

Effects of Topology

For each of the topologies of Table 7.1, the FFC algorithm was chosen to try
to map an instance of 100 tasks onto an empty system. We used the on-line
virtual placement method. This was tried for 100 instances, each mapped
onto an empty system. The percentage of jobs that could successfully be
mapped is shown against the clustering percentage in Figure 7.10.

We observe several facts from this figure. First, clustering is necessary
to be able to map any of the tested jobs onto any of the tested topologies.
Secondly, the larger rings (ring-6 and ring-12) give bad performance (50%
success rate or lower), while the performance for the other topologies is
similar (up to 70% success rate). This could be due to the fact that in ring-
3, ring-4 and mesh-6, the average distance between two PTs is low. Hence,
less congestion is likely to occur, which would hinder a successful mapping.
What would be the optimal topology heavily depends on the cost function.
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Figure 7.10: Successes per topology.

In our case, routers contain an all-to-all interconnection grid, thus having
a cost quadratic in the number of links they are connected to. Each link
and router also bears costs, further complicating judgment. For the rest of
this chapter, we chose the ring-4 topology as a trade-off between number of
routers and the number of links of each router, balancing the costs.

The rest of the tests will focus on the ring-4 topology.

Virtual Tile Placement

The best performance observed in all topologies was only a 70% success rate
for finding a mapping for a large job on an empty system. This percentage
increases if a different form of VT placement is used. In Figure 7.11, the
success rate is shown for the same job set on a ring-4 topology, using different
VT placement methods.

The difference between the on-line and semi on-line placement methods
is marginal. This can be explained by the little knowledge available and
used by both algorithms when asked to place a VT. The on-line algorithm
has no knowledge of the contents of the tile, so has little information to per-
form optimizations, other than choosing a location close to the tiles already
mapped. The semi on-line algorithm knows which tasks are mapped to the
VT it has to place, but does not know the location of all the tasks which
have channels to it. As can be seen in Figure 7.11, this extra knowledge
does not increase the performance significantly.

The off-line VT placement algorithm does prove to be a substantial im-
provement over the on-line one. The success percentage is raised across
all clustering percentages, reaching 90%. Even though the performance is
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Figure 7.11: The percentage of
successful mappings as a function
of the clustering percentage for
different placement algorithms.
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Figure 7.12: The percentage of
links used as a function of the clus-
tering percentage, relative to the
on-line algorithm.

better, clustering is still required to reach the higher chances of success.
The difference in placement algorithms is not only visible in the per-

centage of successful mappings, but also in the number of links used by
successfully mapped jobs. The percentage of links used in the network, rel-
ative to the number of links the basic on-line placement algorithm uses, is
shown in Figure 7.12. The spikes at low clustering percentages occur be-
cause there are relatively few successful mappings over which the average
is taken. Again, the on-line and semi on-line algorithm differ little in link
usage. The off-line algorithm attains a profit of 15% in the number of links
used, which is decent considering many routes that are optimized will be re-
duced from length 3 (PT–router–router–PT) to length 2 (PT–router–PT),
for which only a gain of 33% in length is possible. This directly implies
profit in terms of power consumption and amount of free resources left for
other jobs.

Using Shuffled Input

Another way to increase the chances of success is by trying to map several
random permutations on the ordering of the tasks to map. This results in a
favorable increase as is shown in Figure 7.13. The figure shows the percent-
age of successes when 1 to 4 random permutations are tried, increasing the
success rate up to over 95% when 4 permutations are tried.
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Figure 7.13: The percentage of successful mappings as a function of the
clustering percentage. Each line represents a certain number of randomized
attempts.

Stress Test

The previous tests assumed an initially empty system. However, our solution
should behave well under heavy load, i.e., if there are barely enough resources
available in the system when there is a request to start a job.

We tested the performance under heavy load by taking the ring-4 topol-
ogy and performing the stress test, as for the 1-router case.

The result of this test is shown for several clustering percentages in
Figure 7.14. At σ = 0, there is no slack, implying the resource allocator has
to be capable of starting a job no matter how much the available resources
are scattered. This is not always possible, so we cannot expect the resource
allocator to always succeed. As more slack is added, the resource allocator
has more redundant free resources it can use, increasing the success rate
dramatically. With only 5% slack, all requested jobs could be started if no
clustering is used.

Another observation in relation to Figure 7.14 is that, as in the single
router case, clustering actually has a negative impact on performance. The
reason for this is that if clustering is applied, larger tasks are created that
require larger portions of free space on a PT. This requires the available
resources to be concentrated on fewer tiles, something that is less likely
to happen. Because clustering reduces bandwidth usage (and thus power
usage) as well as increases the feasibility of mapping bigger jobs, we did not
want to discard it. Instead, we use the same fall-back mechanism as in the
single router case, in which first the job is clustered and an attempt is made
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Figure 7.14: The percentage of
successful mappings as a function
of the slack σ. Each line repre-
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Figure 7.15: The percentage of
successful mappings as a function
of the slack σ when a fall back
to an unclustered version is used.
Each line represents a certain clus-
tering percentage.

to map it. If this fails, we re-try to map the job without pre-clustering.
Any remaining attempts with shuffled input are done with the unclustered
version. Again, this allows us to profit from the positive effects of clustering
when possible, while being able to also profit from the higher success rate
of trying to map fine-grained, unclustered versions of the jobs. The results
of applying the fall-back mechanism are shown in Figure 7.15.

Note the slack factor introduced only stretches the computing cycles and
memory requirements. It is assumed bandwidth is not a scarce resource. If
it is, clustering does help to reduce the bandwidth usage, but cannot prevent
the allocator from starting to fail.

The results shown are for large tasks and heavy edges. The results for
lighter versions of either or both can be found in [70]. All algorithms perform
better when the tasks or edges are smaller, due to a finer granularity. The
finer the granularity of the tasks, the easier it is to find allocations for them
in the PT.

7.6 Conclusions

In this chapter, we have proposed a set of heuristics to map real-time stream-
ing jobs onto a homogeneous multiprocessor system containing a network
with up to 12 Æthereal routers. We proposed a model that represents hard-
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ware constraints, and the resource requirements of jobs. Within this model,
it is possible to reason about temporal guarantees, which allows us to map
jobs onto the system such that temporal constraints are met.

We showed how to model the Network-on-Chip in such a way that time-
multiplexing can be taken into account by representing each router as a
number of communication nodes, one per time slice. The problem of finding
a path through the network is then merged with the problem of finding a
valid slot allocation table per router. The joint problem can be seen as a
disjoint paths problem.

In order to map a job, its tasks and channels are packed onto the tiles
using a First-Fit strategy, after which routes through the network are allo-
cated. We showed it is beneficial to use a two-step approach. First, we map
the tasks onto virtual tiles (VTs), and then we map the VTs onto the ac-
tual tiles. This raised the chance of finding a feasible mapping, and reduced
bandwidth usage.

We also showed that chances of finding a feasible mapping can be further
increased by trying several random permutations on the ordering of the
input.

Our stress test shows how our resource manager performs under heavy
loads. One interesting remark is that although clustering is essential to map
some jobs, and greatly decreases bandwidth usage, it has an adverse effect
on allocation success once the system is close to full. Because of this, we
devised a mechanism by which two versions of the job are tried out in the
mapping: first a clustered version, and, if this fails, an unclustered version.
This allowed for a substantial increase in the percentage of successes during
the stress test.

When operating under heavy load, the described approach seems to be
capable of allocating 95% of the resources available on the processing tiles,
assuming that bandwidth does not become a scarce resource.



Chapter 8

Demonstrator

The demonstrator prototype presented in this chapter was part of a larger
demonstrator built by Nokia, NXP and ST-Ericsson, where our baseband
software framework is integrated with the Radio Computer functional ar-
chitecture proposed in [1]. It shows how the concepts we proposed can be
worked out into an execution platform, even when the hardware was not
designed to meet some of the requirements of our software framework. It
also shows how the custom components of our software framework can be
implemented while re-using a substantial amount of existing software.

As for the hardware, it uses an NXP prototype board for single-radio,
integrating 2 EVPs, 3 ARMs, and hardware accelerators. All processors
run at low clock frequencies: the EVPs at 183 MHz and the ARMs at
61MHz. Each core has private data and instruction memories, and no cache
or memory management unit. Connectivity is provided by a tree of AXI
busses. Worst-case memory access latencies can be computed, since the AXI
slave-side arbiters are Round-Robin. DMAs are not used, since bursts cause
large worst-case access times through the arbiters. The Resource Manager
in this implementation supports at most 5 transceiver types and 5 jobs, a
number that was decided as a result of use-case analysis.

8.1 Streaming Framework: Sea-of-DSPs

In our demonstrator, Sea-of-DSPs (SoD) is a low-level multi-processor stream-
ing OS that was developed initial at Philips and later at NXP Semicon-
ductors. SoD was developed as a lightweight streaming framework for a
multi-DSP chip.

SoD provides runtime support for the following features:

199



200 CHAPTER 8. DEMONSTRATOR

• Streaming Kernels: dynamic single-core schedulers on which tasks
can be started and stopped; the default SoD scheduling policy is non-
preemptive, round-robin;

• Streaming API: FIFO communication primitives;

• Network Manager API: can create, delete, resume and suspend
tasks in any of the Streaming Kernels; and it can create or delete
FIFOs to connect tasks.

SoD is designed to function with minimal demands on memory footprint
and cycle budget.

Internal memory management is done by reserving, at compile time,
configurable memory pools for each object type. This results in predictable
behavior and no fragmentation. SoD has been ported to several processors:
ARM, TriMedia, EVP (VD32040), EPICS7B, Tensilica Vectra LX DSP,
HiFi 2. It can run in emulation mode on Windows and Linux. It has a low
memory footprint: the Network Manager is less than 10 KByte of ARM7
thumb code and the SoD SK (Streaming Kernel) code is less than 1 KByte.

The streaming API of SoD relies on shared memory access between com-
municating cores. SoD allows FIFO buffers to be placed either at consumer
or producer side. It also supports the usage of duplicated FIFO administra-
tion at consumer and producer side, to avoid remote read operations.

An embedded hardware platform typically has its memory scattered
across the system. Each core has local data and instruction memories, and
shared system memories are also available. SoD offers several choices for
the location of the FIFO data and the FIFO administration. Dependent on
the latency of reads and writes to each of the memories, the most optimal
partitioning can be chosen when configuring SoD for a particular hardware
platform. For example: in the case of a task on the ARM communicating to
a task on an EVP, it is optimal to store the FIFO buffer and administration
in EVP local data memory. This because of the very high latency the EVP
has in writing to external/remote memories. In the case where two DSPs
have to communicate, each DSP can read and write the local memories of
the other DSP but remote reads will cause a much higher latency than the
write cycles (posted writes). Thus the FIFO buffer is placed in the local
memory of the reading task.

SoD also minimizes latency/stall cycles caused by remote reads by em-
ploying duplicated FIFO administration. If it is configured with that option,
a copy of the FIFO administration table is placed at the local memory of
both consumer core and producer core. Using this scheme, no remote reads
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are required, since consumer and producer tasks simply check the state of
the FIFO by reading their local copies. Of course than upon any change to
the administration of the FIFO requires both producer and consumer to up-
date the local copy and the remote copy, but this only requires single-word
remote writes, which have a considerably lower latency than remote reads.

8.2 Resource Manager Implementation

The Base-band Resource Manager (BB-RM) uses the services provided by
the SoD Network Manager API. SoD already manages some resources. It
allocates memory for FIFO capacities, and creates tasks and FIFOs. It does
not handle jobs as groups of interconnected tasks that must be admitted
or rejected atomically. It merely finds and reserves resources for a single
task/channel at a time. It is not aware of timing requirements and does
not perform scheduling tests. It does not chose task to processor mappings.
BB-RM must take care of all these tasks.

BB-RM enforces strict admission control and resource reservation. When
requested by Central Resource Manager (see diagram in Figure 2.2 of Chap-
ter 2) to start a transceiver, it performs admission check, trying to find a
feasible processor assignment for all tasks of the transceiver.

As described in Chapter 7, the resource requirements of a transceiver
are represented by a graph. Nodes represent the two types of resource con-
suming entities: tasks (quasi-statically ordered clusters of MCDF actors)
and channels (inter-cluster MCDF FIFOs). Each node has a requirements
vector. The vector fields are different from the model presented in Chap-
ter 7, as the communication infrastructure does not contain communication
assists or a network-on-chip. For a task mapped to a TDM scheduler, the
vector fields are: processor type, period, slice size, code memory read-write
memory, and read-only memory. For NPNBRR schedulers, slice size is re-
placed by worst-case execution time. Admission control checks if the sum
of execution times/slices of tasks assigned to the core plus the execution
time/slice of the new task is lower than the deadlines of all tasks involved.
For channels, the vector fields include buffer memory on the consumer and
producer side. The representation of resource requirements by a vector of
scalar fields is flexible and easy to port to different hardware platforms.

Processor assignment uses the adapted first-fit vector bin-packing algo-
rithm described in Chapter 7 to fit the resource requirements of nodes to
the resource provision vectors of processors. The algorithm assumes that
memory is not fragmented. After deriving a processor assignment, BB-RM
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invokes a memory allocation procedure per segment. If memory allocation
is successful, all tasks and FIFOs are instantiated. If instantiation succeeds,
the transceiver is admitted. If not, BB-RM rolls back all reservations and
informs CRM of an in-feasibility. When CRM requests a job to stop, all its
tasks are destroyed, and resources freed.

Since transceivers are compiled independently and processor assignment
is done at admission control, BB-RM supports dynamic loading with dy-
namic linking to the Streaming API. The code in the transceiver configura-
tion is compiled with relocation information that BB-RM uses to link and
load the code at the addresses given by memory allocation.

BB-RM invokes a loader for each task. It provides it as input the start
address and size of each allocated memory segment. The loader requests an
object file from the Configuration Manager for each task. This file is parsed,
and the values for symbols left unresolved at compile time are now filled in.
Code and read-only data are written into the memory of the processor to
which they were mapped. Symbols of newly loaded modules are added to
the internal symbol table of the framework so that they can be found by
modules loaded later.

8.3 Prototype Figures

In this section we evaluate the costs and overheads of our approach as evi-
denced by the demonstrator.

8.3.1 Memory

The data memory of BB-RM dominates the footprint, requiring 49.8KB. Of
this, 28.6 KB are spent in transceiver configuration. This requires two-fifths
of the memory of an ARM (128KB). However, there is plenty of room for
optimization. We set the number of components per transceiver to 50, to be
able to store complete unclustered transceivers. This was needed for testing,
but oversized: for the WLAN receiver, there are only 3 components after
clustering.

Memory allocation also consumes considerable space, at 13 KB. This
is because of the fine granularity (32bits) at which blocks of memory are
allocated. The SoD Network manager consumes a total of 25.6KB of data
memory, for its own configuration information. The Streaming Kernel re-
quires 8.6 KB, both on EVP and ARM. For instruction memory, BB-RM
requires 24.5KB, and the Streaming Kernels require 1.6KB.
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8.3.2 Performance of BB-RM

For a job containing 16 tasks and 22 FIFOs, the admission time is 201 ms,
where 196 ms are taken by memory allocation. Processor allocation takes
negligible time (less than 5 ms). According to the specification, a new job
should take less than one second to start, so these values are acceptable.
If a need would arise for BB-RM to execute faster, the main area for op-
timization is of course the memory allocation. As already mentioned, the
current granularity of memory allocation is in blocks of 1 word, using a Best-
fit algorithm, that must scan all “holes” in the memory of a processor to
find the best allocation. This guarantees minimal memory fragmentation,
but makes the process of memory allocation very slow. Memory allocation
could be made a lot faster by choosing a coarser granularity of memory block
allocation.

8.3.3 Scheduling Overhead

The scheduling overhead of the Streaming Kernel per task, for the EVP is
99 ns at 183 MHz. When a task is activated, it checks for input data and
output space. A check for data/space takes 135 ns, and an update of a
FIFO management table takes 141 ns. The total synchronization overhead
of a task that reads one FIFO and writes one FIFO is 135× 2 + 141× 2 +
99 = 651ns. Table 8.1 depicts the synchronization overhead of one task
with respect to the schedule period for relevant wireless standards ( since
TDS-CDMAhas non-uniform symbol length, we took the duration of the
midamble - the shortest symbol - as the schedule period).

The overhead is negligible for broadcast and connectivity standards. For
WLAN, an OFDM symbol arrives every 4 µs, and the overhead is 16.3% of
the total schedule period. This overhead however, will decrease for higher
processor clock frequencies, since the cycle count of the streaming kernel
functions and the schedule period remain the same. It is also of note that
we made a very straightforward port of the Streaming Kernel to the EVP,
without using any EVP intrinsics, for instance, when dealing with compu-
tation of memory addresses to access the circular FIFO buffers.

8.3.4 Multi-radio Operation

The prototype can only employ NPNBRR schedulers on the EVPs since
its version of the core has no interrupt support. Consequently, only ra-
dios working at about the same time granularity can share resources, e.g.
2×DVB-T or 2×WLAN. The DF Scheduler computed resource budgets that
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Standard Schedule Period Task Overhead (%)
WLAN 802.11a 4µs 16.3%

LTE 71.4µs 0.32%
TD-SCDMA 112.5µs 0.58%

UMTS 133µs 0.49%
DVB-T/SH 935µs 0.07%

Table 8.1: Synchronization overhead per task.

accommodate these use cases using 2 ARM clusters and 1 EVP cluster. In
the WLAN we scaled the execution times by 2, due to the low processor
clock speeds on the prototype board. Using an interrupt-enabled EVP, a
TDM scheduler with a 4µs period allows DVB-T and WLAN to run to-
gether. This would cost a 13.7% context switching overhead, which is not
insignificant, but affordable for HRT multi-radio. The 2×WLAN use-case
can only be mapped with NPRR schedulers when clustering is applied. In
fact, clustering is essential for demanding standards such as WLAN, dramat-
ically reducing synchronization overhead. For WLAN, without clustering,
each actor adds at least the 16.3% overhead shown in Table 8.1 to the total
resource expenditure, making mapping of two WLAN jobs sharing resources
impossible. With clustering, such overhead is only incurred once per clus-
ter, and the mapping of two WLAN becomes possible. Table 8.1 also shows
that for standards other than WLAN the synchronization overhead is much
more acceptable. Again, notice that these task synchronization overheads
were obtained by simply compiling the SoD API C code on EVP, with no
platform-specific optimizations, so there may still be plenty of room for op-
timization.

8.3.5 Resource Fragmentation

We have not experienced resource fragmentation after multiple start/stop
requests. Our demonstrator supports few simultaneous transceivers and in-
stances (4 of each). Since WLAN cannot share processors with slower radios,
such as DVB-T or TD-SCDMA, due to the lack of preemptive schedulers in
the demonstrator, there is a natural limitation to the mappings: WLANs can
only be mapped to empty processors or to processors where other WLANs
are already running. When a WLAN is stopped, it frees the exact space
that a new WLAN instance will require.



8.4. CONCLUSION 205

8.4 Conclusion

The demonstrator shows how the concepts of our software framework can be
put to practice, even on a platform that was originally designed as a demon-
strator for single-radio operation. It also allows us to measure the memory
and performance overhead that each one of our run-time components add
to a modem platform. For our implementation, these overheads turned out
to still allow for two WLAN receivers to run simultaneously for a processor
with 2x the clock frequency of the EVPs in the prototype board – which
were chosen to allow the execution of one single WLAN –, although with a
high scheduling overhead of 16% of the WLAN period per task. Weighing in
the fact that WLAN is a standard with a much faster rate of operation than
most other radio standards – in fact, for popular connectivity stadards this
overhead is well bellow 1% of the cycle budget – and that the implemen-
tation of the inter-task communication primitives was done by re-compiling
off-the-shelf C code, it is safe to state that the communication overhead of
a more realistic implementation for a less demanding standard should be
negligeable.
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Chapter 9

Conclusions and Further
Work

We live in a planet overflown with information, where billions of wirelessly
connected devices constantly send and receive data. Wireless connectivity
is enabled through several different radio standards. Devices need to handle
this diversity, and, at times, must support several standards simultaneously.

The baseband layer of a wireless communication standard is often imple-
mented on a heterogeneous multiprocessor platform. Each wireless standard
has its own strict temporal requirements. In systems that support a single
standard at a time, the problem of mapping the application to the hardware
with guaranteed temporal behavior is complex, but known to be manageable
from an engineering perspective. This is typically done by doing scheduling
manually, or with little tool support and exhaustively verifying all possible
use cases.

However, in an environment where multiple transceivers may be active si-
multaneously, the problem becomes considerably more complex, as resource
contention among transceivers may lead to unpredictable temporal behavior.

A solution to this problem is to assign fully separated resources to each
transceiver. Such a solution is simple and clean, but neglects the fact that
sharing resources can lead to reduced costs in chip area, and cost is still a
major driving factor in high volumes electronics.

In this thesis we studied how to share hardware resources between trans-
ceivers executing simultaneously, while still being capable of giving hard
real-time guarantees to each transceiver.

As a result, we proposed the first software framework that is capable
of handling multi-radio execution with real-time guarantees, if used in con-
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junction with a predictable hardware platform. We proposed an automated
programming flow and a multiprocessor runtime for resource management,
scheduling and inter-task communication. We have shown the feasibility of
such software framework, and we provided solutions for some main chal-
lenges that we identified in building such a framework.

Our departing point was the observation that the main sources of unpre-
dictable timing behavior are the functionality of the application itself and
the runtime resource management policies of the execution platform.

For the runtime, we proposed FIFO-based communication and synchro-
nization, local budget schedulers per processor, and a global resource reser-
vation mechanism, to effectively isolate the worst-case temporal behavior of
each transceiver from the behavior of other running transceivers.

As a basis for a strict model of computation with strong analytical prop-
erties and fitting expressivity, we picked data flow: its static variants have
very strong analytical properties, and since it is a concurrent, asynchronous
model of computation, it lends itself well to distributed implementations.

We devised how the whole software framework and a runtime environ-
ment based on these concepts should work. This was presented in Chapter
2. The usage of a high-level language customized to describe data flow guar-
antees correctness by construction and enables automatic model extraction
and automatic code generation, which renders a more reliable tool chain,
makes the source code more portable by allowing automatic generation of
platform-specific API calls, and dramatically simplifies the job of the imple-
menter.

We also identified a number of limitations of the state of the art re-
garding the analytical properties of data flow, its expressivity, and mapping
techniques. We went on to figure out how some of these limitations could
be overcome for wireless applications.

In Chapter 4, we studied latency and throughput analysis of data flow.
Previous work on Multi-Rate Data Flow only allowed guarantees on a self-
timed data flow execution for a minimum guaranteed throughput – averaged
over a number of iterations dependent on the specific graph – and only after
the graph had settled onto periodic behavior. We have shown that if the
external source has a behavior that is upper-bounded by a periodic regime,
we can guarantee a strictly periodic behavior for any actor in the graph,
independently of any timing variations due to start-up behavior or variable
(but bounded) execution times of other actors in the graph. We developed
analysis techniques that allow us to verify maximum bounds on latency
– and therefore provide maximum latency guarantees - for the self-timed
execution of a multi-rate data flow graph, assuming either a periodic source,
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a bursty source or a sporadic source.
In Chapter 5, we proposed a scheduling strategy and an automated

scheduling flow that enable the simultaneous execution of multiple hard-
real-time data flow jobs. Each job has its own execution rate and starts
and stops independently from other jobs, at instants unknown at compile-
time, on a multiprocessor system-on-chip. We have shown how such jobs, if
described by a Multi-Rate Data Flow graph, can be automatically mapped
onto a multi-processor system.

Our mapping strategy differentiates between intra-job scheduling and
inter-job scheduling. Intra-job scheduling is handled at compile-time, through
the generation of clusters of statically-ordered actors, and the computation
of buffer sizes for arcs between actors. Inter-job scheduling is solved at run-
time by using schedulers such as either Time-Division Multiplex (TDM)
or Non-Preemptive Non-Blocking Round Robin (NPNBRR), depending on
whether the processor supports preemption or not. At compile time, we
compute settings for the runtime schedulers per job.

We showed how a combination of TDM or NPNBRR and static-order
scheduling can be modeled as additional nodes and edges on top of the
data flow representation of the job using Single-Rate Data flow semantics,
to enable tight worst-case temporal analysis. Based on this analysis model,
we proposed algorithms to find combined TDM/NPNBRR and static order
schedules for jobs that guarantee a requested minimum throughput and
maximum latency, while minimizing the usage of processing resources. We
illustrated the usage of these techniques for a combination of Wireless LAN
and TDS-CDMA radio jobs running on a prototype Software-Defined Radio
platform.

One of the main limitations of data flow for our application domain is
that radios do have some data dependent behavior which cannot be rep-
resented by the static variants of data flow (single-rate, multi-rate and
cyclo-static) that allow temporal analysis. Because of this, we proposed
in Chapter 6 an extension of static data flow that allows a limited amount
of data dependent behavior, while preserving most of the temporal prop-
erties. We named it Mode-Controlled Data Flow (MCDF). We proposed
timing analysis techniques that allow us to reason both in terms of mini-
mum sustainable throughput and maximum latency for MCDF graphs, and
mapping techniques that allows us to compute budgets for MCDF graphs,
by extending the techniques we proposed for MRDF graphs. We also showed
how a WLAN 11a receiver can be modeled in MCDF, and mapped onto a
virtual platform.

Given the budgets computed by our compile-time tools, we need to al-
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locate and reserve resources across the multiprocessor to meet the budget
requirements of a transceiver, whenever the transceiver is required to exe-
cute. In Chapter 7, we proposed algorithms to solve this runtime mapping
problem, including allocation of network resources in hardware architectures
where a Network-On-Chip is used for inter-processor communication.

To bring all components of our solution together, we implemented our
mapping tools and our runtime software to target a prototype chip for base-
band processing. This experiment, described in Chapter 8, allowed us to
show that our intended software framework could be built from a combi-
nation of standard runtime OSes, existing compilation tools, and our own
custom software, in a modular manner. We showed that our run-time could
run on a pre-existing hardware platform, and that the temporal runtime
overhead that our scheduling policies required was acceptable from the per-
spective of the application requirements, even for an unoptimized, prototype
implementation such as ours.

In summary, we have shown that an approach based on resource bud-
geting combined with a strict data flow computation model can very well be
the way to go for developing multi-radio systems.

Nonetheless, the list of topics that require future work is a long one. To
refer only some of the most important ones:

• (Quasi)-Static-order scheduling and clustering algorithms: our algo-
rithm for static ordering has exponential complexity, and can, for
larger graphs, take a long time to terminate. Its adaptation to han-
dle quasi-static ordering for MCDF suffers from even larger execution
times, due to the fact that many different static orders correspond to
the same quasi-static order (this is attenuated somehow by our usage
of state hashing). The development of heuristics for static-ordering
and quasi-static ordering, potentially combined with other steps of
the mapping flow such as scheduler settings determination and buffer
sizing minimization is certainly useful, and very likely necessary, if
larger graphs are to be handled.

• MCDF Extensions: Mode-Controlled Data Flow, as presented in this
thesis, is single-rate; although some limited forms of multi-rate behav-
ior should be reasonably easy to handle with the existing techniques,
it would be interesting to study what gains in expressivity could come
from allowing, for instances, multi-rate behavior for the variable-rate
actors. Also, the imposition of having a single mode controller makes
temporal analysis much simpler, but makes it very cumbersome to
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express applications with a very complex control structure. This sug-
gests that further work is needed in supporting MCDF graphs with
multiple mode controllers, including the special case of hierarchical
control.

• MCDF buffer sizing: in our work, we only provide crude upper bounds
to the amount of buffer sizing necessary for meeting the timing require-
ments for a given MCDF graph, using pre-defined reference static-
order schedules. There is work to do on optimizing buffer sizing algo-
rithms. A promising lead here is the work on buffer sizing for Variable-
Phased Data Flow (VPDF). Since VPDF seems to be a superset of
MCDF, VPDF buffer sizing algorithms should be simple to adapt for
MCDF.

• Budget Schedulers: in our work, we used only NPNBRR and TDM
schedulers. TDM, however, provides rather poor trade-offs between
response latency and throughput – for instance, if one wants a low
latency for a task, one may need to allocate many more TDM resources
than required by the load of the task, just to reduce arbitration time.
Other schedulers, such as the Priority-based Budget Scheduler [83]
or the Credit-Controlled Static Priority arbiter [2] allow for better
resource usage. There is nothing in our flow that cannot be adapted
to work with other schedulers, as long as a conservative data flow
model can be provided for the temporal behavior of a static-order of
single-rate data flow actors running on such a scheduler – which is the
case for both PBS and CCSP.

• Resource Fragmentation: In our work on resource management, we
assumed that memory did not fragment. The reason for this is that
we assumed a resource defragmentation technique would be available,
as there was some active research on the topic at the time. To the
best of our knowledge, the problem is still largely unsolved.

• Power-aware scheduling was probably the most important aspect that
we neglected in our work. Our work concerned itself with trying to
optimize mappings for reduced resource usage. However, for portable
devices, which are powered by a small battery and cannot use the same
sort of cooling technology found in more sedentary devices, power and
energy consumption are very important, even primary, concerns. Our
work, as most of the work in data flow analysis and scheduling per-
formed in the past, did not address these concerns. It is relatively
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easy to conjecture on how our techniques could be extended to ad-
dress power and energy minimization, since we can easily model the
relations between resource utilization and temporal behavior, and tem-
poral analysis can probably be done in the same way, but finding map-
ping and resource management algorithms that try to optimize power
and energy consumption is still to be done.

All of the listed problems are of research interest, and the solutions
that we will find for them will certainly impact the adoption of data flow
techniques by modem developers. It is our opinion that very satisfactory
solutions can be found for most, if not all of them.

However, the adoption by the industry of many of the concepts we use in
our work is challenged by other factors that are more difficult to overcome.

To start, there are the customary difficulties related with the adoption
of a new technology. Most companies in the industry have mature design
processes in place, and staffs of extremely gifted, experienced and knowl-
edgeable engineers. A change to a platform design strategy centered on
budget based resource allocation and data flow based programming may be
a step too far, as it requires new skills, new processes and new tools. Even
if the current industry approach cannot really handle multi-radio require-
ments, it is likely that small incremental changes to the current approach,
however complex or inefficient, will be preferred instead of a departure to-
wards a completely new mind set. So a challenge for us is finding a path
through small steps in the direction of our proposed solution.

This brings us to another issue: the technology is not yet mature. Not
only there are still many problems to address, but, for the time being, we
cannot offer mature tooling support for data flow-based modem design.
Tools such as the ones we developed during the course of our work, and
similar ones, are not ready for the prime time. They have been designed
primarily as research vehicles by small teams of researchers, not as industrial-
strength CAD tools.

Even more challenging may be the fact that the complexity and even
feasibility of data flow modeling of hardware architecture constraints is very
dependent on the platform. For instances, fixed priority arbiters and sched-
ulers are difficult to model satisfactorily, but they are very common in exist-
ing platforms. Even if it is often true that many such architectural choices
prevent the system from being predictable, and should therefore not be used
in designing a hard-real time system, it is also often true that although a
given scheduler or arbiter has no bounded worst case in general, a bound
can still be provided under certain reasonable assumptions. A good example
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of this is again a fixed-priority scheduler – once we have a best-case charac-
terization of the activation pattern and resource usage of all higher priority
tasks, we can easily provide a tight characterization of the temporal behav-
ior of any given task. This breaks the basic principles of our approach, as it
requires knowledge of the temporal behavior of one or more jobs (including
their best case behavior) in order to characterize the worst case behavior
of another, and it does not preserve temporal monotonicity, becoming as
such vulnerable to scheduling anomalies. However, in practice, it may work
for many specific cases. It is certainly likely that during the design process
or even later, when the product is already delivered, it will fail due to, for
instance, a last minute change in the behavior of a high priority task that
was not accounted for in the temporal analysis of other tasks.

Nonetheless, the fact remains that some form of analysis is possible, in
ideal conditions, without the usage of our techniques, and this makes it
difficult to argue a priori that the system is not going to be predictable
and that it must be completely changed to accommodate for a data flow-
driven design, leaving the data flow advocate often in the role of a “prophet
of doom”, constantly warning developers against catastrophes that may or
may not occur.

Thus the bottom line is that data flow based techniques must be intro-
duced to the industry gradually. In fact, this is one of the reasons we strove
to have a modular software framework in Chapter 2. Each component of
the framework was designed such that it is useful by itself, even if the other
components are missing. For instances, our resource manager can be com-
bined with manual generation of budgets. Our data flow analysis tools can
be used to analyze a data flow model that was manually extracted from the
application description. A data flow input language, combined with a good
code generator, can provide a lot of advantages to the programmer by allow-
ing code that is platform independent to be generated, and give guarantees
that platform-specific APIs are correctly used. “Selling” the approach in
bits is one way to build an incremental path to adoption.

More important than anything is to understand the application, the
requirements and the platform; understand that real-time behavior is one
amongst many concerns of the design team, accept that sometimes we will
have to do with non-enforceable assumptions and try to make the analysis
work with as few changes as possible to the platform and design process.

In any case, and however difficult the introduction of data flow may be,
it may soon become absolutely necessary to find a new way of designing
modems. The techniques that are currently used cannot scale with the
increased complexity of the transceivers, and the increase in the number of
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transceiver combinations that must be supported. We believe our approach
finds a good compromise between simplicity, performance and robustness,
while meeting the requirements, but it still needs the maturity that only
years of actual product development can bring.
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