
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science
Microprocessors and Digital Systems Laboratory

Cross-Layer Rapid Prototyping and Synthesis of
Application-Specific and Reconfigurable

Many-accelerator Platforms

Dissertation

Dionysios Diamantopoulos

Athens, 2015

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science
Microprocessors and Digital Systems Laboratory

Cross-Layer Rapid Prototyping and Synthesis of
Application-Specific and Reconfigurable

Many-accelerator Platforms

Dissertation

of

Dionysios Diamantopoulos

Submitted to the
School of Electrical and Computer Engineering

of National Technical University of Athens
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Athens, 2015

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science
Microprocessors and Digital Systems Laboratory

Cross-Layer Rapid Prototyping and Synthesis of
Application-Specific and Reconfigurable

Many-accelerator Platforms

Advisory Committee

....................................
Dimitrios Soudris Kiamal Pekmestzi George Economakos

Assoc. Professor. N.T.U.A.. Professor N.T.U.A. Assis. Professor N.T.U.A.

Promotion Committee

....................................
Dimitrios Soudris Kiamal Pekmestzi George Economakos

Assoc. Professor N.T.U.A. Professor N.T.U.A. Assis. Professor N.T.U.A.

....................................
George Theodoridis Dionysios Reisis

Assis. Professor U. Patras Assoc. Professor N.K.U.Α.

....................................
Michael Hübner Dionisios Pnevmatikatos
Professor RUB Professor T.U.C.

vi

vii

. .

Dionysios Diamantopoulos

PhD, School of Electrical and Computer Engineering
National Technical University of Athens, Greece
Diploma, Computer Engineering & Informatics Department
Polytechnic School, University of Patras, Greece

Copyright © 2015 Dionysios Diamantopoulos

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

This dissertation was co-financed by the research programs of European Space
Agency (ESA), “SPAring Robotics Technologies For Autonomous Navigation (SPAR-
TAN)” (ESA / ESTEC ITT Refe-rence AO / 1-6512 / 10 / NL / EK), “Spartan EX-
Tension Activity” (SEXTANT) (ESA / ESTEC ITT Reference 4000103357 / 11 / NL
/ EK) and “Code Optimisation Modication Partitioning” (COMPASS) (ESA / ESTEC
ITT Reference). Also form European research programs FP7-248716 2PARMA and
FP7-215244 MOSART. Finally, part of this dissertation was partially financed from
national resources and the National Strategic Reference Framework (NSRF) 2007-
2013 for the project “Next Generation Millimeter Wave Backhaul Radio”.

Electronic version of this dissertation is available online at:
http://nestor.microlab.ntua.gr/

http://nestor.microlab.ntua.gr/

viii

Figure 1 Thesis word cloud, after lexical analysis with Detex v2.6 & IBM Word Cloud build 32.

ix

Abstract

T echnological advances of recent years laid the foundation consolidation of in-
formatisation of society, impacting on economic, political, cultural and social
dimensions. At the peak of this realization, today, more and more everyday

devices are connected to the web, giving the term ”Internet of Things”. The fu-
ture holds the full connection and interaction of IT and communications systems
to the natural world, delimiting the transition to natural cyber systems and offering
meta-services in the physical world, such as personalized medical care, autonomous
transportation, smart energy cities etc. . Outlining the necessities of this dynam-
ically evolving market, computer engineers are required to implement computing
platforms that incorporate both increased systemic complexity and also cover a
wide range of meta-characteristics, such as the cost and design time, reliability
and reuse, which are prescribed by a conflicting set of functional, technical and
construction constraints. This thesis aims to address these design challenges by
developing methodologies and hardware/software co-design tools that enable the
rapid implementation and efficient synthesis of architectural solutions, which spec-
ify operating meta-features required by the modern market. Specifically, this thesis
presents a) methodologies to accelerate the design flow for both reconfigurable
and application-specific architectures, b) coarse-grain heterogeneous architectural
templates for processing and communication acceleration and c) efficient multi-
objective synthesis techniques both at high abstraction level of programming and
physical silicon level.

Regarding to the acceleration of the design flow, the proposed methodology
employs virtual platforms in order to hide architectural details and drastically re-
duce simulation time. An extension of this framework introduces the systemic
co-simulation using reconfigurable acceleration platforms as co-emulation inter-
mediate platforms. Thus, the development cycle of a hardware/software product
is accelerated by moving from a vertical serial flow to a circular interactive loop.
Moreover the simulation capabilities are enriched with efficient detection and cor-
rection techniques of design errors, as well as control methods of performance
metrics of the system according to the desired specifications, during all phases
of the system development. In orthogonal correlation with the aforementioned
methodological framework, a new architectural template is proposed, aiming at
bridging the gap between design complexity and technological productivity using
specialized hardware accelerators in heterogeneous systems-on-chip and network-
on-chip platforms. It is presented a novel co-design methodology for the hardware
accelerators and their respective programming software, including the tasks alloca-
tion to the available resources of the system/network. The introduced framework
provides implementation techniques for the accelerators, using either conventional
programming flows with hardware description language or abstract programming
model flows, using techniques from high-level synthesis. In any case, it is pro-
vided the option of systemic measures optimization, such as the processing speed,
the throughput, the reliability, the power consumption and the design silicon area.
Finally, on addressing the increased complexity in design tools of reconfigurable
systems, there are proposed novel multi-objective optimization evolutionary algo-

x

rithms which exploit the modern multicore processors and the coarse-grain nature
of multithreaded programming environments (e.g. OpenMP) in order to reduce the
placement time, while by simultaneously grouping the applications based on their
intrinsic characteristics, the effectively explore the design space effectively.

The efficiency of the proposed architectural templates, design tools and method-
ology flows is evaluated in relation to the existing edge solutions with applications
from typical computing domains, such as digital signal processing, multimedia and
arithmetic complexity, as well as from systemic heterogeneous environments, such
as a computer vision system for autonomous robotic space navigation and many-
accelerator systems for HPC and workstations/datacenters. The results strengthen
the belief of the author, that this thesis provides competitive expertise to address
complex modern - and projected future - design challenges.

Contents

Abstract ix

List of Figures xv

List of Tables xxi

Nomenclature xxv

1 Introduction 1
1.1 Thesis Research Background. 1
1.2 Dissertation Overview . 4

1.2.1 Chapters Organization. 9
References. 11

2 Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips 15
2.1 Research Motivation for Virtual Prototyping 15
2.2 Existing approaches for system modeling with virtual plat-

forms . 18
2.2.1 Communication between Host PC and Virtual Platform . 18
2.2.2 Communication between Virtual Platform and Target

Hardware . 21
2.3 Prototyping Methodology . 22

2.3.1 HotTalk API: Host2VP and VP2HW Communication In-
frastructure . 25
2.3.1.1 Host2VP . 25
2.3.1.2 VP2HW . 26
2.3.1.3 Implementation of the HotTalk FPGA Transactor . . . 28

2.3.2 Evaluation of 3-D Embedded Systems 30
2.3.2.1 Pre-processing . 31
2.3.2.2 3-D Stack Generation 31
2.3.2.3 3-D System Prototyping 33

2.4 Experimental Results . 34
2.4.1 Evaluation of Communication Infrastructure 35
2.4.2 Evaluating the 3-D OpenRISC 38
2.4.3 Apply Plug&Chip to a Heterogeneous Embedded Sys-

tem - The SPARTAN Project. 39
2.5 Conclusion . 45
References. 45

xi

xii Contents

3 Cross-Layer Synthesis of Heterogenous Architectures 49
3.1 Thermal and Reliability Aware SDR Architectures 49

3.1.1 Introduction . 49
3.1.2 Target SDR Architecture 52
3.1.3 Motivation . 53
3.1.4 Micro-Architectural Considerations 56
3.1.5 Proposed Methodology . 58

3.1.5.1 Architecture Synthesis 59
3.1.5.2 Area Filtering . 61
3.1.5.3 Timing Filtering . 62
3.1.5.4 Thermal Filtering 63

3.1.6 Experimental Results . 65
3.1.6.1 Impact of Selective Replication on Temperature . . . 65
3.1.6.2 Impact of Temperature on Reliability 69
3.1.6.3 On designing chip multiprocessors for SDR 72

3.1.7 Conclusions . 74
3.2 Heterogenous Network-on-Chip Multimedia Architectures . . . 74

3.2.1 Introduction . 74
3.2.2 Architecture of the Proposed Interconnection Scheme . . 76

3.2.2.1 Designing 2-D and 3-D Routers 78
3.2.3 Proposed Methodology . 81
3.2.4 3-D Integration . 83

3.2.4.1 Pre-processing Step 83
3.2.4.2 3-D Stack Generation 83
3.2.4.3 3-D System Prototyping 86

3.2.5 Experimental Results . 87
3.2.6 Conclusions . 96

3.3 Space Critical Systems . 97
3.3.1 Introduction . 97
3.3.2 Architecture of SPARTAN System 98
3.3.3 Hardware/Software Co-Design Methodology. 99

3.3.3.1 Phase 1: Algorithmic analysis 99
3.3.3.2 Phase II: Platform Independent Optimizations and

Modifications . 101
3.3.3.3 Phase III: Software-Supported Profiling 102
3.3.3.4 Phase IV: HW/SW Co-Design 104
3.3.3.5 Phase V: Platform Dependent Optimizations 105

3.3.4 Experimental Results . 106
3.3.4.1 Overall profiling results 106
3.3.4.2 Data Life-Time . 106
3.3.4.3 Estimations about HW/SW Partitioning 107
3.3.4.4 Data-flow Analysis 111

3.3.5 Conclusions . 111

Contents xiii

3.4 3-D Integration for Digital Signal Processing SoC Architec-
tures . 112
3.4.1 Introduction . 112
3.4.2 Proposed Framework . 112
3.4.3 Experimental Results . 114
3.4.4 Conclusion . 117

References. 119

4 Computer-Aided Design Tools for Reconfigurable Platforms 125
4.1 Introduction . 125
4.2 Related Work . 128
4.3 The Proposed Design Framework 130

4.3.1 GENESIS Evolutionary Placement. 131
4.3.1.1 Selection . 136
4.3.1.2 Mating . 137
4.3.1.3 Crossover . 138
4.3.1.4 Mutation . 140

4.3.2 GENESIS Coarse-grain Parallelism Engine. 141
4.4 Application-Aware Tuning of GENESIS Evolutionary Placement

143
4.4.1 Application Level Clustering 145
4.4.2 Cluster Level Exploration for Optimal Configuration Ex-

traction. 147
4.5 Experimental Results . 150
4.6 Conclusion . 160
References. 161

5 Architectural Synthesis of Reconfigurable Many-Accelerator Sys-
tems 165
5.1 Architectural template and programming interface for M.A.

systems . 165
5.1.1 Introduction - Research motivation for M.A. systems . . 165
5.1.2 DMM-HLS for Many-Accelerator FPGAs 169
5.1.3 Evaluation . 175
5.1.4 Conclusions . 179

5.2 Scaling many-accelerator systems to workstations 181
5.2.1 Introduction . 181
5.2.2 HLSMapReduceFlow Architecture 183

5.2.2.1 Phoenix MapRecude Framework 183
5.2.2.2 Dataflow FPGA-based Acceleration 185
5.2.2.3 HLSMapReduceFlow Methodology for Vivado-HLS . . 189
5.2.2.4 Vivado-HLS Limitations for MapRecude 190

5.2.3 Experimental Results . 191
5.2.4 Conclusions . 194

References. 195

0
xiv Contents

6 Conclusions and Future Directions 199
6.1 Thesis Overview. 199
6.2 Future Directions. 202
References. 205

List of Publications 207

Curriculum Vitae 213

List of Figures

1 Thesis word cloud, after lexical analysis with Detex v2.6 & IBM Word
Cloud build 32. viii

1.1 Worldwide semiconductor sales 1988-2014 (in billions dollars). Source:
World Semiconductor Trade Statistics, [1]. 2

1.2 Scaling of static and dynamic power consumption of integrated cir-
cuits regarding to the technology node. Source: Mentor Graphics
2014. 3

1.3 Projections of the ITRS organization for the scaling of the maximum
operating frequency at regular chronological studies. 4

1.4 Scaling manufacturing costs per gate for different technology nodes
of integration. Source: IBS 2012 . 5

1.5 Comparison of different architectural designs approaches, with re-
spect to their energy efficiency. Source: Bob Broderson, Berkeley
Wireless group, ISSCC proceedings, Microsoft, 2011. 6

1.6 Performance growth rate of conventional technology scaling and ar-
chitecture/materials innovation for each technology node. Source:
IBM Microelectronics, Intel IC Insights, 2012. 7

1.7 Dissertation overview. 8

2.1 Cost development trends for hardware and software deployment, in
relation to technology scaling. 16

2.2 The proposed methodology for the Plug&Chip framework. 22
2.3 Communication mechanism between Host and VP. 26
2.4 Communication mechanism between VP and hardware board. 27
2.5 The communication flow established in the transactor. 28
2.6 Architecture of the employed FPGA transactor. 29
2.7 Tasks for the pre-processing step. 31
2.8 Tasks for 3-D stack generation. 32
2.9 Tasks for 3-D system prototyping. 33
2.10 Paradigm of evaluating a 3-D design with four layers: (a) model the

design with virtual layers and TSV networks and (b) design after
successfully routing. 34

2.11 Gain in term of wall-clock time for: (a) the proposed Host2VP library
and (b) the proposed VP2HW library, as compared to semi-hosting
approach [4]. 35

2.12 Evaluation of communication overhead between: (a) host PC and VP,
(b) VP and hardware assuming constant packet size of 4 bytes. . . . 37

xv

0
xvi List of Figures

2.13 Evaluation of the efficiency of introduced co-simulation approach for
different benchmarks. 38

2.14 Partitioning OpenRISC processors under different constraints: (i) min-
cut partitioning and (b) technology-compatible partitioning. 39

2.15 Physical implementation of 3-D OpenRISC with the usage of Cadence
SoC Encounter for the partitioning discussed in Figs. 2.14(a) and
2.14(b), respectively. 40

2.16 Schematic overview of the SPARTAN system. 41
2.17 Evaluation of SPARTAN system using a scenario-based trade-off anal-

ysis. 42
2.18 Evaluation of SPARTAN system towards the efficiency of introduced

co-simulation approach. 43
2.19 Snapshot assessment of SPARTAN system on ROS/Linux environ-

ment, using the framework Plug&Chip, on a PC-FPGA co-design plat-
form. 44

2.20 snapshot assessment of a car engine control unit (ECU) on Linux
host, using the framework Plug&Chip for virtual prototyping of CV
algorithms, on a PC-FPGA co-design platform. 48

3.1 The block diagram of employed SoC-based SDR. 53
3.2 (a) Power consumption and (b) Power density pies for LEON3 archi-

tecture. 54
3.3 Thermal profile for LEON3: (a) without considering replica blocks, (b)

with replica blocks (2×local data/instruction memories, 2×L1 data/in-
struction caches, 2×register file), and (c) with replica blocks (2×instruction
unit, 2×cache controller, 2×AHB controller). 55

3.4 Proposed micro-architectural enhancement. 57
3.5 Employed thermal-aware runtime controller per replicated block. . . 59
3.6 The proposed methodology for replication-aware thermal manage-

ment. 60
3.7 Temperature variation for different instantiations of target architectural. 66
3.8 Results about power density versus maximum temperature. 67
3.9 Results about area versus maximum temperature. 69
3.10 Evaluation in term of 𝐴፟ parameter for architectures with different

average temperatures. 71
3.11 Evaluation of different architectures under TDDB. 72
3.12 Thermal profile for 2×2 CMP LEON3-based architecture. 73
3.13 Normalized power density versus area overhead for multiprocessor

LEON3. 74
3.14 Normalized maximum temperature versus area overhead for multi-

processor LEON3. 75
3.15 Example for an application’s communication graph. 77
3.16 Alternative 3-D NoCs for the example discussed in Figure 3.15. . . . 79
3.17 Architectural template for a 3-D router. 80
3.18 Structure of packets for our proposed NoC architecture. 81

List of Figures
0

xvii

3.19 Proposed methodology for evaluating 3-D NoCs. 82
3.20 Tasks for the pre-processing step. 84
3.21 Tasks for 3-D stack generation. 85
3.22 Tasks for 3-D system prototyping. 86
3.23 Mapping of VOPD application onto: (a) 2-D NoC and (b) the proposed

heterogeneous 3-D NoC platform. 88
3.24 Mapping of MWD application onto: (a) 2-D NoC and (b) the proposed

heterogeneous 3-D NoC platform. 88
3.25 Mapping of MPEG-4 application onto: (a) 2-D NoC and (b) the pro-

posed heterogeneous 3-D NoC platform. 89
3.26 Mapping of MMS application onto: (a) 2-D NoC and (b) the proposed

heterogeneous 3-D NoC platform. 89
3.27 Evaluation of 2-D and 3-D router in term of equivalent gates. 90
3.28 Evaluation of 2-D and 3-D router in term of latency. 91
3.29 Evaluation of 2-D and 3-D router in term of energy dissipation. . . . 92
3.30 Physical layouts for the introduced heterogeneous 3-D NoC regarding

the MPEG-4 application. 93
3.31 Number of packet hops for different architectural solutions: (i) a

homogeneous 2-D NoC, (ii) a homogeneous 3-D NoC and (iii) the
proposed heterogeneous 3-D NoC. 94

3.32 Maximum operation frequency for different instantiations of NoC. . . 95
3.33 Power consumption for different instantiations of NoC. 95
3.34 Schematic view of SPARTAN mapping and localization mode. 99
3.35 Abstract view of the introduced HW/SW co-design methodology. . . 100
3.36 Tasks performed during the algorithmic analysis. 100
3.37 Proposed methodology for performing platform independent opti-

mizations and modifications. 101
3.38 Profiling tools. 102
3.39 Proposed methodology for performing software-supported profiling. . 104
3.40 Proposed methodology for performing HW/SW co-design. 105
3.41 Proposed methodology for enhancing the performance of SPARTAN

system with platform-dependent optimizations. 105
3.42 Profiling results (a) for mapping mode and (b) for localization mode. 107
3.43 Data life-time (a) for mapping mode and (b) localization mode. . . . 108
3.44 Coarse-grain level HW/SW partitioning for mapping mode. 109
3.45 Coarse-grain level HW/SW partitioning for localization mode. 110
3.46 Proposed framework for supporting rapid evaluation of 3-D SoCs. . . 113
3.47 Block diagram for the Leon3 processor. 115
3.48 Example of designing a 3-D instantiation of LEON3 processor on

legacy 2-D Cadence SoC Encounter [24]. 116

4.1 CPU speed versus FPGA logic capacity [2]. 126
4.2 Proposed framework for parallel application placement. 130
4.3 The employed representation of FPGA with a chromosome structure

and an example of netlist encoding. 133

0
xviii List of Figures

4.4 The alu4 fitness landscape with six alleles per locus. Alleles 𝐶𝐿𝐵ኻ∶ዀ
in locus 𝐶𝐿𝐵 and 𝐼𝑂ኻ∶ዀ in locus 𝐼𝑂 give 36 genotypes 𝐶𝐿𝐵፣𝐼𝑂፤ with
fitness 𝑓፣,፤, represented by the height of the bars. 134

4.5 (a) Baseline FPGA architecture. (b) HDL-to-CLBs Synthesis. (c) Graph
representation of a design circuit. (d) FPGA physical placement. . . . 137

4.6 GENESIS elitism rate impact on quality for MCNC circuit s38417 (6406
CLBs, 29 Inputs, 106 Outputs), 𝑛፩=100, 𝑔፩=500, 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒=25138

4.7 Thread-oriented GA memory structure and the corresponding fork-
join model. 142

4.8 Execution run-time breakdown analysis for functionalities of GENESIS
placer. 144

4.9 Clustering result on feature space 𝐹. 147
4.10 The Delay vs. Rutime Pareto front per cluster 𝐹።. Data normalized to

the per cluster least efficient evaluated solution. 151
4.11 Evaluation for different combinations of population size and popula-

tion age regarding the bigkey benchmark. 152
4.12 Candidate solutions that are evaluated during placement. 155
4.13 Scaling of execution speedup for the GENESIS placer. 156
4.14 GENESIS thread time breakdown analysis: CPU and Wait Time. . . . 157
4.15 GENESIS thread time breakdown analysis: Overhead and Spin Time. 158
4.16 Memory requirements for (a) minimum FPGA size and (b) double size

for the FPGA array. 159
4.17 Memory footprint trend towards FPGA slices for (a) minimum FPGA

size and (b) double size for the FPGA array. 160

5.1 Accelerators scalability analysis of Kᑞᑖᑒᑟᑤ clustering algorithm: ፀᑚ-Accelerators዆ [ኻ ∶
ኻኼዂ], ፍᑡ-Points=ኼ × ኻኺᎶ, ፏᑜ-Clusters=3 167

5.2 Example scenario with four accelerators Acc-i[Static Memory Utiliza-
tion%, Latency]. All accelerators should start at time 0. The de-
sign is un-synthesizable with static memory allocation. Lower part
shows the final scheduling with DMM. Upper part shows the respec-
tive memory footprint. Due to time-scale, we neglect showing in-
stantaneous memory footprint transitions occurred whenever a new
DMM allocation arrives. 169

5.3 Abstract proposed architectural template for memory efficient many-accelerator FPGA-
based systems. 170

5.4 Proposed architectural template for memory efficient many-accelerator
FPGA-based systems . 171

5.5 Performance gains due to parallel and overlapped accelerators’ ex-
ecution enabled by DMM-HLS. Accelerator scheduling and memory
footprint a) Conventional HLS with static allocation, b) DMM-HLS
with 1 single heaps, c) DMM-HLS with 2-heaps. FPGA platform: 90
BRAMs. Total MMULs’ memory request: 113 BRAMs. 172

5.6 Architectural template of DMM-HLS memory controllers supporting
DMM onto FPGAs. 173

List of Figures
0

xix

5.7 Extension on Vivado HLS flow to support dynamic memory manage-
ment for many-accelerators FPGA-based systems. 174

5.8 Per-accelerator latency overhead for different number of heaps. . . . 176
5.9 Comparison on accelerators density between Static and DMM-HLS

setups. 177
5.10 Comparison on system’s throughput between Static and DMM-HLS

setups. 177
5.11 Comparison on resources breakdown versus throughput and energy

trade-off, between Static and DMM-HLS setups. 178
5.12 Comparison on resources breakdown versus throughput and energy

trade-offs between Static and DMM-HLS setups, for all employed ap-
plications. 180

5.13 Execution time breakdown for a CMP system on Phoenix MapRecude
framework[24]. 184

5.14 Architecture topology of a) original MapRecude framework and b)
proposed HLSMapReduceFlow. 184

5.15 The MapReduce programming framework. 185
5.16 HLSMapReduceFlow dataflow architecture: Every dataflow compu-

tation node is working in its unique memory. The system memory
is partitioned to k-port and j-port banks for the k-map and j-reduce
tasks respectively. 187

5.17 Forcing dataflow exploration from control-flow algorithm description
with Vivado HLS . 188

5.18 (a) Sequential Functional Description (b) Parallel Process Architecture 189
5.19 Proposed extension on Vivado HLS flow to support MapReduce frame-

work for FPGA-based systems. 190
5.20 Self performance-scalability tradeoff of HLSMapReduceFlow frame-

work. 192

List of Tables

2.1 Qualitative comparison among Host-to-VP communication mecha-
nisms. 19

2.2 Qualitative comparison among VP-to-Hardware communication mech-
anisms. 20

2.3 Characteristics of the selected TSV technology [23]. 39
2.4 Metrics about the physical implementation of OpenRISC processor as

a 3-D chip. 40

3.1 Thermal characteristics of the employed processors 64
3.2 Characteristics of the selected TSV technology. 92
3.3 Implementation properties for the target applications. 94
3.4 Metrics about the physical implementation. 117
3.5 Simulated time and power consumption under different DSP applica-

tions . 118

4.1 Overview of existing parallel placements. 129
4.2 Parameters of the proposed GA. 138
4.3 Feature characterization of the employed benchmark suite. 146
4.4 Evaluation of different (wirelength-driven and timing-driven) config-

urations for the GA placer against the introduced GENESIS framework.148
4.5 Comparison in term of execution run-time, maximum operating fre-

quency and power consumption. 153

5.1 Exemplary scenario of the code patterns triggering code transforma-
tions, using DMM-HLS API. 175

5.2 Applications Characterization . 175
5.3 Applications Characterization . 191
5.4 Real-word representative comparison between HLSMapReduceFlow-

accelerated FPGA and commodity workstation. 193

xxi

Nomenclature

Roman Symbols

3𝑆𝐿𝑂𝐺 three (3) Step LOGarithmic search

𝐴𝐷𝑃𝐶𝑀 Adaptive Differential Pulse-Code Modulation

𝐴𝐻𝐵 Advanced High-performance Bus

𝐴𝑀𝐵𝐴 Advanced Micro-controller Bus Architecture

𝐴𝑃𝐵 Advanced Peripheral Bus

𝐴𝑃𝐼 Application Programming Interface

𝐴𝑆𝐼𝐶 Application Specific Integrated Circuit

𝐵𝐿𝐸 Basic Logic Element

𝐶𝐴𝐷 Computer Aided Design

𝐶𝐿𝐵 Configurable Logic Block

𝐶𝑃𝑆 Cyber Physical Systems

𝐶𝑅𝐶 Cyclic Redundancy Check

𝐶𝑉 Computer Vision

𝐷𝑀𝐴 Direct Memory Access

𝐷𝑀𝑀 Dynamic Memory Management

𝐷𝑆𝑃 Digital Signal Processor

𝐷𝑆𝑈 Debug Support Unit

𝐷𝑈𝑇 Design Under Test

𝐷𝑉𝐹𝑆 Dynamic Voltage and Frequency Scaling

𝐸𝐶𝑂 Engineering change orders

𝐸𝐶𝑈 Engine Control Unit

𝐸𝐷𝐴 Εlectronic Design Automation

𝐸𝑆𝐿 Electronic System Level

xxiii

0
xxiv Nomenclature

𝐸𝑆𝑜𝐶 Ecosystem-on-a-chip

𝐹𝐹𝑇 Fast Fourier Transform

𝐹𝐼𝐹𝑂 First-In, First-Out

𝐹𝑆 Full Search

𝐹𝑆𝐵 Front-Side Bus

𝐹𝑆𝑀 Finite-State Machine

𝐻𝐷𝐿 Hardware Description Language

𝐻𝑃𝐶 High Performance Computing

𝐻𝑃𝑊𝐿 Half-perimeter Wirelength

𝐻𝑆 Hierarchical Search

𝐻𝑇 HyperTransport

𝐼𝐶 Integrated Circuit

𝐼𝐷𝑊 Inverse Distance Weighting

𝐼𝑃 Intellectual Property

𝐼𝑃𝐶 Inter-Process Communication

𝐼𝑆𝐴 Instruction Set Architecture

𝐼𝑆𝑆 Instruction Set Simulator

𝐼𝑇𝑅𝑆 International Technology Roadmap for Semiconductors

𝐿𝐴𝐵 Logic Array Block

𝐿𝑈𝑇 Look-up Table

𝑀𝑇𝑇𝐹 Mean Time To Failure

𝑀𝑇𝑈 Maximum Transmission Unit

𝑁𝐴𝑆𝐴 National Aeronautics and Space Administration

𝑁𝐼𝐶 Network Interface Controller

𝑁𝑈𝐶𝐴 Non-Uniform Cache Architecture

𝑃𝐻𝑂𝐷𝑆 Parallel Hierarchical One-Dimensional Search

𝑃𝑂𝑆𝐼𝑋 Portable Operating System Interface for Unix

𝑄𝑜𝑅 Quality of Results

Nomenclature
0

xxv

𝑄𝑃𝐼 Intel QuickPath Interconnect

𝑅𝑂𝑆 Robotic Operating System

𝑅𝑇𝐿 Register-Transfer Level

𝑅𝑇𝑆 Run-Time Situation

𝑆𝐷𝑅 Software Defined Radio

𝑆𝑖𝑃 System-in-package

𝑆𝐿𝐴𝑀 Simultaneous Localization And Mapping

𝑆𝑁𝑅 Signal-to-Noise Ratio

𝑆𝑜𝐶 System-on-chip

𝑆𝑃𝐸𝐹 Standard Parasitic Exchange Format

𝑆𝑆 Spiral Search

𝑆𝑈𝑅𝐹 Speeded Up Robust Features

𝑇 − 𝑉𝑃𝐴𝐶𝐾 Τiming-Driven Versatile Packing

𝑇𝐷𝐷𝐵 Time-Depended Dielectric Breakdown

𝑇𝐷𝑃 Thermal Design Power

𝑇𝑆𝑉 Through Silicon Via

𝑉𝐶𝐷 Value Change Dump

𝑉𝑃𝑅 Versatile Placement and Routing

1
Introduction

1.1. Thesis Research Background

I ntegrated circuits (IC) are the cornerstone of developments in both the inter-
scientific community and the daily life of modern man. The impact of these de-
velopments are so strong, that the technological transitions over time are taken

for granted. Consumers have come to expect more and more sophisticated elec-
tronic products, while the business world expects increased productivity through im-
proved technology information systems. At the same time, approaching the macro
scale of this trend, it seems that the maturity of the semiconductor industry is the
catalyst productivity and growth in almost all sectors of economic activity, which
already marks a market of about 3 trillion dollars [1], as depicted in Figure 5.19.

According to predictions [2], this impressive market promises to connect 2.67
billion machines to the Internet till the end of 2017 (from 1.11 today), exclusively
as far as the upcoming “smart cities” are concerned, and 25 billion machines totally
as far as the society, culture and finance are concerned till the end of 2020 (today
4,8). It is clear that these loud numbers are fueled by the scalability assurance of
semiconductor technology regarding the market needs.

The last 50 years of - nearly linear - increase of the computational power and
the corresponding decrease of the power consumption, support this belief. Nev-
ertheless this linearity has been supplied by the association of two technological
disciplines: Moore’s law [3] and Dennard’s law [4]. The first one which is valid
till today 1, promises the doubling of the number of the elementary resources (for
example transistors) which constitute a whole system in every 18 months. Practi-
cally, this law allows the increase of the computational power in each generation
of technological completion. The second law, which expired in 2007, described the
dimensions and the electrical characteristics of a transistor so that the sequential
shrinkage of them to be possible, so as to improve at the same time the density

1since the interpretation of Moore’s law is not unique, there is evidence that this law will not be valid
soon or has been already invalid [5, 6].

1

1

2 1. Introduction

Figure 1.1 Worldwide semiconductor sales 1988-2014 (in billions dollars). Source: World Semiconductor
Trade Statistics, [1].

of the silicon area, the processing frequency and the power performance. Prac-
tically, this law allowed the power consumption to be stable in each transition of
new generation of completion during which the number of transistors was doubled.
Also, due to the technology progress this law foresaw increase of the processing
frequency till 40%. [7].

The combination of these two laws, allowed for almost four decades the increase
of the supply voltage and the threshold voltage as much as the scale integration
of the size of transistors. In that way the designers were allowed to decrease
the supply power per transistor, so that the power density (power consumption
per silicon area) remained almost stable, scaling from one technological node to
another.

Nevertheless, on nodes of several nanometers (deep sub-micron technology
nodes), the decrease of the threshold voltage leads to an exponential increase of
the leakage power. Figure 5.17 illustrates the scaling of static and dynamic power
consumption of integrated circuits, with respect to the technology node. As shown,
given a set of typical integrated circuits designs, the dynamic energy consumption
in the technological node of 20 nm has almost surpassed the corresponding static.
In this way, the threshold voltage is no longer scalable and as a result the supply
voltage cannot be scaled further without affecting the performance. This decrease
in performance is illustrated in Figure 5.20. In particular, this figure shows the
forecasts of ITRS organization for the scaling of the maximum operating frequency
at regular chronological studies. As shown, the projections of each new study is
pessimistic regarding the scaling of processing frequency, indicating an expected

1.1. Thesis Research Background

1

3

Figure 1.2 Scaling of static and dynamic power consumption of integrated circuits regarding to the
technology node. Source: Mentor Graphics 2014.

increase of 41%/year in 2001, which dropped to a 4% in 2011.
As a result, although more transistors can be manufactured per silicon area,

the supply power per transistor doesn’t scale in analogy and as a result the power
density increases. This phenomenon becomes more intense in conjunction with the
natural limits imposed by the package materials and the cooling technology for the
maximum power and the maximum power density. This description highlights the
introduction of the “Dark Silicon” era [7–10].

Another limitation of the modern semiconductor industry refers to the economic
cost of manufacturing integrated circuits. Modern lithography design methods de-
manded continuous innovative solutions for each new technology node (high-k,
Metal Gate, Strain, SiGe, Tri-gate, etc.), while is is expected that new nodes shall
require respective research and implementing innovations, increasing manufactur-
ing costs [11]. Apart from the research community, also a lot of companies of the
semiconductor industry have recognized this problem, e.g. Nvidia Inc. [12]. Fig-
ure 3.7 shows the typical manufacturing cost per gate for recent technology nodes.
As shown, in the past (90 nm, 65 nm, 45 nm, 28 nm), the cost per gate at each node
increases. At the same time, the number of gates per wafer increases. This con-
trast was almost linearly bijective, thus the average cost per wafer remained stable.
However the technology node of 20 nm appears to increase the cost over previous
technology generations. It is expected that the manufacturing of integrated circuits
in newer nodes is disadvantageous compared to existing ones, or even earlier. The
three-dimensional integration technology (3-D) and heterogeneity have been iden-
tified as promising solutions to the problem of scaling manufacturing costs [13].

The research community has already proposed a remarkable set of alternative
approaches for the problem above, such as the heterogeneous multi-processing
architectures [14–19], the approximate computing [20–26] and the energy man-

1

4 1. Introduction

Figure 1.3 Projections of the ITRS organization for the scaling of the maximum operating frequency at
regular chronological studies.

agement for architectures of “Dark” and “Dim” Silicon [27–33]. Given the recent
published results, it seems that the most effective approach is the creation of het-
erogeneous and specific purpose accelerators which increase the computational
power per energy consumption and silicon area. In that direction, through this
work, four basic constraints are identified as major limiters of building the afore-
mentioned architectures: a) the programming problem, b) the problem of soft-
ware/hardware partitioning, c) the problem of cost/time design and d) the problem
of finding adequate CAD tools of optimal design. Identifying these constraints, this
thesis proposes architecture templates and design frameworks for the “Dark Silicon”
era.

1.2. Dissertation Overview
The above introductory field emerges the need for methods, tools and architectures
which provide viability during the continuous scaling of technology and energy. The
background design of computer systems in recent years has shown that scaling in
energy and technology can be achieved with the customization of the architecture
and the materials/manufacturing technology, respectively.

Figure 5.12 depicts different architectural designs approaches, with respect to
their energy efficiency. It is obvious that the specialized architectures can lead to
increased CPU power per energy unit (MOPS/mW) by a factor of 100×, compared
to conventional general purpose processors. Also, it is stressed that FPGAs devices
are a flexible platform of energy efficiency, according to their programming. How-
ever, the transition to specialized and/or reconfigurable architectures corresponds
to increased difficulty in design and programming of appropriate software.

Figure 3.9 shows the performance growth rate introduced by conventional tech-
nology scaling and architectural/materials innovation for every technology node.
As shown, the performance improvement of recent technology nodes is attributed,
with a small percentage, to the conventional technology scaling. However, the
highest profit is attributed to innovative techniques of architecture improvements

1.2. Dissertation Overview

1

5

Figure 1.4 Scaling manufacturing costs per gate for different technology nodes of integration. Source:
IBS 2012

and manufacturing materials.
This thesis is positioned towards the direction of the two aforementioned mo-

tivations, a holistic methodology framework of which is presented in Fig 5.14. It
aims to capture a new idea, evolved in the base of a new product/hardware/soft-
ware service. The starting point of the developed methodological components is
the conceptual level, meaning that stage that captures the desired characteristics of
a new product or service of a computer system. Continues with the mapping of the
desired specifications of a developed product as well as the functional constraints.
An important stage in this level is the organization of the tasks. Lately a large
number of specific managing works tools has been developed in the frames of a
software/hardware work, which depending on the complexity, can manage different
phases of the production procedure like the estimation and design, the program-
ming, the cost control, the budget management, the allocation of resources, the
communication of colleagues, the decision making, the quality management and
the organization of management and technical paperwork (π.χ. [34, 35]).

Having prescribe the required operating characteristics, the development team
is asked to standardize the operating environment in which the under-development
product will be operational. This level (Programming Environment) is the result of
a new approach of the production process and it is responsible for the specification
of all those environmental factors with which the developed product shall interact.
The Concept Level with the Programming Environment constitute the Ecosystem
Level which through early detection of the aforementioned characteristics of the
final system, ensures adaptation of the design flow to the new trends of the mar-
ket, where most growth is driven by the market itself and not necessarily from

1

6 1. Introduction

Figure 1.5 Comparison of different architectural designs approaches, with respect to their energy effi-
ciency. Source: Bob Broderson, Berkeley Wireless group, ISSCC proceedings, Microsoft, 2011.

technological developments [36].
The next level is established by the design of the reference platform (Platform

Level), which forms the representations of operating characteristics to the actual
system. This stage starts by partitioning hardware/software based on a analy-
sis process (profiling) that constitute the inherent characteristics of the application
and based on the retrieved results, classifies the total operating tasks for execu-
tion with either software or dedicated hardware accelerating modules. The hard-
ware/software co-design procedure is enriched with the proposed rapid prototyping
technique, i.e. a process that ensures faster product development as it allows the
development of software throughout the development of the hardware, making use
of virtual hardware modules that simulate the specialized hardware. Compared to
existing prototyping solutions, the proposed methodology is superior with respect
to speed, accuracy and debugged design completion, since it introduces FPGAs de-
vices in the process of simulation. This action allows part of the hardware developed
in tandem with the software, being directly tested on original hardware (FPGA) in
the early design stages, where the final system is not complete.

The hardware development takes place at the stage of architectural design. This
step is orthogonal independent to the virtual prototyping phase, since the subsys-
tems that are gradually synthesized, they can be used in virtual prototyping replac-
ing their virtual versions. Thereby, the process of simulation is accelerated and the
overall systems is evaluated with greater accuracy. The stage of architectural syn-
thesis is decomposed onto three distinct methodological analysis, the Acceleration
Datapath Synthesis, the System Architecture Exploration and the Synthesis Flow Op-
timization. Each of these steps addresses different problems of modern design of
integrated circuits for both reconfigurable (FPGAs) and application-specific (ASICs)
platforms. Specifically, the Acceleration Datapath Synthesis includes the accelera-

1.2. Dissertation Overview

1

7

Figure 1.6 Performance growth rate of conventional technology scaling and architecture/materials inno-
vation for each technology node. Source: IBM Microelectronics, Intel IC Insights, 2012.

tion of computational intensive tasks of the system. We propose the use of multiple
coarse-grained accelerators, as they offer higher productivity per power consump-
tion ratio and therefore, they form an attractive solution to the “Dark Silicon” prob-
lem [37, 38]. System Architecture Exploration refers to the investigation of the
appropriate interconnection scheme of the under-development integrated system.
This thesis studies heterogeneous architectural templates based on System-on-Chip
(SoC) and Network-on-Chip (NoC) topologies. The last stage of the architectural
synthesis refers to the optimization of the synthesis flow. This procedure provides
the introduction of new design techniques, utilizing abstraction design methods of
high-level synthesis (HLS), which further accelerate the development flow. At the
same time this step allows programming flexibility in the programming of heteroge-
neous many-accelerator systems. Moreover, at this stage it is proposed a fast and
automated way of design space exploration of architectural solutions that combine
HLS and virtual prototyping techniques in order to find a set of optimal solutions
(Pareto optimal) under a multi-objective analysis environment.

The last step (Physical Layer) of the holistic proposed methodological framework
refers to the physical mapping of the developed modules, through previous proce-
dures, in real implementation platforms. The proposed procedures allow the place-
ment of designs either to reconfigurable or application-specific platforms, depend-
ing on the desired characteristics which are reflected in the ecosystem layer, but

1

8 1. Introduction

Physical Layer
Platform

Layer

Concept Layer
Heterogeneous

Systems

Hardware
Deployment

Software
Deployment

Hardware
Virtual

Prototypes

Architectural
Synthesis

System
Architecture
Exploration

Acceleration
Datapath
Synthesis

Platform
Mapping

FPGA-in-the-loop
Prototyping

Heterogeneity,
System-on-Chip,
Network-on-Chip

Many-core,
Many-accelerator

Ecosystem
Layer

Programming
Environment

Linux/ROS/RTEMS,
C/C++/SystemC,

Pthreads/OpenMP/MPI,
MapReduce

Early Software
Development & Debug

Reconfigurable
Platforms

Application-
specific

 Platforms

Synthesis
Flow

Optimization

Traditional RTL,
RTL / ESL-HLS

EDA tools for
FPGAs

EDA tools for
 2D/2.5D/3D
integration

Cross-Layer System-Level Synthesis Optimization

Abstraction-driven Horizontal Deployment
A

u
to

m
a

ti
o

n
-d

ri
ve

n
 V

er
ti

ca
l D

ep
lo

ym
en

t

System Specifications
Definition

Figure 1.7 Dissertation overview.

also according to the constraints posed by the respective market. Specifically, the
FPGA design flow is enriched through the proposed placement algorithms. These
algorithms employ techniques of natural selection and evolutionary theory, provid-
ing optimal design solutions with reference to the maximum achieved operating
frequency, wire-length, silicon area and power consumption. Such exploration is
enabled through vertical and horizontal parallelization of the proposed algorithms
and their multi-objective optimization mechanisms. At the same time, the map-
ping to application-specific platforms (ASICs) is enriched. By varying the micro-
architecture, the proposed techniques achieve a reduction of emitted temperature
and therefore they reduce the aging rate of the circuit, leading to increased relia-
bility. Furthermore, we study the gains from the transition to the new promising
three-dimensional integration technology (3-D), for which, to date, there is a lack of
design tools, both academic and industrial. To this regard, it is suggested a novel
design flow based on reliable conventional design tools (2-D) which manage to
quantify the implementation gains from the transition to three-dimensional integra-
tion. The developed software tools are compatible with the file types of industrial
standards, so they offer great flexibility in their adoption of alternative design flows
and tools from different industrial vendors.

1.2. Dissertation Overview

1

9

Overall, this thesis provides methodologies and tools at different design levels of
integrated hardware/software systems bring-up. Through a structured design flow,
it is attempted a coherent interaction of individual design flows, in order to estab-
lish a correlation of the characteristics sought by the market and those that can be
offered by the technology. Basic characteristic of this effort is the clear conceptual
separation of design levels, as well as the definition of specific and non-overlapping
optimization mechanisms. The complete contribution to the proposed design flow
targets design systems that can be deployed through a rapid, multi-objective op-
timized environment, incorporating largely systemic complexity. This degree of in-
tegration contributes to the emergence of a new generation of integrated systems
which, in the context of this thesis, are assigned the term “Ecosystem-on-Chip”
(ESoC).

1.2.1. Chapters Organization
The proposed framework and the corresponding design tools, which are developed
in the research directions of this study, are organized according to the following
structure:

• Chapter 1, i.e. the current chapter, presents the latest technology develop-
ments and trends of the dynamically evolving market of IT systems. Along-
side, there are analyzed the limitations of existing design methods for systems
that offer long term sustainability in the mentioned technological scaling and
marketing trends. This chapter summarizes the key growth drivers of the the-
sis, through the presentation of a holistic methodological framework, which
prioritises the individual contributions into discrete levels and describes the
binding relationships among them.

• Chapter 2 presents the proposed methodology of rapid prototyping. It intro-
duces the concept of virtual prototyping using the “FPGA-in-the-loop” tech-
nique, which speeds up the simulation process and enables the effective ex-
ploration of the solutions space during architecture optimization.

• Chapter 3 presents the cross-layer synthesis of heterogeneous architectures.
Referring to the holistic methodology of the thesis (Figure 5.14), the chapter
contains the Acceleration Datapath Synthesis, the System Architecture Explo-
ration and the Synthesis Flow Optimization.

• Chapter 4, presents the proposed design tools for reconfigurable platforms. It
introduces the characterization and classification technique, used during the
phase of the synthesis, according to application’s intrinsic characteristics. Also
it is presented a multi-objective genetic algorithm for the placement prob-
lem, which utilizes the aforementioned characterization technique to guide
the placement to Pareto optimal points depending on the classification of the
application.

• Chapter 5, provides the architectural template and the programming environ-
ment for many-accelerator platforms. The proposed architecture promises

1

10 1. Introduction

high accelerator density with minimal energy footprint. It utilizing FPGAs as
a medium of programming coarse-grained accelerators. The incorporation of
high-level-synthesis techniques allows the easy programming and the system-
level deployment of such mass-parallelism architectures.

• Chapter 6, concludes the findings of this study and highlights the future ex-
tensions arising from the use of the proposed methodologies.

References

1

11

References
[1] Statista, Statista statistics portal, global semiconductor sales from october

2011 to february 2015 (in billion u.s. dollars), .

[2] Gartner, Gartner inc. technology research, .

[3] G. Moore, Cramming more components onto integrated circuits, Proceedings
of the IEEE 86, 82 (1998).

[4] R. Dennard, F. Gaensslen, H.-N. YU, V. Rideout, E. BASSOUS, and A. R.
LEBLANC, Design of ion-implanted mosfet’s with very small physical dimen-
sions, Proceedings of the IEEE 87, 668 (1999).

[5] CNET.com, End of moore’s law: It’s not just about physics, .

[6] Recode.net, Moore’s law hits 50, but it may not see 60, .

[7] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
Power challenges may end the multicore era, Commun. ACM 56, 93 (2013).

[8] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, The eda challenges in
the dark silicon era: Temperature, reliability, and variability perspectives, in
Proceedings of the 51st Annual Design Automation Conference, DAC ’14 (ACM,
New York, NY, USA, 2014) pp. 185:1–185:6.

[9] C. Mack, Fifty years of moore’s law, Semiconductor Manufacturing, IEEE Trans-
actions on 24, 202 (2011).

[10] M. Taylor, Is dark silicon useful" harnessing the four horsemen of the coming
dark silicon apocalypse, in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE (2012) pp. 1131–1136.

[11] A. Mallik, J. Ryckaert, A. Mercha, D. Verkest, K. Ronse, and A. Thean, Main-
taining moore’s law: enabling cost-friendly dimensional scaling, (2015) pp.
94221N–94221N–12.

[12] J. Hruska, Nvidia deeply unhappy with tsmc, claims 20nm essentially worth-
less, .

[13] M. D. I. Zvi Or-Bach, Is the cost reduction associated with ic scaling over" .

[14] J. Cong, M. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, Architecture
support for accelerator-rich cmps, in Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE (2012) pp. 843–849.

[15] J. Cong and B. Xiao, Optimization of interconnects between accelerators and
shared memories in dark silicon, in Computer-Aided Design (ICCAD), 2013
IEEE/ACM International Conference on (2013) pp. 630–637.

http://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/
http://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/
http://www.gartner.com/
http://dx.doi.org/ 10.1109/JPROC.1998.658762
http://dx.doi.org/ 10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1999.752522
http://www.cnet.com/news/end-of-moores-law-its-not-just-about-physics/
http://recode.net/2015/04/15/moores-law-hits-50-but-it-may-not-see-60/
http://dx.doi.org/10.1145/2408776.2408797
http://dx.doi.org/10.1145/2593069.2593229
http://dx.doi.org/10.1109/TSM.2010.2096437
http://dx.doi.org/10.1109/TSM.2010.2096437
http://www.extremetech.com/computing/123529-nvidia-deeply-unhappy-with-tsmc-claims-22nm-essentially-worthless
http://www.extremetech.com/computing/123529-nvidia-deeply-unhappy-with-tsmc-claims-22nm-essentially-worthless
http://www.eetimes.com/author.asp?section_id=36&doc_id=1286363
http://dx.doi.org/10.1109/ICCAD.2013.6691182
http://dx.doi.org/10.1109/ICCAD.2013.6691182

1

12 References

[16] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Tay-
lor, The greendroid mobile application processor: An architecture for silicon’s
dark future, Micro, IEEE 31, 86 (2011).

[17] Y. Turakhia, B. Raghunathan, S. Garg, and D. Marculescu, Hades: Architec-
tural synthesis for heterogeneous dark silicon chip multi-processors, in Design
Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE (2013) pp. 1–7.

[18] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B. Taylor, and
S. Swanson, Qscores: Trading dark silicon for scalable energy efficiency with
quasi-specific cores, in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-44 (ACM, New York, NY, USA, 2011)
pp. 163–174.

[19] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, The accelerator store: A
shared memory framework for accelerator-based systems, ACM Trans. Archit.
Code Optim. 8, 48:1 (2012).

[20] M. R. Choudhury and K. Mohanram, Approximate logic circuits for low over-
head, non-intrusive concurrent error detection, in Proceedings of the Confer-
ence on Design, Automation and Test in Europe, DATE ’08 (ACM, New York,
NY, USA, 2008) pp. 903–908.

[21] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, Impact:
Imprecise adders for low-power approximate computing, in Proceedings of
the 17th IEEE/ACM International Symposium on Low-power Electronics and
Design, ISLPED ’11 (IEEE Press, Piscataway, NJ, USA, 2011) pp. 409–414.

[22] J. Han and M. Orshansky, Approximate computing: An emerging paradigm for
energy-efficient design, in Test Symposium (ETS), 2013 18th IEEE European
(2013) pp. 1–6.

[23] P. Kulkarni, P. Gupta, and M. Ercegovac, Trading accuracy for power with
an underdesigned multiplier architecture, in VLSI Design (VLSI Design), 2011
24th International Conference on (2011) pp. 346–351.

[24] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy, Design of voltage-
scalable meta-functions for approximate computing, in Design, Automation
Test in Europe Conference Exhibition (DATE), 2011 (2011) pp. 1–6.

[25] A. Verma, P. Brisk, and P. Ienne, Variable latency speculative addition: A
new paradigm for arithmetic circuit design, in Design, Automation and Test in
Europe, 2008. DATE ’08 (2008) pp. 1250–1255.

[26] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, Architecture support
for disciplined approximate programming, in ACM SIGPLAN Notices, Vol. 47
(ACM, 2012) pp. 301–312.

http://dx.doi.org/ 10.1109/MM.2011.18
http://dx.doi.org/ 10.1145/2155620.2155640
http://dx.doi.org/ 10.1145/2155620.2155640
http://dx.doi.org/ 10.1145/2086696.2086727
http://dx.doi.org/ 10.1145/2086696.2086727
http://dx.doi.org/10.1145/1403375.1403593
http://dx.doi.org/10.1145/1403375.1403593
http://dl.acm.org/citation.cfm?id=2016802.2016898
http://dl.acm.org/citation.cfm?id=2016802.2016898
http://dl.acm.org/citation.cfm?id=2016802.2016898
http://dx.doi.org/10.1109/ETS.2013.6569370
http://dx.doi.org/ 10.1109/VLSID.2011.51
http://dx.doi.org/ 10.1109/VLSID.2011.51
http://dx.doi.org/10.1109/DATE.2011.5763154
http://dx.doi.org/10.1109/DATE.2011.5763154
http://dx.doi.org/ 10.1109/DATE.2008.4484850
http://dx.doi.org/ 10.1109/DATE.2008.4484850

References

1

13

[27] J. Allred, S. Roy, and K. Chakraborty, Designing for dark silicon: A method-
ological perspective on energy efficient systems, in Proceedings of the 2012
ACM/IEEE International Symposium on Low Power Electronics and Design,
ISLPED ’12 (ACM, New York, NY, USA, 2012) pp. 255–260.

[28] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, Near-
threshold computing: Reclaiming moore’s law through energy efficient inte-
grated circuits, Proceedings of the IEEE 98, 253 (2010).

[29] V. Hanumaiah, S. Vrudhula, and K. Chatha, Performance optimal online dvfs
and task migration techniques for thermally constrained multi-core processors,
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 30, 1677 (2011).

[30] V. Hanumaiah and S. Vrudhula, Energy-efficient operation of multicore proces-
sors by dvfs, task migration, and active cooling, Computers, IEEE Transactions
on 63, 349 (2014).

[31] U. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, Energysmart: To-
ward energy-efficient manycores for near-threshold computing, in High Per-
formance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on (2013) pp. 542–553.

[32] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey, Ultralow-power
design in near-threshold region, Proceedings of the IEEE 98, 237 (2010).

[33] L. Wang and K. Skadron, Implications of the power wall: Dim cores and re-
configurable logic, Micro, IEEE 33, 40 (2013).

[34] Microsoft, Microsoft project, project management software, (1992-2015).

[35] Trello, Trello, web-based project management software, (2011-2015).

[36] Synopsys, Changing market drivers, synopsys insight newsletter, issue 1,
(2015).

[37] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
Dark silicon and the end of multicore scaling, in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11 (ACM, New York,
NY, USA, 2011) pp. 365–376.

[38] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, Toward dark silicon
in servers, Micro, IEEE 31, 6 (2011).

http://dx.doi.org/10.1145/2333660.2333720
http://dx.doi.org/10.1145/2333660.2333720
http://dx.doi.org/ 10.1109/JPROC.2009.2034764
http://dx.doi.org/10.1109/TCAD.2011.2161308
http://dx.doi.org/10.1109/TCAD.2011.2161308
http://dx.doi.org/10.1109/TC.2012.213
http://dx.doi.org/10.1109/TC.2012.213
http://dx.doi.org/ 10.1109/HPCA.2013.6522348
http://dx.doi.org/ 10.1109/HPCA.2013.6522348
http://dx.doi.org/ 10.1109/HPCA.2013.6522348
http://dx.doi.org/10.1109/JPROC.2009.2035453
http://dx.doi.org/ 10.1109/MM.2013.74
http://office.microsoft.com/project
http://trello.com
http://www.synopsys.com
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/MM.2011.77

2
Rapid Prototyping Exploiting

Hybrid-Virtual
System-on-Chips

In embedded system domain there is a continuous demand towards providing
higher flexibility for application development. This trend strives for virtual prototyp-
ing solutions capable of performing fast system simulation. Among others, such a
solution supports concurrent hardware/software system design by enabling to start
developing, testing and validating the embedded software substantially earlier than
it has been possible in the past. Towards this direction, throughout this chapter we
introduce a new framework, named Plug&Chip, targeting to support rapid prototyp-
ing of 2-D and 3-D digital systems. In contrast to relevant approaches, our solution
provides higher flexibility by enabling incremental system design, whereas it can
also handle platforms developed with the usage of 3-D integration technology.

2.1. Research Motivation for Virtual Prototyping
With vastly increased complexity and functionality especially in the nanometer era,
where hundreds of millions of transistors on one chip are integrated, the design
of complex Integrated Circuits (ICs) has become a challenging task. In addition to
that, the continuously increased demand for even higher performance (i.e. in terms
of operation frequency, power consumption, etc), imposes that new design tech-
niques are absolutely required. Three-dimensional (3-D) integration, which contain
multiple layers of active devices, have the potential to address these requirements,
since it dramatically enhances chip performance and functionality, while it reduces
the distance among devices on a chip [1].

Apart from the technology-oriented parameters that affect the efficiency and/or
the flexibility of a digital system, the tight time-to-market requirements make con-
ventional ways for product development (e.g. start software development after

15

2

16 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

finalizing hardware) to lead usually in missed market windows and revenue oppor-
tunities. Hence, there is an absolute requirement for software developers to get
an early start on their work, long before the RTL (register-transfer level) of the
hardware is finalized. This problem becomes far more important if we take into
consideration that software aspects of ICs can account for 80%, or more, of em-
bedded systems development cost [2], making the conventional way for product
development insufficient. For instance, the International Technology Roadmap for
Semiconductors (ITRS) predicts that software development costs will increase, and
will reach rough parity with hardware costs, even with the advent of multi-core
software development tools [2].

Figure 2.1 Cost development trends for hardware and software deployment, in relation to technology
scaling.

In relation to the above observation, another crucial design parameter of inte-
grated circuits is the scaling of the design costs with respect to the technological
node integration. As shown in Figure 5.14, software development costs rise con-
stantly in advanced technology nodes. Relative recent survey showed that most
projects are delayed due mainly software development, while the largest percent-
age of its workforce design team deals with the software [3].

The supporting tools are also crucial for deriving an optimum solution. The
existing Electronic Design Automation (EDA) flows are built on the fundamental
premise that models are freely interchangeable among vendors and have interop-
erability among them. In other words, this imposes that models can be written, or
obtained from other vendors, while it is known a priori that they will be accepted
by any vendor tool for performing different steps of physical prototyping (e.g. ar-
chitecture’s analysis, simulation, synthesis, etc). Even though this concept seems
straightforward and promising, it has been proven completely elusive in the world

2.1. Research Motivation for Virtual Prototyping

2

17

of Electronic System Level (ESL). Specifically, the existing ESL solutions do not pro-
vide neither model interoperability, nor independence between model and software
tools. Consequently, the adoption of ESL flows between different vendors could be
though as a desired feature.

Towards this direction, and as research pushes for better programming models
for multi-processor and multi-core embedded systems, Virtual Platforms (VP) solve
one of today’s biggest challenges in physical design: to enable sufficient software
development, debug and validation before the hardware device becomes available.
More specifically, with the virtualization feature, it is possible to model a hardware
platform consisted of different processing cores, memories, peripherals, as well as
interconnection schemes, in the form of a simulator [4]. Furthermore, as the task
of hardware development progressively proceeds, it is feasible to redistribute to
software teams updated versions of the VP that enable even better description of
target architecture.

The concept of virtualization is also important for hardware architects, as it en-
ables easier verification of IP (Intellectual Properties) kernels. This feature could be
employed both in the case where only a few of the application’s kernels have to be
developed in hardware, as well as if incremental system prototyping is performed.
In both cases, the virtualization feature provides all the necessary mechanisms for
performing co-simulation and verification between the IPs developed in RTL (Reg-
ister Transfer Level) and the rest application’s functionalities executed onto the VP.

Throughout this research we introduce a software-supported methodology for
performing rapid prototyping of complex 2-D and 3-D SoCs. For this purpose, we
have automated the procedures dealing with system modeling and simulation be-
tween system’s kernels mapped onto different platforms, namely the host PC, the
VP and the target implementation medium (e.g. FPGA, ASIC, etc). Since multiple
platforms are employed during this analysis, we have also developed a generic com-
munication scheme for providing the desired data transfers under various parame-
ters (e.g. packet size, maximum transmission unit (MTU), etc). Another challenging
feature tackled throughout this research affects the potential gains of designing this
SoC with the adoption of 3-D technology. Since the physical implementation tools
for realizing 3-D designs [5] [6] cost a lot, the introduced framework can estimate
the performance efficiency by incorporating such an advanced interconnection tech-
nology.

The rest of this chapter is organized as follows: Section 2 summarizes the state-
of-the-art in the domain of virtual prototyping. Based on this analysis, we highlight
the open issues, as well as the motivation of this research work. The proposed
methodology for performing rapid prototyping is discussed in Section 3. Section 4
provides a number of experimental results that prove the effectiveness of introduced
methodology. Finally, conclusions are summarized in Section 5.

2

18 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

2.2. Existing approaches for system modeling with
virtual platforms

This section summarizes a number of representative approaches in the domain of
platform virtualization. The scope of this analysis is to identify limitations of existing
solutions, as well as their impact to sufficient rapid prototyping of complex digital
systems. Additionally, the open issues, as they will be concluded from this analysis
will be used as a motivation for the introduced Plug&Chip framework discussed
throughout this research.

As the strict requirements for accuracy and development time cannot be easily
met with the usage of conventional system prototypes, such as VP, the use of hybrid
prototyping becomes the most viable solution. More specifically, the term hybrid
prototyping refers to a scenario, where only a portion of the design is mapped
to a physical device (i.e. FPGA, ASIC, CUDA, etc), another portion is simulated
on a VP running on host, while the rest system runs natively onto the host PC.
According to the literature, this enables to combine the accuracy and speed of
the hardware platforms with the flexibility and visibility found in VPs [7]. Since
this approach incorporates different methodologies which should be combined, it is
imposed that the appropriate interfaces between consecutive techniques and tools
have also to be developed. Recently, such frameworks are of increased importance,
as the complexity of digital systems increases exponentially [2]. Furthermore, the
flexibility provided by existing frameworks to start physical implementation from
different abstraction levels than RTL (e.g. SystemC) imposes that software tools
that automate the procedures of simulation, debugging and verification should be
sufficiently addressed.

A typical interface for hybrid prototyping is the SCE-MI solution from Accelera
[8], which provides a communication interface between the host PC and an HDL
simulator. In more detail, the host PC at SCE-MI executes a testbench software for
manipulating the interface. To the other side, the system’s IP kernels developed
in HDL include all the necessary mechanisms for accepting the stimuli through the
interface and send back to the host the appropriate data.

Next subsections discuss in more detail a number of relevant approaches for
supporting the communication between Host-to-VP (Host2VP), as well as VP-to-
Hardware (VP2HW).

2.2.1. Communication between Host PC and Virtual Platform
This section provides a qualitative analysis regarding the first part, namely the
communication between Host PC and VP (Host2VP) found in virtualization environ-
ments for supporting the hybrid prototyping approach. The results of this analysis
are summarized in Table 2.1, whereas for sake of completeness, the last column of
this table refers to the Plug&Chip introduced throughout this research.

2.2.E
xistin

g
approach

es
for

system
m
odelin

g
w
ith

virtu
alplatform

s

2

19

Table 2.1 Qualitative comparison among Host-to-VP communication mechanisms.

Altera Virtual Target QEMU/SystemC HySim Semi-hosting Proposed[9] [10] [11] [12] [4]
Abstraction Levels Functional Functional, TLM, RTL Timed Functional Functional TLM, RTL
Accuracy in VP Low Cycle Accurate Cycle Accurate 1 Low Cycle Accurate Ꮃ

Data Synchronization Built-in Manual Built-in Manual Built-in
SW execution to Host Fast Medium Fast Depends on Packet Size 2 Fast
Simulation to VP Fast Medium Medium Depends on Packet Size Ꮄ Medium
Platform for Host software Physical System QEMU Physical System Physical System Physical System
Supported CPUs for VP ARM Any Any Ꮃ Any Any
Number of CPUs in VP Max 2 Unlimited Unlimited Unlimited Unlimited
Communication mechanisms Driver-based 3 Built-in 4 or IPC Via custom wrapper Hard disk IPC, Driver-based
Intrusive to host No No Yes Yes No
Intrusive to VP software No No Yes Yes No
TLM peripherals support No Yes No No Yes
Multiple VP frameworks No Yes Yes No Yes

The first approach depicted in Table 2.1 involves a PC-based simulator provided by Altera [9]. This simulator enables early
software development by emulating the ARM Cortex-A9 CPU(s) and the peripherals which are included into the Altera SoC
FPGA devices. In order to support hybrid prototyping, the simulator is connected with the host PC through a driver-based
communication mechanism. Even though [9] supports fast functional simulation, the low timing accuracy (since it uses only
functional simulation), introduces limitations to detailed software validation.

The second column corresponds to an approach where the QEMU x86 emulator is combined with a SystemC model [10]
[11]. Although SystemC ensures the universality of this solution, as well as the unlimited support for CPU cores in the VP
side, there are performance limitations related to the software execution on the x86 processor since it is actually emulated.
Also, there are no standard synchronization mechanisms for ensuring the non-corrupted data transfers. Regarding the HySim
(Hybrid Processor Simulation) approach [12] the communication with the host PC is established a custom wrapper, which
acts as an abstract simulator for the out-of-interest software part. This tool enables to perform functional simulation of target
1Depending on the Instruction Set Simulator (ISS).
2High-speed for large data packets; low-speed for small data packets.
3In a driver-based communication scheme, the simulator is accessed through device driver.
4QEMU ISS is used as a SystemC module.

2

20
2.R

apid
Prototypin

g
E
xploitin

g
H
ybrid-V

irtu
alS

ystem
-on

-C
h
ips

system, whereas regarding the accuracy of timing simulation, it depends on the selected Instruction Set Simulator (ISS) and
the abstraction level. A drawback of this technique involves the additional effort required by designer in order to modify the
software executed both on host and VP sides.

Next approach involves the usage of semi-hosting, which resides to the forwarding of commonly used system calls (e.g.
read() or write()) to the host PC, in case where no O/S runs on the VP. Representative solution of semi-hosting is the OVP [4]
software. Since the OVP supports only functional simulation, it is suitable mainly for performing system modeling at higher
abstraction levels, where no timing accuracy is needed. Regarding the communication between Host and VP in OVP, it lacks
of standard synchronization mechanism, as long as the fcntl() call (used for file locking) is not supported to every CPU model.
More specifically, this communication can be realized only via a storage medium, e.g. the hard disk of host PC, which imposes
that the simulation speed depends highly on the amount of transferred data. Even though this limitation can be tackled with
Unix IPC mechanisms (e.g. named pipes), semi-hosting supports only POSIX regular files.

Table 2.2 Qualitative comparison among VP-to-Hardware communication mechanisms.

Synopsys HAPS Xilinx Co-Simulation Altera Virtual Target Semi-hosting 5 Proposed[13] [14] [9] [4]
Abstraction levels TLM RTL RTL Functional TLM
Accuracy in VP Cycle Accurate Cycle Accurate Cycle Accurate Week Cycle Accurate 6

Data synchronization Built-in Built-in Built-in Manual Built-in
Simulation to VP Fast Slow Fast Fast Fast
Supported hardware FPGA FPGA FPGA Any Any
Supported CPUs for VP ARM Any ARM Any Any
Number of CPUs in VP Unlimited Unlimited Max 2 cores Unlimited Unlimited
Communication protocol AMBA, Raw data Raw data Raw data Raw data Raw data
Communication mechanisms Driver-based Driver-based Driver-based Hard disk Driver-based
Extensible library No Yes No Yes Yes
TLM peripherals support Proprietary Libraries No No No Yes
Multiple VP frameworks No No No No Yes

5VP communicates with a host proxy which forwards data to/from the FPGA.
6Depending on the ISS.

2.2. Existing approaches for system modeling with virtual platforms

2

21

The last column in this table summarizes the features of the proposed frame-
work, in terms of providing the communication between host and VP. In particular,
being a SystemC-based approach, it is a universal solution which supports different
abstraction levels (e.g. TLM) and unlimited number of CPUs. Depending on the se-
lected ISS, the Plug&Chip framework could provide even cycle-accurate simulation.
Furthermore, it has built-in synchronization mechanisms, while the communica-
tion supports a non-intrusive switching at compile time between IPC (Inter-Process
Communication) and driver-based connection.

2.2.2. Communication between Virtual Platform and Target Hard-
ware

Although the connection to a hardware board can be easily established through a
device driver, the communication mechanism should also enable the VP software to
send (or receive) data to (or from) the hardware board. This is the core feature of
such a VP to hardware (VP2HW) communication scheme. Table 2.2 summarizes a
number of representative solutions that provide such a communication. Similar to
previous case, the last column of this table corresponds to the proposed Plug&Chip
methodology discussed throughout this research.

The first three approaches discussed in Table 2.2 are commercial products,
which provide cycle-accurate hardware-assisted co-simulation with an FPGA device.
In particular, the Synopsys HAPS [13] has a TLM interface to the VP software for
manipulating the hardware platform. Apart from enabling raw data transfer through
physical links (e.g. USB, Ethernet, etc), HAPS also supports a transactor protocol
(AMBA), if this communication scheme is available in the final system. Even though
HAPS seems to be a promising solution, it is based on proprietary TLM libraries,
which make it hardly extensible.

Another approach affects the Xilinx Co-Simulation Flow [14], which establishes
a connection between the RTL simulator (i.e. Xilinx ISim [15]) and the target FPGA
through a physical link (e.g. USB, Ethernet, etc). Similar to HAPS, the Xilinx flow
does not support higher abstraction levels in designing new kernels. Therefore,
the IP kernels, as well as the whole platform, have to be developed in RTL. This
also imposes that the simulation speed is expected to be lower compared to similar
approaches that are based on SystemC models. A relevant solution involves the
Altera Virtual Target [9], which similar to Xilinx flow, enables to deploy an FPGA for
mapping custom IP kernel(s) described in HDL in systems that contain up to 2 ARM
processors.

Next column discusses the advantages and disadvantages of the semi-hosting
approach. In this case, the host becomes a proxy between VP and hardware board,
as this is the only viable solution to overcome the limitation of VP software to
support access to character devices. Even though semi-hosting can be considered
extensible, as long as the designer models the target communication protocol, this
is rarely efficient due to the lack of support for lower abstraction levels. Moreover,
there is no straightforward way to support TLM at semi-hosting.

Regarding the introduced VP2HW communication scheme found in Plug&Chip,
it can handle an increased number of processing cores, while the target hardware

2

22 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

is a generic device (e.g. FPGA, ASIC, GPU, CPU, etc), if the appropriate driver is
provided. Furthermore, we have to mention that although the test cases discussed
throughout this research involve only raw data transfer with the hardware platform,
the introduced VP2HW communication library is fully extensible; hence the designer
can easily port any other communication protocol.

2.3. Prototyping Methodology
Even though there are plenty of design tools that tackle software (SW) and hard-
ware (HW) problems individually, there are only a few approaches that leverage
problems arising in systems that tightly integrate SW and custom HW. This mainly
occurs due to the challenges related to system integration that have to be ad-
dressed. Even limited, there are EDA approaches which promise to alleviate the
integration problem in RTL simulation, emulation and prototyping environments.
However, these solutions are often too complex, slow and expensive. Usually, it
is the communication link between the host computer and prototyping HW that is
mostly constrained.

Towards this direction, throughout this section we propose a framework for
enabling product development jointly by SW and HW teams in a way that close
interaction is allowed during the development phases. Fig. 2.2 shows the over-
all flow of the proposed Plug&Chip methodology consisted of three consecutive
design stages: (i) system modeling, (ii) rapid virtual prototyping and (iii) system
integration. The competitive advantage of this framework is the provided PC-based
co-simulation, which trade-offs between speed (functional simulation) and accuracy
(cycle-accurate simulation), depending on designer requirements.

HotTalk flowFeedback loopExecution flow

S
y

st
em

M
o

d
el

in
g

S
y

st
em

 I
n

te
g

ra
ti

o
n

P
ro

p
o

se
d

R
a

p
id

 V
ir

tu
a

l

P
ro

to
ty

p
in

g

Hardware-dependent software

(e.g. Software running on ARM)

Control-flow software

(e.g. Software running on x86 host)

e.g.

SystemC peripherals

HotTalk API

(Device driver, SW stack)

Co-Debugging
Co-Simulation

@ RUN-TIME!

SystemC-TLMRTL

A
SI

C

P
L

U
G

&
C

H
IP

μPFPGA

Conventional
Prototyping

Proposed
Hybrid Prototyping Early Prototyping

All-Software solution

(e.g. ROS, UML, OpenCV...)

FPGA-in-the-loop

μP

Target System

V
ir

tu
al

 L
ib

ra
ry

TLM/SystemC
models

TLM/SystemC
Interconnection Bus

R
TL

-L
ib

ra
ry

Technology
Library

Profiling

(e.g. Valgrind, Vtune)
HW/SW Partitioning

Custom HW IPs

(e.g. Application running on FPGA)

Synthesis

System Modeling
(e.g. SystemC)

Optional task
3D System
Integration

Figure 2.2 The proposed methodology for the Plug&Chip framework.

2.3. Prototyping Methodology

2

23

System modeling describes the stage where the development team provides
an abstract description of the system’s architecture and starts planning the way
that this functionality has to be modeled into HW and SW kernels. Also, during
this stage, all the top-level performance constraints are met. Since this is an early
design step, the functionality of the final system is described with an “all-software”
solution.

Starting from this all-software solution, initially we profile the application’s al-
gorithms to determine those kernels that highly affect the system’s performance.
Different criteria might be incorporated for this task, while the most common ones
affect the determination of computationally intensive tasks, the tasks with increased
demand for communication (I/O), as well as those tasks that can be executed much
faster if we extract their inherent parallelism. For this purpose, a number of soft-
ware tools can be employed (e.g. Valgrid, VTune, etc). Based on the conclusions
derived from profiling task, it is possible to perform a HW/SW partitioning to the
pure software implementation, depending on the criteria discussed previously. The
output of partitioning step classifies the “all-software” solution to three categories:
(i) the HW-dependent software, (ii) the control-flow SW and (iii) the custom HW
IPs.

Custom HW IPs are peripherals and hardware accelerators, which provide plat-
form connectivity to off-chip world and acceleration to software functions, respec-
tively. The HW-dependent software refers to the algorithms executed onto the
embedded target CPU. While our methodology relies on a PC-based development
infrastructure, there is a software stack running on a native host (e.g. x86 com-
patible), which is responsible for establishing the communication layer between
HW-dependent software and custom HW IPs, as well as to provide all the neces-
sary synchronization for the computation tasks. This software stack is referred in
Figure 2.2 as “control-flow software”. Apart from the development stage discussed
previously, the host PC could also be part of the final system. In such a case, the
control-flow software includes also the SW that will be executed onto the host PC.

The introduced framework also addresses limitations posed during the profiling
step. More specifically, in case where the profiling procedure is performed on a
different platform from the actual target system, this might lead to inaccuracies in
the derived conclusions. For instance a different platform imposes changes in the
Instruction Set Architecture (ISA), the microarchitecture, the compiler, resulting in
variances in the executable that is profiled. In order to strengthen the partitioning
decisions, HW-dependent information has to be provided, while based on existing
solutions, the most accurate profiling information is available after the first design
prototype is developed. Typically, once a project has reached this stage, most of the
budget has been sunk, which is usually beyond the point of “no return”. In contrast,
the proposed framework offers the flexibility of incremental HW development and
system testing under real world constraints, so that accurate profiling information
can also be provided through development stage with a feedback loop.

The second stage of the proposed framework deals with the Hybrid Virtual Pro-
totyping, which is actually the core stage of the proposed methodology. In order
to support the interaction between SW and HW development teams, we adopt the

2

24 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

usage of TLM-SystemC models. Different ISSs can be employed for this purpose,
however for the rest of this research, the Plug&Chip is based (without affecting the
generality of introduced methodology) on OVP [4], since it is a publicly available and
easily extensible approach. Additionally, the increased simulation speed provided
by OVPSim ensures that complex systems can be modeled in reasonable amount of
time (hundreds of millions of simulated instructions per second). As the OVP mod-
els are pre-built, they support fully functional simulation of a complete embedded
system. Also, since these models are binary-compatible with the simulated HW,
the developed software can be executed onto the target (final) system without any
modifications. This enables faster iteration for the software development teams.

Similarly, HW developers are also benefited from the adoption of hybrid VP
discussed throughout this section. Since this platform is composed of OVP and
TLM/SystemC models, it exhibits increased flexibility which in turn alleviates many
constraints that designers face during the architecture design. More specifically,
the former models (related to OVP) describe the software part of the target system
(e.g. executed onto an embedded processor), while the TLM/SystemC models pro-
vide the design functionality that has been mapped to custom HW IPs, after system
partitioning.

After having a high-level system modeling that meets the design’s specifications,
we proceed to the HDL development. As long as new IPs are developed, the HW
design team is able to incrementally test these IPs by replacing a functionality of
the employed SystemC/TLM model with the equivalent HDL prototype mapped onto
FPGA boards. The connection between VP and FPGA is established with HotTalk API.
More specifically, this API provides the connectivity between the VP prototype and
the target hardware, as well as between Host software and VP, through a physical
interface found on the host PC (i.e. Ethernet, PCI, USB, etc). Next subsections
describe in more detail the functionality of this API.

Offering the HotTalk API, the proposed framework provides a wide class of mid-
dleware stack, composed of device drivers on host PC, libraries in OVP and trans-
actors in FPGA, so that designers can efficiently test the entire system from early
design iterations down to the final system validation with real-world testbenches,
with the minimum possible effort. As mentioned previously, such an incremen-
tal design flow provides all the necessary information about meeting the system’s
specifications, which in turn can be used for performing additional optimizations of
the whole system, or re-partitioning the software (through the feedback loop).

The last stage of the proposed methodology deals with the system integration.
During this stage, the different cores of target system, including among others the
embedded CPU, the reconfigurable fabric, as well as the memory components are
integrated to form the target SoC, which can be further optimized if we incorpo-
rate a 3-D process technology. Towards this goal, our methodology employs an
approach for quantifying with acceptable fidelity the potential gains of using such a
technology. In contrast to relevant solutions which are based mostly on academic
tools, the evaluation of 3-D stacks discussed throughout this research is performed
with the usage of Cadence tools.

The introduced methodology depicted in Fig. 2.2 is automated by a number of

2.3. Prototyping Methodology

2

25

CAD tools. Additional details about the proposed Host-to-VP and VP-to-HW com-
munication libraries, as well as the evaluation of 3-D embedded systems can be
found in upcoming subsections.

2.3.1. HotTalk API: Host2VP and VP2HW Communication In-
frastructure

This subsection describes in more detail the proposed communication scheme for
realizing the communication between the host PC and the VP, as well as between VP
and a hardware board (the FPGA for our case study). These two libraries, named
Host2VP and VP2HW respectively, form the core part of HotTalk API. In addition,
HotTalk API provides an FPGA transactor, i.e. a hardware module mapped on the
reconfigurable platform, which realizes the physical link with the FPGA device.

2.3.1.1 Host2VP

Fig. 2.3 gives a functional overview of the tasks implemented in the Host2VP li-
brary. This library provides a universal coding style for the host side in order to
avoid modifications when the VP is replaced with a real board. Towards this goal,
the library provides a high-level interface for realizing four main tasks: (i) open
device, (ii) close device, (iii) send data to the device and (iv) receive data from the
device. These calls are implemented as generic wrappers which can be adapted to
any communication mechanism between the host and the embedded system (ei-
ther virtual or physical) without imposing any modification to the host’s software.
In particular, in case of using a real hardware board (case 1 of Fig. 2.3), which is
recognized as a character device by the O/S, the I/O calls manipulate the respec-
tive O/S system calls (𝑜𝑝𝑒𝑛(), 𝑐𝑙𝑜𝑠𝑒(), 𝑤𝑟𝑖𝑡𝑒() and 𝑟𝑒𝑎𝑑() respectively), while the
overall communication is performed through the device driver.

On the other hand, the second case of Fig. 2.3 assumes that VP is used instead
of a real hardware. In such a case, those I/O calls manipulate the Inter-Process
Communication (IPC) mechanisms for realizing the data transfer between host and
VP. For this purpose, two FIFO (First-In/First-Out) queues are employed, as it is
depicted in Fig. 2.3, each of which is implemented as a shared memory segment.
The size of these queues is defined at compile time depending on the connectivity
requirements between host PC and VP posed by the target architecture. Specifically,
the usage of data packets with increased size leads to reduced IPC overhead in case
of massive data transfers, whereas the smaller packet size is preferable whenever
there is a limited amount of data to be transferred.

The efficient synchronization for data transfers between the host and the VP is
also crucial for the Host2VP library. More precisely, both for the host and the VP,
the data synchronization can be realized with the usage of O/S semaphores. Since
each semaphore operation is an atomic action, our framework guarantees that no
racing conditions will occur. This imposes that if a host has to send and receive data
simultaneously, then only one operation will be committed. The second operation
will take place only when the currently committed operation is accomplished.

Another feature of introduced library is its applicability to any other VP frame-

2

26 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

Host Software

FIFO control
at Host

Local I/O
Buffers

Incoming

Outgoing

High-Level Interface

I/O Calls:
OpenDevice()

SendToDevice()
ReceiveFromDevice()

CloseDevice()

Using O/S driver (as character device - /dev/...)

Using Inter-Process Communication (Shared memory + Semaphores)

Bind
 I/O Calls to O/S Calls

[CASE 1]
Board

Case 2: Virtual Platform

Case 1: Physical Platform

C
A

SE
 1

O/S Calls

[CASE 2] Virtual Platform

CASE 2

FIFO control
at VP

Local I/O
Buffers

TLM Host Interface

New Data
Listening

Addresses

Data
Receiving
Addresses

TLM Bus

VP CPUsMemory

Host-to-VP
FIFO

VP-to-Host
FIFO

Incoming

Outgoing

Data
Sending

Addresses

Incoming

Outgoing

W
ra

p
p

e
rs

Figure 2.3 Communication mechanism between Host and VP.

work and/or ISS, leading to a universal communication library. For this purpose,
the Host2VP library provides an easy-to-use C API, which includes standardized I/O
calls for the data manipulation to the VP side. In order the VP side to utilize these
calls, the library provides a TLM2.0 VP peripheral, referred as TLM Host Interface,
which binds each of these I/O calls with a bus address. Three types of addresses
are provided: (i) New Data Listening Addresses for checking if new incoming data
exist, (ii) Data Receiving Addresses for reading the incoming data from host and
(iii) Data Sending Addresses for writing the outgoing data to host. Hence, the VP
software can use each call by accessing the corresponding bus address.

Finally, in order to provide a fully adaptive interface at TLM level, Host2VP is
implemented as an hierarchical library, based on a template class, which includes
the core methods that realize the TLM transactions. These methods manipulate a
set of I/O calls for checking whether new data is available, receiving the incoming
data and sending the outgoing ones. With this template class, the designer can
develop new TLM Host interfaces with the minimum possible effort.

2.3.1.2 VP2HW

The functionality of VP2HW library, which realizes the communication between the
VP and a real hardware board, is depicted in Fig. 2.4. Similarly to the previous
case, VP2HW has to support a wide variety of hardware boards. Towards this goal,
the target hardware board is recognized as a character device, whereas the com-
munication is performed through the associated device driver. Such a selection

2.3. Prototyping Methodology

2

27

provides the appropriate synchronization for guaranteeing uncorrupted data trans-
fer. Although for the scope of this research the employed device driver establishes
the communication between the host and the FPGA through Ethernet, any other
protocol could also be used. Furthemore, this library supports raw data transfer be-
tween VP and target hardware, through the physical layer (PHY) of Ethernet (there
is no requirement for protocol, or service). Additional details about the employed
communication scheme can be found in Section 3.1.3.

In addition to this, the VP2HW library supports the communication between the
VP software and a real hardware board through a TLM interface connected with the
rest of VP as a TLM2.0 peripheral. In particular, the TLM interface exposes to the
VP software a number of registers, which trigger the data transfer to and from the
hardware board. As Fig. 2.4 depicts, the VP software uses these registers in order
to receive (send) the incoming (outgoing) data respectively, after setting the length
of the transferred data. Also, a status register indicates if the data transfer between
VP and hardware was successful. Whenever the VP software uses the registers for
incoming or outgoing data, 𝑔𝑒𝑡𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔() or 𝑠𝑒𝑡𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔()methods are invoked
respectively.

TL
M

2
.0

 B
U

S

Status
Register

Incoming Data
Length Register

Outgoing Data
Length Register

Incoming Data
Register

Outgoing Data
Register

getIncoming() setOutgoing()

Delay
Model

V
ir

tu
al

 P
la

tf
o

rm

CPUs

Memory

Other TLM2.0
Peripherals &
Accelerators

TLM Interface to HW Board

O/S call: write()O/S call: read()

Hardware Board
(e.g. Xilinx Virtex-6)

Device Driver
Physical Link

(USB, Ethernet, etc)

Figure 2.4 Communication mechanism between VP and hardware board.

Another feature provided by the developed VP2HW library affects the delay of
hardware board, which does not affect the timing of the TLM transactions. In other
words, the designer can define the desired timing resolution. For this purpose, the
TLM interface of introduced framework provides a delay model which corresponds
to the desired timing accuracy of TLM transactions. Such an approach is important
in case the employed hardware device is not the implementation medium of final
system. Finally, the developed library is protocol-independent, and consequently
any potential/customized communication protocol between VP and hardware can
be selected.

2

28 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

2.3.1.3 Implementation of the HotTalk FPGA Transactor

In order to realize the VP2HW communication, the HotTalk API provides a com-
munication protocol consisted of a transactor module mapped onto the FPGA. This
transactor handles the incoming or outgoing data, thus establishing the connection
between the hardware IP and the communication port (in our case Ethernet). As
long as custom HW IPs have been developed, it is possible to verify their function-
ality under real-world scenarios, using the HotTalk FPGA transactor. This approach
was proven that detects bugs and performance issues that cannot be foreseen when
solely software testbenches are employed.

The overall communication flow established by the transactor relies on a producer-
consumer scheme and it is depicted in Fig. 2.5. More specifically, the testbenches
to the host side (either in native code or through a VP) generate the necessary input
traces for HW IPs. Then, the device driver assembles input data to protocol frames.
The protocol in it’s current version is built on top of raw Ethernet frames. In order
to maximize the communication throughput, the size of the header packets is lim-
ited to 8 bytes, referring to the destination address (6 bytes) and the length of the
frame (2 bytes). The rest packet (MTU-8 bytes) is used for data transfer. On the
FPGA side, the HotTalk FPGA transactor is responsible for serving the RX requests
from host’s network interface controller (NIC) (initiated from device driver) to the
custom HW IPs. A similar approach is followed for the reverse data direction, in the
case that FPGA is forwarding results to the testbench.

Testbench
Traffic

Generator

Frame
Assembler

HOST
HotTalk

Device Driver

Userspace
Software

(Native & OVP code support)

HotTalk Protocol

RAW Ethernet, 8B reserved
Arbiter Frame x PHY ports

n-PHY ports

Testbench
Traffic

Receiver

Frame
Disassembler

n-PHY ports RAW Ethernet, 8B reserved
Arbiter Frame x PHY ports

HotTalk
FPGA Transactor

FPGA

n-PHY ports

RX

TX
n-PHY ports

Producer Consumer

ProducerConsumer

Figure 2.5 The communication flow established in the transactor.

As we have already mentioned, the communication between the developed IP
kernels and the VP plays an important role in the overall system’s performance.
To facilitate the data transfer, we designed a communication scheme depicted in
Fig. 2.6, which combines off-the-self and custom-made kernels to implement raw
Ethernet connection. This scheme is supported by (i) a communication back-end
IP, named ComCore, (ii) an arbiter and (iii) the Design Under Test (DUT).

For this purpose, we utilized the integrated Ethernet physical layer (PHY) chip

2.3. Prototyping Methodology

2

29

Memory to

 DUT #1

Data Feeding

FSM

Results

Forwarding FSM

to DUT #1

Memory from

DUT #1

from DUT #1

from ComCore

to ComCore

DUT #1

IP

Arbiter
Parametric VHDL

(input size, prefetching mechanism)

Results forwardingData feeding

DUT #2

IP

Memory to

 DUT #2

Memory from

DUT #2

from ComCore

to ComCore

DUT #2 flow

Data Feeding

FSM

Results

Forwarding FSM

DUT #1 flow

to DUT #2

from DUT #2

Ethernet

Back-end

ComCore
Parametric VHDL

(MTU)

Figure 2.6 Architecture of the employed FPGA transactor.

found in Virtex-6 FPGA board (HTG-V6-PCIE-L240T-2) to perform character encod-
ing, transmission, reception and decoding. Building on top of PHY, we developed a
custom Rx/Tx controller based on the Ethernet MAC IP core from OpenCores [16],
which implements the CSMA/CD LAN in accordance with the IEEE 802.3 standards.
The resulting back-end component, as shown in Fig. 2.6, supports the custom-
made kernels used to construct and distribute heterogeneous packets to the vari-
ous hardware modules of the target system. Specifically, we use “ComCore” for the
split/synthesis of large data packets to frames of 1,500 bytes. Moreover, ComCore
handles the MAC controller’s signaling to provide a simple Wishbone interface to
the remaining FPGA modules.

The Arbiter component controls the communication channel to avoid conflicts
between the processing modules. Among others, this arbiter provides prioritized
communication for these modules based on a round-robin polling. In order to
support a pipeline operation, the Arbiter pre-fetches packets while the remaining
modules process already fetched data. Such a functionality exploits the DMA capa-
bilities of state-of-the-art off-the-self NICs: Rx and Tx operations can be performed
in parallel by dedicated Ethernet PHY chips, while at user space, distinct threads
can execute independent tasks of the algorithm being scheduled dynamically by
the operating system. Additionally, we have to notice that the proposed scheme
can support multiple channels of Ethernet communication between the VP and the
FPGA, more precisely one channel per DUT, depending on the distinct Ethernet
ports found on the target FPGA board. For instance, in Fig. 2.6 an arbiter with
two DUTs is depicted. In such a case, the arbiter uses headers to designate the re-
ceiving/transmitting module from/to the VP. Regarding the arbiter’s architecture, it
incorporates two distinct finite state machines (FSMs), each of which is dedicated to
transmission and reception procedure respectively. Such a design approach allows
independently data feeding and results forwarding, as long as the FIFO memory

2

30 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

dedicated to each FSM is big enough to store the data. Thus, the arbiter could
support a parametric pre-fetching mechanism (with configurable amount of pre-
fetched data frames), so that the the DUT IP can work on high utilization ratio
without waiting the VP2HW communication at every iteration step.

As compared to existing implementation [16], the ComCore developed for the
scopes of Plug&Play features batch mode transmission-reception of parametric-
length frames, error and collision detection. In conjunction with a Linux kernel
driver developed to cooperate with the introduced framework, it also offers recov-
ery from system collisions. On the software side, we developed a device driver
to support the communication between the Ethernet Network Interface Card (MII
standard compatible NIC) and the VP. The driver provides the interrupt handling of
the NIC to enable the asynchronous communication within the system via a trans-
parent interface to the user space. In more detail, the deriver performs read and
write operations to a Linux character device file, whereas it was developed as a
loadable kernel module for supporting raw Ethernet frames of 1,500 bytes (MTU).

2.3.2. Evaluation of 3-D Embedded Systems
Even though the advantages of 3-D chip stacking seem obvious from a theoretical
point of view [2] [1], designers need CAD tools in order to embrace this technology.
Even before physical design tools for 3-D become commercially available, path-
finding tools will be needed. Such tools will enable designers to explore a number
of different 3-D implementation alternatives for their design and come up with the
few process technology and design options that are Pareto-optimal. This process
typically happens early in the design cycle of a new product, when designers fix
high-level decisions like selection of process technology, high-level chip architecture
(amount of task-level parallelism), etc.

This subsection describes the part of the proposed Plug&Chip framework dealing
with the estimation of performance metrics for SoC designs, when they are phys-
ically implemented with adopting the 3-D integration technology. During this step
all the platform-dependent decisions, such as the way the system’s architecture
is partitioned, the IP block-to-layer assignment, the selection of interlayer inter-
connection technology, etc, are made. By distinguishing this step from the pure
physical prototyping step, we can support 3-D stacks comprising heterogeneous
layers.

The introduced methodology for supporting fast evaluation of 3-D SoCs con-
sists of three modular steps in order to enable interaction with tools from similar
and/or complementary flows. More specifically, the steps of this methodology are
summarized as follows:

• Pre-processing: Verification of functional integrity for the design and extrac-
tion of its IP-XACT description [17]. The IP-XACT is an XML format that defines
and describes electronic components and designs.

• 3-D Stack Generation: Generates the 3-D stack and determines the commu-
nication (routing paths) among layers.

2.3. Prototyping Methodology

2

31

• 3-D System Prototyping: Performs the physical implementation of 3-D SoC
and evaluates the derived solution.

2.3.2.1 Pre-processing

The first step in our methodology is depicted schematically in Fig. 2.7. Initially, the
architecture’s RTL description is simulated under various parameters and constraints
(e.g. clock period, on-chip memories organization) in order to verify the system’s
functionality.

Input:

 - System’s RTL description

Output:
 - SoC’s functional integrity
 - System’s XML description

Hypergraph extraction

(Net2XML)
Simulation

Synthesis

(Design Compiler)

Figure 2.7 Tasks for the pre-processing step.

Then, the desired hierarchy for the target 3-D architecture is determined. Differ-
ent levels of hierarchy are possible to be handled by our framework, each of which
exhibits advantages and disadvantages. For instance, a block-based system’s de-
scription leads to a coarse-grain solution, whereas a gate-level netlist comes with a
finer system implementation. In other words, the fine-grain approach imposes the
highest performance enhancement, but it also introduces the maximum computa-
tional complexity for performing architecture-level exploration. We have to men-
tion that due to the importance of this selection, careful study about the hierarchy
should be applied, because a sub-optimal solution might alleviate the performance
enhancements imposed by the 3-D integration. For the scope of Plug&Chip frame-
work, we choose (without affecting the generality of the proposed framework) to
maintain the system’s hierarchy among heterogeneous modules (e.g. logic, mem-
ory), while each module is flattened in order to maximize the performance enhance-
ment.

After defining the SoC’s hierarchy, the RTL description is synthesized with Syn-
opsys Design Compiler. As long as the design constraints (e.g. timing slacks, DRC’s,
etc) are met, the output from synthesis is translated to an equivalent XML descrip-
tion. This task is software-supported by our new publicly available tool, named
Net2XML.

2.3.2.2 3-D Stack Generation

The derived XML description which represents the SoC’s netlist after technology
synthesis is fed as input to the second step of our methodology, depicted in Fig. 2.8,
where we deal with the 3-D stack generation under the selected design constraints.

Initially, the application is partitioned into a number of subsets. Different opti-
mization goals can be considered during this task, such as the minimization of con-
nections between partitions, while respecting some constraints (e.g. like keeping
DRAM and logic on different partitions). Previous studies showed that partitioning

2

32 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

Output:
 - 3-D stack
 - Communication among layers

Partitioning

(Tabu algorithm)

Stack Generation

 (XML2Net)

System Partitioning
Partition to Layer

Assignment
Layer Ordering

Input:

 - Number of layers

 - 3-D bonding technology

a
d

d
it
io

n
a

l

im
p

ro
v
e

m
e

n
ts

Assign

TSVs to buses
Form TSV networks

Update the RLC

values for TSV

networks

Figure 2.8 Tasks for 3-D stack generation.

algorithm exhibits increased flexibility whenever the number of subsets is higher as
compared to the corresponding number of device layers [18].

Next, the assignment of derived subsets to the layers of the target 3-D archi-
tecture takes place. During this step, both fabrication (i.e. yield) and cost param-
eters (i.e. number of TSVs) are taken into account. More specifically, for a given
layer, only technology-compatible components can be assigned to, while each of
the layers has to exhibit sufficient area utilization. Finally, we build a prototype
of the stack by deciding on the order of the die in the stack (which layer goes
to the bottom, which one on top, etc) and the choice of 3-D bonding technology.
Even though alternative bonding technologies could be evaluated with the proposed
framework, such as TSV (or Face-to-Back), Face-to-Face, as well as wire-bond, how-
ever, throughout this research we provide results only for the TSV approach, which
leads to the maximum performance enhancement [2] [1].

The tasks of system’s partitioning, partitioning to layer assignment and layer
ordering are software-supported by our publicly available TABU algorithm. An initial
version of this tool was presented in [19], but for the scope of this research, the
algorithm was massively extended. More specifically, initially the tool was developed
for supporting exclusively designs mapped onto 3-D FPGAs, whereas the current
version is also aware about handling designs for 3-D ASIC platforms.

The output from partitioning procedure provides information about the archi-
tecture’s functionality assigned to each layer, as well as the required connectiv-
ity among layers. This information is appropriately handled by our tool, named
XML2Net, in order to assign a TSV array to each bus that connects the architec-
ture’s components to different layers. Note that whenever a bus needs to be routed
in layers 𝑖 and 𝑗, silicon area equals to the area occupied by the TSV array has to be
reserved in both layers. Even though our framework can also handle distinct TSVs,
throughout this study we select to employ arrays of TSVs because they introduce
fewer constraints to routing algorithm. Finally, the TSV arrays that provide bus con-
nectivity between adjacent layers 𝑖 and 𝑗 are connected through special-purpose
routing paths, named TSV networks. As we will discuss later, these networks are

2.3. Prototyping Methodology

2

33

actually implemented with additional metal layers, which exhibit tunable 𝑅𝐿𝐶 char-
acteristics in order to correspond to those found in TSVs from the selected 3-D
technology.

2.3.2.3 3-D System Prototyping

The last step in our framework, depicted in Fig. 2.9, deals with system prototyp-
ing to derive the 3-D stack. More specifically, during this step we perform floor-
planning, power and ground network generation, placement of physical library cells,
clock tree synthesis and global/detail signal routing with the Cadence SoC Encounter
tool. Since our framework is software-supported by a 2-D commercial flow, it is not
possible to modify the functionality of these tools (their source code is not avail-
able). Hence, we have to make them aware of the additional flexibility imposed
by the third dimension through appropriate design encoding. For this purpose we
introduce:

• Virtual layers: Our framework assumes that the target 3-D SoC consists of
virtual layers, each of which contains hardware resources that have to be
assigned to different physical layers of the 3-D stack.

• TSV networks: These networks correspond to routing paths that provide con-
nectivity between TSV arrays assigned to adjacent layers. Note that during
physical implementation, our framework preserves that TSV arrays assigned
to consecutive layers are spatially aligned. This is possible by forcing the
placement of TSVs to the same relative (𝑥, 𝑦) co-ordinates between adja-
cent layers. The TSV networks are actually implemented through additional
metal layers inserted to the technology library file, while their total resistance
(𝑅), capacitance (𝐶) and inductance (𝐿) values correspond to the TSV’s 𝑅𝐿𝐶
parameters [20].

Post-layout Simulation

(Cadence Incisive

Simulator)

Physical Design

(Cadence SoC Encounter)

Timing Analysis

(Cadence Static Timing

Analysis Engine)

Input:

 - SoC design with TSV networks

 - Design specifications

Output:
 - 3-D SoC
 - Evaluation metrics

Post-layout Power analysis

(Synopsys PrimeTime PX)

Physical Design

Evaluation

Figure 2.9 Tasks for 3-D system prototyping.

In order to clarify the concepts of virtual layers and TSV networks, Figure 2.10
gives an example, where a design is modeled as a 3-D chip consisted of four layers.
More specifically, Fig. 2.10(a) depicts how the design is partitioned to four virtual

2

34 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

layers, as well as the connectivity among these functionalities with five buses (im-
plemented as TSV networks). Similarly, Fig. 2.10(b) corresponds to the same de-
sign after performing detailed routing (e.g. with the usage of Cadence nanorouter).
As we have already mentioned, the electrical characteristics of these networks are
appropriately annotated in order to correspond to those of TSVs, based on the se-
lected fabrication technology. Hence, even though the routing paths of different
TSV networks in Fig. 2.10(b) exhibit different wire-length, all of them have exactly
the same RLC parameters.

TSV

N
etw

ork #2

TSV Network #3

TSV

Network #1

T
SV

N

e
tw

o
rk

 #
4

Virtual Layer #3

Virtual Layer #1

Virtual Layer #3

Virtual Layer #1 TSV

Network #1

TSV

Network #4

T
S

V

N
e

tw
o

rk
 #

3

TSV

Network #2

(a) (b)

2-D Physical Layout 2-D Physical Layout

TSV

Network #5Virtual Layer #2

Virtual Layer #4 Virtual Layer #4

TSV

Network #5

Virtual Layer #2

TSV

arrays

Figure 2.10 Paradigm of evaluating a 3-D design with four layers: (a) model the design with virtual
layers and TSV networks and (b) design after successfully routing.

After 3-D physical prototyping, we evaluate the efficiency of the derived solution
by applying timing analysis. For this purpose we employ the Cadence Static Timing
Analysis Engine, while for sake of completeness the analysis is performed both in
advance, as well as after clock tree synthesis and architecture’s routing. In case
the derived 3-D stack does not meet system’s constraints/specifications, a number
of design optimization may be applied for additional improvements.

2.4. Experimental Results
This section provides a number of experimental results that prove the efficiency of
the proposed Plug&Chip framework. For demonstration purposes, we provide this
analysis in two complementary steps, similar to those presented in our methodol-
ogy. More specifically, initially we quantify the efficiency of the derived communi-
cation link between host PC and target platform, while then we also provide results
about applying the introduced framework for designing a 3-D instantiation of a well-
established embedded processor (OpenRISC [21] processor). Furthermore, in order
to depict that our introduced framework is also applicable to complex systems, sub-
section 4.3 provides experimental results for applying Plug&Chip methodology to a
project founded by European Space Agency (ESA) targeting to develop in hardware
computer vision algorithms for supporting autonomous rover navigation.

2.4. Experimental Results

2

35

2.4.1. Evaluation of Communication Infrastructure
This subsection focuses on quantifying the efficiency of the proposed communica-
tion scheme between host PC and VP, as well as between VP and the hardware
board. Since the main objective during the development of our framework was
to achieve as lower communication overhead as possible, while retaining at the
same time the support among others the multiple VP frameworks and the extensi-
bility feature, such an evaluation becomes an important issue for deriving a widely
accepted solution in the domain of system virtualization. Additionally, as we are
primarily interested on quantifying the communication scheme, ignoring about po-
tential limitations posed by the computational part of the target system, the test-
cases presented in the rest of this subsection were appropriately selected in order
to introduce the minimum possible overheads in term of wall-clock time.

Figure 2.11 Gain in term of wall-clock time for: (a) the proposed Host2VP library and (b) the proposed
VP2HW library, as compared to semi-hosting approach [4].

In order to quantify the Host2VP and VP2HW libraries, we have developed two
C-based programs which iteratively send and receive data of a 10ዀ integers of spe-
cific size (ranging from 4 up to 4,096 bytes) between host and VP, as well as VP
and target hardware, respectively. The communication overhead for the proposed
library is performed by sending a number of 10ዀ integers, whereas the results of
this analysis are plotted in Fig. 2.11. The horizontal axis in this figure corresponds
to the packet size transferred between host PC and VP (Fig. 2.11(a)), as well as be-
tween VP and hardware (Fig. 2.11(b)), whereas the vertical ones depict the gains
(speedup) in wall-time clock as compared to the semi-hosting approach. At this fig-
ure we also plot with dotted line the solution that corresponds to the semi-hosting
approach.

Two different scenarios are taken into consideration for the data transfer dis-
cussed in Fig. 2.11(a), which are summarized as follows:

• Scenario 1: The data transfer is made in segments the size of which is equal to
the packet size of Host2VP communication mechanism, as defined at compile
time.

2

36 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

• Scenario 2: The data is transferred in segments of 4,096 bytes (or 1,024
integers).

Based on this figure we can conclude that for small and medium packet sizes, our
solution is up to 5.61× faster than semi-hosting in case of Host2VP, and 1.42× faster
in case of VP2HW. Specifically, regarding the Host2VP approach, our library exhibits
higher performance for packet sizes smaller (or equal) to 256 bytes, whereas the
corresponding packet size for VP2HW is 64 bytes. The limitation of semi-hosting for
small and medium packet sizes can be explained by taking into consideration that
data transfers with this approach are realized within hard disk (where each data
transfer is handled in 4-Kbyte data blocks), as we have already mentioned in Tables
2.1 and 2.2. Hence, by forcing the hard disk blocks to be accessed multiple times,
the semi-hosting leads to mentionable overheads. On the other hand, for larger
packet sizes, semi-hosting seems to outperform our solution, as less accesses on the
hard disk are committed. Despite the previously mentioned analysis, a packet size of
4 bytes corresponds to a more realistic scenario when comparing our solution (TLM-
based) against semi-hosting, because the majority of existing processors expose 1-
word registers to the bus addresses. In addition to this, the initiator of the specific
model employed for our analysis (OpenRISC processor) supports transactions of
short length only, even though TLM potentially could support any transaction length.

Fig. 2.12 plots the communication overheads for the two scenarios studied
throughout this section, when the packet size is defined constantly equals to 4
bytes. The horizontal axis of these figures denote the number of integers that
are sent through the communication link, whereas the vertical axes provide (in
logarithmic manner) the time required for this data transfer. This figure indicates
the proportional increase of wall clock time with the number of integers that are
transferred through the communication link; consequently it is possible to estimate
the overhead for any data transfer. The last point indicates also that the gains in
wall-clock time discussed previously are independent of the data volume.

Finally, based on Fig. 2.12 we can conclude about the performance efficiency of
the introduced communication scheme, as compared to the semi-hosting approach
discussed in Fig. 2.11 for the case of the 4-byte packet size. The configuration of
HotTalk FPGA transactor significantly affects the performance of co-simulation, as
the communication link might be slower than the IP core mapped onto the FPGA.
Hence, in order to maximize the efficiency of co-simulation, designers have to em-
ploy a suitable (application-oriented) transactor by carefully choosing the size of
transaction refill memory (i.e. the amount of data that the arbiter feeds the hard-
ware IP in each transaction). During this selection we also have to take into con-
sideration that larger refill memory imposes additional hardware resources for the
transactor’s implementation (memory blocks, as well as wider buses for addressing
these memories).

In contrast, there is no such monotonic relation between the execution run-time
of co-simulation and the size of transactor’s refill memory. Regarding the solution
introduced in the Plug&Chip methodology, the data rate of the producer-consumer
scheme employed by the HotTalk API establishes the most suitable configuration
of the transaction’s refill memory size per application. For instance, assuming that

2.4. Experimental Results

2

37

10ኾ 10኿ 10ዀ 10዁ 10ዂ10ዅኼ
10ዅኻ

1
10
10ኼ
10ኽ
10ኾ

Number of integers

Ti
m
e
(s
ec
on
ds
)

(a)

Host2VP (scenario1) Host2VP (scenario2) Semi-hosting

4.64×

10ኾ 10኿ 10ዀ 10዁ 10ዂ
1
10
10ኼ
10ኽ
10ኾ
10኿

Number of integers

Ti
m
e
(s
ec
on
ds
)

(b)

VP2HW Semi-hosting

1.42×

Figure 2.12 Evaluation of communication overhead between: (a) host PC and VP, (b) VP and hardware
assuming constant packet size of 4 bytes.

an application’s control-path has to process a stream of 𝑛 bytes and the transactor
is configured to load the FPGA with 𝑚 < 𝑛 bytes, then a number of iterations
equals to ⌈ ፧፦ ⌉ should be performed, which in turn imposes a degradation in co-
simulation speed (since the DUT waits the communication link to deliver the data).
DUT utilization refers to the ratio of time which the DUT component is not stalled
(due to data transfer) over the total simulation time.

The performance of HotTalk FPGA transactor is quantified with four benchmarks
from MiBench suite [22]. The selection of these benchmarks was performed by
taking into consideration that the control path for each of them imposes different
input/output data rates. Regarding this analysis, the OpenRISC processor was im-
plemented onto the Virtex-6 FPGA board (HTG-V6-PCIE-L240T-2), while the arbiter
was connected directly to processor’s memory, so that the data input to benchmarks
is transferred directly to processor’s memory space.

The results of this analysis, which depict how the transactor’s configuration af-
fects the overall speed of co-simulation, are summarized in Fig. 2.13. The vertical
axes in this figure give the performance of co-simulation in terms of cycles per sec-
ond (left axis) and the DUT utilization (right axis), while the horizontal axis plots the
transactor’s memory size. The performance of co-simulation corresponds to the to-

2

38 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

0 1 2 3 4
3.4

3.5

3.6

3.7

3.8

3.9
x 10

5

C
o−

si
m

ul
at

io
n

C
yc

le
s/

se
c

Transactor Refill Memory (x10KB)

Quicksort

0 1 2 3 4
40

50

60

70

80

90

D
U

T
 U

til
iz

at
io

n
(%

)

0 1 2 3 4
0

2

4
x 10

6

C
o−

si
m

ul
at

io
n

C
yc

le
s/

se
c

Transactor Refill Memory (x10KB)

SHA

0 1 2 3 4
0

50

100

D
U

T
 U

til
iz

at
io

n
(%

)

0 1 2 3 4
1.2

1.3

1.4
x 10

6

C
o−

si
m

ul
at

io
n

C
yc

le
s/

se
c

Transactor Refill Memory (x10KB)

AES

0 1 2 3 4
0

50

100

D
U

T
 U

til
iz

at
io

n
(%

)

0 1 2 3 4
0

2

4
x 10

4

C
o−

si
m

ul
at

io
n

C
yc

le
s/

se
c

Transactor Refill Memory (x10KB)

FFT

0 1 2 3 4
0

50

100

D
U

T
 U

til
iz

at
io

n
(%

)

Figure 2.13 Evaluation of the efficiency of introduced co-simulation approach for different benchmarks.

tal cycles for the transactor’s (both communication and DUT) execution. Similarly,
the DUT utilization defines the percentage of time that the DUT is not stalled due
to data transfer.

Based on this figure, we can conclude that the efficiency of the employed trans-
actor in HotTalk API highly depends on the application’s inherent requirements for
data input/output. In more detail, as we increase the transactor’s refill memory,
there is a proportional increase to the transactor’s efficiency up to a saturation point.
For instance, regarding the employed benchmarks, this saturation point is almost
10KB for SHA and FFT algorithms, while it is 20KB for Quicksort and AES. Then,
the transactor seems to be saturated, and consequently, even if we feed it with a
higher rate of data input, this data could not be utilized by the target IP core (DUT).

2.4.2. Evaluating the 3-D OpenRISC
The second part of this section provides a number of qualitative results about the
evaluation of digital systems implemented with the usage of 3-D integration pro-
cess. For this analysis we employ the OpenRISC processor [21] implemented with
the usage of TMSC 45nm process technology with 9 metal layers, whereas the
parameters affecting the employed TSV library are summarized in Table 2.3.

Fig. 2.14 depicts two different 3-D flavors of OpenRisc processor, as they are

2.4. Experimental Results

2

39

Table 2.3 Characteristics of the selected TSV technology [23].

Diameter Minimum Pitch Resistance Capacitance Length
1.2um 4um 0.35Ω 2.5fF 4-9um

retrieved after the generation of 3-D stack. Different colors in these diagrams de-
note blocks that are assigned to different (virtual) layers. More specifically, the
first of them, shown in Fig. 2.14(a) corresponds to a min-cut partitioning, whereas
the architecture of Fig. 2.14(b) matches to the case where a technology-oriented
partitioning is performed. Even though additional 3-D stacks could be derived with
𝑇𝐴𝐵𝑈 algorithm, the solutions depicted in this figure correspond to two representa-
tive solutions. Specifically, the min-cut approach leads to the minimum number of
TSVs, and hence to yield improvement. On the other hand, the second approach is
applicable to designs that include non-compatible technology processes (e.g. logic,
battery, RF, sensors, etc) integrated onto a single chip.

POWERM

DEBUG

TICK TIMER

PIC

IMMU

WB
I

ICache
8KB

Dcache
8KB

WB
D

DMMU

CPU/DSP

(b)

POWERM

DEBUG

TICK TIMER

PIC

IMMU

WB
I

ICache
8KB

Dcache
8KB

WB
D

DMMU

CPU/DSP

(a)

Assigned to Layer 2

Assigned to Layer 1

Figure 2.14 Partitioning OpenRISC processors under different constraints: (i) min-cut partitioning and
(b) technology-compatible partitioning.

The synthesis of OpenRisc processor is performed with Cadence Encounter RTL
Compiler under a timing constraint of 10ns (or 100MHz). The derived netlist con-
sists of 13,847 standard cells, 14,541 nets, and 374 I/O ports. Table 2.4 gives some
additional technical details about the physical implementation of OpenRisc proces-
sor. Based on these results we can conclude that the derived 3-D architectures
improves the maximum operation frequency by 1.19× and 1.26× respectively, as
compared to the corresponding 2-D system implementation. The physical layouts
retrieved from Cadence SoC Encounter for these two architectural approaches are
depicted in Fig. 2.15.

2.4.3. Apply Plug&Chip to a Heterogeneous Embedded System
- The SPARTAN Project

This subsection describes how we applied our introduced framework to European
Space Agency (ESA) initiated project SPARTAN, focusing on the hardware imple-
mentation of suitable computer vision algorithms [24]. Rather than similar ap-
proaches that tackle this problem solely in software-level, our objective is to de-
velop a number of computer vision (CV) algorithms in ESA compatible VHDL for-

2

40 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

Table 2.4 Metrics about the physical implementation of OpenRISC processor as a 3-D chip.

Characteristics 2-D System 3-D System
Solution of Fig. 2.14(a) Solution of Fig. 2.14(b)

Max. Oper. Frequency (MHz) 95 113 120
Wire-length (᎙፦) 318,750 330,986 323,247
Half-perimeter (᎙፦) 237,791 247,387 234,411
Number of TSVs 0 272 408
Area for TSVs (᎙፦Ꮄ) 0.00 1395.36 2093.04
Aspect ratio 1.00 2.00 2.00
Area per layer 149,344 ᎙፦Ꮄ 149,368 ᎙፦Ꮄ 149,369 ᎙፦Ꮄ

Virtual Layer 1 Virtual Layer 2 Virtual Layer 1 Virtual Layer 2

(a) (b)

Figure 2.15 Physical implementation of 3-D OpenRISC with the usage of Cadence SoC Encounter for the
partitioning discussed in Figs. 2.14(a) and 2.14(b), respectively.

mat, whereas the implementation of SPARTAN system will be demonstrated using
a co-design methodology targeting a host CPU and a Virtex-6 FPGA device. More
specifically, the CPU provides all the standard operating system services required
for proper rover navigation, such as hardware abstraction, low-level device con-
trol, implementation of commonly-used functionality, message-passing between
processes, and package management, whereas the FPGA acts as an accelerator
for the computational intensive CV algorithms. Additional details about the archi-
tecture of SPARTAN system can be found in [25].

The successful completion of the project imposes that a number of specifica-
tions have to be met (i.e. high-performance while maintaining efficiency in terms of
energy use, computing power and memory footprint). Starting from an all software
solution in C/C++, we identified the CV algorithms (or part of them) that introduce
performance bottleneck in systems’ execution and have to be accelerated through
mapping onto reconfigurable hardware. Since the overall performance of the SPAR-
TAN system (depicted in Fig. 2.16) highly depends on the input signals (e.g. image
data), the system exhibits increased amount of dynamism, i.e. its execution cost
(e.g., number of processor cycles, memory footprint, energy) and quality metrics
(e.g., algorithm’s accuracy, system’s mean error) are environment dependent (e.g.,
input data). Hence, during the project, we faced the challenge to estimate the
impact of this dynamic behavior at design time.

In order to handle the dynamic nature of the developed system, we adopted

2.4. Experimental Results

2

41

Sensors

Vision Stereo

System

IMU

Acc + Gyros

Proximity

Sensors

Imaging

Visual SLAM

Visual

Odometry

Mechanical

Odometer

Guidance, Navigation

and Control

SPARTAN Architecture

Map Merging
3D Map

reconstruct.

Localisation

Path

Planning

GNC

Figure 2.16 Schematic overview of the SPARTAN system.

the concept of system scenarios presented in [26]. According to this approach, the
system behaviors that are similar from a multi-dimensional cost perspective, such
as resource requirements, delay, and energy consumption, are grouped in such a
way that the system can be configured to exploit this cost similarity. The concept
of using scenarios in embedded systems domain initiates from the different Run-
Time Situations (RTSs), in which a system may run on a given platform. Regarding
the SPARTAN project, the parameters of the CV algorithms, as well as those that
affect the co-design architecture, result to different RTSs, as they highly affect
a quality cost metric (e.g. FPGA resources, CPU frequency, throughput etc). In
general, any combination of 𝑁 cost dimensions may be targeted with this approach.
However, the number of cost dimensions in conjunction to all the possible values
of the considered RTS parameters usually leads to an exponential number of RTSs.
As a result, the design process is being complicated while the run-time overhead of
studying all these RTSs is excessive high. A viable solution to this problem relies on
appropriately clustering these parameters from an 𝑁-dimensional cost perspective
into system scenarios [26]. Even though different mechanisms for supporting the
prediction of optimum scenario under run-time constraint, as well as for performing
scenario switching, are available [26], they are applicable mostly in homogeneous
platforms. In contrast, the SPARTAN project was built on top of a co-design CPU-
FPGA architecture; thus the concept of using scenarios has to be has to adapted to
the employed underline architecture.

After a detailed profiling, we conclude that the most computational intensive
CV kernels were the Disparity algorithm (a submodule of 3D Map Reconstruction)
and the SURF algorithm (submodule of Visual Odometry) [27]. These algorithms
include an increased number of parameters that highly affect the performance of fi-
nal system. Also, since there is a dependency among the functionalities of SPARTAN
system, during the development phase it is important to iteratively control and test

2

42 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

the impact of algorithms parameters against the specifications of the final system.
While for a software only project this testing procedure may be controllable due

to the uniform and homogenous implementation platform (e.g. all modules under
development are using the same API and shared libraries while running on top of
the same OS), this does not affect the SPARTAN project where the implementation
platform is a heterogeneous architecture. This limitation is overcomed by apllying
the introduced Plug&Chip framework. Specifically this framework provides to the
consortium the opportunity to quantify the impact of RTS parameters in CV algo-
rithms both at early design phases, as well as throughout the whole development
phase.

Figure 2.17 Evaluation of SPARTAN system using a scenario-based trade-off analysis.

As a proof of concept, Fig. 2.17 gives the SPARTAN trade-offs when four dis-
tinct scenarios were studied. While this information is usually available at the final
design stages, where the complete system is functional, the Plug&Chip framework
evaluates the impact of 16 RTS parameters as long as only two IPs were developed
in VHDL. These IPs were tested in true silicon (FPGA), with real-world testbenches,
through the Host2VP and VP2HW methods, while the under-development system
was emulated on a VP. The trade-offs of Fig. 2.17 aforemention the average execu-
tion time per frame and the mean error of rover’s Visual Odometry (as compared to
the real displacement) versus the average number of detected features. As long as

2.4. Experimental Results

2

43

the number of detected features is increased, the system is able to provide better
location estimates and thus the displacement error is reduced. However, such an
improvement in accuracy comes with a penalty in execution time, as more features
need more time to be processed.

As it is depicted in Fig. 2.17, a Pareto surface of potential exploitation points
is derived in the 3-dimensional exploration space. Such an exploration enables
the establishment of the optimal configuration RTS-parameters under the project’s
specification (i.e. compute location estimates faster than 1 second, as it is imposed
by the SPARTAN specifications). Thus, while for scenarios 1 and 2 the system can
be configured to produce up to 200 features on average, while operating in less
than a second and providing high accuracy (in term of error), this does not occur
in case scenarios 3 and 4 are employed. In such a case, the design team could
appropriately modified the already taken decisions in order to further optimize the
entire system and meet the specifications for all the scenarios.

Figure 2.18 Evaluation of SPARTAN system towards the efficiency of introduced co-simulation approach.

We have to mention, that the configuration of HotTalk FPGA transactor signif-
icantly affects the performance of co-simulation (as it was already mentioned in
subsection 4.1). In order to quantify this performance enhancement, Fig. 2.18
plots the impact of transactor’s refill memory to the co-simulation speed, as well
as the DUT utilization. Based on our experimentation, we found that up to 30KB
there is a almost linear correlation between the number of succeeded co-simulation
cycles with the DUT utilization. Note that the DUT utilization is too low since the
slow 100Mbps Ethernet link of HotTalk pauses the pipelined operation of SPARTAN

2

44 2. Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips

system. However from such an analysis a designer shall calculate in detail the com-
munication overhead of HotTalk FPGA transactor and thus estimate the performance
of the final system.

Figure 2.19 represents a snapshot assessment of SPARTAN system at the ROS
environment, under the framework Plug&Chip. As shown, the system may be sim-
ulated in realistic scenarios during the early design stages, where the algorithms
are not completed in their final form. In this instance, the three machine vision
algorithms, depicted in pop-up windows, are running in an FPGA device, through
the framework Plug&Chip, while all the other motion estimation algorithms of the
robotic system (blue and red course lines), as well as the the virtual environment
software shown in Figure 2.19 are running on a host computer, through the ROS
operating system and the OpenCV library.

Figure 2.19 Snapshot assessment of SPARTAN system on ROS/Linux environment, using the framework
Plug&Chip, on a PC-FPGA co-design platform.

Moreover, Figure 2.20 depicts a snapshot assessment of a car engine control
system (Engine Control Unit - ECU). Scope of the system is the motion path control
(track control) with the help of machine vision algorithms 7. In this instance, the
SURF machine vision algorithm is executed in a FPGA device, through the frame-
work Plug&Chip, while the rest of the system is running in a virtual simulation en-
vironment for the context of automotive racing [29]. This work targets the interest
points identification of successive images from the front position of the vehicle, in
order to optimize navigation. In this application context the Plug&Chip framework
enabled the testing of multiple scenarios of use under-development ECU even with

7The system was designed in a virtual prototyping contest for research papers on thesis level, from the
company Cadence, for the automotive industry [28] and awarded the ኼᑟᑕ prize.

2.5. Conclusion

2

45

the lack of real car and environment standards. This early assessment of the SURF
algorithm optimization helped in many operating scenarios. Further information on
the SURF algorithm can be found at [30].

2.5. Conclusion
This chapter presented a novel framework for supporting rapid, as well as incremen-
tal prototyping, of heterogeneous 2-D and 3-D embedded systems. Among others,
the Plug&Chip framework provides to designer teams the desired connectivity be-
tween the hardware-depended software, the control-flow software, as well as the
custom hardware IPs. Such a feature enables starting the development, testing
and validation of the embedded software substantially earlier than it has been pos-
sible in the past. Experimental results with various testcases, spanning from simple
kernels up to heterogeneous HW/SW embedded systems, prove the effectiveness
of the introduced framework, as it provides a more efficient co-simulation.

References
[1] V. F. Pavlidis and E. G. Friedman, Three-dimensional Integrated Circuit Design

(Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009).

[2] ITRS, International technology roadmap for semiconductos, (2012).

[3] Synopsys, Hybrid prototyping delivers the best of both virtual and fpga proto-
typing to soc hardware and software teams, .

[4] OVP, Open virtual platforms (ovp), online: www.ovpworld.org, (2013).

[5] R3LOGIC, R3logic inc. (2013).

[6] CADENCE, Cadence 3d-ic solution, (2013).

[7] T. Borgstrom, E. Haritan, R. Wilson, D. Abada, R. Chandra, C. Cruse, A. Dau-
man, O. Mielo, and A. Nohl, System prototypes: Virtual, hardware or hybrid"
in Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE (2009) pp.
1–3.

[8] SCE-MI, Standard co-emulation modeling interface (sce-mi) reference manual,
(2011), http://www.accellera.org/downloads/standards/sce-mi/SCE_MI_v21-
110112-final.pdf.

[9] Altera, Altera virtual target, (2013), http://www.altera.com/devices/processor/arm/cortex-
a9/virtual-target/proc-a9-virtual-target.html.

[10] QEMU, 1st international qemu users forum. (2011), http://adt.cs.upb.de/quf/.

[11] T.-C. Yeh, Z.-Y. Lin, and M.-C. Chiang, A novel technique for making qemu
an instruction set simulator for co-simulation with systemc, in Proceedings of
the International MultiConference of Engineers and Computer Scientists 2011,
Vol. I (2011) pp. 288 – 291.

http://www.itrs.net
http://www.soccentral.com/results.asp?CatID=488&EntryID=38917
http://www.soccentral.com/results.asp?CatID=488&EntryID=38917
http://www.ovpworld.org
http://www.r3logic.com/
http://www.cadence.com/solutions/3dic/Pages/default.aspx

2

46 References

[12] J. Jovic, S. Yakoushkin, L. Murillo, J. Eusse, R. Leupers, and G. Ascheid,
Hybrid simulation for extensible processor cores, in Design, Automation Test
in Europe Conference Exhibition (DATE), 2012 (2012) pp. 288–291.

[13] HAPS, Synopsys high-performance asic prototyping systems, (2013),
http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/HAPS.aspx.

[14] Xilinx, Xilinx hybrid co-simulation flow quick reference, (2013),
http://www.xilinx.com/tools/feature/14_1_isim_hw_cosim_qrg.pdf.

[15] Xilinx, Xilinx isim rtl simulator, (2013), http://www.xilinx.com/tools/isim.htm.

[16] OpenCores, Ethernet mac 10/100 mbps, (2013).

[17] IP-XACT, Ip-xact technical committee, (2013).

[18] N. Selvakkumaran and G. Karypis, Multiobjective hypergraph-partitioning al-
gorithms for cut and maximum subdomain-degree minimization, Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 25,
504 (2006).

[19] K. Siozios and D. Soudris, A tabu-based partitioning and layer assignment
algorithm for 3-d fpgas, Embedded Systems Letters, IEEE 3, 97 (2011).

[20] I. Savidis, S. M. Alam, A. Jain, S. Pozder, R. E. Jones, and R. Chatterjee,
Electrical modeling and characterization of through-silicon vias (tsvs) for 3-d
integrated circuits, Microelectronics Journal 41, 9 (2010).

[21] OpenRISC, Openrisc 1000 project main page, (2012),
http://opencores.org/or1k/Main_Page.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, Mibench: A free, commercially representative embedded benchmark
suite, in Proceedings of the Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop, WWC ’01 (IEEE Computer Society, Washington,
DC, USA, 2001) pp. 3–14.

[23] S. Gupta, M. Hilbert, S. Hong, and R. Patti, Techniques for producing 3d ics
with high-density interconnect, in Proceedings of the 21st International VLSI
Multilevel Interconnection Conference (2004).

[24] SPARTAN, (2013), http://proteas.microlab.ntua.gr/spartan.

[25] I. Kostavelis, L. Nalpantidis, E. Boukas, M. A. Rodrigalvarez, I. Stamoulias,
G. Lentaris, D. Diamantopoulos, K. Siozios, D. Soudris, and A. Gasteratos,
Spartan: Developing a vision system for future autonomous space exploration
robots, Journal of Field Robotics 31, 107 (2014).

http://dx.doi.org/10.1109/DATE.2012.6176480
http://dx.doi.org/10.1109/DATE.2012.6176480
http://opencores.org/project,ethmac
http://www.accellera.org/activities/committees/ip-xact/
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/LES.2011.2161571
http://dx.doi.org/ http://dx.doi.org/10.1016/j.mejo.2009.10.006
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1002/rob.21484

References

2

47

[26] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mamagkakis,
T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte, and K. D.
Bosschere, System-scenario-based design of dynamic embedded systems,
ACM Trans. Des. Autom. Electron. Syst. 14, 3:1 (2009).

[27] D. Diamantopoulos, K. Siozios, G. Lentaris, D. Soudris, and M. Rodrigalvarez,
Spartan project: On profiling computer vision algorithms for rover navigation,
in Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on
(2012) pp. 174–181.

[28] Cadence, Cadence thesis contest for automotive embedded systems, cdnlive�
emea 2013, .

[29] SD, Speed dreams: An open motorsport simulator, .

[30] G. Lentaris, I. Stamoulias, D. Diamantopoulos, K. Siozios, and D. Soudris,
An fpga implementation of the surf algorithm for the exomars programme,
Workshop on Reconfigurable Computing .

http://dx.doi.org/10.1145/1455229.1455232
http://dx.doi.org/ 10.1109/AHS.2012.6268647
http://www.cadence.com/cadence/events/Pages/designcontest2012.aspx
http://www.cadence.com/cadence/events/Pages/designcontest2012.aspx
http://www.speed-dreams.org

2

48 References

Figure 2.20 snapshot assessment of a car engine control unit (ECU) on Linux host, using the framework
Plug&Chip for virtual prototyping of CV algorithms, on a PC-FPGA co-design platform.

3
Cross-Layer Synthesis of

Heterogenous Architectures

This chapter presents cross-layer synthesis techniques for heterogeneous application-
specific architectures. There are analyzed the peculiarities of the architecture and
key contemporary problems of the design of heterogeneous application-specific
systems. The proposed methodology targets the optimization of conflicting design
metrics required by the modern semiconductor market, such as the energy con-
sumption, the silicon are, the temperature tolerance and the reliability. Also it is
introduced a hardware/software co-design flow for heterogeneous platforms. The
proposed methodologies are evaluated through the study of four heterogeneous
platforms, i.e. a SoC architecture for telecommunications (SDR), a NoC architec-
ture for multimedia applications, a computer vision system for space rover naviga-
tion and a SoC architecture designed with three-dimensional integration technol-
ogy. Chapter 3 is associated with the general methodology of the thesis presented
in Section 1.2, through the contribution of the categories of “Application-Specific
Platforms - EDA Tools systems 2D/2.5D/3D integration”, “Acceleration Datapath
Synthesis” and “System Architecture Exploration”.

3.1. Thermal and Reliability Aware SDR Architec-
tures

3.1.1. Introduction
Communication has become one of the central uses of computing technology over
the years. Architectures that facilitate communication, such as mobile phones and
wireless networks have been primary factors in driving the evolution of micropro-
cessors and computer systems. With the evolution of wireless mobile communi-
cations, the problem emphasis has shifted to networking protocols and signal pro-
cessing that are required to sustain the necessary bandwidth of these applications.

49

3

50 3. Cross-Layer Synthesis of Heterogenous Architectures

In recent years, we have seen the emergence of an increasing number of wireless
protocols (e.g. 2G, 3G, GPRS, WiFi, etc) that are applicable to different types of
networks.

Software Defined Radio (SDR) technology was created to improve interoper-
ability between different wireless networks, field radios, and devices [1]. SDR
technology is comprised of both software and hardware that can be dynamically
reconfigured to enable communication between a wide variety of changing com-
munications standards, protocols, and radio links. With this latest SDR technology,
system architects are able to create multi-mode, multi-band, and multi-functional
wireless devices and network equipment that can be dynamically reconfigured, en-
hanced, and upgraded through software updates and hardware reconfiguration.

Since the majority of these systems exhibit high-throughput, low-power require-
ments and short time-to-market, previous studies proposed the usage of System-
on-Chip (SoC) architectures to support the efficient implementation of SDR [2, 3].
Meeting the thermal constraints and reducing the temperature hotspots at these
platforms are critical tasks in order to design reliable systems. Furthermore, since
chip’s temperature has significant impact on performance, reliability, power con-
sumption, as well as cooling and packaging costs, it should be carefully optimized
at design time. Thermal-aware design is difficult, whereas designing a chip and
package for the worst-case power consumption scenario may be prohibitively ex-
pensive.

For this purpose, thermal management have recently received a lot of atten-
tion by design architects. The goal of thermal management is to meet maximum
operating temperature constraints, while tracking timing specifications. Moreover,
thermal management can also achieve further temperature reduction in order to
improve the reliability degradation of SoCs.

Previous studies shown that thermal stress is tightly firmed to reliability issues
[4] . For instance, thermal cycling can be modeled with the Coffin-Manson relation,
which relates in an exponential way the number of cycles to failure to the magnitude
of thermal cycling [5]. Existing approaches aim to perform thermal management
with techniques that come from the power reduction domain.

Typical instantiation of this solution is the usage of Dynamic Voltage and Fre-
quency Scaling (DVFS) [6]. Due to the approximately quadratic relation between
supply voltage and power consumption, DVFS-based techniques achieve to provide
mentionable savings in power consumption, but they impose slower operation fre-
quency. Moreover, these techniques cannot guarantee that temperature hotspots
and/or temperature gradients will be reduced, since there are applied during run-
time as a reaction to chip’s thermal crisis.

Another technique for providing temperature hotspot elimination, especially at
multi-core architectures, is based on load balancing [7]. Even though these tech-
niques have been studied for general purpose parallel computers, they targeted
mainly the avoidance of performance bottlenecks rather than thermal issues.

A similar approach is discussed in [8] where tasks are swapped between hot
and cool cores in order to control temperature values across the target architec-
ture. However, this approach assumes that threads are transferred among different

3.1. Thermal and Reliability Aware SDR Architectures

3

51

cores, which cannot provide focused thermal management (this would be feasible
only if functionality transfer is also supported instead of transferring threads). Fur-
thermore, there are available previous works [9, 10] that perform thermal manage-
ment through compiler optimizations. The main limitation of this approach affects
the difficulty to estimate with sufficient accuracy the temperature variations oc-
curred due to revisions of source code. Furthermore, this technique is applicable
only to a small percentage of SoCs, since the required architectural details are not
always freely available. In order to alleviate these limitations, instruction-level ac-
counting techniques that are based on empirical measures have been employed.

A common drawback among techniques discussed up to now is that they do
not incorporate any mechanism for handling thermal history of the cores. This fea-
ture provides useful guidelines about the future behavior of the system and can
be exploited to improve the results of the migration. In addition to that, existing
approaches mainly provide thermal aware application mapping onto SoC devices
based on exploration provided through simulation results. These approaches as-
sume that target platform is fixed ignoring about potential improvements achieved
through architecture-level optimizations [11]. In this work we propose a new
methodology, as well as the software supporting framework, for performing ar-
chitectural and physical design under constraints posed by temperature hotspots.
Specifically, the motivated idea introduced in this research work exploits the selec-
tive replication of hardware blocks that exhibit increased power densities. Then, by
appropriately assigning tasks onto these replica blocks, it is feasible to alleviate the
chip’s thermal stress.

The proposed approach aims at temperature optimization, while it can be con-
sidered as a proactive strategy that alleviates thermal stress at run-time. The in-
troduced framework does not impose any architectural or compiler modification,
whereas it is orthogonal to any other thermal-aware methodology discussed above,
since it is based on new architectural schemes to eliminate the consequences posed
by temperature hotspots. Thus, existing work on thermal aware application map-
ping and dynamic thermal management can be used in a modular manner to extend
the proposed methodology.

Specifically, we target at the development of an automated design space ex-
ploration framework that extracts and evaluates a large number of architectural
solutions. Every solution exploits selective block replication. Based on the soft-
ware supported automatic exploration, we are able to compute higher thermal
quality Pareto curves, in contrast to many similar existing optimization approaches
that retrieve only a single architecture [8, 9]. Hence, architects can trade-off be-
tween the desired level of temperature reduction at hotspots and the resulting tim-
ing/area/power overheads. Furthermore, the supporting tool framework provides
a considerable speedup at the exploration procedure.

Previous works introduced the usage of parallelism in order to achieve power
savings, which in turn lead to temperature reduction [12]. A parallel implementation
of a design essentially replicates component(s) of the design such that parallel
branches process interleaved input samples. Therefore, the inputs coming into
each parallel branch can be effectively down-sampled. An output multiplexer is

3

52 3. Cross-Layer Synthesis of Heterogenous Architectures

needed to recombine the outputs, and produce a single data stream.
The main differentiation of the proposed research approach, as compared to

this approach, is that our solution does not assume that replica blocks of the same
type are working in parallel. More specifically, in our methodology, only one of the
available replica blocks are active at any time. The selection of this active block
is based on its thermal condition, as it is described in upcoming sections. The
contributions of this research work can be summarized, as follows:

• We show the optimization potential regarding thermal aware exploration by
exploiting selective replication of specific architectural blocks.

• We introduce of a novel methodology targeting to provide: (i) elimination of
thermal hotspots at SoCs targeting SDR architectures and (ii) alleviation to
the temperature gradients.

• Rather than providing only one architectural solution, our methodology re-
trieves a number of Pareto architectural solutions, each of which trades-off
different design constraints/criteria.

• We propose a novel design methodology that is orthogonal to the existing
approaches found in relevant literature [9] [7] [6] [8] [10] [13] [14] [15]
[16].

• We provide CAD support through developing a software supported thermal
aware exploration framework, which is public available for additional exten-
sions through [17].

• We apply the proposed methodology to a real case SoC design consisting of
a synthesized LEON3 processor [18].

Experimental results prove the efficiency of the proposed methodology, show-
ing that the selected architecture leads to temperature reduction about 8% (from
380 Kelvin to 363 Kelvin), with a controllable silicon area increase of 15%. As we
show latter, such a temperature reduction apart from reduction in cooling cost, also
achieves mentionable improvement to the consequences posed by aging phenom-
ena about 14%.

The rest of the research work is organized, as follows: subsection 3.1.2 intro-
duces the underline SDR architecture, whereas subsection 3.1.3 discusses motiva-
tional observations that guide us to propose selective insertion of replica blocks.
Subsection 3.1.4 describes in a brief manner the micro-architectural enhancements
needed for applying selective block replication in existing micro-processor architec-
tures. The proposed methodology is analyzed in detail in subsection 3.1.5, while
a number of evaluation results are discussed in subsection 3.1.6. Finally, subsec-
tion 3.1.7 concludes the paper.

3.1.2. Target SDR Architecture
During the last years a number of different SDR-based architectures have been de-
veloped, whereas a typical instantiation is depicted in Figure 5.15. The front-end is

3.1. Thermal and Reliability Aware SDR Architectures

3

53

responsible for converting the signal between the RF domain and an intermediate
frequency, and the A/D and D/A components convert the signal between the ana-
logue and the digital domain. In our analysis the baseband functionality is carried
out on software running on a System-on-Chip based on LEON3 embedded processor
[18].

UART
Timers

(gptimer0)

IrqCtrl

(irqctrl0)

I/O port

(grgpio0)

RS232 WDOG 16-bit I/O port

32-bits memory bus

AMBA AHB (High-Speed Bus)

AMBA APB (Peripheral Bus)

RS232

Debug serial unit

(dsu0)

Control Core

7-Stage integer unit

(iu)

Instruction

cache

(Icache)

Data-cache

(lcldmem)

AHB

interface

(ahbstat0)

LEON3 Processor

Register

file

(rf0)

Local instruction

memory

(lcimem)

Local data

memory

(lcldmem)

AHB/APB bridge

(apbctrl0)

SRAM

256MB

I/O

16-bits
PROM

AHB

controller

(ahbctrl0)

Memory

controller

(mctrl0)

AHB/DAC

Bridge

(ahbdac0)

AHB/ADC

Bridge

(ahbadc0)

RF Frontend

Digital-to-Analog

Converter

Analog-to-Digital

Converter

SoC-based Software-defined-radio

Figure 3.1 The block diagram of employed SoC-based SDR.

LEON3 processor consists of the integer unit, the cache subsystem, the memory
management system and the AMBA interface. The instruction unit is fully compat-
ible with the SPARC V8 instruction set, whereas the pipeline consists of 7 stages.
The integer unit has configurable separate instruction and data cache (Harvard ar-
chitecture), whereas the size for each of them is equals to 1Kbyte. Furthermore,
the integer unit includes a configurable register file with register window equals to
8. Regarding the L1 caches, they are managed by a cache controller which is inter-
faced to the system’s AMBA AHB bus. The communication to LEON3 peripherals is
performed with two bus controllers, referred as AHB (Advanced High-performance
Bus) and APB (Advanced Peripheral Bus) controller, respectively. The first of these
controllers (AHB controller) is used for the connection of high speed components
(i.e. integer unit, memory controller, etc), whereas the second one (APB con-
troller) provides control to the low-speed peripherals (i. e. UARTs, I/Os, etc).
Finally, LEON3 processor contains a configurable separate local data (2KByte) and
instruction memory (2KByte).

3.1.3. Motivation
In this section we discuss the importance of different hardware blocks to be con-
sidered as critical for thermal stress. This problem becomes even more important
regarding either high-end processor architectures, i.e. superscalar organizations,
or multi-core SoC designs, where multiple hardware components, each of which

3

54 3. Cross-Layer Synthesis of Heterogenous Architectures

with different area and power values, are combined into a single device. Hence,
one of the challenges that architects are facing today is to identify the hardware
components that higher affect thermal stress.

In order to show how different hardware block thermal profiles affect the ther-
mal stress of the entire IC, Figure 5.14(a) gives the power consumption for the
components of the LEON3 processor, when the SDR system is executed.

We select such an embedded processor because it is widely used in numerous
commercial and/or research products. However, apart from the selected target
platform, the methodology we follow in this research work is also applicable to any
other digital architecture.

Since embedded cores usually are designed with low power criterion, many re-
searchers up to now pay effort to reduce maximal temperature values by identifying
blocks that dissipate increased power budges. Regarding the LEON3 processor, the
local data/instruction memories, the L1 data/instruction caches, as well as the regis-
ter file are found to be the most power hungry blocks. More specifically, the average
power consumption at these blocks, as compared to the total power dissipation, is
57%, 31% and 8%, respectively.

(a) (b)

iu
cachectrl
icache

dsu0

lcldmem
irqctrl0

ahbstat0

gptimer0
rf0

mctrl0

apbctrl0
lcimem

grgpio0

ahbctrl0

dcache

Figure 3.2 (a) Power consumption and (b) Power density pies for LEON3 architecture.

Even though Figure 5.14(a) provides a first order metric about the components
with increased power consumption, we show that it is not enough in order to retrieve
conclusions about their importance regarding the thermal stress. This occurs since
the power metric does not take into consideration the area of underline hardware
block, which is especially crucial for thermal spreading. Hence, a more represen-
tative metric should be employed in order to evaluate the importance of each core
into the chip’s temperature values.

A candidate metric for this scope is power density, which denotes the ratio of
power consumption for each hardware block per the area occupied by this block.
Figure 5.14(b) gives the corresponding power density pie chart regarding the LEON3
architecture. As we can conclude from this figure, the components with increased
power densities are not those identified as critical based solely on the power con-
sumption criterion. More specifically, the power density denotes that AHB controller,

3.1. Thermal and Reliability Aware SDR Architectures

3

55

instruction unit and cache controller are the blocks with increased impact on ther-
mal stress. These blocks contribute to the total power density about 12%, 13% and
11%, respectively, whereas the five blocks already identified based on power con-
sumption correspond to 5% of total power density. This occurs mainly since the
blocks with increased power consumption have also considerable increased area
(about 91% of the total architecture’s area), which in turn leads to almost negligi-
ble power density values for these blocks.

ahbctrl0_1
ahbstat0

apbctrl0

dsu0

gptimer0grgpio0
irqctrl0

mctrl0

icache

dcache lclimem

lcldmem

rf0

cachectrl_1

iu_1

_0

_1

_2_3 _4

_5

_6

_7

_8

_9
_10

380

376.4

372.8

369.2

365.6

362

358.4

356

(a) (b) (c)

ahbctrl0
ahbstat0

apbctrl0

dsu0

gptimer0

grgpio0

irqctrl0

mctrl0

icache_1

icache_2

dcache_1

dcache_2

lclimem_1

lclimem_2

lcldmem_1lcldmem_2 rf0

cachectrl

iu

_0

_1

_2

_3

_4_5

_6

_7

_8_9

_10_11_12

380

374.75

369.5

364.25

359

353.75

348.5

345

ahbctrl0_1ahbctrl0_2
ahbstat0

apbctrl0

dsu0

gptimer0

grgpio0

irqctrl0

mctrl0

icache

dcache

lclimem

lcldmem

rf0

cachectrl_1

cachectrl_2

iu_1

iu_2
_0_1

_2

_3

_4_5

_6_7_8_9_10

_11

_12

380

376.4

372.8

369.2

365.6

362

358.4

356

Figure 3.3 Thermal profile for LEON3: (a) without considering replica blocks, (b) with replica blocks
(2×local data/instruction memories, 2×L1 data/instruction caches, 2×register file), and (c) with replica
blocks (2×instruction unit, 2×cache controller, 2×AHB controller).

Next we depict that the criterion of power density is much more important than
the corresponding one about power consumption. For this purpose, Figs. 5.19(b)
and 5.19(c) give the thermal profiling as they derived with Hotspot tool [19] about
a LEON3 processor running SDR applications (e.g. filters, encoding/decoding, etc),
when the five and three most critical components retrieved with the previously
mentioned analysis, respectively, are replicated two times. In order to perform
this replication of hardware blocks we incorporate the methodology introduced in
this research work. We note here that all of these floor-plans were retrieved with
HotFloorplan tool [20].

As a reference point for this study we use the thermal map for a LEON3-based
SoC SDR architecture when no replica blocks are assumed. This map, shown in
Figure 5.19(a), exhibits a temperature hotspot in region where the blocks with
increased power densities (AHB controller, instruction unit and cache controller) are
floor-planned. This hotspot results in increased temperature value, as compared to
the average on-chip temperature, about 7%.

Similar to previous conclusion, the floor-plan that leads to architecture instan-
tiation where components with increased power consumption are replicated (Fig-
ure 5.19(b)), also results in thermal stress. This occurs since the replicated compo-
nents exhibit low power density, and hence they do not have considerable impact
on thermal stress. However, we have to mention that this approach exhibits slightly
reduced maximum temperature values, as compared to architecture without replica
blocks, since it increases device area (the replicated blocks occupy about 91% of
the total chip’s area). On the other hand, the components with increased power

3

56 3. Cross-Layer Synthesis of Heterogenous Architectures

densities still contribute to thermal stress, as it is shown at Figure 5.19(b).
Note that for shake of completeness, the temperature scaling is constant among

for all the thermal maps depicted in Figs. 5.19(a), 5.19(b) and 5.19(c), in order to
be clear that only careful replication of blocks with increased power densities can
alleviate thermal stress.

3.1.4. Micro-Architectural Considerations
For supporting selective block replication, the processor micro-architecture has to
be properly enhanced. We mention that in this research work, we focus mainly on
the exploration methodology developed for the automatic evaluation of opportuni-
ties delivered through selective replication. Thus, in this section we briefly introduce
some micro-architectural considerations that enable the design of processor archi-
tectures with replicated components.

In the general case, the data flow and the control flow of the original processor
architecture has to be modified towards two directions: (i) enabling mutual exclu-
siveness between the replicated units, and (ii) permitting run-time management of
the replicated resources according to the run-time thermal state of the processor.
We focus our analysis on the RISC micro-architecture of LEON3 [18] embedded
processor. The block diagram of a SDR system based on LEON3 processor was
already depicted in Figure 5.15.

We target on lightweight enhancements in original LEON3’s data-path to avoid
extensive area, organization and control overheads in respect to the original data-
path. For this purpose, we apply selective replication in a coarse grained manner
i.e. replicating at the level of instruction unit, rather than at the ALU unit or the
instruction fetch level. Furthermore, we avoid replication of the actual memory
components (i.e. register file, data cache etc.), since their replication will require
proper control mechanisms to establish data coherency among the various replicas.

Although, selective replication in finer granularity than the proposed is a valid
design option, we show that coarse-grained component replication can achieve
significant temperature reduction and hotspot elimination, which in turn results
among others in device improvement against aging phenomena. The proposed
approach is not a restrictive one. As shown in Figure 5.14(b), except the register
file which is excluded for replication, the rest of the maximum power densities inside
a LEON3 processor are distributed among the replicated components, specifically
the instruction unit (𝐼𝑈), the cache controller (𝐶𝐴𝐶𝐻𝐸_𝐶𝑇𝑅𝐿) and the AHB bus
controller (𝐴𝐻𝐵_𝐶𝑇𝑅𝐿).

According to previous analysis, we propose the adoption of a micro-architectural
extension similar to the one depicted in Figure 5.16. In the examined case, we
assume that each component has been replicated two times (this number is para-
metric in our methodology and its value is defined by the device architect). Each
replicated module is enhanced with operand isolation latches [21] to lower redun-
dant dynamic power by eliminating switching activity in time windows in which the
component remains inactive. Leakage optimization techniques, i.e. power gating,
can also be applied in an orthogonal manner. However, in the context of this re-
search work, we only account for dynamic power operand isolation techniques, thus

3.1. Thermal and Reliability Aware SDR Architectures

3

57

assuming that the inactive component leaks power during its idle time window.
Furthermore, for each replicated component proper pairs of multiplexing and

de-multiplexing logic are added to the original data-path, regarding the lightweight
control and data flow extension. Specifically, the inputs of each replicated com-
ponent are driven by the de-multiplexer that properly guides the input data to the
active module. Accordingly, the output signals from each replicated component are
multiplexed in order to propagate to the next level. We recognized two data-flow
paths inside the processor data-path, namely the memory-to-instruction unit and
the instruction unit-to-memory data-flow paths. Figure 5.16 depicts the combina-
tion of the two data-flow paths by traversing the architecture graph either in a top-
down (memory-to-instruction unit) or in bottom-up (instruction unit-to-memory)
manner.

Data Cache

Register File

External Memory (off chip)

MUX

AHB ControllerIsolation Latch

MUX

Isolation Latch Isolation Latch

AHB Controller Isolation Latch

Cache ControllerIsolation LatchCache Controller Isolation Latch

Temp. IU [0]

Temp. IU [1]

...

Temp. AHB_CTRL [0]

Temp. AHB_CTRL [1]

…

Temp. CACHE_CTRL [0]

Temp. CACHE_CTRL [1]

….

Thermal Sensor Data

M
e

m
o

ry
-t

o
-I

n
s

tr
u

c
ti

o
n

U
n

it
 D

a
ta

fl
o

w
 P

a
th

In
s

tr
u

c
ti

o
n

U
n

it
-t

o
-M

e
m

o
ry

D
a

ta
fl

o
w

 P
a

th

Instruction Unit Instruction Unit

Memory Controller

MUX

Instruction Cache

MUX

MUX

Runtime

Thermal

Switching

Figure 3.4 Proposed micro-architectural enhancement.

The original LEON3 architecture is also enhanced with a thermal aware runtime
controller module for distributing the workload to the available units during run-
time. The thermal aware workload distribution is performed by properly issuing
the selection signal to the added multiplexing and operand isolation logic. Actually,
the same signal configures both the aforementioned components. Since only the
selection signals to the extra logic are issued, the thermal aware controller works
transparently from the control logic of the rest of the LEON3 architecture. The
controller makes the decision which replicated unit to be turned-on/off according

3

58 3. Cross-Layer Synthesis of Heterogenous Architectures

to the thermal state of the processor. It is assumed that runtime thermal data are
available, i.e. through thermal sensors.

We consider a reactive scheme of the thermal aware controller. Thus, the con-
troller alters its state whenever an upper temperature threshold, 𝑇፭፡፫፞፬ is crossed.
As pointed in [22], the runtime temperature threshold is set to lower value than
the one estimated during design time exploration to guarantee proper functionality
during execution.

The thermal controller reacts to the temperature readings provided by the on-
chip thermal sensing infrastructure. 𝑇𝑒𝑚𝑝፤[𝑖] refer to the temperature value read
by the thermal sensor of the replica block 𝑖, 𝑖 ∈ {0,𝑀𝑎𝑥፫፞፩፥።፜ፚ፬} that will be active for
execution on the next clock cycle, regarding the unit type 𝑘, 𝑘 ∈ {𝐼𝑈, 𝐶𝐴𝐶𝐻𝐸_𝐶𝑇𝑅𝐿, 𝐴𝐻𝐵_𝐶𝑇𝑅𝐿}.
The parameter 𝑈𝑛𝑖𝑡፤[𝑖] is a table of 1-bit registers. Each one of these registers
latches the on/off - 𝐸𝑥𝑒𝑐𝑢𝑡𝑒/𝐼𝑠𝑜𝑙𝑎𝑡𝑒 signal for the replica 𝑖 of unit type 𝑘.

The state transitions of the thermal aware runtime controller for a single type
of unit, i.e. the instruction unit, are depicted in Figure 5.17. The same control
logic is applied to every type of replicated block, 𝑘. Since each type of replicated
block, 𝑘, is managed individually, the overall thermal controller is structured in
a modular manner by several control paths like the one depicted in Figure 5.17,
each one dedicated to a specific type of block type. If the monitored temperature
is lower than the defined threshold, 𝑇𝑒𝑚𝑝፤[𝑖] < 𝑇፭፡፫፞፬, the controller remains in
the same state. Each time the monitored temperature for the active replica block,
i.e. 𝑈𝑛𝑖𝑡፤[𝑖], crosses the maximum temperature threshold, 𝑇𝑒𝑚𝑝፤[𝑖] < 𝑇፭፡፫፞፬; the
controller enters to an intermediate state. In this intermediate state, the controller
maintains its previous configuration for a number of cycles that equals the pipeline
stages, #𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑆𝑡𝑎𝑔𝑒𝑠፤[𝑖] of the specific 𝑈𝑛𝑖𝑡፤[𝑖]. Thus, the controller waits
the pipeline of the component to complete its execution, in order to avoid data
hazards. In addition, during the intermediate state, the coolest unit among the
replicated ones of the same type is extracted using the monitored temperature data,
𝑁𝑒𝑥𝑡𝑈𝑛𝑖𝑡፤ ∶= 𝑈𝑛𝑖𝑡፤[𝑇𝑒𝑚𝑝ፌ።፧]. When the pipeline completes its execution, the
controller issues the steering signals to the extra multiplexors and operand isolators
and reconfigures the control and the data-flow of the processor architecture to be
performed by the new selected unit (the coolest candidate at the specific time
window).

3.1.5. Proposed Methodology
This section describes in detail the proposed methodology for reducing tempera-
ture hotspots through selective replication for some hardware modules of the target
architecture. Note that throughout this methodology we do not aim at redesign-
ing the whole micro-architecture, but we focus only to critical components. The
goals of this methodology are: (i) to provide a proactive thermal-aware approach
targeting at micro-architecture designs, and (ii) to support the rapid exploration/e-
valuation of different architectural selections in term of thermal stress. Note that
the architectural modifications applied with our methodology are transparent to the
compilation flow (they do not affect existing tools), while they speedup the de-
velopment of new products, since end-users (e.g. programmers) do not have to

3.1. Thermal and Reliability Aware SDR Architectures

3

59

Figure 3.5 Employed thermal-aware runtime controller per replicated block.

consider thermal issues).
This methodology is shown graphically in Figure 5.20. The inputs to this method-

ology are the description of target architecture in VHDL/Verilog, the technology
constraints regarding the selected CMOS technology, as well as the operating con-
ditions, and the affordable area overhand (the higher area, the more replicas can
be integrated into the design). Even though this methodology is applied at de-
sign time, the upcoming sections also evaluate the on-chip temperature variations
during application execution.

3.1.5.1 Architecture Synthesis

The inputs to this replication-aware thermal management methodology are the
architecture description (in VHDL/Verilog), as well as the selected CMOS technology.
Initially, design is synthesized with Synopsys Design Compiler [23] and then we
perform post synthesis simulation (with Cadence Incisive Simulator [24]) in order
to extract some metrics about the design. Among others, these metrics include the
area occupied by each component of the design, as well as its power consumption
based on the switching activity of application executed onto the target architecture
(the power consumption is retrieved with PrimeTime PX [25]). In addition to that,
from the results of post synthesis simulation, it is feasible to have a first estimation
regarding the timing of the design (maximum operation frequency) with the usage
of Elmore delay model [26]. Note that both for power and delay study, we employ
worst case test vectors as workload to architecture, in order to guarantee that the
derived results, as well as the consequence thermal stress, will not be violated for
any applications during runtime.

The output of synthesis task is appropriately encoded into an XML format in
order to be manipulated by the introduced tools of our framework. The granularity
of system’s description in this XML format is tunable, since higher detail means a
more accurate thermal analysis, but it imposes the maximum computational effort.

3

60 3. Cross-Layer Synthesis of Heterogenous Architectures

XML

area

synthesis

post-simulation

profile
decision for

replica blocks

area acceptable

solutions

power per

component

technology
constraints

architecture
description

area
constraints

a
re

a

fi
lt

e
ri

n
g

Input

th
e

rm
a

l

fi
lt

e
ri

n
g

ti
m

in
g

fi
lt

e
ri

n
g

hot-floorplan
delay

estimation

timing

delay filtering

architectural

synthesis

annotate design

hotspot

PTraceGen

Software Defined Radio Applications

physical level
area estimation

pareto
solutions

Output

packaging
constraints

workload

distribution

utilization
ratios

Input/Output

Design Constraints

Algorithm and Software tool

LEGEND

thermal-aware
floorplan

Figure 3.6 The proposed methodology for replication-aware thermal management.

3.1. Thermal and Reliability Aware SDR Architectures

3

61

On the other hand, a more coarse grain approach leads to lower computational
effort but it also imposes a penalty in term of hotspot elimination. Even though our
methodology is applicable at design time, and hence there is almost no performance
degradation due to additional computational complexity, however, the increased
number of functionalities inside a SoC usually makes the selection of a fine grain
description of target system a non desirable approach.

The derived system’s description is profiled in order to compute the power den-
sity of the functionalities described in XML file. For this purpose, input regarding
power and area info, as it was already derived from post synthesis simulation, are
employed.

3.1.5.2 Area Filtering

Based on this analysis, it is possible to make a decision regarding which of the ar-
chitecture’s hardware blocks have to be replicated. For this step, the power density
for hardware blocks has to be measured. Note that the total number of replication
blocks is limited by area constraints posed by designer.

Since we try to alleviate thermal stress mainly at hardware blocks with increased
power densities, these are the blocks that should be replicated (as we have shown in
Section 3). For this purpose, hardware blocks of the design are sorted in descend-
ing order based on their power density values. From our exhaustive exploration
study, we found that only a few of the total blocks exhibit increased power den-
sities. Hence, the architectures that contain all the possible combinations among
replica blocks are evaluated. As a constraint to this procedure we assume the max-
imum area overhead, as compared to the one retrieved when no replica blocks are
assumed.

At this procedure, an extra architectural parameter needs to be defined . More
specifically, apart from the blocks that need to be replicated, we also need to clarify
the maximum number for each of these blocks that can be replicated. Since more
replicas means better thermal management, in the expense of imposing overheads
in area and delay, careful study should be applied. In this study, we evaluate
solutions that correspond to maximum number of replica blocks up to five. This
selection was based on our conclusion that architectures consisted of more replicas
do not lead to additional temperature reduction (due to saturation effect). However,
constraints posed by architecture specifications might reduce this number.

After defining the type of replica blocks, as well as how many times they should
be replicated, the next tool in our framework performs automatically this task by
annotating appropriately the design’s description. Apart from the insertion of new
(replica) blocks to the design, during this task we have to pay effort to provide
the appropriate connectivity through routing infrastructure, as well as to insert the
thermal-aware runtime controllers in XML format. Moreover, during this annota-
tion we keep the same connectivity among hardware blocks, while we have also
to preserve that all the connections to (and from) replica blocks should be also
replicated. This is an important differentiation of proposed solution, as compared
to similar approaches found in relevant references [9] [7] [6] [8] [10], since we do
not aim at altering the functionality of underline architecture.

3

62 3. Cross-Layer Synthesis of Heterogenous Architectures

The outcome from this step is all the candidate architectures instantiations that
meet area constraints. Such a criterion can eliminate from design space solutions
that lead to unacceptable overheads in device area due to excessive number of
replica blocks. Also, by allowing a designer-defined overhead in this metric it is
possible to explore and evaluate different architectural solutions. Regarding our
exploration, we set this area overhead to 35%, since otherwise our methodology
leads to excessive area penalties.

The employed criterion allows blocks with increased power densities to be repli-
cated more times as compared to blocks with smaller values of power density. This
occurs because the area occupied from these blocks is usually smaller, and hence
more of them are fit into the given (affordable) percentage of area overhead. Since
only one of the replica blocks is active at any time (based on approach discussed in
Section 4), such an aggressive replication of blocks with increased power densities
lead to (i) minimize maximum temperature hotspots, and (ii) spread more uniformly
over the entire architecture.

3.1.5.3 Timing Filtering

Next, we proceed to the second criterion for evaluating the efficiency of derived
architecture instantiations that affects the timing constraint. For this purpose, the
solutions derived from area filtering are floor-planed with the usage of a thermal-
aware floor-planner [20].

The optimization goal during this procedure is to reduce the thermal stress for
each architecture in respect to the timing constraint. The alleviation of thermal
stress is performed by spreading as much as possible the hardware blocks that
contribute more to higher values of on-chip temperature (e.g. modules with in-
creased power densities). Similarly, by minimizing the perimeter of bounding box
that surrounds all the modules that are connected with a single bus, it is possible to
improve the delay of this bus. Hence, blocks that are connected through bus(ses)
have to be floor-planed in spatially close locations.

Regarding our methodology we allow all the blocks of the chip to be “soft” blocks,
that is, their aspect ratio can change (in a controlled manner) in each annealing
movement of 𝐻𝑜𝑡𝑓𝑙𝑜𝑜𝑟𝑝𝑙𝑎𝑛 tool, but their area is fixed.

The derived solutions are then evaluated in term of delay degradation, as com-
pared to delay estimation retrieved from post-synthesis simulation. For this scope,
we use the Elmore delay model [26]. Since we are primarily interested to retrieve
a thermal-aware solution, we already knew that a penalty in architecture’s perfor-
mance is affordable. For our study, the timing overhead is assumed to be 14% in
order to avoid any mentionable delay overheads.

The output of this step is all those thermal-aware floor-planned solutions which
their timing degradation meets the design specification (as it was derived after post
synthesis simulation without considering yet any replica block).

3.1. Thermal and Reliability Aware SDR Architectures

3

63

3.1.5.4 Thermal Filtering

Finally, in the last task in the proposed methodology, the different architectural so-
lutions are evaluated against thermal constraint. This task is automated with a new
tool, named 𝑃𝑇𝑟𝑎𝑐𝑒𝐺𝑒𝑛, that generates proper power traces onto the examined
processor architecture regarding the statistical behavior of the targeted application
domain. For this purpose, the outcome from this tool provides detailed information
about architecture’s units that describe i) the amount of time that a unit is active,
ii) the amount of time that a unit is inactive, and iii) the switching activity of these
units. The first two parameters (i.e. amount of active/inactive time) refer to the
number of execution cycles for a timing window, whereas the third parameter cor-
responds to the number of transitions between operational states (active/inactive)
during the architecture’s execution phase.

Specifically, the statistical characterization is performed in a window-based man-
ner (denotes the temporal granularity for performing thermal analysis) by comput-
ing the statistical mean values of the primitive operations executed by the processor,
i.e. number and type of ALU instructions, memory accesses, cache hits/misses,
communication load etc. For this purpose, power traces for all the replica units
are generated. These traces describe the power activity for all the architecture’s
units (replicated or not) within a certain amount of time. Using these statistics
the utilization ration per component is extracted in each examined window. The
per component utilization ratios are correlated with accurate post-synthesis power
measurements to generate the power traces. For the examined power traces, the
thermal filtering tool extracts the Pareto frontiers under various design objectives
(i.e., power density of the chip, delay, area, max temperature, max thermal gradi-
ent, etc).

In this research work, we study a uniform workload incorporating the key ele-
ments of base band processing domain, where these optimizations against to ther-
mal stress can be applied. More specifically, the employed applications, obtained
from [27] are summarized, as follows:

• Adaptive differential pulse-code modulation: ADPCM is a variant of differential
pulse-code modulation (DPCM) that varies the size of the quantization step, to
allow further reduction of the required bandwidth for a given signal-to-noise
ratio.

• Cyclic redundancy check: CRC is an error-detecting code designed to detect
accidental changes to raw computer data, and is commonly used in digital
networks.

• Fast Fourier transform: FFT is an efficient algorithm to compute the discrete
Fourier transform (DFT) and its inverse.

• GSM 06.10: GSM 06.10 is a digital speech coding standard used in the GSM
digital mobile phone system

These telecommunication applications exhibit increased demand for bandwidth
requirements. Regarding our architecture, the components with higher power den-

3

64 3. Cross-Layer Synthesis of Heterogenous Architectures

sity values when such kind of applications is executed are the instruction unit, the
cache and memory controller, the DSU (debug support unit) and the AMBA AHB/APB
bus controllers.

The output of PTraceGen tool is a set of workload distributions based on em-
ployed applications, as well as accurate area estimation after floor-plan. More
specifically, the workload distribution is achieved by appropriately handling the
power info per block of the target architecture (component of the selected level
of granularity), as they were already derived from post synthesis simulation. This
approach guarantees that hardware blocks (replicated or not) dissipate power con-
sumption only the time periods denoted by the application’s functionality.

These time periods are retrieved by incorporating info from application’s sim-
ulation. The employed utilization ratios are averaged over hardware components
of LEON3 system in order to determine the active/idle time slots accurately. The
output from utilization is fed as input to PTraceGen tool in order to redistribute the
activity of each component to a timing trace of several time slots. This is achieved
by setting each of these components either as active or idle for every time slot.

Furthermore, the area derived in this stage may be different from the one com-
puted during area filtering, due to additional free space inserted to design after
floor-plan (which is not occupied by any hardware block) in order to model the
white space between hardware components.

The workload distribution, in conjunction to the packaging constraints, are fed
to the hotspot tool [19] to compute thermal profile of target architecture. For
increased accuracy, we used the steady state temperature of each hardware block
as the initial temperature values. The default characteristics of hotspot version 5
were used for package, whereas the analytic model parameters are summarized in
Table 1.

Table 3.1 Thermal characteristics of the employed processors

Parameters Model value
Sampling interval 20 ms
Die Thickness 0.15 mm
Core Area (no replication) 0.426213 𝑚𝑚ኼ
Cache area (L1+Local I+D) 0.370561 𝑚𝑚ኼ
Convection Resistance 0.1 K/W
Convection Capacitance 140.4 J/K

Based on the derived thermal profile, it is possible to evaluate the architecture
instantiation in terms of different criteria tightly firmed to on-chip temperature.
For the scope of this research work, all the solutions that do not meet the se-
lected thermal constraints (maximum temperature and the temperature gradient)
are eliminated from exploration space, whereas typical packaging for embedded
processors is assumed [28]. Thus, the output of the proposed methodology con-
tains only the instantiations that correspond to architectural solutions that meet all

3.1. Thermal and Reliability Aware SDR Architectures

3

65

the three constraints, namely area, timing and thermal.

3.1.6. Experimental Results
This section provides a number of experimental results derived from the proposed
exploration methodology that prove the efficiency of our approach in term of reduc-
ing the consequences posed by thermal stress. For this purpose, a LEON3-based
design is employed [18], and the introduced methodology is applied to identify
the blocks that lead to higher temperature reduction, and hence they should be
selectively replicated, as it was already discussed in Section 5.

We have to mention that functionality of the underlined LEON3 processor is not
affected by the additional (replica) blocks.

The majority of aging phenomena are tightly firmed to on-chip temperature val-
ues. Hence, higher maximum temperatures lead among others to devices having
increased failure rates. For this reason, the first criterion employed in our method-
ology for selecting the architecture of target platform involves to study how tem-
perature values are spatially distributed over the target device.

3.1.6.1 Impact of Selective Replication on Temperature

Figure 3.7 depicts the variation of maximum temperature (in Kelvin) when different
instantiations of the target architecture are considered. The axes of this figure de-
note the normalized operation frequency and the architecture’s area, as compared
to the corresponding maximum values found among all the candidate architec-
tures, whereas the vertical axis gives the on-chip temperature values. Based on
Figure 3.7, it is evident that temperature values vary considerable among archi-
tectures with different selection of replica blocks. More specifically, regarding the
LEON3 architecture, temperature variations from 354 to 382 Kelvin’s, were reported.

The following conclusions can be derived from this figure. More specifically, as
we increase the area of target architecture, the temperature values are reduced
(almost monotonically). However, this temperature reduction in not constant since
just replication of blocks does not guarantee alleviation of thermal stress (as we
have already depicted in Figure 5.19(c)). Hence, apart from the number of replica
blocks, their properties (e.g., power density, area, power consumption, etc) are also
crucial for designing an efficient architecture.

Apart from area, the maximum operation frequency also affects the on-chip
temperature values. Based on Figure 3.7, the alternative architectures lead to per-
formance variations up to 14%, which mainly occur due to: (i) additional replica
blocks inserted into the design, (ii) the consequent different floor-plans, and (iii)
the increased wire-length for connecting these blocks.

Another interesting conclusion might be derived from Figure 3.7. Even thought
higher operation frequencies usually result in higher temperatures, this seems to
be alleviated when architectures with increased area are assumed. Regarding the
LEON3 architecture, the additional area is dominated by blocks with low power
density values (as we have already mentioned in Section 2). Hence, by introducing
more replica blocks it is possible to improve thermal spreading. However, since

3

66 3. Cross-Layer Synthesis of Heterogenous Architectures

Figure 3.7 Temperature variation for different instantiations of target architectural.

temperature values seem to be more agnostic about the maximum operation fre-
quency, as compared to area overhead, we cannot make safely any conclusion
about this.

Based on this figure it is possible to select an architecture that better trades-off
design constrains. A balanced design solution under the aforementioned criteria
(area, maximum temperature, and delay) is the one that replicates four AHB con-
trollers, three integer units and two cache controllers. This architectural instantia-
tion, mentioned as “Selected architecture” in upcoming figures, belongs to solutions
marked as valid during the area, timing and thermal filtering. The selection of this
architecture for further evaluation is performed since it belongs to the Pareto front
for reliability improvement, as it is discussed in more details in subsection 3.1.6.2.

More specifically, the area and delay overheads for our selected replication-
aware LEON3 design are 15% and 7%, respectively, as compared to initial imple-
mentation (without considering any replica blocks). Even though these penalties

3.1. Thermal and Reliability Aware SDR Architectures

3

67

are not negligible for ASIC designs, we have to mention that they comes with con-
siderable gains in term of maximum temperature value (about 17 Kelvin or 8%),
which in turn leads to higher reliability improvements. Furthermore, the proposed
methodology for selectively replication of blocks with increased power densities can
also be applied to multi-core architectures, where the performance degradation is
more affordable.

Apart from the selected architecture, any other architecture instantiation can be
chosen without affecting the efficiency of our proposed methodology, if different
constraints are applied. Note that our framework mainly indents to enable the
thermal improvement of architectures through inserting replica blocks.

In order to show the importance of proper identification for hardware blocks that
have to be replicated, Figure 5.12 plots the temperature variation (in Kelvin) versus
the power density (𝑊/𝑐𝑚ኼ) for each instantiation of the selected architecture with
replica blocks. We choose to evaluate such a criterion, because power density for
existing and upcoming devices becomes a major issue for architects. Researchers
have already identified this problem, whereas based on projections it is expected
that power density regarding 14nm nodes will be higher than 100 𝑊/𝑐𝑚ኼ [29].

Figure 3.8 Results about power density versus maximum temperature.

In order to plot this graph, architectures are grouped into three categories based
on their power densities, as following:

• those with area smaller than the 33% of maximum area among all the solu-

3

68 3. Cross-Layer Synthesis of Heterogenous Architectures

tions

• those with area ranging between 33% and 66% of the maximum area among
all the solutions

• those with area higher than 66% of the maximum area among all the solutions

Note that this classification with respect to area occupied by different archi-
tectures is also applied in upcoming figures (Figures 3.9 and 3.10), since it can
provide qualitative comparisons about the importance, as well as the efficiency, of
the proposed methodology in term of alleviating thermal stress.

Since different architectures consist of different replicated blocks, their power
densities also vary. As we can conclude from Figure 3.9, there is not a straightfor-
ward correlation among the occupied area, the overall power density and maximum
temperature. More specifically, regarding architectures shown in Figure 3.9 that
correspond to increased area (more than 66% of the maximum area), they seem
to exhibit the maximal power densities but the lower temperature values. On the
other hand, the architectures with smaller area (less than 66% of the maximum
area) exhibit reduced power densities and increased temperatures values. This
rather strange result is justified by the fact that the type of the replicated blocks is
not considered in the previous analysis. Thus, we can conclude that the type of the
replication block has a great impact on the thermal behavior of the silicon.

The last conclusion is very interesting since it shows that even architectures with
increased power densities can achieve considerable on-chip temperature reduction.
This point verifies the argument discussed in subsection 3.1.5, that non optimal
replication of blocks leads to similar (or higher) thermal profiles, as compared to
initial architecture implementation (without replica blocks).

In Figure 3.9, we have also marked the solutions which correspond to previously
mentioned selected architecture, as well as to the original (without replica blocks)
LEON3. Based on this, both those two solutions exhibit comparable power densities,
but the selected one achieves to reduce maximum temperature value about 17
Kelvin, or 8%.

In order to study the correlation between areas occupied by target architec-
tures and the maximum temperature values, Figure 3.9 plots the corresponding
diagram of these parameters. For sake of completeness, we cluster alternative ar-
chitectures into three groups based on their area (similar to previous figure), while
for demonstration purposes we also compute the temperature gradient for each of
these clusters.

Based on Figure 3.9, the maximum temperature gradient occurs for architec-
tures with smaller areas, whereas for architectures with area more than 66% of the
maximum area is almost constant. If we take into consideration also the smaller
delay overhead posed by devices consisted of fewer replica blocks (as it was already
shown in Figure 3.7), an additional filtering of derived architectural instantiations
can be performed. More specifically, without affecting the generality of the pro-
posed methodology, solutions that correspond to area overheads higher than 66%
of the maximum area are assumed not to be desirable (due to additional delay),
and hence they are eliminated from exploration space.

3.1. Thermal and Reliability Aware SDR Architectures

3

69

Figure 3.9 Results about area versus maximum temperature.

Furthermore, the temperature values for architectures with few replicas (less
than 33% area overhead) is about 3× higher, as compared to the remaining solu-
tions. Since our methodology tries to alleviate the hotspots, such high temperature
variations usually result in increased cost for packaging and cooling, and hence they
are not desirable. These solutions can also be eliminated from exploration space.

This conclusion is very important in order to find the amount of blocks that
have to be replicated. On other words, based on Figure 3.9, it is clear that only a
few replicas of the blocks with increased power densities should be incorporated,
in order to achieve the desired balance between temperature reduction and the
consequences area and delay overheads.

3.1.6.2 Impact of Temperature on Reliability

Reliability is defined as the probability that a device will perform its required function
under stated conditions for a specific period of time. Predicting with some degree
of confidence, strongly depends on defining a number of parameters.

Accelerated life testing employs a variety of high stress test methods that shorten
the life of a product, or quicken the degradation of the products performance. The
goal of such testing is to efficiently obtain performance data that, when properly

3

70 3. Cross-Layer Synthesis of Heterogenous Architectures

analyzed, provide reasonable estimates of the products life or performance under
normal conditions. This induces early failures that would sometimes manifest them-
selves in the early years of a products life, and also allows issues related to design
tolerances to be discovered before volume manufacturing. Both the type of stressor
and the time under test are used to determine the normal lifetime. Regarding SoC
designs, usually the majority of these aging degradation mechanisms are tightly
firmed to on-chip temperature values.

The effect of these stressors can be mathematically determined. Next we model
aging acceleration due to thermal stress with the usage of Arrhenius equation
(Equation 1). More specifically, this equation models how the age of a product
is increased when it operates under higher temperature values, as compared to
its normal operating temperature. Figure 3.10 plots how this parameter varies for
different architectural instantiations discussed in this research work. More specifi-
cally, the horizontal axis in this figure gives the average temperature, whereas the
vertical axis shows how the on-chip temperature affects aging degradation.

𝐴፟ ∝ exp [(𝐸ፚ𝑘) × (
1
𝑇፮
− 1
𝑇፭
)] (3.1)

where 𝐴፟ is the acceleration factor, 𝐸ፚ is the activation energy in electron-volts (its
value is 0.5 eV for silicon defects), 𝑘 is the Boltzmann’s constant, whereas 𝑇፮ and
𝑇፭ are the reference (Kelvin) and the operation temperature during testing.

Based on the values depicted in this figure, we can conclude that the selected
architectural instantiation achieves almost the minimum value for 𝐴፟ parameter
among all the candidate solutions. Furthermore, the conventional approach for
designing LEON3 architecture exhibits about 14% higher value for this parameter.
This mainly occurs due to additional thermal stress introduced by architecture’s
components with increased power density. However, we have to mention that
even this no-replica aware architecture is not the one with the maximum aging
degradation, since there exist solutions that correspond to 𝐴፟ value up to 20% of
the selected solution (this occurs since non all the possible combinations of blocks
lead to alleviate the thermal stress).

Apart from Arrhenius equation, we also evaluate the different architectures
derived during our exploration, under the Time-Depended Dielectric Breakdown
(TDDB) [30]. Since oxide breakdown has already been of serious reliability con-
cern in the semiconductor industry because of the continuous trek towards smaller
device sizes, such kind of aging phenomenon should be carefully studied. Defects
occurred due to TDDB are primarily caused due to the trapping of charges in the
oxide that create an electric field, followed by charge flow through the oxide, re-
sulting in a breakdown after sometime. The MTTF due to TDDB phenomenon is
described by Equation 2.

𝑀𝑇𝑇𝐹 = 𝐴ኺ × 𝑒𝑥𝑝(−𝜆 × 𝐸፨፱) × 𝑒𝑥𝑝(
𝐸ፚ
𝑘 × 𝑇) (3.2)

where 𝜆 is a field acceleration parameter, which is temperature dependent.

3.1. Thermal and Reliability Aware SDR Architectures

3

71

Figure 3.10 Evaluation in term of ፀᑗ parameter for architectures with different average temperatures.

Figure 3.11 plots the variation of Mean Time to Failure parameter for the different
architectures, as they derived from our exploration framework. For demonstration
purposes, the values at vertical axis were plotted in normalized manner over the
corresponding MTTF for the initial architecture instantiation of LEON3 processor
(without replica blocks).

Based on Figure 3.11, a number of conclusions might be derived. Among oth-
ers, as we increase the maximum on-chip temperature values, the MTTF also in-
creases. This is explained due to the tight correlation between aging phenomena
and temperature values. Additionally, the selected architecture achieves to im-
prove the MTTF parameter, as compared to initial instantiation of LEON3 processor
(without considering any replica blocks), about 14%. We have to notice that in
case we increase the architecture’s area, through inserting more replica blocks, the
MTTF parameter can be further increased. This is due to the fact that architectures
with more replica blocks usually occupy more area, which in turn improve ther-
mal spreading. However, as we have already mentioned, such an improvement in
MTTF parameter (from 0.86 to 0.81) leads to architectures with unacceptable area
penalties (they have eliminated with area filtering as depicted in Figure 3.9).

3

72 3. Cross-Layer Synthesis of Heterogenous Architectures

Figure 3.11 Evaluation of different architectures under TDDB.

3.1.6.3 On designing chip multiprocessors for SDR

This subsection describes the results retrieved of applying the proposed methodol-
ogy for designing chip multiprocessor architectures. For demonstration purposes,
the target multiprocessor consists of four instances of LEON3 (this number is para-
metric to our framework and can be appropriately tuned based on designer’s re-
quirements), while the replica modules among LEON3 processors for a given in-
stantiation of multiprocessor, are the same. As a reference to this study we employ
a multiprocessor architecture consisted of the LEON3 which was marked as “se-
lected” in the previous figures. For the following figures, this solution is denoted as
“reference solution”.

Figure 3.12 gives the thermal profiles for this architecture, as it was retrieved
from Hotspot tool. Based on this figure we can conclude that a number of modules
per LEON3 exhibit increased temperature values. Note that these hotspots differ
from those reported previously at Figure 5.19, due to (i) the thermal diffusion effect,
and (ii) the different floorplans for each LEON3 processor.

Next, we will quantify the efficiency of the above solution when this is used in
multiple instantiations of a multiprocessor architecture.

3.1. Thermal and Reliability Aware SDR Architectures

3

73

Figure 3.12 Thermal profile for 2×2 CMP LEON3-based architecture.

Figure 3.13 shows the variation of power density as we select solutions with
higher area overheads. Based on this figure we can conclude that power density
seems that it does not depend on silicon area. We have to mention that during this
analysis, the additional area mostly occurs due to the whitespace between hardware
components, rather than the area of these replica components.

In contrast to our conclusion about power density, area has a great impact on
the maximum on-chip temperature values. This is also depicted at Figure 3.14.

More specifically, based on this figure we can conclude that a controllable area
overhead (e.g. 20% increase as compared to the multiprocessor solution composed
of LEON3 components selected previously) leads to the reduction of the maximum
temperature by almost 0.85× of the previous corresponding value.

Notice that architecture instantiations of the same area exhibit temperature vari-
ations due to the different components that are replicated.

3

74 3. Cross-Layer Synthesis of Heterogenous Architectures

Figure 3.13 Normalized power density versus area overhead for multiprocessor LEON3.

3.1.7. Conclusions
In this research work, we propose the adoption of selective replication techniques in
order to optimize the thermal behavior of the synthesized micro-processor systems
targeting at an SDR system. We developed an automated exploration methodology
that permits the thermal aware evaluation of various micro-architectural instantia-
tions.

We show that by using selective replication, we can deliver optimized architec-
tural solutions with minimum thermal stress, affordable delay and user-constrained
area overheads. Experimental results have shown a significant reduction of the
maximum operating frequency, by 8%, which in turn leads to improvement at
maximum on-chip temperature values. Moreover, they have shown that our ap-
proach improves by 14% the aging phenomena. These two results show that our
approach compares favorably to the conventional design techniques for SoC-based
SDR architectures.

3.2. Heterogenous Network-on-Chip Multimedia Ar-
chitectures

3.2.1. Introduction
Historically, computation has been expensive and communication cheap. However,
with the advance of technology scaling, this changed. More specifically, last years

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

75

Figure 3.14 Normalized maximum temperature versus area overhead for multiprocessor LEON3.

computation is becoming ever cheaper, while communication encounters funda-
mental physical limitations such as time-of-flight of electrical signals, power use in
driving long wires/cables, etc. In comparison with off-chip, on-chip communication
is significantly cheaper; thus the shift to single-chip systems has relaxed many com-
munication problems. Although the shared bus is a simple interface since it is built
on well-understood concepts and it is easy to model, on-chip wires do not scale in
the same manner as transistors do, and consequently the cost gap between com-
putation and communication is widening. This problem becomes far more savage
especially in highly interconnected (multi-core) systems. In contrast, Network-on-
Chip (NoC) technology is a relatively new approach that enables not only more
efficient interconnects but also more effective design and verification processes for
modern MPSoCs [31].

Due to the importance of this interconnection paradigm, researchers spent effort
on proposing methodologies and tools for customizing both the router, as well as
the entire NoC architecture [32] [33] [34] [35] [36]. Moreover, recently, there are
also attempts to employ advanced process technologies for improving further the
performance of NoC platforms. Among others, three-dimensional (3-D) integration,
which enables stacking of multiple die on the vertical axis and interconnecting them
using very fine-pitch Through-Silicon Vias (TSVs), introduces locality along the 𝑧-
axis enabling on average shorter interconnections between system components

3

76 3. Cross-Layer Synthesis of Heterogenous Architectures

[37].
The existing approach on designing 3-D NoCs imposes networks consisted solely

of 3-D routers. Assuming a 3-D mesh topology, these routers, apart from the direct
connection to their four neighbors assigned to the same layer, also provide con-
nectivity to vertically aligned routers (upper and lower layers). Even though such
a selection leads to “uniform” underline hardware, however, rarely can be though
as an efficient solution, since it does not take into account application’s require-
ments for data transfer. Specifically, as a NoC is usually an application-oriented
communication infrastructure, careful analysis should be performed for deriving an
optimum architecture. Towards this goal, throughout this research work we pro-
pose the usage of heterogeneous 3-D NoCs, which better tackles the communica-
tion constraints posed by the target applications. By the term heterogeneous we
refer to architectures that combine a mixture of 2-D and 3-D routers into a single
NoC, whereas the spatial assignment of these routers over the target architecture
is defined based on application’s requirements.

Even though there are some prior works on designing heterogeneous 3-D NoCs
[37] [32] [35] [36], all of them are based on abstract models and consequently no
useful conclusions about their efficiency might be derived. Specifically, both the
NoC’s performance, as well as its power/energy dissipation is usually retrieved by
counting the number of hops (connections between adjacent routers) that a packet
has to traverse in order to be delivered from source to destination nodes, ignoring
about parameters related to physical implementation. Also, these approaches do
not take into consideration constraints posed by the selected 3-D technology, lead-
ing to unacceptable architectural solutions (e.g. they impose an excessive amount
of TSVs). On the other hand, the experimentation throughout this work is per-
formed with the usage of a framework based on commercial tools (C-to-Silicon and
SoC Encounter) provided by Cadence. Based on our analysis with a number of
DSP applications, we found that the introduced heterogeneous 3-D NoC outper-
forms conventional (i.e. uniform) 3-D NoCs, as it achieves on average 25% higher
maximum operation frequency and 39% lower power consumption.

The rest of this research work is organized as follows: subsection 3.2.2 describes
the concept of heterogeneous 3-D NoC architecture. The proposed methodology for
designing such an architecture, as well as the tool framework for performing rapid
evaluation of these NoCs, are discussed in subsections 3.2.3 and 3.2.4, respec-
tively. subsection 3.2.5 presents a number of qualitative and quantitative results
that prove the efficiency of introduced solution. Finally, conclusions are summarized
in subsection 3.2.6.

3.2.2. Architecture of the Proposed Interconnection Scheme
This section introduces the architectural organization of the proposed communica-
tion scheme consisted of a mixture of 2-D and 3-D routers. More specifically, a
2-D router can be used where an incoming routing track is connected to wires on
the same layer (𝐹፬ = 3). The router’s flexibility, denoted as 𝐹ፒ, gives the number
of directions to which each incoming wire can be connected. Alternatively, since a
3-D router also supports connections to the third dimension (upper and lower layer,

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

77

the value of router’s flexibility is equals to five (𝐹፬ = 5).
In order to depict the differences between these two baseline routers, we as-

sume an application’s task graph (depicted in Figure 3.15) mapped onto a 3-D chip
consisted of five layers. The arrows in this figure denote communication links across
either the horizontal or the vertical direction between adjacent routers. Based on
this example, not all of these routers exhibit similar requirements for data transfer.
However, since the design of piece-homogeneous architecture is much easier and
more cost-effective, as compared to a irregular platform, it is possible to cluster
routers into two main groups: (i) those that have to support connectivity across
the vertical directions (upper and lower layers) and (ii) the rest that provide packet
routing exclusively inside the same layer. Hence, by replacing the routers that be-
long to the second group with their equivalent 2-D implementations, as it is depicted
in Figure 3.16(a), we expect a more efficient hardware implementation.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Figure 3.15 Example for an application’s communication graph.

One more optimization is feasible, which affects the customization of 2-D and
3-D routers depending on their spatial assignment over each layer. Specifically, re-
garding the 3-D routers assigned to bottom (Layer 1) and top (Layer 5) layers, there
is no demand for providing connectivity to lower and higher layers, respectively, as
it is depicted in Figure 3.16(b). Similarly, for the routers assigned to the periphery
of each layer, they can be designed with fewer ports, as they have limited number
of neighbors. Note that the architectural solution discussed throughout this paper
provides the maximum possible customization (similar to Figure 3.16(b)) in order
to derive an application-specific heterogeneous 3-D NoC architecture.

3

78 3. Cross-Layer Synthesis of Heterogenous Architectures

Depending on this analysis, apart from the 2-D router (mentioned as Routerኺ),
we employ three more flavors of 3-D routers:

• 3-D Routerኻ: It supports connectivity from lower to higher layer. Since an
incoming packet can be routed to four different directions (note that the input
and output ports could not be the same in order to avoid packet deadlocks),
the router’s flexibility is 𝐹፬ = 4.

• 3-D Routerኼ: It supports connectivity for links that realize connections from
higher to lower layers. Similar to previous case, this router has 𝐹፬ = 4.

• 3-D Routerኽ: It supports connectivity from lower to higher layer and vice
versa (𝐹፬ = 5).

3.2.2.1 Designing 2-D and 3-D Routers

The basic component of the proposed architecture is the NoC router. This router
was designed in SystemC in order to be highly configurable at compile time. Among
others, parameters such as the number of ports, the phit size (word-length), the flit
size, the buffer sizes for the input and the stalled packets are configurable, through
a package file. Additionally, since our framework aims to support rapid evaluation
of heterogeneous 3-D NoC systems, the proposed architectural solution consisted
of a mixture of 2-D and 3-D routers (described in SystemC) is fully synthesizable.
This is also a key differentiation against relevant approaches targeting to automate
the physical design of NoCs.

Figure 3.17 gives the block diagram for the employed 3-D router. The input
packets from the interface, as well as the corresponding packets from the attached
node, are stored to a buffer of stalled packets. As only one packet is routed in
a clock cycle per output port, the buffer of stalled packets (SPB) contains those
packets which could not be routed to the router’s output ports. Even though a 2-D
router consists of fewer ports (there are no ports for connectivity to upper/lower
layers), the architectural organization of a 2-D router is similar to the one discussed
previously. The only differences between these two architectural instantiations af-
fect the routing mechanism (since there is no connectivity to upper/lower layers),
as well as the size of SPB buffer. Specifically, as the 2-D router has fewer output
ports, it is more likely for a packet to be stalled in this router, compared to the cor-
responding 3-D implementation. Hence, the size of SPB buffer for the 2-D router is
30% bigger compared to the corresponding size of a 3-D router.

In addition to that, the SystemC model of our router incorporates a flexible
Inter-Router Interface (IRI) to prevent manual architectural modifications in case
of a non-valid routing direction (e.g. there is no node attached to a local port, or
a router is spatially assigned to the periphery of a layer). The implementation of
IRI is based on a set of Read/Write C++ methods, one for each direction, which
define the connectivity of router’s ports to the neighbor routers. From physical
point of view, the IRI provides the appropriate pins for the communication with
the neighbor routers, marked as X_LEFT, X_RIGHT, Y_UP, Y_DOWN, as well as the

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

79

3D router3D router2D router

3D router2D router

2D router

3D router

2D router2D router3D router3D router

3D router3D router3D router

3D router 3D router 2D router

3D router

3D router

2D router

2D router

2D router

3D router3D router

2D router

(a)

(b)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Router0

Router2

Router1

Router0

Router1

Router2

Router0

Router0

Router0

Router0

Router0

Router0

Router0

Router2

Router0

Router2

Router0

Router0

Router0

Router0

Router1

Router2

Router0

Router0

Router1

Router0

Router0

Router2

Router1

Router2

Router1

Router2

Router0

Router0

Router1

Router2

Router0

Router0

Router0

Router2

Router1

Router0

Router0

Router0

Router0

Router0

Router1

Router0

Router1

Router0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 3.16 Alternative 3-D NoCs for the example discussed in Figure 3.15.

3

80 3. Cross-Layer Synthesis of Heterogenous Architectures

Z_ABOVE and Z_BELOW (in case of a 3-D router). In case a router is not attached
to a neighbor router at a given direction, then the respective method invalidates
the corresponding Read/Write operations.

READ from
interface

Input from Node

Output to Node

Node

Stall
Packet

Incoming
Packet

Inter-Router
Interface (IRI)

Routing Decision Mechanism

IF Packet cannot
be routed

IF NOT Packet Destination
&& output NOT occupied

IF Packet Destination
&& output NOT occupied

Y_UP Pins

X_LEFT Pins

Y_DOWN Pins

X_RIGHT Pins
ROUTER

Z_ABOVE Pins

Z_BELOW Pins

Connectivity to
Lower layer

W
R

IT
E

to
 in

te
rf

ac
e

Stalled Packet Buffer (SPB)

Connectivity to
Upper layer

Figure 3.17 Architectural template for a 3-D router.

The selection of the output direction for an incoming packet is defined from the
Routing Decision Mechanism based on a modified 𝑍𝑋𝑌 algorithm. According to this
algorithm, priority is given to the stalled packets that are stored into the router’s
local SPB buffer. Since the size of this buffer is limited, the routing algorithm incor-
porates a mechanism for preventing the overflow of SPB buffer. More specifically,
in case the packet could not be routed towards its direction with the minimum Man-
hattan distance and the SPB is full, then this packet is routed to the first unoccupied
direction (port) in order to avoid data loss. On the other hand (i.e. when there are
available unoccupied output ports), then the 𝑧-axis has higher priority compared
to the packet routing inside the same layer. Additionally, the employed routing
algorithm supports the avoidance of live-locks and dead-locks. In more detail, the
avoidance of deadlocks is performed by incorporating the Turn Model [38]. Regard-
ing the livelocks, they may occur in networks with non-minimal routing algorithms,
i.e. where packets may follow paths that do not always lead them closer to the
destination. For the scopes of this paper, the employed routers avoid livelocks by
prioritizing traffic based on hop-counters. For each node a packet traverses, a hop
counter is incremented. If several packets are requesting a channel, the one with
the largest hop-counter value is granted access. This way, packets that have long
circled the network will receive higher priority and eventually reach the destination.
Finally, in order to declare the spatial assignment of each router across the grid of
3-D NoC, we also define its co-ordinates as a tuple < 𝑋,𝑌,𝑍 >. The information

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

81

about the co-ordinates of destination router is also found in the header of each
packet, as it is depicted in Figure 3.18. We have to mention that more flexible rout-
ing algorithms than the employed modified 𝑍𝑋𝑌 algorithm can also be supported,
if their functionality is appropriately included into the router’s SystemC description.

Packet 1Message Packet 2 Packet 3

Packet
Header

(Packet Destination)
TailData

X Y Z
Node

ID
Packet Header

Figure 3.18 Structure of packets for our proposed NoC architecture.

3.2.3. Proposed Methodology
This section describes the proposed methodology for performing rapid evaluation of
heterogeneous 3-D NoCs. The steps of this methodology are depicted schematically
in Figure 3.19. Initially, a two-step profiling approach is applied to the application’s
high-level description (e.g. C/C++) for determining the communication bandwidth
among functionalities mapped onto different nodes. More specifically, the first step
deals with algorithmic analysis of the target application (this task is applied manu-
ally) in order to determine the amount of data exchanged between the application’s
kernels per function call, whereas the second step is based on software tools (for
our case we employ the Callgrind tool from Valgrind suite [39]). The scope of this
analysis is to find out how many times each function is called. Then, it is possible to
calculate with acceptable accuracy the total amount of data sent/received between
application’s functionalities.

The outcome of this analysis in conjunction to the system specifications (e.g.
desired throughput, maximum affordable power/energy dissipation, etc) are fed as
inputs to the topology exploration tool. At this step different heterogeneous 3-D
NoCs are evaluated in order to derive those topologies that belong to the Pareto-
optimal curve. Additionally, as the intra-router communication is far more efficient
as compared to the corresponding inter-router links, our framework supports the
clustering of multiple nodes into a single router.

The exploration framework takes into account a number of technology-oriented
issues, such as the lack of plethora of TSVs (an array of TSVs occupies a significant
part of useful silicon area [40]) and the maximum number of layers for the target
3-D platform. By enabling the exploration tool to be aware of these constraints, it
is possible to retrieve only the technologically viable solutions. The topology ex-

3

82 3. Cross-Layer Synthesis of Heterogenous Architectures

HLS3-D Integration

NoC Generation

Topology Exploration

ProfileApplication

NoC Topology SystemC NoC

2-D Router 3-D Router

Heterogeneous
3-D NoC

Input/Output

Architecture
specifications

Software tool

Figure 3.19 Proposed methodology for evaluating 3-D NoCs.

ploration procedure is automated with a software tool initially proposed in [41].
However, for the scope of this work, we have extensively modified the algorithm
in order to take into account the additional connectivity constraints posed by incor-
porating heterogeneous 3-D NoCs (instead of uniform 3-D NoCs supported by the
original version). The derived topology defines the spatial location of each router
over the NoC’s grid, as well as the type (either 2-D, 3-D with connectivity only to
upper layer, 3-D with connectivity only to lower layer, or fully 3-D) for each router.
By appropriately combining and interconnecting a number of 2-D and 3-D routers,
our framework automatically derives a synthezable SystemCmodel, which describes
the heterogeneous 3-D NoC.

After deriving the description of the NoC’s architecture, we proceed with the
physical implementation onto the selected 3-D technology. First of all, the SystemC
is translated to a synthesizable Register Transfer Level (RTL) description with the
usage of a High-Level Synthesis (HLS) tool. Regarding this research work, the HLS
task is automated with C-to-Silicon compiler [42]. The rest steps of the introduced
methodology deal with the architecture’s synthesis, as well as the quantification of
numerous performance metrics for the target 3-D system implementation. Due to
the importance of this step, the next section provides additional details about how
we quantify a 3-D design with existing 2-D Cadence tools. This feature is one of the
major contributions discussed throughout this paper, since the usage of commercial
tools guarantees that the derived results are much more accurate as compared to
similar approaches, which are based usually on simplified models.

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

83

3.2.4. 3-D Integration
This section describes the introduced framework for performing rapid evaluation of
3-D NoCs. During this step all the platform-dependent decisions are made. Among
others, these decisions include the way the system’s architecture is partitioned, the
IP block to layer assignment, the selection of interlayer interconnection technology,
etc. By distinguishing these platform-dependent decisions from the pure physical
prototyping step, we can support the design of 3-D stacks comprising heteroge-
neous layers. Additionally, the introduced 3-D integration task consists of modular
steps in order to enable interaction with tools from similar and/or complementary
flows. More specifically, the steps of this framework are summarized as follows:

• Pre-processing Step: Verifies the functional integrity for the design and ex-
tracts its XML description.

• 3-D Stack Generation: Generates the 3-D stack and determines the commu-
nication (connectivity) among layers.

• 3-D System Prototyping: Performs the physical implementation of 3-D NoC
and evaluates the derived solution.

3.2.4.1 Pre-processing Step

The first step in our methodology is depicted schematically in Figure 3.20. Initially,
the architecture’s SystemC description is simulated under various parameters and
constraints (e.g. clock period, on-chip memories organization) in order to verify
the system’s functionality. Then, we determine the desired hierarchy for the target
3-D architecture. Different levels of hierarchy are possible to be handled by our
framework, each of which has advantages and disadvantages. For instance, a block-
based system’s description leads to a coarse-grain solution, whereas a gate-level
netlist comes with a finer system implementation. In other words, the fine-grain
approach imposes the highest performance enhancement, but it also introduces the
maximum computational complexity for performing architecture-level exploration.
Regarding the 3-D stack discussed throughout this research work we maintain the
system’s hierarchy between routers, while each of them is flattened in order to
maximize timing and power savings. These gains are feasible since the employed
selection takes into consideration the regularity imposed by the underlined mesh
topology.

After defining the SoC’s hierarchy, the SystemC description is synthesized with
Design Compiler. As long as the design constraints (e.g. timing slacks, DRC’s, etc)
are met, the output of synthesis is translated to an equivalent XML description. This
task is software supported by our new public available tool, named Net2XML.

3.2.4.2 3-D Stack Generation

The XML description derived from the previous step represents the SoC’s netlist
after technology synthesis. This description is fed as input to the second step of
our proposed framework depicted schematically in Figure 3.21.

3

84 3. Cross-Layer Synthesis of Heterogenous Architectures

Hypergraph extraction from design (Net2XML)

Input:

 - System’s RTL description

Output:

 - Functional integrity for the NoC

 - System’s XML description

Simulation

Synthesis (Design Compiler)

Figure 3.20 Tasks for the pre-processing step.

Initially, application is partitioned into a number of subsets. The goal at this
level affects the minimization of connections between partitions, while respecting
some constraints, like keeping DRAM and logic on different partitions. Previous
studies showed that the partitioning algorithm exhibits increased flexibility when-
ever the number of subsets is higher as compared to the corresponding number of
device layers [43] [44]. The derived subsets are then assigned to the layers of the
target 3-D architecture. During this task, both fabrication and cost parameters are
taken into account. More specifically, for a given layer, only technology-combatable
components can be assigned, while each of the layers has to exhibit sufficient area
utilization. Finally, we build a prototype of the stack by deciding on the order of the
die in the stack (which goes to the bottom, which to the top, etc) and the choice of
3-D interconnection option. At this step, optimization objectives like total number of
inter-die connections, maximum operation frequency, as well as the total system’s
power consumption are taken into account. Once this is complete, the performance
metrics of the stack can be estimated based on high-level models [45] [46] [47]
[48].

Another important aspect of the 3-D system prototyping step is the capability
of going back and changing already taken decisions. Flexibility is very important,
because this methodology is meant to be used for fast search-space exploration.
In case the resulting 3-D chip does not meet the system specifications, there is
a feedback loop back to the partitioning step to allow designers to modify some
of the decisions already made, like using different router, or different block to die
assignment options.

The tasks of systems partitioning, partitioning to layer assignment and layer
ordering are software-supported by our publicly available TABU algorithm. An initial
version of this tool was presented in [43], but for the scope of this research work,
the algorithm has to be massively extended. More specifically, initially the tool was
developed for supporting exclusively designs mapped onto 3-D FPGAs, whereas the
current version can also handle 3-D ASIC platforms.

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

85

Input:

 - Number of layers

 - 3-D bonding technology

Output:

 - 3-D stack

 - Communication among layers

System Partitioning (Tabu algorithm)

Partition to Layer Assignment (Tabu algorithm)

Layer Ordering (Tabu algorithm)

Assign TSVs to buses (XML2Net)

p
a

rt
it

io
n

in
g}

S
ta

c
k

 g
e

n
e

ra
ti

o
n

Update the RLC values for TSV networks (XML2Net)

Form TSV networks (XML2Net) }

a
d

d
it

io
n

a
l

im
p

ro
v

e
m

e
n

ts

Figure 3.21 Tasks for 3-D stack generation.

Furthermore, rather than similar approaches, which mainly perform a min-cut
partitioning [49], our solution provides additional flexibility. Towards this direc-
tion, 𝑇𝐴𝐵𝑈 algorithm is aware of a number of physical constraints coming from the
fabrication process. For instance, stacks cannot have arbitrary shapes; cubes and
pyramids are both manufacturable but other arbitrary shapes may create mechan-
ical instability in the 3-D stack. Also, the selected bonding technology (e.g. TSV,
Face-to-Face, etc), as well as the minimum pitch between adjacent TSVs, are taken
into account during the partitioning procedure. The tool makes sure that the results
respect these basic constraints, by applying high-level constraints on the geomet-
rical properties of the stacks. Regarding the evaluation of the derived solutions,
we employ well-established models for estimating wire-length [45], delay [46] and
power consumption [47].

The output partitioning procedure provides information about the architecture’s
functionality assigned to each layer, as well as the required connectivity among
layers. This information is appropriately handled by our new tool, named XML2Net
for assigning a TSV array to each bus that connects architecture’s components in
different layers. Note that whenever a bus needs to be routed between layers 𝑖 and
𝑗, silicon area equals to the area occupied by the TSV array has to be reserved in
both layers. Then, TSV arrays that provide bus connectivity between adjacent layers
𝑖 and 𝑗 are connected through special-purpose routing paths, named TSV networks.
As we will discuss later, these networks are actually implemented with additional
metal layers, which exhibit tunable 𝑅𝐿𝐶 characteristics in order to correspond to
those found in TSVs from the selected fabrication process [40].

3

86 3. Cross-Layer Synthesis of Heterogenous Architectures

3.2.4.3 3-D System Prototyping

The last step in our framework, depicted in Figure 3.22, deals with the system
prototyping to derive the 3-D stack. During this step we perform floor-planning,
power and ground network generation, placement of physical library cells, clock
tree synthesis and global/detail signal routing with the Cadence SoC Encounter tool.
Since it is not possible to modify the functionality of this tool (its source code is not
available), we made them aware of the additional flexibility imposed by the third
dimension through appropriate design encoding. For this purpose we introduce:

• TSV networks: These networks correspond to routing paths that provide con-
nectivity between TSV arrays assigned to adjacent layers. Note that during
physical implementation, our framework preserves that TSV arrays assigned
at consecutive layers are aligned. This is possible by forcing the placement of
TSVs to the same relative (𝑥, 𝑦) co-ordinates between adjacent layers. The
physical implementation of the TSV networks is performed through additional
metal layers inserted to the technology library file, while their total resistance
(𝑅), capacitance (𝐶) and inductance (𝐿) values correspond to the TSV’s 𝑅𝐿𝐶
parameters.

• Virtual layers: Our framework assumes that the target 3-D SoC consists of a
number of virtual layers, each of which contains hardware resources assigned
to different physical layers of the 3-D stack. This enables the usage of existing
2-D physical design tools in order to evaluate the performance enhancement
of 3-D chips.

Input:

 - NoC design with TSV networks

 - Design specifications

Output:

 - 3-D NoC

 - Evaluation metrics

Post-layout Simulation (Cadence Incisive Simulator)

Post-layout Power analysis (Synopsys PrimeTime PX)

Timing Analysis (Cadence Static Timing Analysis Engine)

Physical Design (Cadence SoC Encounter)

Figure 3.22 Tasks for 3-D system prototyping.

After 3-D physical prototyping, the efficiency of the derived solution is quantified
by applying timing analysis. For this purpose we employ Cadence Static Timing

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

87

Analysis Engine, while for sake of completeness the analysis is performed both in
advance, as well as after clock tree synthesis and architecture’s routing. In case the
derived 3-D stack does not meet the system’s constraints/specifications, a number
of design optimization could be applied for additional improvements.

Finally, the functional integrity of the physical design is verified by applying a
post-layout simulation with Cadence Incisive Simulator. For this reason, the delay
for all the architecture’s routing paths is extracted in SDF format (Standard Delay
Format), and then we appropriately annotate the delay values for the TSV networks.
Note that the annotation of delay values for the TSV networks is an important task,
since these routing paths has to exhibit the 𝑅𝐿𝐶 characteristics of the selected TSV
technology. For the scope of this research work, the electrical characteristics for
TSV networks are based on commercially available TSV models [40]. Furthermore,
our framework supports the evaluation of 3-D SoCs in terms of power consumption
by applying a post-layout analysis with Synopsys PrimeTime PX tool. The inputs
to this analysis are a trace file that contains signal activities in VCD (Value Change
Dump) format, as well as the annotated SPEF (Standard Parasitic Exchange Format)
file with extracted parasitic values for all the design’s resources.

3.2.5. Experimental Results
This section provides a number of experimental results that prove the efficiency
of the proposed solution. For demonstration purposes, four DSP applications are
considered as benchmarks. The selection of these applications for evaluation pur-
poses was performed, since their performance highly depends on the data transfer
between different storage and processing nodes. Next, we summarize a brief de-
scription for the employed benchmark applications.

• Video Object Plane Decoder (VOPD) is a DSP application targeting to high-
quality video transition with decent bandwidth performance. The VOPD de-
coder consists of 16 nodes, including two length decoders, an AC-DC predic-
tion, an ARM processor, two memory components and a VOP reconstructor
[50] [41].

• Multi-Window Display (MWD) is another DSP application suitable for imple-
mentation with a NoC infrastructure [51]. This benchmark consists of 12
nodes (processing and storage), each of which is assigned to a different
router.

• MPEG-4 is a broadly used protocol for audio and video encoding [52]. The
employed implementation of MPEG-4 has 12 nodes, including various process-
ing elements, such as a video unit, an audio unit, a RISC processor, a CPU,
a binary alpha block and three SRAMs. Since a hardware encoder/decoder
consists of many components, a NoC approach is suitable for realizing data
transfers.

• The last case study is a multimedia system (MMS) [33] consisted of 25 nodes,
including several memories and DSP processors.

3

88 3. Cross-Layer Synthesis of Heterogenous Architectures

Figures 3.23, 3.24, 3.25 and 3.26 give the mapping of the four previously men-
tioned applications onto the minimum 2-D and the proposed heterogeneous 3-D
NoCs, consisted of two layers. The term minimum corresponds to the smaller num-
ber of routers that are required for performing application mapping, assuming a
mesh topology and one node per router. Even though the analysis discussed in this
section affects routers with one local port (for attaching the processing, or storage
node), the proposed methodology also supports more advanced communication
schemes (i.e. clustering multiple nodes to a single router). Similar to topology ex-
ploration task discussed in Section 3, the application mapping is performed with an
extended version of software tool initially proposed in [41].

(a) (b)

2-D Router 3-D Router

70

362

362 27

49

357

353

300

313

313

94

500

16

16
16

157 16

16

16

145

6 9

1112

1314 15

16

16

10

8

362

Layer 1 Layer 2

7

var. length
decoder

AC-DC
prediction

iQuant

ICDT

u
p

 s
a

m
p

lin
g

down samp &
context calculationpaddingVOP memory

up sampref memory

arithmetic
decoder

memory

stripe memory

3

inverse scan

2

run length
decoder

VOP reconstr
7

70

362

362

27

49

357

353
300

313

313

94

500
16

16

16 157

16

16

16

1

2

34

5

6

9

11

12 13 14

15

16

16

10

8

362

AC-DC
prediction

ICDT VOP reconstr

padding

VOP memory

ref memorystripe memory

var. length
decoder

run length
decoder

inverse scan

iQuant

up sampling

up samp

down samp &
context calculation

arithmetic
decoder

memory

Figure 3.23 Mapping of VOPD application onto: (a) 2-D NoC and (b) the proposed heterogeneous 3-D
NoC platform.

(a) (b)

2-D Router 3-D Router

3

4 6

7

8

9

10

12

64

64

64

128

96

96

96

96

96

96

96

64

64

blend

jug2 hvs

mem2vs

nr semem3

jug1

hs mem1

in

1

Layer 1 Layer 2

2 115

1

2

3

5

67

89

10

11

12

64

64 64

128

969696

96

9696

96

64

64

mem3

jug2

se

blend

in

nr

mem1vs

hs

mem2hvs

jug1

4

Figure 3.24 Mapping of MWD application onto: (a) 2-D NoC and (b) the proposed heterogeneous 3-D
NoC platform.

The red and blue colored circles at these figures encode 2-D and 3-D routers,

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

89

(a) (b)

1

2

35

6

7

8

9

11

12

190

1

1

910

60

40

600

40

250

500

32

670

173

190

1

1

910

60

40

600

40

250

500

32

670

173

4

med cpusdram

sram1

sram2

idct

risc

vu

au

rast

adsp

up samp

bab

10

1

2

5

6

7

8

9

11

12

190

1

1

910
60

40

600

40
250

500

32

670 173

190

1

1

910

60

40

40

250

500

32

670 173

4

aumed cpu

sdram

sram1

adsp

bab

vu

rast

sram2

idct

up samp

risc

600

10 3

Layer 1 Layer 2

2-D Router 3-D Router

Figure 3.25 Mapping of MPEG-4 application onto: (a) 2-D NoC and (b) the proposed heterogeneous 3-D
NoC platform.

2-D Router 3-D Router

38016
116873

197

33848

33848

75205

16691

33848

16691

38016

7061

7061

80

28248

26924

25640640764

144

641

3672

197

3672

3672

75584

38016

38016

80

25

28265

70657065

4 1 7

623

5

8

9

10

11 121614

17

13

22

18

20

19

21

15

23

2425

CPU1-MC-ADD

MEM1-FS0-FS1-FS2

DSP6-Filter-
MDCT

CPU2-Iterative
Enc.1 and 2

ASIC2
Synchronization Mux

ASIC5-
Synchronization

DSP6-IDCT

DSP4-Huffman
Dec. 1 & 2

DSP4-FP

DSP5-FFT-
PsychoAcoustic Model

ASIC3-Bit
Reservoir 1 and 2

ASIC2-
Demultiplexing

MEM2-
Buffering

DSP4-VLD

DSP6-IMDCT
SUM

ASIC1-ME

DSP1-DCT-IDCTDSP2-Q-IQ

DSP3-FP

ASIC2-VLE

DSP5-IQ

CPU2-MC ADD MEM2-FS4 FS5

DSP5-Bit
reservoir 1&2

MEM4-
Buffering

38016 116873

197

33848

33848

75205

16691

33848

16691

38016

7061

7061

80

28248

26924

25

640640764

144

641

3672

197

3672

3672

7558438016

38016

80

25

28265

70657065

4 1 7

623

5

8

9

10

11 121614

17

13

22

18

20

19

21

15

23

2425

ASIC1-ME

DSP1-DCT-IDCTDSP2-Q-IQ

DSP3-FP

ASIC2-VLE
ASIC3-Bit

Reservoir 1 & 2

ASIC2-
Demultiplexing

DSP5-IQ

CPU1-MC-ADD

MEM1-FS0-
FS1-FS2

DSP4-FP

CPU2-Iterative
Encoding 1 & 2

ASIC2-Synchronization
Mux MEM2-Buffering

MEM2-FS4 FS5
DSP4-Huffman
Decoding 1 & 2

DSP5-FFT-
PsychoAcoustic Model

DSP6-Filter-
MDCT

ASIC5-
Synchronization

DSP4-VLD

DSP6-IDCT

CPU2-MC ADD

DSP5-Bit
reservoir 1 & 2

DSP6-IMDCT
SUM

MEM4-Buffering

Layer 1 Layer 2

(a) (b)

Figure 3.26 Mapping of MMS application onto: (a) 2-D NoC and (b) the proposed heterogeneous 3-D
NoC platform.

respectively. Similarly, the directed red and blue colored arrows denote packet
transfers between source and destination routers assigned to the same and adjacent
layers, respectively. The weights at these arrows correspond to the number of
packets that have to be sent from the source to the destination node. Moreover,
at these figures, there are also some locations at the grid marked with shadow
color. At these locations the mapping algorithm does not assign any node. Hence,
for further performance enhancements, it is possible to eliminate the routers from
spatial locations without IP blocks.

In advance of quantifying the efficiency of heterogeneous 3-D NoCs, we provide
an analysis targeting to evaluate the design of the employed 2-D and 3-D routers
as we vary the number of local ports. Note that the case 𝑁𝑜𝑑𝑒 = 0 corresponds to
a scenario, where the router is only connected to the four, or six, adjacent routers,

3

90 3. Cross-Layer Synthesis of Heterogenous Architectures

depending if it is 2-D, or 3-D router, respectively. The scope of this analysis is to
depict that SystemC models for 3-D routers exhibit similar efficiency with the corre-
sponding 2-D routers, even though the additional logic required for realizing packet
routing in more directions (output ports). More specifically, Figure 3.27 gives the
number of equivalent logic gates after synthesizing the two flavors of routers with
the usage of TMSC 45nm process technology. We have to notice that the technol-
ogy synthesis for this experiment was performed by setting identical effort at the
C-to-Silicon tool. Based on the results summarized in this figure, we can conclude
that, as we increase the number of local ports, there is an almost linear increase
to the number of logic gates. Moreover, both the 2-D as well as the 3-D router’s
implementations requires a similar number of logic gates for a given number of local
ports. Two more interesting conclusions can be derived from this figure. Specifi-
cally, even though the 3-D router has additional logic for performing packet routing
(it has more neighbors compared to the 2-D implementation), however, it incor-
porates smaller sized SPB buffers, as we have discussed in Section 2. This is also
shown in Figure 3.27 for 3-D routers consisted of one, or two, local ports. Regard-
ing higher number of local ports, the complexity of Routing Decision Mechanism
becomes more important, and hence the 3-D routers need additional logic gates.
Apart from the results summarized in this figure, further reduction to the number
of gates is feasible by applying a full-custom designing at the router, instead of
employing SystemC models. However, this enhancement is beyond the scope of
this research work, as we focus on providing a framework for rapid evaluation of
heterogeneous 3-D NoCs with the usage of HLS tool.

Figure 3.27 Evaluation of 2-D and 3-D router in term of equivalent gates.

The different architectural organization between the 2-D and the 3-D routers,
both in the routing mechanism and the SPB buffers, is expected to lead to variations

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

91

in performance. Towards this goal, the next two figures quantify the efficiency of
these routers in terms of latency and energy dissipation for different number of
local ports assuming, routers with identical traffic between the 2-D and the 3-D
case. Based on Figure 3.28, we conclude that on average the 3-D router exhibits
32% lower latency compared to the corresponding 2-D implementation. This is
mainly due to the significant lower (30%) SPB buffer size employed in the 3-D
domain. At this figure, we also notice some spikes (non-monotonic improvements)
which occur due to the employed HLS tool.

Figure 3.28 Evaluation of 2-D and 3-D router in term of latency.

Figure 3.29 plots the energy dissipation for the different flavors of routers dis-
cussed previously. From this analysis, we conclude that 3-D routers outperform
the corresponding 2-D implementations. More specifically, the average energy dis-
sipation for 3-D and 2-D routers among the studied benchmarks is 36pJ and 49pJ,
respectively. Similar to latency, the 38% additional energy dissipation occurred
by 2-D routers is because the 3-D instantiations incorporate smaller SPB buffers.
Further improvements are feasible by employing low-power techniques during the
design phase, such as power gating and clock gating for those routers that are not
utilized, but this analysis is not tackled throughout this research work.

Next, we quantify the physical implementation of different NoC architectures.
For this analysis, the four DSP applications discussed previously were appropriately
synthesized with the usage of the proposed framework and Cadence SoC Encounter.
Three different NoC instantiations are evaluated throughout this analysis, namely:
(i) a uniform 2-D, (ii) a uniform 3-D and (iii) the proposed heterogeneous 3-D NoC.
The physical implementation was performed with the usage of TMSC 45nm process
technology, whereas the parameters for the employed TSV library are summarized

3

92 3. Cross-Layer Synthesis of Heterogenous Architectures

Figure 3.29 Evaluation of 2-D and 3-D router in term of energy dissipation.

in Table 3.2 [40]. Figure 3.30 depicts the floorplan, as well as the layout for one of
the studied applications (MPEG-4). At Figure 3.30(a), we highlight the two Virtual
Layers and the corresponding connectivity between them (plotted with yellow color
at Figure 3.30(b)).

Table 3.2 Characteristics of the selected TSV technology.

Diameter: 1.2um
Minimum Pitch: 4um
Resistance: 0.35Ω
Capacitance: 2.5fF
Length: 4-9um

In contrast to application mapping, where the optimization goal was to minimize
the number of packet hops, during the physical implementation step we aim to min-
imize the critical path, in order to derive an efficient communication infrastructure.
Hence, the performance metrics for the two flavors of 3-D NoCs studied throughout
this research work (uniform and the proposed heterogeneous) differ a lot (due to
variations in connectivity imposed by different number of fabricated TSVs).

Table 3.3 provides a number of implementation-oriented parameters for the
studied DSP applications, retrieved after successful synthesis and physical imple-
mentation. Based on this table, both the 3-D, as well as the introduced hetero-
geneous solution has aspect ratio 2 (in order to realize onto the same die the two
virtual layers shown previously at Figure 3.30). Two more parameters are worth

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

93

Figure 3.30 Physical layouts for the introduced heterogeneous 3-D NoC regarding the MPEG-4 applica-
tion.

mentioning at this table. More specifically, since the proposed heterogeneous 3-D
NoC consists of a mixture of 2-D and 3-D routers, it has fewer TSVs as compared to
the uniform 3-D NoC implementation. However, such a selection does not impose
any penalty in total wire-length, since the proposed heterogeneous approach leads
almost to an average 57% wire-length reduction as compared to the case where
all the routers are 3-D.

The limited connectivity across the vertical axis found by our proposed architec-
tural solution is expected to lead to a slight increase to the number of packet hops
for successful routing between source and destination nodes. For this purpose,
Figure 3.31 plots the total number of hops per application for the three alterna-
tive NoC topologies. Based on these values we can conclude that the existing way
for designing uniform 3-D NoCs, where all the routers provide connectivity to up-
per/lower layers, is the optimal topology since it reduces the number of packet hops

3

94 3. Cross-Layer Synthesis of Heterogenous Architectures

Table 3.3 Implementation properties for the target applications.

Benchmark Properties
Area(umᎴ) Ratio Wire-length # of TSVs # of cells # of nets # of IOs

MMS
2-D 991.5×990.3 0.99 10,261,064 0 458,823 462,825 3,251
3-D 599.3×1,198.2 1.99 11,480,859 704 324,689 326,317 3,251

Proposed 762.8×1,523.3 1.99 7,864,344 130 534,731 539,864 3,251

MPEG-4
2-D 754.74×753.48 0.99 5,915,764 0 256,980 259,307 1561
3-D 432.03×861.84 1.99 6,373,170 576 167,911 168,709 1,561

Proposed 561.7×1,122.66 1.99 3,882,465 192 271,828 275,552 1,561

MWD
2-D 758.9×756.0 0.99 5,566,222 0 262,609 265,219 1,561
3-D 435.4×870.6 1.99 5,794,055 1,170 171,979 172,762 1,561

Proposed 551.5×1,101.24 1.99 3,673,350 260 272,823 275,523 1,561

VOPD
2-D 781.3×777.4 0.99 6,156,379 0 283,098 285,961 2,081
3-D 441.3×885.7 2.00 7,081,633 1,170 178,034 179,182 2,081

Proposed 585.8×1,170.5 1.99 4,121,908 650 318,237 320,404 2,081

compared to the corresponding 2-D NoC by 29%, on average. On the other hand,
the proposed heterogeneous NoC leads to an increase of packet hops against to
uniform 3-D NoC about 8.5% on average.

Figure 3.31 Number of packet hops for different architectural solutions: (i) a homogeneous 2-D NoC,
(ii) a homogeneous 3-D NoC and (iii) the proposed heterogeneous 3-D NoC.

The previously mentioned reduction of packet hops highlights the importance
of employing the 3-D integration paradigm as a viable solution for designing digital
circuits with increased demand for connectivity. Even though the conclusion about
superior flexibility of 3-D NoCs seems obvious and was also mentioned in the ma-
jority of relevant publications, however, these approaches rarely take into account
constraints and limitations posed by the fabrication process. Specifically, the usage
of 3-D routers impose a TSV assigned to each wire that provides signal connectivity
between adjacent layers. Due to the large diameter and pitch of these TSVs, it is
clear that an increased number of TSVs leads to area, delay and power overheads.

Figure 3.32 plots the maximum operation frequency for the alternative topolo-
gies. A number of conclusions can be derived from this figure. More specifically,
the proposed heterogeneous 3-D NoC outperforms the rest implementations for all
the studied applications. However, depending on the inherent properties of each
application (i.e. the demand for packet transmission), as well as the already derived

3.2. Heterogenous Network-on-Chip Multimedia Architectures

3

95

application mapping onto target topologies, there are mentionable variations in per-
formance improvement between the introduced solution and uniform 3-D ranging
from 1.16× up to 1.43×. One more conclusion is derived from this figure regard-
ing the performance of uniform 2-D and 3-D NoCs, as these two NoCs achieve on
average almost the same maximum operation frequency among the studied appli-
cations. This occurs because the excessive amount of vertical connectivity usually
leads to a saturation, and no additional performance improvement is feasible by
introducing additional TSVs.

Figure 3.32 Maximum operation frequency for different instantiations of NoC.

Similarly, Figure 3.33 provides the power consumption for the alternative topolo-
gies. From this figure we can conclude that on average the proposed heterogeneous
solution, consisted of a mixture of 2-D and 3-D routers, achieves mentionable power
savings against uniform 2-D and 3-D NoCs. More specifically, since the 3-D routers
have fewer SPB buffers, this leads to power savings for the NoCs that incorporate
such kind of routers. Additionally, the shorter routing wire-length found in hetero-
geneous 3-D NoCs, as we discussed in Table 3.3, also contributes to the smaller
power dissipation.

Figure 3.33 Power consumption for different instantiations of NoC.

3

96 3. Cross-Layer Synthesis of Heterogenous Architectures

3.2.6. Conclusions
In this chapter, it is introduced a software-supported framework supporting rapid
evaluation of heterogeneous 3-D NoCs. The introduced architectural paradigm con-
sists of a combination of 2-D and 3-D routers that better match to the application’s
requirements for data transfer. Experimental results with DSP applications prove
the effectiveness of such an approach, as compared to existing solutions for design-
ing uniform 2-D and 3-D NoCs, since we achieve on average 25% higher maximum
operation frequency and 39% lower power consumption, as compared to the uni-
form 3-D NoCs.

3.3. Space Critical Systems

3

97

3.3. Space Critical Systems
3.3.1. Introduction
The exploration of Mars is one of the main goals both for NASA and ESA, as it
is confirmed by past and recent activities. The last 15 years there are numerous
on-orbit and surface missions to Mars (e.g., NASA’s Mars Global Surveyor, Mars
Odyssey, Phoenix, Mars Reconnaissance Orbiter, Mars Express) with remarkable
results.

One of the most challenging tasks for these missions is the design of autonomous
robots. Since the efficiency of these robots is tightly coupled to the accuracy of their
decision-making algorithms [53], there is a continues effort towards developing
even more efficient computer vision (CV) algorithms.

Even though these solutions become more and more attractive due to their re-
markable efficiency in term of accuracy, however, their increased demand both for
computational resources and storage make them non-suitable for being incorpo-
rated onto space missions. To make matters worst, the majority of these algo-
rithms are implemented solely onto software-level (e.g. Matlab, C/C++), while the
employed coding style make them almost imposable to be ported onto hardware.

In this research work we discuss a novel methodology for efficient implemen-
tation of CV algorithms targeting to rover navigation for space applications. The
introduced solution is part of the SPARTAN (SPAring Robotics Technologies for Au-
tonomous Navigation) project, founded by ESA, as part of the ExoMars mission
(scheduled for 2018) [54]. Rather than relevant approaches that tackle the prob-
lems of increased computational complexity and execution time solely at software-
level, our objective is to incorporate an architecture consisted of a reconfigurable
device (FPGA) and a space-oriented central processor unit (CPU). For the scopes of
SPARTAN project, the target reconfigurable fabric is a Virtex-6 FPGA platform [55],
whereas the processor is a rad-hard CPU with 150MIPS running the ROS system
[56] (the hardware specifications was defined by ESA). Additional details about the
architecture of SPARTAN system can be found in [57].

Since our target architecture is a heterogeneous platform, we incorporate a
hardware/software (HW/SW) co-design methodology, which is software-supported
by a number of existing and new tools. A critical task at this methodology is the
determination of target implementation medium, either the CPU or the FPGA, where
each of the CV algorithms has to be mapped. In order to accomplish this task,
we employ a novel profiling methodology which provides some guidelines about
the importance of different CV algorithms under various design parameters. More
specifically, our selections are based onto the computational complexity, the type of
mathematical operations, the memory footprint (both data life-time and maximum
storage), the amount of data that has to be transferred among these kernels, the
data dependency, etc for each CV algorithm.

Even though profiling is a well-known problem for architectural designers, the
main differentiation of introduced solution compared to relevant approaches af-
fects the significant lower execution time. More specifically, rather than profiling
algorithms with original data inputs, our methodology employees a technique that
guarantees to derive accurate conclusions with the usage of smaller sized images.

3

98 3. Cross-Layer Synthesis of Heterogenous Architectures

Such a feature reduces mentionable the execution time for performing profiling.
The rest of this work is organized as follows: subsection 3.3.2 gives an overview

of the SPARTAN system. The proposed methodology is described in subsection 3.3.3,
whereas experimental results derived by applying the introduced methodology to
SPARTAN system are discussed in subsection 3.3.4. Finally, conclusions are sum-
marized in subsection 3.3.5.

3.3.2. Architecture of SPARTAN System
The goal of the SPARTAN system is to convert visual information from rover cameras
into 3D local maps, as well as to perform accurate location estimates useful for
the navigation process. Hence, image processing algorithms suitable for 3D map
reconstruction and localization are selected (from [58]) and implemented into a
parallel processing chain to achieve high performance while maintaining efficiency
in terms of computational complexity, memory footprint and energy consumption.

The architecture of SPARTAN system consists of a low-performance CPU (150MIPS)
and a Virtex-6 FPGA board. More specifically, the CPU runs the Robotic Operating
System (ROS) in order to provide all the standard operating system services re-
quired for proper rover navigation, such as hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between
processes, and package management, whereas the FPGA acts as an accelerator for
the computational intensive CV algorithms.

The desired functionality of SPARTAN system is encoded with two different op-
eration modes, namely the mapping and localization mode. Whenever the system
operates at mapping mode, it produces a 3D map of the environment. On the
other hand, at the localization mode, the system is configured to generate location
estimates.

As input to the SPARTAN system, we use stereo-vision image information cap-
tured from two sets of cameras. The image sizes from these cameras are 1120×1120
(mapping mode) and 512×384 (localization mode), respectively.

Overall the SPARTAN system uses a module for the 3D reconstruction of images
[59], i.e., for the computation of disparity map, as well as the coordinates of objects
in 3D space, the SURF algorithm for feature extraction [60], a motion estimation
module that aims to deduce moves in 3D space [61], and a non-probabilistic visual
SLAM [61]. The 3D reconstruction module is used both in mapping and localization
mode, while the remaining three modules are employed solely for visual odometry
in localization mode.

A schematic view of SPARTAN architecture is depicted in Fig. 3.34, whereas the
functionality of employed CV algorithms is summarized as follows [57]:

• Imaging: Performs image processing for deriving appropriately input to the
rest algorithms.

• 3D Map Reconstruction: Produces the 3D map of the environment.

• Visual Odometry: Provides an estimation of the displacement of the rover.

• Visual SLAM: Determines the current location of the rover.

3.3. Space Critical Systems

3

99

• Localization: Finds the new spatial location of rover at the map.

Sensors

Vision Stereo

System

IMU

Acc + Gyros

Proximity

Sensors

Imaging

Visual SLAM

Visual

Odometry

Mechanical

Odometer

Guidance, Navigation

and Control

SPARTAN Architecture

Map Merging
3D Map

reconstruct.

Localisation

Path

Planning

GNC
Figure 3.34 Schematic view of SPARTAN mapping and localization mode.

The demonstration of SPARTAN system will be performed with the usage of two
scenarios: (i) an Exomars-like rover under the 3DROV simulator and (ii) with a real
rover in an outdoor environment. More specifically, the first scenario involves a
simulated rover (Exomars CAD model based) and a Martian surface modeled on the
3DROV framework. Realistic camera images will feed the vision based SPARTAN
algorithms. This scenario allows early testing of the algorithms during the develop-
ment process, whereas the final demonstration (with the real rover) will prove the
effectiveness of proposed architecture.

3.3.3. Hardware/Software Co-Design Methodology
This section describes the proposed methodology for performing HW/SW co-design.
Even though the introduced methodology is a general-purpose solution, however, in
the context of SPARTAN project it was appropriately tuned to take into consideration
both the inherent architectural features posed by our system (FPGA and a low-
performance CPU), as well as the constraints related to the increased computational
complexity, as they are defined by the ESA’s specifications. Fig. 3.35 highlights the
main tasks of our proposed co-design methodology.

3.3.3.1 Phase 1: Algorithmic analysis

The first phase of proposed solution, depicted in Fig. 3.36, involves theoretical
study of the employed CV algorithms. Algorithm analysis is an important part of
our methodology, since it allows theoretical estimations about the resource require-
ments posed by CV algorithms.

For this purpose, initially we check whether the employed CV algorithms are
described in primitive form. By the term primitive, we refer to an algorithmic de-
scription without complex functions and libraries. This is very crucial in order to have

3

100 3. Cross-Layer Synthesis of Heterogenous Architectures

Phase 1 Algorithmic analysis

Phase 2 Platform independent optimizations and modifications

Phase 3 Software-supported profiling

Phase 4 HW/SW co-design

Phase 5 Platform dependent optimizations

p
ro

fi
lin

g

Figure 3.35 Abstract view of the introduced HW/SW co-design methodology.

CV Algorithm #1

CV Algorithm #2

CV Algorithm #N

Primitive?

Content dependent

Content independent

Algorithmic analysis
(theoretic approach)

Arithmetic operations
(function of image size)

Arithmetic operations
(function of image features)

Memory requirements

Yes

Annotate CV algorithms
in primitive form

No

Figure 3.36 Tasks performed during the algorithmic analysis.

accurate profiling results (note that execution time for complex functions in Matlab
could be a few seconds, whereas if these functions are executed onto C/C++ might
take a long time period). Hence, in case the target algorithms are not described
in primitive form, there is a pre-processing step. During this step we pay effort to
rewrite these functions into a primitive form without affecting their functionality.

Otherwise (i.e. the algorithms are described in primitive form), we proceed
with the algorithmic analysis. Two alternative approaches are feasible for this task.
Either to study a content independent, or a content dependent algorithm. More
specifically, whenever the complexity of studied CV algorithms does not depend
to the content of image (content independent), then theoretical analysis provides
accurate results about the number of mathematical operations required for exe-
cuting these algorithms as a function of image size. Even though the image sizes
employed as input to the SPARTAN system are fixed (defined by the project spec-
ifications), and consequently, there is no variation to the number of mathematical
operations, the algorithmic analysis provides also useful information for applying
the extrapolation method (discussed in upcoming subsection).

On the other hand, if we have to study a content dependent algorithm, the
theoretical analysis reports the number of mathematical operations as a function
of the identified features at images. The algorithmic-dependent profiling method

3.3. Space Critical Systems

3

101

is the procedure of determining the amount of resources (e.g. time and storage)
required for algorithm’s execution.

The outcome from this analysis provides valuable conclusions about the com-
putational complexity of CV algorithms, their performance requirements, the mem-
ory/storage requirements, as well as the communication load among them. This
information can be appropriately handled to gives some potential algorithmic op-
timizations for the CV algorithms and to provide some guidelines regarding the
HW/SW partitioning.

3.3.3.2 Phase II: Platform Independent Optimizations andModifications

The second phase of our propose methodology applies at algorithmic level a number
of platform independent optimizations and modifications. This task is achieved
through source-to-source code modifications. Fig. 3.37 depicts the tasks performed
at the second phase.

CV Algorithm #1

CV Algorithm #2

CV Algorithm #N

Acceptable
solution?

Algorithmic
optimization(s)

Algorithmic
modification(s)

END
Yes

No

Figure 3.37 Proposed methodology for performing platform independent optimizations and modifications.

As we have already mentioned, the initial version of CV algorithms employed
for the scopes of SPARTAN project, were not developed into a hardware-friendly
description. Typical example of this limitation is the usage of high-level functions
found in Matlab and/or C++, which are very difficult to be implemented onto hard-
ware. Also, they did not take into account issues related to parallel execution (which
is provided by target FPGA), as well as the limited amount of on-chip storage found
in embedded platforms. Consequently, those algorithms have to be appropriately
optimized in order to take into consideration a number of architectural constraints.
Note that during this task, we have to preserve the functionality of target CV al-
gorithms. Additional details about the employed algorithmic optimizations can be
found at [62].

Apart from these optimizations, during the second phase of introduced method-
ology, we apply also a number of algorithmic modifications. The scope of these
modifications is to reduce considerable the complexity, storage and communication
overhead for the employed CV algorithms with an controllable (affordable based
on project specifications) penalty to their accuracy. On contrast to algorithmic op-
timizations, the applied modifications usually affects the functionality of underline
CV algorithmic.

Then, the efficiency of CV algorithms is quantified in terms of performance and

3

102 3. Cross-Layer Synthesis of Heterogenous Architectures

the desired accuracy. In case the derived solution does not meet system’s specifica-
tions, there is a feedback loop for additional improvements. Otherwise, we proceed
to the third phase of proposed methodology.

3.3.3.3 Phase III: Software-Supported Profiling

Profiling is an important procedure during HW/SW co-design. The importance of
profiling task becomes far more critical whenever the system implementation im-
poses some form of co-design between non-homogeneous processing cores (e.g.
the SPARTAN system incorporates a low-performance CPU and an FPGA board).

Our methodology applies system profiling in different level of abstractions. More
specifically, regarding the SPARTAN project, two levels of abstraction were em-
ployed: (i) coarse-grain and (ii) fine-grain. Such an approach enables designers
to perform rapid evaluation of complex systems, where only a subset of the algo-
rithms have to be studied in detail (under fine-grain analysis). More specifically,
even though fine-grain analysis guarantees to find the most accurate and detail
results about those kernels that dominate system’s performance, however it is dif-
ficulty applicable to algorithms with increased code size.

Our software-supported profiling applies initially a coarse-grain analysis to the
whole algorithm in order to identify critical kernels (those that dominate system’s
performance). Then, these kernels are studied with the usage of fine-grain profiling
in order to retrieve a number of design parameters that affect systems implemen-
tation (e.g. computational complexity, memory footprint, data lifetime, communi-
cation bandwidth, area requirements, etc).

Since the profiling of complex systems is a rather difficult task, our methodology
uses a number of software tools. Specifically, the coarse-grain analysis is performed
with the usage of Tic-Toc and Time functions, depending on the programming lan-
guage for each CV algorithm. On the other hand, fine-grain profiling is performed
with algorithmic analysis, as well as with dedicated software tools (e.g. Matlab
profiler, VTune, Valgrind, etc). This classification is also depicted in Fig. 3.38.

Figure 3.38 Profiling tools.

3.3. Space Critical Systems

3

103

Next, we summarize the main advantages and disadvantages of the alternative
software-supported analysis methods:

• Tic-Toc: This method is applicable to CV algorithms described in Matlab lan-
guage. The output from Tic-Toc analysis provides an overview of the exe-
cution time for different parts of the algorithm. Since this method is applied
manually only to kernels of interest, it’s applicability decreases with the code
size. Additionally, the Tic-Toc method introduces an overhead, which is not
easily controllable. For the scopes of SPARTAN project, this overhead was
computed based on information published in relevant references (e.g. man-
ual of Matlab).

• Time: The Time method reports the execution time for CV algorithms devel-
oped in C/C++ (e.g. OpenCV) language. Similar to the Tic-Toc, this method
also introduce an overhead due to the operating system. In order to minimize
the impact of this overhead at SPARTAN project, all the CV algorithms were
profiled onto the same PC under similar workload.

• Algorithmic analysis: This method provides the maximum accuracy, but it is
not suitable for increased code sizes because it is applied manually. Further-
more, algorithmic analysis does not take into account the overheads imposed
by the selected description language (e.g. C++, VHDL).

• Matlab/C++ profiler: The last method involves algorithmic profiling with the
usage of existing tools (profilers). For the scopes of SPARTAN project, we
employ the Matlab’s method of source level instrumentation. This method
reports for each function the execution time, number of calls, parent func-
tions, child functions, code line hit count, etc. Even though this approach
derives the maximum possible information from profiling step, assuming that
the algorithm is written in primitive form, however, it imposes the maximum
execution overhead.

As we have already mentioned, software-supported profiling is a memory lim-
ited procedure, which becomes far more savage whenever the input images have
increased size. Regarding the SPARTAN project, the mapping mode incorporates
three pairs of stereo images, each of which has 1120×1120 pixels with 200 disparity
levels, whereas localization mode uses a pair of stereo images with size 512×384
pixels.

Due to the increased image sizes, if we apply conventional profiling, it will be a
timing consuming procedure. In order to alleviate this limitation, our methodology
incorporates a technique which is based on smaller size images. This solution can
estimate with good fidelity a number of architectural and algorithm oriented pa-
rameters, but in significant shorter time period. Additional inputs to this technique
are the conclusions derived previously from algorithmic analysis.

Having as input this information, our profiler is able to estimate the memory
footprint and the time complexity both for each CV algorithm, as well as for the
entire SPARTAN system. These values are fed as input to our extrapolation method

3

104 3. Cross-Layer Synthesis of Heterogenous Architectures

[63] in order to estimate the corresponding values regarding the actual image sizes
for SPARTAN system. Since there might be some variations between the estimated
values (as they retrieved from extrapolation method) and the actual implementation
results, there is an additional step, where we can tune the weighting factors for
the employed extrapolation method. Note that the tuning task is performed once,
whereas the derived weighting factors are used for the rest projections.

Fig. 3.39 depicts the proposed methodology for performing software-supported
profiling of CV algorithms.

Algorithmic analysis
(theoretic approach)

Task graph

Profiling methodology
(software supported)

Large
images

Tune projection

Estimated
memory footprint and

time complexity
for large images

Estimated memory
footprint

Relative
computational cost

Comparable?

Memory footprint

Time complexity

Projection

Yes

No

Small
images

Medium
images

CV
Algorithm

Figure 3.39 Proposed methodology for performing software-supported profiling.

3.3.3.4 Phase IV: HW/SW Co-Design

The proposed methodology for performing HW/SW co-design is depicted in Fig.
3.40. One of the most critical tasks in this methodology affects the algorithm parti-
tioning onto the hardware resources based on the profiling results retrieved previ-
ously. As we have already mentioned, the fidelity of profiling conclusions depends
on the description (primitive or non-primitive) form of CV algorithms.

Having as input the decisions from partitioning, the next step in our method-
ology deals with the development of C/C++ and ESA compatible VHDL for the CV
algorithms. The developed C/C++ code will be integrated onto a ROS-based PC,
whereas the VHDL code will be mapped onto a Virtex-6 FPGA board. The selection
of these two hardware platforms is based on ESA’s requirements.

The developed algorithms are evaluated with the usage of three different scenar-
ios: (i) each algorithm is quantified as a stand-alone solution, (ii) all the algorithms
that realize mapping mode are evaluated against to project specifications for 3D
map reconstruction and (iii) the efficiency for all the algorithms that realize local-
ization mode is quantified against to project specifications for location estimations.

3.3. Space Critical Systems

3

105

CV Algorithm
#1

CV Algorithm
#2

CV Algorithm
#N

Map VHDL
onto Virtex-6

Execute C/C++
onto ROS

Integrate
SPARTAN system

HW/SW
Partitioning

Develop C/C++

Develop VHDL

Figure 3.40 Proposed methodology for performing HW/SW co-design.

3.3.3.5 Phase V: Platform Dependent Optimizations

The last phase of our introduced methodology, depicted schematically at Fig. 3.41,
applies a number of platform dependent optimizations aiming to further improve
the performance of target system. For this purpose, both the efficiency of each
CV algorithm, as well as the entire system is compared against to the SPARTAN
specifications.

Acceptable
solution?

END

Yes

No

Source-to-Source
optimization

Integrate
SPARTAN system

VHDL
optimization

Figure 3.41 Proposed methodology for enhancing the performance of SPARTAN system with platform-
dependent optimizations.

Since the consortium of SPARTAN project does not have access to the low-
performance processor (150 MIPS) defined from ESA’s specifications, the timing
evaluation of derived solution was performed as follows: Initially, we measure
both the time spent by the kernels running in the CPU 𝑇፜፩፮ and that spent by
the kernels running on the FPGA 𝑇 ፩፠ፚ. Then, we compute the total execution
time 𝑇፭፨፭ፚ፥_፩፫፨፣፞፜፭፞፝ after projecting the CPU time into a CPU with 150 MIPS with
Equation 1.

𝑇፭፨፭ፚ፥_፩፫፨፣፞፜፭፞፝ = 𝑇 ፩፠ፚ + 𝑇፜፩፮ ×
150
𝑀𝐼𝑃𝑆 (3.3)

In case the derived decisions about HW/SW partitioning, as well as the existing
C/C++ and VHDL implementation of the CV algorithms, meets project specifica-
tions, we proceed to the final demonstration. Otherwise, an additional optimization

3

106 3. Cross-Layer Synthesis of Heterogenous Architectures

step is required in order to further improve the performance of entire system. In
contrast to previous optimizations, at this phase we apply platform dependent opti-
mizations (e.g. parallelism extraction, pipelining, etc), which take into consideration
inherent architectural issues provided by underline platform.

Note that during this phase, it is highly preferable not to alter the already derived
decisions about HW/SW partitioning. Otherwise, it is imposed that additional algo-
rithmic kernels have to be developed from scratch onto a new platform (either the
CPU or the FPGA), which in turn introduces mentionable architectural modifications,
and consequently increased design cost. Furthermore, any potential architectural
modification might impose variations to data/signal transfer between hardware plat-
forms, which should be appropriately tackled.

3.3.4. Experimental Results
This section provides a number of results about the first part of our design method-
ology. More specifically, we discuss the conclusions derived after applying the
profiling procedure to CV algorithms employed to the SPARTAN project [59] [60]
[61] [64].

3.3.4.1 Overall profiling results

Fig. 3.42 presents the profiling results derived by studying the CV algorithms em-
ployed for the scopes of SPARTAN project both for the mapping (Fig. 3.42(a)) and
localization mode (Fig. 3.42(b). More precisely, this figure reports the experimen-
tal results acquired by (i) the Matlab profiler, (ii) the “Tic-Toc” method and (iii) the
algorithmic analysis. The vertical axis at this figure corresponds to the time com-
plexity. For demonstration purposes, this axis gives the relative cost among the
different CV algorithms and profiling methods, as a percentage of the total time
(assuming distinct operation of mapping and localization modes).

Based on the results summarized in this figure, we can determine the impor-
tance of different kernels. More specifically, the rec3d, disparity and aggregation
are the most timing consuming kernels at mapping mode, whereas regarding the
localization mode the most critical kernel is aggregation. These conclusions pro-
vide to designers valuable information about the kernels that have exhibit increased
performance bottlenecks, and hence they have to be mapped onto FPGA in order
to speedup their execution. Additionally, we have to notice, that all the three em-
ployed profiling method denote the importance of the same kernels, which also
proves our claim that the introduced methodology can derive conclusions with high
fidelity.

3.3.4.2 Data Life-Time

Next, we provide some experimental results about the data life-time. These results,
depicted in Figs. 3.43(a) and 3.43(b), respectively, for mapping and localization
modes, are retrieved with algorithmic analysis. These values were computed by
studying the source code assuming sequential execution. Note that during this

3.3. Space Critical Systems

3

107

Figure 3.42 Profiling results (a) for mapping mode and (b) for localization mode.

analysis we do not take into consideration any potential parallelism, since the initial
version of CV algorithms does not provide such feature.

Based on the results summarized in Fig. 3.43, we can conclude that two ker-
nels, named differences cube left and differences cube right, exhibit the maximum
demand for storage (on-chip memory). More specifically, these two kernels store al-
most 4GB of data, while this information has to be available for five kernels (namely
absolute differences, normalized ADs, aggregation, min disparity search and inter-
polation).

The excessive amount of storage, which is not available to the SPARTAN sys-
tem (based on project specifications the SPARTAN system has to incorporate up to
500MB of storage), imposes that we have to apply a number of algorithmic opti-
mizations and/or modifications (as it was discussed in Section III).

3.3.4.3 Estimations about HW/SW Partitioning

Throughout this analysis, we provide also some estimations about the HW/SW par-
titioning. More specifically, by applying the proposed HW/SW co-design methodol-
ogy, we found the target platform for the kernels of SPARTAN system. The input
to this procedure is the profiling results derived at previous phase. Among others,
we take into consideration design parameters that affect the computational com-
plexity of different kernels, their memory requirements (both storage size and data
life-time), as well as the communication load. The results from this analysis re-
garding the mapping and localization mode are summarized in Figs. 3.44 and 3.45,
respectively.

Based on this analysis, the kernels that form mapping mode are clustered as
follows:

• Kernels with reduced timing complexity: debayer, contrast, rectify, superpo-

3

108 3. Cross-Layer Synthesis of Heterogenous Architectures

Figure 3.43 Data life-time (a) for mapping mode and (b) localization mode.

sition, normalize, subpixel interpolation, mapgen and mapmerge.

• Kernels with medium timing complexity: edge detection, absolute differences,
normalized absolute differences and minimum disparity search.

• Kernels with increased timing complexity: aggregation.

Similarly, regarding the localization mode, the corresponding classification of
kernels follows:

• Kernels with reduced timing complexity: debayer, contrast, rectify, superpo-
sition, normalize, subpixel interpolation, landmark 3D reconstruction, motion
estimation and VSLAM.

• Kernels with medium timing complexity: edge detection, absolute differences,
normalized absolute differences, minimum disparity search, landmark detec-
tion and landmark matching.

• Kernels with increased timing complexity: aggregation.

The timing analysis discussed previously shown that isolating the aggregation
component during the HW/SW partitioning procedure imposes a significantly large
amount of data that has to be transferred from the PC to the FPGA and vice versa
(up to 8 GB per kernel). Since this amount of data is not affordable for meeting
SPARTAN specifications (for instance entire mapping mode has to be executed at 1

3.3. Space Critical Systems

3

109

Components with medium
timing complexity

Components with reduced
timing complexity

Components with increased
timing complexity

Edge detection
[20MB]

Superimposition
23MB

Normalize
[20MB]

Abs. differences
[4GB]

Normalize abs. differences
[4GB]

Aggregation
[4GB]

Min. disparity search
[4GB]

Subpixel interpolation
[2GB]

R
O

M
 -

 G
au

ss
 w

e
ig

h
ts

3
K
B

D
is

p
ar

it
y

[156KB] [156KB]

[10MB] [10MB]

[10MB] [10MB]

[2GB] [2GB]

[2GB] [2GB]

[2GB]

[2GB]

[10MB]

[10MB]

Map generation
[30MB]

Map merge
[90MB]

[30MB]

[30MB]*frames]

3
D

 R
e

co
n

st
ru

ct
io

n

[1.25MB]

Right Image
[4MB]

Left Image
[4MB]

Im
ag

in
g

[1.25MB]

Debayer
[8MB]

Contrast
[2.5MB]

Rectify
[7.5MB]

[1.25MB]

[1.25MB] [1.25MB]

Output

[1.25MB]

Candidate blocks for being mapped onto FPGA

Figure 3.44 Coarse-grain level HW/SW partitioning for mapping mode.

second), a number of alternative clustering options, which reduce significantly the
communication load, are also studied.

The outcome from this study is highlighted in Figs. 3.44 and 3.45 with grey
color. More specifically, by implementing the absolute differences, normalize abso-
lute differences, aggregation and minimum disparity search kernels onto the same

3

110 3. Cross-Layer Synthesis of Heterogenous Architectures

Components with medium
timing complexity

Components with reduced
timing complexity

Components with increased
timing complexity

Edge detection
[3MB]

Superimposition
[3.5MB]

Normalize
[3.2MB]

Abs. differences
[318MB]

Normalize abs. differences
[315MB]

Aggregation
[318MB]

Min. disparity search
[318MB]

Subpixel interpolation
[159MB]

Motion estimation
[48KB]

VSLAM
[33KB]

Debayer
[1MB]

Contrast
[393KB]

Rectify
[1MB]

Right Image
[590KB]

Left Image
[590KB]

Im
ag

in
g

D
is

p
ar

it
y

Landmark detection
(SURF)
5MB

V
is

u
al

 O
d

o
m

e
tr

y

Landmarks 3D reconstruction
[1.6MB]

Output

[197KB] [197KB]

[197KB] [197KB]

[197KB]
[197KB]

[25KB] [25KB]

[1.6MB] [1.6MB]

[1.6MB] [1.6MB]

[157MB] [157MB]

[157MB] [157MB]

[157MB]

[157MB]

[1.6MB]

[1.6MB]

[4KB]

[131KB]

[131KB]

[6KB]

[6KB]

[48B]

[48B]

Landmark matching
[267KB]

[6KB]

R
A

M
 -

 p
re

vi
o

u
s

im
ag

e
[1
3
1
K
B
]

R
O

M
 -

 G
au

ss
 w

e
ig

h
ts

[3
K
B
]

R
A

M
p

re
vi

o
u

s
im

ag
e

[6
K
B
]

Candidate blocks for being mapped onto FPGA

Figure 3.45 Coarse-grain level HW/SW partitioning for localization mode.

platform (FPGA), the derived architecture requires only 30MB of data to be trans-
ferred from CPU to the FPGA.

Besides communication, the decisions about HW/SW partitioning depend upon

3.3. Space Critical Systems

3

111

the efficiency of certain algorithm modifications for reducing the memory (storage)
requirements. This is especially crucial for FPGA due to limited on-chip memory.
The outcome from profiling, depicted at Fig. 3.44, shows that in case aggregation
is implemented as a stand-alone kernel, it requires about 4 GB of on-chip mem-
ory. In order to avoid such a non-optimal resource utilization, we considered to
study the possibility of interleaving their algorithmic steps for computing iteratively
each disparity level in advanced of proceeding to the next one. Such an architec-
tural modification enables SPARTAN system to reuse the storage of each disparity
level, and hence to minimize the total memory requirements, without affecting the
functionality of CV algorithms.

3.3.4.4 Data-flow Analysis

The data-flow analysis for the two operating modes (mapping and localization) are
depicted in Figs. 3.44 and 3.45, respectively.

Regarding the mapping mode, none of its kernels could be executed in parallel,
since there is a data dependency among them. However, this conclusion imposes
that we have to exploit as much as possible the inherent parallelism found inside
each kernel in order to meet the timing specifications. Additional performance
enhancement is feasible by applying pipelining techniques.

On the other hand, Fig. 3.45 denotes that disparity and visual odometry kernels
are candidate to be executed in parallel, since there is no data dependency among
them. Similar to mapping mode, additional performance enhancement is feasible
by exploiting techniques like extracting inherent parallelism and applying pipelining.

3.3.5. Conclusions

This research work presents a novel methodology for efficient HW/SW co-design
via the partitioning of processing tasks to the available resources of a heteroge-
neous system, composed of general purpose processors and reconfigurable logic.
The proposed systematic methodology examines the computational complexity, the
memory requirements (storage size and variables data life) as well as the communi-
cation cost, in order to find an optimum architecture of coarse-grained accelerators
for speeding-up the overall system execution time. This approach was employed
in the design of a heterogeneous system for autonomous space rover navigation
through the use of computer vision algorithms. The implemented system meets
the standards set by the ESA organization, given the scopes of SPARTAN project
[65].

3

112 3. Cross-Layer Synthesis of Heterogenous Architectures

3.4. 3-D Integration for Digital Signal Processing SoC
Architectures

3.4.1. Introduction
In recent years, 3-D IC has attracted more and more attention. Along with the
technology updates, there are several published works dealing with the 3-D physi-
cal design problem. Among others, tools for partitioning, floor-plan, placement and
routing for 3-D architectures, have been proposed. These approaches are based al-
most exclusively on academic tools. On the other hand, the only known commercial
framework for supporting the design of 3-D SoCs is provided by R3Logic Corp.[66].
In this letter we introduce a novel framework for supporting rapid evaluation of 3-D
SoCs with the usage of existing CAD tools. Such a framework is crucial even before
physical design tools for the 3-D domain become commercially available, since it
provides a good estimation about the potential benefits from designing 3-D chips.

We note that a part of the design methodology presented in this work is also
part of the design flow of the framework Plug&Chip presented at Chapter 2 and
mentioned in subsection 2.3.2. However the last one work is an optional step of
the rapid prototyping methodology proposed by this thesis, while the present work
is a systematic study on designing 3-D signal processing architectures.

3.4.2. Proposed Framework
This section introduces the proposed framework for performing rapid evaluation of
3-D SoCs. This framework, depicted in Fig. 3.46, consists of three modular steps
in order to enable interaction with tools from similar and/or complementary flows.
More specifically, the steps of our framework are summarized as follows:

• Pre-processing Step: Verification of functional integrity for the design and
extraction of its XML description.

• 3-D Stack Generation: Generation of the 3-D stack and determination of the
communication (routing paths) among layers.

• 3-D System Prototyping: Physical implementation of 3-D SoC and evaluation
of the derived solution.

Initially, the architecture’s HDL description (i.e., VHDL, Verilog) is simulated un-
der various parameters and constraints (e.g. clock period, on-chip memories orga-
nization) in order to verify the system’s functionality. For this purpose, we employ
the Cadence NC-sim simulator.

Then, we determine the desired hierarchy for target 3-D architecture. Our
framework can handle different levels of hierarchy. More specifically, a block-based
system’s description leads to a coarse-grain solution, whereas a gate-level netlist
comes with a finer system implementation. On other words, the fine-grain approach
imposes the highest performance enhancement for the 3-D architecture, but it also
introduces the maximum computational complexity for performing architecture-
level exploration. For the scopes of this letter, we choose (without affecting the

3.4. 3-D Integration for Digital Signal Processing SoC Architectures

3

113

Evaluation Analysis

D
e

si
gn

 C
o

n
st

ra
in

ts

Timing
Constraints

Pre-processing

Step

3-D Stack

Generation

3-D System

Prototyping

D
e

si
gn

 C
o

n
st

ra
in

ts

Routing
Options

Area-Power-Delay Evaluation

Pareto Solutions

3D Design
Strategy

Technology
Libraries

1st step 2nd step 3rd step

Figure 3.46 Proposed framework for supporting rapid evaluation of 3-D SoCs.

generality of proposed framework) to maintain the system’s hierarchy among het-
erogeneous modules (e.g. logic, memory), while each module is being flattened in
order to maximize the performance enhancement.

After defining the SoC’s hierarchy, the HDL description is synthesized with Syn-
opsys Design Compiler. As long as design constraints (e.g. timing slacks, DRC’s,
etc) are met, the output from synthesis is translated to an equivalent XML descrip-
tion, which corresponds to the system’s hypergraph representation. This task is
software supported by our new public available tool, named Net2XML. The derived
XML description is fed as input to the second step of our proposed framework, which
deals with the 3-D stack generation under the selected design constraints.

The second step involves application’s partitioning into a number of subsets,
each of which is assigned to a different layer of the 3-D architecture. During
this task, both fabrication and cost parameters are taken into consideration. More
specifically, for a given layer, only technology combatable components can be as-
signed to, while the layers have to exhibit sufficient area utilization. Then, the layers
are appropriately ordered to maximize the performance of derived 3-D stack. This
is feasible by assigning to adjacent spatial locations over the 𝑧-axis layers with in-
creased interlayer signal activity. The application’s partitioning and layer ordering
is software-supported by our previously published TABU algorithm [43]. Rather
than similar approaches, which mainly perform min-cut partitioning [49], our solu-
tion provides additional flexibility, since it is aware also about the selected bonding
technology (e.g. TSV, Face-to-Face, etc), the desired density of TSVs (per layer)
and the shape of 3-D stack (e.g. cube, pyramid, etc). Finally, the derived solutions
are evaluated with models for wire-length [45], delay [46] and power consumption
[47].

The output from 2nd step provides sufficient information about the application’s
functionality assigned to each layer, as well as the required connectivity among
layers. This information is appropriately handled by our new tool, named XML2Net,
in order to attach an array of TSVs to every bus that connects architecture’s com-
ponents assigned to different layers. Note that whenever a bus needs to be routed
from layer 𝑖 to layer 𝑗, silicon area equals to the area occupied by the TSV array has
to be reserved in both layers (we have to preserve that no block will be assigned to
TSV’s landing area) [37]. Even though our framework can also handle distinct TSVs,
throughout this study we select to employ arrays of TSVs because they introduce

3

114 3. Cross-Layer Synthesis of Heterogenous Architectures

fewer constraints to routing algorithm [37]. Then, pairs of TSV array and the block
that corresponds to its landing area are connected through special purpose routing
paths, named TSV networks.

The last step in our framework deals with the system prototyping. More specif-
ically, during this step we perform floor-planning, power and ground network gen-
eration, placement of physical library cells, clock tree synthesis and global/detail
signal routing with the Cadence SoC Encounter. Since the Cadence tools do not
support 3-D architectures, we have to make them aware about the additional flex-
ibility imposed by the third dimension through appropriate design encoding. For
this purpose we introduce:

• Virtual layers: Our framework assumes that target architecture incorporates a
number of virtual layers, each of which contains hardware resources assigned
to different physical layers of the 3-D SoC.

• TSV networks: These networks represent routing paths that provide signal
connectivity between a TSV array and its corresponding landing area (as-
signed to adjacent virtual layers). Note that during physical implementation,
our framework preserves that these two architectural entities are aligned over
the 𝑧-axis (have the same relative (𝑥, 𝑦) co-ordinates at Virtual layers). The
TSV networks are actually implemented through additional metal layers in-
serted to the technology library file, while their total resistance (𝑅), capaci-
tance (𝐶) and inductance (𝐿) values per unit length are automatically anno-
tated to represent the TSV’s 𝑅𝐿𝐶 parameters [67] [68].

The performance of derived 3-D physical prototype is evaluated by with Cadence
Static Timing Analysis Engine, while for shake of completeness this analysis is per-
formed both in advanced, as well as after clock tree synthesis and architecture’s
detailed routing. Then, we verify the functional integrity of physical design by ap-
plying a post-layout simulation with Cadence Incisive Simulator. For this purpose
we extract the delay for all the architecture’s routing paths in SDF format (Standard
Delay Format) and then our framework automatically annotates the delay values
for the TSV networks. For the scopes of this letter, the electrical characteristics of
TSV networks are retrieved from models published at [67] [68]. The evaluation of
derived 3-D SoCs can also be performed in term of power consumption by applying
a post-layout analysis with Synopsys PrimeTime PX tool. The inputs to this analysis
are the trace file that contains signal activities in VCD (Value Change Dump) for-
mat, as well as the annotated SPEF (Standard Parasitic Exchange Format) file with
extracted parasitic values for all the design’s resources (logic and interconnect).

3.4.3. Experimental Results
This section depicts how it is possible to employ the proposed framework for de-
signing a 3-D instantiation (with two layers) of a 32-bit LEON3 processor. The
LEON3 processor (Fig. 3.47) is a RTL-synthesizable 32-bit processor compliant with
the SPARC V8 architecture [69] and configurable through VHDL generics. We in-
stantiated a single-core processor attached as a master to the AMBA Advanced High

3.4. 3-D Integration for Digital Signal Processing SoC Architectures

3

115

UART
(1KB)

Timers IrqCtrl I/O port

SDRAMI/OPROM

8/32-bits memory bus

AHB
Controller

Memory
Controller

AHB/APB
Bridge

AMBA AHB (High-Speed Bus)

AMBA APB (Peripheral Bus)

RS232

Debug Serial
Unit (1KB)

Control Core

7-Stage Integer Unit Instruction-Cache (4KB)

Data-Cache (4KB)AHB
Interface

LEON3 Processor

Register File
(256B)

RS232 WDOG 16-bit I/O port

External blocksLayer 1 Layer 2

Figure 3.47 Block diagram for the Leon3 processor.

Performance bus (AHB). The processor has 7 pipeline stages, while the internal in-
struction and data cache include 1 set of 4KB each (Harvard architecture). Since the
target architecture is an embedded system, our methodology was tuned to derive a
low-power solution. Fig. 3.47 depicts the block diagram of LEON3 processor, as it is
retrieved after the 3-D stack generation step. Different colors in this figure denote
blocks assigned to different (virtual) layers. Even though additional 3-D stacks can
be derived from 𝑇𝐴𝐵𝑈 algorithm, the selected one corresponds to the Pareto op-
timal solution, i.e. the solution exploiting maximal performance enhancement with
the minimal fabrication cost in terms of number of layers and TSVs.

The synthesis of LEON3 processor is performed with Synopsys Design Compiler
at 130nm CMOS technology under a timing constraint of 4.35ns (or 230MHz). The
derived netlist consists of 38,988 standard cells, 42,626 nets, and 110 I/O ports.
Fig. 3.48 gives the output from floor-planning, assuming a 3-D device consisted of
two layers. In this figure, red and green color dots denote arrays of TSV and their
landing blocks assigned to virtual layerኻ and layerኼ, respectively, whereas the TSV
networks are depicted with blue color lines. Similarly, red and green color lines
correspond to intralayer connections among arrays of TSV and the rest hardware
components found in virtual layerኻ and layerኼ, respectively.

Table 4.5 gives some technical details about the physical implementation of
LEON3 processor. Based on these results we can conclude that the derived 3-D
architecture reduces total wire-length by 36%, as compared to the corresponding
2-D system implementation. Since throughout this study we focus on designing a
low-power instantiation of LEON3 processor, the wire-length reduction is expected
to come with considerable power savings, without compromising the performance

3

116 3. Cross-Layer Synthesis of Heterogenous Architectures

TSV blocks (Layer 1) Landing area (Layer 2)

Connection among TSV and IP blocks (Layer 1)

Connection among TSV and IP blocks (Layer 2)

TSV networks

Figure 3.48 Example of designing a 3-D instantiation of LEON3 processor on legacy 2-D Cadence SoC
Encounter [24].

3.4. 3-D Integration for Digital Signal Processing SoC Architectures

3

117

Table 3.4 Metrics about the physical implementation.

Characteristics 2-D System
3-D System

Layer 1 Layer 2
(Logic) (Memory)

Wire-length (𝜇𝑚) 855,637 530,443 100,440
Half-perimeter (𝜇𝑚) 823,033 495,010 97,527
Number of TSVs 0.00 817 817
Area for TSVs (𝜇𝑚ኼ) 0.00 24.7×24.7 24.7×24.7
Aspect ratio 1.00 1.00 1.00
Area per layer (𝑚𝑚ኼ) 2.89 1.30 1.53
Operation Freq. (MHz) 230 230
Power consumption (mWatt) 53.96 43.30

of derived architecture.
For evaluation purposes, the efficiency of derived 3-D architecture is quantified

with a number of data intensive benchmarks, which are fundamental kernels in
various DSP applications (such as MPEG-4, JPEG, filtering and H.263). In particular,
we used five motion estimation algorithms: full search (FS), hierarchical search
(HS), three step logarithmic step (3SLOG), parallel hierarchical one-dimensional
search (PHODS) and spiral search (SS). It has been noted that their complexity
ranged from 60 to 80% of the total complexity of video encoding (MPEG-4) [70].
In addition, we used the 1D wavelet transformation, cavity detector and Fast Fourier
transformation (FFT) algorithm. We also incorporated basic benchmarks such as
Matrix Multiplication and Bubblesort sorting algorithm.

These benchmarks were implemented in C language and compiled to LEON3
binaries with BCC [71] cross compiler. The binaries were firstly fed to TSIM LEON3
instruction-level simulator [72] for functional verification and resource utilization
at host-machine. For instance, Cavity detector algorithm for an input of 64x64
pixels image takes 69 hours simulation time, whereas it requires 58GB of hard
disk space for VCD storage and up to 800MB physical RAM, on a host machine
with Intel Core2 Duo processor and 4GB RAM. On the other hand this simulation
in TSIM environment is completed in less than 3 minutes. Hence, the input data
size for each algorithm was appropriately chosen in order to be manipulated by the
simulation environment in reasonable time.

Table 3.4 provides also results about the performance and average power dis-
sipation of LEON3 processor. Note that the performance between 2-D and 3-D
architectures is constant, since we assumed same throughput. However, the wire-
length reduction imposed by the usage of 3-D integration leads to average power
savings 20%, as compared to the corresponding 2-D implementation. Table 4.5
provides the simulated time and power savings for every employed application.

3.4.4. Conclusion
A novel framework for supporting rapid evaluation of 3-D SoCs, was introduced.
For the scopes of this letter, the proposed methodology was applied to design a

3

118 3. Cross-Layer Synthesis of Heterogenous Architectures

Table 3.5 Simulated time and power consumption under different DSP applications

Clock Simulation Power 2D Power 3D Gain
Benchmark Cycles Time (ms) (mW) (mW) in 3D (%)
3SLOG 19,748,213 157 59.828 48.405 19.09%
FS 7,368,117 71 43.763 35.260 19.43%
PHODS 13,334,375 120 59.515 48.144 19.11%
SS 7,439,388 72 57.585 46.944 18.48%
CAVITY 23,777,500 216 51.639 42.094 18.48%
HS 9,603,875 93 53.047 42.198 20.45%
MMUL 5,894,285 57 43.763 35.260 19.43%
FFT 8,428,398 91 51.065 40.685 20.33%
WAVELET 6,035,932 56 55.081 43.293 21.40%
BUBBLESORT 5,595,728 46 64.314 50.752 21.09%
AVERAGE: 10,722,581 97.9 53.960 43.304 19.73%

3-D instantiation of LEON3 processor under low-power constraints. The scope of
this study is the development of a methodology and the corresponding design tools
to assess the design profit from the adoption of the three-dimensional technology
integration. Experimental results with various DSP kernels prove the effectiveness
of proposed solution, since it leads to average power savings 19.7% without any
performance degradation.

References

3

119

References
[1] T. Ulversoy, Software defined radio: Challenges and opportunities, Communi-

cations Surveys Tutorials, IEEE 12, 531 (2010).

[2] J. Glossner, E. Hokenek, and M. Moudgill, The sandbridge sandblaster com-
munications processor, in Software Defined Radio (John Wiley and Sons, Ltd,
2004) pp. 129–159.

[3] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and
K. Flautner, Soda: A low-power architecture for software radio, in Computer
Architecture, 2006. ISCA ’06. 33rd International Symposium on (2006) pp.
89–101.

[4] A. K. Coskun, T. S. Rosing, K. Mihic, G. De Micheli, and Y. Leblebici, Analysis
and optimization of mpsoc reliability, Journal of Low Power Electronics 2, 56
(2006).

[5] V. Gektin, A. Bar-Cohen, and J. Ames, Coffin-manson fatigue model of under-
filled flip-chips, Components, Packaging, and Manufacturing Technology, Part
A, IEEE Transactions on 20, 317 (1997).

[6] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, Thermal vs energy op-
timization for dvfs-enabled processors in embedded systems, in Symp. on
Quality Electronic Design (ISQED07), (International Symposium on Quality
Electronic Design, 2007. ISQED ’07. 8th):pp. 204–209 (2007).

[7] M. Harchol-Balter and A. B. Downey, Exploiting process lifetime distributions
for dynamic load balancing, ACM Trans. Comput. Syst. 15, 253 (1997).

[8] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, Dynamic thermal man-
agement through task scheduling, in Performance Analysis of Systems and
software, 2008. ISPASS 2008. IEEE International Symposium on (2008) pp.
191–201.

[9] D. Atienza, P. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, and
J. Mendias, A fast hw/sw fpga-based thermal emulation framework for multi-
processor system-on-chip, in Design Automation Conference, 2006 43rd
ACM/IEEE (2006) pp. 618–623.

[10] M. M. Sabry, J. Ayala, and D. Atienza, Thermal-aware compilation for system-
on-chip processing architectures, in Proc. of 20th ACM Great Lakes Symposium
on VLSI (GLSVLSI’10) (2010).

[11] M. Monchiero, R. Canal, and A. Gonzalez, Power/performance/thermal design-
space exploration for multicore architectures, Parallel and Distributed Systems,
IEEE Transactions on 19, 666 (2008).

[12] J. Rabaey, Low Power Design Essentials, 1st ed. (Springer Publishing Company,
Incorporated, 2009).

http://dx.doi.org/ 10.1109/SURV.2010.032910.00019
http://dx.doi.org/ 10.1109/SURV.2010.032910.00019
http://dx.doi.org/10.1002/0470867728.ch6
http://dx.doi.org/10.1109/ISCA.2006.37
http://dx.doi.org/10.1109/ISCA.2006.37
http://dx.doi.org/10.1145/263326.263344
http://dx.doi.org/10.1109/ISPASS.2008.4510751
http://dx.doi.org/10.1109/ISPASS.2008.4510751
http://dx.doi.org/10.1109/DAC.2006.229307
http://dx.doi.org/10.1109/DAC.2006.229307
http://dx.doi.org/ 10.1109/TPDS.2007.70756
http://dx.doi.org/ 10.1109/TPDS.2007.70756

3

120 References

[13] H. Li, P. Liu, Z. Qi, L. Jin, W. Wu, S.-D. Tan, and J. Yang, Efficient thermal
simulation for run-time temperature tracking and management, in Computer
Design: VLSI in Computers and Processors, 2005. ICCD 2005. Proceedings.
2005 IEEE International Conference on (2005) pp. 130–133.

[14] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan, Temperature-aware microarchitecture: Extended discussion and re-
sults, in In Proceedings of the 30th Annual International Symposium on Com-
puter Architecture (2003) pp. 2–13.

[15] D. Brooks, V. Tiwari, and M. Martonosi,Wattch: a framework for architectural-
level power analysis and optimizations, in Computer Architecture, 2000. Pro-
ceedings of the 27th International Symposium on (2000) pp. 83–94.

[16] D. Brooks and M. Martonosi, Dynamic thermal management for high-
performance microprocessors, in High-Performance Computer Architecture,
2001. HPCA. The Seventh International Symposium on (2001) pp. 171–182.

[17] Proteas-Software-Repository, (2013), http://proteas.microlab.ntua.gr/ksiop/software.

[18] Gaisler, Leon3, ().

[19] W. Huang, K. Sankaranarayanan, K. Skadron, R. Ribando, and M. Stan, Ac-
curate, pre-rtl temperature-aware design using a parameterized, geometric
thermal model, Computers, IEEE Transactions on 57, 1277 (2008).

[20] K. Sankaranarayanan, S. Velusamy, M. Stan, C. L, and K. Skadron, A case for
thermal-aware floorplanning at the microarchitectural level, Journal of ILP 7
(2005).

[21] A. Raghunathan, N. K. Jha, and S. Dey, High-Level Power Analysis and Opti-
mization (Kluwer Academic Publishers, Norwell, MA, USA, 1998).

[22] F. Zanini, D. Atienza, and G. De Micheli, A control theory approach for thermal
balancing of mpsoc, in Design Automation Conference, 2009. ASP-DAC 2009.
Asia and South Pacific (2009) pp. 37–42.

[23] S. Inc., http://www.synopsys.com, ().

[24] Cadence, Cadence inc. .

[25] P. PX, http://www.europractice.stfc.ac.uk/vendors/primetime_px_brief.pdf, .

[26] S. Sapatnekar, Rc interconnect optimization under the elmore delay model, in
Design Automation, 1994. 31st Conference on (1994) pp. 387–391.

[27] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
Mibench: A free, commercially representative embedded benchmark suite, in
Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop
on (2001) pp. 3–14.

http://dx.doi.org/10.1109/ICCD.2005.46
http://dx.doi.org/10.1109/ICCD.2005.46
http://dx.doi.org/10.1109/ICCD.2005.46
http://dx.doi.org/10.1109/HPCA.2001.903261
http://dx.doi.org/10.1109/HPCA.2001.903261
http://www.gaisler.com
http://dx.doi.org/ 10.1109/TC.2008.64
http://dx.doi.org/ 10.1109/ASPDAC.2009.4796438
http://dx.doi.org/ 10.1109/ASPDAC.2009.4796438
http://www.cadence.com
http://dx.doi.org/10.1109/DAC.1994.204131
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1109/WWC.2001.990739

References

3

121

[28] S. Canumalla and P. Viswanadham, Portable Consumer Electronics: Packaging,
Materials, and Reliability (PennWell Corporation, 2010).

[29] ITRS, International technology roadmap for semiconductos, (2012).

[30] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, Lifetime reliability: toward an
architectural solution, Micro, IEEE 25, 70 (2005).

[31] G. De Micheli and L. Benini, Networks on chips: technology and tools (Aca-
demic Press, 2006).

[32] F. Gebali, H. Elmiligi, and M. W. El-Kharashi, Networks-on-Chips: Theory and
Practice, 1st ed. (CRC Press, Inc., Boca Raton, FL, USA, 2009).

[33] J. Hu and R. Marculescu, Energy- and performance-aware mapping for regular
noc architectures, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 24, 551 (2005).

[34] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander, Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip, in Design, Automa-
tion and Test in Europe Conference and Exhibition, 2003 (2003) pp. 350–355.

[35] I. Anagnostopoulos, A. Bartzas, and D. Soudris, Application-specific temper-
ature reduction systematic methodology for 2d and 3d networks-on-chip, in
Integrated Circuit and System Design. Power and Timing Modeling, Optimiza-
tion and Simulation, Lecture Notes in Computer Science, Vol. 5953, edited by
J. Monteiro and R. van Leuken (Springer Berlin Heidelberg, 2010) pp. 86–95.

[36] A. Richard, D. Milojevic, F. Robert, A. Bartzas, A. Papanikolaou, K. Siozios,
and D. Soudris, Fast design space exploration environment applied on noc’s
for 3d-stacked mpsoc’s, in Architecture of Computing Systems (ARCS), 2010
23rd International Conference on (2010) pp. 1–6.

[37] V. F. Pavlidis and E. G. Friedman, Three-dimensional Integrated Circuit Design
(Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009).

[38] C. J. Glass and L. M. Ni, Fault-tolerant wormhole routing in meshes without
virtual channels, Parallel and Distributed Systems, IEEE Transactions on 7, 620
(1996).

[39] V. suite, http://valgrind.org, .

[40] S. Gupta, M. Hilbert, S. Hong, and R. Patti, Techniques for producing 3d ics
with high-density interconnect, in Proceedings of the 21st International VLSI
Multilevel Interconnection Conference (2004).

[41] S. Murali and G. De Micheli, Bandwidth-constrained mapping of cores onto
noc architectures, in Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, Vol. 2 (2004) pp. 896–901 Vol.2.

http://www.itrs.net
http://dx.doi.org/10.1109/MM.2005.54
http://dx.doi.org/ 10.1109/TCAD.2005.844106
http://dx.doi.org/ 10.1109/TCAD.2005.844106
http://dx.doi.org/10.1109/DATE.2003.1253633
http://dx.doi.org/10.1109/DATE.2003.1253633
http://dx.doi.org/ 10.1007/978-3-642-11802-9_13
http://dx.doi.org/ 10.1007/978-3-642-11802-9_13
http://dx.doi.org/ 10.1109/TPDS.1996.4772741
http://dx.doi.org/ 10.1109/TPDS.1996.4772741
http://dx.doi.org/10.1109/DATE.2004.1269002
http://dx.doi.org/10.1109/DATE.2004.1269002

3

122 References

[42] C. S. Compiler, http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx,
.

[43] K. Siozios and D. Soudris, A tabu-based partitioning and layer assignment
algorithm for 3-d fpgas, Embedded Systems Letters, IEEE 3, 97 (2011).

[44] K. Siozios, A. Papanikolaou, and D. Soudris, A method and tool for early
design/technology search-space exploration for 3d ics, in Proceedings of the
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC) (2008) pp. 359–364.

[45] S. Das, A. Chandrakasan, and R. Reif, Calibration of rent’s rule models for
three-dimensional integrated circuits, Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on 12, 359 (2004).

[46] T. Okamoto and J. Cong, Buffered steiner tree construction with wire sizing
for interconnect layout optimization, in Computer-Aided Design, 1996. ICCAD-
96. Digest of Technical Papers., 1996 IEEE/ACM International Conference on
(1996) pp. 44–49.

[47] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital integrated circuits,
Vol. 2 (Prentice hall Englewood Cliffs, 2002).

[48] D. Velenis, M. Stucchi, E. Marinissen, B. Swinnen, and E. Beyne, Impact of 3d
design choices on manufacturing cost, in 3D System Integration, 2009. 3DIC
2009. IEEE International Conference on (2009) pp. 1–5.

[49] N. Selvakkumaran and G. Karypis, Multiobjective hypergraph-partitioning al-
gorithms for cut and maximum subdomain-degree minimization, Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 25,
504 (2006).

[50] V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi, The optimum network on chip ar-
chitectures for video object plane decoder design, in Parallel and Distributed
Processing and Applications, Lecture Notes in Computer Science, Vol. 4330,
edited by M. Guo, L. Yang, B. Di Martino, H. Zima, J. Dongarra, and F. Tang
(Springer Berlin Heidelberg, 2006) pp. 75–85.

[51] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. De Micheli, Noc synthesis flow for customized domain specific multiproces-
sor systems-on-chip, Parallel and Distributed Systems, IEEE Transactions on
16, 113 (2005).

[52] I. E. Richardson, H. 264 and MPEG-4 video compression: video coding for
next-generation multimedia (John Wiley & Sons, 2004).

[53] M. Di Marco, A. Garulli, S. Lacroix, and A. Vicino, Set membership localization
and mapping for autonomous navigation, International Journal of robust and
nonlinear control 11, 709 (2001).

http://dx.doi.org/10.1109/LES.2011.2161571
http://dx.doi.org/ 10.1109/TVLSI.2004.825833
http://dx.doi.org/ 10.1109/TVLSI.2004.825833
http://dx.doi.org/10.1109/ICCAD.1996.568938
http://dx.doi.org/10.1109/ICCAD.1996.568938
http://dx.doi.org/10.1109/3DIC.2009.5306575
http://dx.doi.org/10.1109/3DIC.2009.5306575
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1007/11946441_12
http://dx.doi.org/10.1007/11946441_12
http://dx.doi.org/10.1109/TPDS.2005.22
http://dx.doi.org/10.1109/TPDS.2005.22

References

3

123

[54] Esa nasa exomars programme, .

[55] Virtex-6-FPGA-Family., www.xilinx.com/products/silicon-devices/fpga/virtex-
6.html, .

[56] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, Ros: an open-source robot operating system, ICRA workshop on
open source software 3, 5 (2009).

[57] K. Siozios, D. Diamantopoulos, I. Kostavelis, E. Boukas, L. Nalpantidis,
D. Soudris, A. Gasteratos, M. Aviles, and I. Anagnostopoulos, Spartan project:
Efficient implementation of computer vision algorithms onto reconfigurable
platform targeting to space applications, in Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2011 6th International Workshop on
(2011) pp. 1–9.

[58] R. lab Duth., http://robotics.pme.duth.gr, .

[59] L. Nalpantidis, G. Sirakoulis, and A. Gasteratos, A dense stereo correspon-
dence algorithm for hardware implementation with enhanced disparity selec-
tion, in Artificial Intelligence: Theories, Models and Applications, Lecture Notes
in Computer Science, Vol. 5138, edited by J. Darzentas, G. Vouros, S. Vosi-
nakis, and A. Arnellos (Springer Berlin Heidelberg, 2008) pp. 365–370.

[60] H. Bay, T. Tuytelaars, and L. Van Gool, Surf: Speeded up robust features, in
Computer Vision – ECCV 2006, Lecture Notes in Computer Science, Vol. 3951,
edited by A. Leonardis, H. Bischof, and A. Pinz (Springer Berlin Heidelberg,
2006) pp. 404–417.

[61] L. Nalpantidis, G. C. Sirakoulis, and A. Gasteratos, Non-probabilistic cellu-
lar automata-enhanced stereo vision simultaneous localization and mapping,
Measurement Science and Technology 22, 114027 (2011).

[62] D. F. Bacon, S. L. Graham, and O. J. Sharp, Compiler transformations for
high-performance computing, ACM Comput. Surv. 26, 345 (1994).

[63] S. Cabay and L. Jackson, A polynomial extrapolation method for finding limits
and antilimits of vector sequences, SIAM Journal on Numerical Analysis 13,
734 (1976).

[64] ROS, The robot operating system, .

[65] I. Kostavelis, L. Nalpantidis, E. Boukas, M. A. Rodrigalvarez, I. Stamoulias,
G. Lentaris, D. Diamantopoulos, K. Siozios, D. Soudris, and A. Gasteratos,
Spartan: Developing a vision system for future autonomous space exploration
robots, Journal of Field Robotics 31, 107 (2014).

[66] R3LOGIC, R3logic inc. (2013).

http://exploration.esa.int/science-e/www/object/index.cfm?fobjectid=46048
http://dx.doi.org/10.1109/ReCoSoC.2011.5981524
http://dx.doi.org/10.1109/ReCoSoC.2011.5981524
http://dx.doi.org/ 10.1007/978-3-540-87881-0_34
http://dx.doi.org/ 10.1007/11744023_32
http://stacks.iop.org/0957-0233/22/i=11/a=114027
http://dx.doi.org/10.1145/197405.197406
http://www.ros.org
http://dx.doi.org/10.1002/rob.21484
http://www.r3logic.com/

3

124 References

[67] 3d-performance Lancaster University, Tools for design space exploration of 3-d
integrated circuits, Http://3d-performance.lancs.ac.uk.

[68] A. Jantsch, M. Grange, and D. Pamunuwa, The promises and limitations of
3-d integration, in 3D Integration for NoC-based SoC Architectures (Springer,
2011) pp. 27–44.

[69] S. M. Inc., Sparc v8 architecture, ().

[70] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:
Algorithms and Architectures, 2nd ed. (Kluwer Academic Publishers, Norwell,
MA, USA, 1997).

[71] Gaisler, The bcc cross-compiler, ().

[72] Gaisler, Tsim simulator, ().

http://www.sparc.org/standards/V8.pdf
http://www.gaisler.com/doc/libio/bcc.html
http://www.gaisler.com/doc/tsim_product_sheet.pdf

4
Computer-Aided Design Tools
for Reconfigurable Platforms

This chapter presents the proposed design tools for emerging reconfigurable plat-
forms. It introduces a characterization and classification technique for clustering
the input applications according to their intrinsic characteristics, during the phase
of the synthesis. Also, a novel multi-objective genetic algorithm is proposed for
the FPGA placement problem. The algorithm utilizes the aforementioned classifica-
tion information in order to explore effectively the search space and thus, provide
placement solutions that trade-off design metrics on the Pareto front. Chapter 4 is
associated with the general methodology of the thesis presented in Section 1.2, as
to its contribution to the category “Reconfigurable Platforms - EDA Tools FPGAs”.

4.1. Introduction
Over the past decade reconfigurable architectures, and more specifically Field-
Programmable Gate Arrays (FPGAs), have revolutionized the way that digital sys-
tems are designed and built due to their inherent re-programmability feature. In
addition, modern FPGAs have become efficient alternatives to Application-Specific
Integrated Circuits (ASICs). For instance, the recent Xilinx Virtex-7 devices designed
at 28nm contain almost 2 million logic cells.

Even though the previously mentioned architectural selections meet the require-
ments of logic-hungry FPGA designers, they further complicate the work allocated
to the FPGA CAD tools [1]. Although, a number of EDA (Electronic Design Au-
tomation) tools that provide automated application implementation onto hardware
platforms are now available, their execution still imposes an increased run-time
overhead. This problem becomes more evident taking into account that the capac-
ity, in term of logic resources, steadily increases at the rate anticipated by Moore’s
Law. Hence, the EDA tools must synthesize, place and route more logic blocks and
interconnection networks for every new platform. However, given the increasing

125

4

126 4. Computer-Aided Design Tools for Reconfigurable Platforms

complexity of applications mapped onto FPGAs, it is expected that physical design
tools, i.e. placement and routing (P&R), will be extensively stressed to deliver highly
optimized solutions within practical run-time budgets.

This occurs mainly due to the fact that processor performance improvements
have not been tracking FPGA capacity growth since the mid-2000s, as shown in
Fig. 4.1.

Figure 4.1 CPU speed versus FPGA logic capacity [2].

Application implementation onto FPGA platforms can take hours, or even days,
depending on the complexity of these designs. One of the most time-consuming
steps in the FPGA CAD flow is application’s placement. A good quality placement is
essential to the overall designs quality, since it influences among others the inter-
connect delay, the congestion, the wirelength, as well as the power consumption
[3]. While there exists a lot of previous research on placement algorithms for im-
proving application’s maximum operating frequency, power/energy dissipation and
the wiring area occupied by a circuit, very few of them have as their primary goal
the minimization of the tool execution run-time. Compile time has recently been
recognized as an important issue for FPGAs [4], whereas there are designers that
are willing to afford a reduction in the quality of results (e.g. a penalty in perfor-
mance) in exchange for a high-speed compilation [3]. Moreover, as the capacity of
FPGA devices and the size of designs grow, there is a great interest for performing
fast application’s implementations onto reconfigurable platforms.

To keep run-time in check, the two main companies offering high-capacity FP-
GAS, Xilinx and Altera, have been continuously optimizing their CAD tools. Even
though such a selection alleviated the run-time pressure, it is unlikely that such
algorithm engineering efforts can be sustained at the rate required by several more

4.1. Introduction

4

127

generations of Moore’s Law. Continuous technology scaling without comparable
scaling of execution run-time for application implementation onto FPGA devices is
expected to lead to a run-time crisis. This crisis among others manifests itself as a
reduction in productivity and the corresponding increase at the engineering costs.
Based on relevant research approaches, there are three ways to reduce the execu-
tion run-time of CAD tools, which can be classified as follows:

• Discourage flat compilation of the entire design, and instead force users to
compile partitions of their designs incrementally and assemble the partitions.
Even though this approach mitigates execution run-time, it imposes an in-
creased design complexity, whereas it also does not allow optimizations to be
applied between partitions.

• Pay effort to find faster single-threaded algorithms, which can achieve men-
tionable execution speedup with a little, or no, sacrificing at quality of de-
rived application implementation [3] [5]. This selection leads to mentionable
speedups, however, it is not widely accepted as it cannot follow the exponen-
tial growth in FPGA logic cell counts.

• Develop novel parallel algorithms, to take advantage of the existing and up-
coming multi-core processors [6] [7] [8] [9] [10] [11] [12] [13]. With the
current market trend of increasing the number of CPU cores rather than de-
signing faster CPU cores [1], the usage of parallel CAD algorithms promises
to alleviate the run-time crisis. These algorithms allow the capacity of FPGA
platforms, as well as the number of working processor cores, to scale simulta-
neously. Towards this direction, both Xilinx and Altera have started to imple-
ment parallel flavors for their CAD algorithms that offer mentionable execution
speedups. This is also the approach studied throughout this manuscript.

The functionality of the majority placers is based on simulated annealing [14] [6]
[7] [11] [6] [10] [7]. These approaches in order to derive the best possible quality,
sequentially perform swaps of random logic block locations, accepting non-greedy
moves with exponentially decreasing probability based on the current temperature
of the anneal and the delta that would occur in the overall cost function [15]. The
temperature at simulated annealing is reduced following a cooling schedule. At the
outset of this cooling schedule, virtually all moves are accepted. On the other hand,
as the end of the cooling schedule is reached, only moves that would improve the
overall cost function are accepted. Previous works (e.g. [14] [16]) shown that
simulated annealing placers produce promising results if appropriate cost functions
and sufficiently slow cooling are employed.

Throughout this research work we introduce a novel placer based on genetic
algorithm. The main contributions of this work can be summarized as follows:

• We propose a new parallel genetic algorithm (GA) for application placement
onto FPGA devices. The proposed algorithm utilizes the concept of mixability
in order to improve the quality of the derived placement solutions.

4

128 4. Computer-Aided Design Tools for Reconfigurable Platforms

• We analyze the internal structures (elitism-based selection, mixability-driven
mutation, path-driven crossover, self-adaptive mutation) defined for tailoring
the genetic algorithm to the application placement problem.

• We present a coarse-grain yet efficient OpenMP parallel implementation of the
proposed genetic algorithm, by identifying interdependent tasks across the GA
operators and by defining the thread-oriented heap memory structure.

• We propose a software-supported exploration methodology for tuning the pa-
rameters of the GA engine according to the input application’s features.

• We provide an extensive experimental evaluation regarding the efficiency and
the scalability of the proposed framework in comparison to existing state-of-
the-art placement tool.

More specifically, our placer performs a more effective search space exploration,
whereas its inherent parallelism is exploited by the underlying multi-core architec-
tures for reducing the execution run-time. The introduced approach supports ei-
ther fast application placement (with significant lower run-time overhead), or pro-
vides superior applications placements (e.g. with higher operating frequency, lower
power consumption, etc) at the comparable execution run-time. More specifically,
in the first case, our solution leads on average to 67× faster execution, whereas the
average increase in term of maximum operating frequency in the latter approach is
16%. As a reference to our study, we employ the state-of-the-art academic placer
for FPGAs [14] [15], as well as our previous work introduced in [17].

The rest of this chapter is organized as follows: Section 4.2 describes the re-
lated work, whereas section 4.3 introduces the proposed framework for application
implementation onto reconfigurable architectures with the usage of a genetic algo-
rithm. Since the efficiency of this algorithm highly depends on the customization
of its own parameters, Section 4.4 describes the employed methodology for tuning
the parameters of evolutionary placement. Quantitative results that prove the ef-
fectiveness of the introduced framework against to state-of-the-art approaches is
presented in Section 4.5, while conclusions are summarized in Section 4.6.

4.2. Related Work
Over the last decade researchers have developed methodologies, algorithms and
tools aiming to accelerate the task of application implementation onto FPGAs with
the usage of parallel placers. Table 4.1 summarizes a representative number of
these approaches. The second column of this table reviews if their selections during
application implementation are performed having as goal to improve the maximum
operating frequency. The last two columns give the underlying hardware for their
execution and the achieved speedup, respectively. Next, we discuss in more detail
some of the most representative solutions found in relevant literature.

A parallel timing-driven algorithm based on simulated annealing for Quartus-II
framework is discussed in [9] [19]. Even though this approach evaluates numerous

4.2. Related Work

4

129

Table 4.1 Overview of existing parallel placements.

Reference Timing-Driven Hardware Targeted Speedup
[6] No Sequent Balance 8,000 (8-proc.) 6.4× on 8 processors
[10] No VAX 11/784 (4-processors) 2.3× on 4 processors
[8] No 6 Nat.Sem. 32,016 processors 4× with 5 processors
[12] No Hypercube multiprocessors 8× with 16 processors
[18] No Networks of machines 3.3× on 16 processors
[11] No FPGAs 500×-2,500× over CPUs
[9] Yes Multiprocessors 2.1× on 4 processors
[13] No MPPAs 1/256 less swaps with 1,024 cores
[7] No GPU 10× on NVIDIA GTX280
[19] Yes Multiprocessors 2.4× on 8 processors
[2] Yes Multiprocessors 161× using 25 processors

moves in parallel, these moves are serially committed in order to achieve a seri-
ally equivalent placement. Authors claim that such an approach achieves a speedup
ranging between 2.1× and 2.4×, for 4 and 8 processing cores, respectively, whereas
the quality of derived application placement is comparable to the corresponding
one retrieved with the usage of a serial version. A distributed annealing algorithm
targeting to a systolic architecture is discussed in [11]. The functionality of this
algorithm relays on restricting the swap range of each block to its 4 immediate
neighbors. Even though such a selection is easily parallelizable, the lack of oppor-
tunity to apply a more aggressive scenario during placement leads to 36% quality
degradation in the final circuit. An extension of work discussed in [11], showed that
there is a quality improvement of 5% compared to simulated annealing approach,
whereas it still offers mentionable speedups.

A bottom-up netlist clustering aiming to reduce the problem’s size, so that a
smaller and more easily solvable placement to be applied is obtained in [20]. A
similar approach is followed in [21], where a min-cut algorithm divides the place-
ment of the overall netlist to smaller placement problems, so that these problems
can be solved in parallel. However the derived placement quality is degraded.
A fast timing-driven placement for reconfigurable platforms based on a macro-
floorplanner, is discussed in [4]. Even though the author reports an improvement
in execution run-time compared to relevant approaches, the employed benchmarks
are quite small. Hence, non-valuable conclusions about the efficiency are extracted.
Authors in [22] propose an algorithm for application placement onto FPGAs, which
trades-off the quality of derived solutions (in terms of total wirelength) and the
execution run-time. Another algorithm involves the usage of Tabu search in order
to speedup the execution run-time of placement algorithm [5]. Authors in [2] pre-
sented a parallel timing-driven algorithm which performs high and scalable speedup
compared to VPR [14], but comes with mentionable loss of quality (both timing and
wirelength). An alternative approach assumes the incorporation of dedicated hard-
ware for accelerating the simulating annealing problem [11]. The idea of this work
is to introduce parallelism to the placer, but the specialized hardware makes it prac-

4

130 4. Computer-Aided Design Tools for Reconfigurable Platforms

tically non-applicable for real designs. Finally, authors at [23] propose the usage
of genetic algorithm at VPR placer. However, the experimental results provided in
this work, showed that such an implementation does not outperform placements
retrieved with conventional (e.g. simulated annealing) algorithm.

4.3. The Proposed Design Framework
The proposed framework for performing application placement and routing (P&R)
onto reconfigurable platforms is depicted in Fig. 4.2. This framework is similar to
existing academic and commercial flows (e.g. [14]), whereas its inherent modu-
larity allows to easily adapt tools with the same functionality between alternative
flows. More specifically, throughout this work we replaced the existing placer found
in NAROUTO framework [24] with the proposed algorithm, named GENESIS.

New Tool

Existing Tool

P&R Output Files

GENESIS Placement

Technology Map to LUTs

Pack FFs and LUTs into

Logic Blocks

Genesis Placement

Global/Detailed Routing

Synthesis

Design

(HDL)

N
A

R
O

U
TO

 F
ra

m
e

w
o

rk

[S
id

ir
o

p
o

u
lo

s
e

t
al

. 2
0

1
1

]

Application-oriented

Tuning of GA Engine

Yes No

Initial Population

Elitism-based Selection

Self-adaptive Mutation

Mixability-driven Mating

Path-driven Crossover

End

Evolution?

Tu
n

in
g

G
A

 E
n

gi
n

e

Netlist Profiling

Figure 4.2 Proposed framework for parallel application placement.

Synthesis is the first step in our CAD tool flow. During this step, the application’s
description in HDL (Hardware Description Language) is converted into gate-level
logic functions and flip-flops. Next step involves the technology mapping aiming
to translate the nelist derived from synthesis step, into a nelist consisted of 𝐾-
input LUTs and flip-flops. Technology mapping algorithms strive to minimize specific
objectives, such as area, delay, power or any combination of them. In this work
the task of technology mapping is performed with the SIS optimizer [25].

Then, we cluster the derived nelist in order to pack the LUTs and flip-flops cre-
ated in technology mapping, abiding to the constraint that no more than 𝑁 LUTs,
or 𝑁 flip-flops, can be packed to form each cluster. This output of clustering task
is a set of BLEs (Basic Logic Elements). Although structurally similar, different ven-
dors have adopted their own terminology to describe a cluster. For instance, Xilinx
uses the term CLB (Configurable Logic Block) and Altera uses the term LAB (Logic

4.3. The Proposed Design Framework

4

131

Array Block) to describe a cluster. Different optimization goals could be taken into
consideration during the clustering task. For instance, the minimization of delay
[15] and power consumption [26], are typical approaches. These optimizations re-
quires the understanding that BLEs contained within the same cluster communicate
through intra-cluster connections, which are faster than inter-cluster connections,
also known as the routing network. Hence, the size of cluster, mentioned as 𝑁,
highly affects the efficiency of application’s implementation. A larger 𝑁 value allows
more BLEs to share intra-cluster connections. However, careful tradeoff analysis
must be considered as the intra-cluster connection latency degrades with increased
cluster size. In this work we assume that our target FPGA consists of 4 BLEs per
cluster (i.e. 𝑁=4), while the task of netlist clustering is performed with the timing-
driven Versatile Packing (T-VPACK) tool [14].

The placement step involves assigning each CLB in the circuit to a unique phys-
ical location on the FPGA chip. This algorithm is realized with the proposed genetic
algorithm, named GENESIS. Rather than relevant approaches which are executed
sequentially, the new placer exhibits inherent parallelism, which can benefit from
multi-core processors. Moreover, the proposed solution supports automated tun-
ing of the algorithm’s parameters depending on the inherent features posed by the
target application, for further performance improvement. The GENESIS algorithm
provides application placement that aims to minimize a combined objective that
takes into consideration the Half-perimeter Wirelength (HPWL), also known as the
bounding-box cost, the application’s delay and its power consumption. Decisions
made by the placer are highly influential to the overall solution quality, since CLBs
are locked in the placed locations after this stage. Additional details about the
introduced algorithm are provided in upcoming sections.

The last step in the proposed CAD tool flow is routing that finds the suitable
paths for all of the interconnect signals utilizing the programmable routing switches
of the FPGA. The employed routing is performed with the usage of VPR’s routing
tool, which is a single-step router based on the PathFinder algorithm [15]. Finally,
the placed and routed application’s netlist is evaluated by performing timing closure
and extract timing and power metrics that quantify the design quality.

4.3.1. GENESIS Evolutionary Placement
This section describes in more detail the employed placer, named GENESIS. The
placement task results in a physical assignment of all logic blocks and I/O pads on
the target FPGA, which minimizes one or more objectives found in the cost function
(wirelength, speed, power dissipation). Since the placement is an 𝑁𝑃-hard com-
binatorial optimization problem, there is no algorithm that can provide an optimal
solution in polynomial-time. Thus, many heuristics have been proposed, in an at-
tempt to obtain near-optimal solutions in a reasonable amount of time. We adopt
the usage of genetic algorithms (GA), which were already applied to numerous op-
timization problems. GAs incorporate a random, yet directed, search for locating
the global optimal solution. Since the search is not biased towards the local optimal
solution, these algorithms are superior to gradient descent techniques. In contrast
to random sampling algorithms, which mainly pay effort to retrieve a valid solution

4

132 4. Computer-Aided Design Tools for Reconfigurable Platforms

through random selections, GA can direct the search towards relatively prospective
regions in the search space [27], leading among others to significant lower execu-
tion run-time without affecting the quality of derived solutions. Furthermore, we
show in Subsection 4.3.2 that the GA can be efficiently parallelized, thus being pos-
sible to take advantage of modern multi-core CPUs in order to improve performance
compared to the state-of-the-art academic tool VPR 4.30 [14].

Genetic algorithms are motivated by the theory of evolution. They have been
designed as general search strategies and optimization methods working on pop-
ulations of feasible solutions. A genetic algorithm aims at producing near-optimal
solutions by letting a set of strings 1, representing random solutions, undergo a
sequence of transformations governed by a selection scheme biased towards high-
quality solutions. An index of merit (fitness value) is assigned to each individual
chromosome, according to a defined fitness function. Usually the fitness value is
the value of the objective function or some scaled version of it. A new generation is
evolved by a selection technique, in which there is a larger probability of the fittest
individuals being chosen. The selected chromosomes are used as parents for the
construction of the next generation, while new generation is derived as a result of
reproduction operators applied on parents.

Our solution adopts the concept of the mixability theory regarding the role of
sex in evolution, proposed by [28]. According to this theory, the evolvability 2 of
a population can be enhanced by the ability of alleles 3 to perform well across
different combinations. Authors explore how it is possible for sex to increase the
population mean fitness while, at the same time, may break down highly favorable
combinations of genes, which impedes the increase in fitness. As shown, “the
ideal module is also a good mixer in the sense that it is transferred as a whole by
recombination and is therefore more likely to maintain its individual contribution to
fitness across different backgrounds” [28]. We apply the concept of mixability at
the construction of GENESIS operators crossover (subsection 4.3.1.3) and mating
(subsection 4.3.1.2).

To present a motivation example of our approach we use the following example:
Let the architectural parameters of the search space in GA to be encoded in the form
of a chromosome-like structure, as it is depicted in Fig. 4.3. More specifically, each
chromosome consists of two parts for encoding the architecture’s CLBs and I/Os,
named the CLB locus and IO locus, respectively, whereas the assignment of netlist’s
CLBs and I/Os to a locus is defined as allele. The physical locations both of CLB’s
and IO’s on the FPGA are indexed through ascending order numbering sequences
(as it is depicted in the left-bottom part of Fig. 4.3).

Each distinct solution (placement) of the GA is represented with an individual
(𝐼𝑛𝑑(1), 𝐼𝑛𝑑(2),…, 𝐼𝑛𝑑(𝑁)), whereas a group of individuals constitutes a population.
In order to quantify the efficiency of these individuals we incorporate a fitness

1Each string represents a chromosome.
2Evolvability refers to the adaptation of a population’s genetic operator set over time. It is the ability of
a population to generate adaptive genetic diversity, and thereby evolve through natural selection.
3Each allele represents a specified set of alternative values for each gene. Each chromosome consists
of a large number of genes, each uniquely located on the chromosome.

4.3. The Proposed Design Framework

4

133

CLB’s Allele

Ind(2)

Ind(1)

Chromosome Encoding

2

3

18

5

6

17

1 4

8

9

16

14

15

7 13

Island-style FPGA

i iiiii

iv

ba

c

d

Sample Netlist
CLBs: a,b,c,d

Inputs: i,ii,iii, Output: iv

ba c d i iiiii iv

CLB’s Locus

a,b,c,d є [1,9]

I/O’s Locus

i,ii,iii,iv є [10,21]

IO’s Allele

Ind(N)

Population

 (Candidate Placements)

S
Programmable

Switch

I/O Blocks

Configurable

Logic Blocks

(CLBs)

SS

SSS

SSS

S

19

20

21

10 11 12

S

S

S

S SS
74 2 3 20 1014 15

51 3 8 13 1618 11

29 6 3 10 1721 13

Figure 4.3 The employed representation of FPGA with a chromosome structure and an example of netlist
encoding.

function. For the scopes of this research, the GA is tuned to derive placements that
optimize timing and wiring cost. Equation 1 gives the fitness value for individual 𝑖.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = 𝛼 × 𝑇፜፨፬፭(𝑖) + (1 − 𝛼) ×𝑊፜፨፬፭(𝑖) (4.1)

where 𝑇፜፨፬፭ denotes summation to delay cost over all paths of the application’s
netlist and the 𝑊፜፨፬፭ corresponds to the total wirelength over these paths. Re-
garding the timing cost, it is computed based on the Elmore delay model, whereas
the wiring cost is retrieved from the Half-Perimeter WireLength (HPWL) model [14]
[15]. The 𝛼 parameter is used to weight the optimization importance of each of
the two costs (timing, wiring). Since the parameter 𝛼 affects the Quality of Report
(QoR) we explore its effect on the employed benchmarks through a heuristic explo-
ration analysis (4.4.2). The fittest solution has also the lowest fitness value, since
the metrics of delay cost and wiring cost are decreasing while QoR is improved.

Given the previous GA representation, we create a population of FPGA place-
ments (individuals) for the MCNC alu4 benchmark (14 inputs, 8 outputs, 1,519
CLBs). The individual 𝑖 is identified by the genotype 𝐶𝐿𝐵፣𝐼𝑂፤, which represents the
physical locations of CLBs and IOs in the FPGA array, in which the respective CLBs
and IOs of alu4 netlist have been placed to. The combination of six different CLB
placements (𝑗 = 6) and six different IO placements (𝑘 = 6) formulates 𝑛=36 distinct

4

134 4. Computer-Aided Design Tools for Reconfigurable Platforms

solutions, which are depicted in Fig. 4.4. While genotype 𝐶𝐿𝐵ኻ𝐼𝑂ኻ has maximum
fitness, there is a sense in which allele 𝐶𝐿𝐵ዀ performs best overall among the 𝐶𝐿𝐵
alleles across different genetic contexts, a metric which called mixability. Authors in
[28] have shown that evolvability improved when alleles of the same gene compete
with each other based on how well they perform on average (i.e. 𝐶𝐿𝐵ዀ) rather how
well they perform in any one specific combination (i.e. 𝐶𝐿𝐵ኻ𝐼𝑂ኻ). This conclusion
motivate us to construct reproduction operators which result in placements with
enhanced QoR (low fitness) on average, rather than on specific combination.

Figure 4.4 The alu4 fitness landscape with six alleles per locus. Alleles ፂፋፁᎳ∶Ꮈ in locus ፂፋፁ and ፈፎᎳ∶Ꮈ
in locus ፈፎ give 36 genotypes ፂፋፁᑛፈፎᑜ with fitness ፟ᑛ,ᑜ, represented by the height of the bars.

However the problem that arises in such an approach, is the level of granularity
that classifies these combinations. In case of timing-driven placement, the goal is
to assign netlist’s CLBs/IOs to physical FPGA CLBs/IOs so that the critical path4 is
minimized, leading to the maximum operating frequency of the design. Every path
of a netlist is a connection of edges on the netlist’s graph representation node, so
that information can flow from a source to a sink node during one cycle. At the
FPGA case, sources are the input pins and the flip-flop output pins while sinks are

4The critical path of a design refers to the delay of its longest path and determines its clock period. The
critical path is determined by the number of levels of logic, the internal cell delay, the wire delay, the
cell input capacitance, the cell fanout and the cell output drive strength.

4.3. The Proposed Design Framework

4

135

the output pins and the flip-flop input pins. Fig. 4.5 depicts a design test case in
order to present these definitions.

During HDL synthesis, several optimization techniques are performed so that an
HDL description can be efficiently mapped onto physical FPGA resources. While HDL
compilation results in fine-grain netlist representation (generic gate and flip-flop
models), as depicted in Fig. 4.5(b), the last synthesis steps deal with the packing of
this fine-grain functionality to the FPGA primitive cells, i.e. the slices. As described
in Section 4.3 we use T-VPack tool in order to pack LUTs and registers to a netlist of
slices. The goal of this task is to maximize the utilization of CLBs, while minimizing
the number of inter-cluster connections on the critical path. This packing procedure
creates dependencies among slices belonging to different paths, but still have been
packed to the same CLB in order to satisfy the capacity requirement of T-VPack tool.
Regarding the example depicted in Fig. 4.5(b), in case that 𝐹𝐹1, 𝐹𝐹2, 𝐿𝑈𝑇3 and
𝐿𝑈𝑇4 are packed into the same CLB (𝐶𝐿𝐵2), then the placement of 𝐶𝐿𝐵2 affects
both the wirelength of 𝑃𝑎𝑡ℎ2 and 𝑃𝑎𝑡ℎ3.

While existing placement algorithms seek to find optimal (i.e. with minimum
critical path) placements for CLBs, throughout this research we propose the usage
of reproducing operators in GA which take into account the distribution of CLBs and
IOs within paths, given a packing solution. To support such an approach we firstly
define the metric 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦, denoted by symbol 𝜉, as follows:

Definition 1 Given a design netlist with 𝑛-nodes (CLBs, IOs) on timing graph (e.g.
Fig. 4.5(c)), 𝑘-edges (nets between two nodes) and 𝑚-paths (𝑚 <= 𝑘), so that for
every path 𝑝።዆ኻ∶፦ there is a set 𝑆፩ᑚ containing all the nodes belonging to path 𝑝።,
then for every node 𝑁፣ the metric dependability, 𝜉፣, is defined as:

𝜉፣ =
፦

∑
፩ፚ፭፡ ።዆ኻ

𝑓(𝑖, 𝑗), 𝑓(𝑖, 𝑗) = {0,𝑤ℎ𝑒𝑛 𝑛𝑜𝑑𝑒 𝑗 ∈ 𝑆፩ᑚ
1,𝑤ℎ𝑒𝑛 𝑛𝑜𝑑𝑒 𝑗 ∉ 𝑆፩ᑚ

(4.2)

The metric 𝜉፣ for every node 𝑗 represents a quantitative value of the placement
importance for this node. The proposed placement algorithm takes into considera-
tion the 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦metric in order to converge quickly towards global optimum.
We analyze the use of this metric throughout the construction of transformations
steps of the GA during evolution.

Another metric we use in the construction of the proposed transformations steps
is the average sub-fitness value of paths, ̄𝑓፩. While the fitness metric 𝑓 quantifies a
single placement of entire netlist, the path sub-fitnsess 𝑓፩ᑚ quantifies the placement
of the single path 𝑖, based on the sum of the bounding box of its nets.

Definition 2 Given an FPGA architecture with 𝑙-physical CLBs and IOs, a design
netlist with 𝑛-nodes (CLBs, IOs) on timing graph (e.g. Fig. 4.5(c)), 𝑘-edges (nets
between two nodes) and 𝑚-paths (𝑚 <= 𝑘), so that for every path 𝑝።዆ኻ∶፦ there is
a set 𝑅፩ᑚ containing all the edges belonging to path 𝑝።, and a placement Π(𝑛̂ ⇒ ̂𝑙)
the metric average paths sub-fitness value, ̄𝑓፩ᐆ , for placement Π, is defined as:

4

136 4. Computer-Aided Design Tools for Reconfigurable Platforms

̄𝑓፩ᐆ =
፦

∑
፩ፚ፭፡ ፩ᑚᎾᎳ

𝑓፩ᑚጎ, (4.3)

where for each path 𝑝። the metric path sub-fitness value, 𝑓፩ᐆ , for placement Π, is
defined as:

𝑓፩ᑚጎ =
ፑᑡᑚ
∑

፞፝፠፞ ፞ᑛᎾᎳ

[𝑏𝑏፱(𝑗)) + 𝑏𝑏፲(𝑗)] , (4.4)

where for each net j, bbx(j) and bby(j) denote the horizontal and vertical spans
of its bounding box, respectively.

We also define the 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦metric to quantify the similarity between two place-
ments. This metric is used by the mutation operator (4.3.1.4) and it is defined as
follows:

Definition 3 Given an FPGA architecture with 𝑙-physical CLBs and IOs, a design
netlist with 𝑛-nodes (CLBs, IOs) on timing graph (e.g. Figure 4.5(c)) and 𝑗 place-
ments Π{ኻ,፣}(𝑛̂ ⇒ ̂𝑙) then for every node 𝑁፣ the metric diversity, Δጎ{Ꮃ,ᑛ} , is defined
as:

Δጎ{Ꮃ,ᑛ} =
፧

∑
፧፨፝፞ ።዆ኻ

𝑔(𝑖, 𝑗), 𝑔(𝑖, 𝑗) = {0,𝑤ℎ𝑒𝑛 Πኻ[𝑛𝑜𝑑𝑒።] = Πኼ[𝑛𝑜𝑑𝑒።] = ⋯ = Π፣[𝑛𝑜𝑑𝑒።]
1, 𝑤ℎ𝑒𝑛 Πኻ[𝑛𝑜𝑑𝑒።] ≠ Πኼ[𝑛𝑜𝑑𝑒።] ≠ ⋯ ≠ Π፣[𝑛𝑜𝑑𝑒።]

(4.5)

The transformations on the individuals of a population constitute the recombi-
nation steps of a GA. These transformations are performed by four operators in a
way that implicitly good properties are identified and combined into a new popula-
tion. This new population (also called offspring) hopefully has the property that the
fitness value of the best individual (representing the best solution in the population)
and the average fitness value of the individuals are better than in previous popula-
tions. The process is then repeated until some stopping criteria are met. The four
basic operators of a genetic algorithm when a new population is constructed are
selection, mating, crossover and mutation. In subsections 4.3.1.1, 4.3.1.2, 4.3.1.3
and 4.3.1.4 we describe in more detail these operators. Table 4.2 summarizes the
symbols and definitions used for the rest section.

4.3.1.1 Selection

Through selection a new temporary population is generated, where each member
is a replica of a member of the old population. The individuals are sorted based
on their fitness value. According to a predefined probability, a percentage of the
population will remain intact in the next population, a technique referred as elitism.
The intended effect of this operation is to improve the quality of the population as
a whole. However, no genuinely new solutions and hence no new information is

4.3. The Proposed Design Framework

4

137

Figure 4.5 (a) Baseline FPGA architecture. (b) HDL-to-CLBs Synthesis. (c) Graph representation of a
design circuit. (d) FPGA physical placement.

created in the process. The generation of such new placements is handled by the
crossover operator, explained in subsection 4.3.1.3. The elitism percentage 𝑝፞ is
an important parameter of the quality of placements, as highlighted by Figure 4.6.
While no-elitism (0%), or high elitism rate (75%) express high fitness, as expected,
it seems that the elitism percentage value highly affects the algorithm’s efficiency,
i.e. using 𝑝፞=25% the GENESIS algorithm, applied to MCNC circuit s38417, con-
verge to a local optimal at generation 219, while at the same generation, the al-
gorithm configured with 𝑝፞=50% provides a solution with higher (worse) fitness
metric of 16%. The algorithm is described in pseudo-code in Algorithm 1.

4.3.1.2 Mating

The mating operator selects two individuals in order to create a new one, whereas
this task is repeated until all the individuals have been mated. Different approaches
are possible to be employed during this step. The common way of mating parents
consists of taking a parent from the mating pool and selecting its mate by choosing
randomly one of the remaining parents. The mated parents are then removed
from the mating pool. Restricted mating techniques, such as fitness sharing [29],
evolving agents [30], tabu genetic algorithm [31] and seduction [32], which do not
select a mate uniformly at random, have been proven to improve the performance

4

138 4. Computer-Aided Design Tools for Reconfigurable Platforms

Table 4.2 Parameters of the proposed GA.

Symbol Description
ፏ(፭) Population: The set of total placements at time ፭ of evolution.
፧ᑡ Population size: The total number of placements.
፠ᑡ Population age: The total number of GA generations.
ፄ(፭) Elitism pool: The subset of ፏ(፭) of the fittest individuals during evolution.
፩ᑖ Elitism percentage: The percentage of the population constitutes subset ፄ, ፩ᑖ × ፧ᑡ ዆ ፬።፳፞(ፄ).
ፌ(፭) Mating pool: The subset of ፏ(፭) of individuals that form pairs for new offsprings.
፩ᑞᑒᑥ Mating percentage: The percentage of the population constitutes subset ፌ, ፩ᑞᑒᑥ × ፧ᑡ ዆ ፬።፳፞(ፌ).
ፂ(፭) Crossover pool: The set of ፌ(፭) after applying crossover operator. ፬።፳፞(ፌ) ዆ ፬።፳፞(ፂ)
፛ᑞ Mutation probability: The probability applying mutation to an individual ። of population ፏ(፭).

(፭ denotes the time step of evolution, i.e. the ።ᑥᑙ generation of GA)
ALGORITHM 1: Elitism-based Selection
Input: Population on time ፭: ፏ(፭)
Input: Elitism percentage ፩ᑖ
Output: 1)Fitness based Sorted Population

on time ፭: ፏᑤ(፭)
Output: 2)Elitism Pool on time ፭ ዄ ኻ:

ፄ(፭ ዄ ኻ)
1 initialization;
2 for ። ዆ ኻ to ፧ᑡ do
3 ፟(።)=ComputeFitness(ፈ፧፝።፯።፝፮ፚ፥ᑚ);
4 end
5 ፏᑤ=SortPopulation(ፏ, ∗፟);
6 for ፣ ዆ ኻ to (፩ᑖ × ፧ᑡ) do
7 ፄᑛ(፭ ዄ ኻ) ← ፏᑤ(ፈ፧፝።፯።፝፮ፚ፥ᑛ);
8 end

Figure 4.6 GENESIS elitism rate impact on quality
for MCNC circuit s38417 (6406 CLBs, 29 Inputs, 106
Outputs), ፧ᑡ=100, ፠ᑡ=500, ፦፮፭ፚ፭።፨፧_፫ፚ፭፞=25

of the GA. In GENESIS algorithm, we incorporate mating preferences based on
mixability theory, already discussed. As shown in Algorithm 2, the pairs are selected
so that they expose minimum difference in path sub-fitness value (𝑓፩ᐆ) for all paths,
among any other combination pairs. Thus, at line 15 in Algorithm 2, individuals 𝑖
and 𝑗 are mated together to mating pool 𝑀, when the corresponding placements
have paths with similar placement quality, i.e. they “compete with each other based
on how well they perform on average rather than how well they perform in any one
specific combination”.

4.3.1.3 Crossover

After the selection of mates using the mating operator, follows the information ex-
changing between the chromosomes of mates, for all individuals in mating pool 𝑀.
Usually for each pair, the crossover operator is applied with a certain probability
by choosing a position randomly in the chromosome and exchanging part of the
chromosome referenced by this position using a replacement policy, i.e. the tails

4.3. The Proposed Design Framework

4

139

ALGORITHM 2: Mixability-driven Mating
Input: Population on time ፭ after Selection: ፏ(፭)
Input: Elitism pool on time ፭ ዄ ኻ: ፄ(፭ ዄ ኻ)
Input: Placement of every individual i on time ፭: ጎᑚ(፭)
Input: Mating percentage ፩ᑞᑒᑥ
Output: Mating Pool on time ፭ ዄ ኻ: ፌ(፭ ዄ ኻ)

1 for ። ዆ ኻ to (፩ᑞᑒᑥ × ፧ᑡ) do
2 for ፤ ዆ ኻ to ፦ ፩ፚ፭፡፬ do
3 ፏፚ፭፡_ፅ።፭፧፞፬፬_ፀ፫፫ፚ፲[፟ᑡᑜᐆ]ᑚ=Compute_path_sub-

fitness_value(ፈ፧፝።፯።፝፮ፚ፥ᑚ,
፩ፚ፭፡ᑜ);

4 end
5 end
6 for ። ዆ ኻ to (፩ᑞᑒᑥ × ፧ᑡ) do
7 min ← (ዄጼ)
8 for ፣ ዆ ። ዄ ኻ to (፩ᑞᑒᑥ × ፧ᑡ) do
9 Current_path_sub-fitness_diff = 0;
10 for ፤ ዆ ኻ to ፦ ፩ፚ፭፡፬ do
11 Current_path_sub-fitness_diff += ፚ፛፬(ፏፚ፭፡_ፅ።፭፧፞፬፬_ፀ፫፫ፚ፲[፟ᑡᑜᐆ]ᑚ -

ፏፚ፭፡_ፅ።፭፧፞፬፬_ፀ፫፫ፚ፲[፟ᑡᑜᐆ]ᑛ)
12 end
13 if (Current_path_sub-fitness_diff ጺ min) then
14 min = Current_path_sub-fitness_diff;
15 ፌ(፭ ዄ ኻ) ← ፏᑤ(ፈ፧፝።፯።፝፮ፚ፥ᑚ) ⊕ ፏᑤ(ፈ፧፝።፯።፝፮ፚ፥ᑛ);
16 end
17 end
18 end

of the two strings (this is the simplest version of a crossover). The effect of the
crossover is that certain properties of the individuals are combined to new ones or
other properties are destroyed. A high quality netlist placement onto an FPGA re-
quires a high quality placement of netlist’s paths. In order to avoid the destruction
of high-quality paths, we guide the crossover operator to be applied on random
paths rather than random placements, i.e. instead of exchanging the placement
of random 𝐶𝐿𝐵። between two mates, we replace the placement for every 𝐶𝐿𝐵, 𝐼𝑂
belonging to the random 𝑝𝑎𝑡ℎ፣. Since a high number of overlaps may occur us-
ing such an approach, we adopt the usage of 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 metric 𝜉 in order to
overcome this problem. More specifically, every time that an exchange of a path
between two mates forces a netlist CLB/IO to be placed at an FPGA physical CLB/IO
location which is reserved by another netlist CLB/IO, then the physical CLB/IO loca-
tion is assigned to the netlist CLB/IO with higher 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 value. This policy
verifies that the high 𝜉-value CLB/IO will retain a placement so that it affects the
quality of fewer paths compared to the low 𝜉-value CLB/IO. This description is also
explained through Algorithm 3.

4

140 4. Computer-Aided Design Tools for Reconfigurable Platforms

ALGORITHM 3: Path-driven Crossover
Input: Population on time ፭ after Mating: ፏ(፭)
Input: Mating pool on time ፭ ዄ ኻ: ፌ(፭ ዄ ኻ)
Input: Placement of every inividual i on time ፭: ጎᑚ(፭)
Input: Dependability vector ᎛̂ for every node (CLB/IO) of netlist.
Output: Crossover Pool on time ፭ ዄ ኻ: ፂ(፭ ዄ ኻ)

1 for ። ዆ ኻ to ፬።፳፞(ፌ(፭ ዄ ኻ) step 2 do
2 mateA = ፌ(፭ ዄ ኻ)ᑚ; mateB = ፌ(፭ ዄ ኻ)ᑚᎼᎳ;
3 rpath = ፫ፚ፧፝(ኻ, ፧ ፩ፚ፭፡፬);
4 /* TryExchangePath(MateA, MateB, rpath); */
5 for ፤ ዆ ኻ to ፦ ፧፨፝፞፬ ፨፟ ፫፩ፚ፭፡ do
6 foreach (ፌፚ፭፞ፀ,ፌፚ፭፞ፁ) do
7 if (ጎ[፧፨፝፞ᑜ] overlaps with ጎ[፧፨፝፞ᑜᖤ]) /* ፧፨፝፞ᑜᖤ has been mapped to

ጎ[፧፨፝፞ᑜᖤ] at ፏ(፭) of the other mate*/ then
8 if (᎛̂[፤]ᑚ ጺ ᎛̂[፣]ᑚ) then
9 Assign ፧፨፝፞ᑜᖤ to free node or exchange with low-᎛ node;
10 else
11 Assign ፧፨፝፞ᑜ to free node or exchange with low-᎛ node;
12 end
13 else
14 ExchangePath(MateA, MateB, rpath); /* no overlap exists */
15 end
16 end
17 end
18 end

4.3.1.4 Mutation

While previous operators are constructed using a conservative methodology regard-
ing the freedom of chromosome elements to randomly assigned on the search space
(elitism-based selection, mixability-driven mating, path-driven crossover), there is a
high probability of premature convergence of the GA to sub-optimal solution. In or-
der to prevent this, our algorithm incorporates also a mutation operator with some
predefined probability over the population. During mutation, a path is randomly
chosen and its nodes are assigned to random spatial locations. The purpose of
mutation is to avoid getting stuck in local minima and also to assure the exploration
of new solutions of the search space. The problem arises from this operator is how
to define the probability threshold. At one hand, too low mutation probability may
cause convergence into a local minimal while on the other hand too high frequent
mutations will prevent the convergence of the GA, resulting into a random walk.
On GENESIS algorithm we provide a novel self-adaptive mutation operator which
exhibits dynamic mutation probability. While there are existing works on controlling
the mutation probability at run-time (i.e. [33], [34]), most of them often use the
fitness metric deviation from generation to generation in order to adapt the prob-
ability. We extend this approach by guiding the selection of probability based on
the similarity of placements on population. This idea derived from our initial exper-

4.3. The Proposed Design Framework

4

141

imental analysis, where while the GA placer (prior to dynamic mutation) converged
to a solution, we noticed placement similarities among individuals. Based on the
metric 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, which represents a qualitative metric of placement similarities,
we increase the mutation probability when 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 is decreasing and vice versa.
Thus we use an inversely proportional activation function 𝑓 to accommodate this
feature. This operation is described by Algorithm 4.

ALGORITHM 4: Self-adaptive Mutation
Input: Population on time ፭ after Crossover: ፏ(፭)
Input: Crossover pool on time ፭ ዄ ኻ: ፂ(፭ ዄ ኻ)
Input: Placement of every inividual i on time ፭: ጎᑚ(፭)
Input: Dependability vector ᎛̂ for every node of netlist.
Output: Population on time ፭: ፏ(፭ ዄ ኻ)

1 for ። ዆ ኻ to ፧ᑡ do
2 ጂᑇ=CalcDiversity(ፏ(፭));
3 ፛ᑞ= ፟ᑕ(ጂᑇ);
4 if (rand(0,1) ጺ ፛ᑞ) then
5 rpath = ፫ፚ፧፝(ኻ, ፧ ፩ፚ፭፡፬);
6 for ፤ ዆ ኻ to ፦ ፧፨፝፞፬ ፨፟ ፫፩ፚ፭፡ do
7 /* Random FPGA CLB for netlist CLB and FPGA IO for netlist IO */
8 /* Mutation of ፧፨፝፞ᑜ */
9 ጎ[፧፨፝፞ᑜ] =፫ፚ፧፝(ኻ,፦ ፧፨፝፞፬);
10 if (ጎ[፧፨፝፞ᑜ] overlaps with ጎ[፧፨፝፞ᑜᖤ]) /*፧፨፝፞ᑜᖤ has been mapped to

ጎ[፧፨፝፞ᑜᖤ] at ፏ(፭) of the other mate*/ then
11 if (᎛̂[፤]ᑚ ጺ ᎛̂[፣]ᑚ) then
12 Assign ፧፨፝፞ᑜᖤ to free node or exchange with low-᎛ node;
13 else
14 Assign ፧፨፝፞ᑜ to free node or exchange with low-᎛ node;
15 end
16 end
17 end
18 end
19 end

4.3.2. GENESIS Coarse-grain Parallelism Engine
The motivated idea at the proposed GA-based placement is to split the whole prob-
lem into a number of distinct sub-problems, which can be solved simultaneously
using multiple processors. Such a divide-and-conquer approach is applied using a
coarse-grain method: the operators of selection, mating, crossover and mutation
are grouped into non data-dependencies tasks, which are executed in parallel. This
technique is feasible because the operators that are applied on a subset of popu-
lation are independent from those applied to the rest population, thus there is no
requirement for inter-thread communication during this phase5. Specifically, each
operator works on several subsets of individuals found in the GA population. Thus,

5An exception occurs for a function within selection operator, which sorts the individuals based on their
fitness value.

4

142 4. Computer-Aided Design Tools for Reconfigurable Platforms

in a coarse description, parallelization is performed as follows: The processing work
of each subset is assigned to a different parallel thread, which forms the tasks to
be executed in parallel within each GA’s era.

Such a coarse-grain parallelism approach in placement problem is efficient due to
the improved instruction and data locality within each iteration of GA operators. This
technique is also improved from task parallelism, as all shared data of population can
be exchanged in a deterministic producer/consumer style, eliminating the possibility
of data races and thus shortening the sequential part of GA algorithm.

Dynamic Allocation

U
n

in
it

ia
li
z
e

d
 d

a
ta

 (
.b

s
s
)

In
it

ia
li
z
e

d
 d

a
ta

 (
.d

a
ta

)

P
ro

g
ra

m
 C

o
d

e
 (

.t
e

x
t)

S
ta

c
k

 (
T

h
re

a
d

1
)

S
ta

c
k

 (
T

h
re

a
d

2
)

S
h

a
re

d
 L

ib
ra

ri
e

s

Compile-time

Mem. Allocation

Run-time

Mem. Allocation

RAM

Low-end
RAM

High-end

Population Struct
Pointer = NULL

`

Individual(2) Struct

Individual(1) Struct

Individuals Array Struct

Individual(N) Struct

H
e

a
p

H
e

a
p

 -
 T

h
re

a
d

2

Population Struct

H
e

a
p

 -
 T

h
re

a
d

N

H
e

a
p

 -
 T

h
re

a
d

1

Master

Workers

Genesis Main

Program

S
ta

c
k

 (
T

h
re

a
d

N
)

Selection

Mating

Crossover

Mutation

Threads Join

Threads Join

Threads Join

Coarse-grain Thread Fork-Join Model

Figure 4.7 Thread-oriented GA memory structure and the corresponding fork-join model.

The overall parallelization approach is depicted in Fig. 4.7. Regarding the imple-
mentation issue, we employ the OpenMP API to express task and data parallelism
into the proposed GA. In order to provide an efficient shared memory access per
thread, we created an individual oriented memory organization. The population
is a struct stored in global shared memory, composed of an array of structs ded-
icated to individuals. Each individual struct points further to a number of structs
holding individual’s complex data, such as the placement struct, the timing graph
struct, the placement metrics struct etc. These structs are initialized at run-time
through customized malloc system calls. Given that the allocation and deallocation
patterns are not exhibiting a producer/consumer relation, we customized the heap
architecture according to the pure private heaps schema [35]. Specifically, such a
customization assumes that each thread has its own private heap used for every
memory operation. In terms of performance and scalability, pure private heaps are
a very efficient, as each thread has its own heap space and induces the minimum
lock contention.

The efficiency of GENESIS framework is based on the parallel execution of its
tasks. However, the parallelization takes place within (and not between) each of the
main GA operators, i.e selection, mating, crossover and mutation. Each operator
works on several subsets of individuals found in the GA population. Thus, in a
coarse description, parallelization is performed as follows: The processing work of
each subset is assigned to a different parallel thread, which forms the tasks to be

4.4. Application-Aware Tuning of GENESIS Evolutionary Placement

4

143

executed in parallel within each GA’s era. By exploring many solutions (population
pool) simultaneously, it is more likely to find a high quality solution, as compared to
placers that initiate from a random state and incremental improve these solutions,
e.g. the simulated annealing placer of VPR tool.

In general, the overhead of managing parallelism is a problem of the shared
memory programming model. However it has been shown that programs paral-
lelized for shared memory architectures can achieve satisfactory scaling up to a few
hundreds of processors [36], [37]. This is possible with reasonable scaling of the
problem’s size in order to increase the granularity of threads and reduce the fre-
quency of synchronization. In order to leverage the right combination of task and
data parallelism while avoiding data hazards, we performed detailed profiling of the
proposed algorithm during sequential execution. This enables the identification of
data transactions at inter- and intra- computational kernels of the proposed algo-
rithm. This step prevents the run-time gains retrieved by the parallel execution to
be overshadowed by the communication and synchronization costs. Based on this
analysis, we found that the maximum locality of references to main memory is per-
formed inside the code of every GA operator (namely selection, mating, crossover,
mutation). This is expected since anyone of these operators accumulates the same
kind of data over the population pool, i.e. the mutation access placements after
crossover and constructs the dependability vector iterative. Given also that ev-
ery operator works on up to two solutions (individual) per iteration, we chose a
coarse-grain parallelism scheme, where the main loop of every operator spawns
to multiple threads, according to the number of available processing cores and the
user options.

In order to better clarify the aforementioned investigation, Figure 4.8 plots the
average (over the 20 biggest MCNC benchmarks) percentages for executing se-
quentially the functions that compose GENESIS algorithm. These results are re-
trieved with the usage of Valgrind suite (Callgrind tool). For this analysis, the algo-
rithm’s kernels are clustered into two groups depending if they could be executed
in parallel with the OpenMP API, or not. Even though these results depend on the
netlist size, the FPGA architecture, the number of physical cores and the usage of
hyperthreading, as well as numerous parameters of GENESIS algorithm (e.g., pop-
ulation size, age, elitism percentage, mating percentage and mutation probability),
the deviations in execution run-time required for different kernels are small enough.
Based on Figure 4.8, we conclude that, on average, 81% of the total execution time
corresponds to source code that is parallelized with OpenMP API. This result sets
an upper bound constraint to the theoretical speedup obtained using a multicore
shared memory CPU, as it is further discussed in Section 4.5.

4.4. Application-Aware Tuning of GENESIS Evolu-
tionary Placement

The GENESIS evolutionary placement algorithm exposes a set of parameters that
control the optimization procedure. In a common case scenario, these parame-
ters are pre-configured by the tool developers, thus each application to be placed

4

144 4. Computer-Aided Design Tools for Reconfigurable Platforms

Figure 4.8 Execution run-time breakdown analysis for functionalities of GENESIS placer.

on the FPGA will be optimized according to a fixed configuration vector that rep-
resent a typical instance for the algorithm. However, there is a large diversity
regarding the circuit structures and their organization found in different applica-
tions, e.g. compute-bound applications versus I/O-bound applications etc., which
make extremely difficult to find a single “golden” configuration that optimizes the
placement algorithm in all the cases. In order to address this diversity, we extended
GENESIS placement framework with an exploration methodology that enables the
application-aware tuning of the placer’s parameters.

The proposed tuning methodology consists of two phases. Given a set of repre-
sentative applications, phase 1 performs an offline clustering operation that groups
together applications sharing the same features. The applications bound to each
cluster are explored in a combined manner to characterize the per cluster so-
lution space. We consider the general case of multiple optimization objectives,
thus for each cluster we derive a set of approximated Pareto configurations, so
as the tool developer to select the one that fits his criteria, e.g. Power×Delay,
Power×Wirelength, etc.

In phase 2, the selected configuration per cluster (computed offline by phase
1) will be used during the actual GENESIS run-time to configure the evolution-
ary optimization algorithm according to the characteristics of the application under

4.4. Application-Aware Tuning of GENESIS Evolutionary Placement

4

145

placement. The assignment of each new application to a specific cluster – thus also
to a specific configuration vector for the GENESIS engine – is based on its distance
to each cluster centroid. The closer the application is to a specific centroid the more
similar characteristics is shared with the other applications that formed the cluster.
In case of a tie, i.e. the distance between two or more centroids is the same, the
application is assigned to the cluster with the higher cardinality.

4.4.1. Application Level Clustering
The goal of application level clustering is that given a set of representative applica-
tions to generate a set of categories that group together the application that share
similar features regarding their circuit structure. Without loss of generality, in this
research we considered the 20 largest applications found in the MCNC benchmark
suite (Table 4.3). The goal of application-level clustering is to group together ap-
plications exposing similar features. For each of the formed clusters a promising
configuration will be derived in order to be used during the run-time of the GENE-
SIS tool. Thus, when a new application is entered for placement, it is assigned to
one of these clusters so that the optimization engine will be configured appropri-
ately. This instructs that the clustering should be based on features available after
logic synthesis and packing (to enable a cluster indexing prior the GENESIS engine
invocation) rather than actual placement of the application.

During logic synthesis and packing the circuit description of the application is
quantitatively analyzed. The type of supported analysis varies according to the logic
synthesis engine and packing engine. In order to be independent from tool specific
reports and analysis, in this research we consider a minimal set of available analysis
data given by a metrics vector, i.e. #𝐶𝐿𝐵𝑠, #𝐼𝑂𝑠, #𝑁𝑒𝑡𝑠. The first four columns of
Table 4.3 show the logic synthesis and packing analysis results for the targeted set
of representative applications.

Although the metrics vector evaluates the application in terms of number of al-
located resources, it fails to characterize the actual circuit’s internal structure that
drives placement. We alleviate this characterization inefficiency of the original met-
rics vector by defining a new set of features that captures in a better manner the
circuit’s structure regarding placement. We define two new features and reuse
the number of connections (#𝑁𝑒𝑡𝑠) feature found in the original characterization
metrics vector. Specifically:

𝑓ኻ = #𝑁𝑒𝑡𝑠 (4.6)

𝑓ኼ = #𝐿𝑈𝑇𝑠
#ፈፎ፬ዄ#ፃፅፅ፬

ኼ
(4.7)

𝑓ኽ = {
√#𝐶𝐿𝐵𝑠, if √#𝐶𝐿𝐵𝑠 > #ፈፎ፬

ኾ .
#ፈፎ፬
ኾ , if √#𝐶𝐿𝐵𝑠 ≤ #ፈፎ፬

ኾ .
(4.8)

Feature 𝑓ኻ reports the intensity of each benchmark in terms of wire connections.
Feature 𝑓ኼ estimates the timing path size, i.e. the number of #𝐿𝑈𝑇𝑠 found in each

4

146 4. Computer-Aided Design Tools for Reconfigurable Platforms

timing path consisting between two 𝐷𝐹𝐹 or two #𝐼/𝑂 nodes, considering a balanced
distribution of nodes to timing paths. Finally, feature 𝑓ኽ estimates the minimum
square FPGA that fits the application considering either the case that the logic
elements dominate the application, e.g. compute-intensive or the 𝐼/𝑂 elements
are the dominant ones, e.g. I/O-intensive applications..

After defining the new feature space, 𝐹, through Equations 4.6 - 4.8, we char-
acterized each application with the feature vector and perform clustering to derive
with groups of application that share the same feature behavior. We used 𝑘-means
[38] clustering for the aforementioned procedure, with a configurable number of
clusters, 𝑘. The clustering procedure partitions the feature space 𝐹 into 𝑘 regions
of interest, 𝐹። 𝑖 ∈ {0…𝑘 − 1}, e.g. a region of many connections, short timing
paths and large minimum squared sized FPGAs that corresponds to IO intensive
applications with limited computation intensity. The number of regions, 𝑘 is highly
correlated with the effectiveness of the clustering procedure. Coarse-grained clus-
tering, i.e. small values of 𝑘, increases the diversity of the features characterizing
each application group, while fine-grained clustering, i.e. one cluster per applica-
tion, reduces the diversity features but approximates aggressive application specific
solutions. In this exploration, we considered 𝑘=8 for the given application set (Fig.
4.9), as a balanced solution between coarse- and fine-grained clustering.

Table 4.3 Feature characterization of the employed benchmark suite.

Benchmark Original Metrics Space Min. sized FPGA#CLBs #IOs #Nets #DFFs
alu4 1,519 22 1,523 0 39×39
apex2 1,878 42 1,899 0 44×44
apex4 1,262 27 1,264 0 36×36
bigkey 1,707 460 2,046 224 107×107
clma 8,071 33 8,135 33 90×90
des 1,591 501 1,837 0 126×126
diffeq 1,497 103 1,539 377 39×39
dsip 1,370 426 1,599 224 107×107
elliptic 3,604 245 3,731 1122 62×62
ex1010 4,598 20 4,555 0 68×68
ex5p 1,064 71 1,046 0 33×33
frisc 3,556 136 3,552 886 60×60
misex3 1,397 28 1,390 0 38×38
pdc 4,575 56 4,522 0 68×68
s298 1,931 10 1,935 8 44×44
s38417 6,235 135 6,237 1463 79×79
s38584 6,447 343 6,331 1260 81×81
seq 1,750 76 1,774 0 42×42
spla 3,690 62 3,647 0 61×61
tseng 1,047 174 1,096 385 44×44
Average: 2,679.42 154.58 2982.9 299.1 64×64

4.4. Application-Aware Tuning of GENESIS Evolutionary Placement

4

147

Figure 4.9 Clustering result on feature space ፅ.

4.4.2. Cluster Level Exploration for Optimal Configuration Ex-
traction

The goal of cluster level exploration is to find the configuration of GENESIS’s pa-
rameters that provide optimized placement for the application set included in each
of the clusters 𝐹።. Currently, the GENESIS placement framework exposes three
parameters that control the evolutionary optimization procedure, namely (i) pop-
ulation age (pa), (ii) population size (ps) and (iii) aggressiveness of timing over
wirelength optimization (parameter 𝛼 of the fitness function). Specifically, regard-
ing the latter parameter, its sensitivity in Equation 4.1 highly affects the QoR of
the solution space. Even though there is correlation between wirelength and delay,
as the Elmore model takes into account the length of wires, however, based on
our analysis, depicted in Table 4.4, we show that both of these parameters have
to be taken into account during placement, as this leads to the maximum gains in
operating frequency. In order to determine the value of 𝛼 we propose a heuristic
exploration analysis as follows.

Configuration space Ω is defined as the set of all the possible configuration
vectors, ∪ < 𝑝𝑠፤ , 𝑝𝑎፤ , 𝑎፤ >∈ Ω. For each of the formed clusters, 𝐹።, a configuration
vector that optimizes one or more design objectives, e.g. delay, power, wirelength,

4

148 4. Computer-Aided Design Tools for Reconfigurable Platforms

Table 4.4 Evaluation of different (wirelength-driven and timing-driven) configurations for the GA placer
against the introduced GENESIS framework.

GENESIS Wirelength-driven (a=0) Timing-driven (a=1)
Delay Delay Penalty Delay Penalty

Benchmark (Solution 1) (vs. GENESIS) (vs. GENESIS)
alu4 7.38E-008 1.07E-007 1.45× 1.09E-007 1.47×
apex2 8.81E-008 1.39E-007 1.58× 1.14E-007 1.29×
apex4 7.72E-008 1.16E-007 1.50× 9.16E-008 1.19×
bigkey 6.63E-008 2.05E-007 3.09× 9.79E-008 1.48×
clma 1.89E-007 2.57E-007 1.36× 2.11E-007 1.12×
des 1.05E-007 2.86E-007 2.73× 2.60E-007 2.48×
diffeq 6.09E-008 9.73E-008 1.60× 7.42E-008 1.22×
dsip 6.38E-008 1.92E-007 3.00× 1.02E-007 1.60×
elliptic 1.10E-007 2.68E-007 2.43× 1.36E-007 1.24×
ex1010 1.16E-007 1.97E-007 1.69× 1.66E-007 1.43×
ex5p 6.64E-008 1.20E-007 1.80× 9.57E-008 1.44×
frisc 1.27E-007 2.35E-007 1.85× 1.78E-007 1.40×
misex3 7.11E-008 1.10E-007 1.54× 8.58E-008 1.21×
pdc 1.08E-007 2.74E-007 2.54× 1.74E-007 1.61×
s298 1.32E-007 2.32E-007 1.75× 1.41E-007 1.07×
s38417 1.01E-007 1.74E-007 1.72× 1.14E-007 1.13×
s38584 8.7E-008 1.33E-007 1.53× 1.15E-007 1.32×
seq 7.79E-008 1.25E-007 1.60× 1.07E-007 1.37×
spla 8.46E-008 1.90E-007 2.25× 1.51E-007 1.79×
tseng 5.29E-008 8.25E-008 1.56× 6.17E-008 1.17×

Average: 9.29E-008 1.77E-007 1.93× 1.29E-007 1.40×

tool’s run-time etc., of the GENESIS engine is derived through off-line exploration.
This optimized configuration is be used after the deployment of the GENESIS tool
for tuning the placement engine according to the features of the input application.

We target the problem of finding/approximating an optimized per cluster con-
figuration in its generalized form, i.e. as a multi-objective optimization problem.
Single-objective optimization variants is a subset of the targeted problem form,
thus the same techniques can be applied in a straightforward manner. Let < 𝐿𝑂 =
{𝑜ኻ, … , 𝑜ፍ > defined as the vector of optimization objectives, e.g. < 𝑜ኻ, 𝑜ኼ, 𝑜ኽ >=<
𝐷𝑒𝑙𝑎𝑦, 𝑃𝑜𝑤𝑒𝑟, 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 >. Given that each cluster, 𝐹።, includes a number of appli-
cations, i.e. 𝑎𝑝𝑝።,፣ ∈ 𝐹።, multiple instances of optimization objective vectors, 𝐿𝑂።,፣
exist within each cluster 𝐹።, one for each 𝑎𝑝𝑝።,፣ ∈ 𝐹።. Thus, the optimization should
be performed across the all the applications, 𝑎𝑝𝑝።,፣ found within each cluster, in
order to optimize the central tendency of the overall cluster 𝐹።. The problem of
finding the per cluster optimal configuration, can be defined as follows for cluster
𝐹።:

4.4. Application-Aware Tuning of GENESIS Evolutionary Placement

4

149

min
፱∈጖

⎡
⎢
⎢
⎢
⎣

𝑔𝑚(𝑜።,ኺኻ , … , 𝑜።,፣ኻ , 𝑜።,|ፅᑚ|ዅኻኻ)(𝑥)
𝑔𝑚(𝑜።,ኺኼ , … , 𝑜።,፣ኼ , 𝑜።,|ፅᑚ|ዅኻኼ)(𝑥)

...
𝑔𝑚(𝑜።,ኺፍ , … , 𝑜።,፣ፍ , 𝑜።,|ፅᑚ|ዅኻፍ)(𝑥)

⎤
⎥
⎥
⎥
⎦

(4.9)

where 𝑔𝑚(𝑥ኻ, … , 𝑥። , … , 𝑥ፍ) = ᑅ√𝑥ኻ × … × 𝑥። × … × 𝑥ፍ is the geometric mean of
the objective associate with 𝑎𝑝𝑝።,፣.

Since the problem is multi-objective, we are interested in finding the Pareto
optimal set (Pareto front) of configurations, 𝑋ፏ፨፩፭። ∈ Ω. Then, the tool developer can
select/decide for each cluster 𝐹። the configuration vector 𝑥 ∈ 𝑋ፏ፨፩፭። that satisfies its
requirements. However, finding the exact Pareto front, for the optimization problem
4.9, is computationally impractical since it requires the full evaluation (placement
and routing) over all the configurations found in Ω of all the applications found in
each 𝐹።.

We developed an exploration strategy, shown in Algorithm 5, to extract an ap-
proximate Pareto front, 𝑋ፏ፨፩፭። of each cluster 𝐹።. The proposed strategy iterates
over all the defined clusters. For each cluster, it samples the configuration space
Ω following a uniform probability distribution, 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑎𝑐𝑒(𝐹።) ⊆ Ω. Each ap-
plication, 𝑎𝑝𝑝።,፣ ∈ 𝐹። is explored (= evaluated) according to the common sample
configuration space, 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑎𝑐𝑒(𝐹።). The generated vector space, 𝐷።፣, is a map
linking each configuration vector found in 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑎𝑐𝑒(𝐹።) with its metric defined
in the vector of optimization objectives, 𝐿𝑂. The geometric mean operator is ap-
plied to every 𝐷።፣ generating the 𝐷። space that represents the problem defined in
eq. 4.9.

𝐷። provides a localized view of the targeted solution space, since it includes
characterized solutions (regarding the optimization objectives) only on the “known
points”, i.e. the configurations, 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑎𝑐𝑒(𝐹።) ⊆ Ω, that has been actually eval-
uated through GENESIS. The rest of the configuration vectors found in Ω, which
have not been evaluated, form the “unknown points” of the solution space. We
approximate the “unknown points” of Ω, by using interpolation6 with the “known
points” in 𝐷። forming the training database. The 𝐷̂።፭፨፭ፚ፥ is the predicted approxima-
tion of the solution space over all the configuration vectors of |𝑂𝑚𝑒𝑔𝑎, generated
after interpolation. Specifically, the inverse distance weighting (IDW) [39] interpo-
lation technique has been adopted. The value of an interpolated unknown point,
𝑥 ∈ 𝐹። is computed by using 𝑁 known observations 𝑦፤ ∈ 𝐷። as follows:

𝑟(𝑥) =
∑ፍ፤዆ኻ𝑤፤(𝑥)𝑦፤
∑ፍ፤዆ኻ𝑤፤(𝑥)

, 𝑤፤(𝑥) =
1

𝑑𝑖𝑠𝑡(𝑥, 𝑥፤)፩
(4.10)

where 𝑤፤(𝑥) is the weighting function, 𝑑𝑖𝑠𝑡 is the distance between the known
point 𝑥፤ and the unknown point 𝑥 and 𝑝 is a real number called the power parameter
of the model. The larger the value of 𝑝 the greater the influence of the points
6Differently from regression techniques, interpolation does not produce any prediction error on the
known data.

4

150 4. Computer-Aided Design Tools for Reconfigurable Platforms

closest to the interpolated point. For N-dimensional configuration space, there is
a theoretical lower bound of the power parameters, 𝑝 ≥ 𝑁, in order to restrict the
interpolated values to be dominated by distant points. Thus, for the target three-
dimensional configuration space, < 𝑝𝑠፤ , 𝑝𝑎፤ , 𝑎፤ >∈ Ω, we consider a range of 𝑝 ∈
[3, 6] with step 0.5. Through iterative evaluation, the selected 𝑝 value is determined
as one that maximizes the IDW’s model accuracy. Finally, the approximated solution
space, 𝐷̂።፭፨፭ፚ፥, is filtered according to the targeted list of objectives, 𝐿𝑂 to generate
the corresponding Pareto front.

Fig. 4.10 shows the Pareto front curves for each 𝐹። generated by the proposed
exploration approach. In the specific setup, we consider tuning GENESIS according
to two optimization objectives, i.e. critical delay of the placed and routed circuits
and actual tool run-time of the GENESIS framework to perform placement and
routing. The tool developer is responsible to select/decide a specific Pareto config-
uration per cluster to be used during actual tool run-time, when an application is
recognized to match the characteristics of a specific cluster.

ALGORITHM 5: Exploration for Per Cluster Approximate Optimal Configuration
Input: Parameter space of GENESIS optimizer: ጖
Input: Cluster set: ፅᑚ, ። ∈ {ኺ, .., ፤ ዅ ኻ}
Input: Max. number of per cluster evaluations: ፌᐼ
Input: List of optimization objectives: ፋፎ ዆ {፨Ꮃ, ..., ፨ᑅ}
Output: Optimal per cluster parameter configuration vector: ፗ̂ᑇᑠᑡᑥᐽᑚ ∈ ጖
foreach ፅᑚ, ። ∈ {ኺ, … , ፤ ዅ ኻ} do

ፒፚ፦፩፥፞ፒ፩ፚ፜፞(ፅᑚ) ← ፫ፚ፧፝(጖,ፌᐼ)
foreach ፚ፩፩ᑚ,ᑛ ∈ ፅᑚ do

ፃᑚᑛ ← ፞፱፩፥፨፫፞(ፚ፩፩ᑚ,ᑛ, ፒፚ፦፩፥፞ፒ፩ፚ፜፞(ፅᑚ))
end
ፃᑚ ← ፠፦፞ፚ፧(ፃᑚᎲ, … , ፃᑚᑛ , … , ፃᑚ|ᐽᑚ|ᎽᎳ)
ፃ̂ᑚᑥᑠᑥᑒᑝ ← ።፧፭፞፫፩፨፥ፚ፭፞(ፃᑚ, ጖)
ፗ̂ᑇᑠᑡᑥᐽᑚ ← ፏፚ፫፞፭፨ፅ፫፨፧፭ፆ፞፧፞፫ፚ፭።፨፧(ፃ̂ᑚᑥᑠᑥᑒᑝ, ፋፎ)

end

4.5. Experimental Results
This section provides a number of quantitative results that prove the effectiveness
of the introduced solution, as compared to the state-of-the-art placement algo-
rithm found in VPR 4.30 tool [14]. For this purpose, we employ the 20 biggest
MCNC benchmarks, whereas the target FPGA is an island-style architecture [40].
Note that such an architecture is commonly found in commercial reconfigurable
platforms, such as the Xilinx Virtex and Altera Stratix FPGAs. The cluster level
exploration strategy has been implemented in the Multicube explorer [41] frame-
work. Regarding the application placement, it was performed on an 8-core Intel
XEON Processor running at 2.33GHz with 4GB of RAM. Table 4.3 presented previ-
ously summarizes the properties of the employed benchmark suite, as well as the
size of the minimum FPGA array, where each of the benchmarks are mapped to.
For the rest of the experimental results we provide results for two configurations of
our GA placer. More specifically, the first configuration (mentioned as “Solution 1”)

4.5. Experimental Results

4

151

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2 (d) Cluster 3

(e) Cluster 4 (f) Cluster 5 (g) Cluster 6 (h) Cluster 7

Figure 4.10 The Delay vs. Rutime Pareto front per cluster ፅᑚ. Data normalized to the per cluster least
efficient evaluated solution.

corresponds to faster execution of GA (i.e. minimum execution run-time), whereas
the second instance (“Solution 2”) leads to the minimum application’s delay (i.e.
maximum operating frequency).

Since the quality of solutions derived from GA is tightly firmed to the calibration
of GENESIS parameters, various instantiations of this algorithm were tested during
the development phase. For instance, Figure 4.11 plots the impact of population
size and population age parameters at the application’s delay and the execution
run-time for placement of bigkey benchmark. For demonstration purposes, at this
figure we also plot the corresponding solution that retrieved with the usage of
VPR tool [1]. Based on this figure we can conclude that almost the half of the
available solutions can operate under higher frequencies (i.e. with smaller critical
path delay) than the corresponding placements retrieved with VPR, whereas the
maximum performance improvement achieved by our introduced GA placer is up
40%.

One of the most important features provided by our GA, as compared to rest
placers, affects the inherent flexibility to be executed in a parallel fashion. As
we mentioned in Section 3, the new algorithm was developed with the usage of
OpenMP API in order to provide the maximum possible speedup. Table 4.5 quan-
tifies the execution run-time, the maximum operating frequency, as well as the
power consumption for performing application placement with the original VPR tool
and the two instances of introduced GA algorithm.

As shown in Table 4.5, the proposed approach achieves on average to place a
benchmark 15× and 67× faster, as compared to VPR, whereas for specific bench-
marks (e.g. tseng) this gain is up to 137×. Additionally, the proposed GA algorithm
outperforms our previous implementation presented in [17], since in that work the
average speedup in execution run-time compared to VPR was 6.6×. We have to
mention that the execution speedup is not constant among the benchmarks be-
cause it is tightly firmed to inherent properties of benchmarks (e.g. number of I/Os

4

152 4. Computer-Aided Design Tools for Reconfigurable Platforms

Solution retrieved from VPR

Solutions with higher performance
compared to VPR

Min. delay
(Solution 2)

Min. execution run-time
(Solution 1)

Figure 4.11 Evaluation for different combinations of population size and population age regarding the
bigkey benchmark.

and logic blocks, length of critical path, fanout). GENESIS framework provides to
the designer also the freedom to configure the tool parameters in a hand-written
manner in case that he desires to fine-tune the optimization engine, for maximizing
as much as possible the gains per application. However we underline that Table
4.5 presents results when the parameters of GENESIS are tuned by the exploration
methodology of Section 4.4.

A second important observation from Table 4.5 is that the aforementioned run-
time enhancement achieved with the usage of the proposed framework is com-
ing together with gains in maximum operating frequency and power consumption.
More specifically, the algorithmic instantiation that corresponds to the “Solution 1”
achieves to improve the maximum operating frequency (i.e. reduce critical path) by
a factor of 1.16×, whereas the “Solution 2” exhibits an average maximum operating
frequency lower by 0.53× as compared to the application implementation derived
with VPR tool. For the case of “Solution 1”, we have to take into consideration that
these gains are complementary to the speedups discussed previously regarding the
GENESIS’s run-time execution, while for “Solution 2” we can observe the trade-off
between ultra-fast execution of the placer (Table 4.5, col. 4) versus the quality of
the circuit solution (Table 4.5, col. 7).

4.5.E
xperim

en
talR

esu
lts

4

153

Table 4.5 Comparison in term of execution run-time, maximum operating frequency and power consumption.

Benchmark Execution Run-Time (second) Delay (second) Power Consumption (Watt)

VPR GENESIS VPR GENESIS VPR GENESIS
Solution 1 Solution 2 Solution 1 Solution 2 Solution 1 Solution 2

alu4 25.00 1.587 0.386 7.79E-08 7.38E-08 1.30E-07 0.1841 0.1889 0.1704
apex2 34.00 2.288 0.562 8.63E-08 8.81E-08 1.81E-07 0.2175 0.2170 0.1927
apex4 21.00 1.276 0.317 7.33E-08 7.72E-08 1.41E-07 0.1478 0.1455 0.1289
bigkey 56.00 2.162 0.714 8.96E-08 6.63E-08 1.54E-07 1.1096 1.1879 1.1004
clma 372.00 23.121 4.938 2.06E-07 1.89E-07 4.65E-07 0.7684 0.7800 0.7055
des 50.00 2.446 0.910 1.47E-07 1.05E-07 3.09E-07 1.4125 1.4293 1.3928
diffeq 25.00 1.711 0.427 6.48E-08 6.09E-08 1.79E-07 0.1695 0.1738 0.1460
dsip 45.00 1.703 0.639 9.52E-08 6.38E-08 1.51E-07 1.0896 1.1670 1.0790
elliptic 98.00 6.527 1.483 1.13E-07 1.10E-07 2.61E-07 0.3891 0.3891 0.3520
ex1010 127.00 7.724 1.918 1.98E-07 1.16E-07 2.70E-07 0.4214 0.4351 0.3856
ex5p 18.00 1.071 0.265 6.60E-08 6.64E-08 1.30E-07 0.1381 0.1371 0.1180
frisc 94.00 6.240 1.422 1.44E-07 1.27E-07 3.24E-07 0.3314 0.3391 0.3004
misex3 22.00 1.441 0.356 7.71E-08 7.11E-08 1.14E-07 0.1728 0.1777 0.1594
pdc 134.00 8.844 2.020 1.42E-07 1.08E-07 2.27E-07 0.4374 0.4460 0.3910
s298 33.00 2.078 0.495 1.31E-07 1.32E-07 2.78E-07 0.1989 0.1992 0.1798
s38417 189.00 16.385 3.212 1.02E-07 1.01E-07 2.00E-07 0.6902 0.4873 0.6600
s38584 204.00 16.697 3.223 8.95E-08 8.70E-08 1.34E-07 0.7070 0.5169 0.7241
seq 32.00 2.078 0.507 6.98E-08 7.79E-08 1.08E-07 0.2135 0.2064 0.1897
spla 94.00 5.861 1.219 1.24E-07 8.46E-08 1.33E-07 0.3529 0.3633 0.3238
tseng 17.00 0.983 0.124 5.53E-08 5.29E-08 1.60E-07 0.2141 0.2182 0.1862
Average: 84.50 5.611 1.257 1.08E-07 9.28E-08 2.03E-07 0.4683 0.4602 0.4443
Ratio: 1.00 15.06× 67.24× 1.00 1.16× 0.53× 1.00 1.02× 1.05×

4

154 4. Computer-Aided Design Tools for Reconfigurable Platforms

Similar to previous metrics, Table 4.5 shows that our introduced framework does
not impose any significant degradation in power consumption, as compared to the
application implementation with VPR. More specifically, the proposed framework
leads to an increase in power consumption up to 1.05× on average. Note that these
values are affected by the maximum operating frequency discussed previously. In
case that our placer is tuned to retrieve a solution with identical delay to VPR, then
the corresponding average power savings for this alternative solution (“Solution 2”)
is about 6%.

The previous discussed results highlight that the proposed approach exhibits
faster execution compared to existing placers (e.g. VPR), whereas it also leads
to superior performance at the derived placements. This mainly occurs because it
explores more effectively the search space, whereas due to its increased diversity,
the probability to be trapped in a local minima is significant lower compared to
solvers based on simulated annealing. In order to depict this differentiation, Fig.
4.12 quantifies the number of different intermediate solutions (in order to find the
final placement) that are explored with the usage of VPR and our introduced GA.
We have to notice that vertical axis in this figure is plotted in logarithmic scale. The
results summarized in this figure depict that “Solution 1” and “Solution 2” explore
faster about 157× and 35× more solutions, as compared to VPR tool.

Next, we quantify the efficiency of the proposed GA to reduce execution run-
time by incorporating the advantages provided by existing multi-core platforms.
Fig. 4.13 plots the speedup whenever the introduced GA is executed on a 4-core
and 8-core processor, for various number of threads. For demonstration purposes,
all the results are plotted in normalized manner over the corresponding single-core
and single-thread execution. Additionally, for sake of completeness we also provide
the corresponding theoretical curve, as it is retrieved from the Amdahl’s model [42].
This curve highlights the theoretical limit, given that the GENESIS tool has currently
a parallelized code portion of 81%, based on profiling results.

Based on this diagram, we can conclude that the experimental results for both
curves (4-core and 8-core) are very close to the theoretical thresholds. This means
that our implementation of GA takes advantage almost of the maximum possible
performance enhancement due to the processor parallelism. Also, it is confirmed
that the maximum speedup enhancement of GA is achieved when the number of
threads are equal to the number of processing cores, since after this turn point,
there is saturation. Finally, we observe that the deviation between the actual and
the theoretical scaling behavior for the 8-core machine is higher than the one for
the 4-core. The main reason of this observation is that the 8-core workstation is
composed of two 4-core individual chipsets. While the parallel runtime (OpenMP) is
aware of 8 cores with the same characteristics, the true hardware offers two single
chip 4-core CPUs. Thus, the communication among threads running in different
CPUs is established out-of-chip and not in the same die as happens in the case of
the 4-core CPU based workstation, which impacts the scaling behavior.

More specifically, the scope of Fig. 4.13 is to depict the scalability of the pro-
posed algorithm in terms of self-speedup according to the number of threads and
the available number of physical cores. In order to retrieve the corresponding

4.5. Experimental Results

4

155

Figure 4.12 Candidate solutions that are evaluated during placement.

measurements we run GENESIS in two working stations, the first equipped with
two Intel Xeon E5345 2.33GHz quad-core processors (total 8 cores), 8MB cache
(total cache 16MB) and 4GB RAM running Red Hat Enterprise Linux Server 6.3 and
the second equipped with an Intel Core 2 Quad Q9400 2.66GHz (total 4 cores),
6MB cache and 4GB RAM running GNU/Linux kernel 3.4.

The theoretical upper bound of the self-speedup gain is also depicted in the
figure according to the Amdahl’s law. According to this speedup model, since we
measured that the 81% of the code is parallelized (after profiling of all 20 biggest
benchmarks), we can theoretically estimate the maximum speedup when execut-
ing the code to a CPU with M-processors and N-threads of execution. Of course
this is only a theoretical analysis which neglects any bottlenecks coming from the
underlying CPU/system architecture, such as the memory hierarchy, the memory
bandwidth, the cache size/organization and the architecture of the shared mem-
ory among individual cores of the CPU. Not only these hardware aspects but also
software related factors such as the OS scheduler, the memory manager and the
parallel runtime (in our case OpenMP), including forking mechanism, dispatcher
and resource binder, lead to deviation of the true speedup curve over the theo-
retical. For the same reason we also expect some deviation when executing our
algorithm in different hardware setups. This is the case of the measurements re-
lated to Fig 4.13, where the deviation theoretical speedup is bigger at the 8-core

4

156 4. Computer-Aided Design Tools for Reconfigurable Platforms

Figure 4.13 Scaling of execution speedup for the GENESIS placer.

system than the deviation at the 4-core system. We believe that the main reason
for this imbalance is that our 8-core CPU based workstation is composed of two
4-core individual CPUs. While the parallel runtime (OpenMP) is aware of 8 cores
with the same characteristics, the true underlying hardware offers two single chip
4-core CPUs. Thus the communication among threads running in different CPUs is
established out-of-chip and not in the same die as happens in the case of the 4-core
CPU based workstation. This means that intra-thread communication requests are
exported to front-side-bus (FSB) in our 8-core based workstation, when the same
transactions are established only on the back-side-bus (BSB) in our 4-core based
workstation. Given the high clock/bandwidth difference between FSB-BSB and the
unawareness of the parallel runtime (OpenMP) of this special architecture (in order
to decrease as possible the off-chip intra-thread communication), an increase in the
aforementioned deviation metric is expected.

For the scope of this research work, in order to support the aforementioned
argument, we profiled GENESIS tool on the two workstations using 1-32 OpenMP
threads. Note that since we employ a coarse grain parallelization model, where the
granularity level is set at individuals structs of the population, there is no gain on
increasing the number of threads more than the population size, since extra threads
will remain idle. The setup for the analysis below is 𝑝𝑜𝑝፬𝑖𝑧𝑒 = 30, 𝑝𝑜𝑝ፚ𝑔𝑒 = 90.
For the rest of measurements we employed Intel Vtune Aplifier XE 2013 (Non-

4.5. Experimental Results

4

157

Figure 4.14 GENESIS thread time breakdown analysis: CPU and Wait Time.

Commercial license). Firstly we show that increasing only the number of threads
does not guarantee increased speedup, since there is saturation point due the over-
head of threads synchronization. This happens because increasing the number of
threads performing some fixed load of work in parallel, each thread gets less work
and the overhead, as a relative measure, will get larger. Figure 4.14 depicts the
profiling of ex1010 benchmark on our 8-core based workstation.

To better clarify Figure 4.14, we employ the definitions of Wait Time and CPU
Time. The Wait Time is the amount of time when a thread is stalled, waiting
for some event to occur, such as synchronization or I/O event. The CPU Time is
the amount of time when a thread is executed on a logical processor. It is clear
that as long as the number of threads is increased, the Wait Time of every thread
is increased. When a total of 16 threads is used, there is the highest balance
between CPU Time and Wait Time, leading to the minimal runtime. However the
speedup gain from the 8-thread configuration is negligible as also expected by
the theoretical analysis. Since we follow a coarse grain parallelization model, the
spawned threads have increased portion of executed code compared to a fine-
grain parallelization model, i.e. the case of simple parallelization in for/while-loops.
This implies lesser synchronization points for the GENESIS approach. Consequently
while the bottleneck is not in the synchronization of the threads, increasing only

4

158 4. Computer-Aided Design Tools for Reconfigurable Platforms

the number of threads leads to a simple dispatch of more atomic coarse-grain tasks
to the same number of processors. Consequently, it is not expected high speedup
gain after the saturation point where the number of threads is equal to the number
of physical processors.

Figure 4.15 GENESIS thread time breakdown analysis: Overhead and Spin Time.

In order to identify the bottlenecks of our coarse-grained based OpenMP thread
structure, we further performed profiling on OpenMP runtime. For this scope we
recompiled the OpenMP runtime library in order to include debug symbols (-ggdb
GCC option) and we linked GENESIS using this library. This way, Vtune suite is able
to report hotspot functions in OpenMP libraries, CPU usage, and thread concur-
rency. We use the same benchmark (ex1010) with the same GA configuration with
previous analysis. We conclude results in Figure 4.15. We employ the definitions of
Overhead Time and Spin Time. Overhead Time is the CPU time spent on the over-
head of known synchronization and threading libraries, i.e. in our case OpenMP.
Spin Time is the Wait Time during which the CPU is busy. This often occurs when
a synchronization API causes the CPU to poll while the software thread is waiting.
Some Spin Time may be preferable to the alternative of increased thread context
switches. Too much Spin Time, however, can reflect lost opportunity for productive
work. Note that the Overhead and Spin Time in the following figure is a sum over all
threads. While the brown and green colors refer to CPU and Wait time accordingly,

4.5. Experimental Results

4

159

as in the previous figure, the orange color refers to the sum of the Overhead and
Spin time.

We expect that as we increase the number of threads leads to decreased run-
time and increased Overhead and Spin Time. However the Wait Time is increased
among threads while the study meets the saturation point, i.e the number of threads
is equal to the number of physical processors. Increasing more threads from that
point, more Wait Time is added to the execution timeline of every thread, due to
the increased Overhead and Spin Time. This leads to negligible speedup gains from
this point on, which also verifies the theoretical background.

(a) (b)

Figure 4.16 Memory requirements for (a) minimum FPGA size and (b) double size for the FPGA array.

Finally, we evaluate the memory footprint efficiency of the GENESIS placer in
comparison to the VPR one, by increasing the number of slices of the underlying
FPGA. While the VPR tool allocates memory resources firmed to the size of the un-
derlying FPGA device, the proposed GENESIS algorithm depends only to the number
of nodes found in the application’s netlist, thus being independent from the actual
FPGA size. Two different scenarios are studied, to show the impact of the size of
underlying FPGA device. More specifically, scenario 1 (depicted in Fig. 4.16(a))
corresponds to application mapping onto the minimum FPGA device (depicted in
last column of Table 4.3), whereas the array size for second scenario (Fig. 4.16(b))
is the double compared to scenario 1. The selection of scenario 2 was performed in
order to show the scalable behavior of GENESIS framework in respect to the FPGA
size (i.e. number of FPGA slices). In case of small FPGA devices (scenario 1 in
Fig. 4.16(a)), the average memory footprint of the GENESIS framework is around
236MB, which is consistently higher than the memory required from the VPR engine
(average around 72MB). However, in the case of larger FPGAs (scenario 2 in Fig.
4.16(b)), the memory footprint of the GENESIS placer remains almost constant, i.e.
average around 238 MB, while for VPR the average memory consumption explodes
around to 286MB. Thus moving towards larger FPGA devices, our solution imposes
an average overhead of 8%, while the corresponding memory requirements for VPR
tool leads to a penalty of 398%. Figure 4.17 shows the average memory allocation
trend for the employed benchmarks, regarding the FPGA array size, in the case

4

160 4. Computer-Aided Design Tools for Reconfigurable Platforms

of previously studied scenarios, i.e. minimum FPGA size (Fig. 4.17(a)) and double
FPGA size (Fig. 4.17(b)). It is evident that the GENESIS placer express a relaxed
scaling behavior, compared to VPR tool, especially when the FPGA free slices are
doubled.

Figure 4.17 Memory footprint trend towards FPGA slices for (a) minimum FPGA size and (b) double size
for the FPGA array.

4.6. Conclusion
This chapter presented GENESIS, a fast and effective parallel placement engine
for island-based FPGA architectures. Through GENESIS, we proposed the usage of
genetic algorithms extended by the concepts of mixability, to improve the quality
of the derived placement solutions. A thorough discussion on the internal struc-
tures, definitions and operators developed within GENESIS for tailoring the genetic
algorithm to the problem of application placement, has been provided. In addition,
we showed that through a divide-and-conquer approach, effective coarse-grained
parallelization can be applied to the proposed placement engine. The paralleliza-
tion can greatly benefit the speedup of the placement engine on modern multi-core
processors, thus enabling designers to study trade-offs between improved quality
versus tool’s runtime. For improved quality, an exploration methodology has been
proposed for customizing the GENESIS’s parameters in an application specific man-
ner. The quality of derived design solutions as well as the efficiency of the proposed
framework have been evaluated through extensive experimentation. Experimental
results show that in comparison with the state-of-art placer of the VPR framework,
GENESIS is able to perform application placement either up to 67× faster, or to de-
liver circuit solutions of 1.16× higher operation frequency, while sustaining a scal-
able behavior regarding both memory and computational resources requirements.

References

4

161

References
[1] ITRS, International technology roadmap for semiconductos, (2012).

[2] C. C. Wang and G. G. Lemieux, Scalable and deterministic timing-driven paral-
lel placement for fpgas, in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’11 (ACM, New York,
NY, USA, 2011) pp. 153–162.

[3] H. Sidiropoulos, K. Siozios, P. Figuli, D. Soudris, and M. Hubner, On supporting
efficient partial reconfiguration with just-in-time compilation, in Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International (2012) pp. 328–335.

[4] R. Tessier, Fast placement approaches for fpgas, ACM Trans. Des. Autom.
Electron. Syst. 7, 284 (2002).

[5] J. M. Emmert and D. Bhatia, Tabu search: Ultra-fast placement for fpgas, in
Proceedings of the 9th International Workshop on Field-Programmable Logic
and Applications, FPL ’99 (Springer-Verlag, London, UK, UK, 1999) pp. 81–90.

[6] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, A parallel simulated
annealing algorithm for the placement of macro-cells, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 6, 838 (1987).

[7] A. Choong, R. Beidas, and J. Zhu, Parallelizing simulated annealing-based
placement using gpgpu, in Field Programmable Logic and Applications (FPL),
2010 International Conference on (2010) pp. 31–34.

[8] J. Rose, W. Snelgrove, and Z. Vranesic, Parallel standard cell placement algo-
rithms with quality equivalent to simulated annealing, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 7, 387 (1988).

[9] A. Ludwin, V. Betz, and K. Padalia, High-quality, deterministic parallel place-
ment for fpgas on commodity hardware, in Proceedings of the 16th Interna-
tional ACM/SIGDA Symposium on Field Programmable Gate Arrays, FPGA ’08
(ACM, New York, NY, USA, 2008) pp. 14–23.

[10] S. Kravitz and R. Rutenbar, Placement by simulated annealing on a multi-
processor, Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 6, 534 (1987).

[11] M. G. Wrighton and A. M. DeHon, Hardware-assisted simulated annealing with
application for fast fpga placement, in Proceedings of the 2003 ACM/SIGDA
eleventh international symposium on Field programmable gate arrays (ACM,
2003) pp. 33–42.

[12] E. Witte, R. Chamberlain, and M. Franklin, Parallel simulated annealing using
speculative computation, Parallel and Distributed Systems, IEEE Transactions
on 2, 483 (1991).

http://www.itrs.net
http://dx.doi.org/10.1145/1950413.1950445
http://dx.doi.org/10.1145/1950413.1950445
http://dx.doi.org/ 10.1109/IPDPSW.2012.40
http://dx.doi.org/ 10.1109/IPDPSW.2012.40
http://dx.doi.org/ 10.1109/IPDPSW.2012.40
http://dx.doi.org/10.1145/544536.544540
http://dx.doi.org/10.1145/544536.544540
http://dl.acm.org/citation.cfm?id=647926.739079
http://dl.acm.org/citation.cfm?id=647926.739079
http://dx.doi.org/10.1109/TCAD.1987.1270327
http://dx.doi.org/10.1109/TCAD.1987.1270327
http://dx.doi.org/10.1109/FPL.2010.17
http://dx.doi.org/10.1109/FPL.2010.17
http://dx.doi.org/10.1109/43.3172
http://dx.doi.org/10.1109/43.3172
http://dx.doi.org/ 10.1145/1344671.1344676
http://dx.doi.org/ 10.1145/1344671.1344676
http://dx.doi.org/ 10.1109/TCAD.1987.1270301
http://dx.doi.org/ 10.1109/TCAD.1987.1270301
http://dx.doi.org/10.1109/71.97904
http://dx.doi.org/10.1109/71.97904

4

162 References

[13] G. Smecher, S. Wilton, and G. Lemieux, Self-hosted placement for massively
parallel processor arrays, in Field-Programmable Technology, 2009. FPT 2009.
International Conference on (2009) pp. 159–166.

[14] V. Betz and J. Rose, Vpr: A new packing, placement and routing tool for
fpga research, in Proceedings of the 7th International Workshop on Field-
Programmable Logic and Applications, FPL ’97 (Springer-Verlag, London, UK,
UK, 1997) pp. 213–222.

[15] V. Betz, J. Rose, and A. Marquardt, eds., Architecture and CAD for Deep-
Submicron FPGAs (Kluwer Academic Publishers, Norwell, MA, USA, 1999).

[16] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, Convergence and finite-
time behavior of simulated annealing, in Decision and Control, 1985 24th IEEE
Conference on (1985) pp. 761–767.

[17] D. Diamantopoulos, K. Siozios, S. Xydis, and D. Soudris, A framework for
supporting parallel application placement onto reconfigurable platforms, in
Proceedings of the PARMA Workshop, HiPEAC Conference, Berlin, Germany
(2013).

[18] W.-J. Sun and C. Sechen, A loosely coupled parallel algorithm for standard cell
placement, in Computer-Aided Design, 1994., IEEE/ACM International Confer-
ence on (1994) pp. 137–144.

[19] A. Ludwin and V. Betz, Efficient and deterministic parallel placement for fpgas,
ACM Trans. Des. Autom. Electron. Syst. 16, 22:1 (2011).

[20] N. Selvakkumaran and G. Karypis, Multiobjective hypergraph-partitioning al-
gorithms for cut and maximum subdomain-degree minimization, Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 25,
504 (2006).

[21] C. Ababei, Speeding up fpga placement via partitioning and multithreading,
Int. J. Reconfig. Comput. 2009, 6:1 (2009).

[22] Y. Sankar and J. Rose, Trading quality for compile time: Ultra-fast placement
for fpgas, in Proceedings of the 1999 ACM/SIGDA Seventh International Sym-
posium on Field Programmable Gate Arrays, FPGA ’99 (ACM, New York, NY,
USA, 1999) pp. 157–166.

[23] P. Jamieson, Revisiting genetic algorithms for the fpga placement problem. in
GEM (Citeseer, 2010) pp. 16–22.

[24] H. Sidiropoulos, K. Siozios, and D. Soudris, A methodology and tool frame-
work for supporting rapid exploration of memory hierarchies in fpgas, in Field
Programmable Logic and Applications (FPL), 2011 International Conference
on (2011) pp. 238–243.

http://dx.doi.org/ 10.1109/FPT.2009.5377668
http://dx.doi.org/ 10.1109/FPT.2009.5377668
http://dl.acm.org/citation.cfm?id=647924.738755
http://dl.acm.org/citation.cfm?id=647924.738755
http://dx.doi.org/10.1109/CDC.1985.268600
http://dx.doi.org/10.1109/CDC.1985.268600
http://dx.doi.org/ 10.1109/ICCAD.1994.629756
http://dx.doi.org/ 10.1109/ICCAD.1994.629756
http://dx.doi.org/10.1145/1970353.1970355
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/10.1109/TCAD.2005.854637
http://dx.doi.org/ 10.1155/2009/514754
http://dx.doi.org/ 10.1145/296399.296449
http://dx.doi.org/ 10.1145/296399.296449
http://dx.doi.org/10.1109/FPL.2011.110
http://dx.doi.org/10.1109/FPL.2011.110
http://dx.doi.org/10.1109/FPL.2011.110

References

4

163

[25] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, SIS: A System for
Sequential Circuit Synthesis, Tech. Rep. UCB/ERL M92/41 (EECS Department,
University of California, Berkeley, 1992).

[26] J. Lamoureux and S. Wilton, On the interaction between power-aware fpga
cad algorithms, in Computer Aided Design, 2003. ICCAD-2003. International
Conference on (2003) pp. 701–708.

[27] M. Srinivas and L. Patnaik, Adaptive probabilities of crossover and mutation in
genetic algorithms, Systems, Man and Cybernetics, IEEE Transactions on 24,
656 (1994).

[28] A. Livnat, C. Papadimitriou, J. Dushoff, and M. W. Feldman,
A mixability theory for the role of sex in evolution, Proceed-
ings of the National Academy of Sciences 105, 19803 (2008),
http://www.pnas.org/content/105/50/19803.full.pdf+html .

[29] P. Darwen and X. Yao, A dilemma for fitness sharing with a scaling function,
in Evolutionary Computation, 1995., IEEE International Conference on, Vol. 1
(1995) pp. 166–.

[30] R. E. Smith and C. Bonacina, Mating restriction and niching pressure: results
from agents and implications for general evolutionary computation, in In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO
2003 (Springer, 2003) pp. 1382–1393.

[31] C.-K. Ting, S.-T. Li, and C. Lee, On the harmonious mating strategy through
tabu search, Information Sciences 156, 189 (2003), evolutionary Computa-
tion.

[32] E. M. A. Ronald, When selection meets seduction, in Proceedings of the 6th
International Conference on Genetic Algorithms (Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1995) pp. 167–173.

[33] T.-P. Hong and H.-S. Wang, A dynamic mutation genetic algorithm, in Systems,
Man, and Cybernetics, 1996., IEEE International Conference on, Vol. 3 (1996)
pp. 2000–2005 vol.3.

[34] S. Hartmann, A self-adapting genetic algorithm for project scheduling under
resource constraints, Naval Research Logistics (NRL) 49, 433 (2002).

[35] S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, and K. Pekmestzi, Cus-
tom multi-threaded dynamic memory management for multiprocessor system-
on-chip platforms, in Embedded Computer Systems (SAMOS), 2010 Interna-
tional Conference on (2010) pp. 102–109.

[36] J. Singh, J. Hennessy, and C. Holt, Application and architectural bottlenecks
in large scale distributed shared memory machines, in Computer Architecture,
1996 23rd Annual International Symposium on (1996) pp. 134–134.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://dx.doi.org/ 10.1109/ICCAD.2003.1257886
http://dx.doi.org/ 10.1109/ICCAD.2003.1257886
http://dx.doi.org/10.1109/21.286385
http://dx.doi.org/10.1109/21.286385
http://dx.doi.org/ 10.1073/pnas.0803596105
http://dx.doi.org/ 10.1073/pnas.0803596105
http://arxiv.org/abs/http://www.pnas.org/content/105/50/19803.full.pdf+html
http://dx.doi.org/10.1109/ICEC.1995.489138
http://dx.doi.org/ http://dx.doi.org/10.1016/S0020-0255(03)00176-2
http://dl.acm.org/citation.cfm?id=645514.657916
http://dl.acm.org/citation.cfm?id=645514.657916
http://dx.doi.org/10.1109/ICSMC.1996.565436
http://dx.doi.org/10.1109/ICSMC.1996.565436
http://dx.doi.org/10.1002/nav.10029
http://dx.doi.org/10.1109/ICSAMOS.2010.5642078
http://dx.doi.org/10.1109/ICSAMOS.2010.5642078
http://dx.doi.org/ 10.1109/ISCA.1996.10013
http://dx.doi.org/ 10.1109/ISCA.1996.10013

4

164 References

[37] D. Jiang and J. Singh, Scaling application performance on a cache-coherent
multiprocessors, in Computer Architecture, 1999. Proceedings of the 26th In-
ternational Symposium on (1999) pp. 305–316.

[38] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, An
efficient k-means clustering algorithm: analysis and implementation, Pattern
Analysis and Machine Intelligence, IEEE Transactions on 24, 881 (2002).

[39] D. Shepard, A two-dimensional interpolation function for irregularly-spaced
data, in Proceedings of the 1968 23rd ACM National Conference, ACM ’68
(ACM, New York, NY, USA, 1968) pp. 517–524.

[40] V. Kalenteridis, H. Pournara, K. Siozos, K. Tatas, N. Vassiliadis, I. Pappas,
G. Koutroumpezis, S. Nikolaidis, S. Siskos, D. Soudris, and A. Thanailakis, A
complete platform and toolset for system implementation on fine-grain recon-
figurable hardware, Microprocessors and Microsystems 29, 247 (2005).

[41] V. Zaccaria, G. Palermo, F. Castro, C. Silvano, and G. Mariani, Multicube ex-
plorer: An open source framework for design space exploration of chip multi-
processors, in Architecture of Computing Systems (ARCS), 2010 23rd Inter-
national Conference on (2010) pp. 1–7.

[42] G. M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, in Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring) (ACM, New York, NY, USA, 1967)
pp. 483–485.

http://dx.doi.org/ 10.1109/ISCA.1999.765960
http://dx.doi.org/ 10.1109/ISCA.1999.765960
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1145/800186.810616
http://dx.doi.org/ http://dx.doi.org/10.1016/j.micpro.2004.09.001
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560

5
Architectural Synthesis of

Reconfigurable
Many-Accelerator Systems

Recent IT application requirements have established the formation of new techno-
logical terms, in order to describe their characteristics. Among them, the terms “Big
Data” and “Internet-of-Things” have prevailed and they describe the ever increas-
ing demands of applications regarding their processing and communication data
size. These requirements increase the processing complexity and thus the energy
needs. At the same time, technological progress in the semiconductor industry
offers greater density of processing resources by silicon surface, per technology
node integration, marking a continuation of the Law of Moore [1–3] and less en-
ergy management capacity per silicon surface, marking the end of Dennard Law
[4, 5]. The result from the opposition of two laws designated by the research
and industrial community as the era of “Dark Silicon” [5–8]. Through this chapter,
the thesis proposes new architectural standards for scalable computing solutions.
These architectures targets the increase of the processing strength per power con-
sumption unit. Along with the architectural templates, also there are introduced
the respective programming environments. Chapter 5 is associated with the gen-
eral methodology of the thesis presented in Section 1.2, on the contribution to the
“Acceleration Datapath Synthesis” and “Synthesis Flow Optimization”.

5.1. Architectural template and programming inter-
face for M.A. systems

5.1.1. Introduction - Research motivation for M.A. systems
Breaking the exascale barrier has been recently identified as the next big chal-
lenge in computing systems. Several studies [9], [10] showed that reaching this

165

5

1665. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

goal requires a design paradigm shift towards more aggressive hardware/software
co-design solutions at the architecture and technology level. Recently, many-
accelerator heterogeneous architectures have been proposed to overcome the uti-
lization/power wall [11–13]. For instance, Microsoft Corp. showed that such many-
accelerator systems on reconfigurable fabrics can accelerate portions of large-scale
software [14], delivering 95% improvements in servers’s throughput.

From an electronic design automation (EDA) perspective, high-level synthesis
(HLS) tools are expected to play a central role [15] in enabling effective design of
many-accelerator computing platforms. Raising the design abstraction layer, de-
signers can now quickly evaluate the performance, power, area and cost require-
ments of a differing accelerator configurations, thus providing controllable system
specifications with reduced effort over traditional HDL-based development flow.

From a hardware perspective, heterogeneous FPGAs are proven to form an in-
teresting platform solution for many-accelerator architectures. Their inherent flexi-
bility/programmability and their continuous scaling of hardware density enables the
accommodation of several types of hardware accelerators in comparison with con-
ventional ASICs. In [16], it has been shown that FPGAs can potentially provide
orders-of-magnitude speedups over conventional processors for compute-intensive
algorithms, with greatly reduced power consumption. In a similar to multi-core
trend, many parallel datapaths can be built and programmed into the FPGA to in-
crease performance.

However, in such diverse and large pool of accelerators the memory organiza-
tion forms a significant performance bottleneck, thus a carefully designed mem-
ory subsystem is required in order to keep accelerator datapaths busy [17], [18].
In [17], the authors propose a many-accelerator memory organization that stat-
ically shares the address space between active accelerators. Similarly in [18], a
many-accelerator architectural template is proposed that enables the reuse of ac-
celerator memory resources adopting a non-uniform cache architecture (NUCA)
scheme. Both [17] and [18] are targeting ASIC-like many-accelerator systems and
they mainly focusing on the performance implications of the memory subsystem.

In this research work we investigate the impact of the memory-intensive nature
of many-accelerator systems onto the scalability potential of MA architectures. A
recent survey of eleven publicly available accelerators reveals that ”an average of
69% of accelerator area is consumed by memory“ [17]. Rapid starvation of the
available on-chip memory leads in severe resource under-utilization of the FPGA,
similar to the “Dark Silicon” concept of future many-core chips. In fact, modern
FPGA CAD tools (both at the RTL or HLS-level) allow only static memory allocation,
which dictates the reservation of the maximum memory that an accelerator needs,
for the entire execution window. While static allocation works fine for a limited
number of accelerators, it does not scale to a many-accelerator design paradigm.
Figure 5.14 shows an exemplary study of the memory-induced “Dark Silicon”, con-
sidering the resource demands for the 𝐾፦፞ፚ፧፬ clustering algorithm1 on the Virtex

1The same behavior is observed for the overall set of the evaluated applications exhibiting diverse
resource utilization features.

5.1. Architectural template and programming interface for M.A. systems

5

167

Ultrascale XVCU190 FPGA device2 when scaling the number of parallel accelerators.
Figure 5.14 is annotated with two threshold values regarding to maximum resource
count and maximum power budget (device TDP=125፨C), respectively. Considering
an ambient temperature of 50፨C, the power-induced ”Dark Silicon“ manifests itself
with an allocation scenario of 105 accelerators consuming around 20 Watts. As
shown, memory induced ”Dark Silicon” poses a stricter constraint in accelerators’
count, i.e. up to 2.5× less accelerators, meaning that memory resources starve
faster than power. The BRAM memory is the resource that saturates faster than
the rest FPGA resources types (FFs, LUTs, DSPs), thus forming the main limiting
factor of higher accelerator densities as well as generating large fractions of under-
utilized resources.

Figure 5.1 Accelerators scalability analysis of Kᑞᑖᑒᑟᑤ clustering algorithm: ፀᑚ-Accelerators዆ [ኻ ∶ ኻኼዂ],
ፍᑡ-Points=ኼ × ኻኺᎶ, ፏᑜ-Clusters=3

In this research work, we target to alleviate the aforementioned memory-induced
“Dark Silicon” problem by proposing the elimination of the pessimistic memory al-
location forced by static approaches. The main contribution of our proposal is
the introduction of a novel HLS-based design framework for many-accelerator plat-
forms that adopts a dynamically allocated run-time memory model. The focus of
the work is to show how DMM can be used for mitigating the memory-induced
resource under-utilization problem in MA systems, rather than a detailed hard-
ware description of the implemented DMM mechanisms. In typical HLS with static

2The FPGA with the highest on-chip block RAM, total size: 132.9Mb

5

1685. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

memory allocation, if the accelerators’ memory requirements exceeds the available
on-chip memory resources, then the design becomes un-synthesizable, i.e. the de-
signer should degrade system characteristics to match available resources. The pro-
posed solution allows high accelerator densities by alleviating the resource under-
utilization inefficiencies mainly induced by the static memory allocation strategies
used in modern HLS tools. We show that applications with both dynamically and
statically allocated data can be benefited from the proposed techniques, with the
prerequisite of utilizing the proposed malloc/free interface for performing data allo-
cation. For static applications this can be performed through a minimal and straight-
forward source code modification.

Prior art investigated specialized hardware, i.e. architecture templates for many-
accelerator systems, as a response to dark silicon era. In [17], the authors propose
a many-accelerator memory organization that only statically shares the address
space between active accelerators. Similarly in [18], a many-accelerator archi-
tectural template is proposed that enables the reuse of accelerator memory re-
sources adopting a non-uniform cache architecture (NUCA) scheme. Both [17] and
[18] are targeting ASIC-like many-accelerator systems and they mainly focusing
on the performance implications of the memory subsystem. Related to HLS prior
art, to the best of our knowledge, only [19], [20] and [21] studied the dynamic
memory allocation for high-level synthesis. However, they do not target many-
accelerator systems, thus providing no support for mitigating the memory-induced
under-utilization problem.

We propose the adoption of Dynamic Memory Management (DMM) techniques
for relaxing the stringent constraints imposed by static memory allocation. Under
static memory allocation, all decisions are taken at design-time. If the accelerators’
memory requirements exceeds the available on-chip memory resources, then the
design becomes un-synthesizable, i.e. the designer should degrade system char-
acteristics to match available resources. However, this is not the case for dynamic
allocation, which allocates memory according to accelerators’ runtime requests and
stalls the execution of accelerators whenever the memory requests exceeds the
available resources. Figure 5.2 depicts such an exemplary scenario, where four
accelerators with aggregated static memory requirements higher than the FPGA’s
available memory, can be finally synthesized and scheduled with the support of
dynamic memory management. The key element is the incorporation of a man-
agement layer within system-level synthesis, e.g. HLS, that dynamically allocates
memory according to accelerators’ runtime requests and stalls the execution of
accelerators whenever the memory requests exceeds the available resources.

Following the above discussion, we introduce the DMM-HLS framework that (i)
extends typical HLS with DMM mechanisms and (ii) provides an HLS malloc/free API
that enables statically allocated memory to be transformed to a dynamic one. We
extensively evaluated the effectiveness of the proposed DMM-HLS framework over
several many-accelerator architectures for representative applications of emerging
computing domains. We show that DMM-HLS delivers more scalable MA platform
configurations with an average 3.8× increment on the accelerator count in compar-
ison to MA systems designed using state-of-art HLS. Better scalability leads also to

5.1. Architectural template and programming interface for M.A. systems

5

169

significant throughput gains under both private and shared memory model config-
urations, 24.1× and 3.8× in average, respectively.

Figure 5.2 Example scenario with four accelerators Acc-i[Static Memory Utilization%, Latency]. All ac-
celerators should start at time 0. The design is un-synthesizable with static memory allocation. Lower
part shows the final scheduling with DMM. Upper part shows the respective memory footprint. Due to
time-scale, we neglect showing instantaneous memory footprint transitions occurred whenever a new
DMM allocation arrives.

5.1.2. DMM-HLS for Many-Accelerator FPGAs
Figure 5.15 shows a typical FPGA-based MA system. It includes i) the processor
subsystem executing the application control flow and ii) the accelerators subsystem
holding the computationally intensive kernels of the application. The accelerators
are designed and synthesized through Vivado-HLS. The on-chip memory resources
(BRAMs) are managed through the DMM-HLS framework. DMM-HLS supports the
description of accelerators with both static and dynamic allocated data stored in
BRAMs. It exposes a DMM API composed of two main function calls, similar to glibc
malloc/free API, for memory allocation and deallocation.

• void* HlsMalloc(size_t size, uint heap_id)

• void HlsFree(void *ptr, uint heap_id)

, where size is the requested allocation size in bytes, heap_id is the identification
number of the heap on which allocation shall occur and *ptr is the pointer which
shall be freed up. A partitioning of accelerator’s data as dynamic or static memory
objects can performed by the designer after analysing the application’s memory
access traces. Without loss of generality, in this research work we adopt a data
partitioning scheme in which global scope data structures, i.e. data structures

5

1705. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

Many-accelerators System Interconnection

FreeBitMap 1

Heap 1

FreeBitMap 2

Heap 2

FreeBitMap M

Heap M`

`

BRAMs (On-chip Memory)

Address/Data/Debug Bus(es) 1,2,…,M

D
M

M
 A

llo
ca

to
r

1

D
M

M
 A

llo
ca

to
r

2

D
M

M
 A

llo
ca

to
r

M

Statically
Allocated BRAM

Dynamically Allocated BRAM

Accelerator 3

DMM Port

Accelerator 2

DMM Port

Accelerator 1

DMM Port

Accelerators Subsystem

Embedded
CPU

Off-Chip
Memory

External
Storage
(SATA)

Ethernet/
PCI/USB

Floating
Point Unit

Processor Subsystem

Accelerator N

DMM Port

Accelerator N-1

DMM Port

Accelerator N-2

DMM Port

Figure 5.3 Abstract proposed architectural template for memory efficient many-accelerator FPGA-based
systems.

that accelerators operate on upon invocation, are allocated as dynamic data, while
accelerator’s internal data structures, e.g. local register files etc. are allocated as
static objects.

The DMM-HLS framework implements techniques from multi-threaded dynamic
memory management [22], [23]. It supports parallel memory access paths, by
grouping BRAM modules into memory banks, named heaps (Fig. 5.15). Each heap
implements its own allocator consisting of two major hardware components, i) the
free-list memory structure holding the freed and allocated memory blocks and ii)
the fit allocation algorithm that searches over the free-list and allocates memory in
a first fit manner. The maximum number of heaps controls the supported memory
level parallelism of the dynamically allocated data. More than one accelerators can
be bound to a specific memory heap for allocating data. The increased accelerator
parallelism in combination with the overlapped execution offered by the multiple
heaps DMM configurations delivers significant throughput gains when tasks of vari-
able workload are co-scheduled on the FPGA. Figure 5.5 shows such a scenario,

5.1. Architectural template and programming interface for M.A. systems

5

171

BRAMSlice

FPGA
Accelerators SubsystemProcessor Subsystem

H
o

st
 C

P
U

Off-chip DRAM

P
C

I

Acc5

DMM-HLS logic

Acc9

Acc13

Acc11

A
cc

8

A
cc

10

Acc12

Acc3
A

cc
2

Acc1
Acc0 A

cc
6

A
cc

7

Figure 5.4 Proposed architectural template for memory efficient many-accelerator FPGA-based systems
.

i.e. accelerator parallelism and overlapping, for the execution of 4 MMUL applica-
tions with differing workload characteristics onto a FPGA with maximum 90 BRAMs
assuming a 2-heap DMM. It can be easily verified that the proposed solution de-
livers throughput gains of 42.8% over the static HLS solution that serializes tasks’
execution.

Since a shared hardware interface of 𝐻𝑙𝑠𝑀𝑎𝑙𝑙𝑜𝑐 and 𝐻𝑙𝑠𝐹𝑟𝑒𝑒 limits parallelism
when multiple accelerators request to allocate/free memory simultaneously, func-
tion inlining of the 𝐻𝑙𝑠𝑀𝑎𝑙𝑙𝑜𝑐 and 𝐻𝑙𝑠𝐹𝑟𝑒𝑒 is utilized, trading-off unconstrained
parallel access on heaps with an increased resource occupation. Data access se-
quencing is performed over the BRAMs ports to eliminate data access conflicts dur-
ing concurrent memory accesses.

In the proposed DM organization, every heap implements its own allocator. It
consists of two major hardware components, i) the free-list memory structure hold-
ing the freed and allocated memory blocks and ii) the fit allocation algorithm that
searches over the free-list and allocates memory in a first fit manner. A FreeBitMap
structure, i.e. bit-map free-list holding information about the free space inside this
heap, tracks the occupied memory space. FreeBitMap, is an array of registers, ev-
ery bit of which maps to a singe byte of heap. The management of the FreeBitMap
structure is carefully performed through bit-wise operations to enable fast and effi-
cient hardware synthesis. The term “maps” refers to the allocation status (allocated
or free) of this byte. In general, every heap-𝑖 is highly parameterizable on a number
of design options, most important of which are (i) the heap depth 𝐷ፇ። , i.e. the total
number of unique addresses, (ii) the heap word length 𝐿ፇ። , i.e. the number of bytes
of every single word of heap, (iii) the FreeBitMap depth 𝐷ፅ። , i.e. the total number of

5

1725. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

MMUL 50x50
[50 BRAM, 20 ms]

MMUL 70x70
[50 BRAM, 40 ms]

MMUL 70x70
[50 BRAM, 40 ms]

MMUL 100x100
[50 BRAM, 75 ms]

50 BRAMS

75 BRAMS

25 BRAMS

0

90 BRAMS

M
em

or
y

Fo
ot

pr
in

t

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175

(a)

MMUL 50x50
[13 BRAM, 20 ms]

HE
AP

 [9
0 B

RA
M]

MMUL 70x70
[25 BRAM, 40 ms]

MMUL 70x70
[25 BRAM, 40 ms]

MMUL 100x100
[50 BRAM, 75 ms]

50 BRAMS

75 BRAMS

25 BRAMS

0

90 BRAMS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Me
mo

ry
Fo

otp
rin

t

(b)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110115120

MMUL 70x70
[25 BRAM, 40 ms]

HE
AP

 1
 [6

5 B
RA

M]

MMUL 70x70
[25 BRAM, 40 ms]

MMUL 50x50
[13 BRAM, 20 ms]

MMUL 100x100
[50 BRAM, 75 ms]

50 BRAMS

75 BRAMS

25 BRAMS

0

90 BRAMS

Me
mo

ry
Fo

otp
rin

t
HE

AP
 2

 [2
5 B

RA
M]

malloc execute free

(c)

Figure 5.5 Performance gains due to parallel and overlapped accelerators’ execution enabled by DMM-
HLS. Accelerator scheduling and memory footprint a) Conventional HLS with static allocation, b) DMM-
HLS with 1 single heaps, c) DMM-HLS with 2-heaps. FPGA platform: 90 BRAMs. Total MMULs’ memory
request: 113 BRAMs.

5.1. Architectural template and programming interface for M.A. systems

5

173

Many-accelerators System Interconnection

FreeBitMap 1

Heap 1 `

`

FPGA BRAMs (On-chip Memory)

Statically
Alloc.
BRAM

Dynamically Allocated BRAM

Freelist Manager

First-Fit Controller

Sequencer

0x00
0x01
0x02
0x03
0x04

0 1 1 1 1 1 1

0x05

<Alloc. Size>
index

DMM Heap #i

1. int *A = HlsMalloc (1 * sizeof (int) , i) ;
2. A [0] = DATA ;

0

Heap Address mapping to index

=
2

5
+2

4
+2

3
+2

2
+2

1
+2

0

D
H
i

LHi

D
F
i

LFi

FreeBitMap #i

FreeBitMap index: 5 4 3 2 1 0

Reg0=63
0 0 0 0 0 0 00

0 0 0 0 0 0 00

Reg1=0

RegN=0

DATA[31:23]
DATA[22:16]
DATA[15:19]
DATA[18:10]

FreeBitMap n

Heap n

Freelist Manager

First-Fit Controller

Sequencer

Address-to-Heap Mapper

Address/Data/Bus(es) 1,2,…,n

Free-list organization as a Bit-Map

Figure 5.6 Architectural template of DMM-HLS memory controllers supporting DMM onto FPGAs.

free-list registers, (iv) the FreeBitMap word length 𝐿ፅ። , i.e. the number of bytes of
every single word of FreeBitMap, (v) the allocation alignment 𝐴።, i.e. the minimum
number of bytes per allocation so that every new allocation starts from a unique
address and (vi) the meta-data header size 𝐻።, i.e. the number of bytes reserved
on first address(es) of every allocation to store meta-data related to the allocation,
e.g. allocation length. This leads to a flexible design space per heap, that can be
customized according to the memory allocation requests that each heap is going to
serve. In the rest of this research work, we use the following configuration vector
per heap: [𝐷ፇ። , 𝐿ፇ። , 𝐷ፅ። , 𝐿ፅ። , 𝐴። , 𝐻።] = [8192, 4, 1024, 4, 4, 2]. The aforementioned ar-
chitectural scheme of the proposed memory controllers of DMM-HLS framework is
depicted in Figure 5.6.

There are three major runtime issues related to the DMM in many accelerator
systems, i.e. memory fragmentation, memory coherency and memory access con-
flicts. In many accelerator systems, we recognize two fragmentation types, align-
ment and request fragmentation. Alignment fragmentation accounts for the extra
bytes reserved for keeping every allocation padded to the heap word length 𝐿ፇ። ,
including allocation size and header meta-data information. As long as the size of
DMM requests (malloc/free) is multiple of 𝐿ፇ። , the alignment fragmentation is zero.
Request fragmentation refers to the situation that a memory request skips freed
memory blocks to find a continuous memory space equivalent to the size of the
request. In the worst case scenario the request cannot be served even if there are
available memory blocks in the heap if they are merged. Request fragmentation is
strongly dependent on the memory allocation patterns of each accelerator. In case
of an homogeneous many-accelerator system, i.e. each accelerator allocates the
same memory size, request fragmentation is zero. Regarding tomemory coherency
problems, they are inherently eliminated in DMM-HLS, since every accelerator has

5

1745. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

its own memory space, thus no other accelerator may access it. However, mem-
ory access conflicts may become a performance bottleneck in case that a large
set of accelerators share the same heap. As previously mentioned, DMM-HLS sup-
ports multiple-heap configurations that relax the pressure on the dynamic allocated
memory space.

Standard Vivado HLS flow

Vivado HLS
(High-level Synthesis)

RTL
(VHDL/Verilog/SystemC)

Vivado Co-Simulation
(cycle-accurate execution)

Ta
rg

et
 F

P
G

A

te
ch

n
o

lo
gy

 li
b

ra
ri

es

High level code
C/C++/SystemC

(Static allocation)

Testbench Wrapper

Source-to-Source
Code Modification

for DMM-API

Transformed code
C/C++/SystemC

(Dynamic allocation)

DMM-Extension

Implementation
(ISE/EDK/Vivado)

DMM
Source
code

Bitstream

Implementation Strategy

Sy
n

th
e

si
s

D
ir

e
ct

iv
e

s
(D

es
ig

n
 O

p
ti

m
iz

at
io

n
)

Figure 5.7 Extension on Vivado HLS flow to support dynamic memory management for many-accelerators
FPGA-based systems.

The employed flow for the evaluation of DMM-HLS, which is depicted in Fig-
ure 5.17, is based on Xilinx Vivado-HLS, a state-of-art and industrial strength HLS
tool, targetting the Virtex Ultrascale XVCU190 device. We evaluated the efficiency
of the proposed DMM-HLS framework considering many-accelerator architectures
targeting to emerging application domains, e.g. artificial intelligence, scientific com-
puting, enterprise computing etc. Specifically, we used six applications (Table 5.2)
found in Phoenix MapReduce framework for shared-memory systems [24]. We con-
sidered a set of 1000 tasks to be mapped onto each examined MA system. Task’s
memory size requirements derived by a normal distribution N(ፌፚ፱ፒ።፳፞ኼ , 𝑀𝑎𝑥𝑆𝑖𝑧𝑒),
where 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 is defined in the last column of Table 5.2. The tasks are inserted
to the MA system in the same time and scheduled whenever enough memory is
available. In case of a tie, tasks with larger memory size requests are prioritized

5.1. Architectural template and programming interface for M.A. systems

5

175

For static applications, the original code is source-to-source transformed to a
dynamically allocated one using specific function calls from the proposed DMM-HLS
API. The transformed code is augmented by the DMM-HLS function calls and it is
synthesized into RTL implementation through the back-end of Vivado HLS tool. An
exemplary scenario of the code patterns triggering code transformations is given in
Table 5.1.

Table 5.1 Exemplary scenario of the code patterns triggering code transformations, using DMM-HLS API.

Original Code Transformed Code for DMM-HLS

i n t IN [10] ;
i n t OUT[10] ;
foo (IN ,&OUT) ;

const unsigned i n t T=500; /* check per iod */
i n t *IN ,*OUT;
whi le ((IN =HlsMa l l oc (10 ,0))==ዅ1){ HlsS leep (T)}
whi le ((OUT=HlsMa l l oc (10 ,0))==ዅ1){ HlsS leep (T)}
foo (IN ,&OUT) ;
HlsFree (IN , 0) ;
HlsFree (OUT, 0) ;

Regarding to the execution stalling of an accelerator, when there is no available
free memory in the heap, we utilize a while-loop wrapper around HlsMalloc call. In
normal operation, when there is available free memory on a specific memory chunk
of the heap, the allocator returns the first address of this memory chunk. Whenever
there is no free memory available in the heap, the allocator returns −1. Using the
while-loop wrapper, we force the stalling of the accelerator at the HlsMalloc call. At
the same time other accelerators may be executed in parallel and eventually free
some memory. Until then, the stalled accelerator repetitively checks for available
free space through the while-loop wrapper. In order to avoid extra allocator’s ac-
tivity due to repetitive unsuccessful memory requests from stalled accelerators, we
employ an appropriate synthesizable 𝐻𝑙𝑠𝑆𝑙𝑒𝑒𝑝 function of 𝑇-cycles delay. Accord-
ing to the activity frequency of allocator and size/frequency of accelerator’s requests
for DMM, the 𝑇-variable may be either increased to reduce allocator’s activity or de-
creased in order to make accelerator more responsive to stalled accelerators, in the
case of a newly freed memory chunk.

5.1.3. Evaluation

Table 5.2 Applications Characterization

Application Domain Kernel Description Parameters
Image Processing Histogram Determine frequency of RGB channels in image. ፌᑤᑚᑫᑖ = 640×480 pixels
Scientific Computing Matrix Multiplication Dense integer matrix multiplication. ፌᑤᑚᑫᑖ = 100×100
Enterprise Computing String Match Search file with keys for an encrypted word ፍᑗᑚᑝᑖᎽᑜᑖᑪᑤ = 307,200, ፌᑨᑠᑣᑕᑤ = 4
Artificial Intelligence Linear Regression Compute the best fit line for a set of points. ፍᑡᑠᑚᑟᑥᑤ = 100,000
Artificial Intelligence PCA Principal components analysis on a matrix. ፌᑤᑚᑫᑖ = 250×250
Artificial Intelligence Kᑞᑖᑒᑟᑤ Iterative clustering algorithm to classify ፧-D ፍᑡᑠᑚᑟᑥᑤ = 20,000,

data points into groups. ፏᑔᑝᑦᑤᑥᑖᑣᑤ = 10, ፧ᑕᑚᑞᑖᑟᑤᑚᑠᑟᑤ = 3

In order to evaluate the per-accelerator latency overhead due to DMM mecha-
nisms, Figure 5.8 depicts the normalized latency of the employed kernels for the
case of 16 accelerators using 1,2,4,8 and 16 heaps. As shown, the average over-

5

1765. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

Figure 5.8 Per-accelerator latency overhead for different number of heaps.

head for all accelerators is 19.9× when only one heap is employed, while it drops to
10×, 4.7×, 2.3× and 1.2× as long as the heaps are doubled. The increase of heaps
allows higher memory level parallelism to be achieved, since less accelerators are
sharing the same heap. Yet, even in the case that every accelerator has its own
unique heap, i.e. 16-accelerators - 16-heaps configuration, the latency overhead
is still persist (1.2×), due DMM internal operation (freelist check, first-fit operation,
etc.). However the DMM-HLS framework enables effective system configurations,
which trade-off accelerator density and heap sharing.

We evaluate the practical performance improvements delivered by the proposed
DMM-HLS framework in a twofold manner. First, we evaluate accelerators’ density,
i.e. the number of accelerators that can be programmed onto the FPGA simulta-
neously. Figure 5.9 depicts the accelerators gain/loss of DMM-HLS compared to
static allocation. The bars express the min-max number of accelerators that can be
loaded using 1:16 heaps. As shown, the proposed DMM-HLS framework is able to
deliver many-accelerator architectures with 3.8× more accelerators in average (up
to 9.7× for Histogram), compared to static allocation. The highest gains on acceler-
ators’ density come from the usage of a single heap configuration that delivers the
least possible overhead regarding the resources consumed by the DM manager. As
long as configurations with more heaps are adopted, the extra resources needed
to implement the corresponding allocators decrease the maximum number of ac-
celerators, e.g. the instantiation of 16 heaps delivers an average gain of 1.7× in
accelerators’ density.

We note that simply increasing the number of accelerators does not imply per-
formance gains in a straightforward manner. Figure 5.10 shows the number of ac-
celerators where the system exhibits maximal performance, in terms of throughput3

Figure 5.10 shows normalized throughput over static for all employed applications.

3Throughput is calculated as the workload size (in Mbytes) over the latency of a kernel to process it (in
us).

5.1. Architectural template and programming interface for M.A. systems

5

177

Figure 5.9 Comparison on accelerators density between Static and DMM-HLS setups.

Figure 5.10 Comparison on system’s throughput between Static and DMM-HLS setups.

The observed variations in throughput and accelerator density originates from the
differing resource requirements and workload characteristics. We consider two use-
case scenarios: the loaded accelerators are initialized with data from i) individual
memory space i.e. private memory and ii) shared memory, i.e. the case that ac-

5

1785. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

celerators are working on the same data, e.g. finding different strings on the same
document with String Match algorithm. The results report the configuration (de-
noted as accelerators number : heaps number on top of every column) that delivers
maximal throughput for each application. We measured an average throughput in-
crease of 21.4× with private memory initialization and 3.1× with shared memory
initialization over the static allocation of the conventional Vivado-HLS.

Figure 5.11 Comparison on resources breakdown versus throughput and energy trade-off, between Static
and DMM-HLS setups.

Figure 5.11 shows aggregated averaged results in terms of number of acceler-
ator, resource usage and throughput. We examine both static allocation and DM
allocation with several heaps ranging from 1 up to 32, respectively. The left y-axis
refers to the normalized resources4. The average accelerators’ density (i.e. maxi-
mum number of deployed accelerators) for each examined configuration is reported
on top of the stacked bar. The right y-axis refers to the normalized throughput
over static allocation, which is highlighted as a dashed horizontal line. Follow-
ing the same trend as throughput, energy efficiency is also reported in terms of
Giga-Operations Per Second/Watt (GOPS/W). While the single heap configurations
delivers the highest number of accelerators (3.8×), it exhibits low throughput since
memory accesses are executed sequentially. By adding more heaps, the overall
system exhibits higher throughput up to the point that the extra resources of multi-
heap allocators cause the decrease in number of accelerators. Area overheads
is due to the heap allocator modules and the extended interface of the accelera-
tors. For single heap implementations an average area overhead of 0.3% FFs and
1.2% LUTs is reported in respect to the static implementations, which scales up
to +10.7% FFs and +55.2% LUTs for the case of 32 heaps. However, consider-
ing both the DMM infrastructure and accelerators, the on-chip memory utilization
is around 60%, i.e. other resources and not memory exceed the maximum limit,
4Every stacked vertical bar contains the cumulative percentage of the four studied resources (BRAMs,
DSPs, FFs and LUTs), thus the theoretical maximum value of left y-axis, on the diagrams of Figure 5.11,
is 400%.

5.1. Architectural template and programming interface for M.A. systems

5

179

while the rest FPGA resources are increased in average by a factor of 6.3×, 17, 6×
and 29.7× for DSPs, FFs and LUTs respectively. Figure 5.12 depicts in detail the
cumulative results for all the employed applications.

5.1.4. Conclusions
This research work targeted the scalability issues of modern many-accelerator FPGA
systems. We showed that the on-chip memory resource impose severe bottlenecks
on the maximum number of deployed accelerators, leading to large resource under-
utilization in modern FPGA devices. We proposed the incorporation of dynamic
memory management during HLS to alleviate the resource under-utilization ineffi-
ciencies mainly induced by the static memory allocation strategies used in state-of-
art HLS tools. The proposed approach has been extensively evaluated over real-life
many-accelerator architectures targeting to emerging applications, showing that its
adoption delivers significant gains regarding to accelerators density and throughput
improvements.

5

1805.A
rch

itectu
ralS

yn
th
esis

ofR
econ

figu
rable

M
an

y-A
ccelerator

S
ystem

s

Figure 5.12 Comparison on resources breakdown versus throughput and energy trade-offs between Static and DMM-HLS setups, for all employed applications.

5.2. Scaling many-accelerator systems to workstations

5

181

5.2. Scaling many-accelerator systems to worksta-
tions

5.2.1. Introduction
The previous section presented a scalable architecture of processing power, using
many-accelerator architectures in FPGAs. The proposed framework was applied to
computational intensive applications and proved its superiority compared to conven-
tional methodologies and design tools. In this research work we analyze a similar
approach for workstations. The purpose of this research work is to investigate the
efficiency of coarse-grain accelerators systems in real-life workstation scenarios.

One of the main promising programming frameworks for processing large data
sets in the workstations and other clusters of computers is the MapReduce frame-
work [25]. MapReduce was firstly inspired by Google for application development on
data-centers with thousands of servers. It allows programmers to write functional-
style code that is automatically parallelized and scheduled in a distributed system.

MapReduce can be used to easily utilize the resources of large distributed sys-
tems for processing large data sets. However, such large data sets, that the data
centers have to process under constrained time and energy budgets, have increased
significantly, due to emerging applications like big data and cloud computing. The
increase of the traffic in the data centers has also resulted to higher power consump-
tion. The server processors need to provide higher throughput without consuming
excessive power. Currently, one of the main challenges in the data center operators
is the power consumption of the servers that account for over 45% of the overall
power consumption in the data centers.

Therefore, novel architectures are required that can increase the performance
of the data centers and also be more energy efficient. FPGAs can be utilized to
increase the performance of the systems and also can be used to reduce the total
power consumption due to the specialized accelerators for specific tasks. However,
the main drawback of utilizing FPGAs in the data centers is the high programming
complexity. In this research work, we present a novel framework that allow the
seamless development of FPGA-based hardware accelerator for data centers by ex-
tending the current HLS toolflow to include the MapReduce framework. We develop
several hardware accelerators for typical MapReduce application using the proposed
framework and we compare the performance and the energy efficiency with high-
end multi-core processors. The main contributions of this research work are the
followings:

• a novel HLS-based MapReduce dataflow architecture,

• development of several hardware accelerators for typical MapReduce applica-
tion based on the HLS-enabled MapReduce dataflow architecture

• performance evaluation on typical MapReduce applications (wordcount, his-
togram, etc.) on a Virtex7 FPGA that shows up to 4.3x throughput gains and

• up to two orders of magnitude energy consumption savings

5

1825. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

The main advantage of the proposed scheme is that we utilize the available re-
sources of the FPGA to achieve higher parallelism. In the terms of raw performance
the proposed scheme is comparable to the General Purpose Processor (GPP), but
by exploiting the parallelism and much lower clock frequency compared to GPP,
we can achieve much lower power consumption. The rest of the research work is
organized as follows. Subsection 5.2.2 presents our FPGA-based implementation.
Subsection 5.2.3 presents the evaluation results and subsection 5.2.4 concludes the
work.

We survey related work on accelerator-based implementations of MapReduce
framework. In [26], a reconfigurable MapReduce framework is presented but the
proposed scheme is implemented as a custom RTL-design that is used to implement
only the RankBoost application entirely on an FPGA. Although the basic architecture
of this work is very close to the one presented in this research work, we would like to
note that the proposed approach is implemented in C/C++ level and it is seamlessly
synthesized to RTL level using HLS tools, thus its employment is highly transparent
to new applications exploiting MapReduce framework. On the contrary, in [26] both
of the Map and Reduce tasks for a specific application are mapped to custom RTL
logic and thus for any new application a new design has to be implemented. In [27]
a MapReduce Framework on FPGA accelerated commodity hardware is presented
where a cluster of worker nodes is designed for the MapReduce framework, and
each worker node consists of commodity hardware and special hardware. Although
this approach offers high flexibility and run-time optimization of the framework, it
still increases the programming difficulty of both custom-RTL and CPU for every
node, while new applications have to be custom tailored to such a diverse hybrid-
node implementation layer. Regarding general purpose GPU platforms, MapReduce
framework was also explored [28]. “However, GPU prefers coalesced memory ac-
cess pattern, which makes it fumble while dealing with complex data structure and
the SIMT architecture restricts its computation performance to handle irregular ap-
plications” [26]. Authors in [29] adopted a hybrid architecture approach combining
both GPU and FPGA to implement a MapReduce framework, which leaves schedul-
ing work to the host CPU and employs GPU and FPGA for co-processing, while
in [30] a MapReduce framework is implemeted targeting to an embedded many-
core Network-on-Chip platform. However, regardless the implementation medium,
a recent MapReduce survey verifies that MapReduce technique shall complement
database management system with scalable and flexible parallel processing for var-
ious data analysis such as scientific data processing [31]. In [32] Microsoft has used
FPGAs to increase the performance of the page ranking applications. More specifi-
cally a medium-scale deployment on a bed of 1,632 servers, measuring its efficacy
in accelerating the Bing web search engine, reported improvements on the ranking
throughput of each server by a factor of 95%. However, until now the utilization of
FPGAs in data centres is limited mainly due to the high programming complexity of
FPGAs. However this work is a standalone research and currently there is no wide
adoption of FPGAs in the data centers.

In [33], we have previously developed a hardware acceleration unit for the
MapReduce framework that can be combined efficiently with ARM cores in fully

5.2. Scaling many-accelerator systems to workstations

5

183

programmable platforms . To develop and evaluate the proposed scheme, authors
selected the Xilinx Zynq-7000 All Programmable SoC, which comes hardwired with
a dual-core Cortex-A9 processor on-board.

In essence, this accelerator was used to alleviate the processors from executing
the Reduce tasks, and thus executing only the Map tasks and emitting the interme-
diate key/value pairs to the hardware acceleration unit that performs the Reduce
operation. The performance evaluation shows that the proposed accelerator can
achieve up to 1.8x system speedup of the MapReduce applications. Motivated by
these results, we identify the following performance-boost limitations in this work:

• Low parallelism exploitation: The partitioner, mapper and scheduler are con-
trolled by the same on-board CPU, i.e. ARM Cortex-A9 on Zynq, which may
limit the inherent parallelization opportunity of these tasks.

• High memory conflicts: Although the reduce tasks may exploit DMA engines to
work directly to memory, still the main framework, including both the MapRe-
duce tasks and the working kernels, have their data-path on the same AXI
bus, thus the memory is over-populated by read/write (R/W) calls from the
multiple processing threads, which eventually are serialized.

• Low acceleration opportunity regarding overall system execution time break-
down, due to the speed-up of only Reduce step. According to [24], the Re-
duce step accounts for less than 5% of the total execution time in the orig-
inal implementation of a MapRecude framework, i.e. Phoenix, using a chip
multi-processor (CMP) with 2, 4 and 8 cores5. The Figure 5.13 presents the
execution time breakdown between Map, Reduce, and Merge tasks for the
CMP system. It is evident that the execution time of Map task, where the
main algorithm’s processing occurs, is significantly reduced by the Phoenix
framework, as long as more cores are employed, which motivate us to inves-
tigate acceleration scenarios for map tasks on the coarse-grain parallelization
potential of FPGA devices.

Identifying these issues, we propose the complete decoupling of MapReduce’s
tasks data-paths to distinct buses, accessed from individual processing engines,
eliminating the necessity of the supervisor on-board CPU, i.e. the processor-centric
SoC. Such an approach implies a holistic C/C++ to RTL-level domain-level MapRe-
duce transition. In this work, we employ HLS tools as a state-of-art system-level
implementation toolflow, in order to examine the performance exploitation options,
yet constrained by the HLS limitations of such a complex framework.

5.2.2. HLSMapReduceFlow Architecture
5.2.2.1 Phoenix MapRecude Framework

We adopt the open-source Phoenix MapRecude framework [24] as the initial code
base of our work. In this framework, users specify a Map function that processes
5The referred CMP system is based on the UltraSparc T1 multi-core chip with 8 multithreaded cores
sharing the L2 cache.

5

1845. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

Figure 5.13 Execution time breakdown for a CMP system on Phoenix MapRecude framework[24].

Host CPU
Host CPU

FPGA

In
te

rc
o

n
n

e
ct

io
n

N

e
tw

o
rk

External/Shared
Memory

MapAccel #0

ReduceAccel #0

CPU node #0

MAP, REDUCE

SPLIT, MERGE
SPLIT, MERGE

MAP

REDUCE
External/Shared

Memory In
te

rc
o

n
n

e
ct

io
n

N

e
tw

o
rk

Many-core(SMP, CMP), Cluster, Cloud

(a) (b)

+ Data Locality - Inter-Connection Latency + Dataflow Processing

Figure 5.14 Architecture topology of a) original MapRecude framework and b) proposed HLSMapReduce-
Flow.

a key/value pair to generate a set of intermediate key/value pairs, and a Reduce
function that merges all intermediate values associated with the same intermediate
key. Finally, the last stage merge together all the key/value pairs. Programs writ-
ten in this functional style are automatically parallelized and executed on a large
cluster of computation nodes. The run-time system takes care of the details of par-
titioning the input data, scheduling the program’s execution across a set of compu-
tation nodes, providing fault-tolerance, and managing the required inter-machine
communication. This allows programmers without any experience of parallel and
distributed systems, to easily utilize the resources of a large distributed system.

The Figure 5.15 shows the basic data flow for the runtime system. The runtime
is controlled by the scheduler, which is initiated by user code. The scheduler creates
and manages the threads that run all Map and Reduce tasks. It also manages the
buffers used for task communication. After initialization, the scheduler determines
the number of cores to use for this computation. For each core, it spawns a worker

5.2. Scaling many-accelerator systems to workstations

5

185

Figure 5.15 The MapReduce programming framework.

thread that is dynamically assigned some number of Map and Reduce tasks.
To start the Map stage, the scheduler uses the Splitter to divide input pairs into

equally sized units to be processed by the Map tasks. The Splitter is called once
per Map task and returns a pointer to the data the Map task will process. The
Map tasks are allocated dynamically to workers and each one emits intermediate
< 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pairs. The Partition function splits the intermediate pairs into units
for the Reduce tasks. The function ensures all values of the same key go to the
same unit. Within each buffer, values are ordered by key to assist with the final
sorting. At this point, the Map stage is over. The scheduler must wait for all Map
tasks to complete before initiating the Reduce stage. Reduce tasks are also assigned
to workers dynamically, similar to Map tasks. The one difference is that, while with
Map tasks we have complete freedom in distributing pairs across tasks, with Reduce
we must process all values for the same key in one task. As the last step, the final
output from all tasks is merged into a single buffer, sorted by keys.

5.2.2.2 Dataflow FPGA-based Acceleration

The basic proposed architecture scheme is inspired by our group’s prior novel im-
plementation, presented in [33]. Authors developed a MapReduce configurable
accelerator which is used to alleviate the processors from executing the Reduce
tasks, and thus executing only the Map tasks and emitting the intermediate key/-
value pairs to the hardware acceleration unit that performs the Reduce operation.
On top of this architecture we further built the acceleration infrastructure for the
Map tasks. Figure 5.14 shows a high-level differentiator of the proposed architec-
ture, compared to the current state of art.

Originally, the Map and Reduce tasks are running as software threads on the
CPU cores of the available MapRecude deploying infrastructure (Figure 5.14(a)).
The success of such an architecture relies on the availability of a large shared-
memory that facilitate communication without excessive data copying. Moreover,
at runtime, an efficient scheduler is highly required to schedule tasks dynamically
across the available processors in order to achieve load balance and maximize task

5

1865. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

throughput. In the previous approach we highlight two major drawbacks:

• A shared-memory is usually available in monolithic datacenter architectures.
Such architectures are composed by single-board/single-die many-core sys-
tems (CMP, SMP). However, there is limited shared-memory organization sup-
port for clusters and cloud datacenter topologies. Thus in case of inefficient
data splitting, the shared data have to travel along different datacenter nodes,
reserving resources and spending energy. Such an inefficiency in data split-
ting procedure may be the case in which the same subset of data is required
by two Map steps which have been scheduled in long-distance computation
nodes.

• So far, the state-of-art MapReduce implementations do not provide an efficient
scheduler that checks the inter-application control and data flow graphs, prior
to scheduling. Thus, it turns out that there is not real application partitioning
and scheduling among computation nodes, but rather a quick-and-dirty ap-
plication’s runtime slicing, followed by a first-come-first-serve distribution on
computation nodes.

We propose to create customized Map accelerators that exploit high data local-
ity and thus eliminate the need of large shared-memory architectures or distributed
systems. Instead of brute-force arbitrary splitting the input data to multiple sub-
sets for further scheduling to CPUs, we select to split the input according to the
application’s data processing flow, in a way that optimized chunks of data are pro-
cessed independently by distinct accelerators. Using this approach we manage
to increase the system’s throughput by a) increasing data locality, b) decreasing
inter-connection latency among computation nodes and c) increasing computation
parallelism by exploiting dataflow processing.

Specifically, we investigate the optimal point of dataflow processing for every
application, i.e. splitting and scheduling is based on control-flow-graph (CFG), data-
flow-graph (DFG) and variable liveness analysis (LA). Based on such information,
we built the corresponding optimal Map accelerator engines. Figure 5.16(a) shows
the basic HLSMapReduceFlow architecture. While, this looks similar to the original
Phoenix architecture, we highlight in Figure 5.16(b) the novel architecture mod-
ifications of our approach. Firstly, the on-board available block RAM (BRAM) of
the FPGA is organized in distinct memory banks. Every bank has its own unique
address and data bus, while it is accessed by only one computation node. This
scheme allows for full parallel simultaneous operation of the computation nodes in
FPGA.

The critical step of this procedure relies on the efficient mapping of application’s
parallel-ready computation paths. For this step we employ the Vivado HLS tool.
Apart from typical high level synthesis steps, i.e. resource binding, scheduling etc.,
Vivado HLS also provides a high number of architecture exploration options through
the source code annotation with special pre-processor directives. In this work we
force the exploration with the DATAFLOW, INLINE and ARRAY PARTITION directives.

Firstly we employ the partition, map and reshape directives in order to re-
configure arrays on the interface they are accessed. Arrays are partitioned into

5.2. Scaling many-accelerator systems to workstations

5

187

FIFO Queue

In
p

u
t

Sp
lit

Data #1

Data #2

Data #3

Data #n

MapAccel #1

MapAccel #2

MapAccel #3

MapAccel #k

ReduceAccel #1

ReduceAccel #2

ReduceAccel #3

ReduceAccel #j

M
e

rg
e

Intermediate
<key, value>

Intermediate
<key, value>

Intermediate
<key, value>

Intermediate
<key, value>

O
u

tp
u

t

Processing
Storage

(Flash/DRAM)

External
Storage

MapAccel BRAM #1

MapAccel BRAM #2

MapAccel BRAM #3

MapAccel BRAM #k

k-port MapReduceAccel
parallel BRAM memory

ReduceAccel BRAM #1

ReduceAccel BRAM #2

ReduceAccel BRAM #3

ReduceAccel BRAM #j

j-port MapReduceAccel
parallel BRAM memory

Processing
Storage

(Flash/DRAM)

External
Storage

(a)

(b)

Dataflow processing

FPGA
apply Array-partition

Vivado directive

Figure 5.16 HLSMapReduceFlow dataflow architecture: Every dataflow computation node is working in
its unique memory. The system memory is partitioned to k-port and j-port banks for the k-map and
j-reduce tasks respectively.

multiple smaller arrays, each implemented with its own interface. This includes the
ability to partition the array into fine grain elements. On the function interface, this
results in a unique port for every element in the array. This provides maximum
parallel access, but creates many more ports and may introduce routing issues in
the hierarchy above. By partitioning the arrays, on which input data of every map
task are stored, we reduce the possibility of simultaneous access of the same data,
given the inherent locality of the application, which may exploit parallelism. Locality
is managed by adjusting the granularity and assignment of parallel tasks.

After having partitioned the input memory, we force the micro-architecture ex-
ploration within Vivado HLS, following a dataflow computation model. From the
definition back in 80’s [34], we consider dataflow machines to be all programmable
computers of which the hardware is optimized for fine-grain data-driven. Fine grain
means that the processes that run in parallel are approximately of the size of a
conventional machine code instruction. We deploy a fully spatial architecture for
every map task by applying recursive inline option of Vivado HLS, i.e. #pragma
AP inline recursive. Although this approach leads to increased resources utiliza-
tion, it allows for parallel instances of shared sub-functions and removed hierarchy
of sub-functions, which leads to logic optimization across function boundaries and
improved latency/interval by the reduction of function call overhead.

After the above optimizations, we have already forced the creation of fine-grain
fully-parallel map tasks which does not share neither data nor computation ele-
ments among them. The last optimization of the proposed scheme deals with the
controlling of the the way the input data are fed to these tasks. We force a dataflow
approach. Figure 5.17 shows the basic idea behind this approach. The input code

5

1885. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

Algorithm

Basic-block/ Data
Lifetime Analysis

Data-flow
Processing
Exploration

Optimal Data-
flow Processing

architecture

Control-flow Graph

Vivado HLS
 (LLVM back-end)

(Apply Pipeline, Dataflow,
Array-partition, Inline

Vivado directives)

Figure 5.17 Forcing dataflow exploration from control-flow algorithm description with Vivado HLS

is decomposed by Vivado’s back-end LLVM compiler to basic blocks, i.e. single-entry
single-exit section of code, connected through a control-flow network, i.e. control-
flow-graph (CFG). Having already applied above optimizations, we further force the
dataflow optimization, i.e. #pragma AP dataflow which takes a series of sequential
tasks (functions and or loops) (Figure 5.18(a)) and creates a parallel process ar-
chitecture from it (Figure 5.18(b)). Dataflow optimization in Vivado HLS is a very
powerful method for improving design throughput. The channels shown in Figure
5.18(a) ensure a task is not required to wait until the previous task has completed
all operations before it can begin. Figure 5.18(b) shows how DATAFLOW optimiza-
tion allows the execution of tasks to overlap, increasing the overall throughput of
the design and reducing latency.

5.2. Scaling many-accelerator systems to workstations

5

189

Figure 5.18 (a) Sequential Functional Description (b) Parallel Process Architecture

5.2.2.3 HLSMapReduceFlow Methodology for Vivado-HLS

Figure 5.19 shows an overview of the proposed HLSMapReduceFlow design and
verification flow. The flow is based on Xilinx Vivado-HLS, a state-of-art and indus-
trial strength HLS tool. The HLSMapReduceFlow extension is applied explicitly to
the high-level source code of the application, thus it keeps minimum implemen-
tation overhead to the designers. A source-to-source code modification stage is
the step where the original code is transformed to synthesizable one. These trans-
formations cover limitations regarding the lack of dynamic memory management
support, pointer arithmetic, complete ANCI C functions etc, in Vivado HLS. More-
over this step includes the process of architecture optimization directives insertion.
Currently, this step is performed manually. An automated flow is considered a
highly useful utility for wide and transparent adoption in data centers deployment.
The transformed code is augmented by the HLSMapReduceFlow function calls, i.e.
Emit_Intermediate_accelerator(key,value) and it is synthesized into RTL implemen-
tation through the back-end of Vivado HLS tool.

5

1905. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

Standard Vivado HLS flow

Vivado HLS
(High-level Synthesis)

RTL
(VHDL/Verilog/SystemC)

Vivado Co-Simulation
(cycle-accurate execution)

Ta
rg

et
 F

P
G

A
 t

e
ch

n
o

lo
gy

lib

ra
ri

e
s

Testbench Wrapper

Dataflow Architecture
Exp/tion Directives for
HLSMapReduceFlow

HLSMapReduceFlow-Extension

Implementation
(ISE/EDK/Vivado)

M.R.A.
Source
code

Bitstream

Implementation Strategy

Sy
n

th
e

si
s

D
ir

e
ct

iv
e

s
(D

es
ig

n
 O

p
ti

m
iz

at
io

n
) High level code

C/C++/SystemC
(App. code + Phoenix)

HLS-Directive Annotated code
C/C++/SystemC

(App. code+HLSMapReduceFlow)

Figure 5.19 Proposed extension on Vivado HLS flow to support MapReduce framework for FPGA-based
systems.

5.2.2.4 Vivado-HLS Limitations for MapRecude

During the development of HLSMapReduceFlow we faced several limitations re-
garding the implementation of the complex Phoenix’s API in Vivado HLS. These
limitations are reported as follows:

• Dynamic Memory Management: The Phoenix framework highly uses mal-
loc/free calls for effective memory operations and reduced run-time footprint
during map and reduce tasks. All DMM functions are not supported by Vivado
HLS tools. We replace DMM calls with static code allocation on the heap of ev-
ery application’s code segment. This replacement affects the BRAM resource
utilization, while it also forces the predefined at compile time variable defini-
tion. When the application uses dynamic size for specific variables, e.g. the
length of word that is searched in Word Count application, then the designer
has to set a static maximum variable’s size, thus decreasing runtime flexibility.

• Pointer Manipulation: The Phoenix framework uses direct memory ad-
dressing, using pointer-based memory access. Also it uses arithmetic oper-
ations, arithmetic re-interpretation, and pointer casting. However, none of
these features is available in Vivado HLS. We had to refactor the code by

5.2. Scaling many-accelerator systems to workstations

5

191

Table 5.3 Applications Characterization

Kernel Description Parameters Bytes/Iteration
Histogram Determine frequency of image RGB channels. ፌᑤᑚᑫᑖ = 640×480 307,200
Matrix Mul. Dense integer matrix multiplication. ፌᑤᑚᑫᑖ = 100×100 40,000
String Match Search file with keys for 4 encrypted words. ፍᑜᑖᑪᑤ = 307,200 307,200
Word Count Counts occurrence frequency of words in file. ፍᑨᑠᑣᑕᑤ = 50,000 90,094
Linear Regr. Compute the best fit line for a set of points. ፍᑡᑠᑚᑟᑥᑤ = 100,000 400,000
PCA Principal components analysis on a matrix. ፌᑤᑚᑫᑖ = 250×250 250,000
Kᑞᑖᑒᑟᑤ Clustering 3-D data points into 10 groups ፍᑡᑠᑚᑟᑥᑤ = 20,000 240,000

eliminating such coding forms.

• Data structures: The Phoenix framework uses a lot of complex data struc-
tures, i.e. structs with array and pointer elements. While scalar pointers
that point to statically reserved data are normally deployed in Vivado HLS,
the same does not happen with double and beyond pointers, i.e. pointer-
to-pointer. We had to refactor such complex data types to simple scalar or
simple pointer based structures.

• ANCI C synthesizable subset: The Phoenix framework uses many func-
tions of ANCI C that are not synthesizable by Vivado HLS., e.g. limitation of
memory copy operations such as memmove, memcpy, etc., string functions,
e.g. strcmp, strlen, strcpy, toupper, etc. and math functions, e.g. rand, sort,
etc.. For all of these functions we developed synthesizable versions, working
on byte/cycle rate. Depending on application characteristics, we customized
these functions to be more efficient using pipelining and loop unrolling tech-
niques.

5.2.3. Experimental Results
This section describes the experimental setup we used to evaluate HLSMapReduce-
Flow, as well as the respective obtained results. We evaluated the efficiency of the
proposed HLSMapReduceFlow framework considering a MapRecude accelerator for
a FPGA-based architecture, targeting to emerging application domains, e.g. arti-
ficial intelligence, scientific computing, enterprise computing etc. In this research
work, we considered six applications evaluation test-bed of Phoenix MapReduce
framework for shared-memory systems [24]. The performance evaluation covers a
representative set of application that typically use the MapReduce framework. The
characterization setup of the employed applications is summarized in Table 5.3.

To evaluate our framework in performance and scalability, we build up a testbed
for the HLSMapReduceFlow. Since the main scope of this work is the acceleration of
Map tasks (95% of total execution time in Phoenix), we explore different architec-
ture exploiting Map accelerators in the FPGA, while for the following measurements
we have used only one Reduce task. Also we do not measure communication over-
head for transferring input data streams to the FPGA. Instead we use the on-board
FPGA memory to store input streams. This scheme may not be a complete archi-
tecture for datacenters where new requests are coming constantly. However in
this work we study the performance micro-architecture exploitation by instantiating

5

1925. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

Figure 5.20 Self performance-scalability tradeoff of HLSMapReduceFlow framework.

dataflow-based Map accelerators in the FPGA, regardless the input source and the
way input data are reaching the Map tasks.

Figure 5.20 shows the self overall performance-scalability tradeoff results for
every employed application, when we use, or not, the HLSMapReduceFlow frame-
work. Every horizontal axis scales the Map accelerators from single-instance to the
maximal number of accelerators. This number is limited by the reserved FPGA re-
sources of applications. As shown by the comparison of the architecture without
the MapRecude framework (No-MR), and the 1-Map accelerator instance, the im-
plementation of HLSMapReduceFlow framework introduces a cost in both resources
and execution time by a factor of 18% and 38% respectively. However, as long as
more Map accelerators are instantiated, the performance in terms of throughput is
almost linear boosted.

5.2.S
calin

g
m
an

y-accelerator
system

s
to

w
orkstation

s

5

193

Table 5.4 Real-word representative comparison between HLSMapReduceFlow-accelerated FPGA and commodity workstation.

Framework GNU/Linux 3.18.6 x86-64 / GCC-glibc HLSMapReduceFlow
Platform AMD 8-core FX-8350 4GHz Virtex7-XC7VX485T 150MHz Ratio
Metrics Time(ms) Power(W) Energy(J) ፓᑡ(ms) ፓᑔ(ms) Power(W) Energy(J) T P E
Histogram 344 41.1 14.1 72.2 4.8 1.84 0.13 0.21 0.04 0.009

Matrix Mul/tion 177 41.3 7.3 208 0.6 1.02 0.21 1.17 0.03 0.029
String Match 206 41.6 8.5 95 4.9 2.33 0.22 0.46 0.06 0.026
Word Count 172 40.8 7.0 84 1.4 1.87 0.16 0.48 0.05 0.023

Linear Reg/sion. 158 41.6 6.6 73 6.4 2.08 0.15 0.46 0.05 0.023
PCA 392 41.9 16.4 964 4.1 1.17 1.13 2.45 0.03 0.070

Kᑞᑖᑒᑟᑤ 435 40.3 17.5 503 3.8 1.03 0.52 1.16 0.03 0.029
Average 269 41.2 11 285 3.7 1.62 0.36 1.06× 0.04× 0.03×

However some applications reach a saturation point where the instantiation of more accelerators does not lead to expected
speedup. This is the case for String Match, PCA, Kmeans and Word Count. We found that both the dynamic behavior of
these applications and data dependency among calculations prevents Vivado HLS for applying effective dataflow processing
optimizations. For instance, the PCA kernel is a streaming application with no dynamism. However its computations have high
data dependencies without equivalent data locality. Thus, the fine-grain splitting of input data to data chunks that include
elements needed by more than one map accelerators, causes performance drop due to stalled Map processing tasks.

In order to provide a more real-word representative comparison, we evaluated HLSMapReduceFlow against a high-end
workstation. The workstation is powered by the 8-core AMD FX-8350 processor clocked at 4GHz. This processor has a TDP
value of 125 Watts. We compiled the employed applications using GCC compiler (v4.9.2) and run the applications with glibc
runtime linking, in a GNU/Linux (Kernel 3.18.6) 64-bit OS, enabling many compiler omptimizations (-O2), including vector
processing ones (SSE, AVX etc.). The derived measurements for execution time, power and energy are shown in the first
three columns of Table 5.4. The next four columns show the respective metrics for a system composed of a Virtex-7 FPGA
(XC7VX485T) clocked at 150MHz utilizing the HLSMapReduceFlow framework. The PC-FPGA communication is established
with a PCI Express 3.0 link, offering maximum bandwidth of 8Gbps. The overall measured time for the FPGA deployment
is represented by the time for processing on the FPGA, 𝑇፩ and the time for PC-FPGA communication, 𝑇፜ (downloading input
data from PC to FPGA and uploading results from FPGA to PC).

5

1945. Architectural Synthesis of Reconfigurable Many-Accelerator Systems

In the current design, data are stored in the block RAMs (BRAMs) embedded
in the FPGAs. In order to hide the communication overhead we could pipeline
the I/O transfer with the computation tasks. For example we could use additional
BRAMs to store the next stream of data that is going to be processed by the FPGA
while computing the current stream of data. The power values have been derived
through the usage of PowerTop6 utility for the CPU and Xilinx Xpower7 utility for
the FPGA. As shown, the proposed framework delivers extremely performance-per-
watt efficient solutions, reporting two orders of magnitude less energy for the same
execution timing window. Consequently we show that the proposed scheme is an
elegant candidate implementation infrastructure for data centers that promises high
energy efficiency for specific types of applications.

5.2.4. Conclusions
This research work introduces HLSMapReduceFlow, a MapReduce framework on
FPGA devices, which provides implementation abstraction, hardware architecture
and an exemplary system-level framework for system designers. The HLSMapRe-
duceFlow framework can be widely used as a programming framework both for
FPGA-coupled data centers and for cloud-computing applications. The proposed
hardware accelerator can be used to reduce the total execution time for a work-
station coupled with an FPGA device such as the Xilinx Virtex-7 and the cloud-
computing applications based on the MapReduce framework by accelerating the
Map/Reduce tasks of these applications. Due to micro-architecture exploitation
offered by the employed state-of-art Vivado HLS tool, the framework succeed in
high-parallelism by applying fundamental concepts from spatial and dataflow com-
puting. We evaluated HLSMapReduceFlow with well-established server workloads
against a high-end workstation and we obtained throughput gains of 4.3× while the
FPGA device saved up to two orders of magnitude energy consumption. As a future
step we plan to integrate to HLSMapReduceFlow our novel synthesizable dynamic
memory management allocator [35], presented in section 5.1 of this Chapter, ex-
ploiting hardware memory paging capabilities and thus offering support for complex
dynamic applications.

6https://01.org/powertop
7http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm

References

5

195

References
[1] G. Moore, Cramming more components onto integrated circuits, Proceedings

of the IEEE 86, 82 (1998).

[2] CNET.com, End of moore’s law: It’s not just about physics, .

[3] Recode.net, Moore’s law hits 50, but it may not see 60, .

[4] R. Dennard, F. Gaensslen, H.-N. YU, V. Rideout, E. BASSOUS, and A. R.
LEBLANC, Design of ion-implanted mosfet’s with very small physical dimen-
sions, Proceedings of the IEEE 87, 668 (1999).

[5] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
Power challenges may end the multicore era, Commun. ACM 56, 93 (2013).

[6] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, The eda challenges in
the dark silicon era: Temperature, reliability, and variability perspectives, in
Proceedings of the 51st Annual Design Automation Conference, DAC ’14 (ACM,
New York, NY, USA, 2014) pp. 185:1–185:6.

[7] C. Mack, Fifty years of moore’s law, Semiconductor Manufacturing, IEEE Trans-
actions on 24, 202 (2011).

[8] M. Taylor, Is dark silicon useful" harnessing the four horsemen of the coming
dark silicon apocalypse, in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE (2012) pp. 1131–1136.

[9] J. Shalf, D. Quinlan, and C. Janssen, Rethinking hardware-software codesign
for exascale systems, Computer 44, 22 (2011).

[10] Q. Zhu, B. Akin, H. Sumbul, F. Sadi, J. Hoe, L. Pileggi, and F. Franchetti, A
3d-stacked logic-in-memory accelerator for application-specific data intensive
computing, in 3D Systems Integration Conference (3DIC), 2013 IEEE Interna-
tional (2013) pp. 1–7.

[11] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, Conservation cores: Reducing the energy of
mature computations, SIGARCH Comput. Archit. News 38, 205 (2010).

[12] Y.-T. Chen, J. Cong, M. Ghodrat, M. Huang, C. Liu, B. Xiao, and Y. Zou,
Accelerator-rich cmps: From concept to real hardware, in Computer Design
(ICCD), 2013 IEEE 31st International Conference on (2013) pp. 169–176.

[13] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, Architecture
support for domain-specific accelerator-rich cmps, ACM Trans. Embed. Com-
put. Syst. 13, 131:1 (2014).

[14] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,

http://dx.doi.org/ 10.1109/JPROC.1998.658762
http://dx.doi.org/ 10.1109/JPROC.1998.658762
http://www.cnet.com/news/end-of-moores-law-its-not-just-about-physics/
http://recode.net/2015/04/15/moores-law-hits-50-but-it-may-not-see-60/
http://dx.doi.org/10.1109/JPROC.1999.752522
http://dx.doi.org/10.1145/2408776.2408797
http://dx.doi.org/10.1145/2593069.2593229
http://dx.doi.org/10.1109/TSM.2010.2096437
http://dx.doi.org/10.1109/TSM.2010.2096437
http://dx.doi.org/10.1109/MC.2011.300
http://dx.doi.org/10.1109/3DIC.2013.6702348
http://dx.doi.org/10.1109/3DIC.2013.6702348
http://dx.doi.org/10.1145/1735970.1736044
http://dx.doi.org/10.1109/ICCD.2013.6657039
http://dx.doi.org/10.1109/ICCD.2013.6657039
http://dx.doi.org/10.1145/2584664
http://dx.doi.org/10.1145/2584664

5

196 References

J. Thong, P. Y. Xiao, and D. Burger, A reconfigurable fabric for accelerating
large-scale datacenter services, in 41st Annual International Symposium on
Computer Architecture (ISCA) (2014).

[15] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, High-
level synthesis for fpgas: From prototyping to deployment, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 30, 473
(2011).

[16] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas, F. Rubio, I. Gelado,
M. Shafiq, E. Morancho, N. Navarro, E. Ayguade, J. Cela, and M. Valero, As-
sessing accelerator-based hpc reverse time migration, Parallel and Distributed
Systems, IEEE Transactions on 22, 147 (2011).

[17] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, The accelerator store: A
shared memory framework for accelerator-based systems, ACM Trans. Archit.
Code Optim. 8, 48:1 (2012).

[18] E. Cota, P. Mantovani, M. Petracca, M. Casu, and L. Carloni, Accelerator
memory reuse in the dark silicon era, IEEE Computer Architecture Letters 99,
1 (2012).

[19] L. Semeria and G. De Micheli, Spc: synthesis of pointers in c application of
pointer analysis to the behavioral synthesis from c, in Computer-Aided Design,
1998. ICCAD 98. Digest of Technical Papers. 1998 IEEE/ACM International
Conference on (1998) pp. 340–346.

[20] L. Séméria, K. Sato, and G. De Micheli, Resolution of dynamic memory allo-
cation and pointers for the behavioral synthesis form c, in Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’00 (ACM, New
York, NY, USA, 2000) pp. 312–319.

[21] M. Shalan and V. J. Mooney, A dynamic memory management unit for em-
bedded real-time system-on-a-chip, in Proceedings of the 2000 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES ’00 (ACM, New York, NY, USA, 2000) pp. 180–186.

[22] S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, and K. Z. Pekmestzi, Cus-
tom multi-threaded dynamic memory management for multiprocessor system-
on-chip platforms, in ICSAMOS (2010) pp. 102–109.

[23] Y. Sade, M. Sagiv, and R. Shaham, Optimizing c multithreaded memory man-
agement using thread-local storage, in Proceedings of the 14th International
Conference on Compiler Construction, CC’05 (2005) pp. 137–155.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, Eval-
uating mapreduce for multi-core and multiprocessor systems, in High Per-
formance Computer Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on (2007) pp. 13–24.

http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/ 10.1109/TPDS.2010.144
http://dx.doi.org/ 10.1109/TPDS.2010.144
http://dx.doi.org/ 10.1145/2086696.2086727
http://dx.doi.org/ 10.1145/2086696.2086727
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2012.29
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/L-CA.2012.29
http://dx.doi.org/10.1109/ICCAD.1998.144288
http://dx.doi.org/10.1109/ICCAD.1998.144288
http://dx.doi.org/10.1109/ICCAD.1998.144288
http://dx.doi.org/10.1145/343647.343788
http://dx.doi.org/10.1145/343647.343788
http://dx.doi.org/10.1145/354880.354905
http://dx.doi.org/10.1145/354880.354905
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1109/HPCA.2007.346181

References

5

197

[25] J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, Commun. ACM 51 (2008), 10.1145/1327452.1327492.

[26] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, Fpmr: Mapreduce
framework on fpga, in Proceedings of the 18th Annual ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA ’10 (ACM, New
York, NY, USA, 2010).

[27] D. Yin, G. Li, and K.-d. Huang, Scalable mapreduce framework on fpga accel-
erated commodity hardware, in Internet of Things, Smart Spaces, and Next
Generation Networking, Lecture Notes in Computer Science, Vol. 7469, edited
by S. Andreev, S. Balandin, and Y. Koucheryavy (Springer Berlin Heidelberg,
2012).

[28] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, Mars: A mapreduce
framework on graphics processors, in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08
(ACM, New York, NY, USA, 2008) pp. 260–269.

[29] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C. Cheung,
A. P. C. Chan, and P. H. W. Leong, Map-reduce as a programming model for
custom computing machines, in Proceedings of the 2008 16th International
Symposium on Field-Programmable Custom Computing Machines, FCCM ’08
(IEEE Computer Society, Washington, DC, USA, 2008) pp. 149–159.

[30] K. Gyftakis, I. Anagnostopoulos, D. Soudris, and D. Reisis, A mapreduce
framework implementation for network-on-chip platforms, in Electronics, Cir-
cuits and Systems (ICECS), 2014 21st IEEE International Conference on
(2014) pp. 120–123.

[31] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, Parallel data processing
with mapreduce: A survey, SIGMOD Rec. 40, 11 (2012).

[32] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Xiao, and D. Burger, A reconfigurable fabric for accelerating large-
scale datacenter services, in Computer Architecture (ISCA), 2014 ACM/IEEE
41st International Symposium on (2014) pp. 13–24.

[33] C. Kachris, G. Sirakoulis, and D. Soudris, A reconfigurable mapreduce accel-
erator for multi-core all-programmable socs, in System-on-Chip (SoC), 2014
International Symposium on (2014) pp. 1–6.

[34] A. H. Veen, Dataflow machine architecture, ACM Comput. Surv. 18, 365
(1986).

[35] D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris, Dynamic mem-
ory management in vivado-hls for scalable many-accelerator architectures,

http://dx.doi.org/ 10.1145/1327452.1327492
http://dx.doi.org/ 10.1145/1723112.1723129
http://dx.doi.org/ 10.1145/1723112.1723129
http://dx.doi.org/10.1007/978-3-642-32686-8_26
http://dx.doi.org/10.1007/978-3-642-32686-8_26
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1109/FCCM.2008.19
http://dx.doi.org/10.1109/FCCM.2008.19
http://dx.doi.org/10.1109/ICECS.2014.7049936
http://dx.doi.org/10.1109/ICECS.2014.7049936
http://dx.doi.org/10.1145/2094114.2094118
http://dx.doi.org/ 10.1109/ISCA.2014.6853195
http://dx.doi.org/ 10.1109/ISCA.2014.6853195
http://dx.doi.org/ 10.1109/ISSOC.2014.6972430
http://dx.doi.org/ 10.1109/ISSOC.2014.6972430
http://dx.doi.org/10.1145/27633.28055
http://dx.doi.org/10.1145/27633.28055

5

198 References

in Proceedings of the 20015 11th International Symposium on Applied Re-
configurable Computing, ARC 2015 (2015 - accepted for presentation in April,
2015).

6
Conclusions and Future

Directions

This chapter presents the main conclusions of this doctoral thesis. Specifically,
the following section highlights the main innovation directions introduced by the
proposed methodological framework and drawing tools. Finally, the last section
reports the future research insights, based on the results of this thesis.

6.1. Thesis Overview
The doctoral thesis “Cross-Layer Rapid Prototyping and Synthesis of Application-
Specific and Reconfigurable Many-accelerator Platforms” introduced new architec-
tural templates and innovative design approaches in order to provide solutions to
modern design problems of integrated systems-on-chip devices. The target of this
thesis is twofold, technological and commercial. The thesis aims to contribute to
competitive solutions, which both promise to obey to market trends and to be sus-
tainable, regarding the scaling in technology, semiconductor material, design tools
and development time. This approach is accomplished by developing a holistic
methodological framework which categorizes design levels and suggests distinct
and non-overlapping optimization procedures. Alongside, the thesis proposes ar-
chitectural templates that are consistent with commercial directions, offering el-
evated systemic complexity, low design and verification time and a set of meta-
characteristics, such as reliability, reprogramming and adaptability, which marks a
milestone in transition to the new generation of integrated semiconductor systems.
Basic direction of this generation is to bridge the gap of design complexity and
technological productivity, which is achieved by diagonal design coursing, between
the two perpendicular axes of development, the technological and the commercial
one. The contributions per chapter are enumerated as follows:

1. We developed a new methodological framework for rapid virtual prototyping
of embedded systems and systems that combine general purpose processors

199

6

200 6. Conclusions and Future Directions

with hardware accelerators (Chapter 2). This framework proposes the adop-
tion of virtual models of hardware components during the design phase to
ensure a functional level of the platform for software development. This new
co-design approach makes it possible to start software development, testing
and debugging much earlier than is was possible in the past with conventional
sequential co-design methodologies. The proposed methodology is verified by
evaluation scenarios ranging from the design of specialized processing cores,
to the HW/SW co-design of heterogeneous embedded systems [1, 2].

2. We introduced a framework for effective hardware/software co-design and
partitioning flow for heterogeneous systems (Section 3.3). The template of
such systems includes general purpose processors and reconfigurable logic.
The partitioning task is based on an application characterization process. The
innovation introduced in this context deals with the multi-objective and sys-
temic analysis of the applications, in order to select the right decision for
placement of each processing task to the optimum processing resource, e.g.
Software-CPU/Hardware-FPGA. The proposed systematic methodology exam-
ines the computational complexity, the memory requirements (storage size
and variables data life) as well as the communication costs, to find the opti-
mal coarse-grained accelerators architecture as a means of accelerating. This
approach was used in the design of a heterogeneous system, which supports
autonomous navigation in space robotic vehicles through the use of com-
puter vision algorithms. The implemented system manages to achieve the
standards set by the ESA organization through the design of specialized hard-
ware accelerators, according to the co-design and partitioning suggestions of
the proposed framework [3–5].

3. We proposed a methodology and the corresponding design tools for evaluating
the three-dimensional semiconductor integration technology (3-D), using con-
ventional commercial CAD design tools (Section 3.4). The proposed approach
introduces new design tools that manage to insert the constraints posed by
the third dimension in the conventional 2-D tools. Most of the developed tools
uses open formats in order to provide a competitive advantage over the limited
industrial propriety 3-D design tools. The framework was used in designing
3-D SoC systems for signal processing, based on the embedded processors
Leon 3 and OpenRISC, on technology nodes of TSMC 45nm and 130nm. The
adoption of 3-D design approach reported energy savings of 20% compared
to the conventional two-dimensional implementation.and optimization of the
maximum operating frequency up to 1,26× [1, 6–8].

4. We developed an effective and rapid solution to the placement problem for
reconfigurable architectures (Chapter 4). The proposed placement algorithm
uses genetic algorithms to efficiently explore the solutions space. Alongside
the proposed placement tool, by exploiting the inherent parallelism of genetic
algorithm, achieves optimal scaling on modern multicore processors, using a
coarse-grain programming parallelism. To improve the quality of placement
solutions, the proposed methodological framework uses an investigative stage

6.1. Thesis Overview

6

201

of the parameters of the genetic algorithm, adapted to the respective appli-
cation. The experimental results verified the superiority of the proposed tool
compared to existing tools, reporting solutions which either being explored
faster by a factor of up to 67×, or provide qualitative regarding the operating
frequency of 1.16×. The introduced algorithm also maintains steady scaling
regarding to the memory footprint and computational resource requirements.

5. We introduced a systematic framework which proposes automated exploration
of the micro-architecture of a system-on-chip, in order to minimize the ther-
mal profile and therefore increase the reliability of the integrated circuit (Sec-
tion 3.1). The framework recognizes the problem of power density, i.e. the
increased temperature at the places of an IC, where there is a lot of resources
activity and small area to dissipate the cumulative energy. This problem leads
to continuous strain of a particular silicon surface, due to high temperature
values. The framework propose the selective replication of hardware modules
that face the aforementioned problem, and through the design of a dedicated
real-time controller, the implemented system is capable of maintaining a con-
stant thermal profile per application. At run-time the controller schedules
the processes at the replica copies, based on their temperature values. The
experimental results from the application of the proposed approach in the de-
sign of a software defined radio system (SDR), showed that the framework
can achieve an average reduction of 17 degrees Kelvin. Such reduction im-
plies an increase of aging phenomena of about 14% with a silicon overhead
of only 15% [9, 10].

6. We developed a new architectural template for coarse-grained many-accelerator
systems in reconfigurable platforms (Section 5.1). Through measurements it
was established that the main problem for the development of such accel-
erators is both their efficient programming and limited the available on-chip
memory of FPGA devices. Specifically, through this work, it is stressed that
although the research community indicate the adequate energy as the biggest
problem in designing mass accelerator systems (Dark Silicon) [11, 12]. How-
ever, the problem of limited on-chip memory, even in modern FPGAs, can
lead to systems with a 2.5-fold fewer accelerators, relative to the maximum
tolerable threshold posed by thermal and energy profiles. The major cause of
this problem is the static memory allocation of FPGAs drawing tools. To this
end, the proposed framework proposes the adoption of high-level synthesis
tools for the abstract programming and flexible time-management of multi-
ple processes for many-accelerator systems. Also we developed a dynamic
memory library to overcome the obstacle of the static binding memory. The
proposed framework was applied in modern applications of high-performance
computing (HPC) on the mature industrial HLS tool for FPGAs, the Xilinx Vi-
vado HLS and managed to increase the accelerators density at 3.8× and thus
the system throughput by 3.1× and 21.4× for shared and private memory
among the accelerators, respectively [13, 14].

7. We introduced an architectural model and the corresponding programming

6

202 6. Conclusions and Future Directions

environment for scalable design solutions in data centers and workstations
(Section 5.2). The framework is based on MapReduce framework and tar-
gets the design of processing nodes in distributed systems that process large
amounts of data. In particular, we developed a design flow for many-accelerator
systems that utilize the MapReduce framework on FPGA devices. The ap-
proach is evaluated with a high-end FPGA device and it is compared with a
typical workstation. The test-case proved the effectiveness of the proposed
solution, by reporting twofold less energy consumption for the same process-
ing load and timing window [15].

6.2. Future Directions
In this dissertation, viable scaling architecture solutions were presented. The pro-
posed design flows and tools can sustain efficiently the requirements posed by
the contemporary age, denoted as “Internet-of-Things”, “Cyber-Physical Systems”,
“Systems-on-Systems” era etc., i.e. high performance per watt, reconfigurability,
application adaptability, heterogeneity and systemic synthesis. Meeting such di-
verse and contradictory specifications has been the major motivation and, at the
same time, the major hindrance in this dissertation. Given the continuous advances
in market needs and the time frame at our disposal, a number of open issues in
this dissertation work remain. We highlight the major research insights, steamed
from this dissertation, in accordance to research activities of Microprocessors and
Digital Systems Laboratory, NTUA, as follows:

• Extending virtual prototyping at operating system level, enabling early verifi-
cation of software applications that depend on the operating system libraries.
Such an extension could enable the debugging and verification in specific late
operating system scenarios, i.e. booting-up the system, running application
for some seconds/minutes and freezing-up the OS in order to explicitly test
the under-development hardware module against specific OS-related events,
e.g. interrupts from external devices.

• Combined optimization of temperature, energy consumption and reliability in
the genetic algorithm for the FPGA placement problem, in order to investigate
the search space at every execution step.

• Supporting partial-reconfiguration in the proposed placement tool to support
self-adaptability of FPGA devices to dynamic operating conditions. The pro-
posed placement tool, i.e. GENESIS, has built-in codebase to support the
partial-reconfiguration feature by keeping fragmented areas for the target
FPGA. The tool can be extended with a run-time partial-reconfiguration con-
troller that adapts pre-configure bitstreams according to dynamic environ-
mental changes, i.e. temperature, power supply, radiation profile etc.

• Supporting multiple supply voltage islands in three-dimensional integration
technology architectures, to support low energy and thermal efficiency, so as
to balance low heat dissipation problem of 3-D circuits.

6.2. Future Directions

6

203

• Combined exploration of parameters of dynamic memory management at
hardware level ,to support optimal adaptation of memory subsystem in data
requirements of dynamic applications on many-accelerators systems.

• Developing an automated exploration methodology of high level synthesis pa-
rameters for many-accelerator architectures, in order to associate the solution
space with the HLS optimization parameters. A prior case study has shown
that a carefull selection of HLS parameters can eliminate the search space
by 34× [6, 16]. However the framework lacks a heuristic approach for guid-
ing the pruning of search space. An early idea on this direction involves the
training of neural networks with HLS micro-architecture optimization patters.

• Integrating dynamic memory manager to the MapReduce environment for
workstation applications and data centers, in order to support flexible data
transfer techniques with custom memory footprint on the real needs of the
dynamic application and therefore increasing performance per watt. The key
idea of this insight is the transparent adaptation of on-chip FPGA memory,
i.e. BRAMs, to the MapReduce API calls, through High-Level-Synthesis design
flow, i.e. apply the proposed DMM-HLS framework to support the complex
data-types (e.g. linked lists) of MapReduce codebase.

References

6

205

References
[1] D. Diamantopoulos, E. Sotiriou-Xanthopoulos, K. Siozios, G. Economakos, and

D. Soudris, Plug&chip: A framework for supporting rapid prototyping of 3d
hybrid virtual socs, ACM Trans. Embed. Comput. Syst. 13, 168:1 (2014).

[2] D. Diamantopoulos, K. Siozios, E. Sotiriou-Xanthopoulos, G. Economakos, and
D. Soudris, Hvsocs: A framework for rapid prototyping of 3-d hybrid virtual
system-on-chips, in Parallel and Distributed Processing SymposiumWorkshops
PhD Forum (IPDPSW), 2013 IEEE 27th International (2013) pp. 2194–2199.

[3] I. Kostavelis, L. Nalpantidis, E. Boukas, M. A. Rodrigalvarez, I. Stamoulias,
G. Lentaris, D. Diamantopoulos, K. Siozios, D. Soudris, and A. Gasteratos,
Spartan: Developing a vision system for future autonomous space exploration
robots, Journal of Field Robotics 31, 107 (2014).

[4] D. Diamantopoulos, K. Siozios, G. Lentaris, D. Soudris, and M. Rodrigalvarez,
Spartan project: On profiling computer vision algorithms for rover navigation,
in Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on
(2012) pp. 174–181.

[5] G. Lentaris, D. Diamantopoulos, K. Siozios, D. Soudris, and M. Rodrigalvarez,
Hardware implementation of stereo correspondence algorithm for the exo-
mars mission, in Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on (2012) pp. 667–670.

[6] D. Diamantopoulos, I. Galanis, K. Siozios, G. Economakos, and D. Soudris,
A framework for rapid system-level synthesis targeting to reconfigurable plat-
forms, in Workshop on Reconfigurable Computing (WRC), 2015, Netherlands.

[7] D. Diamantopoulos, K. Siozios, and D. Soudris, Framework for performing
rapid evaluation of 3d socs, Electronics Letters 48, 679 (2012).

[8] D. Diamantopoulos, K. Siozios, D. Bekiaris, and D. Soudris, A novel method-
ology for architecture-level exploration of 3d socs, in Design Technology of
Integrated Systems in Nanoscale Era (DTIS), 2011 6th International Confer-
ence on (2011) pp. 1–6.

[9] D. Diamantopoulos, K. Siozios, S. Xydis, and D. Soudris, A systematic method-
ology for reliability improvements on soc-based software defined radio sys-
tems, VLSI Des. 2012, 13:13 (2012).

[10] D. Diamantopoulos, K. Siozios, S. Xydis, and D. Soudris, Thermal optimiza-
tion for micro-architectures through selective block replication, in Embedded
Computer Systems (SAMOS), 2011 International Conference on (2011) pp.
59–66.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
Dark silicon and the end of multicore scaling, in Proceedings of the 38th Annual

http://dx.doi.org/ 10.1145/2661634
http://dx.doi.org/10.1109/IPDPSW.2013.202
http://dx.doi.org/10.1109/IPDPSW.2013.202
http://dx.doi.org/10.1002/rob.21484
http://dx.doi.org/ 10.1109/AHS.2012.6268647
http://dx.doi.org/10.1109/FPL.2012.6339173
http://dx.doi.org/10.1109/FPL.2012.6339173
http://dx.doi.org/ 10.1049/el.2012.1321
http://dx.doi.org/ 10.1109/DTIS.2011.5941425
http://dx.doi.org/ 10.1109/DTIS.2011.5941425
http://dx.doi.org/ 10.1109/DTIS.2011.5941425
http://dx.doi.org/10.1155/2012/784945
http://dx.doi.org/10.1109/SAMOS.2011.6045445
http://dx.doi.org/10.1109/SAMOS.2011.6045445
http://dx.doi.org/10.1145/2000064.2000108

6

206 References

International Symposium on Computer Architecture, ISCA ’11 (ACM, New York,
NY, USA, 2011) pp. 365–376.

[12] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, Toward dark silicon
in servers, Micro, IEEE 31, 6 (2011).

[13] D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris, Mitigating memory-
induced dark silicon in many-accelerator architectures, Computer Architecture
Letters PP, 1 (2015).

[14] D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris, Dynamic mem-
ory management in vivado-hls for scalable many-accelerator architectures, in
Applied Reconfigurable Computing, Lecture Notes in Computer Science, Vol.
9040, edited by K. Sano, D. Soudris, M. Hübner, and P. C. Diniz (Springer
International Publishing, 2015) pp. 117–128.

[15] D. Diamantopoulos and C. Kachris, High-level synthesizable dataflow mapre-
duce accelerator for fpga-coupled data centers, in Embedded Computer Sys-
tems (SAMOS), 2015 International Conference on (2015).

[16] I. Koutras, K. Maragos, D. Diamantopoulos, K. Siozios, and D. Soudris, A
framework for rapid system-level synthesis targeting to reconfigurable plat-
forms, Integration, the VLSI Journal, under review process .

http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/MM.2011.77
http://dx.doi.org/ 10.1109/LCA.2015.2410791
http://dx.doi.org/ 10.1109/LCA.2015.2410791
http://dx.doi.org/10.1007/978-3-319-16214-0_10

List of Publications

Book Chapters
1. D. Diamantopoulos, K. Siozios, G. Economakos, and D. Soudris, “Chapter 9
On Designing 3-D Platforms”, in “Designing 2D and 3D Network-on-Chip Ar-
chitectures”, pp.209-236, doi:10.1007/978-1-4614-4274-5_9,
Springer, 2014.

Journals
7. D. Diamantopoulos, S. Xydis, K. Siozios, D. Soudris, “Mitigating Memory-induced
Dark Silicon in Many-Accelerator Architectures,” IEEE Computer Architecture
Letters , vol.PP, no.99, pp.1,1 doi: 10.1109/LCA.2015.2410791, March 2015.

6. D. Diamantopoulos, K. Siozios, S. Xydis, D. Soudris. “GENESIS: Parallel Ap-
plication Placement onto Reconfigurable Architectures (Invited for the Special
Issue on Runtime Management).” ACM Transactions on Embedded Computing
Systems (TECS) vol. 14, no. 1: 18, doi: 10.1145/2629651, January 2015.

5. I. Kostavelis, L. Nalpantidis, E. Boukas, M. Aviles Rodrigalvarez, I. Stamoulias,
G. Lentaris, D. Diamantopoulos, K. Siozios, D. Soudris, A. Gasteratos.
“SPARTAN: Developing a vision system for future autonomous space explo-
ration robots.” Journal of Field Robotics vol. 31, no. 1, pp.107-140.
doi:10.1002/rob.21484, 2014.

4. E. Sotiriou-Xanthopoulos, D. Diamantopoulos, K. Siozios, G. Economakos, D.
Soudris. “A framework for rapid evaluation of heterogeneous 3-D NoC ar-
chitectures.” Elsevier Microprocessors and Microsystems vol. 38, no. 4, pp.
292-303, doi:10.1016/j.micpro.2013.09.003, June 2014.

3. D. Diamantopoulos, E. Sotiriou-Xanthopoulos, K. Siozios, G. Economakos, D.
Soudris. “Plug&Chip: A Framework for Supporting Rapid Prototyping of 3D
Hybrid Virtual SoCs”. ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 5s, Article 168, pp. 1-25, 25 pages,
doi:10.1145/2661634, December 2014.

2. D. Diamantopoulos, K. Siozios, D. Soudris, “Framework for performing rapid
evaluation of 3D SoCs,” IET Electronics Letters, vol.48, no.12,
pp.679,681, doi: 10.1049/el.2012.1321, June 2012.

207

208 References

1. D. Diamantopoulos, K. Siozios, S. Xydis, and D. Soudris. “A systematic method-
ology for reliability improvements on SoC-based software defined radio sys-
tems”, Hindawi VLSI Design, Article ID 784945, doi:10.1155/2012/784945,
15 pages, January 2012.

International Conferences
16. D. Diamantopoulos, C. Kachris. ”High-level Synthesizable Dataflow MapRe-

duce Accelerator for FPGA-coupled Data Centers”, Embedded Computer Sys-
tems (SAMOS), 2015 International Conference on, Accepted for publication.
To be presented in July 2015.

15. D. Diamantopoulos, S. Xydis, K. Siozios, D. Soudris. ”Dynamic memory man-
agement in Vivado-hls for scalable many-accelerator architectures.” In Applied
Reconfigurable Computing (ARC), pp. 117-128. Springer International Pub-
lishing, March 2015.

14. E. Sotiriou-Xanthopoulos, D. Diamantopoulos, G. Economakos. ”Evaluation of
High-Level Synthesis Techniques for Memory and Datapath Tradeoffs in FPGA
Based SoC Architectures.” In Applied Reconfigurable Computing (ARC), pp.
321-330. Springer International Publishing, March 2015.

13. K. Siozios, P. Figuli, H. Sidiropoulos, C. Tradowsky, D. Diamantopoulos, K.
Maragos, S. Percy Delicia, D. Soudris, J. Becker. ”TEAChER: TEach AdvanCEd
Reconfigurable Architectures and Tools.” In Applied Reconfigu-rable Comput-
ing (ARC), pp. 103-114. Springer International Publishing, March 2015.

12. G. Lentaris, I. Stamoulias, D. Diamantopoulos, K. Maragos, K. Siozios, D.
Soudris, M. Aviles Rodrigalvarez, M. Lourakis, X. Zabulis, I. Kostavelis, L. Nal-
pantidis, E. Boukas, A. Gasteratos, ”SPARTAN/SEXTANT/COMPASS: Advanc-
ing Space Rover Vision via Reconfigurable Platforms.” In Applied Reconfig-
urable Computing (ARC), pp. 475-486. Springer International Publi-shing,
March 2015.

11. D. Diamantopoulos, G. Economakos, D. Reisis, ”Using high-level synthesis to
build memory and datapath optimized DSP accelerators,” Electronics, Cir-
cuits and Systems (ICECS), 2014 21st IEEE International Conference on,
pp.714,717, doi: 10.1109/ICECS.2014.7050085, December 2014.

10. D. Diamantopoulos, C. Economakos, D. Soudris, G. Economakos, ”A new de-
sign paradigm for floating point DSP applications based on ESL/HLS and FP-
GAs,” Signal Processing and Information Technology (ISSPIT), 2013 IEEE In-
ternational Symposium on, pp.000404,000409, 12-15,
doi: 10.1109/ISSPIT.2013.6781915, December 2013.

9. D. Diamantopoulos, K. Siozios, E. Sotiriou-Xanthopoulos, G. Economakos, D.
Soudris, ”HVSoCs: A Framework for Rapid Prototyping of 3-D Hybrid Virtual

References 209

System-on-Chips,” Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2013 IEEE 27th International,
pp.2194,2199, 20-24, doi: 10.1109/IPDPSW.2013.202, May 2013.

8. G. Lentaris, D. Diamantopoulos, G. Stamoulias, K. Siozios, D. Soudris, M.A.
Rodrigalvarez, ”FPGA-based path-planning of high mobility rover for future
planetary missions,” Electronics, Circuits and Systems (ICECS), 2012 19th
IEEE International Conference on, pp.85,88,
doi: 10.1109/ICECS.2012.6463793, December 2012.

7. D. Diamantopoulos, K. Siozios, G. Lentaris, D. Soudris, M.A. Rodrigalvarez,
”SPARTAN project: On profiling computer vision algorithms for rover naviga-
tion,” Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on,
pp.174,181, doi: 10.1109/AHS.2012.6268647, June 2012.

6. G. Lentaris, D. Diamantopoulos, K. Siozios, D. Soudris, M.A. Rodrigalvarez,
”Hardware implementation of stereo correspondence algorithm for the Exo-
Mars mission,” Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on , pp.667,670,
doi: 10.1109/FPL.2012.6339173, August 2012.

5. D. Diamantopoulos, P. Galiatsatos, A. Karachalios, G. Lentaris, D. Reisis, D.
Soudris, ”Configurable baseband digital transceiver for Gbps wireless 60 GHz
communications,” Electronics, Circuits and Systems (ICECS), 2011 18th IEEE
International Conference on, pp.192,195,
doi: 10.1109/ICECS.2011.6122246, December 2011.

4. E. Sotiriou-Xanthopoulos, D. Diamantopoulos, G. Economakos, D. Soudris,
”Design and experimentation with low-power morphable multipliers,” Elec-
tronics, Circuits and Systems (ICECS), 2011 18th IEEE International Confe-
rence on , vol., no., pp.752,755, doi: 10.1109/ICECS.2011.6122383, Decem-
ber 2011.

3. K. Siozios, D. Diamantopoulos, I. Kostavelis, E. Boukas, L. Nalpantidis, D.
Soudris, A. Gasteratos, M. Aviles, I. Anagnostopoulos, “SPARTAN project: Ef-
ficient implementation of computer vision algorithms onto reconfigurable plat-
form targeting to space applications,” in Proceedings of the 6th Internatio-nal
Workshop on Reconfigurable Communication-centric Systems-on-Chip (Re-
CoSoC), doi: 10.1109/ReCoSoC.2011.5981524, pp.1,9, June 2011.

2. D. Diamantopoulos, K. Siozios, S. Xydis, D. Soudris, ”Thermal optimization
for micro-architectures through selective block replication,” Embedded Com-
puter Systems (SAMOS), 2011 International Conference on, pp.59,66,
doi: 10.1109/SAMOS.2011.6045445, July 2011.

1. D. Diamantopoulos, K. Siozios, D. Bekiaris, D. Soudris, ”A novel methodology
for architecture-level exploration of 3D SoCs,” Design & Technology of Inte-

210 References

grated Systems in Nanoscale Era (DTIS), 2011 6th International Conference
on, pp.1,6, doi: 10.1109/DTIS.2011.5941425, April 2011

International Workshops
13. D. Diamantopoulos, I. Galanis, K. Siozios, G. Economakos, and D. Soudris,

“A Framework for Rapid System-Level Synthesis Targeting to Reconfigurable
Platforms”, Workshop on Reconfigurable Computing (WRC), 2015.

12. D. Diamantopoulos, K. Siozios, E. Sotiriou-Xanthopoulos, G. Economakos and
D. Soudris, “HVSoCs: A Framework for Rapid Prototyping of 3-D Hybrid Virtual
System-on-Chips”, Workshop on Virtual Prototyping of Parallel and Embedded
Systems (VIPES), May 20-24th, 2013.

11. D. Diamantopoulos, P. Galiatsatos, A. Karachalios, G. Lentaris, D. Reisis and
D. Soudris, A Reconfigurable Baseband Architecture for Gbps Wireless 60 GHz
Communications, Fifth Friday Workshop on Designing for Embedded Parallel
Computing Platforms (DEPCP), March 22, 2013, Grenoble, France.

10. G. Lentaris, D. Diamantopoulos, K. Siozios, I. Stamoulias, I. Kostavelis, E.
Boukas, L. Nalpantidis, D. Soudris, A. Gasteratos, and M. Aviles, “SPAR-
TAN: Efficient Implementation of Computer Vision Algorithms for Autonomous
Rover Navigation”, Workshop on Reconfigurable Computing (WRC), Jan. 2013,
Germany.

9. G. Lentaris, I. Stamoulias, D. Diamantopoulos, K. Siozios, and D. Soudris, “An
FPGA implementation of the SURF algorithm for the ExoMars program-me”,
Workshop on Reconfigurable Computing (WRC), Jan. 2013, Germany.

8. D. Diamantopoulos, K. Siozios, and D. Soudris, “A Framework for Performing
Fault-Tolerant Placement Based on Genetic Algorithm”, Workshop on Recon-
figurable Computing (WRC), Jan. 2013, Germany.

7. D. Diamantopoulos, K. Siozios, S. Xydis and D. Soudris, A genetic algorithm-
based FPGA placer for multi-core processors, Fifth Friday Workshop on De-
signing for Embedded Parallel Computing Platforms (DEPCP), March 22, 2013,
Grenoble, France

6. D. Diamantopoulos, K. Siozios, I. Stamoulias, G. Lentaris, D. Soudris and M.
Aviles, Towards Computer Vision FPGA Acceleration, DATE FridayWorkshop on
Reconfigurable Computing (Configcomp), March 22, 2013, Grenoble, France.

5. D. Diamantopoulos, K. Siozios, S. Xydis and D. Soudris, “A Framework for Sup-
porting Parallel Application Placement onto Reconfigurable Platforms”, Work-
shop on Parallel Programming and Run-time Management Techniques for
Many-core Architectures (PARMA), Jan. 2013.

References 211

4. K. Siozios, H. Sidiropoulos, D. Diamantopoulos, P. Figuli, D. Soudris, M. Hub-
ner and J. Becker, “On Designing Self-Aware Reconfigurable Platforms”, Work-
shop on Self-Awareness in Reconfigurable Computing Systems (SRCS), pp.
14-17, Norway, 2012.

3. D. Diamantopoulos, G. Lentaris, K. Siozios, D. Soudris and M. Aviles, “Towards
Accelarating Computer Vision Algorithms Targeting to Space Applications with
a Heterogeneous Platform”, Friday Workshop on Designing for Embed-ded
Parallel Computing Platforms: Architectures, Design Tools, and Applications
at DATE 2012, Germany, 2012.

2. K. Siozios, D. Diamantopoulos, H. Sidiropoulos, A. Papanikolaou, and D. Soudris,
Rapid Evaluation of 3-D Interconnection Schemes , DATE 2011 3D Integration
Workshop, Grenoble, 2011, France.

1. M. Aviles, K. Siozios, D. Diamantopoulos, L. Nalpantidis, I. Kostavelis, E. Boukas,
D. Soudris and A. Gasteratos, A Co-design Methodology for Imple-menting
Computer Vision Algorithms for Rover Navigation onto Reconfigu-rable Hard-
ware,Workshop on Computer Vision on Low-Power Reconfigurable Architec-
tures, International Conference on Field Programmable Logic and Applica-
tions, Sept. 2011, Chania, Greece.

Awards
6. Cadence Design Systems: 2፧፝ award at contest “Cadence Thesis Contest for
Automotive Embedded Systems”, 2013.

5. Best Paper Award at 4th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures (PARMA) January 23,
2013, Berlin, Germany.

4. University Booth on Conference IEEE International Conference on Design Au-
tomation and Test in Europe (DATE 2013).

3. Journal Invitation “ACM Transactions on Embedded Computing Systems (TECS)”
λόγω υψηλής βαθμολογίας κρίσης εργασίας στο “Workshop on Virtual Proto-
typing of Parallel and Embedded Systems (VIPES), 2013”

2. University Booth at conference IEEE International Conference on Design Au-
tomation and Test in Europe (DATE 2012).

1. HiPEAC: Grant for “International Summer School (7 days) on Advanced Com-
puter Architecture and Compilation for High-Performance and Embedded Sys-
tems”, Fiuggi, Italy, July 2011.

Curriculum Vitae

Dionysios Diamantopoulos born on February 12 of 1985 in Athens. After having
national exams at the Lyceum Pylos Messinia, he was accepted in the Department of
Computer Engineering and Informatics, Faculty of Engineering, University of Patras.
In 2009 he received from that institution his diploma in Computer Engineering and
Informatics.

In 2009 he was admitted to the PhD program of the School of Electrical and Com-
puter Engineering, National Technical University. At the same time he joined the
Microprocessors and Digital Systems Laboratory and he pursued his doctoral thesis
in the research field of reconfigurable & application-specific embedded systems,
under the supervision of Prof. Dimitrios Soudris.

From 2009 he works as a researcher at the Institute of Communication Systems &
Computer Systems (ICCS) in European research projects. Also he has been work-
ing as a principal investigator in research projects of the European Space Agency
(ESA) as well as in research projects of the National Strategic Reference Framework
(NSRF). The aforementioned activities have provided financing of his doctoral thesis
from European and national funds.

Up to date, Dionysios has published seven (7) articles in international scientific jour-
nals of IEEE, ACM, Elsevier and Hindawi and twenty-nine (29) papers in international
conferences and workshops. From his publications he has received fourteen (14)
citations. He has also co-supervised seven (7) undergraduates diploma theses. Ad-
ditionally. Moreover he offers referee services to the research communities IEEE
and ACM in international conferences and journals.

His research interests include reconfigurable architectures, the multi-objective opti-
mization algorithms for EDA tools, the architectures for many-accelerators platforms
and the technical high level synthesis for reconfigurable heterogeneous platforms.

Dionysios is a member of the Technical Chamber of Greece (TEE), European HiPEAC
organization and the scientific community IEEE.

213

	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Thesis Research Background
	Dissertation Overview
	Chapters Organization

	titleReferences

	Rapid Prototyping Exploiting Hybrid-Virtual System-on-Chips
	Research Motivation for Virtual Prototyping
	Existing approaches for system modeling with virtual platforms
	Communication between Host PC and Virtual Platform
	Communication between Virtual Platform and Target Hardware

	Prototyping Methodology
	HotTalk API: Host2VP and VP2HW Communication Infrastructure
	Host2VP
	VP2HW
	Implementation of the HotTalk FPGA Transactor

	Evaluation of 3-D Embedded Systems
	Pre-processing
	3-D Stack Generation
	3-D System Prototyping

	Experimental Results
	Evaluation of Communication Infrastructure
	Evaluating the 3-D OpenRISC
	Apply Plug&Chip to a Heterogeneous Embedded System - The SPARTAN Project

	Conclusion
	titleReferences

	Cross-Layer Synthesis of Heterogenous Architectures
	Thermal and Reliability Aware SDR Architectures
	Introduction
	Target SDR Architecture
	Motivation
	Micro-Architectural Considerations
	Proposed Methodology
	Architecture Synthesis
	Area Filtering
	Timing Filtering
	Thermal Filtering

	Experimental Results
	Impact of Selective Replication on Temperature
	Impact of Temperature on Reliability
	On designing chip multiprocessors for SDR

	Conclusions

	Heterogenous Network-on-Chip Multimedia Architectures
	Introduction
	Architecture of the Proposed Interconnection Scheme
	Designing 2-D and 3-D Routers

	Proposed Methodology
	3-D Integration
	Pre-processing Step
	3-D Stack Generation
	3-D System Prototyping

	Experimental Results
	Conclusions

	Space Critical Systems
	Introduction
	Architecture of SPARTAN System
	Hardware/Software Co-Design Methodology
	Phase 1: Algorithmic analysis
	Phase II: Platform Independent Optimizations and Modifications
	Phase III: Software-Supported Profiling
	Phase IV: HW/SW Co-Design
	Phase V: Platform Dependent Optimizations

	Experimental Results
	Overall profiling results
	Data Life-Time
	Estimations about HW/SW Partitioning
	Data-flow Analysis

	Conclusions

	3-D Integration for Digital Signal Processing SoC Architectures
	Introduction
	Proposed Framework
	Experimental Results
	Conclusion

	titleReferences

	Computer-Aided Design Tools for Reconfigurable Platforms
	Introduction
	Related Work
	The Proposed Design Framework
	GENESIS Evolutionary Placement
	Selection
	Mating
	Crossover
	Mutation

	GENESIS Coarse-grain Parallelism Engine

	Application-Aware Tuning of GENESIS Evolutionary Placement
	Application Level Clustering
	Cluster Level Exploration for Optimal Configuration Extraction

	Experimental Results
	Conclusion
	titleReferences

	Architectural Synthesis of Reconfigurable Many-Accelerator Systems
	Architectural template and programming interface for M.A. systems
	Introduction - Research motivation for M.A. systems
	DMM-HLS for Many-Accelerator FPGAs
	Evaluation
	Conclusions

	Scaling many-accelerator systems to workstations
	Introduction
	HLSMapReduceFlow Architecture
	Phoenix MapRecude Framework
	Dataflow FPGA-based Acceleration
	HLSMapReduceFlow Methodology for Vivado-HLS
	Vivado-HLS Limitations for MapRecude

	Experimental Results
	Conclusions

	titleReferences

	Conclusions and Future Directions
	Thesis Overview
	Future Directions
	titleReferences

	List of Publications
	Curriculum Vitae

