
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. Dehollain, présidente du jury
Dr M. Mattavelli, directeur de thèse

Prof. J. Castrillon, rapporteur
Dr L. Morel, rapporteur

Prof. A. Burg, rapporteur

Systematic Design Space Exploration of Dynamic Dataflow
Programs for Multi-core Platforms

THÈSE NO 7607 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 17 MARS 2017

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
GROUPE SCI STI MM

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2017

PAR

Małgorzata Maria MICHALSKA

Those who sow with tears

will reap with songs of joy.

(Psalm 126:5)

To my husband Mirosław for reminding me

about the things that really matter . . .

Acknowledgements

The work described in this dissertation would not have been accomplished without the pre-

cious support of many people. I would like to express my sense of gratitude to some of them

in particular.

I would like to thank Dr. MER Marco Mattavelli for his constant supervision of my work. The

relationship between a student and a supervisor includes some elements of a lead, guidance,

advice, help and criticism. It is the constructive criticism that I especially appreciate and that I

will take with me for future challenges.

I deeply appreciate the collaboration with Prof. Nicolas Zufferey from University of Geneva. I

am thankful for all the discussions and common publications providing valuable contributions

to my thesis. For such smaller or bigger contributions, I would like to thank everyone I had a

pleasure to collaborate with.

I would like to thank all past and current members of SCI-STI-MM lab. Especially, I would like

to thank my colleagues from the former ELG 138 office: Dr. Junaid Ahmad, Dr. Endri Bezati

and Dr. Simone Casale Brunet. I appreciate your time, patience and understanding.

I am thankful to my family and friends supporting me during these intensive years of work.

Thank you for believing in me, even in my own moments of doubt.

Finally, I would like to thank the Swiss National Science Foundation for founding my research.

Lausanne, 27th February 2017 Małgorzata Michalska

i

Abstract
The limitations of clock frequency and power dissipation of deep sub-micron CMOS tech-

nology have led to the development of massively parallel computing platforms. They consist

of dozens or hundreds of processing units and offer a high degree of parallelism. Taking

advantage of that parallelism and transforming it into high program performances requires

the usage of appropriate parallel programming models and paradigms. Currently, a common

practice is to develop parallel applications using methods evolving directly from sequential

programming models. However, they lack the abstractions to properly express the concurrency

of the processes. An alternative approach is to implement dataflow applications, where the

algorithms are described in terms of streams and operators thus their parallelism is directly

exposed. Since algorithms are described in an abstract way, they can be easily ported to

different types of platforms. Several dataflow models of computation (MoC s) have been for-

malized so far. They differ in terms of their expressiveness (ability to handle dynamic behavior)

and complexity of analysis. So far, most of the research efforts have focused on the simpler

cases of static dataflow MoC s, where many analyses are possible at compile-time and several

optimization problems are greatly simplified. At the same time, for the most expressive and

the most difficult to analyze dynamic dataflow (DDF), there is still a dearth of tools supporting

a systematic and automated analysis minimizing the programming efforts of the designer.

The objective of this Thesis is to provide a complete framework to analyze, evaluate and

refactor DDF applications expressed using the RV C −C AL language. The methodology relies

on a systematic design space exploration (DSE) examining different design alternatives in

order to optimize the chosen objective function while satisfying the constraints. The research

contributions start from a rigorous DSE problem formulation. This provides a basis for the

definition of a complete and novel analysis methodology enabling systematic performance

improvements of DDF applications. Different stages of the methodology include exploration

heuristics, performance estimation and identification of refactoring directions. All of the

stages are implemented as appropriate software tools. The contributions are substantiated

by several experiments performed with complex dynamic applications on different types of

physical platforms.

Key words: dynamic dataflow, design space exploration, performance estimation, variable

space search, heterogeneous platforms, RVC-CAL

ii

Résumé
Les limitations de la technologie CMOS sous-micron profonde en termes de fréquence d’hor-

loge et de dissipation de puissance ont conduit au développement de plates-formes de calcul

massivement parallèle. Elles se composent de dizaines voire de centaines d’unités de traite-

ment et offrent un haut degré de parallélisme. Tirer parti de ce parallélisme et le convertir

en performances élevées nécessite l’utilisation de modèles et de paradigmes de program-

mation parallèle appropriés. Actuellement, une pratique courante consiste à développer des

applications parallèles en utilisant des méthodes dérivant directement de modèles de program-

mation séquentielle. Cependant, celles-ci manquent d’abstractions permettant d’exprimer

correctement la concurrence des processus. Une autre approche consiste à implémenter des

applications dites de flux de données, dans lesquelles les algorithmes sont décrits en termes de

flux et d’opérateurs, leur parallélisme étant ainsi directement exposé. Puisque les algorithmes

sont décrits de façon abstraite, ils peuvent être facilement portés vers différents types de

plates-formes. À ce jour, plusieurs modèles de calcul de flux de données ont été formalisés.

Ils diffèrent en termes d’expressivité (capacité à gérer le comportement dynamique) et de

complexité de l’analyse. Jusqu’à présent, la plupart des efforts de recherche se sont concentrés

sur les cas de modèles statiques, plus simples, dans lesquels de nombreuses analyses sont

possibles à la compilation et plusieurs problèmes d’optimisation sont grandement simplifiés.

Or, pour les flux de données dynamiques, qui sont plus expressifs et plus difficiles à analyser,

il existe toujours une pénurie d’outils supportant une analyse systématique et automatisée

minimisant les efforts de programmation du développeur. L’objectif de cette thèse est de

fournir un cadre complet pour analyser, évaluer et refactoriser les applications de flux de

données dynamiques exprimées dans le langage RVC-CAL. La méthodologie s’appuie sur une

exploration systématique de l’espace de design, examinant différentes alternatives de design,

afin d’optimiser la fonction objectif choisie tout en satisfaisant les contraintes. Les contribu-

tions à la recherche partent d’une formulation rigoureuse des problèmes d’exploration de

design. Celle-ci fournit une base pour la définition d’une méthodologie d’analyse complète

et novatrice permettant d’améliorer systématiquement les performances des applications

dynamiques. Les étapes de la méthodologie incluent l’application d’heuristiques d’explora-

tion, l’estimation des performances et l’identification de directions de refactorisation. Toutes

les étapes sont implémentées sous forme d’outils logiciel appropriés. Les contributions sont

étayées par plusieurs expériences réalisées avec des applications dynamiques complexes sur

iii

Résumé

différents types de plates-formes physiques.

Mots clefs : flux de données dynamiques, exploration de l’espace de design, estimation des

performances, espaces variables de recherche, plates-formes hétérogènes, RVC-CAL

iv

Contents
Acknowledgements . i

Abstract (English/Français) . ii

List of figures . xi

List of tables . xv

Abbreviations . xix

1 Introduction . 1

1.1 Parallel systems development . 1

1.2 Motivations and problem statement . 3

1.2.1 Design exploration . 4

1.2.2 Dataflow programming . 6

1.2.3 Problem statement . 8

1.3 Research contributions . 9

1.4 Thesis organization . 10

2 Dataflow programming . 13

2.1 Dataflow programs . 13

2.1.1 Kahn process network . 14

2.1.2 Dataflow process network . 15

2.1.3 Actor transition systems . 16

2.1.4 Dataflow programs comparison . 17

2.1.5 Dataflow concurrency . 18

2.2 Dataflow classes . 18

2.2.1 Static dataflow programs . 19

2.2.2 Cyclo-static dataflow programs . 21

2.2.3 Dynamic extensions to static dataflow programs 22

2.2.4 Dynamic dataflow programs . 25

2.3 CAL Actor Language . 25

2.3.1 CAL program . 26

2.3.2 CAL syntax . 28

2.3.3 Example . 32

2.3.4 Code generation . 34

2.3.5 RVC-CAL . 35

v

Contents

2.4 Summary and conclusions . 36

3 State-of-the-art of dataflow-oriented analysis frameworks 39

3.1 Frameworks . 39

3.2 Features . 41

3.3 Exploration heuristics . 41

3.4 RVC-CAL frameworks . 48

3.5 Design flow for dataflow programs . 50

3.6 Contributions to the state-of-the-art . 51

3.7 Summary and conclusions . 51

4 Program execution modeling . 55

4.1 Execution Trace Graph . 55

4.1.1 Firings . 56

4.1.2 Dependencies . 56

4.1.3 Example . 60

4.2 Properties . 61

4.2.1 Topological order . 63

4.2.2 Configuration-related dependencies . 63

4.2.3 Capturing the dynamic behavior . 65

4.2.4 Potential parallelism . 67

4.3 Conclusions . 68

5 Architecture modeling . 69

5.1 Abstract-to-timed translation . 69

5.2 Transport Triggered Architecture . 71

5.3 Intel 86x64 . 73

5.3.1 Processing weights . 74

5.3.2 Scheduling weights . 76

5.3.3 Communication weights . 77

5.4 Profiling accuracy . 79

5.5 Conclusions . 79

6 Design space exploration problem . 81

6.1 Related work . 81

6.2 Underlying optimization problems . 83

6.2.1 Partitioning . 83

6.2.2 Scheduling . 84

6.2.3 Buffer dimensioning . 84

6.3 Target platforms . 85

6.3.1 Homogeneous platforms . 85

6.3.2 Heterogeneous platforms . 85

6.4 Formulation of the design space exploration problem 87

vi

Contents

6.5 Problem instance sizes . 89

6.6 Conclusions . 91

7 Exploration of multiple multidimensional design spaces 93

7.1 Related work . 93

7.1.1 Design space exploration variants . 93

7.1.2 Bottlenecks in design space exploration 95

7.1.3 Variable space . 96

7.2 Multidimensional design space definition . 97

7.3 Space-to-space transition . 98

7.4 Design space quality . 99

7.5 Design space complexity . 99

7.6 Optimization scenarios . 101

7.7 Variable Space Search . 102

7.8 Conclusions . 103

8 Heuristics for design space exploration . 105

8.1 Partitioning . 106

8.1.1 Related work . 107

8.1.2 Greedy constructive procedures . 108

8.1.3 Descent local search procedures . 111

8.1.4 Tabu search . 113

8.1.5 Advanced tabu search . 115

8.1.6 Tabu search with iterative communication cost profiling 115

8.2 Buffer dimensioning . 116

8.2.1 Related work . 117

8.2.2 Notion of partitioning and scheduling configurations 118

8.2.3 Minimal and maximal buffer size estimation 119

8.2.4 Bottom-up optimization procedures . 120

8.2.5 Top-down optimization procedure . 121

8.3 Scheduling . 122

8.3.1 Related work . 124

8.3.2 Intra-actor and intra-partition scheduling policies 125

8.3.3 Scheduling cost . 127

8.4 Conclusions . 129

9 Performance estimation . 131

9.1 Related work . 131

9.2 Trace processor tool . 134

9.2.1 Atomic models . 135

9.2.2 Atomic models interaction . 136

9.2.3 Execution properties . 138

vii

Contents

9.3 Critical path analysis . 140

9.3.1 Algorithm . 140

9.4 Impact analysis . 141

9.5 Conclusions . 141

10 Experimental results . 147

10.1 Experimental set-up . 147

10.1.1 JPEG decoder . 149

10.1.2 MPEG4-SP decoder . 149

10.1.3 HEVC decoder . 150

10.1.4 Target platforms . 150

10.2 Partitioning: experiments on Transport Triggered Architecture 152

10.2.1 Methodology of experiments . 153

10.2.2 Parameters tuning . 154

10.2.3 Greedy and descent local search procedures 154

10.2.4 Tabu search . 155

10.2.5 Discussion . 159

10.3 Partitioning: experiments on Intel 86x64 platforms 160

10.3.1 Methodology of experiments . 160

10.3.2 Heuristics comparison . 161

10.3.3 Discussion . 162

10.4 Buffer dimensioning . 162

10.4.1 Bottom-up: throughput optimization with constrained resources 163

10.4.2 Top-down: resources minimization with constrained throughput 163

10.4.3 Multidimensional vs single-dimension exploration 165

10.4.4 Discussion . 165

10.5 Scheduling . 169

10.5.1 Performance potential . 169

10.5.2 Scheduling cost . 172

10.5.3 Discussion . 173

10.6 Performance estimation . 173

10.6.1 Estimation accuracy on TTA platform . 173

10.6.2 Estimation accuracy on Intel 86x64 platforms 175

10.6.3 Estimation accuracy across different platforms 177

10.6.4 Discussion . 179

10.7 Variable Space Search . 180

10.7.1 Design spaces . 180

10.7.2 Critical path and impact analysis . 183

10.7.3 Solutions in multiple spaces . 188

10.7.4 Discussion . 191

viii

Contents

10.8 Conclusions . 197

11 Conclusions . 199

11.1 Achievements of the Thesis . 200

11.2 Work extensions . 203

11.2.1 Improvements . 203

11.2.2 Open problems . 205

Bibliography . 226

Curriculum Vitae . 227

ix

List of Figures

2.1 Dataflow MoC s classes. 18

2.2 A dataflow graph with two actors, ai and a j , connected through the buffer bn .

pi ,n defines the number of tokens produced on bn during each firing of ai . c j ,n

defines the number of tokens consumed from bn during each firing of a j . . . 19

2.3 Example of a dataflow graph. 20

2.4 C AL network and actors structure. 26

2.5 Action execution model . 28

2.6 Basic dataflow program. 32

2.7 Dataflow MoC s comparison. 37

3.1 Heterogeneous system development design flow for C AL dataflow programs. 52

4.1 Example: Gantt chart. 60

4.2 ETG obtained after the execution of the C AL program from Section 2.3.3. The

set of firings S (dependencies D) is summarized in Table 2.3 (4.2), respectively. 61

4.3 ETGs of the C AL network depicted in Fig. 2.6. Dashed lines represent ad-

ditional edges that model a particular partitioning, scheduling and buffer

dimensioning configuration, as defined in different variants in Table 4.3. . . . 66

5.1 System development design flow: profiling. 70

5.2 Transport Triggered Architecture model. 72

5.3 T T A time-stamp placement: pseudocode. 73

5.4 Intel processing weights clock-cycles measurement: pseudocode. 75

5.5 T T A profiling data of a single action: collected timing data of 1600 firings. . . 76

5.6 Intel profiling data of a single action: collected timing data of 1600 firings. . . 76

5.7 Intel scheduling weights clock-cycles measurement: pseudocode. 80

6.1 The partitioning, scheduling and buffer dimensioning subproblems. 83

6.2 Homogeneous platform. 86

6.3 Heterogeneous platform. 88

xi

List of Figures

6.4 Dataflow program representations. 90

7.1 DSE example: MPEG4-SP decoder on Intel i7-3770. 101

8.1 System development design flow: design space exploration. 106

8.2 Simple network with the assigned partitioning, scheduling and buffer dimen-

sioning configurations. 119

8.3 Gantt charts for the execution of the network from Fig. 8.2 for the two buffer

size configurations. 119

8.4 Scheduling policy - illustration. 126

8.5 Sample partition with the actors to be considered by the scheduler. 128

9.1 System development design flow: performance estimation. 132

9.2 Schematic illustration of the system components and connections. 135

9.3 Atomic actor model: state transition. 143

9.4 Atomic actor partition model: state transition. 144

9.5 Components interaction and exchanged signals. 144

9.6 Communication procedure between an actor and a buffer. 145

9.7 System development design flow: bottleneck and impact analysis. 146

10.1 Extended system development design flow for C AL dataflow programs. 148

10.2 JPEG decoder: dataflow network. 149

10.3 Dataflow networks. 151

10.4 Partitioning heuristics - T T A - experimental workflow. 153

10.5 Partitioning heuristics - Intel - experimental workflow. 160

10.6 Bottom-up buffer dimensioning heuristic (MPEG4-SP Parallel decoder). . . . 164

10.7 Bottom-up buffer dimensioning heuristic (HEVC decoder, 7 cores). 165

10.8 Top-down buffer dimensioning heuristic. 166

10.9 MDS vs design B-subspace vs infinite buffer. 167

10.10 T T A platform execution. 171

10.11 Performance estimation validation - experimental workflow. 174

10.12 T T A clock-cycles comparison. 174

10.13 JPEG, machine M2 (discrepancy as % value). 176

10.14 MPEG-4 SP decoder estimation results (discrepancy as % value). 176

10.15 Estimation accuracy: different platforms. 178

10.16 Design space D0. 188

10.17 Design space D1. 189

10.18 Design space D2. 189

10.19 Design space D3. 189

10.20 Design space D4. 190

10.21 Design space D11. 190

xii

List of Figures

10.22 Design space D12. 190

10.23 Throughput improvement summary (1). 192

10.24 Throughput improvement summary (2). 193

10.25 Throughput and resources in different design spaces: summary (1). 194

10.26 Throughput and resources in different design spaces: summary (2). 195

xiii

List of Tables
2.1 K P N , DP N and AT S programs: comparison. 17

2.2 CAL lexical tokens. 29

2.3 Firings of the C AL program described in Section 2.3.3. 34

3.1 Analysis frameworks: features summary, part 1. 42

3.2 Analysis frameworks: features summary, part 2. 43

3.3 Analysis frameworks: features summary, part 3. 44

4.1 Dependencies: types, directions, parameters and additional attributes. 59

4.2 Dependencies set D of the execution trace graph depicted in Figure 4.2. . . . 62

4.3 Summary of the design points considered for the program network in Figure 2.6.

The actors: Source, Medium and Sink are denoted with Sr, Md, Sk, respectively. 64

4.4 Firings sequence of the C AL actor Separator (defined in Listing 2.2), when

two input sequences are available in its input port I: I1 = {1,2,−3,−4} and

I2 = {−5,−6,0,−7}, respectively. 65

5.1 Statistical information obtained for a single action on the T T A and Intel plat-

forms. 75

5.2 Sample communication cost data. 78

8.1 W B partitioning algorithm: sample flow. 108

8.2 BP partitioning algorithm: AW and APW settings. 110

8.3 BP partitioning algorithm: AC P settings. 110

8.4 BP partitioning algorithm: sample flow. 110

8.5 Conditions numbers updates. 128

10.1 Configurations of Intel platforms. 152

10.2 Speed-up: Greedy constructive procedures. 155

10.3 DLS Speed-up: balanced start. 155

10.4 DLS Speed-up: random start. 155

10.5 Speed-up: N (B) with balanced start. 156

10.6 Speed-up: N (B) with random start. 156

xv

List of Tables

10.7 Speed-up: N (I) with balanced start. 157

10.8 Speed-up: N (I) with random start. 157

10.9 Speed-up: N (C F) with balanced start. 157

10.10 Speed-up: N (C F) with random start. 157

10.11 Speed-up: N (R) with balanced start. 157

10.12 Speed-up: N (R) with random start. 157

10.13 PT S and JT S speed-up: balanced start. 158

10.14 PT S and JT S speed-up: random start. 158

10.15 Improvement summary. 158

10.16 Averaged time of the final improvement. 160

10.17 Platform execution speed-up: SOA approach. 161

10.18 Platform execution speed-up: BP with additional optimization procedures. . 161

10.19 Platform execution speed-up: tabu search with an iterative re-profiling proce-

dure. 161

10.20 MPEG4-SP Parallel: performance differences [FPS]. 163

10.21 HEVC: performance differences [FPS]. 163

10.22 Estimated speed-ups: balanced partitioning configurations. 169

10.23 Estimated speed-ups: random partitioning configurations. 170

10.24 Execution times NnP. 172

10.25 Execution times RR. 172

10.26 Conditions checked. 172

10.27 Conditions failed. 172

10.28 Execution time change vs the initial configuration (4 units). 175

10.29 Execution time change vs the initial configuration (5 units). 175

10.30 MPEG-4 SP Serial: estimation with the communication cost, discrepancy. . . 177

10.31 HEVC: summary of the considered design spaces. 181

10.32 HEVC: summary of the improvement achieved in various design spaces. . . . 182

10.33 Design space D0. 184

10.34 Design space D1. 184

10.35 Design space D2. 184

10.36 Design space D3. 185

10.37 Design space D4. 185

10.38 Design space D5. 185

10.39 Design space D6. 186

10.40 Design space D7. 186

10.41 Design space D8. 186

10.42 Design space D9. 187

10.43 Design space D10. 187

10.44 Design space D11. 187

xvi

List of Tables

10.45 Design space D12. 188

xvii

Abbrevations
AAA/M Algorithm Architecture Adequation Matching Methodology

ACP Average Common Predecessors

APO Average Partitioning Occupancy

APW Average Preceding Workload

AST Abstract Syntax Tree

ATS Actor Transition Systems

BDF Boolean Dataflow

BP Balanced Pipeline

BPDF Boolean Parametric Dataflow

CAL Cal Actor Language

CFDLS Communication Frequency Descent Local Search

CFG Control Flow Graph

CNnP Critical Non-Preemptive

COW Critical Outgoings Workload

CP Critical Path

CSDF Cyclo-Static Dataflow

DAG Directed Acyclic Graph

DDF Dynamic Dataflow

DEVS Discrete Event System

xix

Abbreviations

DLS Descent Local Search

DSE Design Space Exploration

ECO Earliest Critical Outgoings

EET Estimated Execution Time

EMF Eclipse Modeling Framework

ETG Execution Trace Graph

FCFS First-Come First-Served

FNL Functional unit Network Language

FSM Finite State Machine

HW Hardware

IANnP Intra-Actor Non-Preemptive

IAP Intra-Actor Preemptive

IASP Intra-Actor Scheduling Policy

IDF Integer Dataflow

IDLS Idle Descent Local Search

IPSP Intra-Partition Scheduling Policy

IR Intermediate Representation

JTS Joint Tabu Search

KPN Kahn Process Network

LTS Labeled Transition Systems

LUB Lowest Upper Bound

MCDF Mode-controlled Dataflow

MCDM Multi-Criteria Decision Making

MDE Model Driven Engineering

MDS Multidimensional Design Space

xx

Abbreviations

MMPN Multiprocessor Mappings of Process Networks

MoC Model of Computation

MOEA Multi-Objective Evolutionary Algorithms

MPSoC Multiprocessor System-on-chip

NnP Non-Preemptive

NnP/P Non-Preemptive / Preemptive swapped

NUMA Non Uniform Memory Access

ORCC Open RVC-CAL Compiler

PAPS Periodic Admissible Parallel Schedule

PASS Periodic Admissible Sequential Schedule

PCP Partial Critical Path

PE Performance Estimation

PiMM Parameterized and Interfaced dataflow Meta-Model

PSDF Parametrized Synchronous Dataflow

PTS Probabilistic Tabu Search

RR Round Robin

RTL Register Transfer Language

SADF Scenario-Aware Dataflow

SDF Synchronous Dataflow

SDO Standard Deviation of Occupancy

SoC System on Chip

SPDF Schedulable Parametric Dataflow

SPEO Strength Pareto Evolutionary Algorithm

SW Software

TETG Timed Execution Trace Graph

xxi

Abbreviations

TP Trace Processor

TPDF Transaction Parametrized Dataflow

TS Tabu Search

VLIW Very Long Instruction Word

VSS Variable Space Search

WB Workload Balance

XDF XML Data Format

XML eXtensible Markup Language

xxii

1 Introduction

Due to the broad availability of many- and multi-core platforms, there is an increasing interest

in developing applications taking advantage of the offered parallelism. Given the scale of the

massively parallel platforms consisting of dozens or hundreds of processing units, different

programming languages have been developed and compete in order to ensure scalability,

productivity and reusability, and to meet design and performance constraints. One of the

paradigms to be used in conjunction with such parallel platforms is dataflow programming.

Dataflow programs respond to the increasing demands of designing highly parallel applica-

tions expressed at a high level of abstraction. Multiple complex applications (i .e., in the field

of media and signal processing) display dynamic behavior that does not fit into the static

restrictions. Such applications can be expressed using a dynamic dataflow subclass. In order to

make the development process of such dynamic applications maximally efficient, this research

work aims at providing a complete methodology for design space exploration, analysis and

refactoring of dynamic dataflow applications. It relies on the modeling of a dynamic program

and an architecture that enables the portability of a design to different parallel platforms.

Furthermore, it allows a systematic exploration of different design alternatives so that mul-

tiple objective functions and/or design constraints can be satisfied. Finally, it identifies the

refactoring directions efficiently guiding the designer during the entire development process.

1.1 Parallel systems development

Since its very first release in the 1970s, a single processor has been constantly sped-up by

various means, such as an increase of the clock frequency, exploitation of the instruction-level

parallelism [1] and also an increase of the cache and pipeline size. However, the process

of accelerating a single core is constrained as a consequence of the clock frequency and

the power dissipation limitations of deep sub-micron CMOS technology. Coming close to

the practical limits of a single core started an alternative path of manufacturing processing

1

Chapter 1. Introduction

platforms consisting of multiple cores. Such multi-core platforms, currently ubiquitous, have

opened a new chapter in the field of efficient application design and brought both, interesting

opportunities and significant challenges.

An obvious advantage of the emerging many- and multi-core platforms is the level of paral-

lelism related to the number of available processing units. For instance, the Epiphany from

Adapteva [2] consists of 64 cores and the MPPA-256 chip from Kalray [3] of 256 cores. Among

the challenges related to the usage of many- and multi-core platforms, one problem can be

referred to as the memory wall. It is related to the gap between the speed of processors and the

speed of memory accesses enforcing a higher memory bandwidth along with an increase of

the number of cores. Another problem is the interconnections between the processors which

are constantly increasing in number. Furthermore, the more cores are used, the more it is

questioned if they are used efficiently so that the power consumption is commensurate with

the actual usage. Finally, with an increased number of cores, the synchronization of memory

accesses is getting more and more challenging. Some of these issues have been tackled at the

level of platform design. A good example is the creation of a hierarchical memory architecture

providing different bandwidths and speeds of access for the cores depending on their rela-

tive location. This kind of architecture is currently used in several embedded platforms, for

instance in the, mentioned earlier, Kalray’s MPPA-256.

The emerging field of many- and multi-core platforms introduces a requirement of defining

programming methods capable of handling a massively parallel execution while minimizing

the additional programming effort of the designers. In the case of single core platforms, the

focus of the application developers is on writing a correct program, whereas the compiler gen-

erates the code. Without appropriate support on many/multi-core platforms, the developers

often have to perform additional work assisting the compilation process in order to make the

generated code efficient. This work can include a decomposition of the application into tasks,

deciding where and when these tasks should be executed or even hand-tuning the code in

order to gain performance by exploiting some specific hardware features. Performing these

tasks explicitly for a given platform decreases the potential reusability of the code, introduces

some low-level issues, such as synchronization, data locality management and race conditions,

and prevents porting the code to other platforms.

In this context, an arising question is if the challenges, such as decomposition of an application

into parallel running tasks, design of the synchronization and communication mechanisms

and exploitation of the available parallelism can be taken care of by the abstractions provided

by the programming paradigm. Traditional programming languages (i .e., C, C++, Java) do not

reflect the inherently parallel nature of the applications and the underlying many/multi-core

architectures. They have been designed for single-core systems with unified memories and

rely on a sequential control flow, procedures and recursion lacking a high-level abstraction to

2

1.2. Motivations and problem statement

capture and express the parallelism. In order to adapt them for many/multi-core architectures

with distributed memories, several partial solutions have been invented. They are based

on extensions added to the sequential languages [4] by means of macros, annotations and

message passing libraries (i .e., PVM [5], MPI [6], OpenMP [7]). However, common drawbacks

of the approaches based on threads, that is, sequential processes sharing the memory, are:

non-determinism, susceptibility to hidden bugs and error-prone modifications. Furthermore,

using thread-based methods causes difficulties fully exploiting the application parallelism

and maintaining portability, since such implementations do not scale automatically. Instead,

any difference in the structure of the target platform requires modifications directly on the

algorithmic side of the program [8]. The implementations built with threads are also not

analyzable and consist of several non-analyzable components, such as pointers.

1.2 Motivations and problem statement

It can be stated that parallel implementations evolving from sequential techniques have an

important disadvantage in the connection between the behavioral description of a program

and the target architecture. Not only does it make a program difficult to maintain when the

structure of the target platform changes (i .e., additional cores are added), but also it becomes

a critical problem when the considered platform is heterogeneous, that is, it consists of both,

hardware and software components. A common practice is to make a priori an assignment of

different parts of the design to different architectural components. Such an approach prevents

an efficient exploration of the design alternatives and requires a complete rewriting of entire

parts of the design if the assumed assignment does not satisfy the design constraints. Hence,

the main requirements for a flexible design of parallel applications can be summarized as

follows:

• Design abstraction: already at the early stages of development, the designer must

decide about the level of abstraction which should be used. Due to the diverse nature of

the platforms, different levels of abstractions are possible, depending on the required

amount of details and the constraints. In any case, behavioral descriptions should be

able to seamlessly express both: sequential and parallel computation paradigms;

• Modularity: if a design is modular, the functionality of the system is split into com-

ponents that communicate with each other and hence divide the functionality of the

overall application. The design abstraction should support modularity as a data and

task parallelism;

• Composability: if a software system is composable, it is formed of several independent

and recombinant components. These components can be assembled in various combi-

nations to satisfy specific design requirements. The design abstraction used to describe

3

Chapter 1. Introduction

a system should operate on such composable components;

• Reusability: the design abstraction and the modularity of a program should enable

reusing the components among different designs. In this way target-dependent ab-

stractions are avoided and different systems can be described using a set of common

components.

1.2.1 Design exploration

Given a semantically correct sequential program, the opportunities for its exploration are very

limited, because the only possibility is to identify some independent portions of the code

and change their order of execution so that the unnecessary memory copies are reduced. In

contrast, in the case of parallel applications running on many/multi-core platforms, there are

plenty of possible configurations to be applied, such as: decomposition of an application into

tasks, assigning the tasks to the processing units (statically or dynamically) and defining their

execution order. Each of these configurations can lead to different metrics on the performance,

power consumption, resource utilization etc.

Design space exploration (DSE) can be described as a process of exploration and evaluation of

different design alternatives, also referred to as design configurations or design points. These

alternatives are applied as some settings to the design and are not related to the modifications

of the algorithmic parts. The objective of the exploration is to find such a configuration (or

a set of configurations) that satisfies the given constraints and optimizes the value(s) of the

objective function(s).

An exploration of the design is especially important in the early stages of system development.

Finding high-quality design alternatives has two important implications. First, it allows an

evaluation of the design in terms of compliance with the specified constraints and objective

functions. Second, if supported by an identification of some directions, it can point to the

currently infeasible or not achievable design points which may become achievable, when

the necessary modifications are applied to the design. Considering some large and complex

designs in the context of massively parallel platforms, performing a manual exploration is

inefficient and error-prone, due to a huge number of different alternatives. Hence, different

state-of-the-art DSE methodologies make use of some common functionalities, such as:

• Prototyping: a design is validated and tested before the final implementation using a

generated set of prototypes. In this case, the cost and the time required for the final im-

plementation is reduced and the impact of the design decisions in the implementation

process can be highlighted;

• Optimization: feasible design configurations are explored in order to satisfy the design

4

1.2. Motivations and problem statement

constraints. If these are not satisfied, the design requires modification;

• System integration: it requires a working assembly and a configuration of the compo-

nents. DSE should result in a set of feasible assembly configurations.

Performing these tasks requires providing a formal method supported with an appropriate

computer-aided framework which can accomplish different stages of the exploration with

regards to the specification requirements in a systematic way. Although many structured DSE

methodologies exist, they are characterized by a common practice of designing application-

specific architectures at a detailed level, which can limit the number of design points to

be explored. In consequence, it limits the freedom of defining trade-offs between the per-

formance, resource utilization and programmability. In contrast, providing a general DSE

methodology should take into consideration the following components:

• Application and architecture models: both components should be represented accord-

ing to some rules. First, the models should be formal, so that the analysis and exploration

can be performed in an automated way. Second, in order to keep the methodology retar-

getable, the two models should be independent. Finally, they must allow to capture and

express the necessary constraints and objective functions;

• Exploration techniques: since for the large design spaces a manual or random explo-

ration is highly inefficient, the methodology should provide a set of automated tech-

niques for discovering potential high-quality design points. Due to the large number

of points, these techniques should allow navigation between different design points

and narrow the space to the promising regions. It is also important to ensure that the

exploration can be performed in a reasonable time;

• Refactoring directions: if the design points established during the exploration do not

meet the requirements (i .e., do not satisfy the constraints), the designer should be

provided with a set of refactoring directions indicating possible improvements that can

be applied to the design in order to resolve the factors leading to an unsatisfactory quality

of the design. These factors are often referred to as design or performance bottlenecks.

When identified during the exploration, they prevent the DSE methodology from being a

black box to the designer. Instead, one is made aware of the narrowing factors occurring

in the design and the opportunities for resolving them;

• Performance estimation: it is used to directly evaluate different design points without

requiring execution of the program on a physical platform. In consequence, no partial

implementations of the design are necessary in the process of exploration. It is important

to ensure that the performance estimation is accurate enough to correctly evaluate all

design alternatives.

5

Chapter 1. Introduction

1.2.2 Dataflow programming

The dataflow programming paradigm, which can be expressed by different models of com-

putation (MoC s), is an alternative solution to programming methods evolving directly from

sequential approaches, when program implementations on many- and multi-core systems, or,

in particular, heterogeneous parallel platforms are considered. Dataflow programs, in general,

are composed of, possibly hierarchical, networks of communicating computational kernels,

called actors. Actors are connected by directed, lossless, order-preserving point-to-point com-

munication channels, called buffers. Hence, the flow of data between the actors is explicit,

because they are not allowed to exchange data differently than by exchanging atomic data

packets, called tokens. The internal parallelism of an application, related to the actors, is

directly exposed, since they are not allowed to share state. In consequence, the decisions about

assigning dataflow actors to different software or hardware components can be freely made.

The strengths of dataflow programs can be briefly summarized as: parallelism scalability,

modularity, composability and portability.

Parallelism scalability

Scalability of a computer application has two common meanings. First, it is an ability to

function well when its size or volume changes. This change can be related to both, the system

itself and the context (i .e., the platform the system is operating on). Second, it is not only the

ability to function well in the rescaled situation, but eventually to take an advantage from

it and improve the performance. Scalability of a dataflow program corresponds to these

two meanings, because the explicit concurrency of actors leads to a parallel composition

mechanism. For instance, when the parallelism of a target platform increases, a dataflow

program can be always mapped to the available processing units yielding a correct behavior.

Furthermore, its performance can improve along with the increase of the platform parallelism,

up to the maximal potential parallelism expressed in a dataflow design.

Modularity

Dataflow actors are encapsulated, so that they do not share state or variables. In consequence,

it is ensured that changing one actor does not impact others and a high potential parallelism

of actors is provided. The functionality of a program can be separated into independent,

interchangeable modules (actors), such that each of them contains everything necessary to

process a given aspect of the desired functionality. Different modules are reusable between

different designs.

6

1.2. Motivations and problem statement

Composability

Modularity of dataflow actors leads to defining programs as composable systems formed of

independent components that can be freely assembled to provide a required functionality.

Unlike for the case of thread-based implementations, when different parts of a program

(components) are assembled, the occurrence of races is eliminated and no synchronization

mechanisms need to be developed. Furthermore, different configurations can be applied to

a program design, depending on the considered platform. For instance, dataflow actors can

be assigned to the available processing units always yielding a correct behavior of the overall

design, without introducing any unpredictable behavior.

Portability

Portability of dataflow programs implies that different components are not only reusable

between different designs, but also between different target platforms. For instance, the

same program network can be executed on platforms with different levels of parallelism (i .e.,

different numbers of processing units), only by specifying the assignment of actors to the

available processing units. Furthermore, having a single representation of a program it is

possible to generate and reuse the code on different targets, including software (SW) and

hardware (HW) elements.

Properties

Dataflow programs can be expressed using different classes bringing different complexity

when it comes to their analysis. For the subclass of static dataflow programs, it is possible

to perform the analysis at compile-time. This leads to establishing a static schedule, exact

bounds on the buffer sizes, exact prediction of throughput and latency etc. This class can

be, however, insufficient when complex designs, such as signal processing applications, need

to be expressed. An extreme opposite is the subclass of dynamic dataflow programs. They

allow changing rates of token production/consumption and a data-dependent behavior. This

expressiveness and flexibility comes, however, at the cost of more difficult analyzability which

is not possible at compile-time.

Dataflow MoC s possess several valuable properties which perfectly respond to the described

requirements for a flexible system design. Transmitting these attractive features into efficient

implementations on the emerging many- and multi-core systems requires, however, dealing

with several challenges. The composability property implies that the program components

can work in several configurations. These configurations result in different qualities of the

implementation in terms of, for instance, performance. The open decisions for the designer,

when porting an abstract description of a dataflow program onto a target platform, include

7

Chapter 1. Introduction

the following:

• Partitioning: it specifies the assignment of dataflow components to the processing units.

Depending on the platform, different numbers of processing units can be available, but

the number of dataflow components often exceeds this number. The other commonly

used terms for partitioning are binding and mapping in the space domain;

• Scheduling: if multiple dataflow components are partitioned to one processing unit,

they are, in general, not allowed to be executed in parallel. Hence, for each processing

unit a specific order of execution must be established. The term scheduling is sometimes

also referred to as sequencing and mapping in the temporal domain. Depending on

the considered dataflow MoC and the internal nature of the components, there might

exist a static execution order. Otherwise, the order must be established dynamically at

run-time;

• Buffer dimensioning: although according to general specifications dataflow compo-

nents communicate over infinite buffers, when executed on a real platform each buffer

must be assigned a finite size. Depending on the considered MoC , these sizes might

be necessary only to guarantee an execution without deadlocks or can influence the

achievable throughput.

These design decisions can be made in various combinations corresponding to the design

points in the DSE procedure. Each point can lead to different metrics related to data through-

put, energy consumption, memory utilization, latency, and so on. These metrics can be

directly taken as specifications of the constraints and/or objective functions to optimize [9].

1.2.3 Problem statement

Dataflow programs possess the features necessary for a flexible design of parallel applications

running on various many/multi-core platforms. The performances of the implementations

depend on several configurations, including partitioning, scheduling and buffer dimensioning,

which result from the design space exploration process. Hence, the problem considered in

this dissertation can be stated as follows.

Thesis: Transferring the features of dataflow programs into efficient implementations satisfying

the design constraints and optimizing the values of the objective functions is subject to locating

high-quality configurations in the available design space and identifying refactoring directions

revealing new promising regions in the space.

To support this statement, this dissertation provides the following contributions:

8

1.3. Research contributions

1. A rigorous design space exploration problem formulation for heterogeneous platforms;

2. A set of heuristics making the exploration process effective and efficient;

3. A high-accuracy performance estimation tool driving the exploration process;

4. A methodology of analysis and optimization of dataflow programs according to various

constraints and objective functions.

1.3 Research contributions

This dissertation addresses the problem of design space exploration of dynamic dataflow

applications and provides a systematic analysis methodology consisting of multiple stages.

It follows the discussed general DSE approach overcoming the architecture dependency of

the commonly used approaches. Hence, it can be applied to different types of many-, multi-

core and heterogeneous platforms without any intervention in the methodology and allows a

flexibility of choice in terms of the objective function and/or design constraints. Furthermore,

it considers the most expressive, but also the most difficult to analyze, dynamic dataflow

programs with all their implications. Nevertheless, the less expressive dataflow MoC s are still

encompassed. The main contributions can be summarized as:

1. Design space exploration problem formulation [10]: the considered problem, consist-

ing of partitioning, scheduling and buffer dimensioning for dynamic dataflow programs

executed on homo- and heterogeneous platforms is thoroughly described and discussed

at a level of detail not considered in the literature so far. The problem is formalized

in terms of decision variables, objective functions and constraints. As the problem

formulation is analyzed and exploited, the possible design optimization objectives are

also identified;

2. Variable Space Search methodology: following the novel problem formulation, the

concepts of design points and design spaces are introduced and expressed so that the

multidimensionality of the problem is properly captured. Next, employing the concept

of design space exploration, identification of program bottlenecks and determining

the refactoring directions, a complete methodology of analysis and improvement of

dataflow applications is defined. The methodology relies on the concept of Variable

Space Search introduced originally for the graph coloring problem. It can be used in

different scenarios, without limiting the choices of trade-offs between the performance

and resource utilization;

3. Definition of a dynamic dataflow program execution model for DSE [11, 12, 13, 14]:

using the available tools for collecting the profiling information of an execution, the

9

Chapter 1. Introduction

appropriate notion of time is retrieved and processed in order to be injected into an

abstract model of a dynamic execution expressed as an execution trace. In this way, a

real execution on a target platform is modeled. The timing information is kept separately

from the abstract execution, hence a single model can be exploited for different types of

architectures ensuring portability;

4. Design space exploration heuristics: various heuristic approaches corresponding to

the introduced design space exploration problem formulation are proposed. Each of the

heuristics relies on a generic model of dynamic execution expressed as a graph, which is

being post-processed;

• Partitioning [13, 15, 16, 17, 18]: the algorithms include greedy heuristics, descent

local search methods and tabu search with different types of neighborhoods and

advanced variants;

• Buffer dimensioning [19]: the algorithms represent two approaches: bottom-up

and top-down which can be applied in different optimization scenarios. Neverthe-

less, in both cases the main objective is to enable finding a trade-off between the

performance and resource utilization;

• Scheduling [20, 21]: several dynamic scheduling policies aiming at establishing

the most efficient order of execution inside each processing unit are defined and

analyzed with regards to performance potential and scheduling cost. A figure of

merit for the cost of the scheduling policy is also introduced.

5. Performance estimation [12, 19, 22, 23]: a highly accurate performance estimation

SW tool is provided. It enables the analysis of the design points on different types of

platforms. The analysis includes the estimation of the execution time expressed in

clock-cycles and extraction of metrics which are used by the design space exploration

heuristics. Similar to the proposed DSE heuristics, it relies on a graph-based representa-

tion of a dynamic execution. The same representation, when supplied with appropriate

timing information, is used for different types of platforms. An algorithm for perform-

ing an analysis of the bottlenecks of the program is also implemented on top of the

performance estimation module.

1.4 Thesis organization

Chapter 2 is an overview of the main concepts related to dataflow programming. Different

paradigms and classes including static, cyclo-static, dynamic extensions of static and, finally,

dynamic programs are compared and discussed. Furthermore, an introduction to C AL lan-

guage is provided along with a set of examples. Finally, the process of code generation and

10

1.4. Thesis organization

the RV C −C AL compiler are explained. Chapter 3 comprises the state-of-the-art of dataflow-

oriented analysis frameworks. Different frameworks are compared and discussed with regards

to the supported models of computation, objectives, features and available DSE heuristics.

A special emphasis is placed on the frameworks intended for applications expressed using

RV C −C AL. After presenting an overview of the related works, a dataflow design flow is intro-

duced and discussed. Chapter 4 describes the concept of an execution trace graph used as an

abstract model of a dynamic execution. The formal definition and properties are described

using simple examples. The emphasis is on the genericness of the model when referred to

different configurations (design points) and the opportunities of employing the model in the

design space exploration process. The challenges related to the modeling of the dynamic

behavior of the actors are also discussed. Chapter 5 focuses on the requirements related

to obtaining accurate timing information for an execution trace graph. Consequently, the

profiling methodologies to generate appropriate weights (related to processing, scheduling

and communication) are discussed for two types of target platforms: Transport Triggered

Architecture and Intel 86x64. Following different properties of these platforms, the profil-

ing challenges are discussed in conjunction with the procedures necessary for each type

of architecture. Chapter 6 presents the design space exploration problem formulation re-

garding partitioning, scheduling and buffer dimensioning. The formulation is preceded by

an overview of the formulations commonly used in the field of parallel programming and

multi-core systems. The general formulation is then referred to two cases of target platforms:

homogeneous and heterogeneous architectures which introduce more precise specifications

and/or additional constraints. Towards the end of the Chapter, the problem instance sizes

are also illustrated. Chapter 7 handles the concept of design space exploration performed in

different spaces, which was originally proposed for the graph coloring problem. The related

work discusses also different possible formulations and objectives of exploration, as well as the

importance of bottleneck identification. Then, the concepts of design points and design spaces

are introduced using an appropriate notation and capturing the multidimensionality of the

problem. An example demonstrates the complexity of the considered design spaces. Finally,

the Variable Space Search algorithm is defined with regards to different possible optimization

criteria. Chapter 8 defines various heuristics to be used during the exploration in order to

find high-quality solutions for each of the considered subproblems (partitioning, scheduling,

buffer dimensioning). Regarding each subproblem, an overview of related work is provided

and several heuristics of different complexity are introduced. For the case of scheduling it is

discussed how this subproblem differs from the others and a figure of merit to express the cost

of a scheduling policy is introduced. Chapter 9 describes the software tool for performance

estimation. The related work considers different general approaches to performance estima-

tion and the achievable level of accuracy reported in the literature. Then, the construction

of the tool is thoroughly described and a list of the tracked execution properties is provided.

An algorithm for calculating the critical path and performing the impact analysis leading to

11

Chapter 1. Introduction

the identification of bottlenecks, which is built on top of the tool, is also presented. Chapter

10 reports the experimental results performed with regards to different components of this

research work. They include: the verification of partitioning heuristics on Transport Triggered

Architecture and Intel 86x64, the experiments with buffer dimensioning and scheduling, the

analysis of accuracy for the performance estimation tool and the validation of the proposed

Variable Space Search methodology using the recent dataflow implementation of the HEVC

decoder. Chapter 11 concludes the dissertation, summarizes the accomplished task and

briefly discusses further improvements and open problems identified during the realization of

this research work.

12

2 Dataflow programming

Dataflow programming was first introduced in 1974. In principle, it is a paradigm where

the programs are expressed as directed graphs of streams and operators. Such programs are

currently in use in multiple fields, such as: signal and video processing, telecommunications,

health care, transportation, retail, science, security, emergency response and finance. Under

a general term "dataflow programming", various models of computation (MoC s) have been

developed independently by some research communities. The two most commonly used

classes are: Synchronous Dataflow (SDF) and Cyclo-Static Dataflow (C SDF), introduced in

1987 and 1995, respectively. Since these classes do not allow expressing dynamic applications,

several extensions capable of handling some dynamic behavior have been defined. Expressing

fully dynamic applications is possible using Dynamic Dataflow (DDF). This Chapter is an

overview of dataflow programming, including the definition of a dataflow program, different

MoC s and classes, which are examined in terms of their properties related to the expressive-

ness and analyzability. Next, the Cal Actor Language (C AL) is discussed, regarding the syntax,

semantics and different MoC s that it can represent.

2.1 Dataflow programs

A dataflow program is defined as a directed graph where the vertices are operators, called

actors, and the edges are streams. In general, stream graphs might be cyclic, but some systems

only support acyclic graphs. Dataflow programs implement streams as FIFO (first-in, first-out)

queues, called buffers, with sometimes limited capacity. Conceptually, streams are infinite

sequences of atomic data items, called tokens, and each actor consumes data items from

incoming streams and produces data items on outgoing streams. A token is the atomic unit

of communication in a dataflow program. One of the main properties of dataflow programs

is their data-driven semantic, because it is the availability of tokens that enables an actor.

One of the principal strengths of dataflow programs is that they do not impose unnecessary

13

Chapter 2. Dataflow programming

sequencing constraints between the actors, hence the implemented algorithms are not over-

specified. Instead, only a partial order is specified and the sequencing constraints are imposed

only by data dependence. Since the actors can run concurrently, dataflow programs inherently

expose the application parallelism [24, 25].

An overview of different dataflow MoC s includes: the Kahn process networks (K P N) [26] that

represent the underpinning representation for dataflow graphs, the closely related to K P N

Dataflow process networks (DP N) [27] and the Actor transition system [28] that extends DP N

with the notion of atomic steps, priorities and actor internal variables.

2.1.1 Kahn process network

A K P N is a network of processes that can communicate only through unidirectional and

unbounded buffers. Each buffer carries a possibly infinite sequence of tokens. Using the

notation formalized in [27], each sequence of tokens is denoted as X = [x1, x2, x3, . . .]. A token

is considered to be an atomic data object written (produced) and read (consumed) exactly once.

The process of writing to the buffers is non-blocking, hence it always succeeds immediately.

Reading from the buffers is blocking in the sense that if a process attempts to read a token

from a buffer and the data is not available, it stalls (waits) until the buffer has sufficient tokens

to satisfy the consumer. It is not possible to test the presence of input tokens in advance.

Kahn process

Let Sp denote a set of p-tuples of sequences as in X = {
X1, X2, . . . , Xp

} ∈ Sp . A Kahn process is

then defined as a mapping from a set of input sequences to a set of output sequences such as:

F : Sp → Sq (2.1)

The K P N process F has an event semantic instead of state semantics as in some other do-

mains such as continuous time. Moreover, the only technical restriction is that F must be a

continuous mapping function.

Monotonicity and continuity

Considering a prefix ordering of sequences, the sequence X precedes the sequence Y (written

X v Y) if X is a prefix of (is equal to) Y . For example, if X = [x1, x2] and Y = [y1, y2, y3] then

X v Y and it is common to say that X approximates Y , since it provides partial information

about Y . An empty sequence, denoted as ⊥ is a prefix of any other sequence. An increasing

chain (possibly infinite) of sequences is defined as χ= {X0, X1, . . .} where X1 v X2 v Such

an increasing chain of sequences has one or more upper bounds Y , where Xi v Y for all Xi ∈χ.

14

2.1. Dataflow programs

The least upper bound (LU B) tχ is an upper bound such that for any other upper bound Y ,

tχv Y . The LU B may be an infinite sequence.

Given a functional process F and an increasing chain of sets of sequences χ, as defined in Equa-

tion 2.1, F maps χ into another set of sequences that may or may not be an increasing chain.

Let tχ denote the LU B of the increasing chain χ. Then F is said to be Scott-continuous [29] if

for all such chains χ, tF (χ) exists and:

F (tχ) =tF (χ) (2.2)

Networks of Scott-continuous processes have a more intuitive property called monotonicity.

This property can be thought of as a form of causality that does not invoke time, so that future

input concerns only future output. A process F is said to be monotonic if:

X v Y ⇒ F (X) v F (Y) (2.3)

A continuous process is monotonic. However, a monotonic process may be noncontinuous

A key consequence of this property is that a process can be computed iteratively [30]. This

means that given a prefix of the final input sequences, it may be possible to compute a part

of the output sequences. In other words, a monotonic process is non-strict: its inputs need

not be complete before it can begin computation. In addition, a continuous process will not

wait forever before producing an output (it will not wait for the completion of an infinite input

sequence). Networks of monotonic processes are determinate.

2.1.2 Dataflow process network

Dataflow process networks (DP N s) are formally a special case of K P N s, where the computa-

tional blocks are called actors. Analogous to a K P N process, actors can communicate only

through unidirectional and unbounded buffers which can carry possibly infinite sequences

of tokens and writing to the buffers is non-blocking. In contrast, reading from buffers is

non-blocking in the sense that an actor can first test for the presence of input tokens. If there

are not enough input tokens, then the read returns immediately and the actor does not need

to be stalled. This property introduces non-determinism, without forcing the actors to be

non-deterministic.

Actor with firings

DP N networks are a special case of K P N networks where each process consists of repeated

firings of an actor [31]. An actor firing can be defined as an indivisible (atomic) quantum of

15

Chapter 2. Dataflow programming

computation. The firings can be described as functions, and their invocation is controlled

by a set of firing rules. Sequences of firings define a continuous Kahn process as the least-

fixed-point of an appropriately constructed functional mapping, hence DP N can be formally

established as a special case of K P N [32].

An actor with m inputs and n outputs is defined as a tuple (f ,R), where:

• f : Sm → Sn is a function called the firing function;

• R ⊆ Sm is a set of finite sequences called the firing rules;

• f (ri) is finite for all ri ∈ R.

• no two distinct ri r j ∈ R are joinable, in the sense that they do not have a LU B .

The Kahn process F , as defined previously, based on the actor (f ,R) has to be interpreted as

the least-fixed-point function of the functional φ : (Sm → Sn) → (Sn → Sm) defined such as:

(φ(F))(s) =
 f (r)⊕F (s′) if there exist s ∈ R such that s = r ⊕ s′ and s v s′

⊥ otherwise
(2.4)

where ⊕ represents the concatenation operator and (Sm → Sn) is the set of functional map-

pings of Sm to Sn . It is possible to demonstrate that φ is, both, a continuous and monotonic

function. In contrast, the firing function f does not need to be continuous, or even monotonic.

It merely needs to be a function, and its value must be finite for each of the firing rules [32].

2.1.3 Actor transition systems

The Actor transition system (AT S) [28] describes actors in terms of labeled transition systems

(LT S). The AT S extends the notion of an actor with firings by introducing the notions of

atomic step, internal state, and priority. In an AT S, a step makes a transition from one state

to another. An actor maintains and updates its internal variables: these are not sequences of

tokens, but simple internal values that cannot be shared among actors. Hence, the state of an

actor depends on the value (state) of its internal variables, and not just on the sequence of

tokens it has received. Moreover, the notion of priority allows actors to ascertain and react to

the absence of tokens. Hence, actors become more versatile and appropriate to express DDF

programs. On the other hand, they become harder to analyze as undesired non-determinism

can be introduced to a dataflow application.

Let Σ denote a non-empty actor state space, u the space of tokens that can be exchanged

between actors and U n a finite and partially-ordered sequence of n tokens over u. An n-to-m

actor is an LT S (σ0,τ,Â) where:

16

2.1. Dataflow programs

• σ0 ∈Σ is the actor initial state;

• τ⊂Σ×U n ×U m ×Σ defines the transition relation;

• Â⊂ τ×τ defines a strict partial order over τ.

Any (σ, s, s′,σ′) ∈ τ is called a transition, where σ ∈Σ is its source state, s ∈ Sn its input tuple,

σ′ ∈ Σ its destination state and s′ ∈ U m its output tuple. It must be noted that Â is a non-

reflexive, anti-symmetric, transitive and partial-order relation on τ, also called its priority

relation. An equivalent and more compact notation for the transition (σ, s, s′,σ′) is σ
s→s′−−−→σ′.

As for any LT S, in the AT S each transition can be labeled and referred to as an action λ such

as:

λ :σ
s→s′−−−→σ′ (2.5)

In summary, a step makes a transition from one state to another, each transition can be

labeled as an action and the execution of a step is defined as a firing, in which tokens may be

consumed and produced, and the internal variables may be updated.

2.1.4 Dataflow programs comparison

The most important properties of different dataflow programs discussed in the previous

Sections are summarized in Table 2.1. In general, a transition from K P N , through DP N , up

to AT S can be identified. DP N is a special case of K P N , where the presence of input tokens

can be tested and considered when invoking a firing function. Furthermore, the program

execution is described as a set of repetitive firings of actors. AT S goes further by introducing

the notion of an atomic step and making its execution dependent also on the priorities and

values of internal variables.

Property KPN DPN ATS
reading from input FIFOs blocking non-blocking non-blocking
writing to output FIFOs non-blocking non-blocking non-blocking
computational blocks processes actors actors
priorities no no yes
internal state variables no no yes
program execution input/output

sequence mapping
repetitive actor fir-
ings

atomic steps (fir-
ings)

firing function invocation control - input tokens input tokens, state
variables, priorities

Table 2.1 – K P N , DP N and AT S programs: comparison.

17

Chapter 2. Dataflow programming

2.1.5 Dataflow concurrency

The emergence of massively parallel architectures, along with the difficulties to program these

architectures, makes the dataflow paradigm a more appealing alternative to an imperative

paradigm [33, 34, 35, 36, 37, 38, 39]. The main advantages of this paradigm are related to the

ability of expressing concurrency without complex synchronization mechanisms. This is made

possible by the internal representation of the program as a network of processing blocks that

only communicate through communication channels. In fact, blocks are independent and do

not produce any side-effects. This removes the potential concurrency issues that could arise

when the programmer is asked to manually manage the synchronization between parallel

computations [40, 8]. Moreover, this paradigm explicitly exposes all the natural parallelism of

a program [33, 40].

2.2 Dataflow classes

Since the representation of a dataflow program does not over-constrain the order of operations,

a scheduler of the program has the freedom it needs to adequately exploit the available

parallelism in order to maximize the re-use or simply reduce the limited hardware resources

available on the target platform. Figure 2.1 illustrates some of the dataflow MoC s classes. The

respective actor behavior that can be represented for each of them is discussed in this Section.

DDF

Dynamic extensions to SDF

CSDF

SDF

IDF

BDF

PSDF

SADF

SPDF
BPDF

TPDF

ATS

Figure 2.1 – Dataflow MoC s classes.

18

2.2. Dataflow classes

2.2.1 Static dataflow programs

Static dataflow (SDF), sometimes also called synchronous dataflow, is a special class of

dataflow MoC s where the number of tokens consumed and produced by each actor is fixed

and known at compile-time. Repeated firings of the same actor respects the same behavior.

This is the least expressive class of dataflow programs, but it is also the one that can be analyzed

in the easiest way. In fact, its main advantage is its total predictability at compile-time, with

respect to scheduling, memory consumption, and execution termination.

Static scheduling

In order to build a static schedule, the compiler should construct a single cycle of a periodic

schedule. The first step is then to evaluate how many invocations of each actor should be

included in each cycle. This can be established easily using the number of produced and

consumed tokens for each actor firing. As depicted in Figure 2.2, the number of tokens

consumed at each firing by the i − th actor from the n − th buffer is denoted by ci ,n ∈N, the

number of tokens produced at each firing by the i − th actor on the n− th buffer is denoted by

pi ,n ∈N, and the number of times the i − th actor is invoked (i .e., repeated) in each cycle of

the iterated schedule is denoted by ri ∈N. Hence, in order to have a feasible periodic schedule,

it must be ensured that for each n − th buffer of the dataflow graph the following condition is

satisfied:

pi ,n ri = c j ,n r j (2.6)

In other words, this equation ensures that in each cycle of the iterated schedule, the number

of tokens produced on each buffer is equal to the number of tokens consumed on that buffer.

Indeed, the first step to finding a schedule for an SDF graph is to solve a set of Equations (2.6)

for the unknown ri . Since for SDF programs the number of consumed and produced tokens

ai aj

bnpi,n cj,n

Figure 2.2 – A dataflow graph with two actors, ai and a j , connected through the buffer bn .
pi ,n defines the number of tokens produced on bn during each firing of ai . c j ,n defines the
number of tokens consumed from bn during each firing of a j .

for each actor firing is fixed and known at compile-time, the set of equations can be concisely

written by constructing a topological matrix Γ. The entry [Γ]i ,n contains the integer pi ,n when

19

Chapter 2. Dataflow programming

the i − th actor produces pi ,n tokens on the n − th buffer, and the integer ci ,n when the i − th

actor consumes ci ,n tokens from the n − th buffer. In general, this matrix does not need to

be square. For example, a dataflow graph shown in Figure 2.3 has the following topological

matrix:

Γ=


p A,1 −cB ,1 0 0 0

p A,4 0 0 −cD,4 0

0 pB ,2 −cC ,2 0 0

0 0 pC ,3 0 −cE ,3

0 0 0 pD,5 −cE ,5

 (2.7)

The system of equations to be solved can be formulated such as:

Γ −→r = −→
0 (2.8)

where −→r is the repetition vector containing the ri value for each i − th actor, and
−→
0 is a zero-

vector. Equation (2.8) is usually referred to as the balance equation of a dataflow program. A

special case is when an actor has a connection to itself (i .e., a self-loop). In this situation only

one entry in Γ describes this buffer. This entry gives the net difference between the amount

of tokens produced on this buffer and the amount of tokens consumed from this buffer each

time the actor is executed. For a correctly constructed graph this difference needs to be zero.

Hence, the entry describing a self-loop should be zero [41].

A E

B

D

C

b2cB,1b1

b4 b5

b3

pA,1

pA,4 pA,5

pB,2 pC,3cC,2

cE,3

cE,5cD,4

Figure 2.3 – Example of a dataflow graph.

Existence of an admissible schedule

An admissible sequential schedule φs is defined as a non-empty ordered list of actors such

that if the actors are executed in the sequence given by φs , then the number of tokens stored in

each buffer will remain non-negative and bounded. Each actor must appear in φs at least once.

20

2.2. Dataflow classes

A periodic admissible sequential schedule (PASS) is infinite. In [41] it has been demonstrated

that, for any connected SDF graph, a necessary condition to be able to construct a PASS is

that the rank of Γ should be:

r ank(Γ) = s −1 (2.9)

where s is the number of actors in the graph. In other words, the null space of Γ should have

a dimension of 1. Furthermore, it is shown in [41] that when the rank is correct, a repetition

vector −→r that contains only integers and relies on this null space always exists. This vector

defines how many times each actor should be invoked in one period of a PASS. In other words,

the rank of the topology matrix indicates a sample rate consistent with the graph. SDF graphs

that have a topology matrix such that r ank(Γ) = s are said to be defective: any schedule for

this graph will result either in a deadlock or unbounded buffer size configuration.

The use of a PASS scheduler requires using a single processing unit implementation: this does

not exploit the parallelism advantages of a dataflow application. Clearly, if a feasible schedule

for a single processing unit can be generated, then a feasible schedule for a multiprocessor

system can be also generated. In that case the objective is to find a periodic admissible

parallel schedule (PAPS) defined as a set of listsΨ= {ψi , i = 1, . . . , M } where M is the number

of processing units, and ψi specifies a periodic schedule for the i − th processing unit. If

a single processing unit is targeted, some reasonable scheduling objectives might include

minimization of data or program memory requirements. For the case of multiprocessor targets,

the common objectives are the maximization of the throughput or the minimization of the

flow-time [41, 42, 43].

2.2.2 Cyclo-static dataflow programs

Cyclo-Static Dataflow (C SDF) generalizes the SDF MoC by defining the firing rules which

get changed cyclically. It must be noted that C SDF extends SDF with the notion of state,

while maintaining the same compile-time properties concerning scheduling and memory

consumption. C SDF programs allow the number of tokens consumed and produced by

an actor to vary from one firing to the next according to a cyclic pattern. Unlike the scalar

consumption and production parameters for SDF , in C SDF programs ci ,n and pi ,n are integer

vectors both defined as −→
γ i ,n . Since these patterns are periodic and predictable, it is still

possible to statically construct periodic schedules using techniques based on those developed

for SDF . The state can be represented as an additional argument to the firing rules and firing

functions, hence, it is modeled as a self-loop [44, 45].

21

Chapter 2. Dataflow programming

Static scheduling

The topological matrix entries are defined such as:

[Γ]i , j = ti , j
σi , j

di , j
(2.10)

where di , j = di m(−−→γi , j) is the length or period of the token production/consumption pattern

for the i − th buffer connected to the j − th actor. If there is no connection, then di , j = 1.

The j − th actor fires in a cycle with period t j = lcm(di , j ,∀i), which is the least common

multiple of the consumption and production periods for all the buffers connected to that actor.

Finally, σi , j is the sum of the elements in −→
γ i , j . As for the case of SDF , it is also possible for the

C SDF programs to solve the balance equation (2.8) and verify the existence of an admissible

schedule. However, in C SDF programs the repetition vector −→r does not represent the number

of actor firings, but the number of cycles. In this case, the number of firings of each i − th

actor is defined as ri ti .

2.2.3 Dynamic extensions to static dataflow programs

In order to extend the expressiveness of the static dataflow MoC s, several extensions capable

of handling some dynamic behavior have been introduced. They can be classified in two

categories: the ones that allow the graph to change the topology at run-time and the ones that

allow the amount of data exchanged between actors to change at run-time. The MoC s from

the first group (such as Boolean Dataflow and Integer Dataflow) introduce specialized actors

that can change the topology of the graph at run-time using some parameters. The second

group relies on the usage of parameters to control the amount of data communicated between

the actors. This Section presents some of the models from both groups.

Boolean Dataflow and Integer Dataflow

Boolean Dataflow (BDF) belongs to the models focusing on altering the graph topology at

run-time. It was originally introduced in [46] as an extension of SDF adding an "if-then-else"

functionality. This functionality is provided by two special actors: switch and select. The

first one has a single data input and two data outputs. It receives boolean input tokens at

a boolean control input that enables the selection of an output. In the same way, the select

actor consisting of two inputs and one output makes the choice of an input. A BDF graph

is analyzed just like an SDF graph, except for the switch and select actors. Analyzing these

actors requires calculating the rates related to the proportion of true tokens on their input

boolean streams. Integer Dataflow (I DF) is an extension to BDF proposed in [47]. It replaces

the boolean streams with integer streams so that the ports can be selected over many, not just

22

2.2. Dataflow classes

two ports. Both models slightly increase the expressiveness of SDF , but do not allow making

changes in the production/consumption rates.

Parametrized Synchronous Dataflow

Parametrized Synchronous Dataflow (PSDF) [48] allows arbitrary attributes of a dataflow

graph to be parametrized. Each parameter is associated with a set of admissible values to be

taken at any given time. The attributes can be scalar or vector attributes of individual actors,

edges or graphs. This dataflow representation consists of three cooperating dataflow graphs

referred to as the body graph, the subinit graph and the init graph. The body graph typically

represents the functional core of the implemented algorithm, whereas the sub-init and init

graphs are dedicated to managing its parameters. Changes to the body graph parameters

occurring according to the parameters computed by the init and sub-init graphs cannot

occur at arbitrary points in time. Instead, the body graph executes uninterrupted through

an iteration, where the notion of iteration can be specified by the user. A combination of

cooperating body, init, and subinit graphs is referred to as a PSDF specification. These

specifications can be abstracted as PSDF actors in higher level PSDF graphs, hence they can

be hierarchically integrated. PSDF does not allow changes in the topology of the graph.

Scenario-Aware Dataflow

Scenario-Aware Dataflow (S ADF) is a modification to the original SDF model by means of

system scenarios [49]. It introduces a special type of actor, called a detector, and enables

using parameters as port rates. The role of the detectors is to detect the current scenario

the application operates on and apply a change to the port rates accordingly. Detectors are

assigned to non-overlapping sets of actors, so that each actor is controlled by exactly one

detector using a control link. When an actor fires, it first reads a token from the control link

that configures the values of its parameters, and then waits until it has sufficient tokens on

its input edges. The set of possible scenarios is finite and known at compile-time. A scenario

is defined by a set of values, one for each parametrized rate. Since all scenarios are known

at compile-time, S ADF is analyzed by considering all possible SDF graphs that result from

each scenario. S ADF resembles C SDF in the sense that it uses a fixed set of possible rates

on each port. The difference is that it does not impose any ordering at compile-time. Unlike

other models using the parametric rates, S ADF does not require a parametric analysis as all

configurations can be analyzed separately as SDF at compile-time. However, this approach

can become expensive, when the number of scenarios is large. Hence, it remains reasonable

when the number of scenarios is limited and manageable by a human. The dynamic changes

can take place only in between the iterations, but include both dynamic rates and dynamic

topology changes.

23

Chapter 2. Dataflow programming

Schedulable Parametric Dataflow

Schedulable Parametric Dataflow (SPDF) is a MoC enabling dynamic changes of the rates

of an actor within an iteration of the graph [50]. It uses symbolic rates which can be the

products of positive integers or symbolic variables (parameters). The variable values are set

by the special actors of the graph, called modifiers. Actors that have parameters on their

port rates or at their solutions are called users of a parameter. The parameter values are

produced by the modifiers and propagated towards all the users through an auxiliary network.

Modifiers and users have their respective writing and reading periods, indicating the number

of times an actor should fire before producing/consuming a new value for a parametric rate.

The writing periods are annotated for each modifier and the reading periods are calculated

by analyzing the graph. Some writing periods, i .e., the ones causing inconsistency, are not

allowed. Comparing to other parametric models, SPDF provides the maximum flexibility

in terms of changing of the parameter values. However, the increased expressiveness makes

the scheduling problem very challenging, because the data dependencies are parametric and

can change at any time during the execution, unlike for other parametric models, where a

schedule can be established at the beginning of an iteration. Changes of the topology of the

graph are not allowed.

Boolean Parametric Dataflow

Boolean Parametric Dataflow (BPDF) [51] is a model combining integer and boolean parame-

ters. It allows expressing dynamic rates and the activation/deactivation of communication

channels. Similarly to other parametric models, the input/output ports are labeled with

consumption/production rates that can be parametric. Integer parameters can change at run-

time between two iterations. Moreover, the edges can be annotated with boolean parameters

allowed to change also within an iteration. Hence, both types of changes: production/con-

sumption rates and graph topology are allowed. BPDF is mostly considered for executions on

ST HORM many-core chip from ST Mi cr oel ectr oni cs [52], for which a scheduling algorithm

for BPDF graphs exists [53].

Transaction Parametrized Dataflow

Transaction Parametrized Dataflow (T PDF) [54] is a recently defined MoC extending C SDF

with parametric rates and a new type of control actor, channel and port. Hence, it aims at

enabling dynamic changes of the graph topology and time constraints semantics. It has been

designed to be statically analyzable (i .e., in terms of deadlock and boundedness properties),

while avoiding the restrictions of decidable dataflow models mentioned earlier. The dynamic

behaviors can be viewed as a collection of different behaviors, called cases, occurring in certain

24

2.3. CAL Actor Language

unknown patterns. Each case is considered to be static by itself and predictable in performance.

T PDF can be considered similar to BPDF with an extension to impose real-time constraints.

2.2.4 Dynamic dataflow programs

The MoC s discussed in the previous Sections can be considered adequate for representing

parts of many algorithms. However, they are rarely sufficient for expressing entire complex

programs requiring consideration of data-dependent iterations, conditionals and recursion.

For example, a functionality that contains conditional execution of dataflow subsystems or

actors with dynamically-varying production and consumption rates cannot be expressed in

decidable dataflow models [55, 56]. The dynamic dataflow (DDF) MoC defines actors with a

number of produced and consumed tokens that is not statically specified. In a DDF program,

an actor may have both firing rules and firing functions that are data-dependent. In other

words, the token production and consumption rates can vary according to the program input

sequence.

The increased modeling flexibility and expressiveness power make DDF programs much

harder to analyze. Due to their Turing-complete nature, many analysis problems may be-

come undecidable [55]. For example, DDF analysis techniques may succeed in guaranteeing

a bounded buffer size execution and deadlock avoidance only for a significant subset of

specifications (e.g ., input streams in signal processing systems) [57, 58, 59]. Similarly, DDF

scheduling is generally a run-time operation. However, some or all of the scheduling decisions

can be predicted at compile-time by either describing the program with a more restricted

programming model or by analyzing the program to find if any parts of it can be described in a

more restricted way [60, 61, 62, 63].

2.3 CAL Actor Language

The Cal Actor Language (C AL) [64] is a language that provides useful abstractions for dataflow

programming based on actors. C AL directly captures the features of AT S actors adding the

notion of atomic action firings, also called steps. Figure 2.4 illustrates the basic concepts of

a CAL program. This is a dataflow network composed of a set of actors and a set of first-in

first-out (F I FO) buffers. Each C AL actor is then defined by a set of input ports, a set of output

ports, a set of actions, and a set of internal variables. The language also includes the possibility

of defining an explicit finite state machine (F SM). The F SM captures the actor state behavior

and drives the action selection according to its particular state, to the availability of input

tokens and to the value of the tokens evaluated by other language operators called guards.

Each action may capture only a part of the firing rule of the actor together with the part

of the firing function that pertains to the input/state combinations enabled by that partial

25

Chapter 2. Dataflow programming

rule defined by the F SM . An action is enabled according to its input patterns and guards

expressions. Input patterns are defined by the amount of data that are required in the input

sequences, whereas guards are boolean expressions on the current state and/or on input

sequences that need to be satisfied for enabling the execution of an action.

actions

internal
variables

FSM

Pin Pout

B C
D

E

b1
b2

b3

b4

b5

A

F

G

b6

b8

b7

b9

Figure 2.4 – C AL network and actors structure.

2.3.1 CAL program

A C AL program network N is defined as a tuple (K , A,B) where:

• K = {κ1,κ2, . . .κnκ
} is a finite set of actor-classes;

• A = {a1, a2, . . . , anA } is a finite set of actors;

• B = {b1,b2, . . . ,bnB } is a finite set of buffers.

A C AL actor-class κ defines the program code template and the implementation behaviors of

the actors (i .e., the C AL source code). Different actors can be the instances of the same class,

26

2.3. CAL Actor Language

however each actor corresponds to a different object with its own internal states that cannot

be shared.

A C AL actor a is defined as a tuple (κ,P i n ,P out ,Λ,V ,FSM) where:

• κ is the actor-class;

• P i n = {p i n
1 , p i n

2 , . . . , p i n
nI

} is the finite set of input ports;

• P out = {pout
1 , pout

2 , . . . , pout
nO

} is the finite set of output ports;

• Λ= {λ1,λ2, . . . ,λnΛ} is the finite set of actions;

• V = {v1, v2, . . . , vnV } is the finite set of internal variables;

• FSM is the internal finite state machine.

A C AL buffer b is defined as a tuple (as , ps , at , pt) where:

• as ∈ A is the source actor (i .e. the one that produces the tokens);

• ps ∈ P out
as

is the output port of the source actor;

• at ∈ A is the target actor (i .e. the one that consumes the tokens from the buffer);

• pt ∈ P i n
at

is the input port of the target actor.

It is important to note that each input port can be connected at most to one buffer. On the

other hand, multiple buffers can be connected to one output port. In order to execute an

action, the following stages (summarized in Figure 2.5) are performed serially:

• Wait for tokens Qbr : the firing is waiting until all the required input tokens are available

from the corresponding buffers;

• Consume input tokens Qr : the firing is consuming the input tokens;

• Action execution Qe : the firing performs the execution of its algorithmic part;

• Wait for space Qbw : the firing is waiting until all the required output tokens can be

accommodated in the corresponding buffers;

• Write output tokens Qw : the firing is producing the output tokens.

The transition conditions are the following:

27

Chapter 2. Dataflow programming

• hasTokens: the number of required input tokens is available in each corresponding

input buffer;

• hasSpace: the number of output token space that is available in each corresponding

output buffer.

Qbrstart Qr Qe Qbw Qw end

! hasTokens

hasTokens

! hasSpace

hasSpace

Figure 2.5 – Action execution model .

2.3.2 CAL syntax

In this Section, the syntax and the semantics of C AL are illustrated through simple examples.

For more details the reader is referred to [64].

Lexical tokens

Lexical tokens are intended to make the user understand the functionality provided by any

programming language. A lexical token is a string of indivisible characters known as lexemes.

The C AL lexical tokens, summarized in Table 2.2, can be described as follows:

• Keywords are a special type of identifier, which is already reserved in a programming

language by default. Hence, these keywords can never be used as identifiers in the code.

Some of these keywords are action, actor, begin, else, if, while, true and

false.

• Operators usually represent mathematical, logical or algebraic operations. Operators

are written as strings of characters such as !, %, ˆ, &, *, /, +, -, =, <, >, ?, ˜ and |.

• Delimiters are used to indicate the start or the end of a syntactical element in the C AL

code. The following elements are used as delimiters: (,), [,], { and }.

• Comments in C AL are the same as in languages like Java and C/C++. Single-line com-

ments start with // and multiple-line comments start with /* and end with */.

28

2.3. CAL Actor Language

Keywords action, actor, procedure, function, begin, if, else, end,
foreach, while, do, procedure, in, list, int, uint, float,
bool, true, false

Operators !, %, ˆ, &, *, /, +, -, =, <, >, ?, ˜, |
Delimiters (,), [,], {, }, ==>, ->, :=
Comments //, /* . . .*/

Table 2.2 – CAL lexical tokens.

Actions, input patterns and output patterns

A very simple actor that can be described using C AL is the Multiplier actor defined in

Listing 2.1. This actor consumes a token from its input port and produces a token to its output

port. The actor’s header is defined in line 1. The header contains the following information:

(1) the actor name; (2) a list of parameters contained inside the () construct (empty, in this

case); (3) the declaration of the input and output ports. The input ports are those in front of

the ==> and the output ports are those after it. In this case, the input and output port sets

are defined as P i n
Multiplier = {I} and P out

Multiplier = {O}, respectively. For each parameter and

port, the data type is specified before the name (in this case all defined with an int data type).

In Listing 2.1, the actor contains only one action, labeled as multiply as defined in line

3. In this case, the action set is defined as λMultiplier = {multiply}. Action multiply

demonstrates how to specify token consumption and production. The part in front of the

==> (which defines the input patterns) specifies how many tokens are to be consumed, from

which ports, and how these tokens are called in the rest of the action. In this case, there is one

input pattern: I:[val]. This pattern indicates that one token is to be read (i .e., consumed)

from the input port I, and that this token is to be called val in the rest of the action. Such

an input pattern also defines a condition that must be satisfied for this action to fire: if the

required token is not present, this action will not be executed. Therefore, input patterns are

responsible for the following:

• They define the number of tokens (for each port) that will be consumed when the action

is executed (fired);

• They declare the variable symbols that are used within the action to refer to the tokens

consumed by an action firing;

• They define a firing condition for the action, i .e., a condition that must be satisfied for

the action to be able to fire.

The output patterns of an action are the ones defined after the ==> construct. They define

the number and values of the output tokens that will be produced on each output port by each

29

Chapter 2. Dataflow programming

firing of the action. In this case, the output pattern O:[2 * val] says that exactly one token

will be generated at output port O and its value is 2 * val. It is worth emphasizing that

although syntactically the use of val in the input pattern I:[a] looks the same as the one in

the output expression O:[2 * val], their meanings are very different. In the input pattern

the name val is declared: in other words, it is introduced as the name of the token that is

consumed whenever the action is fired. By contrast, the occurrence of val in the output

expression uses that name.

Listing 2.1 – Multiplier.cal
1 actor Multiplier() int I ==> int O :
2

3 multiply: action I:[val] ==> O:[2 * val] end
4

5 end

Guards

So far, the only firing condition considered for the actions was the presence of a sufficient

number of tokens to consume, according to their input patterns. However, in many cases,

it is possible to specify additional criteria that need to be satisfied for an action to be fired.

These are, for instance, conditions that depend on the values of the tokens, the actor internal

variables, or both. These conditions can be specified using guards, as for example in the

Separator actor, defined in Listing 2.2. This actor defines one input port I, two output

ports O1 and O2, and two actions A and B. These actions require the availability of one token

in I, however their selection depends on the value of the input token val read from I, as

defined in lines 4 and 7, respectively. In this example, if val >= 0, then action A is selected,

otherwise action B is selected.

Listing 2.2 – Separator.cal
1 actor Separator() int I ==> int O1, int O2 :
2

3 A: action I:[val] ==> O1:[val]
4 guard val >= 0 end
5

6 B: action I:[val] ==> O2:[val]
7 guard val < 0 end
8

9 end

30

2.3. CAL Actor Language

Actor parameters and internal variables

Using C AL, it is possible to define a set of actor parameters. They can be used when the same

actor definition is used more than once in the same program. For example, the actor defined

in Listing 2.3 (ParametrizedSource) uses the parameter maxId. This parameter, defined

in line 1, is used as a guard condition by the (only) action create as defined in line 7. This

actor also defines the internal variable id that is used and updated during each firing of the

action as described in line 9.

Listing 2.3 – ParametrizedSource.cal
1 actor ParametrizedSource(int maxId) ==> int O :
2

3 int id := 0;
4

5 create: action ==> O:[id]
6 guard
7 id < maxId
8 do
9 id := id + 1;
10 end
11

12 end

Priorities and State Machines

In the SwapInput actor, reported in Listing 2.4, a finite state machine schedule is used to

force the action sequence to switch between the two actions A and B. The schedule statement

introduces two states stateA and stateB. In contrast, in the PriorityInput actor,

reported in Listing 2.5, the selection of an action to fire is not only determined by the availability

of tokens, but also depends on the priority statement.

Listing 2.4 – SwapInput.cal
1 actor SwapInput() T In1, T In2 ==> T O :
2

3 A: action In1:[val] ==> O:[val] end
4

5 B: action In2:[val] ==> O:[val] end
6

7 schedule fsm stateA:
8 stateA(A) --> B;
9 stateB(B) --> A;
10 end
11

12 end

31

Chapter 2. Dataflow programming

Listing 2.5 – PriorityInput.cal
1 actor PriorityInput() T In1, T In2 ==> T O :
2

3 A: action In1:[val] ==> O:[val] end
4

5 B: action In2:[val] ==> O:[val] end
6

7 priority
8 A > B
9 end
10

11 end

2.3.3 Example

In principle, C AL programs are structured as networks of interconnected actors. Figure 2.6

depicts a C AL program composed of 3 actors: Source, Medium and Sink, and 2 buffers: b1
and b2. Two different representations are supported for defining the C AL network structure:

the first one is based on a functional programming language called Functional unit Network

Language (F N L) and the second one is based on eXtensible Markup Language (X ML) known

as X ML Dataflow Format (X DF).

As an example, the F N L and X DF network representations illustrated in Listings 2.6 and

2.7, respectively, both define a C AL program where the Source actor instantiates the ac-

tor class of ParametrizedSource defined in Listing 2.3, the Medium actor instantiates

the Multiplier actor-class defined in Listing 2.1, and the Sink actor instantiates the

Disposer actor-class defined in Listing 2.8. In this particular example, the Source actor

instantiates its actor-class using the parameter maxId=3. Execution of this program in a

single-core processing unit with an unlimited buffer size configuration (i .e., it is always possi-

ble to produce tokens in a buffer) yields the corresponding action firings summarized in Table

2.3.

SinkSource
b1 b2

Medium

Figure 2.6 – Basic dataflow program.

32

2.3. CAL Actor Language

Listing 2.6 – ProgramNetwork.nl
1 network ProgramNetwork () ==> :
2

3 entities
4

5 Source = ParametrizedSource(maxId = 3);
6 Medium = Multiplier();
7 Sink = Disposer();
8

9 structure
10

11 Source.O --> Medium.I
12 Medium.O --> Sink.I
13

14 end

Listing 2.7 – ProgramNetwork.xdf
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xdf name="ProgramNetwork">
3 <instance id="Source">
4 <class name="ParametrizedSource"/>
5 <parameter name="maxId">
6 <expr kind="literal" literal-kind="integer" value="3"/>
7 </parameter>
8 </instance>
9 <instance id="Medium">
10 <class name="Multiplier"/>
11 </instance>
12 <instance id="Sink">
13 <class name="Disposer"/>
14 </instance>
15 <connection src="Source" src-port="O" dst="Medium" dst-port="I"/>
16 <connection src="Medium" src-port="O" dst="Sink" dst-port="I"/>
17 </xdf>

Listing 2.8 – Disposer.cal
1 actor Disposer() int I ==> :
2

3 dispose: action I:[val] ==> end
4

5 end

33

Chapter 2. Dataflow programming

Firing Actor Actor-class Action

s1

Source ParametrizedSource creates2

s3

s4

Medium Multiplier multiplys5

s6

s7

Sink Disposer disposes8

s9

Table 2.3 – Firings of the C AL program described in Section 2.3.3.

2.3.4 Code generation

The portability of dataflow programs onto different HW and SW platforms is provided by

a compiler infrastructure capable of generating a low-level representation from the high-

level program description. As illustrated later in Figure 3.1, the compiler infrastructure is an

essential part to enable an effective implementation and DSE of a dataflow program. In this

Section, some basic components related to compilation and code generation are illustrated.

Abstract syntax tree

An abstract syntax tree (AST) is a tree representation of the abstract syntactic structure of the

source code. Each node of the tree denotes a construct occurring in the source code. The

syntax is abstract in the sense that it does not represent every detail appearing in the real

syntax. An AST is usually the result of the syntax analysis phase of a compiler or an interpreter.

It often serves as an intermediate representation of the program through several stages that the

compiler requires and has a strong impact on the final output of the compiler. After verifying

the syntax, the AST serves as the base for code generation. The AST is used to generate the

intermediate representation for the code generation or interpretation.

Intermediate representation

Intermediate representation (I R) is a representation of a program part-way between the input

source and output target code. A well-structured I R does not depend on the input source

code nor the target architecture. Hence, it maximizes its ability to be re-used in a retargetable

compiler.

34

2.3. CAL Actor Language

Control flow graph

The control flow graph (C FG) is a graph-based representation of the program control flow,

which is generally used for making analyses from the I R representation of an input pro-

gram [65]. The C FG of a function is a connected, directed graph where the set of nodes

represents the sequences of program instructions and the set of directed edges (i .e., ordered

pairs of nodes) represents the control flow. More precisely, a node represents a basic block

which is a maximal sequence of consecutive statements with a single entry point, a single exit

point, and no internal branches.

2.3.5 RVC-CAL

C AL language has been explicitly designed in order to be fully analyzable and thus to support

different forms of code analysis. Such an opportunity makes it possible to look for a variety of

optimization techniques that can be applied before and during the synthesis from a dataflow

program to the implementation code. A subset of the more general C AL language, called

RV C −C AL, has been standardized by the ISO/IEC SC29WG11 committee also known as

MPEG [66, 67, 68, 69]. This subset restricts the data-types, operators, and features that can

be used when describing a C AL actor. RV C −C AL is used within the MPEG community as a

reference software language for the specification of the MPEG video-coding technology in

the form of a library of components (i .e., the actors) that are configured and instantiated into

networks to generate standard MPEG video decoders (e.g ., MPEG4-SP, AVC, HEVC).

The RV C −C AL compiler infrastructure used in this work is called open RV C −C AL compiler

infrastructure (ORCC) [70, 71, 72]. It provides the necessary tools for the design, simulation

and code generation of different targets for RV C −C AL programs. During the compilation

flow, the RV C −C AL program is translated into a code intermediate representation (I R). The

I R is built using a model-driven engineering (MDE) meta-model. More precisely, it makes

use of the MDE technologies available on the Eclipse IDE [73], such as the Eclipse modeling

framework (E MF) [74, 75], Xtext [76] and Xtend [77]. The ORCC compilation flow can be

summarized as follows:

• Front-end: the RV C −C AL code is parsed and translated into an AST . The AST is

successively transformed into an I R. At this stage the semantic validation, the type

inference and the expression evaluation are performed;

• Core: a meta-model of the I R is created and serialized. The serialization enables incre-

mental compilations and analysis;

• Interpreter: the I R can be directly interpreted from its meta-model generated by the

back-end. The code interpretation is type-accurate and it permits a first high-level and

35

Chapter 2. Dataflow programming

behavioral verification of the program;

• Back-end: target-specific optimizations (i .e., I R to I R transformations) are performed

before the low-level code generation. Successively, the I R is translated into a general

purpose programming language (e.g ., C/C++, Java) or to a register transfer language

(RT L) (e.g ., VHDL, Verilog).

2.4 Summary and conclusions

This Chapter presented the principles of the dataflow programming paradigm which allows de-

veloping portable and composable applications. It also discussed different classes of dataflow

programs starting from static and cyclo-static programs, through MoC s offering various ex-

tensions to the static models and hence capable of handling some dynamic behavior, up to

entirely dynamic applications. Each class differs in terms of expressiveness, facility of devel-

oping efficient implementations and analyzability. An attempt of assessing different classes

in these terms is presented in Figure 2.7. In general, it can be stated that the least expressive

MoC s, such as SDF and C SDF , are easier to analyze and develop efficient implementations.

Along with an increase of the expressiveness, the analyzability and the facility of developing

efficient implementations decrease. The models offering dynamic extensions to static models

discussed in Section 2.2.3 are difficult to order according to the expressiveness, since they

offer different opportunities to model some aspects of a dynamic behavior. Some of them (i .e.,

T PDF) try to establish a trade-off between the high expressiveness and analyzability [54]. It

can be stated, that the most expressive DDF is also the most difficult to implement efficiently

and analyze, but it enables an implementation of some algorithms that cannot be expressed

using different MoC s. This observation highlights the necessity of developing efficient analysis

methodologies supporting the design of DDF applications. Since these methodologies are the

objective of this work, the C AL language capable of expressing an entirely dynamic application

and the process of its compilation and code generation have been discussed towards the end

of the Chapter.

36

2.4. Summary and conclusions

Figure 2.7 – Dataflow MoC s comparison.

37

3 State-of-the-art of dataflow-oriented
analysis frameworks

This Chapter summarizes the state-of-the art of frameworks aiming at the analysis of parallel

programs running on many/multi-core platforms and, in particular, heterogeneous platforms.

The frameworks considered in this summary rely on the concept of dataflow directly (i .e.,

using specifically dataflow programming languages) or indirectly (i .e., using an application

model corresponding to the actor-oriented concept of dataflow programs). The objective of

this overview is to examine the analysis tools available for different MoC s, their features and

limitations. As a second part, a separate Section is dedicated to the frameworks considering

RV C −C AL programs. Following the common stages present in various frameworks, in the

last part, the dataflow design flow considered in this work is presented and discussed.

3.1 Frameworks

Daedalus allows an analysis of K P N programs by means of rapid system-level architectural

exploration, high-level synthesis, programming and prototyping. It was first introduced in

2007 and the most recent version was released in 2012 [78, 79, 80].

MAPS: MPSoC Application Programming Studio, introduced in 2008, also targets K P N pro-

grams. Its main functionalities include design space exploration and performance estimation

in order to provide fast and functional design validation. The framework is currently main-

tained and being transfered into commercial tools [81, 82, 83, 84, 85].

Mescal does not limit the set of supported MoC s and considers any combination which is nat-

ural for the application domain. It can be used to design heterogeneous application-specific,

programmable multiprocessors. It provides an abstraction path from micro-architectures to

application-architecture mappings. It was introduced in 2002 and actively developed until

2005 [86, 87].

39

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

Metropolis also supports various MoC s, due to meta-modeling with precise semantics. In

allows a description and refinement at different levels of abstraction. The integrated function-

alities include: modeling, simulation, synthesis and verification. It was introduced in 2003

and the most recent version was released in 2008 [88, 89].

PeaCE is oriented at SPDF programs (Section 2.2.3). It offers a co-design flow from functional

simulation to system analysis. During the entire design process it uses the features of formal

models. The releases of the framework date to 2003-2006 [90, 91].

PREESM: Parallel and Real-time Embedded Executives Scheduling Method is a framework

offering rapid prototyping of SDF applications in order to optimize the throughput. It allows

an automatic generation of functional code for heterogeneous multi-core embedded systems.

Since its introduction in 2009, it has been continuously under active development [92, 93, 94].

Ptolemy analyses programs expressed as hierarchical combinations of different MoC s with a

high level of abstraction. It offers a component-based modeling of heterogeneous platforms

and design space exploration with third party environments. Since the first release in 2003,

the framework is still maintained [95, 96].

SDF3 considers SDF and C SDF applications. It offers a model analysis and simulation without

generation of an executable prototype of the application. The releases of the framework date

to 2007-2014 [97, 98].

Sesame, introduced in 2006, is another K P N -oriented framework. Its main functionality

is identification of a suitable and efficient MPSoC platform architecture. It evaluates the

application, the architecture and the mapping between them. It has recently migrated to

Eclipse RDF4J [99, 100].

Space Codesign considers programs expressed as SystemC. It is a co-simulation environment

for user-written SystemC modules making calls to real-time operating system kernels. It was

released in 2008 and actively maintained until 2015 [101, 102].

SPADE: Stream Processing Application Declarative Engine, introduced in 2008, considers

programs expressed as System S [103] which is a large-scale, distributed data-stream process-

ing middleware. It offers rapid application development and code generation framework to

create optimized applications that run natively on the Stream Processing Core (SPC) [104, 105].

SynDEx, introduced in 2010, supports various MoC s. It is a computer-aided-design soft-

ware aiming at mapping an algorithm to an architecture. The objective of the design space

exploration is the application throughput [106].

SystemCoDesigner, introduced in 2008, considers programs expressed as SysteMoC which is

a high-level language built on top of SystemC. It allows a hardware-software SoC generation

40

3.2. Features

with automatic design space exploration techniques [107, 108, 109].

3.2 Features

The comparisons made in this Section include different properties and functionalities offered

by the frameworks. The overview summarizes the chosen frameworks and considers the way

the applications and architectures are modeled and handled, available features and additional

requirements, such as the usage of external tools. The analysis is presented in Tables 3.1-3.3.

3.3 Exploration heuristics

The design space exploration problem tackled by the frameworks is usually related to evalu-

ation and exploration of different design alternatives. These design alternatives are related

either to the parameters of the platform (i .e., when different types of architectural compo-

nents are considered in the model) or to the configurations applied to a program when it is

ported onto a platform (i .e., partitioning of the program components onto the processing

elements). However, even when the exploration of available architectural options is tackled, it

implies defining an assignment of the program components to the processing elements of the

platform. In some cases, the exploration process is supported by various methods to establish

a critical path of the design and/or to identify the bottlenecks of the execution. Different

approaches to the DSE in terms of the formulation of the problem, the applied set of steps,

along with the available heuristics are summarized for the chosen frameworks throughout this

Section.

MAPS

The DSE flow consists of several phases related to mapping and scheduling. At each stage,

various heuristics are available. In general, they put an emphasis on the advantages of light-

weight heuristics over evolutionary methods, and aim at satisfying the specified constraints.

The following stages are defined:

• Pre-Scheduling: this is devoted to a specification of finite buffer sizes. It is assumed that

appropriate sizes must be found, so that no deadlocks occur. Such a configuration can

be established using two heuristics; Simulated Execution relies on observing channel

utilization for different inputs. Traffic ratio relies on allocating memory to every channel

proportionally to the traffic on this channel;

• Scheduling: the supported policies are all data-driven. The first heuristic relies on

the idea of computing a time slot, so that context switches before potential channel

41

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

Framework application handling architecture handling features additional
Daedalus applications are mod-

eled using a C/C++
imperative specifica-
tion and converted
to KPN with KPNgen-
tool [110]

multimedia MPSoC
are considered as tar-
get architectures

- DSE is per-
formed
with
Sesame
framework

MAPS applications are mod-
eled as execution
traces, where de-
pendencies between
different firings are
related to tokens ex-
change and internal
variables

simplified view of the
target MPSoC (list of
processing elements
and communication
primitives modeled
by a cost function)

• exploration of differ-
ent configuration op-
tions determining the
efficiency of a pro-
gram;

• performance esti-
mation using trace
replay module: a
discrete-event simula-
tor that schedules the
segments of the exe-
cution trace (Chapter
6 of [111]);

• several heuristics for
mapping, scheduling,
synchronization and
search algorithm;

• composability analy-
sis for the purpose
of executing simulta-
neously multiple ap-
plications on a given
platform without in-
terference [82];.

integrated
with High-
Level
Virtual
Platform
simulator
(HVP) [112]

Mescal - a micro-architecture
description includes
the memory sub-
system based on
an architecture
description language

- -

Table 3.1 – Analysis frameworks: features summary, part 1.

42

3.3. Exploration heuristics

Framework application handling architecture handling features additional
Metropolis applications are mod-

eled as a set of pro-
cesses that communi-
cate through media

architectural build-
ing blocks are rep-
resented by perfor-
mance models where
the events are anno-
tated with the costs
of interest

• a third network corre-
lates the two models
by synchronizing the
events between them;

• non-deterministic
behavior and con-
straints can be
considered;

• possible transla-
tion into a Petri net
specification and
interprocess com-
munication removal;

.

-

PeaCE 3 models provided:
computation tasks,
control tasks and
a task model to
describe interactions

- - based on
Ptolemy

PREESM application rep-
resentation as
parametrized
and interfaced
dataflow meta-model
Pi M M [113]

high-level architec-
ture description
using system-level
architecture model
S −L AM

• based on the concept
of algorithm archi-
tecture adequation
matching methodol-
ogy (A A A/M) [114];

• a scenario determines
the set of parameters
specifying the deploy-
ment conditions and
constraints;.

-

Ptolemy tokens are used as un-
derlying communica-
tion mechanism regu-
lating how the actors
fire

- - DSE per-
formed
with ex-
ternal
tools (i .e.,
PeaCE)

Sesame application model
describing functional
behavior

architecture model
describing the avail-
able resources and
their performance
constraints

• trace-driven simula-
tion;

• intermediate map-
ping layer for
scheduling and
event-refinement
purposes;.

-

Table 3.2 – Analysis frameworks: features summary, part 2.

43

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

Framework application handling architecture handling features additional
Space
Codesign

- - • 1st layer: application
specification and veri-
fication;

• 2nd layer: hardware/-
software partitioning;

• 3rd layer: emulation
of a more sophisti-
cated architecture
model using a cycle-
accurate simulation;

.

-

SPADE an intermediate lan-
guage for the compo-
sition of parallel and
distributed dataflow
graphs

a toolkit of type-
generic, built-in
stream processing
operators supporting
scalar and vectorized
processing

• a compiler auto-
matically mapping
applications into
appropriately-sized
execution units;

• communication
overhead minimiza-
tion and parallelism
exploitation;.

-

SynDEx algorithm graph architecture graph
and system con-
straints

• algorithm architec-
ture adequation
matching methodol-
ogy (A A A/M);

• distribution and
scheduling of the
algorithm manually
or automatically
with optimization
heuristics, based
on multi-periodic
distributed real-time
scheduling analyses;.

-

System
CoDe-
signer

high-level model
translated into behav-
ioral SystemC

- • performance esti-
mation using per-
formance models
generated auto-
matically from the
SystemC behavioral
model;

• HW and SW synthesis;

• DSE using state-
of-the-art multi-
objective algorithms;

.

HW syn-
thesis
delegated
to a com-
mercial
tool: Forte
Cynthe-
sizer [115];

Table 3.3 – Analysis frameworks: features summary, part 3.

44

3.3. Exploration heuristics

writes are avoided. The second heuristic considers the process importance, which can be

implemented in multiple ways, including, for instance, topology, output rate, execution

weight etc;

• Mapping phase: a static assignment of the processes to the processing elements is

considered. The available strategies are: Computation balancing, Affinity, Output rate

balancing, Simulated mapping;

• Post-scheduling phase: this consists of making final adjustments to the schedule de-

scriptors (i .e., fine tuning of buffer sizes).

PeaCE

The DSE is considered as a two-steps process. The communication architecture, including the

memory system, is explored after the processing components are selected and the HW /SW

partitioning decisions are made. Global feedback forms an iterative DSE loop. The loop is

applied only to dataflow tasks that are computationally intensive, whereas the processing

elements to execute control tasks are determined manually. An iteration of the co-synthesis

loop (the first inner loop of the proposed flow) solves three subproblems: selecting appropriate

processing elements, mapping function blocks to the selected processing elements, and

evaluating the estimated performance or examining schedulability to check whether the given

time constraints are met.

Since the considered design space of architectural solutions is very wide, it is traversed in

an iterative fashion. First, a subspace of architecture candidates is explored quickly to build

a reduced set of design points to be carefully examined. Within a given set of architecture

candidates, all design points are visited by varying the priorities and conditions. Design points

with a performance difference of less than 10% compared to the best one (the value of 10%

comes from the accuracy of the used estimation method) are collected. The second step

applies trace-driven simulation to the design points selected from the first step. It accurately

evaluates the performances in the reduced space and determines the best point. The process

continues as long as the iterations bring an improvement to the solution. The third step

generates the next set of architecture candidates relying on the architecture of the best design

point and applying small modifications to it. It results in a set of Pareto-optimal design points

(that is, not dominating in terms of all optimization criteria). Although this heuristic does not

explore the entire design space, its main objective is to prune the design space aggressively

and arrive quickly to a high-quality solution.

During the process of simulation performed for different candidates, a performance profiler is

used. The execution time and the number of executions of different tasks are recorded. From

this information, the performance bottleneck of the implemented code is identified.

45

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

PREESM

The process of rapid prototyping consists of exploring the design space of a target system

in order to minimize its cost and guarantee the respect of different constraints. The most

common ones are: latency, throughput, memory, and energy consumption. Other constraints

may exist, such as jitter or signal simultaneity.

The problems of mapping and scheduling are considered jointly by different optimization

algorithms, ranging from simple to evolutionary methods. The problem of buffer dimensioning

is related to a bounded memory execution guaranteeing a deadlock-free execution. Due to the

supported MoC , it is possible to statically distribute the tasks. A static scheduling algorithm

is usually described as a monolithic process carrying two distinct functionalities: choosing

the core to execute a specific function and evaluating the set of the generated solutions. The

implemented scheduling algorithms include:

• list scheduling: the tasks are scheduled in the order dictated by a list constructed from es-

timating a critical path. Once made, a mapping choice is never modified. List scheduling

is used as a starting point for other refinement algorithms;

• FAST algorithm: it is used as a refinement of the list scheduling solutions by utilizing

probabilistic hops. It changes the mapping choices of randomly chosen tasks keeping

the best latency found, until stopped by the user;

• genetic algorithm: is coded as a refinement of the FAST algorithm, since the n best

solutions found by FAST are used as the base population for the genetic algorithm.

A necessity to analyze the impact of application and architecture bottlenecks on the system

performance is also emphasized. The high-level architecture description facilitates studying

the bottlenecks arising on the platform side.

Sesame

In the context of this framework, the mapping is related to an intermediate layer between the

application and the architecture. Hence, defining a mapping is necessary in order to evaluate

a candidate architecture. The mapping problem is defined as Multiprocessor Mappings of

Process Networks (M MP N), which is defined as: mi n f (x) = (f1(x), f2(x), f3(x)), subject to

gi (x), i ∈ {1, . . . ,n}, x ∈ X f , where:

• f1 is the maximum processing time;

• f2 is the total power consumption;

46

3.3. Exploration heuristics

• f3 is the total cost of the system.

The functions gi are the constraints and x ∈ X f are the decision variables. They represent

decisions, i .e., which processes are mapped onto which processors or which processors are

used in a particular architecture. The constraints make sure that the decision variables are

valid, i .e., result in a feasible solution. The optimization goal is to identify a set of solutions

which are superior to all other solutions when all three objective functions are minimized.

This is accomplished by a Strength Pareto Evolutionary Algorithm (SPEO) that finds a set

of approximated Pareto-optimal mapping solutions. Scheduling of the processes can be

performed in a static, semi-static or dynamic manner. A mapping configuration contains also

an assignment of buffers (with limited sizes) that are parameterized and dependent on the

architecture. The assignment of buffers is performed in a safe way, that is, guaranteeing a

deadlock-free execution. The performance numbers provided by the framework are intended

to inspire the designer to improve the architecture, restructure/adapt the application, or

modify the mapping of the application.

The output of system simulations in Sesame provides the designer with performance estimates

of the system(s) under investigation together with statistical information such as utilization

of architectural components (idle/busy times), the contention in a system (e.g ., network

contention), profiling information (time spent in different executions), critical path analysis,

and average bandwidth between architecture components. Such results allow an early eval-

uation of different design choices, identifying trends in the systems’ behavior and revealing

performance bottlenecks early in the design cycle.

SystemCoDesigner

The process of automatic DSE consists of finding optimal or near optimal solutions in terms

of throughput, latency or required chip size by allocating processors, memories, buses, and

hardware accelerators, and binding the actors and channels to the resources. As the first step,

the particular instance of the system synthesis problem is formalized by providing a so-called

architecture template specifying the architectural components and their interconnections.

From this set, the automatic DSE has to select a subset in order to form an implementation.

The target architecture allows for hardware only, software only, and mixed hardware/software

designs of an application.

Next, a formal model serving as an input to the DSE is built. It consists of (a) the application,

(b) the architecture template and (c) the mapping constraints. For each possible mapping,

the execution times of an actor in a specific binding are annotated. Then, the exploration

is performed using Multi-Objective Evolutionary Algorithms (MOE A) [116]. The problem

addressed by MOE A can be stated as follows:

47

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

• The architecture is modeled as a graph representing possible interconnected hardware

resources;

• The application is modeled as a graph describing the behavior of the system (vertices de-

scribe tasks, directed edges - dependencies). Data–dependent tasks have to be executed

on the same or adjacent resources to ensure correct communication;

• The set of mapping edges indicates whether a specific task can be executed on a hard-

ware resource;

• The allocation set α is the set of hardware resources;

• The binding β determines on which allocated resource each task is executed. For each

task from the problem graph exactly one mapping has to be used.

Due to the data dependencies, a binding can be infeasible. A binding is called feasible if

it guarantees that the data communications imposed by the problem graph can be estab-

lished by the allocated resources. Furthermore, a feasible allocation is an allocation α that

allows at least one feasible binding β. The task of design space exploration is formulated

as a multi–objective optimization problem: minimize f (α,β), subject to: (1) α is a feasible

allocation, (2) β is a feasible binding. Unlike for the case of a single-objective optimization

problems, in multi–objective optimization problems, the feasible set is only partially ordered

and, thus, there is generally not only one global optimum, but a set of Pareto–optimal solutions.

The MOE A does not make any assumption about the objective function.

3.4 RVC-CAL frameworks

In summary, the MoC s considered by the aforementioned frameworks can be grouped as

follows: static dataflow, dynamic dataflow expressed as K P N , combined multiple MoC s,

SystemC and its derivatives. All of these MoC s differ from the concepts behind the RV C −C AL

programs. First, the methods designed for the analysis of static MoC s cannot be applied

directly to the dynamic ones. Second, RV C −C AL captures the features of AT S actors which

differ in some details from the concept of K P N (as discussed in Sections 2.1.1 and 2.1.3).

Hence, these methods also cannot be applied, although many similarities can be identified.

This Section summarizes two analysis frameworks available for RV C −C AL: CAL Design

Suite [37, 117, 118] and COMPA [119].

CAL Design Suite

CAL Design Suite (released 2010-2013) aims at exploration and optimization of the design

space of RV C −C AL programs. It constitutes the first functional attempt to define a complete

48

3.4. RVC-CAL frameworks

design flow for multi-core and heterogeneous platforms [34]. The analyses are based on an

execution trace, where dependencies between different firings are related to tokens exchanges.

It formalizes a basic architecture model for heterogeneous platforms. The analysis of the

programs is static and relies on the usage of weighting operators.

The DSE problem is separated into two phases: assigning actors to processors and then

sequencing the actions. The aim of the exploration is to find such a partitioning and scheduling

configuration that leads to an efficient implementation. The complex solution space is split

into two orthogonal spaces: the permutation space of the actors on the processors and the

space specifying precedence among actions. It is assumed that usually the number of actors is

very small in comparison to the number of nodes. Thus, a search for the partitioning of actors

can be considered as sufficiently comprehensive to an examination of all possibly efficient

partitioning configurations. Several heuristics are implemented for this purpose:

• Round-robin load balancing: this relies on the technique aiming at distributing the

computations of the actors across the processing units;

• Simulated annealing load balancing: the load balancing technique is kept as a basis,

but a simulated annealing approach [120] taking into account communications costs is

adopted;

• Causation trace scheduling: minimization of the makespan (completion date of the

execution) based on the causation trace (execution trace) using a simulated annealing

approach is used;

• Static regions scheduling: an alternative approach, aiming at considering the non-

negligible scheduling overhead, consists of extracting static regions and at computing

their schedule at compile-time;

Another part of the exploration and analysis is the identification of the critical path of the

design and the actions with the largest contribution to the critical path so that the bottlenecks

of the design are efficiently identified.

COMPA

COMPA is a framework intended for analysis and optimization of RV C −C AL programs and

was introduced in 2011. The exploration process aims at finding different trade-offs regarding

the parallelism, communication cost and memory size. These trade-offs are modeled as

source-to-source transformations. The exploration is based on the static analysis of the source

code.

49

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

3.5 Design flow for dataflow programs

Although the frameworks presented in the previous Sections differ significantly in terms of

the considered MoC , DSE objectives and the available functionalities, many similarities can

be identified. For instance, several frameworks emphasize the importance of independent

application and architecture models, so that the portability of the design is ensured. In many

cases, the flow provided by the frameworks consists of some analyses of the application and/or

architecture, prototyping, simulation and code generation. The analysis is often supported

by means of DSE heuristics and performance estimation. All of these stages can be directly

translated into a complete system development design flow.

Such a design flow, as introduced in [121, 122], is illustrated in Figure 3.1. The program

behavior is separated from the architecture model and expressed using the C AL dataflow

programming language. The architecture represents the target platform the program is to be

implemented on and is characterized by the available resources and, if applicable, constraints.

The design flow consists of the following elements:

1. Compiler infrastructure: the source code of a C AL program is transformed into an

equivalent intermediate representation. At this stage the compiler allows performing a

verification about whether the program behavior is correct using directly the interme-

diate representation, without prototyping or creating a partial implementation of the

design;

2. Profiling and analysis: the exploration of different design alternatives is performed

with regards to the constraints and objective functions. At this stage it is also possible to

perform various analyses, i .e. profiling, bottlenecks;

3. Refactoring directions: if the design point established during the exploration satisfies

the requirements (constraints, objective functions), it is used to drive the compiler

infrastructure through a set of compiler directives. In the opposite case, the set of

refactoring directions is identified and provided as a feedback to the designer. The

refactoring directions can include, for instance, the parts of the program identified as

the main bottlenecks for the high-quality design point found during the exploration.

Resolving these bottlenecks is then subject to a programming effort;

4. Performance estimation: the execution times for different design points are estimated

without requiring any partial implementation of the program. The estimation is done

according to the abstract model of the program execution and the model of the architec-

ture providing the appropriate timing information. According to the estimation results,

the number of design points considered for further exploration can be narrowed;

50

3.6. Contributions to the state-of-the-art

5. Code generation: the C AL representation of a program is transformed into a low-level

code representation. An appropriate SW /HW code is generated according to the map-

ping of the program to the target architecture;

6. Synthesis or compilation: the SW (HW) code is compiled (synthesized), respectively,

and the executables are obtained;

7. Implementation: if the constraints are satisfied and the expected values of the objective

functions are achieved, the design is implemented on the appropriate software and/or

hardware architecture. If both architecture types are present, the interfaces provided by

the architecture are automatically integrated into the design.

3.6 Contributions to the state-of-the-art

So far, most of the research efforts regarding the analysis and design space exploration of

dataflow programs target the simple cases of static dataflow MoC s, where the spectrum of

algorithms for which the implementations are possible is very limited. In contrast, the method-

ologies described in this dissertation consider fully dynamic dataflow programs, but remain

valid also for other, less expressive variants. An implementation and analysis of dynamic

programs is much more difficult, however still possible, when appropriate programmatic

approaches are used, as discussed and demonstrated in different Chapters. An important

novelty of the dissertation comparing to the state-of-the-art methodologies is the concept of

design exploration in the context of a multidimensional space, consisting of various configura-

tions that impact each other in the process of exploration and all together lead to a certain

performance of a program.

3.7 Summary and conclusions

This Chapter examined some of the analysis frameworks available for parallel programs and,

in particular, dataflow programs. The review has been performed at three layers. First, several

frameworks have been described in terms of the MoC , the main properties and function-

alities (e.g ., the assumed objective of DSE). Second, the chosen interesting features of the

frameworks have been listed. The choice of the frameworks considered in this summary and

the listed features has been made according to the relevance to the work described in this

Thesis. Finally, among the frameworks offering some DSE methodologies, the way the DSE

problem is formulated and handled has been presented and/or the available heuristics have

been briefly described. In the second part, the frameworks targeting RV C −C AL programs

have been discussed separately.

51

Chapter 3. State-of-the-art of dataflow-oriented analysis frameworks

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling
and

Analysis

Performance
Estimation

CAL
program ArchitectureConstraints

R
ef

a
ct

o
ri

n
g

 D
ir

e
c

ti
o

n
s

C
o

m
p

il
e

r
D

ir
e

c
ti

v
e

s

Figure 3.1 – Heterogeneous system development design flow for C AL dataflow programs.

52

3.7. Summary and conclusions

Despite the differences occurring at different stages of the analysis, some common features can

be identified among the frameworks. They include: independent application and architecture

models, verification, design space exploration, performance estimation, code generation etc.

These common stages can be translated into a complete dataflow design flow, presented and

discussed in the last part.

Comparing different frameworks, an important observation is that many rely one way or

another on the concept of an execution trace. A trace, expressed as a directed graph, represents

the execution and acts as a basic model used in the exploration process. Adding accurate

timing information related to an execution on a target platform (i .e., obtained by profiling)

provides rich performance metrics. The details of the construction of an execution trace which

is used in this work and the way the appropriate timing information is obtained, are discussed

in the two following Chapters.

53

4 Program execution modeling

Following the discussion about dataflow MoC s in Chapter 2 and, in particular, the properties

of firings which constitute the program execution, this Chapter describes the construction of

an execution trace graph (ETG). This graph-based representation demonstrates the correla-

tion between the firings and models the execution behavior. This representation, originally

introduced and thoroughly discussed in Chapter 5 of [121], is used as a basic model for the

DSE methodologies described in this work.

4.1 Execution Trace Graph

Execution trace graph (ETG) is a directed acyclic graph (D AG) where each node represents

a single action firing and each directed arc is either a data or a logical dependency between

two different action firings [37, 57, 82, 123]. As described in Chapter 2, when an action is fired

it can consume a finite number of input tokens, produce a finite number of output tokens,

and modify the actor’s internal variables. Hence, the dependencies arising between different

firings can be observed. For example, if an action consumes some tokens during a firing, then

it must rely on the execution of the action that produces these tokens. The same can be stated

if an action, in the processing part, makes use of some of the internal actor variables that have

been previously modified or used by another action. There are several types of dependencies

that can be identified and used to characterize the execution of a dataflow program. They are

discussed in detail in Section 4.1.2.

Formally, an ET G is defined as a D AG(S,D), where:

• S is the set of single action firings, defining the nodes of the graph;

• D=S×S is the set of dependencies, defining the directed edges of the graph.

55

Chapter 4. Program execution modeling

Defining dependencies between action firings establishes precedence orders. If firing s2 ∈S
depends on firing s1 ∈S, then s1 has to be executed and completed before s2 can start. The

dependency is then defined as (s1, s2) ∈ D. The transitive hull of the dependencies is the

precedence relation ≤. Thus, S can be defined as a partially ordered space (S,≤) and the

precedence constraint between s1 and s2 can be expressed as s1 ≺ s2. It is assumed that the

number of firings in S and the number of dependencies in D are finite and denoted with

|S| <∞, |D| <∞, respectively.

4.1.1 Firings

Each si ∈ S represents a single action firing occurring during the execution of a dataflow

program. This means that if an action is fired n times, then n nodes in S are used to represent

each single firing of this action.

A single action firing s ∈S is formally defined as a 3-tuple s(a,λ,η), where:

• a ∈ A is the actor;

• λ ∈Λ is the action;

• η ∈N is the action execution index, that identifies two different firings of the same action

during the entire program execution.

4.1.2 Dependencies

Each (si , s j) ∈D represents a dependency between two executed actions si and s j , such that

si 6= s j . Several types of dependencies can be defined during the execution of a dataflow pro-

gram. These are: internal variable, finite state machine, guard, port and tokens (as summarized

in Table 4.1). As illustrated in the following, each can be defined by a subtype and enhanced

with some profiling parameters useful for the future DSE analysis. Hence, more than one

dependency of different types can be defined between each couple si , s j .

A dependency (si , s j) ∈D is formally defined as a 5-tuple (si , s j ,µ,d), where:

• si ∈ S is the source action firing;

• s j ∈ S is the target action firing;

• µ is the dependency type;

• d is the dependency direction. The direction can be: read/read, read/write, write/read,

write/write, enable, disable or undefined.

56

4.1. Execution Trace Graph

The incoming dependencies set of a firing si is defined as:

δ(si)−E = {(sn , sm) : ∀(sn , sm) ∈D, sm = si } (4.1)

The set of firings which are the sources of the incoming dependencies of si is the set of

predecessors, and is denoted as:

δ(si)−S = {s j : ∃(s j , si) ∈D} (4.2)

Firings that do not have any predecessors are called sources of the ETG . The set of sources is

defined as:

S;− = {si : δ(si)−S =;} (4.3)

Similarly, the set of outgoing dependencies of a firing si is defined as:

δ(si)+E = {(sn , sm) : ∀(sn , sm) ∈D, sn = si } (4.4)

The set of firings which are the targets of the outgoing dependencies of si is called the set of

successors, and is denoted as:

δ(si)+S = {s j : ∃(si , s j) ∈D} (4.5)

Firings that do not have any successors are called sinks of the ET G . The set of sinks is defined

as:

S;+ = {si : δ(si)+S =;} (4.6)

Internal variable

An internal variable dependency (si , s j) ∈D occurs when two actions of the same actor share

the same internal variable v ∈V . More precisely, four different directions can be defined:

• write/read: when an action firing s j reads the internal variable v without an intervening

write operation and si is the last action firing, previous to s j , that wrote to v ;

• write/write: when an action firing s j has an intervening write operation to the internal

variable v and si is the last action firing, previous to s j , that wrote to v .

• read/read: when both action firings si and s j read the internal variable v without an

intervening write operation and si is the last action firing, previous to s j , that read from

v .

57

Chapter 4. Program execution modeling

• write/write: when both action firings si and s j wrote to the internal variable v and si is

the last action firing, previous to s j , that wrote to v .

Only the write/read is a data dependency. By contrast, the read/write, read/read and write/write

express only a memory utilization precedence between the two firings. The parameter that

can be stored in this type of dependency is the variable v that the dependency is related to.

Additional attributes, which need to be obtained by profiling, are the initial and final values of

this variable. The set of dependencies of this type is denoted as Dv ⊆D.

Finite state machine

An internal state machine dependency (si , s j) ∈D connects two executed actions belonging to

the same actor and related via its internal state scheduler. In other words, a dependency of this

type occurs when the execution of action firings si and s j is driven by the actor internal F SM

and si is the last action firing, previous to s j , scheduled by the F SM . The set of dependencies

of this type is denoted as D f ⊆D.

Guard

A guard dependency (si , s j) ∈ D occurs when an action firing si modifies the value of the

guard conditioning the action firing s j . The guard condition, which can be described as a

combination of state variable and token value, can be enabled or disabled by si through the

modification of its variables or the production of particular token values. For this type of

dependency, two different directions can be defined:

• enable: when the modification of an internal variable or the production of a token

performed by si makes the action firing s j executable (i .e., enabled);

• disable: when the modification of an internal variable or the production of a token

performed by si makes the action firing s j non-executable (i .e., disabled).

The parameters that can be stored are the guard identifier the dependency is related to and the

appearance order according to which this guard was enabled or disabled. The set of dependen-

cies of this type is denoted as Dg ⊆D. It must be noted that in some design cases, uncovering

these dependencies might have the side effect of making the trace dependent on both the

buffer dimensioning and the scheduling configuration used during the program execution.

A more detailed discussion about this dependency and its influence on the modeling of a

dynamic execution is presented in Section 5.3.6 of [121].

58

4.1. Execution Trace Graph

Port

A port dependency (si , s j) ∈D connects two action firings of the same actor that share an input

or an output port p. It defines in which order the tokens must be consumed or produced

from/to this port. More precisely, two different directions can be defined:

• read/read: when both action firings si and s j retrieved some tokens from the input port

p and si is the last action firing, previous to s j , that retrieved at least one token from p;

• write/write: when both action firings si and s j sent some tokens to the output port p

and si is the last action firing, previous to s j , that sent at least one token to p.

The parameter that can be stored in this type of dependency is the port p (input or output)

that the dependency is related to. The set of dependencies of this type is denoted as Dp ⊆D.

Tokens

A tokens dependency (si , s j) ∈D connects an action firing that produces some tokens to the

one that consumes at least one of them. In such cases, these actions may belong to different

actors or they may be parts of the same actor (i .e., in the case of a direct feedback loop). The

parameters that can be stored in this type of dependency are the number of tokens that the

firing s j consumed from the tokens produced by the producer firing si . Additional attributes,

to be retrieved by profiling, are the token values. The set of dependencies of this type is

denoted as Dt ⊆D.

Name Direction Parameters Additional attributes

Dv internal variable

read/read

variable id
write/write initial value
read/write final value
write/write

D f finite state machine

Dg guard
enable guard id
disable appearance order

Dp port
read/read

port id
write/write

Dt tokens
output port id

token values
number of tokens

Table 4.1 – Dependencies: types, directions, parameters and additional attributes.

59

Chapter 4. Program execution modeling

4.1.3 Example

The main structure of ET G is illustrated using the example of the dataflow program presented

earlier in Section 2.3.3. The firing set S contains 9 action firings s = {s1, s2, . . . , s9} (summarized

in Table 2.3). The firing set S can be divided into 3 subsets, one for each actor of the network,

SSr = {s1, s2, s3}, SMd = {s4, s5, s6} and SSk = {s7, s8, s9}, such that S = SSr ∪SMd ∪SSk and

San ∩Sam =; for each couple of actors am 6= an . Sets SSr , SMd and SSk contain the firings of

Source, Medium and Sink respectively. The dependencies set D contains 16 dependencies

D= {e1,e2, . . . ,e16} (summarized in Table 4.1).

Now, the sequence of firings for this example is used in order to highlight how the ETG

(depicted in Figure 4.2) is constructed. Let’s assume a partitioning configuration consisting of

a single partition (all actors are assigned to the same processing element), a predefined and

static scheduling configuration (order of execution: {Sr,Sr,Sr, Md , Md , Md ,Sk,Sk,Sk}) and a

buffer dimensioning configuration where both buffers are assigned the same size of 512 tokens.

Figure 4.1 depicts the Gantt chart of the execution in this particular set of configurations, where

each action firing takes exactly 1 (abstract) clock-cycle to perform its execution.

Source s1 s2 s3

Medium s4 s5 s6

Sink s7 s8 s9

Figure 4.1 – Example: Gantt chart.

At time t = 0, the Source actor fires the action create (denoted as firing s1). During this

execution, s1 updates the internal actor variable id from idi = 0 to id f = 1. The firing

terminates with writing an output token τ1 = 1 to the output port O. At time t = 1, again the

Source actor fires the actioncreate (denoted as firing s2). Also s2 updates the internal actor

variable id fromidi = 1 to id f = 2. The firing terminates with writing an output token τ1 = 2

to the output port O. During the execution of firing s1, the internal state variable counteri

has the value previously written by the firing s1. This implies defining an internal variable

dependency between s1 and s2, denoted as e1. Since both firings wrote to this variable, the

dependency direction is write/write. Moreover, both s1 and s2 wrote a token to the same output

port. This implies defining a port dependency, with direction write/write, denoted as e2. The

same happens at time t = 2, when the same action is fired for the 3rd time in a row. This new

firing is denoted with s3. Also in this case an internal variable and a token dependency can be

60

4.2. Properties

s1

s2

s3

s4

s5

s6

s7

s8

s9

e1 e2

e3 e4

e6 e7

e9 e10

e13

e15

e5

e8

e11

e12

e14

e16

Figure 4.2 – ETG obtained after the execution of the C AL program from Section 2.3.3. The set
of firings S (dependencies D) is summarized in Table 2.3 (4.2), respectively.

defined with the previous step s2 (e3 and e4, respectively).

At time t = 3, the Medium actor fires the action multiply (denoted as firing s4). During this

execution, s4 consumes the token τ1 from its input port I and produces an output token τ4 to

its output port O. Since the input token τ1 was previously produced by the firing s1, a token

dependency between s1 and s4 can be defined (denoted as e5). At time t = 4, the Medium

actor fires the action multiply again (denoted as firing s5). Also this firing read the token

τ2 from the input port I and wrote the token τ5 to the output port O. Since τ2 was previously

produced by s2, a new token dependency can be defined (denoted as e8). Furthermore, since

the firing s5 read and wrote tokens from and to the same ports as the firing s4, two new port

dependencies can be defined. They are denoted as e6 and e7 with directions read/read and

write/write, respectively. The execution of the entire program continues until time t = 9 and

the described considerations can be used in order to build the remaining dependencies of the

ETG .

4.2 Properties

This Section summarizes the main properties of an ETG . The objective is to demonstrate how

these properties can be successfully exploited when exploring the design space of a program.

61

Chapter 4. Program execution modeling

(si , s j) Source Target Kind Direction Parameter Attribute

e1 s1 s2 Variable Write/Write variable=id initial=1
final=2

e2 s1 s2 Port Write/Write port=O
e3 s2 s3 Variable Write/Write variable=id initial=2

final=3
e4 s2 s3 Port Write/Write port=O
e5 s1 s4 Token - count=1

source-Port=I
source-Port=O

value=1

e6 s4 s5 Port Read/Read port=I
e7 s4 s5 Port Write/Write port=O
e8 s2 s5 Token - count=1

source-Port=I
source-Port=O

value=2

e9 s5 s6 Port Read/Read
e10 s5 s6 Port Write/Write port=O
e11 s3 s6 Token - count=1

source-Port=I
source-Port=O

value=3

e12 s4 s7 Token - count=1
source-Port=I
source-Port=O

value=-1

e13 s7 s8 Port Read/Read port=I
e14 s7 s8 Token - count=1

source-Port=I
source-Port=O

value=-2

e15 s5 s8 Port Read/Read port=I
e16 s8 s9 Token - count=1

source-Port=I
source-Port=O

value=-3

Table 4.2 – Dependencies set D of the execution trace graph depicted in Figure 4.2.

62

4.2. Properties

4.2.1 Topological order

Since ETG is considered to be a D AG(S,D), it is possible to define a partial order on the firing

set S. This topological order can be defined with a mapping function l :S→N such that:

si ≤ s j ⇒ l (si) < l (s j) (4.7)

It must be noted that a D AG can have different valid topological orders. In other words,

given two valid topological mapping functions l1 and l2, it is possible that l (s)1 6= l (s)2. As

demonstrated towards the end of this Section, an ET G can express the maximum parallelism

(potential parallelism) of the program. This property is strictly related to the fact that a D AG

generally admits several valid topological orders.

4.2.2 Configuration-related dependencies

Representation of a program execution in the form of an ETG is, in principle, independent

of the applied partitioning, scheduling and buffer dimensioning configurations. Hence, it is

a generic model with the features allowing exploration of different design configurations. A

problem that can be considered in this case is how to annotate the notion of specific config-

uration in such an independent generic model. This problem has been studied considering

partitioning and scheduling for the purpose of automatic analysis and synthesis of dataflow

programs, for example in [124]. This Section illustrates how different design configurations can

be represented in the ET G by introducing further dependencies to the graph. This property

is demonstrated using the same example of a dataflow program described in Section 4.1.3

and the set of design points summarized in Table 4.3. These dependencies result from the

combination of all configurations related to a design point. It is important to remark, that

these considerations are valid, when the considered actors are deterministic, that is, their

execution is not time dependent.

Example (1)

Let’s consider the 2 design points x2 and x4, as defined in Table 4.3. These two design points

differ only by the partitioning configuration. In x2 all the actors are assigned to one partition,

unlike for x4 where two partitions are defined. The scheduling and buffer dimensioning

configurations are identical in both cases. For x4, the firing set S has been obtained with

the following order S(x4) = {s1, s4, s2, s7, s5, s3, s8, s6, s9}. Considering the relationships between

the firings, the set of dependencies D(x4), as well as D(x2) is the same as the original set D,

considered in Section 4.1.3. The corresponding ETG is also the one depicted earlier in Figure

4.2. The design configurations lead to a specific order of firings. The edges related to this order

are introduced to the graph, as depicted in Figure 4.3d. These additional edges are depicted

63

Chapter 4. Program execution modeling

Design point xi Partitioning P (static) Scheduling S Buffer dimensioning B

x1 P 1
1 = {Sr,Sk, Md} S1

1 = {Sr,Sr,Sr,Sk,Sk,Sk, Md , Md , Md}
B 1

1 = 3
B 1

2 = 3

x2 P 2
1 = {Sr,Sk, Md} S2

1 = {Sr, Md ,Sk,Sr, Md ,Sk,Sr, Md ,Sk}
B 2

1 = 3
B 2

2 = 3

x3
P 3

1 = {Sr, Md} S3
1 = {Sr, Md ,Sr, Md ,Sr, Md} B 3

1 = 1
P 3

2 = {Sk} S3
2 = {Sk,Sk,Sk} B 3

2 = 1

x4
P 4

1 = {Sr, Md} S4
1 = {Sr, Md ,Sr, Md ,Sr, Md} B 4

1 = 3
P 4

2 = {Sk} S4
2 = {Sk,Sk,Sk} B 4

2 = 3

x5
P 5

1 = {Sr, Md} S5
1 = {Sr,Sr,Sr, Md , Md , Md} B 5

1 = 1
P 5

2 = {Sk} S5
2 = {Sk,Sk,Sk} B 5

2 = 1

x6
P 6

1 = {Sr, Md} S6
1 = {Sr,Sr,Sr, Md , Md , Md} B 6

1 = 3
P 6

2 = {Sk} S6
2 = {Sk,Sk,Sk} B 6

2 = 3

Table 4.3 – Summary of the design points considered for the program network in Figure 2.6.
The actors: Source, Medium and Sink are denoted with Sr, Md, Sk, respectively.

with dashed arrows, so that they are not confused with the configuration-independent edges.

They lead to the following partial ordered set S(x4) = {s1 < s4 < s2 ≤ s7 < s5 < s3 ≤ s8 < s6 < s9}.

It can be observed that when the dependencies are satisfied, firings of actors mapped on P 4
1

can be executed in parallel to firings mapped on P 4
2 .

Example (2)

The same considerations can be applied to the design points which differ from each other

only by the scheduling configuration. For instance, this is the case for the design points x1 and

x2. In these cases, the following partial orders can be considered: S(x1) = {s1 < s2 < s3 < s4 <
s5 < s6 < s7 < s8 < s9} and S(x2) = {s1 < s4 < s7 < s2 < s5 < s8 < s3 < s6 < s9}. These orders lead

to introducing additional edges to the graph, as depicted with dashed arrows in Figures 4.3a

and 4.3b, respectively.

Example (3)

This example illustrates the additional dependencies introduced for two design points differing

only by the buffer dimensioning configuration. Let’s consider the 2 design points x3 and x4. In

x3 the buffer dimensioning configuration is defined as B 3
1 = B 3

2 = 1, opposite to x4 where the

buffer dimensioning configuration is defined as B 3
1 = B 3

2 = 3. The partitioning and scheduling

configurations of x3 and x4 are the same. In these two cases notice that the partial orders

are the same in both cases and S(x3) = S(x4){s1 < s4 < s2 ≤ s7 < s5 < s3 ≤ s8 < s6 < s9}. In

consequence, the resulting ETG has exactly the same set of additional dependencies.

64

4.2. Properties

Example (4)

Although the difference in the buffer dimensioning configuration is not directly reflected in

the ETG (i .e., the resulting sets of additional dependencies are identical, as in the previous

example), it must be emphasized that the buffer dimensioning determines the feasibility of

the applied scheduling configuration. For instance, let’s consider the design points x5 and x6

which result from the points x3 and x4 by changing only the scheduling configuration. The

point x6 represents a feasible design point, whereas the point x5 is not feasible, because the

specified scheduling configuration cannot be realized due to the buffer restrictions.

4.2.3 Capturing the dynamic behavior

The considered dataflow MoC assumes that the actors can be characterized by a dynamic

behavior. For instance, they can be data-dependent. This data dependence can be illustrated

with a simple example. Let’s consider the C AL actor Separator defined in Listing 2.2. It

consists of 2 actions: A and B, respectively. The firing conditions of both actions imply that

one input token should be available in the input port I. However, action A is executable only if

the value of the token is val≥ 0 and action B if val< 0. Let’s suppose that 2 input sequences

are available in the input port I: I1 = {1,2,−3,−4} and I2 = {−5,−6,0,−7}, respectively. Hence,

the firing sequence S= {s1, s2, s3, s4} of this actor defines different action firings, as illustrated

in Table 4.4. Changing the firing sequence can lead also to some changes in the dependencies

set D. Hence, the model such as ETG (in terms of firings S and dependencies D) is valid for a

given input data.

Firing Action

I1 I2

s1 A B
s2 A B
s3 B A
s4 B B

Table 4.4 – Firings sequence of the C AL actor Separator (defined in Listing 2.2), when
two input sequences are available in its input port I: I1 = {1,2,−3,−4} and I2 = {−5,−6,0,−7},
respectively.

Abstracting from this simple example and moving towards real size applications, it is essential

to consider the ETG always in conjunction with a given input stimulus. Such a stimulus should

be statistically meaningful so that the entire dynamic behavior of an application is captured.

For instance, it should excite all parts of the application. Finding a high-quality design point

for a given input stimulus does not guarantee that this particular point will remain high-quality

65

Chapter 4. Program execution modeling

s1

s2

s3

s4

s5

s6

s7

s8

s9

(a) Design point x1

s1

s2

s3

s4

s5

s6

s7

s8

s9

(b) Design point x2

s1

s2

s3

s4

s5

s6

s7

s8

s9

(c) Design point x3

s1

s2

s3

s4

s5

s6

s7

s8

s9

(d) Design point x4

Figure 4.3 – ETGs of the C AL network depicted in Fig. 2.6. Dashed lines represent additional
edges that model a particular partitioning, scheduling and buffer dimensioning configuration,
as defined in different variants in Table 4.3.

66

4.2. Properties

for another set. Hence, analyzing a dynamic application and generating representative ETGs

should be based on a set of statistically meaningful data sequences (input stimuli) providing a

syntax for the exploration.

4.2.4 Potential parallelism

The term potential parallelism is popularly linked to the law defined by Amdahl (often referred

to as Amdahl’s law or Amdahl’s argument) [125]. In principle, it expresses the theoretical

reduction in latency of the execution of a task at fixed workload that can be expected of a

system whose resources are improved. In the context of this work, the potential parallelism

can be defined as the maximal achievable speed-up of a dataflow program versus a fully serial

(i .e., mono-core) execution. This maximal speed-up is related to an execution in optimal

conditions, that is, when all the actors can work in parallel and the buffer size is unbounded.

Hence, it corresponds to a maximally parallel execution of a program.

The information about the potential parallelism (in the context of a given input stimulus) is

carried by the ETG . As described previously, the precedence relations between the firings are

imposed only by the precedences related to the order of processing the data. For example, a

token dependency defines that the firing that consumes given tokens can only be executed

after the execution of the firing that produced these tokens. The same applies to the other types

of dependencies. As such, the dependencies setD defines only a minimal information based on

the data processing (i .e., tokens, internal variables) and resource utilization (i .e., ports, guards)

that should be respected in order to obtain a correct program execution. The constraints

imposed by the design configurations can only be modeled by introducing additional edges,

as discussed in detail in Section 4.2.2.

The ETG without additional edges corresponds to an execution of the program using a fully-

parallel configuration (i .e., where each partition contains only one actor) and unbounded

buffer sizes, because the scheduling choices are not constrained in any way. Hence, no

additional dependencies (like the dashed lines in Figure 4.3) are present. Such a model

corresponds to a fully parallel execution and is denoted as ETGp . Another model is related

to a fully serial execution and is denoted as ETGs . It corresponds to the situations depicted

in Figures 4.3a and 4.3b, when all actors are partitioned to the same unit and executed one

after the other. Assuming that the graphs ETGp and ETGs have their respective values of

makespans k(ETGp) and k(ETGs), the potential parallelism carried by the ETG can be defined

as:

P= k(ETGp)

k(ETGs)
(4.8)

67

Chapter 4. Program execution modeling

The information about the potential parallelism is highly valuable from the perspective of

DSE because it defines an upper bound on the performance achievable by the design points

consisting of different sets of configurations. In contrast, considering the ETG with additional

edges related to the configurations (as depicted in the examples in Figure 4.3) allows evaluating

the parallelism of a given design point. Comparing these two values (potential parallelism and

the parallelism of a given design point) provides an important indication about the quality of

the design point with regards to the theoretical best-quality point available in a given design

space. On the other hand, if the upper bound of the performance determined by the potential

parallelism is not sufficient (i .e., it does not satisfy the constraints), it might be necessary to

perform the modifications of the program leading to a new design space with a different value

of potential parallelism. This concept is discussed in detail in Section 7.7 and illustrated with

experimental results in Section 10.7.

4.3 Conclusions

This Chapter presented the concept of execution trace graph which is used as an abstract

model of a dynamic execution. The properties that make it an appropriate generic model for

design space exploration to be performed on different platforms have been discussed. Special

attention has been paid to the notion of dynamic behavior of the actors and to the information

about the potential parallelism of an application that is carried by the ETG .

68

5 Architecture modeling

This Chapter describes the underlying profiling methodologies which are used in order to

provide an abstract model of execution with the notion of time when referred to a given target

platform. This process in encompassed in the "Profiling and analysis" stage of the design

flow discussed in Section 3.5, as illustrated in Figure 5.1. The ETG is generated for a given

C AL program and an input stimulus. The profiling consists of executing a C AL program on

the platform in order to obtain the timing information injected into the ET G . This timing

information can be retrieved by reading the values of the clock-cycles from hardware counters

of the processor ([126]). Depending on the considered platform and its properties, different

information can be extracted with a varying level of accuracy. The Chapter describes the

profiling methodologies used for profiling of the two main types of platforms used in this work.

5.1 Abstract-to-timed translation

Time information is added to an ET G by defining for each firing and each dependency a corre-

sponding time value. In this way, the abstract definition of the program execution is translated

into the timed execution on a given platform. For this purpose, the ET G is transformed to

a weighted graph which is a special type of labeled graph where labels are considered to be

the, always positive in this case, numbers called weights. The timed execution trace graph

(T ETG) is formally defined extending the notation of the ETG as a D AG(S,D,ΨS,ΨD) where:

• ΨS :S→R+ is the firings weight mapping function.

• ΨD :D→R+ is the dependencies weight mapping function.

In other words, for each firing si ∈S is assigned a time value called firing weight and defined

69

Chapter 5. Architecture modeling

Profiling and Analysis

CAL
program

Architecture

ETG
generation Profiling

timed ETG

Input
stimulus

weightsETG

Figure 5.1 – System development design flow: profiling.

as w(si) ≥ 0. Similarly, the dependency weight w(si , s j) ≥ 0 is defined for each dependency

(si , s j) ∈D.

Firing weight

A weight related to an execution of the firing models the entire time required for an execution

of the action firing si . It consists of the following elements:

• the time spent on reading the input tokens;

• the execution of the algorithm;

• the time spent on writing the output tokens.

Dependency weight

A weight related to the dependency models the time required to make the dependency (si , s j) ∈
D available to the target firing step s j after the execution of the firing si has been completely

performed. Just like the firing weight, it may also depend on the applied set of configurations.

For different types of dependencies, this weight may model different factors. For example, if

(si , s j) ∈Dt is a token dependency, then w(si , s j) can model the time required by the buffer to

receive and make the corresponding tokens available. The same considerations can be made

for state variable dependencies (si , s j) ∈Dv where the token is now a state variable and the

70

5.2. Transport Triggered Architecture

buffer is a local memory region. Considering the F SM dependencies, the weight can model

the time required for selecting the action by the internal actor scheduler. Furthermore, when

introducing the configuration-related dependencies to model the scheduling configuration,

the weights of these dependencies model the time required to select the actor by the partition

scheduler.

Processing, scheduling and communication weights on the platform

Considering the profiling and modeling opportunities with limited memory resources, the

practical model of a platform consists of 3 types of weights. The processing weights (also

referred to as action weights) correspond to the time spent in the algorithmic part of a given

action, calculated in terms of statistical properties (average, maximum and minimum values)

among different firings of this action. The scheduling weights are related to the action selec-

tion by the internal actor scheduler. They are profiled and modeled differently for the two

considered platforms. The communication weights are related to the process of reading/writ-

ing of the tokens over a given buffer. The weights are assigned to each buffer and calculated

according to the information about the memory level that served the memory access and the

latency related to this process.

5.2 Transport Triggered Architecture

The first platform is built as an array of Transport Triggered Architecture (TTA) processors

(Fig. 5.2) [127]. It resembles the Very Long Instruction Word (VLIW) architecture with the inter-

nal datapaths of the processors exposed in the instruction set [128]. The program description

consists only of the operand transfers between the computational resources. A TTA processor

is made of functional units connected by input and output sockets to an interconnection

network consisting of buses.

TTA architecture has several strengths: it enables intruction-level parallelism and reduces

the registered file traffic [129]. The run-time hardware is simple and economical [130]. It

allows also configuring the processors in several ways [131]. The platform contains a simple

instruction memory without caches. Furthermore, it is a multiprocessor platform with no

significant inter-processor communication penalty. The execution time of a program can be

measured cycle-accurately and different runs provide exactly the same values.

The profiling of the processing times of an application is characterized with negligible over-

heads and with independence from the applied partitioning configuration. In fact, the profiling

methodology operates on actors executed in isolation, that is, one actor at a time on a single

processor core. The profiling is applied only once and then its results are explored in various

71

Chapter 5. Architecture modeling

Figure 5.2 – Transport Triggered Architecture model.

configurations. It is a valuable property of the TTA architecture compared to profiling of

other platforms, where the results usually depend on the partitioning configuration and may

turn out to be invalid when other configurations are considered [132]. For these reasons, it is

possible to build a simple model for this platform.

The profiling is performed on a cycle-accurate simulator [133], where the processor core is

equipped with a special time-stamp hardware operation creating a record to an external file

every time the operation is executed. The measurement is minimally intrusive, as it executes

in one clock-cycle on a processor that is capable of executing multiple operations every clock-

cycle. Figure 5.3 illustrates the placement of time-stamps. The clock-cycles elapsed between

the STAMP_10 and STAMP_11 (STAMP_20 and STAMP_21, respectively) correspond to

the processing time of action x (action y, respectively). The clock-cycles between

STAMP_0 and STAMP_1 correspond to the overall time spent inside an actor, excluding the

maintenance of the buffers. By subtracting the processing times of all actions from this value, it

is possible to calculate an overall intra-actor scheduling overhead. Since the information about

scheduling overhead is not provided at the level of actions (for instance, the structure and

complexity of the FSM of an actor is not taken into account), the overall value is distributed

among the actions depending on their frequency of execution and incorporated into the action

weights.

72

5.3. Intel 86x64

1 void actorA_scheduler() {
2 STAMP_0();
3 switch (fsm_state) {
4 case state_1:
5 if(action_x_guard() == true) {
6 STAMP_10();
7 action_x_body();
8 STAMP_11();
9 }
10 case state_2:
11 if(action_y_guard() == true) {
12 STAMP_20();
13 action_y_body();
14 STAMP_21();
15 }
16 }
17 STAMP_1();
18

19 fifo_maintenance_calls();
20 }

Figure 5.3 – T T A time-stamp placement: pseudocode.

5.3 Intel 86x64

Profiling of Intel 86x64 (further referred to as Intel) platforms is a much more challenging task

than profiling the simpler TTA architecture for several reasons. First, the measured clock-cycles

(CPU cycles) may vary depending on the availability of the required data/instructions in the

data/instruction caches. Second, neglecting the communication cost will not be irrelevant for

a good accuracy of the results. Moreover, it is not possible to measure the communication cost

in a partitioning-independent way, because the results obtained for one configuration will not

be valid for the other [132]. Hence, the actors cannot be executed in isolation (as for the case

of TTA), but rather in a given configuration (partitioning, scheduling, buffer dimensioning).

Finally, execution of any process which is not written as a kernel module does not guarantee

the exclusive ownership of the processor [134], which means that any interrupts may affect

the accuracy of the results. In order to minimize this effect, the profiling is performed under

the minimal Linux system with no unnecessary processes running and the hyper-threading

and turbo-mode (DVFS) turned off from BIOS/UEFI.

The Intel-based PCs, which are the target platforms for several experiments discussed later in

Chapter 10, are considered to consist of identical processors. In most cases, the profiling is

performed for the mono-core configuration. The measurements of the clock-cycles consumed

for the execution (or scheduling) of each action are performed via the benchmarking functions

73

Chapter 5. Architecture modeling

RDTSC_tick() and RDTSC_tock() to start and stop the benchmarking, respectively.

Most Intel processors have a per-core time-stamp counter register and using the RDTSC

and RDTSCP instructions (which read this register), Intel CPUs allow developers to keep

track of every CPU cycle. Although the main utility of the CPUID instruction is to load the

processor information into the registers, it is used along withRDTSC instruction to serialize the

execution with no effect on program flow and guarantee that the benchmarking functions do

not execute out of order. Separate intrinsic executions of CPUID and RDTSC, however, often

result in large variances when used to benchmark the same piece of code. To solve this issue,

Intel provides RDTSCP instruction, which performs both operations (reading the time-stamp

counter register and loading the processor’s info) in an intrinsic atomic instruction.

These two benchmarking functions are implemented using the in-line volatile assembly

instructions which invoke the intrinsic instructions RDTSC, RDTSCP, and CPUID. Despite

the aforementioned obstacles, it has been demonstrated in prior works that the profiling

performed via these instructions is quite stable [135]. In order to support a systematic and

automated benchmarking of the whole dataflow program on Intel platforms, the profiling

utility is integrated in the C AL to C code generation of ORCC [70].

5.3.1 Processing weights

The action weights are calculated based on the measurements of the clock-cycles elapsed

between RDTSC_tick() and RDTSC_tock() and consider the computational part of

each action, excluding the scheduler and the management of buffers. The location of the

RDTSC_tick() and RDTSC_tock() calls are depicted in Fig. 5.4.

The number of clock-cycles elapsed between the RDTSC_tick() and RDTSC_tock() are

stored as a weight of a firing. The weights for each firing of a given action are stored as a list.

The post-processing stage filters out the outliers, that is, the weights with extraordinary values

that can result from the, mentioned earlier, interrupts occurring during the execution. After

the filtering, the new values of µ and σ2 are calculated. The final processing weight for each

action corresponds to the calculated mean value. The filtering is performed according to

the threshold. Any values exceeding the threshold are removed from the list of firings. The

threshold is calculated according to the mean value (µ) and variance (σ2), calculated for all

profiled firings, using the following formula:

thr eshol d =µ+2
√
σ2 (5.1)

The weights remain dependent on the used configurations. All configurations (partitioning,

scheduling, buffer dimensioning) impact the results, because they influence the availability

74

5.3. Intel 86x64

1 void actorA_action_x_body() {
2 int i;
3

4 RDTSC_tick();
5 // Computational part of action’s body
6 i = tokens_InputPort1[(index_InputPort1
7 + (0)) % SIZE_InputPort1];
8 tokens_OutputPort1[(index_OutputPort1
9 + (0)) % SIZE_OutputPort1] = i;
10 RDTSC_tock();
11

12 // Update ports indices
13 index_InputPort1 += 1;
14 index_OutputPort1 += 1;
15 rate_InputPort1 += 1;
16 }

Figure 5.4 – Intel processing weights clock-cycles measurement: pseudocode.

of data in the caches throughout the execution. Additionally, the partitioning configuration

impacts also the communication cost related to token exchange between the actors. Hence,

the results remain the most reliable only for the set of configurations that were originally used

for profiling. In order to use the results of profiling obtained for one configuration to explore

other configurations, preliminary experiments demonstrated that the most accurate results

can be obtained if the profiling is performed for a mono-core execution and relatively big

buffers.

Figures 5.5 and 5.6 illustrate well the differences between the profiling data obtained for T T A

and Intel platforms (using a realistic example of, described later in Section10.1.2, MPEG4-SP

decoder) and justify the necessity of applying the filtering for the case of an Intel platform.

Then, Table 5.1 summarizes the statistical values collected during the profiling in both cases

and after applying the filtering.

Platform Samples Average Min Max Variance
TTA 1600 549.73 547 567 24.37
Intel (Original) 1600 666.89 156 21224 5.13×106

Intel (Filtered) 1528 188.39 156 776 4.61×103

Table 5.1 – Statistical information obtained for a single action on the T T A and Intel platforms.

75

Chapter 5. Architecture modeling

0 200 400 600 800 1000 1200 1400 1600
545

550

555

560

565

570

clock cycles

average

min

max

Figure 5.5 – T T A profiling data of a single action: collected timing data of 1600 firings.

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5
10

4

clock cycles

average

min

max

discarded values

(a) Unfiltered data. Red circles highlight the outliers (values higher
than the tr eshol d)

0 200 400 600 800 1000 1200 1400 1600
100

200

300

400

500

600

700

800

clock cycles

average

min

max

(b) Filtered data

Figure 5.6 – Intel profiling data of a single action: collected timing data of 1600 firings.

5.3.2 Scheduling weights

The measurement of the clock-cycles related to the scheduling is performed using the same

instructions, averaging and filtering mechanism. The RDTSC_tick() and RDTSC_tock()

calls related to the profiling of scheduling cost are depicted in Fig. 5.7. For the case of schedul-

ing weights, apart from the action executed, it is also important to record the action which

76

5.3. Intel 86x64

was executed before. Hence, the values of scheduling weights are always linked to a certain

transition (source - target action set) and stored in an appropriate map. The filtering is applied

within each transition. If a previously executed action was an action of the same actor, its

name is stored in a map. An empty name means that the action was entered "from outside".

This happens for the very first execution of a given actor or if the last executed action in a given

partition belonged to another actor.

It must be emphasized that the scheduling weights obtained this way are related only to the

internal scheduler inside each actor and do not include the cost of the scheduler inside a

partition. The values of the weights obtained for each transition do not depend on the applied

partitioning, scheduling nor buffer dimensioning configurations. The applied configurations

(scheduling and buffer dimensioning), however, influence the occurrence of certain transitions.

For instance, the set of possible transitions which are profiled can differ for small and big buffer

sizes. In consequence, profiling one configuration and exploiting the results for exploration

of other configurations means that certain transitions might not be profiled, hence they are

not present in the resulting weights. Preliminary experiments demonstrated that the set of

common transitions (overlapping between different configurations) is quite large, however

the presence of some differentiating subsets cannot be eliminated.

5.3.3 Communication weights

The generation of communication weights is performed using the numap library [136]. This

low-level memory profiling library is intended to be used for memory profiling in centralized

shared memory systems. It was initially designed for profiling of the memory usage on Non

Uniform Memory Access (NU M A) architectures and supports many micro-architectures from

Intel. The implementation is portable, because according to the set of supported architectures,

the correct hardware event to be used for memory read/write sampling is selected. The

functions of the library count memory requests, generate memory samples and provide access

to them for analyzing memory behavior of applications. The profiling can be performed for

multiple NU M A nodes and multiple threads.

Since different samples are available (i .e., shared memory variables, global and local variables),

the samples related to the buffers are extracted. Different runs of profiling are required for

reading and writing data and for each operation different information is available. For each

buffer present in the profiling report the following information about reading is provided:

• memory level that served the access (L1, L2, L3, LFB, Local RAM, Uncached Memory);

• the number of accesses for each memory level;

• the average latency related to serving the access;

77

Chapter 5. Architecture modeling

• whether a memory hit or miss occurred.

In contrast, the information related to writing is limited to:

• whether a memory hit or miss occurred in level L1;

• the number of occurrences for each event.

The communication weight related to the reading operation for each buffer is calculated as a

weighted arithmetical mean for the set of recorded events (memory level + hit/miss), where

the values correspond to the average latency and the weight to a percentage of occurrences of

certain events in the entire set of events, as illustrated in Equation 5.2. Table 5.2 presents a

realistic example of the values obtained in the report. The calculation of the communication

weight for this example is demonstrated in Equation 5.3. The communication weight related

to the writing operation is calculated in the same way, based on just 2 samples (L1 hit, L1

miss) where some constants are specified as latencies. The value of these constants have been

specified as maximum values (L1 hit, not-L1 hit, respectively) occurring for the reading events.

w j j ′ =
∑n

i=1 li nai∑n
i=1 nai

(5.2)

Memory level Number of accesses (na) Average latency (l) event
L1 1114 10.61 hit
L2 4 19.50 hit
L3 0 0.00 hit

LFB 6 137.08 hit
Local RAM 1 597.00 hit

Uncached memory 0.00 22 hit

Table 5.2 – Sample communication cost data.

w j j ′ = 1114∗10.61+4∗19.50+6∗137.08+1∗597

1125
= 11.84 (5.3)

At this stage it must be emphasized that profiling with numap succeeds according to a certain

sampling rate (Chapter 5 of [132]). Depending on that rate (and, obviously, on the length of the

input stimulus used for profiling), some buffers can be represented with more samples than

others, hence, the generated communication weight is more accurate. It is also possible that

for some buffers the communication weight cannot be generated because of an insufficient

representation of this buffer in the samples used to generate the report.

78

5.4. Profiling accuracy

5.4 Profiling accuracy

An important problem related to profiling is the accuracy of the retrieved information which

translates directly into the accuracy of the performance estimation methodology or the design

space exploration heuristics. In general, modeling the architecture relying on the profiling and,

in particular, on the limited set of measurements coming from the platform (i .e., the weight

calculated according to the statistical properties) can be burdened with some errors. These

general uncertainties of profiling result from multiple factors, such as: varying execution

times resulting from interrupts, counting some instructions multiple times or intractable

optimizations of the compiler [137].

Since different platforms provide different levels of accuracy, what is the acceptable level of

discrepancy, for instance, in the performance estimation methodology based on profiling

can be debated. For the purpose of design space exploration it can be assumed that the

requirement is to ensure such a level of accuracy that permits correct evaluation of different

design points and allows performing the moves in the considered design space efficiently and

in a systematic way.

5.5 Conclusions

This Chapter presented a way to provide an abstract model of execution with the timing

information, so that the execution essentials can be captured enabling a reliable comparison

of different design points. The two discussed platforms are characterized with different

properties, which contribute to the level of accuracy of the provided models. A TTA platform

allows, in general, the creation of a very accurate model in a simple way, since the profiling

results do not depend on the partitioning configuration and the communication cost can

be neglected. For the case of Intel platforms, obtaining an accurate model is more difficult,

since the partitioning-dependent communication cost must be introduced to ensure enough

accuracy. Furthermore, the interrupts require applying additional filtering techniques.

79

Chapter 5. Architecture modeling

1 void actorA_scheduler() {
2

3 lastSelectedAction = OUTSIDE;
4 RDTSC_tick();
5

6 // jump to FSM state
7 switch(FSM_state) {
8 case my_state_state_1:
9 goto l_state_2;
10 case my_state_state_2:
11 goto l_state_3;
12 }
13

14 // FSM transitions
15 l_state_2:
16 if (isSchedulable_action_x) {
17 RDTSC_tock();
18 currentSelectedAction = action_x;
19

20 // execute the action
21 action_x_body();
22

23 lastSelectedAction = currentSelectedAction;
24 RDTSC_tick();
25 }
26 else if (isSchedulable_action_y) {
27 RDTSC_tock();
28 currentSelectedAction = action_y;
29

30 // execute the action
31 action_y_body();
32

33 lastSelectedAction = currentSelectedAction;
34 RDTSC_tick();
35 }
36

37 l_state_3:
38 if (isSchedulable_action_z) {
39 RDTSC_tock();
40 currentSelectedAction = action_z;
41

42 // execute the action
43 action_z_body();
44

45 lastSelectedAction = currentSelectedAction;
46 RDTSC_tick();
47 }
48 }

Figure 5.7 – Intel scheduling weights clock-cycles measurement: pseudocode.

80

6 Design space exploration problem

Before attempting to solve the problem of design space exploration and optimization of dy-

namic dataflow programs, it is important to clarify what are the exact requirements, properties,

decision variables and constraints. To the best of the author’s knowledge, such a rigorous

formulation of the design space exploration problem is still missing in the dataflow-related

literature. Moreover, the available formulations mainly target only the SDF computation

model which is characterized by several limitations, as discussed in Chapter 2. The current

formulations respond also only partially to the demands of DDF , because when considering

the partitioning and scheduling problems, they usually do not take into account the buffer

dimensioning problem, nor its influence on the size of the partitioning and scheduling design

space. Considering these subproblems, this Chapter presents a detailed formulation of the

design space exploration (DSE) problem which follows precisely the demands of dynamic

dataflow applications. The problem is formulated in terms of the decision variables, objective

functions and constraints. It also considers how the general problem is specified (i .e., extended

with additional constraints) when an execution on a given type of platform is considered. An

example illustrating the problem instance sizes is also included.

6.1 Related work

In general, the problem of partitioning and scheduling of parallel programs has been already

extensively studied in the literature in its numerous variants, associated terminology, opti-

mization functions and algorithms used to find close-to-optimal solutions [138]. However, the

specific partitioning and scheduling problem (considering also the buffer dimensioning) that

is faced when dealing with dynamic dataflow programs on heterogeneous architectures has

not been yet clearly formulated in the literature.

The problem of the partitioning of standard- and multi-constraint graphs and directed acyclic

81

Chapter 6. Design space exploration problem

graphs (DAG) are discussed, for instance, in [139]. The employed objective function is the

minimization of the numbers of edges with endpoint vertices belonging to different subsets

and does not explicitly consider the makespan (total time) of an application execution. This

variant is partially handled in [140], where the contributing weights, considered constant,

are added to the edges. Several strongly simplifying assumptions are also presented in this

formulation, such as full connectivity of available processors, contention-free communication

and homogeneity of the processors.

An interesting approach is to handle both: the program and the target architecture as graphs

that need to be embedded in each other [141] or to extend the DAG definition by a description

of the dependencies between the tasks [142] or the delays assigned to the edges [143]. However,

both of these approaches assume that the dependencies occur at the same level, where the

partitioning and scheduling are performed. For instance, the precedence constraints occur

directly between the partitioned/scheduled objects (or actors).

To explicitly approach the partitioning problem, when dealing with heterogeneous platforms,

a formalism assigning different processing costs to the tasks executed as software or imple-

mented in a hardware component [144] and defining a heterogeneous multi-core system

model [145] can be considered. In both cases, however, it is not taken into account that differ-

ent processor families (i .e., software or hardware) may imply some eligibility constraints (i .e.,

some tasks cannot be performed on certain machines and, also, the communication between

them can be more complex and constrained). Using a similar formalism on the application

and on the architecture model, the partitioning and scheduling problem could be formulated

as an assignment and execution of tasks that respect the given deadlines [146]. However, such

an approach is difficult to apply in the dataflow domain, where the firings are not time-aligned

and task deadlines do not exist.

Summarizing various formulation variants available in literature, there are two important nov-

elties of the rigorous problem formulation provided in this Chapter. First, it includes also the

problem of buffer dimensioning, which is considered equally important to be solved together

with partitioning and scheduling in order to perform an efficient design space exploration.

Furthermore, it does not impose any particular order or priority for finding the solutions to

the aforementioned subproblems. Second, since it considers the most expressive (dynamic)

dataflow programs, it describes the program execution in the most detailed way, that is, us-

ing action firings to express the dependencies between different dataflow components and

constraints. Thanks to such an exhaustive description, it is possible to model and thoroughly

analyze a given program.

82

6.2. Underlying optimization problems

6.2 Underlying optimization problems

The design space exploration problem consists of partitioning, scheduling and buffer dimen-

sioning. These subproblems are illustrated in Fig. 6.1. The solutions (configurations) applied

to these subproblems lead to defining a fixed execution order of the firings that compose the

execution and hence restrict the topological order in the execution trace graph by introducing

the configuration-related dependencies, as described in Section 4.2.2.

Defining such an execution order for the case of an AT S program is much more complex

than for the case of K P N or DP N programs. For a K P N program the execution order is

defined directly for the set of processes composing the program [84]. For a DP N program it is

a sequence of actor firings the execution order has to be defined for [147]. The case of AT S

programs requires defining the execution order for a sequence of atomic steps, where each

step consists of an execution of a firing function controlled not only by the availability of input

tokens, but also by state variables and priorities, as summarized in Section 2.1.4.

Figure 6.1 – The partitioning, scheduling and buffer dimensioning subproblems.

6.2.1 Partitioning

Using the terminology coming from the production field, the problem is to assign n jobs

(corresponding to the action firings) to m parallel machines (also referred to as partitions or

processing units). Each job j has an associated processing time (or an action weight) p j and it

belongs to a group (or an actor) g j . There are l possible groups, denoted as g1, g2, . . . , gk . If

g2 = 3, it means that job 2 belongs to group g3. Each group g j can be divided into subgroups,

where all jobs have the same processing times and thus can be identified with different

executions of the same action. Between some pairs { j , j ′} of incompatible jobs (i .e., with

g j 6= g j ′) is associated a communication time w j j ′ . It is subject to a fixed quantity q j j ′ of

information (or the number of tokens) that needs to be transferred. The size of this data is

fixed for any subgroup.

83

Chapter 6. Design space exploration problem

The partitioning problem can be represented by an acyclic directed graph G = (V , A), with the

vertices (or nodes) set V and the arcs set A. Each vertex or node j represents a job and each arc

(j , j ′) (between two nodes of the same group or not) represents a precedence constraint. With

each arc (j , j ′) such that g j 6= g ′
j is associated a communication time (or a communication

weight) w j j ′ . With each arc (j , j ′) such that g j = g j ′ , no weight or cost is associated. It can be

observed that the relative order of execution of the nodes belonging to the same group is quite

constrained (i .e., the decision space is very restricted for such arcs) and is, in fact, imposed by

the input stimulus used to build the graph. Finally, a group constraint can be defined, which

implies that all jobs belonging to the same group have to be processed on the same machine.

In other words, all executions of a particular actor must be partitioned to the same machine.

6.2.2 Scheduling

Typically, only one job can be executed at a time on one machine. Hence, for each assignment

of jobs to the machines, the order of execution (i .e., the sequencing) of jobs S = {
j , j ′, . . .

}
must

be decided in each machine. In practice, the sequencing of jobs within one group is quite

constrained. Therefore, it can be reasonably assumed that there is almost no impact on the

resulting makespan if some permutations are performed in the sequencing of each group. In

this case, the scheduling problem can be limited to choosing at each step a group for which

a node should be executed. The eligibility for execution for each node is determined by the

availability of the necessary input tokens and spaces in the outgoing buffers. Depending on

the internal nature of each actor (i .e., static or dynamic) and on the underlying structure of its

nodes, an optimal static order may or may not exist. In the situation where there are several

jobs available for an execution on one machine, the selection of one of them is very sensitive

to the solution’s quality.

The sequencing must take into account two constraints. The precedence constraint (j , j ′)
means that the job j (plus the associated communication time) must be completed before the

job j ′ is allowed to start at the time point Tst ar t (j ′). The setup constraint requires that for each

existing arc (j , j ′) involving nodes from different groups, a setup (or communication) time

w j j ′ is occurring. In contrast with the job scheduling literature [148], one can observe that a

setup time also occurs if the involved jobs are assigned to two different machines.

6.2.3 Buffer dimensioning

Each communication channel i (buffer in the network) that the information (tokens) is being

transmitted through is bounded by Bi , so that a configuration B(bi) = Bi is specified. More

precisely, the sum of the q j j ′ ’s along any arc assigned to a particular buffer i cannot exceed Bi .

This size must be taken into consideration when evaluating the execution eligibility of a job j ,

84

6.3. Target platforms

because if the necessary space is not available, this job cannot be executed (i .e., jS 6= j). The

optimal size should be set independently for each buffer in the network so that the delays of

job executions arising from unavailability of the space in the buffers are minimized.

6.3 Target platforms

6.3.1 Homogeneous platforms

In the case of a homogeneous platform, each job j must be performed on any of the m parallel

identical processing units (machines). The associated processing time p j (action weight on

the platform) is thus the same on each processing unit. A group ri is assigned to each machine

i . This definition remains consistent with the construction of the Non-Uniform-Memory-

Access (NUMA) architectures, where the processing units (cores) are grouped and connected

to different memory banks [149], as depicted in Fig. 6.2a for the case of Intel Xeon X5650

(example of a NUMA architecture) considered in this work as a homogeneous platform.

The communication time w j j ′ required for transferring a given number of tokens consists

of the product of two elements: the (previously described) quantity q j j ′ and the variable

time w j j ′(h(j),h(j ′)) needed to transfer a single unit of information (where h(j) denotes the

machine the job j is performed on). The value of w j j ′ can belong to one of the three cases:

(1) j and j ′ are scheduled on the same machine (communication via the L1-L3 caches or

the local memory); (2) j and j ′ are scheduled on machines of the same group (L3 cache

or local memory); (3) j and j ′ are scheduled on machines from different groups (remote

memory) [132]. It can be assumed that case (3) will always introduce much higher values

of w j j ′ than cases (1) and (2), whereas case (2) is likely to have a higher latency than case

(1). This will depend, however, on the communication demands of the actors in a specific

partitioning configuration. Figure 6.2b presents a sample assignment of four groups (actors)

to a set of homogeneous machines corresponding to the mentioned earlier example of the

NUMA architecture.

6.3.2 Heterogeneous platforms

Heterogeneous platforms imply considering different families of processing units. In each

family, all processing units (machines) are identical, but the processing units of one family are

not necessarily faster than the processing units of another. Typically, there are two families:

HW (for hardware) and SW (for software). If only family SW is considered, the extended

problem is reduced to the problem of homogeneous machines described previously. Other-

wise, a job j has the same processing time on all the SW processing units (denoted p j (SW)),

and another processing time on all the HW processing units (denoted p j (HW)). The actors

85

Chapter 6. Design space exploration problem

(a) Platform example: Intel Xeon X5650.

(b) Sample assignment.

Figure 6.2 – Homogeneous platform.

86

6.4. Formulation of the design space exploration problem

assigned to the HW processing units work in parallel. Thus, the scheduling problem for a HW

subset of machines is eliminated without having any impact on the makespan. Figure 6.3a

illustrates the basic construction of Xilinx Zynq 7000, which is an example of a heterogeneous

platform. The two ARM machines, along with the associated memories (L1, L2, DRAM) belong

to the SW family, whereas the AXI Masters component denotes the set of HW processing units.

Handling heterogeneous platforms introduces different figures of merit for the communica-

tion time. The w j j ′ ’s are all equal to 1 (small value) if the involved groups are assigned to HW

(assuming internal communications for hardware modules). The w j j ′ ’s are represented with

different levels of values (depending on the assignment to the processing units, similar to

the homogeneous platform case) if the involved groups are assigned to SW . If one group is

executed on HW and the other on SW , w j j ′ depends on the amount of information to be

sent.

The constraints introduced in this case are mostly subject to the HW family. First of all, an

eligibility constraint occurs, meaning that a HW processing unit cannot perform all the jobs

(i .e., there is a set d(i) of unsupported operations for each processing unit i), for instance

the floating point operations. Furthermore, there is a capacity constraint due to the limited

memory size of the HW family. Each group g (buffer b) has a memory requirement of mem(g)

(mem(b)), respectively. The sum of mem(g) and mem(b) for all groups and buffers assigned

to the HW processing units cannot exceed a given limit. Finally, the buffer mapping constraint

implies that the number of possible connection paths cnp between SW and HW (HP compo-

nents in the aforementioned example) is fixed to HPmax . The maximal number of buffers that

can be mapped to one connection path is fixed to Bmax .

Figure 6.3b presents a sample assignment of four groups (actors) to the, mentioned previously,

example of a heterogeneous platform.

6.4 Formulation of the design space exploration problem

The properties of the underlying (partitioning, scheduling and buffer dimensioning) problems

can be summarized with a formulation provided below. One of the possible objective functions

is the makespan, which corresponds to the completion time Tend of the last performed job

(denoted as jl ast).

Decision variables: ∀ j : P (j) = hi , ∀hi : S = {
j , j ′, . . .

}
, ∀bi : B(bi) = Bi (each job is assigned

to a machine, each machine has an execution order of the jobs, each buffer has a finite size)

Objective function (example): min(Tend (jl ast)) (minimization of the completion time of the

last performed job)

87

Chapter 6. Design space exploration problem

(a) Platform example: Xilinx Zynq 7000.

(b) Sample assignment.

Figure 6.3 – Heterogeneous platform.

88

6.5. Problem instance sizes

Constraints:

• g j = g j ′ ⇒ P (j) = P (j ′) (group: firings belonging to the same actor must be partitioned

to the same processing unit)

• j ≺ j ′ ⇒ Tst ar t (j ′) ≥ Tend (j) (setup, communication: the succeeding job can be executed

only after the termination of the preceding job, including the communication time)

• jS = j ⇒∑
qbi

+tokens(j) ≤ Bi (buffer capacity: a job can be scheduled only if there is a

sufficient space in its outgoing buffers)

• P (j) = hi ⇒ j ∉ d(i) (eligibility: a job cannot be assigned to the processing units that

does not support all of its operations)

•
∑

g∈HW mem(g)+∑
b∈HW mem(b) ≤ si ze(HW) (capacity: the sum of the memory re-

quirements of the actors and the buffers partitioned to hardware cannot exceed the

limit)

•
∑

cnp∈HP ≤ HPmax ,
∑

b∈cnp ≤ Bmax (buffer mapping: the number of paths between

the HW and SW components and the number of buffers that can be mapped to one

connection are limited)

6.5 Problem instance sizes

Taking into consideration the typical instances of the problem, it is possible to define some

practical boundaries on the size of the input data. The small instances start from: n ∈
[200,000;500,000],m ∈ [2,20], l ∈ [5,40], whereas the large instances can range up to n ≈
1,000,000,000,m ≈ 500, l ≈ 500. Such instance sizes are huge when compared to the com-

plexity of problems found in the production literature [148] and the graph partitioning litera-

ture [150], which makes it somewhat difficult to use heuristics directly taken from these fields

to design a solution method for the dataflow design space exploration problem.

Comparing the classical problem formulation (where the relationships between the actors,

not between the action firings are analyzed) with the problem formulation introduced in this

Chapter, a huge difference can be demonstrated in the problem instance sizes, but also in the

level of detail that is considered in both cases. Taking an example of a real dataflow application

(MPEG-4 SP video decoder [151]), Fig. 6.4a illustrates the network consisting of actors and

buffers, which is a graph to be partitioned using the classical problem formulation. It consists

of 17 nodes and 38 arcs. In comparison, Fig. 6.4b presents the rendered ETG generated for this

application using an input sequence consisting of only a few frames. Taking into consideration

all of its firings and the dependencies between them, it consists of 176,649 nodes and 1,609,543

arcs.

89

Chapter 6. Design space exploration problem

(a) Program to be partitioned: MPEG-4 SP decoder.

(b) ETG generated for the program network.

Figure 6.4 – Dataflow program representations.

90

6.6. Conclusions

6.6 Conclusions

This Chapter formulated the design space exploration problem with regards to the decision

variables, objective functions and constraints. It discussed in detail the underlying partitioning,

scheduling and buffer dimensioning problems. It considered the problem for the case of

homogeneous and heterogeneous architectures and discussed typical problem instance sizes.

Analyzing the provided formulation and the illustration of the instance sizes, the complexity

of the design space exploration problem can be realized. First, each of the subproblems,

even when tackled separately, is NP-complete. Nevertheless, they have to be considered

jointly in the process of exploration, since defining a solution to one of them, constraints

the space available for the others. Second, as illustrated with an example, the number of the

design points to be explored is huge and expands along with the increase of the design and

architecture complexity. Finally, depending on the architecture, several constraints must be

taken into account, that make the exploration process even more troublesome.

91

7 Exploration of multiple multidimen-
sional design spaces

Following the definition of the design space exploration problem presented previously, this

Chapter describes the concepts of design points, design spaces and transitions between them.

It introduces a formulation capable of capturing the multidimensionality of the DSE problem

and discusses possible optimization scenarios. An example demonstrates the complexity of

the design space of DDF programs which has a direct impact on the efficiency of the solution

methods that can be developed. The formal definitions of design spaces and transitions

between them is comprised in the Variable Space Search (V SS) methodology enabling system-

atic improvements of a program. The novel contributions of this Chapter are preceded by an

overview of related works discussing some similar aspects to the proposed V SS methodology.

7.1 Related work

Design space exploration of parallel programs (i .e., streaming applications, microprocessors)

is a problem widely described in the literature. Depending on the type of application, the

considered MoC, the target platform and the objectives, the problem can be formulated

according to different decision variables, constraints and objective functions. Nevertheless,

in most cases, it is possible to identify some common challenges, such as the exponential

number of configurations in the number of design variables and a nonlinear interaction

between them [152]. Furthermore, multiple objective functions might often conflict with each

other [153]. The overview presented in this Section is complementary to the discussion of

dataflow-oriented frameworks, presented earlier in Chapter 3 and, in particular, in Section 3.3.

7.1.1 Design space exploration variants

The exploration aims at finding a configuration optimizing a desired objective function, where

a configuration consists of a set of parameters. The number of parameters determines the

93

Chapter 7. Exploration of multiple multidimensional design spaces

number of dimensions in the design space. The parameters may be related to the program

configurations (i .e., mapping of processing kernels to the available hardware/software ele-

ments, dimensioning the buffers between the kernels), but also to the architecture parameters,

such as custom datapath designs, cache sizes and instruction sets [154]. The exploration

can be performed according to different optimization criteria. In [155], a search is described

for an assignment of program components to hardware and software components, so that a

trade-off between the performance and the code size is achieved. In [156], complexity of the

implementation is introduced as a design variable, and a trade-off between the performance

and the complexity is searched for. In this case, the design space consists of different/similar

designs and their fitness to the aforementioned optimization criteria is measured. The work

discussed in [157] considers a mapping of KPN processes, where binary decision variables

are introduced to represent the mapping of the KPN nodes and edges to the processing-

and memory elements, respectively. The optimization considers three criteria: performance,

power consumption and cost. The same optimization criteria are considered in [158], where

a solution method for the mapping decision problem represented as a multi-objective com-

binatorial problem is proposed. A performance and power trade-off is an objective of the

exploration described in [159]. In that work, the design space results from adjusting parameter

values for a fixed application mapped onto the SoC architecture. The exploration is performed

using the Y-chart consisting of the architecture, applications and performance measures.

An interesting formulation of the DSE problem can be found in [160, 161]. The set of configura-

tions that must be specified consists of an allocation of the architecture components, a binding

of the processes to the components and defining a scheduling. It is assumed that all solutions

can be described and explored, but some of them are infeasible. Hence, the exploration aims

at establishing the feasible solutions and returns a set of solutions of different quality with

regards to different design objectives. The exploration is performed using Multi-Objective

Evolutionary Algorithms (MOE As). Since the size of the design space is usually huge, an

exhaustive exploration is possible only for very small instances of the problem. For any larger

instances, it must be decided how the design space should be explored. One possible option

is to perform a random sampling, which can provide an unbiased view of the space [156]. In

contrast, using heuristics instead of a random sampling may reduce the size of the space by

rejecting unsatisfactory solutions followed by identifying solutions which are best in terms of

certain objective functions [162]. Further techniques can be also developed to reduce the size

of the space and hence improve the exploration efficiency (e.g ., dedicated filtering techniques,

as proposed in [163]). The aforementioned work ([159]) points to an opportunity for reducing

the size of the explored space by identifying dependencies between the parameters. Hence,

the exploration can be performed only for a subset of parameters, according to the created

dependency model. Another approach proposed in [154] is to decompose the space into

subproblems. Due to such branching, different problem blocks can be solved independently

from each other.

94

7.1. Related work

An important aspect of design space exploration is a performance estimation which should

allow correctly evaluating different solutions and enabling performing moves (i .e., minor

structured modifications) from one solution to another. Since such an evaluation is often time

consuming, an estimation can be based on two different models, as described in [164]. One

model is more accurate, but time consuming, whereas the other is quicker and simpler, but

less accurate. This type of trade-off between accuracy and speed is well-known in other fields,

especially if simulation is required to accurately evaluate a solution (e.g ., [165]). Another idea

is to use a visualization of the space to help locate the optimal points [166]. It is, however,

limited only to three dimensions.

Apart from establishing a, hopefully, close-to-optimal solution, especially for the case of multi-

criteria objective functions, it might be important to provide a set of high-quality solutions. In

[159], a set of Pareto-optimal configurations is explored, where each solution is better than

the others according to at least one criterion. On the other hand, the Multi-Criteria Decision

Making (MC DM) introduced in [164] performs a ranking of solutions rather than choosing

the best one.

Summarizing different ideas of reducing the size of the space or making the exploration

process more efficient, it has to be concluded that the discussed approaches cannot be really

adapted to the design space exploration problem discussed in this work. The considered

configurations remain tightly connected and a setting applied to one of them may strongly

affect the exploration opportunities of the others. Hence, the targeted problem remains in any

case NP-complete and multidimensional.

7.1.2 Bottlenecks in design space exploration

The design space exploration process can be supported by means of bottleneck analysis.

According to [167], the bottlenecks of an application are defined as the factors identified to

affect the length of the critical path, where different factors can have different impacts, leading

to a ranking of bottleneck factors. In that work, the considered DSE problem consists of

specifying the microprocessor parameters in two stages. First, the most impacting parameters

are identified and second, search algorithms are used to find the, hopefully, optimal design

point. The critical path analysis is performed based on a dependency graph and a cycle-

accurate simulator. The information about the most impacting bottlenecks is used in order

to drive the optimization algorithms. It is also verified that a bottleneck analysis can be

particularly useful for optimization algorithms operating on a non-completely random basis

(e.g ., tabu search, simulated annealing).

Another bottleneck-based approach for design space exploration is discussed in [168], where

media processing systems represented as SDF graphs are considered. The exploration process

95

Chapter 7. Exploration of multiple multidimensional design spaces

consists of finding the mappings of the application onto the components of the architecture,

and then dimensioning the architecture in order to achieve a final trade-off between the

throughput and the resource utilization. Bottlenecks are defined as resources required to be

increased in order to improve the application throughput. In principle, the flow discussed in

that work has some significant similarities with the methodology described in this Chapter. In

a similar way, possible design configurations are explored in order to find a set of high-quality

solutions, then the bottlenecks are analyzed and, possibly, optimized in order to enable further

improvement of the throughput. The important difference is that [168] relates bottlenecks to

the architecture dimensions that are increased.

In the methodology introduced in this work, the definition of bottlenecks is wider, because

they can be related to both, design and platform. For example, a bottleneck related to the

design is a long sequential processing part, whereas a bottleneck related to the platform is the

bandwidth between the partitions. The bottlenecks are identified more precisely in Section 7.7

for the design cases analyzed in the experiments, after having defined the optimization scenar-

ios. In the analysis process of an application, the emphasis is put on the bottlenecks related

to the parts of program implementations. In consequence, it leads to a throughput improve-

ment resulting from optimizations inside the program implementation with an unchanged

configuration of the target platform. Furthermore, the considered design space is much more

complex compared to the referenced work, because it also includes the scheduling and buffer

dimensioning, as required for the case of dynamic dataflow programs.

7.1.3 Variable space

The concept of a search performed in variable spaces has been already successfully applied to

the N P-complete problem of graph coloring [169]. In that case, the main idea is to consider

several search spaces, with various solution representations, neighborhood structures and

objective functions, and move to another space if the search is blocked at a local optimum in a

given space. Different spaces are defined based on the formulations of the problem differing,

for instance, in terms of the constraints that can be relaxed in one space, but satisfied in

another one. Every time a transition between the spaces is performed, a high-quality solution

established in one space is translated into a corresponding solution in the new space. The flow

proposed in this work uses the concept of multiple search spaces in order to find a high-quality

design point in global terms, that is, among all visited design spaces.

To the best of the author’s knowledge, this idea has not been yet properly studied nor for-

malized for the purpose of design space exploration of dynamic dataflow programs or even,

more generally speaking, parallel system implementations. However, among the related works,

some hints indicating the possible advantages of such an approach can be found. For instance,

the work described in [170] points out that creating a new search space can improve the

96

7.2. Multidimensional design space definition

effectiveness of the search, because it can increase the likelihood that the search will arrive

at a correct path. Similarly, the results of [171] demonstrate that the search space should be

expanded along the variables that are most likely to positively impact the design objectives. It

is also emphasized that a requirement of defining a new design space might result from the

changeable design objectives being constantly updated during the exploration.

7.2 Multidimensional design space definition

Considering the three underlying problems described in the previous Chapter, let a design

point X in the design space be a 3-tuple X = (P X (mX),SX ,B X), where P X (mX) refers to

a partitioning configuration with mX machines, SX is a vector referring to the scheduling

configuration on each machine, and B X is a vector where each component refers to the size of

its associated buffer. Vectors SX and B X have the following structures:

• SX = (SX
1 ,SX

2 , . . . ,SX
mX), where SX

i refers to the scheduling configuration on machine i ;

• B X = (B X
1 ,B X

2 , . . . ,B X
n), where n is the number of buffers (which is the same for any

design point in a given design space) and B X
i refers the size of buffer i .

A point-to-point transition (or a move) in a given design space is a modification of any of

the components describing a design point. In the case of vectors S and B , the modification

involves changing at least one element. Given the two design points X and Y , it can be stated

that: X 6= Y if P X (mX) 6= P Y (mY) or SX 6= SY or B X 6= B Y . The structural difference between X

and Y can be denoted as ∆(X ,Y). It is defined as:

∆(X ,Y) = {(P : P X (mX) → P Y (mY);Si : SX
i → SY

i ,∀ i ∈ {1, . . . ,max(mX ,mY)};B j : B X
j → B Y

j ,∀ j ∈
{1, . . . ,n})}.

Every move has an associated difference value of the objective function, denoted as∆ f (X ,Y) =
f (Y)− f (X). If a transition involves a modification of only one component (i .e., either parti-

tioning, scheduling or buffer dimensioning), the design points belonging to this transition can

be called neighbor design points.

The notation B X
i ↗ B X

j = A (SX
i ↗ SX

j = SC) means that all buffers (machines) between i and

j have the same size A (the same scheduling configuration SC), respectively. Consider the

following example:

• X = (P = pcon f 1(3);SX
1 = scon f 1,SX

2 ↗ SX
3 = scon f 2;B X

1 ↗ B X
2 = 2,B X

3 ↗ B X
20 = 1024);

f (X) = 1000

• Y = (P = pcon f 2(8);SY
1 ↗ SY

4 = scon f 1,SY
5 ↗ SY

8 = scon f 3;B Y
1 = 4,B Y

2 = 2,B Y
3 ↗

B Y
20 = 2048); f (Y) = 100

97

Chapter 7. Exploration of multiple multidimensional design spaces

The two points X and Y differ in the partitioning configuration, which is spanned on different

numbers of machines (3 and 8, respectively). Hence, the length of the vector S is different

in both cases. For machines 2 and 3, the scheduling configuration changes from scon f 2 to

scon f 1, whereas the others appear only in the design point Y . As for the buffers, only buffer 2

remains unchanged, whereas the others change. These two points have also a different value

of the objective function. All these differences can be expressed as:

• ∆(X ,Y) = (P : pcon f 1(3) → pcon f 2(8);S2 ↗ S3 : scon f 2 → scon f 1,S4 : 0 → scon f 1,

S5 ↗ S8 : 0 → scon f 3;B1 : 2 → 4,B3 : 1024 → 2048)

• ∆(Y , X) = (P : pcon f 2(8) → pcon f 1(3);S2 ↗ S3 : scon f 1 → scon f 2,S4 : scon f 1 →
0,S5 ↗ S8 : scon f 3 → 0;B1 : 4 → 2,B3 ↗ B20 : 2048 → 1024)

• ∆ f (X ,Y) = 100−1000 =−900 =−∆ f (Y , X)

7.3 Space-to-space transition

Let D = {X 1, . . . , X p } be a design space containing all the possible design points. This space

can be described as a Multidimensional Design Space (MDS). Let F = { f (X 1), . . . , f (X p)} be the

set of values (according to the considered objective function f) corresponding to the design

points. With each D are associated three properties denoted as P , S and nD . P (S) is the

set of partitioning (scheduling) configurations, respectively, that are possible in D , and nD is

the number of buffers in D .

A space-to-space transition (also called a move) results only from applying refactoring opera-

tions to the analyzed dataflow program. The refactoring might involve modifications of two

types: (1) insertion/removal of an actor and/or a buffer to/from the network; (2) modification

of the internal structure of an actor leading to variation of the processing weight of an action,

or the number of dependencies, or the set of dependencies between the actions.

Modifications of type (1) lead to a completely new design space with an empty set X (COM)

of common design points. Modifications of type (2) may result in a design space with a non-

empty set X (COM), some design points that are removed (they are put in a set X (OU T)), and

some others that are added (they are put in a set X (I N)). When generating design space D2

from design space D1, the set of added (removed) design points contains the solutions that are

feasible (infeasible) in D2 and infeasible (feasible) in D1, respectively. The structural difference

between D1 and D2 is defined as:

∆(D1,D2) = {X (COM), X (OU T), X (I N);P (COM),

P (OU T),P (I N);S (COM),S (OU T),S (I N);n : nD1 → nD2 }.

The difference between the values of the objective function for the overlapping design points

98

7.4. Design space quality

can be denoted as:

∆F (D1,D2) = {∆ f (Xi (D1), Xi (D2)),∀ i ∈ X (COM)}.

Depending on the type of refactoring applied to the program, the resulting set X (COM) might

be empty (i .e., all design points are new). The same holds for P (COM) and S (COM). If

X (COM) 6= ;, the value of each design point in X (COM) may change.

7.4 Design space quality

The most important indication about the quality of the design space Di is the quality of

the best solution X ∗(Di) in terms of the objective function f and/or the satisfaction of the

constraints, if any. If different design spaces provide solutions of a comparable quality, a

volume V (Di) (average objective function variation) of different design spaces is compared.

A volume can be calculated for all design points generated by certain heuristics or, for huge

numbers of design points, for a fraction of points obtained by sampling. The number of design

points used to calculate the volume can be different in different spaces.

Let X ∗(Di) denote the best-found solution in Di (according to f). Its value is denoted by

f (X ∗,Di). The following indicators can be further considered when measuring the quality of

Di :

• T (Di): computing time required to find X ∗(Di);

• C (Di): total number of solutions evaluated during the exploration of Di ;

• I (Di): proportion of improving moves (when moving from a current solution to a neigh-

boring solution within the considered local search framework) during the exploration of

Di .

A design space can be explored by appropriate (meta)heuristics, which can target any of the

underlying optimization problems. High-quality (meta)heuristics are essential in order to find

a competitive design point in a given design space. If the values of X ∗(Di), T (Di), C (Di) and

I (Di) are not satisfied, and the constraints (if any) are violated, the idea is to generate a new

design space, explore it, and hopefully find better solutions.

7.5 Design space complexity

The following example demonstrates a simple design space, where the considered design

points consist of the 3, mentioned earlier, configurations. They are realistic examples of fea-

sible design points generated for MPEG4-SP decoder executed on Intel i7-3770 platform (4

99

Chapter 7. Exploration of multiple multidimensional design spaces

cores). The values of the makespan for each design point have been calculated using a highly

accurate performance estimation methodology, which is described in detail in Chapter 9. For

each of the 3 configurations, two variants are considered.

Partitioning:

• P X (2) = RM , where all actors (jobs) are randomly distributed among the two available

machines;

• P X (2) = BD, where the actors (jobs) are distributed among the two machines, so that

the total processing time of each machine is as close to equal as possible.

Scheduling:

• SX
1 ↗ SX

2 = N nP , where on each machine, jobs are executed according to the Non −
Pr eempti ve scheduling policy, that is, each actor is executed as many times in a row as

possible;

• SX
1 ↗ SX

2 = RR, where on each machine, jobs are executed according to the Round −
Robi n scheduling policy, that is, after a successful execution of an actor, another actor

is chosen for execution. Both policies are discussed in more detail in Section 8.3.2.

Buffer dimensioning:

• B X = B16k , where the buffer dimensioning configuration is defined as B X
1 ↗ B X

65 =
16,384;

• B X = Bmin, which corresponds to a feasible, deadlock-free buffer configuration with

Btot al (X) close to minimal. The configuration is: Bmin = {B X
1 ↗ B X

4 = 1,B X
5 ↗ B X

6 =
2,B X

7 ↗ B X
8 = 4,B X

9 ↗ B X
14 = 8,B X

15 ↗ B X
19 = 16,B X

20 ↗ B X
26 = 32,B X

27 ↗ B X
34 = 64,B X

35 ↗
B X

38 = 128,B X
39 ↗ B X

43 = 256,B X
44 ↗ B X

65 = 512}.

Figure 7.1 depicts a complete space of possible solutions for this example, where the connec-

tions between the design points represent the neighbor design points. Even though it is an

extremely simplified design space (i .e., only two variants are considered for each configura-

tion) it illustrates the complexity of the design space exploration problem, as formulated in

Chapter 6. For instance, assuming f = k, it can be observed that the best point (G) can be

reached from multiple paths, where each path results from some point-to-point transitions

between the neighboring points. This illustrates that different dimensions of the space can

100

7.6. Optimization scenarios

be explored in multiple orders. Furthermore, the extreme design points (here points F and

G) can be equal with respect to some configurations. In this particular case, the structural

difference is ∆(G ,F) = (P : BD → RM ;S1 ↗ S2 : N P → RR) and the buffer size configuration

remains the same for both. Finally, design points of a similar quality can consist of different

configurations. For example: ∆(D, H) = (S1 ↗ S2 : N P → RR;B1 ↗ B65 : Bmin → B16k). This

transition corresponds to ∆ f (D, H) =−7164, which makes a difference of only 0.06%.

A
𝑃𝐴 2 = 𝑅𝑀
𝑆𝐴 = 𝑁𝑛𝑃
𝐵𝐴 = 𝐵𝑚𝑖𝑛

B
𝑃𝐵 2 = 𝑅𝑀
𝑆𝐵 = 𝑅𝑅
𝐵𝐵 = 𝐵𝑚𝑖𝑛

C
𝑃𝐶 2 = 𝑅𝑀
𝑆𝐶 = 𝑁𝑛𝑃
𝐵𝐶 = 𝐵16𝑘

D
𝑃𝐷 2 = 𝐵𝐷
𝑆𝐷 = 𝑁𝑛𝑃
𝐵𝐷 = 𝐵𝑚𝑖𝑛

E
𝑃𝐸 2 = 𝐵𝐷
𝑆𝐸 = 𝑅𝑅
𝐵𝐸 = 𝐵𝑚𝑖𝑛

F
𝑃𝐹 2 = 𝑅𝑀
𝑆𝐹 = 𝑅𝑅
𝐵𝐹 = 𝐵16𝑘

G 𝑃𝐺 2 = 𝐵𝐷
𝑆𝐺 = 𝑁𝑛𝑃
𝐵𝐺 = 𝐵16𝑘

H
𝑃𝐻 2 = 𝐵𝐷
𝑆𝐻 = 𝑅𝑅
𝐵𝐻 = 𝐵16𝑘

𝑘 𝐴 = 𝟏𝟒𝟔𝟎𝟖𝟓𝟒𝟎

𝑘 𝐵 = 𝟏𝟒𝟔𝟏𝟎𝟒𝟒𝟒

𝑘 𝐶 = 𝟏𝟒𝟓𝟓𝟖𝟑𝟔𝟒

𝑘 𝐷 = 𝟏𝟐𝟔𝟑𝟓𝟒𝟐𝟒

𝑘 𝐸 = 𝟏𝟐𝟖𝟓𝟏𝟐𝟐𝟒

𝑘 𝐹 = 𝟏𝟒𝟔𝟏𝟕𝟖𝟒𝟖

𝑘 𝐺 = 𝟏𝟐𝟓𝟓𝟖𝟓𝟑𝟔

𝑘 𝐻 = 𝟏𝟐𝟔𝟒𝟐𝟓𝟖𝟖

Figure 7.1 – DSE example: MPEG4-SP decoder on Intel i7-3770.

7.6 Optimization scenarios

It is possible to define some constraints depending on the solutions being searched for. For

a given design point X , the number of machines mX (the total buffer size Btot al (X) and the

value of the makespan k(X)) can be upper-bounded by U m (U b and U k), respectively. The

optimization problem is to find the best (according to f) design point X ∗ among the visited

design spaces. The following optimization scenarios can be considered.

1. (S1) Minimize the makespan f k with upper bounds U m and U b on the number of

machines and on the total buffer size, respectively.

2. (S2) Minimize the number f m of machines with upper bounds U k and U b on the

makespan and on the total buffer size, respectively.

3. (S3) Minimize the total buffer size f b and the number f m of machines with an upper

101

Chapter 7. Exploration of multiple multidimensional design spaces

bound U k on the makespan.

Let g m (g b and g k) be the penalty function associated with the violation of the upper bound

U m (U b and U k), respectively. The values of these functions are calculated as follows: g m(X) =
max(mX −U m ;0); g b = max(Btot al (X)−U b ;0); g k = max(k(X)−U k ;0). The optimization

problem consists of minimizing F = f +α · g , where g is a penalty function and α ≥ 0 is a

weighting parameter. If α> 0, the constraints violations are penalized. Increasing (decreasing)

α augments (reduces) the importance given to the penalty function and the search is likely to

better focus on feasible (competitive) solutions, respectively. The tuning of α is the decision of

the program designer who might change it during the exploration, depending on the obtained

results. Using the proposed new notation, the above-mentioned optimization scenarios can

now be formulated as below. Note that if two components appear in either f or g , they are

normalized in order to give them the same importance.

1. (S1) f = f k and g = g m + g b .

2. (S2) f = f m and g = g k + g b .

3. (S3) f = f b + f m and g = g k .

7.7 Variable Space Search

A bottleneck of a program is defined as a part of its implementation which must be modified

(i .e., optimized or parallelized) in order to reduce the makespan for a given design point, when

an execution on a given target platform is considered. Bottlenecks can be caused by both

design and platform factors. A design bottleneck factor corresponds to a long sequential part

of the program (i .e., resulting from insufficient potential parallelism of the design), whereas a

platform bottleneck factor may be related to the bandwidth between the partitions, limited

cache sizes etc. A critical path of the design (CP) is defined as the longest time-weighted

sequence of events from the start of the program to its termination and can be evaluated

using multiple algorithms as described in [121]. Different bottleneck factors are reflected in

the CP, hence the CP is a measure of the execution representation. The refactorization of the

program leading to the generation of a new design space should be based on the analysis and,

consecutively, resolving the bottlenecks. Originally proposed in [169], the process of design

space exploration performed in different design spaces generated by the refactoring process,

as discussed earlier in Section 7.1.3, can be described as a Variable Space Search (VSS), and is

presented in Algorithm 1. It must be noted that the same concept can be applied to different

optimization scenarios, according to the specified constraints and objective function(s).

102

7.8. Conclusions

Algorithm 1: Variable Space Search (VSS)

Data: Input: D0; Output: X ∗(Di) (with i > 0)

Initialization:

• In the given design space D0, find X ∗(D0) with a solution method.
• Set Continue = true.
• Set i = 1.

while Continue = true do

• Generate a new design space:
1. Analyze the bottlenecks of X ∗(Di−1).

2. In order to reduce g [X ∗(Di−1)], refactor the program (programming effort, code
optimization) to build Di .

• Generate an initial solution in Di by updating X ∗(Di−1).
• Design Space Exploration (DSE): use (meta)heuristics to find X ∗(Di).
• Set Continue = false if one of the following conditions is encountered:

1. g [X ∗(Di−1)] = 0 and g [X ∗(Di)] > 0

2. g [X ∗(Di−1)] = 0 and g [X ∗(Di)] = 0 and [f (X ∗(Di)) > f (X ∗(Di−1))+ε]

3. g [X ∗(Di)] > g [X ∗(Di−1)] > 0 and [f (X ∗(Di)) > f (X ∗(Di−1))+ε]

4. Set i =U i (where U i is an upper bound on i)

• Set i = i +1.

end

7.8 Conclusions

This Chapter introduced the concept of a multidimensional design space and an appropriate

formulation to capture its complexity, quality and describe the moves performed in the

space. The formulation follows directly the DSE problem definition presented in Chapter 6.

Furthermore, the concept of variable design spaces and the ways they are generated has been

introduced. This concept has been used in a novel algorithm for analysis and improvement

of dynamic dataflow applications based on the idea of Variable Space Search known from

the graph coloring field. In the case of the dataflow application of the problem, it relies on

the design space exploration and analysis of design bottlenecks. The algorithm can be used

according to different optimization scenarios related to performance and resource utilization.

103

8 Heuristics for design space explo-
ration

This Chapter describes several design space exploration heuristics aiming at partitioning,

scheduling and buffer dimensioning which compose the functionalities of Turnus co-design

framework. They belong to the "Profiling and Analysis" stage of the design flow discussed

in Section 3.5, as illustrated in Figure 8.1. The usage of such heuristics is necessary in order

to make the exploration process as efficient as possible. In fact, following the problem for-

mulation presented in Chapter 6, it can be stated that the considered design space is huge,

constrained and multidimensional, where different dimensions strongly influence each other.

In this case, it is hard to imagine performing the exploration randomly or manually and it is

necessary to create methods capable of approaching the high-quality solutions easily and in a

systematic way.

An efficient exploration of the multidimensional design space has two important applications.

First, exploration of feasible regions leads to determining a, hopefully, close-to-optimal set

of configurations according to the desired objective function. Second, it enables the identifi-

cation of unreachable regions of the design space that could become reachable by applying

refactorization stages to the considered design. For instance, a different implementation

of an algorithm might be required for obtaining higher performances if its current exposed

parallelism is lower than the potential parallelism offered by the processing platform.

The considered DSE problem consists of multiple subproblems, where each one is considered

NP-complete [121, 10]. Hence, it is only possible to develop heuristic approaches. First,

different partitioning approaches of different complexity are described. Second, the two

approaches to buffer dimensioning are presented. Finally, a few dynamic scheduling policies

are proposed along with a figure of merit to evaluate the scheduling cost.

105

Chapter 8. Heuristics for design space exploration

Compiler
Infrastructure

Profiling and Analysis

CAL
program

ArchitectureConstraints

ETG
generation Profiling

Design Space
Exploration

Partitioning

Scheduling

Buffer
dimensioning

timed ETG

Figure 8.1 – System development design flow: design space exploration.

8.1 Partitioning

An important property of a dataflow program is the composability of its components (actors).

Hence, a program can be executed on different types of platforms (i .e., with different numbers

of processing units) without any interference in the implementation. A link between a given

program and a target platform in terms of an assignment of dataflow actors to the available

units is taken care of by specifying a partitioning configuration. Finding such a configuration so

that a given objective function is satisfied has been proven to be NP-complete even for the case

of only two processors [172]. According to the commonly used terminology, the partitioning

can be defined as a mapping of an application in the spatial domain and is also known as

binding [173]. This Section describes different heuristics aimed at finding a high-quality

partitioning configuration. The heuristics are ordered according to the complexity, starting

from simple constructive heuristics, through local search methods, up to metaheuristics

employing some learning features [18].

106

8.1. Partitioning

8.1.1 Related work

Due to the NP-completeness of the partitioning problem, for realistic instances it is only

possible to develop methods providing close-to-optimal solutions [174]. They can be ob-

tained by applying constructive heuristics, where a solution is generated from scratch by

sequentially adding components to the current partial solution according to some criteria

until the solution is complete [175]. Another possibility is metaheuristics, formally defined as

iterative generation processes which guide a subordinate heuristic by combining intelligently

different concepts for exploring and exploiting the search space [176]. Metaheuristics (e.g .,

simulated annealing, tabu search, variable neighborhood search, guided local search) can

usually lead to solutions of higher quality, but in general they require much longer computing

times [177, 178].

There are several examples of the approaches based on metaheuristics used for partitioning

or, more generally, for the design space exploration of dataflow programs. In [179], simulated

annealing is employed for estimating the bounds of the partitioning program. Various op-

timization stages (including the selection of a target architecture, partitioning, scheduling

and design space exploration) are applied in [160] in order to identify feasible solutions. The

optimizations are performed using an evolutionary algorithm. Multi-objective evolutionary

algorithms used for performing an automatic design space exploration are also an objective

of the work discussed in [161]. An interesting transition from simple heuristics to advanced

metaheuristics (such as genetic algorithms) is also described in [93], where more advanced

methods act as a refinement to the less advanced ones.

The partitioning (mapping) heuristics being part of the frameworks described earlier in Chap-

ter 3 (i .e., MAPS [84], Sesame [180], PREESM [93]) have been designed explicitly for the purpose

of dataflow partitioning, which is a specific instance of a graph partitioning problem. The

research field of graph partitioning is, indeed, thoroughly covered by different algorithms

proposed in the literature ([181]) as well as some software packages, such as METIS ([182])

or SCOTCH ([183]). Such general purpose partitioning algorithms cannot be, however, easily

applied for the case of dataflow programs, since they are not aware of the semantics related

to the elements of a dataflow graph. An attempt at applying the, mentioned earlier, METIS,

for the purpose of a run-time actor mapping of dataflow programs has been made in [184].

This approach explores the results of profiling and extracts some optimization criteria (i .e.,

the connectivity between the actors). It is, however, difficult to evaluate the obtained solutions

in terms of being close-to-optimal or not, or point to possible optimizations in the design,

since no execution model is provided. The considered partitioning graph is the program

network itself and not the execution trace which can provide some elements and measures

of the execution properties of the dataflow program. Furthermore, such a combinatorial

approach, which might operate quite effectively for small instances of the problem, cannot be

107

Chapter 8. Heuristics for design space exploration

successfully applied to the exploration of design problems of a larger size.

8.1.2 Greedy constructive procedures

In order to construct a solution, the greedy procedures require specifying only the target

number of processors. The solution generation succeeds in a negligible time frame, since no

performance estimation needs to be performed.

Workload Balance (WB)

The concept of balancing the workload in order to minimize the bottlenecks of the program

and hence maximize the throughput has been already successfully employed for partitioning

purposes of systems of different types [185]. Inspired by such approaches, the very first

constructive heuristic has been designed. The algorithm starts from calculating the total

workload of each group throughout the program execution. It is expressed as the sum of

the p j ’s for all jobs (firings) belonging to one group (actor) g . The actors are then sorted

decreasingly by the sum of weights (workload) wl (g) = ∑
j∈g p j . The partitioning decision

is based on the sum of workloads of actors partitioned already in one processor ρ: wl (ρ) =∑
g∈ρ wl (g). The next actor on the list is always partitioned on the processor with the smallest

sum of workloads wl (ρ). In this way, a balance of the total workload of each partition should

be achieved and the workload of the most occupied processor is likely to be minimized.

In order to illustrate the flow of the algorithm, the sample network depicted earlier in Figure 2.4

is used. The sample file containing processing weights for the actions of the actors is presented

in Listing 8.1. For the considered set of weights, Table 8.1 presents all the steps of the algorithm,

assuming that a partitioning on 2 machines is to be established. For each step, it is indicated

which actor is selected for an assignment, its total workload, the target partition it is chosen to

be assigned to (ρ1 or ρ2, in this case) and the value of wl (ρ) after every assignment. Notice

that the resulting values of wl (ρ) are very close to each other (410 and 406, respectively).

Step id actor/group wl (g) target ρ wl (ρ)
1 D 270 ρ1 270
2 F 180 ρ2 180
3 G 120 ρ2 300
4 B 110 ρ1 380
5 C 60 ρ2 360
6 A 50 ρ2 410
7 E 26 ρ1 406

Table 8.1 – W B partitioning algorithm: sample flow.

108

8.1. Partitioning

Listing 8.1 – Sample (processing) weights file for the program from Figure 2.4
1 <?xml version="1.0" ?>
2 <network name="Sample_Network">
3 <actor id="A">
4 <action id="a" clockcycles="10" firings="5"/>
5 </actor>
6 <actor id="B">
7 <action id="b1" clockcycles="20" firings="4"/>
8 <action id="b2" clockcycles="15" firings="2"/>
9 </actor>
10 <actor id="C">
11 <action id="c" clockcycles="10" firings="6"/>
12 </actor>
13 <actor id="D">
14 <action id="d1" clockcycles="50" firings="3"/>
15 <action id="d2" clockcycles="40" firings="3"/>
16 </actor>
17 <actor id="E">
18 <action id="e1" clockcycles="5" firings="2"/>
19 <action id="e2" clockcycles="4" firings="4"/>
20 </actor>
21 <actor id="F">
22 <action id="f" clockcycles="30" firings="6"/>
23 </actor>
24 <actor id="G">
25 <action id="g" clockcycles="20" firings="6"/>
26 </actor>
27 </network>

Balanced Pipeline (BP)

The algorithm starts from giving each actor a dedicated processor. Next, the processors are

iteratively reduced and the members of the least occupied processor are attached to the

remaining processors. The optimization criteria of the algorithm include equalizing the

average preceding workload (APW) between the partitions and maximizing the number of

common predecessors (ACP) for each partition. APW is defined as the maximal sum of weights

of the jobs belonging to the actors (groups) that precede the given actor in the network in

terms of topological order: max
∑

p j∈g j g j ≺G . The ACP number is evaluated for each pair

of actors and denotes the number of actors appearing on the topological list of predecessors.

An actor is also considered to be its own predecessor. In addition, the list of predecessors

must consider the cycles between the actors, if they appear. The idea behind employing the

aforementioned criteria is to join the units where the overall APW is small with those with a big

APW so that the actors which are about to fire at the similar time during the execution do not

block each other. An additional criterion favors a high ACP value between actors inside one

unit, as most likely there is a pipeline between them that would disable their parallel execution

anyway.

The flow of this partitioning algorithm is illustrated using the same example (the program

109

Chapter 8. Heuristics for design space exploration

network and the weights) as for the W B algorithm. Again, partitioning on 2 processing units

is considered. First, the settings for the algorithm are presented. Table 8.2 summarizes the

calculated values of AW and APW for each actor, and Table 8.3 presents the values of AC P for

each pair of actors. Table 8.4 illustrates the steps of the algorithm. In each step it is indicated

what is the initial partitioning configuration, what is the value of APW for each partition (put

in brackets) and which move is chosen to be performed. Notice that, unlike for the previous

algorithm, in this case the created partitions have close values of the preceding workload,

instead of the workload. The resulting configuration is also completely different compared to

the one established by the W B algorithm.

actor/group AW APW
A 50 0
B 110 330
C 60 186
D 270 546
E 26 220
F 180 246
G 120 246

Table 8.2 – BP partitioning algorithm: AW and APW settings.

A B C D E F G
A - 1 1 1 1 1 1
B 1 - 4 4 4 4 4
C 1 4 - 4 4 4 4
D 1 4 4 - 4 5 5
E 1 4 4 4 - 4 4
F 1 4 4 5 4 - 5
G 1 4 4 5 4 5 -

Table 8.3 – BP partitioning algorithm: AC P settings.

Step id Partitioning configuration Chosen connection
0 {D} = 546,{B} = 330,{F } = 246,{G} = 246,{E } = 220,{C } = 186,{A} = 0 {A} → {D}
1 {A,D} = 273,{B} = 330,{F } = 246,{G} = 246,{E } = 220,{C } = 186 {C } → {B}
2 {A,D} = 273,{B ,C } = 258,{F } = 246,{G} = 246,{E } = 220 {E } → {B ,C }
3 {A,D} = 273,{F } = 246,{G} = 246,{B ,C ,E } = 245 {B ,C ,E } → {F }
4 {A,D} = 273,{G} = 246,{B ,C ,E ,F } = 245 {B ,C ,E ,F } → {G}
5 {A,D} = 273,{B ,C ,E ,F,G} = 245 -

Table 8.4 – BP partitioning algorithm: sample flow.

The algorithm can operate in two modes. If the number of partitions is fixed, the algorithm

proceeds until the given number is reached. Otherwise, the number of processing units

110

8.1. Partitioning

must be established. For that purpose, two additional parameters are introduced: (a) the

Average Partitioning Occupancy (APO), calculated as an average value of the processing

time of each unit expressed in percent; (b) the Standard Deviation of Occupancy (SDO),

calculated as a statistical standard deviation for the APOs of the units. These parameters are

calculated during the performance estimation. Preliminary experiments and observations

lead to characterization of the balanced workload of a partitioning configuration with a

high value of average occupancy and, at the same time, a low value of standard deviation.

With such a distribution of values, in the ideal case, all partitions should be equally and

maximally occupied. Therefore, the ratio of APO to SDO is used as an evaluation of partitioning

configuration. As the reduction procedure continues, this ratio quite naturally increases. If

the opposite occurs, it usually means that a strong inequality of the workload among units is

introduced. Hence, this determines the stop condition of the algorithm.

Once an initial partitioning configuration is established, a further optimization procedure can

be applied, for instance one of the descent local search methods (idle time or communication

volume minimization) described in the following Section. Alternatively, instead of using a

performance estimation during the search, it is also possible to specify a fixed percentage

of the most idle (most communicative, respectively) actors which will be moved to different

processing units.

8.1.3 Descent local search procedures

As described in [186], a local search starts from an initial solution and then explores the

solution space by moving from the current solution to a neighbor solution. A neighbor solution

is usually obtained by making a slight modification of the current solution, called a move. The

neighborhood N (s) of a solution s is the set of solutions obtained from s by performing each

possible move. In a descent local search (DLS), the best solution (according to the considered

objective function f) of s′ ∈ N (s) is generated at each iteration. The main drawback of this

method is that it stops in the first local optimum. Two DLS approaches are proposed: the Idle

DLS and the Communication Frequency DLS.

Idle descent local search (IDLS)

Representing the program execution with an ETG, and simulating its execution for a given

partitioning, scheduling and buffer dimensioning configuration using the performance estima-

tion tool, provides important information related to the actor states throughout the execution.

The following states may occur for an actor that is currently not processing and has not yet

terminated:

111

Chapter 8. Heuristics for design space exploration

• Blocked reading considers the situation where an actor has not yet received the required

input tokens and therefore cannot be executed;

• Blocked writing takes into account the situation where the buffer an actor is expecting

to write to is full, so it has to wait for the available space;

• Idle corresponds to the situation where although an actor has the necessary tokens

and required space in the buffers, it cannot be fired because another actor is currently

processing in the same processor (because, as previously mentioned, only one job can

be executed on each processor at a time).

When looking for a partitioning and scheduling configuration yielding high performance, it is

particularly important to minimize the occurrences of the idle state. In order to achieve that,

in I DLS all actors are sorted according to their idle times in decreasing order (idle time list).

A newly created solution s is generated by moving a single actor to the most idle partition,

where the idleness of a partition is defined as the overall time during the execution when

none of its actors could be executed due to being blocked reading/writing or terminating. In

each iteration, the possible moves are prioritized according to the position of the considered

actor on the idle time list. A move is evaluated by estimating the makespan of the new

solution. For the case of a successful move, the statistics on the idle times of the actors and

the corresponding idle time list are regenerated. Since the moves are prioritized, there is a

risk that if there is a move with a high priority that does not improve the solution, it will be

unnecessarily repeated in each iteration. To prevent that from happening, a simple release

mechanism is implemented: a (once unsuccessful) move, expressed as an actor-partition pair,

may be repeated only if the content of the target partition has been modified by applying

another move.

Communication frequency descent local search (CFDLS)

Another piece of information that can be extracted from the ETG is the number of token

dependencies between the firings of different actors. Accumulating these numbers for all

firings leads to the creation of an actor-actor communication frequency map. This map is in-

dependent from the partitioning configuration, but taking the partitioning into consideration,

it can be easily transformed into an actor-partition map. Indeed, this map is taken as an opti-

mization criterion by another local search. For each actor, the algorithm calculates the internal

communication frequency (token exchange with actors partitioned to the same processor)

and external communication frequency (token exchange with actors partitioned to different

processors). Partitioning of actors may strongly influence the values of communication cost

and therefore the makespan.

If for any actor, the external communication frequency with one processor exceeds the internal

112

8.1. Partitioning

communication frequency, this actor-partition pair is considered as a move. The moves are

prioritized according to the overall communication frequency of the actors and a release

mechanism (similar to I DLS) is implemented. The move can be evaluated in two ways:

by estimating the execution time of a new solution or by analyzing if the overall external

communication frequency (calculated collectively for all partitions) has decreased.

8.1.4 Tabu search

Tabu search (T S), as introduced by Glover [187], is still among the most cited and used local

search metaheuristics for combinatorial optimization problems. It avoids the problem of

getting stuck in the first local optimum by making use of recent memory with a tabu list. More

precisely, it forbids performing the reverse of the moves done during the last t ab (parameter)

iterations, where t ab is called tabu tenure. At each iteration of T S, the neighbor solution s′

is obtained from the current solution s by performing on the latter the best non-tabu move

(ties are broken randomly). The process stops, for instance, when a time limit T (parameter) is

reached. In most T S implementations, if the neighborhood size is too big, only a proportion is

explored in each iteration. This proportion can be, for instance, a random sample involving

e% (parameter) of the neighbor solutions.

T S has proven to have a good balance between intensification (i .e., the capability to focus on

specific regions of the solution space) and diversification (i .e., the ability to visit diverse regions

of the solution space). In addition, it has a good overall behavior according to the following

measures [178]: (1) quality of the obtained results (according to a given objective function f

that has to be optimized); (2) speed (time needed to get competitive results); (3) robustness

(sensitivity to variations in data characteristics); (4) simplicity (facility of adaptation); and

(5) flexibility (possibility to integrate properties of the considered problem). To adapt T S to

the studied problem, the following elements have to be designed: the representation of any

solution s, the neighborhood structure (i .e., what is a move), the tabu list structure (i .e., what

type of information is forbidden), and a stopping criterion (i .e., what is the most appropriate

time limit).

Solution encoding and neighborhood structure

A solution for partitioning is represented as a map of actors and processors, where the number

of processors is fixed. Each actor can be mapped to only one processor at the time, and each

processor must be mapped to at least one actor. Hence, leaving empty processors is not

allowed. The following basic types of moves are possible: (1) REINSERT : move an actor to

another processor; (2) SWAP two actors belonging to two different processors. For the purpose

of swapping, the term complementary move is introduced. Assume that a move m(j ,ρi ,ρi ′)

113

Chapter 8. Heuristics for design space exploration

consists of relocating an actor j from a source partition ρi to a target partition ρi ′ . A move

m(j ′,ρi ′ ,ρi) is complementary to m(j ,ρi ,ρi ′) if it involves moving any actor j ′ from a source

partition ρi ′ to a target partition ρi . The neighborhood structures are generated by performing

REINSERT and SWAP moves according to the four different criteria, presented below.

1. N (B) (for balancing):

• REINSERT : choose randomly an actor from the most occupied processor and move

it to the least occupied processor;

• SWAP: choose randomly two actors in different partitions so that swapping the

actors decreases the relative workload imbalance between the two partitions;

2. N (I) (for idle):

• REINSERT : for each actor which has a bigger idle time than its processing time,

find the most idle processor, different from the one currently mapped, where the

definition of idle is as described for I DLS;

• SWAP: generate a set of moves on the REINSERT basis, but allow actors to be moved

to any partition except for the least idle one, then search for complementary pairs

of moves;

3. N (C F) (for communication frequency):

• REINSERT : check the internal and external communication frequency of each

actor and consider the moves, as described for C F DLS;

• SWAP: generate a set of moves on the REINSERT basis, then search for comple-

mentary pairs of moves;

4. N (R) (for random):

• REINSERT : choose randomly an actor and move it to a different processor (ran-

domly chosen);

• SWAP: generate a set of moves on the REINSERT basis, then search for comple-

mentary pairs of moves.

Parameters

Any time an actor j is moved from a processor ρ to another processor, it is forbidden to

put j back to ρ for t ab iterations, where t ab is an integer uniformly generated in interval

[a,b], and the values of parameters a and b are tuned to 5 and 15, basing on the preliminary

experiments. Smaller values do not allow escape from local optima, whereas larger values

114

8.1. Partitioning

do not allow intensification of the search around promising solutions. There are two other

sensitive parameters that have to be tuned for T S, namely e (the proportion of neighbor

solutions explored during each iteration) and T (the time limit). Reaching the time limit T

results in immediate termination of the search and returning of the best solution ever found.

Usually, T is set so that the improvement potential is poor (i .e., the percentage of improvement

is below a threshold during a pre-defined time interval) if the method is run for larger time

limits. Next, the smaller is e, the more iterations are performed but the fewer neighbors are

investigated in each iteration. A large value of e contributes to the intensification ability of the

method (indeed, all the solutions around the current one are explored), whereas a small value

plays a diversification role (indeed, no focus is put on the neighborhood of each solution).

Finally, a small (large) value of t ab strengthens the intensification (diversification) ability of

the search, respectively.

8.1.5 Advanced tabu search

Since each of the used neighborhood structures relies on different properties, a more advanced

version of the T S relies on a consolidation of all neighborhood structures. It is applied in two

different variants:

• Joint Tabu Search (JTS): at each iteration, the neighborhood structure includes moves

obtained according to all types. Therefore, the used neighborhood structure is N (J) =
N (B)∪N (I)∪N (C F)∪N (R). This variant should have more flexibility, because it comprises

various types of moves. The proportion of the set sizes for different types of moves can

be freely tuned;

• Probabilistic Tabu Search (PTS): at each iteration, the search assigns a probability to

the selection of each neighborhood of the set {N (B), N (I), N (C F), N (R)}. This probability

is tuned based on the history of the search during the considered run. As a result, the

search is guided by the success rate of each type of move (where a success corresponds

to an improvement of the current solution).

8.1.6 Tabu search with iterative communication cost profiling

Tabu search and, in particular, its advanced variants are capable of finding high-quality

solutions which much outperform the simpler greedy or DLS methods, as illustrated later

by the experiments described in Section 10.2.4. It must be, however, noted, that this method

strongly depends on the performance estimation in the sense that every decision about

making a particular move or not is determined by the estimation-based evaluation. Hence,

the estimation accuracy is the crucial factor leading to success or failure of the algorithm.

Depending on the target platform, in some cases it is possible to perform the profiling only

115

Chapter 8. Heuristics for design space exploration

once and then use the results in order to explore the entire space of solutions. In other

words, once obtained, the results remain of the same accuracy for all possible partitioning

configurations. This is the case for the TTA platform, the aforementioned results are based on.

Such a situation is, however, quite abstract, when most of the commercially used platforms are

considered. For the case of a NU M A-based SW platform, the communication cost changes

from configuration to configuration. Hence, the more modifications are applied to the config-

uration originally used for profiling, the higher is the risk that the quality and accuracy of the

generated solutions will diminish. This implies using more advanced methods to overcome

this problem, but minimizing, whenever possible, the number of profiling runs. Hence, the

original tabu search procedure has been extended by an additional re-profiling procedure. It

consists of profiling of the communication cost and the generation of the communication-

related weights, as described in Section 5.3.3. This procedure is not performed every time

new moves are considered, but after a complete tabu search run, so that another run, with the

updated weights, is performed. The procedure is presented in Alg. 2. The action weights (aw)

and communication weights (cw) are considered separately. Applying this procedure makes

the tabu search partitioning strategy useful also on NU M A-based platform, as confirmed by

the results presented in Section 10.3.2.

Algorithm 2: NUMA re-profiling procedure.

Data: IN: SX ,B X ; OUT: P X

aw = profileActions();
P X = generatePartitioning();
while iteration < max do

cw = profileCommunication(P X ,SX ,B X);
P X = tabuSearch(P X ,SX ,B X , aw ,cw);

end

8.2 Buffer dimensioning

According to the specifications of dataflow MoCs, the sizes of the interconnecting channels

(buffers) constituting the network are considered unbounded [188]. However, when a program

is executed on a given platform each buffer must be assigned with a finite size. A necessary

constraint related to this process is to specify the buffer sizes so that the program can correctly

execute without any deadlocks. A possible design objective can be to minimize the total buffer

size in order to meet the platform memory constraints (i .e., embedded-memory limitations of

FPGAs). In the case of dynamic dataflow programs, the performance of an implementation

can also strongly depend on the assigned buffer dimensions. The buffer size set should

116

8.2. Buffer dimensioning

be determined with regards to, for instance, data dependencies and traffic on each buffer.

The trade-off between the minimization of the total buffer size and the maximization of the

program throughput constitutes an interesting optimization problem and this is the objective

of the heuristic methodology described in this Section.

8.2.1 Related work

The problem of buffer dimensioning for the classes of dataflow programs denoted as static

(SDF) and cyclo-static (CSDF) [189]) has been already extensively studied by the research

community [190, 191, 192, 193, 194]. For these MoCs, a restricted set of dataflow actors and

predictable patterns of reading/writing the tokens exist, which is not the case for dynamic

dataflow programs (DDF) [55] where no static information can be extracted from the design.

The problem of buffer dimensioning for DDF has been considered in [195]. In this case, the

objective was to minimize the total memory usage while reserving sufficient space for each

data production without overwriting any live data and guaranteeing a satisfaction of real-time

constraints. The approach, however, is applied to a specific MoC, namely Mode-controlled

Dataflow (MCDF), which is a restricted form of dynamic dataflow that allows mode switching

at runtime and static analysis of real-time constraints. Therefore, the approach is not generic

enough to support the widest class of dynamic dataflow MoC.

Guaranteeing a deadlock-free execution is, obviously, an indispensable step in the design space

exploration process. It separates the region of feasible solutions from the deadlock region,

so that only feasible solutions are considered in the exploration process. This separation is

emphasized in the, described previously in Section 3, DSE frameworks. When a deadlock-free

configuration is guaranteed, all of them, however, focus on exploring the configurations related

rather to partitioning and scheduling.

Establishing a deadlock-free configuration is not sufficient for the case of dynamic applications,

because apart from satisfying the constraints (i .e., limited memory resources), other objective

functions (i .e., throughput) must be also taken into consideration. This problem has been

addressed in [196], where an off-line buffer sizing algorithm based on the rate constraints

and on the dependency information gathered from profiling results has been proposed for

KPN processes. In that work it is emphasized how small buffer size configurations, even when

deadlock-free, can limit the execution effectiveness of the actor processes.

The work described in [197] describes a methodology of buffer dimensioning that aims at

finding a trade-off between the buffer size Btot al and the program throughput. It starts from

an initial deadlock-free configuration and iteratively increases the sizes of certain buffers in

order to improve the throughput. The heuristics described in this Section are based on a

similar concept. An important difference is in the number of dimensions considered in the

117

Chapter 8. Heuristics for design space exploration

exploration. Whereas the referenced works targeting buffer dimensioning for the purpose of

throughput improvement consider a fully-parallel execution (i .e., hardware), the presented

bottom-up and top-down heuristics model and explore a wider region of the design space

including partitioning and feasible scheduling configurations (i .e., when a subset of actors

partitioned to the same processor is executed serially according to the scheduler). Hence, it

provides high-quality results for any types of heterogeneous platforms (hardware-software

co-design), where multiple subsets of actors can be executed either serially or in parallel.

8.2.2 Notion of partitioning and scheduling configurations

In the case of a parallel execution which disregards the partitioning and scheduling config-

urations, increasing the size of any buffer always leads to an increase of the performance

(if a relevant blocking instance is removed) or the execution time remains unchanged (if an

increase is not sufficient to remove a relevant blocking instance). The case of a partitioned

execution, that is, when a given subset of actors is executed sequentially within one processing

unit, is also affected by the presence of a scheduler. Depending on the scheduling policy within

a processing unit, actors can be chosen for execution in a different order and the availability

(or not) of necessary space can affect the feasibility of different schedules. Hence, it is possible

that increasing the size of a buffer will lead to a decrease of performance, since the order of

execution inside a given processing unit may become less favorable. This situation takes place

quite often, since an increase of a given buffer affects the scheduling eligibility of all firings

requiring writing to such buffer. In fact, only a fraction of them might be critical and executing

a non-critical firing instead of a critical one might lead to the, mentioned earlier, drop of

performance. So as to illustrate this problem, Fig. 8.2 presents a simple network consisting of a

few actors assigned to two partitions. The scheduling policy assumes that an actor is executed

as many times as possible and in Actor Q the action q1 has a priority over action q2. Two

scenarios are considered: (1) all buffers have an equal size of 1, (2) buffer b1 has the size of 2,

the others of 1. Fig. 8.3 presents the Gantt charts obtained in both cases. Notice that although

in the second scenario the buffer size configuration is larger, the execution time has been

extended by 2 units. At this stage it must be emphasized that the likelihood of this behavior of a

network remains fully dependent on the scheduling policy and its sensitivity to the buffer sizes.

For this reason, the moves cannot be performed blindly and after each iteration it is necessary

to evaluate a move and revert it if a performance decrease has occurred. Furthermore, instead

of picking up one buffer in each iteration, a ranking of buffers must be created and in case of a

necessity to revert a move, the next buffer from the ranking is considered for an increase.

118

8.2. Buffer dimensioning

Figure 8.2 – Simple network with the assigned partitioning, scheduling and buffer dimension-
ing configurations.

Figure 8.3 – Gantt charts for the execution of the network from Fig. 8.2 for the two buffer size
configurations.

8.2.3 Minimal and maximal buffer size estimation

The deadlock-free buffer size configuration constitutes a border between the set of feasible

and infeasible design points. This configuration, considered as close-to-minimal, is evaluated

on the basis of ETG, as described in Section 8.4.3 of [121], relying on the approach originally

introduced in [198].

The maximal buffer size configuration is established during the performance estimation.

Given configurations of P and S are estimated with an approximation of infinite buffer sizes,

corresponding to the maximum value of an integer. In these circumstances, no blocking of

firings resulting from buffer size limitations occurs. For each buffer the maximal number of

tokens present in this buffer at the same time is recorded. In this way, the original sizes equal

to the maximum value of an integer are reduced to the sizes which are required in practice to

119

Chapter 8. Heuristics for design space exploration

prevent any blocking of tokens. This set of sizes constitutes the maximal buffer configuration.

8.2.4 Bottom-up optimization procedures

The starting point for the heuristic is a minimal buffer size configuration. Consecutively, in

each iteration one buffer is chosen for an increase. The heuristic has two different variants

and both are related to the analysis of the critical path of the design, as it has been defined in

Section 7.7. Hence, it contains the firings contributing to the longest serial part of a program

execution. If such a firing requires writing to an output buffer, this buffer is considered to be

critical. Any blocking instance, that is, an insufficient space in the output buffer occurring for

such buffer affects the total execution time and hence, the overall data throughput.

Heaviest blocking ranking

The first ranking, presented in Algorithm 3, looks for the heaviest blocking instance along the

critical path. In this context, the heaviness of a blocking instance is measured by a multiplica-

tion of the number of tokens blocked (tkB) and the time they remained blocked (t i meB). For

each buffer in the critical path (Bcp) a maximal heaviness throughout the execution is recorded

and among different critical buffers the one with the largest corresponding heaviness is chosen.

This ranking intends to remove the most impacting sources of delay in the execution. Having

to revert a move implies considering the next buffer in the map.

Algorithm 3: Heaviest blocking ranking procedure.

Data: IN: P X ,SX , ET G ; OUT: B X

B X = minConf(ETG);
while iteration < max do

map{Bcp ,max(tkB ∗ t i meB)} = cpAnalysis(P X ,SX ,B X);
foreach Bcp do

Bm = ar g max(map{Bcp ,max(tkB ∗ t i meB)};
Bm = Bm ∗2;
if t i me∗ < t i me then

break;
end
else

Bm = Bm/2;
end

end
end

120

8.2. Buffer dimensioning

Criticality ratio ranking

The second ranking, presented in Algorithm 4, calculates the ratio between the critical blocking

instances of a buffer (Bicp) and all blocking instances of this buffer (Bi) throughout the

execution. Buffers with the highest ratio Bicp /Bi are first considered for an increase. This

ranking intends to minimize the unnecessary increases for the firings which are not in the

critical path. It must be emphasized that for the case of both rankings, the C P analysis has

to be performed in every iteration, since changing even one buffer size in the network can

modify the execution order and, consequently, the location of the C P .

Algorithm 4: Criticality ratio ranking procedure.

Data: IN: P X ,SX , ET G ; OUT: B X

B X = minConf(ETG);
while iteration < max do

map{Bcp ,〈Bicp ,Bi 〉} = cpAnalysis(P X ,SX ,B X);
foreach Bcp do

Bm = ar g max(Bicp /Bi);
Bm = Bm ∗2;
if t i me∗ < t i me then

break;
end
else

Bm = Bm/2;
end

end
end

8.2.5 Top-down optimization procedure

In most cases, the solutions obtained with the previously described approach manage to

improve the performance (compared to the close-to-minimal deadlock-free configuration) by

only few percent. Hence, further challenges related to buffer dimensioning for a partitioned

program executed in software can be identified. The bigger are the buffers, the more likely it

is, in general, to increase the number of cache misses. This number, however, is not entirely

proportional to Btot al and depends strongly on the configurations of P and S. On the other

hand, the smaller are the buffers, the more context switching related to executing different

actors one after another takes place. Furthermore, once the makespan changes when a move

from one design point to another is performed (∆(X ,Y) 6= ;, ∆ f (X ,Y) 6= 0), it can be assumed

that the critical path changes and the analysis performed for one design point is not valid for

another one.

121

Chapter 8. Heuristics for design space exploration

These observations lead to another buffer dimensioning heuristic, referred to as the top-

down approach. This approach starts from a maximal buffer configuration. The heuristic

performs a critical path analysis for this configuration. All buffers which are not critical are

then considered for a reduction performed iteratively. A reduction is accepted if the total

execution time remains unchanged. It can be reasonably assumed that if the length of the

critical path (corresponding to the makespan k) is not affected, the critical path analysis

results remain valid for the new configuration. Hence, unless the makespan is affected, there

is no need to perform cp analysis, which reduces the memory requirements of the heuristic.

Further steps reduce the least impacting critical buffer and, finally, allow a certain increase of

execution time (if it is outstripped by the reduction of Btot al), as presented in Algorithm 5.

The top-down buffer dimensioning approach generates a full spectrum of solutions ranging

from relatively large buffers leading to good performances and small buffers with a remarkable

performance drop compared to the first group. For solutions located in the interesting regions

of the space, that is, providing good performances while keeping buffer sizes as close as

possible to the initial deadlock-free configuration, it has been investigated if the solutions can

be further improved by applying small modifications to some of the buffers. The investigated

modifications included a reduction of the biggest buffers in the network and an increase of the

smallest ones. The ideas behind these modifications are as follows: (1) reducing the size of the

largest buffers (setting an upper bound on the buffer size) should reduce the number of cache

misses, where they are most likely to occur, and significantly reduce Btot al ; (2) increasing

the size of the smallest buffers (setting a lower bound on the buffer size) should reduce the

number of context switches, where they are expected to occur most often, while keeping the

increase of Btot al negligible. The whole range of possible values of a lower and upper bound

has been tested (1 - 262144), but on condition that none of the buffers is assigned with a

smaller value than in the initial deadlock-free configuration. The best values are application-

and partitioning configuration dependent. For the case of the HEVC decoder [199], the values

of 64 and 16384 for the lower and upper bound, respectively, seem to be the best choices in

terms of the throughput - buffer size trade-off.

8.3 Scheduling

The scheduling problem for static dataflow programs has been studied very well and a whole

class of compile-time algorithms is proven valid [41]. In the case of dynamic dataflow programs

the problem becomes much complicated, because it requires creating a reliable model of

execution that could sufficiently cover and capture the entire application behavior, which

depends on the input data. It can be stated that if the whole dynamic behavior of an application

is properly captured for a given input sequence and a deadlock-free buffer configuration is

applied, the scheduling problem for dataflow programs is always feasible, in comparison to

122

8.3. Scheduling

Algorithm 5: Top-down buffer dimensioning procedure.

Data: IN: P X ,SX , ET G ; OUT: B X

B X = maxConf(ET G);
mi n = minConf(ETG);
cr i t i cal〈〉 = cpAnalysis(P X ,SX ,B X);
foreach Bi ∉ cr i t i cal do

while Bi ≥ 2 ·mi n(i) do
Bi = Bi /2;
if k ′ > k then

Bi = Bi ·2;
break;

end
end

end
foreach Bi ∈ cr i t i cal do

while Bi ≥ 2 ·mi n(i) do
Bi = Bi /2;
if k ′ > k then

Bi = Bi ·2;
break;

end
end

end
foreach Bi do

if Bi ≥ 2 ·mi n(i) then
remaining.add(Bi);

end
end
while iteration < max do

Bm = ar g max(Bi −mi n(i));
Bm = Bm/2;

if k ′
k −1 ≥ 1− B ′

tot al
Btot al

then
Bi = Bi ·2;
remaining.remove(Bi);

end
end

123

Chapter 8. Heuristics for design space exploration

some other programming paradigms [200]. Under these circumstances the challenge becomes

to find such a scheduling configuration that optimizes the desired objective. Defining such

a configuration is a different problem than partitioning and buffer dimensioning. For these

two problems, multiple heuristics can be designed that provide appropriate configurations

ready to use for different input stimuli. For the case of scheduling, the objective is to define

an order of executions for the set of firings (jobs) which are executed dynamically, so no fixed

order can be specified. Instead, it is only possible to define certain strategies, referred to as

scheduling policies which determine a rule or a set of rules used by the partition scheduler and

the actor scheduler when selecting an actor / an action to execute. Since the actual decision

is made at run-time, scheduling implies certain cost which depends on the properties and

the complexity of the policy. Hence, when designing efficient scheduling policies, there are

two aspects that should be taken into consideration: (1) the potential gain coming from an

appropriate order of execution of the firings (i .e., minimizing the time the firings are waiting

for their predecessors), (2) the cost of the policy corresponding to, for instance, the number of

conditions that need to be checked and the context switches occurring when the generated

code is executed. This Section describes a few scheduling policies enforcing different orders of

execution of firings and defines a figure of merit for the scheduling cost.

8.3.1 Related work

The general problems of partitioning and scheduling of parallel programs, as closely related

challenges, have been widely described in the literature in numerous variants [138]. Whereas

the partitioning is often referred to as mapping in the spatial domain, scheduling takes place in

the temporal domain and is also called sequencing [173]. Literature positions often emphasize

that the partitioning is performed at compile-time, whereas scheduling occurs at run-time and

is subject to the satisfaction of firing rules, as well as to the scheduling policy for the sequential

execution of actors inside each processor [201]. Although the partitioning and scheduling

problems seem to rely and impact each other, much more attention has been paid so far to the

partitioning problem. Several experiments suggest that finding a solution to the partitioning

problem will dominate over the scheduling problem, because the quality of the partitioning

configuration impacts the opportunities for scheduling the actors or, more generally speaking,

the tasks efficiently [200, 202].

Since some dataflow models can be very general and therefore difficult to schedule efficiently,

an interesting idea comes along with the concept of flow-shop scheduling [203]. The asyn-

chronous dataflow models can be, in some cases, transformed into simpler synchronous

ones, where the partitioning and scheduling can be applied directly to the actions. After

the partitioning stage (which is the assignment of all actions to the processing units), the

scheduling is performed first in the off-line phase (schedules are computed at compile-time),

124

8.3. Scheduling

and then in the run-time phase when a dispatching mechanism selects a schedule for data

processing [204].

Another approach to simplifying the scheduling problem is to reduce the complexity of the

network and control the desired level of granularity. This can be achieved by actor merging,

which can be treated as a special transformation performed on the sets of actors [205]. Recent

research shows that actor merging is possible even in the case of applications with data-

dependent behavior and in the end can act quasi-statically [206]. This, however, does not

solve the scheduling problem entirely, since even for a set of merged actors, if multiple merged

actors are partitioned on one processor, a scheduling policy still needs to be defined.

8.3.2 Intra-actor and intra-partition scheduling policies

During the execution of a dataflow program, scheduling occurs at multiple levels. The lowest

level is related to a selection of actions inside each actor. The order of execution of the actions

is determined by guards, priorities and, obviously, the availability of input tokens and spaces

in the outgoing buffers. What can be additionally driven at this level, is the allowed number of

executions of certain actors in a row. This is referred to as the intra-actor scheduling policy

(I ASP). Two variants of I ASP are considered. The Intra-Actor Preemptive policy (I AP) means

that an actor is allowed to execute only once and then it returns to the partition scheduler.

The Intra-Actor Non-Preemptive policy (I AN nP) means that once an actor is chosen by the

partition scheduler, it is allowed to execute as many times as possible, that is, until none of its

actions is eligible to execute. This approach is often mentioned in the literature as FCFS (first-

come, first-served) scheduling, known also as Run-to-Completion [207]. The two variants of

I ASP are depicted in Fig. 8.4a. The expression "preemptiveness" refers here to the change of

the target actor after a successful firing and not to the interruption of a single task, which is, by

nature, not allowed in dataflow programs.

The next level of scheduling occurs inside each partition. It is referred to as the Intra-Partition

Scheduling Policy (I PSP). It is related to the decision of the scheduler to choose an actor to

execute, as illustrated in Fig. 8.4b. Once an actor is chosen, it can execute on the basis of I AP

or I AN nP . A common approach involving executing different actors repetitively according to

a given list is known as round-robin and is commonly used in operating systems as described

in [207]. Another possibility is to extend the round-robin procedure by assigning certain

numbers of cells to each task (actor, in this case) so that each of them can be executed a certain

number of times before the round-robin procedure is continued. This approach is known

as round-robin with credits [208]. An alternative to the round-robin procedure is to define

certain priorities and use them when making a decision (priority scheduling [207]).

The following scheduling policies combine different I ASP and I PSP approaches. They aim at

125

Chapter 8. Heuristics for design space exploration

(a) Intra-actor. (b) Intra-partition.

Figure 8.4 – Scheduling policy - illustration.

investigating how different strategies and types of priorities, if applicable, lead to differences

in performance. The first group can be considered as direct implementations of the popular

and commonly used scheduling techniques.

• Non-Preemptive (NnP): I AN nP scheduling is assumed for every actor; the partition

scheduler chooses the next actor to execute on a round-robin basis;

• Round Robin (RR): I AP scheduling is assumed for every actor (opposite to the previous

policy); the partition scheduler chooses the next actor to execute on a round-robin basis;

• Non-Preemptive / Preemptive swapped (NnP/P): the list of actors for each partition is

sorted according to the criticality, which is represented as a percentage of executions of a

certain actor belonging to the critical path; I PSP iterates over this list on a round-robin

basis; the most critical actor (among the remaining actors on the list) is executed as

I AN nP , the others as I AP ; this approach can be considered as the, mentioned earlier,

round-robin with credits with a binary choice of cell numbers: either equal to one or the

number determined by the I AN nP .

The second group of policies cannot be compared with the existing techniques because they

exploit the information obtained at the level of action firings, not actors (i .e., jobs, not groups).

As a result, although only the actors can be chosen by the scheduler, the system of priorities

changes from firing to firing throughout the execution.

• Critical Non-Preemptive (CNnP): the partition scheduler chooses the next actor to

execute on a round-robin basis; if the next firing of a chosen actor is contained in the

126

8.3. Scheduling

critical path, the actor is executed on the I AN nP basis and after a successful execution,

its next firing is analysed for criticality; if an executed firing is not critical, the I AP is

applied and the scheduler moves to the next actor; this results in a similar strategy to

NnP/P, but the priorities are resolved independently for each action firing and only the

actual critical firings are given the priority, not the actors as such;

• Critical Outgoings Workload (COW): all actors are executed as I AP ; when making a

choice of an actor to execute, its next firing is always considered; the eligible firings in

different actors are compared according to the set of priorities: the highest priority goes

to the firing which is critical, if critical firings are the next ones to be executed in multiple

actors, the highest priority is given to the one which has outgoing dependencies in other

partitions, and if the decision cannot be made based on the first two criteria, the firing

with the highest weight is chosen;

• Earliest Critical Outgoings (ECO): all actors are executed as I AP ; when making a choice

of an actor to execute, its next firing is always considered; the eligible firings in different

actors are compared according to the set of priorities: the highest priority goes to

the firing with the earliest occurrence in the critical path, or, if no critical firing is

currently available, to a firing with the highest number of outgoing dependencies in

other partitions; for the cases which cannot be resolved according to these criteria, a

round-robin choice is applied.

8.3.3 Scheduling cost

Since all scheduling policies (both I ASP and I PSP) are applied to a dynamic execution, they

are related to making some decisions at run-time. Hence, the number of conditions and

constraints considered when making a decision impacts the program performance. Let cc(SX)

be the scheduling cost related to a given configuration of S. It consists of two components:

c(SX) =∑
cc(SX)+c f (SX), where cc(SX) denotes the number of conditions checked and c f (SX)

denotes the number of conditions failed. The conditions in this case are related to the input

(availability of the input tokens) and output (availability of the spaces in output buffers).

The value of cc(SX) is calculated as:

cc(SX) =
∑

i

∑
cce (SX

i)
ni

mX
(8.1)

Consequently, the value of c f (SX) is calculated as:

c f (SX) =
∑

i

∑
c fe (SX

i)
ni

mX
(8.2)

127

Chapter 8. Heuristics for design space exploration

The value of cce (SX) (c fe (SX)) corresponds to the number of conditions checked (failed) which

is elapsed between two consecutive successful firings, respectively. Let’s consider the following

example. Figure 8.5 illustrates a set of actors in a partition. For the next firing in each actor, it

is indicated from how many input buffers it reads the tokens and to how many output buffers

it writes the tokens. The buffers marked with red indicate that the tokens/spaces are not

available in these buffers. Assuming that the last successful firing took place for actor C and

the scheduling policy is RR, as defined earlier, Table 8.5 presents the process of updating the

values of cce (Sx
i) and c fe (Sx

i) when the scheduler makes the next attempt. In this case, actor C

is the next one chosen for execution and the respective values of cce (Sx
i) and c fe (Sx

i) are 8 and

2.

Figure 8.5 – Sample partition with the actors to be considered by the scheduler.

Attempt actor c. checked c. failed cce (SX
i) c fe (SX

i)
last firing c j

1 A 4 1 4 1
2 B 1 1 5 2
3 C 3 0 8 2

next firing c j+1

Table 8.5 – Conditions numbers updates.

This procedure is continued for every firing in the partition i . The sum of the elapsed con-

ditions checked/failed is divided by the number of firings is this partition ni . This value

is a metric for a given partition i . In order to provide the metrics for the configuration SX

in total, the values obtained for each partition are summed and divided by the number of

partitions mX . As a result, the values of cc(SX) and c f (SX) express the numbers of conditions

checked/failed during the execution, per firing, per partition.

The defined values should be considered as a lower bound on the number of conditions for two

reasons. First, they consider a limited set of conditions (i .e., no guard conditions considered).

Second, the update of the values of cce (Sx
i) and c fe (Sx

i) is performed only with certain attempts

128

8.4. Conclusions

of the scheduler. The cases when the scheduler works infinitely, i .e., when none of the actors

in the partition can be executed and the scheduler keeps iterating over them without any

success are difficult to model reasonably.

8.4 Conclusions

The heuristics described in this Chapter aim at design space exploration of dynamic dataflow

programs. Each of them took one of the subproblems discussed in Chapter 6 and explored

the design points in order to establish a high-quality solution. For each of the subproblems,

that is, partitioning, scheduling and buffer dimensioning, several approaches of different

complexity have been proposed. Naturally, they may lead to different qualities of the solutions

and operate within different time requirements. In each case, the base for the heuristics are

the rich performance metrics provided by a timed ETG .

In the first part, the partitioning problem was considered. Although it is a popular problem

described in the literature, it can be observed that most of the general purpose approaches for

graph partitioning are not applicable in this case, since they are not aware of the semantics at

the edges of dataflow networks. Hence, specific heuristics must be developed instead. The

partitioning algorithms introduced in this Chapter are grouped as greedy heuristics, descent

local search methods and tabu search. Greedy heuristics usually provide a solution quickly,

but only the search methods explore different variations of the solutions.

In the second part, the problem of finding a finite buffer size for the buffers in the network

was considered. Analyzing the related work, it was observed that so far this problem has

been tackled in a very limited way, that is, reducing the MoC to the models analyzable at

compile-time or simplifying it to finding a deadlock-free configuration, disregarding the effect

on the performance. In some works the impact on the throughput was considered, but not in

the context of a multidimensional exploration. The buffer dimensioning heuristics introduced

in this Chapter aim at finding a trade-off between the program performance and resource

utilization, with regards to the specific partitioning and scheduling configurations. They can

be applied directly to the optimization scenarios introduced in Section 7.6.

In the last part, the scheduling problem was considered. Different aspects of the problem

differentiating it from the others were presented. An overview of related work discussed

different approaches aimed at eliminating the scheduling problem or maximally reducing its

impact. Since the dataflow applications are expected to have a dynamic and data-dependent

behavior, it is only possible to define scheduling policies. Hence, several policies have been

proposed. The run-time scheduling is subject to a cost related to establishing the schedule.

Therefore, a figure of merit for the scheduling cost, relying on the number of conditions

checked and failed throughout the execution was also introduced.

129

9 Performance estimation

The process of design space exploration consists essentially of performing moves from one

design point to another. If the moves are properly driven, the whole exploration procedure

becomes much more efficient and the final design points can be of a higher quality. An im-

portant role in driving the optimization heuristics is played by the performance estimation.

First, it allows calculating the performance of a program on a given platform without having to

physically execute the program on this platform. Second, it evaluates different design points

in order to make a decision about whether to perform a certain move or not. Finally, if the per-

formance estimation simulates the entire behavior of a program, it can allow extracting some

execution properties to be used by the optimization algorithms or identify the most critical

parts of the execution that should be considered for optimization. This Chapter presents a

performance estimation tool, developed as a module within the Turnus co-design framework,

serving as a basis for the V SS methodology described in Chapter 7 and the heuristics described

in Chapter 8. It is one of the stages of the design flow discussed in Section 3.5, as illustrated in

Figure 9.1.

9.1 Related work

An accurate performance estimation methodology is usually built upon two stages: appropri-

ate modeling and its evaluation. The quality and the level of detail in the model determine

the accuracy of the estimated results when referred to the actual execution. Usually, the

most accurate results can be achieved when the model is very detailed. It implies, however,

longer evaluation times. On the other hand, less detailed models, which can be evaluated

in shorter times, provide a lower level of accuracy [209, 210, 211]. The performance estima-

tion methodologies used in various dataflow-oriented DSE frameworks (if available) were

presented earlier in Section 3.2. The overview provided in this Section aims at discussing

more generally different approaches to performance estimation and prediction in the field of

131

Chapter 9. Performance estimation

Performance
Estimation

performance metrics

Compiler
Infrastructure

Profiling and Analysis

CAL
program

ArchitectureConstraints

ETG
generation Profiling

Design Space
Exploration

Partitioning

Scheduling

Buffer
dimensioning

timed ETG

Figure 9.1 – System development design flow: performance estimation.

132

9.1. Related work

parallel programming and multi-core platforms, with an emphasis on some very recent works

and the achievable level of accuracy.

The work discussed in [155] relies on the usage of abstract models of the target system and the

structure of the program. They are represented as a finite state machine with some input and

output events. The estimation is performed with regards to the execution time and the code

size since a trade-off between these two properties is considered as the objective of DSE . It is

emphasized that the main role of performance estimation is to reduce the exploration time of

the considered design space. The achieved accuracy of estimation is around 20%.

Another approach, discussed in [212], employs analytical models in order to perform the DSE

of pipelined MultiProcessor System-on-Chips (MPSoC), where the architecture favors the im-

plementation of applications characterized as repetitive executions of some sub-kernels [213].

The models are used for an estimation of the execution time, latency and throughput, avoiding

slow full-system cycle-accurate simulations of all the design points by extracting the latencies

of individual processors. The two described methodologies include a single simulation of

all the processor configurations and, on the other hand, multiple simulations of a subset of

processors. It is stated that the considered design space consists of ca. 1012 to 1018 design

points, hence a complete exploration is infeasible, as it would be expected to take years to

complete. Narrowing the set of design points reduces the simulation times to several hours

with the estimation accuracy between 12.95% and 18.67% (maximum absolute error). A similar

concept of analytical models is used in [214], where the estimation relies on defining several

figures of merit for the considered properties. They are based on certain equations using met-

rics measured on the platform. In this work, the estimation is applied to a different problem,

namely the slowdown caused by multiple applications running simultaneously.

One of the methods employed for the purpose of performance estimation is source code

analysis using the concept of elementary operations. The work described in [215] performs

the profiling of different sets of operations and uses this information for estimation in het-

erogeneous MPSoC achieving an estimation error around 6%. Similarly, [216] describes a

methodology for source code profiling at the level of intermediate representation, where

dataflow graphs are used to capture the dependencies between different operations. Another

possibility to create a structural representation of operators is to use UML activity diagrams so

that each operator is decomposed into operational units of different granularity. The oper-

ations are modeled with regards to the latency, power and area to form a pre-characterized

operators library. It is stated that shifting the estimation level from the code to the model

allows a fast DSE in the early design steps.

The objective of DSE described in [217] is to find the most efficient target System-on-Chip

(SoC) for a given application. The core of the used performance estimation methodology is

the classification and learning method called Regression Random Forest. Thanks to applying

133

Chapter 9. Performance estimation

this learning technique, the number of analyzed configurations is reduced by learning the

relationships between different design parameters. Using machine learning techniques for

the purpose of performance prediction has recently become a popular topic of research. For

instance, [218] and [219] use Artificial Neural Networks (AN N) in order to provide the mapping

and/or scheduling heuristics with some reliable performance measures. In both cases, the

AN N -based performance prediction is used to drive the heuristics and results in remarkably

better-quality configurations. In [219], the process of retraining the artificial networks aims at

analyzing the discrepancy between the real and predicted performance in order to apply an

error-correction learning rule and hence, maximally reduce the prediction inaccuracy.

Among the possibilities to reduce the time required for a single run of performance estimation,

one opportunity is to define two models with different levels of detail and accuracy. The work

described in [164] introduces two estimation models: an accurate, but time consuming model

and a simpler one, enabling a short estimation with a higher discrepancy. The complexity of

these models depends on the number of parameters which are considered in the estimation.

The models are used interchangeably in order to search for various trade-offs related to design

implementations in hardware and software. The term fidelity of estimation is introduced and

corresponds to the percentage of correctly predicted comparisons between different design

points.

Finally, an interesting approach for a cross-platform performance and power consumption

estimation is described in [220]. It employs a learning algorithm that synthesizes analytical

proxy models that predict the performance and power of the workload in each program phase

from performance statistics obtained through hardware counter measurements on the host.

The objective of the investigation is to verify if a few example runs on a slow, detailed simulator

(commonly available to software developers) and the corresponding runs on real hardware

can give an insight into the correlation between the two [221]. The learning approach based

on this concept is considered to provide over 97% prediction accuracy.

9.2 Trace processor tool

The tool is based on a discrete event system specification formalism (DEVS) [222]. A DEVS

system is constructed as a set of atomic models described by their state transition, output- and

time advance functions. The state transitions can be triggered by some internal and external

events. One of the advantages of a DEVS model is the fact that the confluent events (i .e., that

introduce races or some unpredictable behavior) can be efficiently identified and resolved. The

communication between the atomic models succeeds through the signals received (sent) as

the port values that define the template argument for the types of objects accepted (produced)

as input (output), respectively. Since the tool needs to model the complete behavior of a

dataflow program, the following components building the system are included: an actor, a

134

9.2. Trace processor tool

buffer, an actor partition and a buffer partition. The events driving the performance estimation

are stored in the internal list of each actor that contains the firings of this particular actor

extracted from the ETG. The relative order of execution within the firings of one actor is fixed,

as determined by the input stimulus. Figure 9.2 illustrates the construction of a DEVS model

for a sample dataflow program. In this case, the Producer and Filter actors belong to the same

PartitionA, and the Consumer actor is a part of PartitionB. The two buffers b1 and b2 are

assigned to one buffer partition PartitionBF.

Figure 9.2 – Schematic illustration of the system components and connections.

9.2.1 Atomic models

• Atomic actor models a dataflow actor which executes the firings according to its internal

list. The time advance function corresponds to the action weights obtained by profiling

and assigning each firing. It defines the next update time (i .e., state transition) of an

actor model. The execution of each firing requires going through several states of an

actor. A detailed transition considering all possible states of an actor is illustrated in

Fig. 9.3. There are two procedures that can be separated from this transition and they

are both triggered by a specific signal received from the actor partition. They include:

(a) checking the schedulability, (b) executing a firing. Procedure (a) consists of checking

the availability of the input tokens and the necessary spaces in the output buffers for

the next firing on the list. If both, input and output conditions are satisfied, an actor

moves to the schedulable state, where it awaits an enabling signal from its partition.

Procedure (b) assumes that an actor is schedulable and the firing execution with all

underlying procedures (selecting an action, reading the input, processing, writing the

135

Chapter 9. Performance estimation

output tokens) can be performed. The release buffers state can be performed either

before, or after the processing state, depending on the way the reading from the buffers

is implemented in the generated code. The preliminary experiments demonstrated that

supporting these two modes is crucial in order to provide a highly accurate model for

the hardware, as well as the software implementations.

• Atomic buffer models a buffer connection between the two actors that is used to ex-

change the tokens. It is modeled as an asynchronous receiver and transmitter that can

be enabled or disabled by the buffer partition. The time advance function corresponds

to the communication weights related to reading and writing. Each buffer has a fixed

size, specified as a configuration.

• Atomic actor partition corresponds to a partition of actors. Every time an actor ends

a firing, it sends a notification signal to all actor partitions in the system. Then, each

actor partition performs a few verification procedures: (a) determining if it is allowed to

schedule another actor (i .e., no actors currently are running or the parallel execution is

supported), (b) if there are actors in the schedulable state to choose for an execution, (c)

if there are actors that need to be checked for schedulability. Among the schedulable

actors, an actor partition makes the choice of an actor to schedule based on the schedul-

ing policy that can be freely defined for each partition. The scheduling policy may give

equal chances for each actor to be chosen or use multiple priorities. When the choice

is made, the target actor is notified with an appropriate enabling signal. In addition,

each partition keeps track on its members that are running, schedulable, blocked at

input or blocked at output. In some cases, this information allows reducing the actor -

actor partition communication volume and leads to a higher efficiency of the estimation

system. Fig. 9.4 presents the state transition for an actor partition.

• Atomic buffer partition models a buffer partition, which can enable and disable the

transmitting and receiving functionality of a buffer. The construction of a buffer partition

enables future extensions of the model in order to cover various types of input-output

interfaces in heterogeneous architectures.

9.2.2 Atomic models interaction

In order to respect the token dependencies between the firings of different actors, communi-

cation between the models of the actors and the buffers is necessary. The partitioning and

scheduling configurations enforce also actor - actor partition and buffer - buffer partition

communication. For this reason, each actor contains a set of input and output ports. The

types of information exchanged between the actors, buffers and partitions are summarized

136

9.2. Trace processor tool

in Fig. 9.5. The information is sent (received) to dedicated ports. Regarding the actor - buffer

communication, the following ports are defined:

• IN SEND HAS TOKENS: used for inquiring about the availability of tokens that should

be consumed;

• IN RECEIVE HAS TOKENS: used for receiving a true/false signal depending on the

availability of the requested tokens;

• IN SEND ASK TOKENS: used for sending a request for tokens to be consumed;

• IN RECEIVE TOKENS: used for receiving the input tokens from the input buffer;

• OUT SEND HAS SPACE: used for sending a space request to a buffer;

• OUT RECEIVE HAS SPACE: used for receiving a true/false signal depending on the

availability of the requested space;

• OUT SEND TOKENS: used for sending the produced tokens to the output buffer;

• OUT RECEIVE TOKENS RECEIVED: used for receiving an acknowledgement from the

output buffer when it accepts all tokens.

The ports of the buffers used for the communication with actors that write to (read from) a

given transmitter (receiver) buffer are complementary to the ports defined for the actor model.

Each actor port of type receive (send) has a corresponding port of type send (receive) in the

input (output) buffer.

The next set of ports is related to the actor - partition communication. Most signals are

exchanged only between an actor and the partition it is statically mapped to. The following

port are defined:

• PARTITION RECEIVE ASK SCHEDULABILITY: used for receiving a request for checking

the satisfaction of execution conditions;

• PARTITION SEND SCHEDULABILITY: used for sending a true/false signal depending

on the satisfaction of the execution conditions and hence the ability to be scheduled

(schedulability);

• PARTITION RECEIVE ENABLE: used for receiving an enable signal which means that

an actor has been chosen for an execution by the partition scheduler;

• PARTITION SEND END OF FIRING: used for sending a notification about the end of a

current firing to all partitions in the system.

137

Chapter 9. Performance estimation

The ports inside an actor partition are complementary to the ones specified inside an actor

regarding the actor - partition communication and include:

• SEND ASK SCHEDULABILITY: used for sending a request to check the schedulability,

if it is necessary. An actor partition stores the information about all its members (i .e., if

they are currently running, schedulable or blocked) and sends this request only if the

information about schedulability cannot be deduced;

• RECEIVE SCHEDULABILITY: used for receiving a true/false signal depending on the

schedulability;

• SEND ENABLE: used for sending an enable signal to the actor chosen for execution,

where the choice is made among all schedulable actors in a given partition based on the

scheduling policy specified in the internal scheduler of each partition;

• RECEIVE END OF FIRING: used for receiving a notification about the end of a firing.

Unlike for the case of other ports, which are coupled only with the actors belonging to

this partition, each partition has a dedicated port for each actor in the system, so that it

knows which actor sent the notification and whether it can be used for a deduction of

actor schedulability.

The states of a buffer model include RX enable/RX disable as well as TX enable/TX disable.

Using these states, a buffer model can be controlled by its partition scheduler for an asyn-

chronous receiving and transmission functionality. The ports defined for this purpose are:

• RECEIVE RX ENABLE;

• RECEIVE TX ENABLE;

Figure 9.6 illustrates the communication between different ports of an actor and its input and

output buffers in order to successfully execute a firing and reports how different signals from

the buffers determine the state transitions of an actor, depicted earlier in Fig. 9.3.

9.2.3 Execution properties

The core functionality of the tool is the estimation of the execution time, expressed in clock-

cycles, of a program on a given platform. The estimation process consists of executing the

events inside each actor partition respecting the dependencies and constraints resulting from

the scheduling policy specified for each partition and the bounded buffer sizes. Hence, all

configurations are reflected in the estimated results. The execution is timed according to the

138

9.2. Trace processor tool

values of time advance functions, and the total execution time corresponds to the value of the

time advance function when the very last event (firing) in the system has terminated. The set

of logging functions allows the extraction of various information at the level of action firings.

Depending on the purpose (criticality analysis, partitioning heuristic etc.), a different set of

logging functions can be injected. The properties tracked during the performance estimation

may include:

• the exact time of each change of state (i .e., reading, scheduling, processing etc .) of each

actor;

• total processing time of an actor/action;

• total time of being blocked reading for an actor/action;

• total time of being blocked writing for an actor/action;

• total time of being idle for an actor/action (idleness corresponds to a situation when

an actor is deliberately schedulable, but it cannot be fired because another actor in the

same processor is currently processing or chosen by the partition scheduler and the

scheduling policy does not allow a parallel execution);

• percentage of occupancy of each partition (corresponding to the time slots when any of

the actors in the partition is processing);

• average occupancy of all partitions for a given partitioning configuration and the stan-

dard deviation of occupancy;

• participation of an actor/action in the critical path of the execution (i .e., what is the

workload corresponding to a given actor/action which participates to the overall critical

path)

• participation of the critical workload of an actor/action in the total workload of a given

actor/action;

• criticality of a firing (i .e., if a particular firing participates to the critical path or not);

• dependencies in other partitions for an actor/action/firing;

• the number of input/output conditions checked during the execution (for an actor);

• the number of input/output conditions that failed (were not satisfied) during the execu-

tion (for an actor);

• the number of tokens blocked for each blocked writing occurrence (for a buffer);

139

Chapter 9. Performance estimation

• the time the tokens remained blocked for each blocked writing occurrence (for a buffer);

• the buffer, the number of tokens and the time of blocking for each blocked writing

occurrence along the critical path;

• the maximal number of tokens present at the same time in each buffer.

9.3 Critical path analysis

The critical path of a weighted DAG is defined as the longest weighted path from a source node

to a sink node of the graph. In consequence, the CP of a weighted ETG can be used to identify

the actions that contribute the most to the overall execution time of a program and affects its

throughput. Different approaches can be found in the literature that aim at finding either an

exact or an approximated CP of the ETG [121, 223, 224, 225]. It must be emphasized that in

the case of a DAG, the exact CP can be found in a linear time [226].

9.3.1 Algorithm

The CP of an ETG can be evaluated during the performance estimation. For each post-

processed firing si ∈ S (corresponding to an event in the DEVS system) a partial CP (PCP)

value is defined. It contains the following parameters:

• finishingTime containing the finishing time of the associated firing;

• weightsMap data containing the sum of weights of an action that participated in the

PCP;

• firingsMap data containing the sum of numbers of executions of an action participating

in the PCP;

During the post-processing of ETG, the PCP is evaluated for each firing si by selecting its

predecessor (sk from the set of predecessors δ) that has the highest value of finishingTime:

PC P (s∗j) = max
finishingTime

{PC P (sk) : sk ∈ δ(si)} (9.1)

In the case of multiple predecessors with equal values of finishingTime, the second comparison

is made according to the weight of the PCP:

PC P (s∗j) = max
Σwei g ht sM ap

{PC P (sk) : sk ∈ δ(si)} (9.2)

140

9.4. Impact analysis

Hence, the PC P (si) is computed starting from PC P (s∗j) and adding to weightsMap the re-

spective action weight associated with each si . Similarly, in the firingsMap the number of

the executions of the action associated with each si is incremented. At the end of the post-

processing, the CP can be evaluated considering the maximal PCP among all ETG firings. As

a result, the firingsMap contains the number of firings of each action that is included in the

CP. Every action that has at least one firing along the CP is considered to be critical. Similarly,

the weightsMap contains the overall execution time along the CP of every action. Due to the

construction of the PCP structure, the algorithm relies on a propagation and only a small

portion of data (instead of the full ETG) is loaded to the memory at one time. Furthermore,

as long as the design points from the same design space are considered, the CP analysis can

be performed for the same ETG, independently from the configurations P X ,SX ,B X . Different

configurations have, however, an influence on the obtained results, for example, the biggest

portion of the CP is usually related to the most occupied partition.

9.4 Impact analysis

As demonstrated in Chapter 10 Experimental results, ranking the actions according to their

CP participation value is not sufficient to estimate the potential reduction of the CP (and the

associated throughput increase) corresponding to an optimization of the algorithmic part of

an action. This is caused by the possible presence of multiple parallel CPs in the ETG. If this is

the case, the programming effort related to optimization might not be reflected in the quality

of the newly created design space.

Hence, it is important to define a metric capable of pointing to the bottlenecks of a design more

precisely. This can be done by estimating the CP length reduction (throughput increase) when

the clock-cycles of the most critical actions are reduced. Algorithm 6 illustrates the impact

analysis heuristic. First, the initial CP is evaluated. Successively, for each critical action (i .e.,

the one that has at least one firing along the CP), the CP is evaluated by iteratively reducing the

required execution clock-cycles. Consequently, it is possible to identify which actions should

be optimized in order to increase the application throughput. Identifying such actions by

means of bottleneck (critical path) and impact analysis connects two stages from the design

flow discussed in Section 3.5. Being implemented on top of "Performance Estimation", it is

an essential part of "Profiling and Analysis", since it provides the refactoring directions, as

illustrated in Figure 9.7.

9.5 Conclusions

This Chapter presented a detailed overview of the performance estimation tool based on

the DEV S concept and developed as a module within the Turnus co-design framework. The

141

Chapter 9. Performance estimation

tool relies on the ETG and the weights which can be assigned to the processing, scheduling

and communication parts. It models a complete dynamic execution of the program and

considers the configurations such as partitioning, scheduling and buffer dimensioning. Apart

from estimating the execution time, the tool is capable of keeping track of various execution

properties which are used by different DSE heuristics. The bottleneck and impact analysis

for the purpose of evaluation of different design points is also built on top of the estimation

module. As presented later in Section 10.6, the tool achieves a very high accuracy of estimation,

compared to the state-of-the art approaches.

Algorithm 6: Impact analysis.

C P ← computeCP();
Λ∗ ← criticalActions(C P) ;
foreach λ ∈Λ∗ do

foreach i ∈ [1,100] ⊂ N do
w(λ, i) ← w(λ)× (i −100)/100;
C P (λ, i) ← computeCP(w(λ, i));

end
end

142

9.5. Conclusions

Figure 9.3 – Atomic actor model: state transition.
143

Chapter 9. Performance estimation

Figure 9.4 – Atomic actor partition model: state transition.

Figure 9.5 – Components interaction and exchanged signals.

144

9.5. Conclusions

Figure 9.6 – Communication procedure between an actor and a buffer.
145

Chapter 9. Performance estimation

Compiler
Infrastructure

Profiling and Analysis

Performance
Estimation

CAL
program

ArchitectureConstraints

Re
fa

ct
or

in
g

D
ire

ct
io

ns

Co
m

pi
le

r D
ire

ct
iv

es

ETG
generation Profiling

Design Space
ExplorationBottleneck

and
Impact

Analysis

Partitioning

Scheduling

Buffer
dimensioning

timed ETG

best
design
point

performance metrics

Figure 9.7 – System development design flow: bottleneck and impact analysis.

146

10 Experimental results

The heuristics and methodologies discussed in the previous Chapters, that is, profiling, parti-

tioning, scheduling, buffer dimensioning, performance estimation and bottleneck analysis are

encapsulated in different stages of the dataflow design flow discussed earlier in Section 3.5. An

updated design flow emphasizing the newly formalized and developed stages is presented in

Figure 10.1. This Chapter reports the experimental results conducted with regards to different

components of that flow.

The process of design space exploration consists of finding appropriate partitioning, schedul-

ing and buffer dimensioning configurations. These configurations, as discussed in Chapter 6

are closely related and lead to establishing a fixed execution order of the firings associated with

a certain performance. In order to solve the overall problem, it is iterated over the subproblems.

This iteration does not have to follow any particular order, hence at each stage it is essential

to find a high-quality solution to a subproblem considering given solutions to the other two

subproblems. Different parts of this Chapter describe experiments at different iteration stages.

The dataflow design flow corresponds directly to the V SS algorithm introduced in Chapter 7.

Hence, in the next part of this Chapter, the algorithm is validated with a real design case

comprising all previous partial results and methodologies.

10.1 Experimental set-up

This Section summarizes the set of designs and architectures used in the experiments. All

applications have been implemented using the, described earlier, RVC-CAL formalism. They

include: JPEG, MPEG4-SP and HEVC decoders. These applications are characterized by

different complexities and various levels of dynamism occurring inside the dataflow actors.

The platforms considered in the experiments are T T A and Intel 86x64.

147

Chapter 10. Experimental results

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling and Analysis

Performance
Estimation

CAL
program

ArchitectureConstraints

Re
fa

ct
or

in
g

Di
re

ct
io

ns

Co
m

pi
le

r D
ire

ct
iv

es

ETG
generation Profiling

Design Space
ExplorationBottleneck

and
Impact

Analysis

Partitioning

Scheduling

Buffer
dimensioning

timed ETG

best
design
point

performance metrics

Figure 10.1 – Extended system development design flow for C AL dataflow programs.

148

10.1. Experimental set-up

10.1.1 JPEG decoder

The first application used in the experiments and described using the RVC-CAL formalism

is a JPEG decoder [227]. The dataflow network for this design is depicted in Figure 10.2. It

consists of 6 actors in total. The main functional components are: Parser, Huffman decoder,

Inverse quantization (IQ) and Inverse discrete cosine transform (I DC T) block, respectively.

The decoder takes a compressed 4:2:0 bit-stream as input and outputs a decoded image.

Figure 10.2 – JPEG decoder: dataflow network.

10.1.2 MPEG4-SP decoder

MPEG4-SP is an RV C −C AL implementation of the full MPEG-4 4:2:0 Simple Profile decoder

standard ISO/IEC 14496-2 [66, 151]. The main functional blocks include: Parser, Reconstruc-

tion block, 2-D inverse discrete cosine transform (I DC T) block and Motion compensator. All

of these functional units are hierarchical compositions of actors in themselves. In the first

place, the Parser analyzes the incoming bit-stream and extracts the data from it. Then, it feeds

the data to the rest of the decoder depending on where it is required. The Parser is a single

actor that is composed of 71 actions. Therefore, it is the most complex actor in the entire

decoder. In the next step, the Reconstruction block performs the decoding that exploits the

correlation of the pixels in neighboring blocks. The I DC T is the most demanding actor in

terms of resources, since it performs most of the computations of the decoder. Finally, the

Motion compensator adds blocks selectively by issuing from the I DC T the blocks taken from

the previous frame. Consequently, the Motion compensator needs to store the entire previous

frame of video data and access it with a certain degree of randomness.

An illustration of a dataflow network for the MPEG4-SP decoder (the variant with serial process-

ing of Y, U and V components) has been already presented in Section 6.5. Figure 10.3a depicts

the differences in the network when these components are processed in parallel. These two

designs are referred to as MPEG4-SP Serial/Parallel, respectively. They differ significantly in

complexity. The complete design of MPEG4-SP Serial consists of 17 actors, whereas MPEG4-SP

Parallel of 34 actors. The decoder takes a compressed 4:2:0 bit-stream as input and outputs a

decoded video sequence.

149

Chapter 10. Experimental results

10.1.3 HEVC decoder

High Efficiency Video Coding (HEVC) standard [228] represents the state-of-the-art in video

coding. Its compression performance is significantly improved compared to the previous, Ad-

vanced Video Coding (AVC) standard [229, 230], however, at the cost of higher complexity. Due

to this complexity, efficient HEVC codec implementations are vital in video products approach-

ing 4K (2160p) resolution. It was designed with the intention to define new parallelization

tools [231] capable of taking advantage of execution on a multi-core architecture.

A dataflow implementation of an HEVC decoder [199] has been created according to the

specifications standardized in the MPEG-RVC Framework [66] and in its basic form consists

of 13 actors. Its functional units correspond to the algorithmic blocks of the HEVC standard

decoder and include: bit-stream Parser, Motion Vector Prediction, Inter Prediction, Intra Pre-

diction, I DC T , Reconstruct Coding Unit, Deblocking Filter, Sample Adaptive Offset Filter and

Decoding Picture Buffer. Figure 10.3b illustrates the complete network with all components.

Due to the repetitive communication of some large data structures (like Decoding picture

buffer) from one functional unit to another, an important factor improving the performance

of the dataflow implementation of HEVC is the sharing of these big data structures among

different functional units and making them read/write from/to these shared data structures.

Note that this approach of sharing data-structures can only be used in the implementations tar-

geting platforms supporting shared memory architectures. The experimental results showed

that such a shared memory implementation does not affect the potential parallelism, but

instead allows the functional units to work in a more synchronized way.

Another possible concept to apply in the implementation is a multi-parser configuration.

According to this scheme, multiple parsing units (multiple instances of the Parser) can inde-

pendently parse the bit-stream portions corresponding to decoding units (WPP-rows, tiles,

slices) at the same time. Parsed data is then combined by a Merger into a single stream to be

processed by the rest of the decoder.

10.1.4 Target platforms

The experiments have been performed on different platforms. One of the objectives was to

demonstrate that the proposed model of execution, when supported by a profiling methodol-

ogy, can be successfully used on different types of target architectures. Furthermore, depend-

ing on the properties of the platform and its notion of uncertainty, different behaviors can be

modeled and the accuracy of the proposed methodologies can be verified. A large portion of

the experiments have been performed on T T A using a cycle-accurate simulator [133]. These

experiments aimed at the validation of the model and the proposed DSE heuristics in the

circumstances where the platform can be easily modeled, profiled and its behavior is highly

150

10.1. Experimental set-up

(a) MPEG4-SP Parallel decoder.

(b) HEVC decoder.

Figure 10.3 – Dataflow networks.

151

Chapter 10. Experimental results

deterministic. The next step was to move towards platforms which are more difficult to model.

In this part, various Intel-based platforms were considered, which are characterized by differ-

ent underlying micro-architectures, cores numbers and operating systems, as summarized in

Table 10.1.

Table 10.1 – Configurations of Intel platforms.

Platform Hardware and Operating System Details
Machine 1 (M1): – CPU: Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz
1 x 8 cores – Memory: 32GB RAM
Desktop PC – OS: Ubuntu 15.04 (Linux 3.19.0-15-generic x86_64)

– Compiler: gcc 4.9.2 (Ubuntu 4.9.2-10ubuntu13)
Machine 2 (M2): – CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
1 x 4 cores – Memory: 8GB RAM
Desktop PC – OS: Ubuntu 14.04.2 LTS (Linux 3.16.0-61-generic x86_64)

– Compiler: gcc 4.8.4 (Ubuntu 4.8.4-2ubuntu1 14.04)
Machine 3 (M3): – CPU: Intel(R) Xeon(R) E5-2660 CPU @ 2.60GHz
2 x 10 cores – Memory: 264GB RAM
Server – OS: CentOS Linux 7.2.1511 (Linux 3.10.0-327.28.2.el7.x86_64)

– Compiler: gcc 4.8.5 (Red Hat 4.8.5-4)

10.2 Partitioning: experiments on Transport Triggered Architecture

The focus of the experiments described in this Section was to validate the proposed partition-

ing heuristics, and hence explore the design space in terms of configurations of P , whereas the

configurations of S and B are fixed. The dynamic scheduling policy used in the experiments

for both, estimation and execution on the platform was NnP, following the definition in Sec-

tion 8.3.2. The buffer size configuration assigned each buffer with a fixed size of 512 tokens.

This size has been verified to keep the overall blocked writing time of the actors, as defined in

Section 8.1.3, at a negligible level.

Finding appropriate dataflow programs for validating partitioning algorithms is not a trivial

task. In fact, it is essential to perform the experiments with an application that, in principle,

can provide a sufficient level of parallelism. If this condition is not satisfied, it is likely that

any partitioning algorithm can result in a satisfactory performance. The test application was

the MPEG-4 SP Parallel design and the target platform was an array of T T A processors. For

this particular platform, MPEG4-SP Parallel provides the potential parallelism, as defined in

Section 4.2.4, around 6.28.

152

10.2. Partitioning: experiments on Transport Triggered Architecture

10.2.1 Methodology of experiments

Most of the tools used for the experiments are the components of the Turnus co-design frame-

work [16, 232, 233]. They include: the generation of an ETG for a given statistically meaningful

input stimulus, the performance estimation tool exploiting the ETG and the results of the

platform profiling and the generation of partitioning configurations using different algorithms.

Complementary units in this workflow are the profiling of the TTA architecture and a TTA

cycle-accurate simulator [133] that allows verification of the estimated results in terms of a real

execution time obtained on the platform. The complete workflow is presented in Figure 10.4.

Figure 10.4 – Partitioning heuristics - T T A - experimental workflow.

The partitioning configurations have been generated using each of the described algorithms

for the number of processors between 2 and 8. Considering the choice of application, 8 units

should already approach its potential parallelism. For the local search methods that require

specifying an initial solution, in each case, two sets have been tested: the random one and

the one generated by the W B algorithm. Such a choice has been made in order to provide

the algorithms with possibly good, as well as bad, initial configurations and also observe

their sensitivity to the quality of an initial solution. The evaluation of the solutions generated

by each algorithm has been accomplished by means of performance estimation calculating

the total execution times in clock-cycles. Based on these values, the speed-up versus the

mono-core execution has been calculated in each case. The presented results target the values

of the speed-up in order to relate them easily to the potential parallelism of the application.

153

Chapter 10. Experimental results

Finally, the results obtained by estimation have been verified by the platform executions. This

verification is, however, handled in more detail later in Section 10.6.

10.2.2 Parameters tuning

As described in Section 8.1.4, apart from the length of the tabu tenure, T S is sensitive to two

parameters that need to be properly tuned: the time limit T and the percentage e of explored

neighbor solutions. For that purpose, 3 runs on a set of initial partitioning configurations have

been performed for each: N (B), N (I), N (C F), and N (R). First, with a fixed value of e = 0.5, each

T S variant was performed 3 times on the initial set of partitioning configurations. For each run,

T S was stopped any time 5 minutes have elapsed without improving the best encountered

solution (during the current run) by at least 1%. Parameter T has been set as the largest

encountered stopping time (minus 5 minutes) among all these experiments.

Next, with the selected value of T , all T S variants were tested with different values of e ∈
0.2,0.4,0.6,0.8 in order to deduce the best value for each neighborhood type. The value of

e = 0.4 has been chosen as the one providing the best average results among all instances in

the test set. It has been also observed that if a method is performed several times on the same

instance, it gets similar results. This indicates the robustness of the proposed approach.

Proper tuning of parameters is important in order to reliably compare all of the iterative

methods. All stages of parameter tuning in the proposed methodology have been performed

automatically. The time limit T tuned for T S has been used also as a time limit for the DLS

methods. Additionally, since these methods tend to get quickly stuck in local optima, a

restarting procedure has been implemented. If DLS finishes before consuming the given time

limit, it is restarted with a new random solution. At the end, the best found solution (among

the restarts) is returned.

10.2.3 Greedy and descent local search procedures

Table 10.2 contains the speed-up values obtained for partitioning configurations generated

with the W B and BP algorithms along with the values estimated for a random set of configu-

rations. Tables 10.3 and 10.4 contain the results obtained for the I DLS and C F DLS heuristics

for the two sets of initial partitioning configurations.

Since the purpose of a greedy constructive method is to build a solution from scratch, an

important property is the scalability of the performance. In this case, both algorithms scale,

however the BP achieves a saturation already around 5 processors, unlike the W B that scales

further. The maximal speed-up obtained for BP configurations is similar to the random

configurations, but is achieved on a smaller number of processors (5 vs 8). Applying the I DLS

154

10.2. Partitioning: experiments on Transport Triggered Architecture

and C F DLS methods in all the cases improved the initial solution, but the improvement is

greater for C F DLS. The quality of the solution provided by the DLS heuristics depends also

strongly on the quality of the solution provided as a starting configuration.

Proc. Workload Balance Balanced Pipeline Random

1 1.00 1.00 1.00
2 1.83 1.79 1.75
3 2.66 2.20 2.08
4 3.07 2.84 2.77
5 3.38 3.10 2.34
6 4.07 3.09 2.61
7 5.40 3.10 2.48
8 5.76 3.10 3.14

Table 10.2 – Speed-up: Greedy constructive procedures.

Proc. IDLS CFDLS

1 1.00 1.00
2 1.83 1.94
3 2.67 2.68
4 3.25 3.49
5 3.48 4.20
6 4.08 4.75
7 5.47 5.63
8 5.93 6.06

Table 10.3 – DLS Speed-up: balanced start.

Proc. IDLS CFDLS

1 1.00 1.00
2 1.77 1.95
3 2.09 2.32
4 2.78 3.19
5 2.35 4.27
6 2.95 3.98
7 3.02 3.93
8 3.85 4.23

Table 10.4 – DLS Speed-up: random start.

10.2.4 Tabu search

The first experiment aimed at confirming the most beneficial types of moves. It has been

performed separately for each type of neighborhood structure. In the first execution, only

REINSERT moves were allowed, whereas in the second one, SWAP moves were also included.

SWAP moves were not considered alone, since they do not lead to any change of the initial size

of each partition (resulting in a non-connected solution space). The results of this comparison

for each neighborhood type are presented in Tables 10.5 - 10.12. Along with admitting the

SWAP moves, a significant improvement has been brought only to the N (B). In fact, the

performance of N (B) based on REINSERT only was very poor and a slight improvement was

introduced only for certain initial configurations. It relies on the fact that the possible space

of moves is very narrow in this case (only actors from the most occupied partition are taken

into consideration) and the tabu list can be very restrictive. Since it also aims at balancing

155

Chapter 10. Experimental results

the workload, for a higher number of processors, it is not rare to encounter a solution where

the heaviest bottleneck actor is placed alone on the processor. Due to the solution definition

described in Section 8.1.4, the algorithm cannot proceed from that point. A relative balancing

of the workload between the two partitions instead of an overall balancing seems to be a much

more effective approach.

For the other neighborhood structures, allowing SWAP moves decreased the quality of the

final solution in the vast majority of cases. This might be due to the fact that SWAP moves

unnecessarily increased the set of neighbor solutions and reduce the diversification of the

method. Comparing the neighborhood structures, there are some conclusions that can be

made. First, N (I) outperforms the other variants, including N (C F). This observation is contrary

to what has been previously observed for the DLS heuristics, where a search based on com-

munication frequency outperformed the idle optimization. This confirms that determining a

local optimization criterion is one challenge, whereas employing an appropriate exploration

strategy (i .e., the T S framework) is the another. Finally, the results obtained for N (I) and N (C F)

also prove that a guided choice of moves outperforms random selection. In other words, the

complete freedom of choice when choosing a move, as for N (R), does not necessarily lead to

competitive solutions.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.85 1.94
3 2.67 2.77
4 3.21 3.48
5 4.04 4.32
6 4.83 4.85
7 5.40 5.62
8 5.76 6.19

Table 10.5 – Speed-up: N (B) with balanced
start.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.75 1.95
3 2.08 2.74
4 2.77 3.30
5 2.34 4.13
6 2.61 3.68
7 2.48 4.04
8 3.24 4.76

Table 10.6 – Speed-up: N (B) with random
start.

The final part of the experiments with T S aimed at a comparison of its two advanced variants.

Taking into consideration the previous observations, the analysis targeted the neighborhood

N (B) based on the SWAP moves, and the neighborhoods N (I), N (C F) and N (R) based on REIN-

SERT moves. Since different types provide different sizes of the neighborhood sets, such sizes

have been equalized according to the averaged values. For this reason, another parameter,

namely the admission rate, has been introduced for each neighborhood structure. Admission

rate expresses the percentage of moves that is generated at each iteration. For N (I) and N (C F),

a given percentage of moves is extracted according to the priorities (i .e., most idle or most

communicative actors, respectively). For N (B) and N (R), since there are no priorities, the

solutions are extracted randomly. The values of admission rate have been tuned as follows: 0.9

156

10.2. Partitioning: experiments on Transport Triggered Architecture

Proc. REINSERT SWAP

1 1.00 1.00
2 1.92 1.92
3 2.75 2.80
4 3.61 3.46
5 4.45 4.23
6 4.92 4.88
7 5.81 5.66
8 6.28 6.18

Table 10.7 – Speed-up: N (I) with balanced
start.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.93 1.94
3 2.66 2.66
4 3.36 3.27
5 3.94 3.59
6 4.73 4.12
7 4.31 4.65
8 5.95 4.65

Table 10.8 – Speed-up: N (I) with random
start.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.88 1.93
3 2.79 2.78
4 3.49 3.56
5 4.30 4.29
6 4.95 4.97
7 5.79 5.74
8 6.26 6.18

Table 10.9 – Speed-up: N (C F) with bal-
anced start.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.87 1.88
3 2.65 2.68
4 3.33 3.29
5 4.23 4.36
6 4.94 3.85
7 4.62 4.36
8 4.66 4.23

Table 10.10 – Speed-up: N (C F) with ran-
dom start.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.92 1.94
3 2.70 2.74
4 3.47 3.38
5 4.26 4.11
6 4.91 4.76
7 5.64 5.57
8 6.27 6.18

Table 10.11 – Speed-up: N (R) with bal-
anced start.

Proc. REINSERT SWAP

1 1.00 1.00
2 1.94 1.90
3 2.65 2.29
4 3.30 3.16
5 4.01 3.20
6 3.65 3.53
7 4.02 3.47
8 4.56 4.36

Table 10.12 – Speed-up: N (R) with random
start.

157

Chapter 10. Experimental results

for N (I), 0.48 for N (C F), 0.16 for N (R), and 0.08 for N (B).

Tables 10.13 and 10.14 contain the results of the analysis of the advanced variants of T S. In

almost all cases, PT S performed better than JT S and provided the results that, considering

the previously mentioned potential parallelism of an application, can be considered as close-

to-optimal. PT S and JT S were also less sensitive to the quality of the initial configuration.

In fact, in a few cases, a random initial solution leads to better results than a balanced initial

configuration.

Proc. PTS JTS

1 1.00 1.00
2 1.93 1.96
3 2.83 2.80
4 3.58 3.57
5 4.44 4.37
6 5.13 5.03
7 5.81 5.72
8 6.22 6.22

Table 10.13 – PT S and JT S speed-up: bal-
anced start.

Proc. PTS JTS

1 1.00 1.00
2 1.96 1.93
3 2.77 2.71
4 3.62 3.39
5 4.42 4.26
6 4.98 4.31
7 5.10 4.86
8 5.72 5.12

Table 10.14 – PT S and JT S speed-up: ran-
dom start.

Finally, Table 10.15 summarizes the best solutions obtained with PT S as the number of

processors is increased. In addition to the values of the execution times expressed in clock-

cycles and the speed-up, the distance between the execution time and the length of the critical

path expressed in % is also highlighted. This value indicates how far is a given solution from the

potential parallelism of the application. The last column contains the value of the estimation

discrepancy for this particular solution.

Proc. Time Speed-up CP dist [%] Diff [%]

1 36938764 1.00 528 4.06
2 18839134 1.96 220 12.64
3 13045976 2.83 122 7.35
4 10200033 3.62 73 3.62
5 8321995 4.44 41 14.73
6 7194547 5.13 22 13.8
7 6354158 5.81 8 14.28
8 5941632 6.22 1 11.96

Table 10.15 – Improvement summary.

158

10.2. Partitioning: experiments on Transport Triggered Architecture

10.2.5 Discussion

Comparing the results obtained for all implemented algorithms, the first observation is that

according to the decreasing quality of the output solutions, the algorithms can be ordered

as follows: advanced T S variants, T S, DLS, and the greedy constructive procedures. This

ranking is consistent, as a more refined approach outperforms a simpler one. It highlights

that the specific ingredients belonging to a more refined method are relevant. Additionally,

finding a good partitioning configuration for a small number of processors (i .e., 2 or 3) is

relatively easy and the differences between the solutions provided by different algorithms

are minor. For instance, for the case of two processors, the difference between the solutions

provided by the best and the worst algorithm is less than 6%. With the increasing number

of processors, the differences become more significant. For the case of the W B algorithm,

the biggest difference of 30% with respect to PT S can be observed at around 5 processors,

whereas for the BP algorithm, on 8 processors, the difference goes up to 100% (Tables 10.2

and 10.13).

The comparison of different variants of T S leads to the conclusion that the resulting solution

benefits from varying the definition of the neighborhood. In fact, both JT S and PT S out-

performed the variants where only one type of neighborhood was taken into consideration.

Among the advanced variants, the success of PT S over JT S might rely on two factors: (1) using

the history of local search, which allows an adaptation of the search to the properties of the

test case, and (2) the much smaller size of the neighborhood in each iteration that contributes

to a diversification of the search.

An important aspect that must be also taken into account for evaluating the algorithms is the

time required for their completion. It includes the evaluation time for all considered solutions

in all iterations, extraction of the optimization criteria and computation of new solutions. For

DLS and T S, the upper-bound on the time is defined by the user. However, for each algorithm,

it has been observed when the last improving move (before a termination at the specified

point) was performed. The averaged values among different instances are summarized in

Table 10.16. For the T S, a big difference is visible between N (R) and the other variants. In fact,

it is the time elapsed for N (R) that enforces the time limit for all other algorithms, but in the

case of this particular variant, it does not necessarily correspond to the quality of the final

solution. A promising observation can be made for the advanced variants of T S, since PT S

not only provides the best results, but it also succeeds in ca. 10% shorter time than JT S. In all

cases, the most significant factor is the number of iterations performed, since the performance

estimation and, at the same time, the extraction of the optimization criteria much outstrip the

cost of computing a new solution.

159

Chapter 10. Experimental results

Algorithm Time

WB N/A
BP N/A

IDLS 73 min
CFDLS 58 min

N (B) 13 min
N (I) 44 min

N (C F) 84 min
N (R) 318 min
JTS 308 min
PTS 276 min

Table 10.16 – Averaged time of the final improvement.

10.3 Partitioning: experiments on Intel 86x64 platforms

Due to the properties of Intel platforms (uncertainty, not negligible communication cost etc .),

a thorough and precise comparison of different partitioning heuristics, as was done for the

case of T T A, would be less meaningful. Hence, the focus of the experiments described in

this Section went to a comparison of the partitioning methodology based on the analysis of

ETG (with injected weights obtained during the profiling) and a state-of-the-art approach for

partitioning available in ORCC .

10.3.1 Methodology of experiments

The referenced approach is based on a run-time actor profiling combined with a general

purpose graph partitioning library [184], as described earlier in Section 8.1.1. The initial

comparison of the two approaches has been described in detail in [15]. The tested application

was the MPEG4-SP Parallel decoder running on machine M2. The flow of the experiments is

illustrated in Figure10.5.

Figure 10.5 – Partitioning heuristics - Intel - experimental workflow.

160

10.3. Partitioning: experiments on Intel 86x64 platforms

10.3.2 Heuristics comparison

The heuristics provided by the state-of-the-art approach are of different complexity. The

simple variants include a round-robin placement (RR) and a strategy (W LB) which is, in

principle, similar to the W B described in this work in Section 8.1.2. The other strategies

employ different algorithms provided by the graph partitioning library. The values of speed-up

compared to a mono-core configuration obtained for the Foreman sequence are summarized

in Table 10.17. The heuristics that are compared in this approach are the basic procedure

BP and two additional optimization procedures used in the variant, where the number of

actors to be moved is fixed by the user. The values of speed-up for these cases are presented

in Table 10.18. Finally, the PT S has been used, where the initial configurations (for 2, 3

and 4 processing units) were generated by the W B heuristic. As verified with the previous

experiments on T T A, PT S comprises the advantages of different generators and is expected

to provide the best results among different T S variants. Since for the case of Intel platforms

the communication cost cannot be neglected without affecting the accuracy of estimation,

the results presented in Table 10.19 rely on the iterative re-profiling procedure described in

Section 8.1.6.

Proc. MKCV MKEC MR RR WLB
1 1.00 1.00 1.00 1.00 1.00
2 1.86 1.83 1.84 1.36 1.81
3 2.22 2.43 2.44 1.65 2.23
4 2.14 2.26 2.14 1.63 2.26

Table 10.17 – Platform execution speed-up: SOA approach.

Proc. BP + Idle. min. + Comm. vol.
1 1.00 1.00 1.00
2 1.62 1.84 1.89
3 2.48 2.49 2.01
4 2.11 2.28 1.93

Table 10.18 – Platform execution speed-up: BP with additional optimization procedures.

Proc. PT S
1 1.00
2 1.84
3 2.50
4 2.95

Table 10.19 – Platform execution speed-up: tabu search with an iterative re-profiling procedure.

161

Chapter 10. Experimental results

10.3.3 Discussion

It can be stated that already the first set of results (without considering the results of PT S)

outperformed the referenced state-of-the-art approach. Furthermore, a relevant advantage

of the proposed approach is the stability of the solution, as the analysis of ETG does not

introduce any notion of randomness. In contrast, for the referenced strategies it could be

easily noticed when running the same procedure several times for the identical input stimuli,

that the resulting configurations can be close to the results of the proposed algorithm, as

well as far less efficient than a simple RR placement (the results presented in Table 10.17

always contain the best result among several attempts). This stability can be considered as an

advantage of the partitioning methodologies based on creating a model of execution, rather

than only a run-time profiling.

The BP and its additional optimization procedures have some advantages, as well as some

drawbacks. Apart from the, mentioned earlier, stability of the solution, the partitioning config-

urations are generated in a negligible time and, since the additional optimization procedures

can be used without relying on the performance estimation, the accuracy of the performance

estimation methodology does not affect the quality of the generated configurations. Hence,

these methods can operate reasonably well in the situation, when the profiling data is less

accurate. However, it is observed that the quality of the solution in different variants (basic

procedure, idle time and communication volume minimization) vary a lot and although the

new approach outperforms the referenced one, the best solution is located each time in a

different variant. This is not the case for the PT S, which in any case generates the best re-

sults. The difference between the quality of the solution is visible especially for the case of

partitioning spanned on 4 cores (Tables 10.18 and 10.19).

Some preliminary experiments included also applying the referenced state-of-the-art ap-

proach for the partitioning of a more complex design, such as the HEVC decoder. However,

the quality of the multi-core configurations generated by different strategies was not much

higher than for a mono-core execution. Hence, it was not useful in the process of V SS, results

of which employing the algorithms validated in this Section, are reported later in Section 10.7.

10.4 Buffer dimensioning

This Section reports the experimental results performed for the bottom-up (constrained

resources, throughput optimization) and top-down (constrained throughput, resource min-

imization) buffer dimensioning heuristic. The tested applications included the MPEG4-SP

Parallel decoder (34 actors, 80 buffers) running on machine M2 and the HEVC decoder run-

ning on machine M1 (22 actors, 219 buffers). The sequences used in the experiments were a

30-frame QCIF Foreman bit-stream for MPEG4-SP Parallel and a 10-frame HD BQ Terrace bit-

162

10.4. Buffer dimensioning

stream for HEVC. Based on the preliminary experiments it has been observed that high-quality

configurations found for these sequences remain of high-quality also for the other sequences.

The first set of results (Tables 10.20 and 10.21) reports the differences in the throughput be-

tween a close-to-minimal buffer size configuration and an extreme configuration, where each

buffer is assigned with a size equal to 218 = 262144. This configuration is considered as an

approximation to an infinite buffer size. The corresponding values of Btot al are indicated in

the Tables. It is observed that the differences are remarkable for both designs and for differ-

ent partitioning configurations. Hence, this justifies the necessity of optimizing combined

throughput-memory objective functions.

Proc. 14k 21m
1 744 1005
2 1156 1613
3 1410 2240
4 1820 3138

Table 10.20 – MPEG4-SP Parallel: perfor-
mance differences [FPS].

Proc. 93k 57m
1 41 53
2 42 79
3 51 103
4 52 121
5 57 123
6 54 130
7 53 127

Table 10.21 – HEVC: performance differ-
ences [FPS].

10.4.1 Bottom-up: throughput optimization with constrained resources

Figures 10.6-10.7 present the buffer size configurations generated in different iterations of

the bottom-up heuristic in its two variants. Both variants were executed with the same upper

bound on the number of iterations. The charts summarize the throughput with regards to

the total buffer size of each configuration. For the case of the MPEG4-SP Parallel decoder,

4 processing units and the HEVC, 7 processing units it can be concluded that the criticality

ratio ranking provides better results, because within the same number of iterations it leads to

higher throughputs and smaller total buffer sizes. For the other two analyzed cases, it is not

possible to make such a general statement, because one variant moves more towards higher

throughputs, whereas the other one towards smaller total buffer sizes. It can be also observed

that the partitioning configuration remains dominant over buffer size configuration, but for

each partitioning configuration the buffer dimensioning improves the solution by 3-22%.

10.4.2 Top-down: resources minimization with constrained throughput

Figure 10.8 presents the results of buffer dimensioning performed with the top-down algorithm

(Alg. 5) for different partitioning configurations in terms of the overall program throughput

163

Chapter 10. Experimental results

1150

1160

1170

1180

1190

1200

1210

0 20000 40000 60000 80000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Heaviest blocking

Critical ratio

(a) 2 cores partitioning.

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

0 20000 40000 60000 80000 100000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Heaviest blocking

Critical ratio

(b) 3 cores partitioning.

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

13500 14000 14500 15000 15500 16000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Heaviest blocking

Critical ratio

(c) 4 cores partitioning.

Figure 10.6 – Bottom-up buffer dimensioning heuristic (MPEG4-SP Parallel decoder).

164

10.4. Buffer dimensioning

52

53

54

55

56

57

58

59

60

90000 100000 110000 120000 130000 140000 150000 160000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Heaviest blocking

Critical ratio

Figure 10.7 – Bottom-up buffer dimensioning heuristic (HEVC decoder, 7 cores).

and the total buffer size Btot al . The results have been generated for the HEVC decoder running

on machine M1. Next to the spectrum of the solutions generated by the algorithm, the

throughput for the minimal buffer size is indicated, as well as the throughput achieved for

the configurations, where all buffers have the same size equal to 8192 and 16384, respectively.

The points indicated as "Refined" correspond to the solutions obtained after assigning a

lower and upper bound on the buffer size, as described in Sections 8.2.5. For the partitioning

configuration on 7 cores, some results of the bottom-up algorithm are also indicated.

10.4.3 Multidimensional vs single-dimension exploration

A design B-subspace is defined as the set of design points disregarding the P and S configura-

tions, hence assuming a fully parallel execution. The two heuristics (bottom-up and top-down)

can be used to explore the B-subspace as well as the multidimensional design space MDS. Let

A (C) be the set of design points found in the B-subspace (MDS), respectively. Next, assign

specific configurations of P and S to the design points of A, resulting in a set D of design

points in MDS. Figures 10.9a and 10.9b illustrate the selected best solutions obtained with

the two heuristics for the MPEG4-SP and HEVC designs, respectively. The improvement of

the throughput and the increase of the buffer size have been calculated taking the initial

deadlock-free configuration as the reference point.

10.4.4 Discussion

The very first observation of the results presented in the last Section proves the importance

of buffer size optimization over providing only a deadlock-free configuration. In each con-

165

Chapter 10. Experimental results

0

10

20

30

40

50

60

70

80

90

100

0 1000000 2000000 3000000 4000000 5000000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Top-dow n

Minimal

Refined

All-equal

(a) HEVC, 2 cores partitioning.

0

20

40

60

80

100

120

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Top-down

Minimal

Refined

All-equal

(b) HEVC, 3 cores partitioning.

0

20

40

60

80

100

120

140

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Th
ro

u
gh

pu
t [

FP
S]

Total buffer size [tokens]

Top-down

Minimal

Refined

All-equal

Bottom-u p

(c) HEVC, 7 cores partitioning.

Figure 10.8 – Top-down buffer dimensioning heuristic.

166

10.4. Buffer dimensioning

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 01 010 0010 00010 000100 1000000

T
h

ro
u

gh
pu

t i
m

pr
ov

em
en

t [
%

]

Total buffer size increase [%]

Design B-subspace

 MDS exploration

Infinite buffer size approximation

(a) MPEG4-SP Parallel decoder, 3 processing units.

0

20

40

60

80

100

120

140

160

1.00 10.00 100.00 1000.00 10000.00

Th
ro

u
gh

pu
t i

m
pr

ov
em

en
t [

%
]

Total buffer size increase [%]

Design B-subspace

MDS exploration

Infinite buffer size approximation

(b) HEVC decoder, 7 processing units.

Figure 10.9 – MDS vs design B-subspace vs infinite buffer.

167

Chapter 10. Experimental results

figuration, a solution which is good in terms of performance, gives at least 2 times better

throughput than the minimal configuration. Furthermore, for instance, the termination point

of the top-down algorithm (the one with the smallest Btot al) is very close to the minimal

one in terms of Btot al , but still has up to 60% better throughput. The solutions generated

with the bottom-up algorithm remain rather closer to the minimal configuration regarding

the throughput. Finally, the refinement procedure brings a significant improvement of the

throughput with only a slight increase of Btot al (depending on the configuration). In the end,

the top-down algorithm along with the refinement procedure managed to find a configuration

with a comparable throughput (or even better, as for the case of the 2 cores partitioning), but a

Btot al at least two times smaller than for the "all = 8192" configuration.

Following the discussion about the exploration in the design B-subspace, one can observe that,

in contrast with the design points in D , the design points in C build a quasi-monotonic curve,

and are thus of better quality. In fact, the exploration of the design B-subspace terminates very

quickly in local optima. More generally, if we disregard some dimensions (namely P and S) of

the overall optimization problem, the algorithm working on the other dimensions (namely B)

will not be as efficient as a general method with full flexibility (i .e., accounting for P , S and

B). This contrasts with some optimization problems for which fixing a dimension is a better

approach [234, 235]. This is explained by the fact that in the DSE problem, all the dimensions

are strongly correlated.

Another part of the observations related to Figures 10.9a and 10.9b is a comparison between

the solutions obtained with the proposed buffer dimensioning heuristics and the solutions

obtained without any systematic approach, that is, by increasing the size of all buffers or a

randomly chosen fraction of buffers, until a saturation of performance is achieved. This curve

of solutions is referred to as the infinite buffer size approximation. It is observed that the

curve of solutions generated by using buffer dimensioning heuristics eventually converges

to the curve of approximately infinite buffer size configurations. However, the curves clearly

show that for different values of Btot al , the solutions generated with the buffer dimensioning

heuristics outperform the solutions in the other curve in terms of throughput improvement.

In some cases, the solutions with comparable throughput are orders of magnitude apart from

each other.

As a conclusion it can be stated that the bottom-up approaches might be more useful only

for fully parallel, hardware implementations, where resources optimization plays an essential

role and the optimization problem as a whole is less affected by various uncertainties. For

the case of partitioned, software implementations, the top-down approach remains much

more effective. The choice of the heuristic might depend also on the considered optimization

scenario (described in Section 7.6). Observing the shape of the curves, the bottom-up (top-

down) approach is more appropriate for the optimization scenario (S1) ((S3)), respectively.

168

10.5. Scheduling

Scenario (S2) might require both approaches and eventually, more priority has to be assigned

either to U k or U b .

10.5 Scheduling

The experimental results presented in this Section considered the exploration of the design

space regarding the configurations of S. The setup of P and B configurations is fixed. In

all experiments, the two sets of P configurations spanned on up to 8 processors have been

compared. The first set contained configurations where the overall workload of each partition

is balanced (generated using the W B algorithm), whereas the second one was created as

random configurations. Analyzing these two sets verifies whether a certain tendency in

the performance for different scheduling policies occurs independently from the quality of

partitioning. As for the buffer dimensioning, in order to minimize its influence on the results,

a buffer size of 8192 tokens has been fixed as a reasonable approximation of an infinite buffer.

This value has been used for profiling, platform execution and performance estimation.

10.5.1 Performance potential

For each partitioning configuration, the performance estimation tool calculated the execution

times for 6 different scheduling policies (defined in Section 8.3.2) which have been used to

obtain the speed-up versus the mono-core execution. The results for the balanced (random)

partitioning configurations are presented in Table 10.22 (10.23), respectively.

No. of units NnP RR NnP/P CNnP COW ECO
1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.78 1.99 1.79 1.70 1.89 1.99
3 2.27 2.84 2.36 2.31 2.30 2.79
4 2.72 3.57 2.75 2.68 3.28 3.46
5 3.14 4.20 3.29 3.62 3.85 4.14
6 4.41 4.67 4.43 4.67 4.72 4.68
7 5.04 5.12 4.99 5.14 5.10 5.12
8 5.41 5.46 5.41 5.47 5.49 5.46

Table 10.22 – Estimated speed-ups: balanced partitioning configurations.

It can be clearly observed that some policies tend to perform much better than others for

almost any set of configurations. For example, RR outperforms NnP by more than 10% on

average, and up to even 25%. The strategies relying entirely on I AP policy (RR, COW, ECO)

are also in general more efficient than NnP and its derivatives which use the I AN nP at least

partially. Surprisingly, CNnP does not perform very well. This may be due to the fact that, as

169

Chapter 10. Experimental results

No. of units NnP RR NnP/P CNnP COW ECO
1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.61 1.64 1.61 1.54 1.59 1.62
3 2.30 2.48 2.31 2.19 2.47 2.48
4 2.59 2.97 2.68 2.45 2.73 2.97
5 2.84 3.21 2.87 3.03 2.97 3.21
6 2.73 2.86 2.72 2.82 2.67 2.87
7 2.83 2.98 2.83 2.85 2.98 2.98
8 4.47 5.01 4.46 4.70 4.63 5.02

Table 10.23 – Estimated speed-ups: random partitioning configurations.

for the scheduling policy, when the critical firings were given a priority to fire, the critical path

might have been modified by the concurrent decision of the scheduler. At the higher processor

count all policies start to perform very similarly. This is due to the fact that as the average

number of actors in one processor decreases, the possible choices of the scheduler become

limited and less sensitive to the strategy it is using.

Another observation is that the balanced partitioning configurations resulted in much more

diversity in the generated solutions than the random ones. This leads to the conclusion that

the partitioning problem should be, in fact, considered dominant over the scheduling problem,

as it is responsible for the room for improvement available to the scheduling policies. The

same kind of observation was made in order and acceptance scheduling problems [236]. For

further experiments, the two relatively extreme strategies (in terms of the overall number of

preemptions assumed by the policy, but also in terms of performance differences) RR and NnP

have been chosen. The scheduler inside the TTA back-end of ORCC has been modified to

perform the scheduling on both an NnP and RR basis, so that a comparison of performances

is also possible on the platform. The execution times are presented in Fig. 10.10a and 10.10b

for balanced and random configurations, respectively.

The same tendency can be, again, observed in both sets of partitioning configurations. It

thus confirms the legitimacy of the partitioning setup applied to the design space for the

exploration of scheduling. Since partitioning configurations of different quality behave in the

same way for different scheduling policies, using performance estimation in order to tune

the scheduling policy for the metaheuristic search of high-quality partitioning configuration

seems to be a justified direction. At the beginning, that is, up to 3 units, NnP outperforms RR

on the platform. However, the difference between them gradually decreases. At 4 units and

above, RR achieves a better performance. In spite of a higher discrepancy and inefficiency for

a small number of units, the modified scheduler RR brought up to a 14.5% of improvement.

170

10.5. Scheduling

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8

Ti
m

e
[c

lk
 /

10
^7

]

Processors

NnP

RR

(a) Balanced partitioning configurations.

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8

Processors

NnP

RR

Ti
m

e
[c

lk
 /

10
^7

]

(b) Random partitioning configurations.

Figure 10.10 – T T A platform execution.

171

Chapter 10. Experimental results

10.5.2 Scheduling cost

In order to find an explanation for the discrepancies reported earlier, the metrics for the

numbers of checked and, respectively, failed conditions is used. Tables 10.24 and 10.25

present the normalized numbers of clock-cycles obtained for the two considered scheduling

policies (N nP and RR). A positive value of difference (expressed in %) indicates that the real

value is larger than the estimated value (underestimation), otherwise the execution time is

overestimated. For each scheduling policy, the numbers of checked and failed conditions (as

described in Section 8.3.3) have been counted and the normalized values are presented in

Tables 10.26 and 10.27. The numbers of checked and failed conditions are calculated per 100

successful firings, per partition.

Proc. TTA [clk] PE [clk] diff [%]
1 19.04 19.01 0.15
2 10.27 10.67 -3.81
3 8.15 8.36 -2.52
4 6.40 7.00 -9.37
5 5.12 6.05 -18.22

Table 10.24 – Execution times NnP.

Proc. TTA [clk] PE [clk] diff [%]
1 21.31 19.01 10.81
2 10.64 9.57 10.10
3 8.18 6.69 18.23
4 6.39 5.33 16.65
5 4.42 4.53 -2.45

Table 10.25 – Execution times RR.

Proc. NnP RR
1 33.051 143.934
2 27.223 90.242
3 25.547 64.115
4 28.198 55.711
5 23.891 46.761

Table 10.26 – Conditions checked.

Proc. NnP RR
1 0.017 47.968
2 0.526 24.048
3 0.106 17.099
4 0.690 13.817
5 0.368 10.918

Table 10.27 – Conditions failed.

Logically speaking, it is expected that the cost of intra-partition scheduling is proportional

to the number of actors in each partition. In other words, if a small number of processors is

considered, the number of actors in one processor is relatively large, so the scheduling cost is

also higher. This expectation corresponds well with the statistics provided on the numbers of

conditions, especially regarding the fraction of checked conditions. In all cases, the RR policy

is characterized with bigger values than the NnP. In some cases the difference is quite large,

for instance, for the mono-core configuration the fraction of failed conditions for RR is almost

3000-times larger than for the NnP. Generalizing the values, it can be concluded that having a

successful firing with the RR requires checking approximately 60% more conditions than for

the case of NnP. Hence, since the performance estimation does not model the intra-partition

scheduling cost, it can be concluded that for the NnP this cost is rather negligible, whereas for

the RR it cannot be considered negligible.

172

10.6. Performance estimation

10.5.3 Discussion

The observations related to the experiments presented in the last Section lead to interesting

consideration of extensions and improvements. Naturally, the first direction might be an

investigation of the opportunities for measuring and modeling the scheduling cost. It must be

noted that this can be performed only as a matter of approximation, since the real cost might

be subject to multiple factors, such as the level of dynamism inside the actors in a certain

partition, their complexity (i .e., the number of input/output conditions) or even their order of

appearance. Nevertheless, the scheduling cost could be modeled as a function of checked/-

failed conditions, where each check/failure is assigned a certain value. Furthermore, since the

results confirm that an appropriate choice of the scheduling policy can provide not negligi-

ble performance improvements, further studies on the development of more sophisticated

scheduling policies seem promising. Minimizing the numbers of conditions checked/failed,

as provided by the estimation, could be taken as an indicative optimization criterion.

On the other hand, as confirmed by the experiments, any scheduling policy is related to two

aspects: the performance gain coming purely from enforcing a certain order of execution

of the firings and the run-time cost of establishing this order. According to the estimation,

regarding the first aspect the N nP policy is actually the worst choice among the described

policies. It is, however, very economical in terms of the number of checked conditions. For this

reason, using the N nP policy for SW implementations is a popular choice. Instead, it would

be worth investigating if the cost of other policies can be reduced by, for instance, identifying

some static regions in the dynamic execution.

10.6 Performance estimation

This Section describes the experiments related to validating the performance estimation (PE)

tool on different platforms. The PE tool is also referred to as the Trace Processor (T P). The

objective of the experiments was the estimation accuracy regarding the correspondence of the

estimated number of clock-cycles and the real number obtained on a platform, as illustrated

in Figure 10.11.

10.6.1 Estimation accuracy on TTA platform

The initial validation targeted a deterministic, predictable and easily measurable platform,

such as T T A. In this case, the test application was the MPEG4-SP Serial decoder. In the

first stage, the number of clock-cycles obtained from the T P was compared with the values

produced by the cycle-accurate multi-core T T A simulator for different numbers of units. As a

starting point, the partitioning configurations generated by the BP algorithm (at one of the

173

Chapter 10. Experimental results

Figure 10.11 – Performance estimation validation - experimental workflow.

development stages) were taken and they can be reasonably considered as configurations of

high-quality. Next, it has been verified, whether a simple modification evaluated by the T P

as good corresponds to a decrease in execution time also on the T T A side. Different types of

moves included: (1) a single move, when only one actor is moved to another unit, (2) a swap,

when two actors from different units are swapped, and (3) multiple moves, when 3 or more

actors are randomly moved to different units. Various moves were performed for 4 and 5 units,

as for these numbers the highest estimation discrepancy was observed. Figure 10.12 presents a

comparison of execution times expressed in clock-cycles for different numbers of units. Then,

Tables 10.28-10.29 focus on the experiments with different types of moves.

-5.25%

-4.04%

-2.80%
-3.74%

-6.62% -3.72%

11.63%
6.66%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 2 3 4 5 6 7 8

Ti
m

e
[c

lk
 /

10
^7

]

Processing units

Platform

Estimation

Figure 10.12 – T T A clock-cycles comparison.

174

10.6. Performance estimation

Configuration TTA [%] TP [%]

single move 1 1 -1
single move 2 8 7
single move 3 -1 -1
swap 1 -4 -3
swap 2 26 31
swap 3 -1 -3
multiple move 1 8 9
multiple move 2 -6 -6
multiple move 3 -9 -12

Table 10.28 – Execution time change vs
the initial configuration (4 units).

Configuration TTA [%] TP [%]

single move 1 0 0
single move 2 6 1
single move 3 2 1
swap 1 6 2
swap 2 7 1
swap 3 1 -1
multiple move 1 25 9
multiple move 2 74 74
multiple move 3 25 15

Table 10.29 – Execution time change vs
the initial configuration (5 units).

Taking into account all analyzed cases, it is observed that the T P corresponds very well to the

T T A simulator. The average difference between the number of cycles obtained for both is only

4.12% and tends to grow slightly for a larger number of units. Nevertheless, both single and

complex moves are evaluated properly by the T P . This phenomenon legitimizes to the use of

performance estimation in the entire process of analyzing dataflow applications, including

the DSE heuristics and bottleneck analysis. Regarding the profiling methodology for T T A,

it must be taken into account that although the used time-stamp operation is minimally

intrusive, it results in the generated code with profiling being constantly ca. 1.5% slower than

the generated code without profiling.

10.6.2 Estimation accuracy on Intel 86x64 platforms

The other set of experiments included benchmarking the applications (JPEG, MPEG4-SP

Serial/Parallel decoder) on Intel platforms. Due to the challenges described in Section 5.3,

the initial step was to validate the T P with a very simple design such as the JPEG decoder

(Fig. 10.13). Secondly, both the MPEG4-SP designs have been tested on two Intel 86x64

machines (M1 and M2, as defined in Section 10.1.4) for partitioning configurations on 1, 2

and 3 cores. For each multi-core execution, 3 partitioning configurations of different quality

were analyzed. The estimated and real execution times along with the estimation error are

presented in Figure 10.14.

In terms of the average absolute error value, the precision decreases along with increasing the

number of cores (4.94% in mono-core, 13.56% for 3 cores). This proportion can be explained

by the neglected communication cost which grows in importance when more cores are used.

Hence, another experiment was to incorporate the communication cost using the modeling ap-

proach and profiling methodology described in Section 5.3.3. The partitioning configurations

with the largest discrepancy (MPEG4-SP Serial, configurations 5-7) have been profiled on both

175

Chapter 10. Experimental results

5.66%

-4.20%
2.56%

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 core 2 cores 3 cores

Ti
m

e
[c

lk
 /

10
^7

]

Configuration

Platform

Estimatio n

Figure 10.13 – JPEG, machine M2 (discrepancy as % value).

-12.06%

6.53%

4.82%

0.32%

22.62%

12.54%

21.77%

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 2 3 4 5 6 7

1 core 2 cores 3 cores

Ti
m

e
[c

lk
 /

10
^7

]

Configuration

Platform

Estimation

(a) MPEG4-SP Serial, machine M1.

1.92%

-0.36%
-8.88%

-15.15%

-6.04%

-1.13%

4.14%

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 2 3 4 5 6 7

1 core 2 cores 3 cores

Ti
m

e
[c

lk
 /

10
^7

]

Configuration

Platform

Estimation

(b) MPEG4-SP Parallel, machine M1.

2.33%

8.38%

9.14%
2.79%

22.91%

23.07%

22.67%

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6 7

1 core 2 cores 3 cores

Ti
m

e
[c

lk
 /

10
^7

]

Configuration

Platform

Estimation

(c) MPEG4-SP Serial, machine M2.

3.39%

-1.19% -1.42%

-7.48%

-10.92%

-2.48%

-12.45%

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7

1 core 2 cores 3 cores

Ti
m

e
[c

lk
 /

10
^7

]

Configuration

Platform

Estimation

(d) MPEG4-SP Parallel, machine M2.

Figure 10.14 – MPEG-4 SP decoder estimation results (discrepancy as % value).

176

10.6. Performance estimation

machines in order to provide the T P with the communication weights. Table 10.30 presents

the improvement in estimation accuracy after applying the communication measures.

Configuration
[%] M1 [%] M2

without with without with
5 22.62 11.38 22.91 7.74
6 12.54 -1.94 23.07 10.48
7 21.77 8.62 22.67 3.34

Table 10.30 – MPEG-4 SP Serial: estimation with the communication cost, discrepancy.

The most important outcome of the experiments is the observation that the estimation ac-

curacy for the Intel platforms (under all the circumstances described in Section 5.3) is only

slightly worse than for the case of T T A. An obvious complication to the model is the com-

munication cost, which does not remain negligible for the estimation accuracy. However, as

demonstrated, the discrepancy resulting from this cost can be remarkably reduced. In fact,

considering it in the estimation demonstrates a large improvement of the accuracy, since the

average absolute error for 3 cores is reduced to 6.72% (vs the previous 13.56%). From the

perspective of design space exploration, the level of estimation accuracy is acceptable if it

allows correct evaluation and comparison of different design points and to perform the moves

in the space. This task has been successfully accomplished for both types of platform.

10.6.3 Estimation accuracy across different platforms

Fig. 10.15 summarizes the estimation accuracy obtained for different platforms. Compared

to the results discussed earlier, apart from the T T A, multiple Intel platforms (in the chart

grouped together as software executions (SW)), an execution on the Xilinx ZC702 platform

(indicated as HW) is also included. The set of tested applications is extended by the HEVC de-

coder. For each test case (platform, application), the estimation discrepancy for the mono-core

configuration (or, respectively, HW) expressed in % is indicated. The partitioning configura-

tions for SW consist of different numbers of machines (cores) and have been established in

order to demonstrate the scalability of each application. The execution times are expressed in

clock-cycles. For HEVC, the input sequence was a full HD BQTerrace test sequence, whereas

for the other applications a QCIF Foreman test sequence was used.

An important improvement compared to the results reported earlier is an implementation of

the outliers filtering (as described in Section 5.3). Thanks to the filtering the results became

more stable and different runs of profiling provided a very close set of weights. Summarizing

the discrepancies, they range from only 0.18% for HW, through 3.5% for T T A, up to 6.2% for

SW. The biggest single discrepancies occur, comprehensibly, for the HEVC. Since it is a complex

design with a very high notion of dynamism in the implementation, the profiling approach

177

Chapter 10. Experimental results

-0
.1

8
%

0
.1

5
%

4
.0

6
%

5
.6

6
%

-2

.0
4

%

-3
.1

5
%

1
.8

0
%

0

5
0

0
0

0
0

0
0

1
0

0
0

00
0

0
0

1
5

0
0

00
0

00

2
0

0
0

00
0

0
0

2
5

0
0

00
0

0
0

3
0

0
0

00
0

0
0

1
2

3
4

1
2

3
4

1
2

3
1

2
3

1
2

3
1

3
5

7

JP
E

G
M

P
E

G
-4 SP

 Serial
M

P
E

G
-4 SP

 P
arallel

JP
E

G
M

P
E

G
-4 SP

 Serial
M

P
E

G
-4 SP

 P
arallel

H
E

V
C

H
W

T
T

A
SW

Time [clk]

P
latfo

rm
E

stim
atio

n

Figure 10.15 – Estimation accuracy: different platforms.

178

10.6. Performance estimation

based on generating an averaged weight for each action might be burdened with a higher

error than for the other cases, since different executions of the same action may be related

to different parts of the code and hence result in different execution times. Alternatively, it

is possible to consider independent weights for each firing, however, due to the size of the

generated ETG it would remarkably increase the estimation time and memory requirements.

Since the approach based on averaging provides enough accuracy to appropriately compare

different design points, it remains preferable.

10.6.4 Discussion

Apart from the sources of discrepancy mentioned earlier, another possible reason for the

sporadic occurrence of peaks in the overall discrepancy might be related to the modeling of

the scheduling. First, for the case of T T A, the cost of intra-actor scheduling is modeled in a

simplified way (as described in Section 5.2). A more accurate model should rather take into

account the actor FSM structure, complexity of each guard, number of input/output ports per

action and priorities. Second, the profiling methodology for none of the platforms contains

the profiling of intra-partition scheduling overhead, which is related to the choices of the

scheduler [237]. This cost is difficult to track, because it may depend on multiple factors, such

as: the number of actors in one partition, the properties of a scheduling policy, the number

of conditions to be checked before an actor is executed, or even the order of appearance of

actors on the list representing each partition. As demonstrated and discussed previously with

the experiments related to scheduling (Section 10.5), using the NnP scheduling policy keeps

this cost at a, generally, negligible level.

Apart from estimation accuracy, an important aspect of a PE methodology is its efficiency

and requirements. Due to the small memory requirements (even for complex applications)

all reported results have been obtained on a standard PC. The estimation forthe MPEG4-SP

designs operating on an input stimulus of 30 frames succeeded in a reasonable time (a couple

of minutes). For JPEG, the estimation time in measured in seconds and for the HEVC operating

on an input stimulus of 10 frames in HD resolution the estimation time is around 15-20

minutes. The T P seems to be promising in terms of future estimation of complex platforms

(i .e., heterogeneous). Increasing the number of elements in the model (i .e., processing units)

does not remarkably increase the estimation time. For instance, the difference in the time

required for estimation of a mono-core platform and a platform with 30 processing units

intended for a software execution is ca. 20%.

179

Chapter 10. Experimental results

10.7 Variable Space Search

The experimental results discussed in this Section aimed at the validation of the concept of

V SS introduced and discussed in Chapter 7. They have been performed using the recent

dataflow implementation of the HEVC decoder, which is constantly under development, also

in terms of performance improvement. In this context, the analysis of the decoder with regards

to its bottlenecks and identification of the most promising directions of improvement is an im-

portant step providing some necessary information to the developers. The experiments were

performed on machine M3, which contains enough cores (2 x 10) not limiting the exploration.

Among the proposed optimization scenarios, the one aimed at throughput optimization (S1)

has been chosen.

10.7.1 Design spaces

The experiments based on the proposed V SS algorithm involved 13 different design spaces

summarized in Table 10.31. The initial space was created according to the basic dataflow

design of the HEVC decoder, as depicted in Figure 10.3b. The transition from one space to

another (according to the order given in the Table) was based on the results of bottlenecks

and impact analysis performed with the performance estimation tool. According to these

results, in each iteration an actor (or a set of actors) was chosen for modifications. The

modifications were possible in two directions. First, the parts of the target actors (i .e., the

most critical actions and/or the ones with the highest impact analysis) were considered

for algorithmic optimizations implying rewriting some parts of the code to make it more

efficient and/or concise. These modifications can potentially improve the performance by

reducing the execution time of a program, but they do not increase the potential parallelism

(according to the definition in Section 4.2.4). Theoretically, as discussed earlier in Section 7.1.3,

these modifications might lead to some new feasible design points and, consecutively, to a

new design space. In practice, they have been verified to bring a negligible improvement of

performance or, in some cases, they were applied only in order to improve the readability of

the code, hence they are not listed as separate spaces.

After applying the modifications of the algorithmic parts of the code, a given actor (or a set of

actors) was considered for a parallelization. This kind of modification implies replacing an

actor with a set of actors so that a given processing part can be portioned among them. As a

result, it is expected that the potential parallelism of a program will increase, which means

that the results of better quality will become achievable. In most cases, such a modification

relied on introducing a component-based implementation, where the processing of Luma (Y)

and Chroma (U, V) components is performed, possibly in parallel, by separate actor instances.

Another option is a pipelined implementation, where different instances of the same actor

exchange some control indexes responsible for distributing different portions of the data

180

10.7. Variable Space Search

among the instances. A pipelined implementation can consist of two or more (multi-stage

implementation) instances of the same actor. A similar concept of portioning the data is

present in the transition from a basic implementation with one Parser to a multi-parser imple-

mentation. Finally, since the considered implementation of HEVC uses the concept of shared

memory, a modification can also rely on implementing certain communication procedures

between the actors as reading/writing of shared memory variables. These modifications lead

to a simplification of communication and a reduction of the number of tokens exchanged

between the actors.

Di description actors
0 basic design 13
1 D0 with component-based implementation of Inter Pre-

diction
15

2 D0 with component-based pipelined implementation of
Inter Prediction

16

3 D0 with component-based multi-stage pipelined imple-
mentation of Inter Prediction

19

4 D3 with multi-parser implementation (2 Parsers) 21
5 D4 with separate processing of U and V component in

Inter Prediction Chroma
22

6 D4 with pipelined implementation of Deblocking Filter
(horizontal/vertical processing)

22

7 D4 with component-based implementation of Deblock-
ing Filter

23

8 D4 with component-based implementation of Sample
Adaptive Offset Filter (SAO)

23

9 D4 with component-based implementation of Intra Pre-
diction

23

10 D4 with component-based implementation of Recon-
struct Coding Unit (Reconstruct CU)

25

11 D4 with shared memory implementation for exchanging
the information about neighboring pixels

21

12 combined changes applied in D9, D10, D11 25

Table 10.31 – HEVC: summary of the considered design spaces.

After performing a transition from one space to another, several performance tests have been

conducted on the target platform. A set of input sequences included: BQTerrace, Kimono

(both in HD resolution), Traffic (crop 4K) and Jockey (full 4K). For each sequence, 4 different

values of the quantization parameter (QP) have been tested: 22, 27, 32, 37. Small values of

QP correspond to a higher image quality at a cost of lower performance. Also, the smaller is

the QP , the more workload during the processing goes through the Parser and less through

181

Chapter 10. Experimental results

the other parts of the decoder. For the performance tests on the platform, the full length

sequences were used (300 frames), whereas for the bottleneck and impact analysis short, 10

frames sequences were used instead. Table 10.32 summarizes the results obtained for each

design space. It contains the following information:

• The potential parallelism (Pot. parall.) obtained for BQTerrace, QP 37;

• The parallelism (Parall.) of the best design points X ∗(Di) obtained for BQTerrace, QP 37;

• The potential parallelism (Pot. parall) obtained for BQTerrace, QP 37;

• The referenced design space (Ref. Di) the performance comparison is done with;

• The maximum improvement of the performance (Max. impr.) obtained for an individual

sequence, compared to the referenced design space;

• The fraction of sequences (Impr.) for which the throughput has been improved, com-

pared to the referenced design space;

• The fraction of sequences (Sim.) for which the throughput was similar (+/- 1%), com-

pared to the referenced design space;

• The fraction of sequences (Decr.) for which the throughput has decreased, compared to

the referenced design space.

Di Pot. parall. Parall. (X ∗(Di)) Ref. Di Max. impr. [%] Impr. [%] Sim. [%] Decr. [%]
D0 2.45 1.64 - - - - -
D1 3.13 1.66 D0 36.37 68.8 12.5 18.75
D2 3.69 1.76 D0 34.71 68.8 12.5 18.75
D3 3.85 2.71 D0 43.35 81.3 6.3 12.5
D4 4.05 2.89 D3 121.88 87.5 6.3 6.3
D5 4.19 2.91 D4 3.04 6.3 12.5 81.3
D6 4.28 3.35 D4 4.3 25.0 56.3 18.8
D7 4.27 3.19 D4 13.12 18.8 31.3 50.0
D8 4.21 2.76 D4 1.91 6.3 6.3 87.5
D9 4.42 2.73 D4 - 0.0 0.0 100.0
D10 4.55 2.92 D4 - 0.0 0.0 100.0
D11 4.21 2.85 D4 3.41 25.0 62.5 12.5
D12 5.34 3.32 D4 17.53 43.75 0.00 56.25

Table 10.32 – HEVC: summary of the improvement achieved in various design spaces.

182

10.7. Variable Space Search

10.7.2 Critical path and impact analysis

As mentioned earlier, the basis for making a transition from one space to another was the

bottleneck and impact analysis performed for the best design point in a given space, obtained

by means of exploration, as well as for the full parallel configuration. The first analysis is

referred to as the scheduled bottleneck (or impact) and the second as the algorithmic bottle-

neck (or impact) analysis. An important choice was to decide on which input sequence the

analysis should be based on. The first demand was to use a real resolution, such as HD or 4K.

Furthermore, as mentioned earlier, low values of QP tend to locate most of the workload in

the process of parsing the data. Hence, no matter which type of analysis is performed (algo-

rithmic/scheduled) and which P,S,B configurations are used, the bottleneck analysis points

to the Parser, hence the actors composing the decoder are not adequately represented in the

analysis. Using low values of QP has also a side effect, because large amounts of high-quality

data must be processed and a single run of performance estimation is very long (few hours).

Furthermore, since they require using generally bigger buffer sizes, the memory requirements

for the bottleneck and impact analysis are very high making it difficult to run multiple analyses

at the same time. For these reasons it is preferable to base the analysis on high values of QPs,

and use the low QPs only occasionally. Finally, as verified experimentally, the high-quality

design points established for the high QPs remain, in general, high-quality also for smaller

QPs, whereas the other way around this property is not preserved.

The other observation is that for the same values of QP , different sequences behave differently.

For instance, finding an appropriate partitioning configuration and/or moving from one space

to another so that the performance is improved is an easy task for some sequences, while for

some others the DSE takes a lot of time and only a slight performance improvement can be

observed. It was decided to focus on the worst case and hence, the BQ Terrace sequence was

chosen as the reference for the analysis.

Tables 10.33-10.45 contain the results of the algorithmic and scheduled bottleneck analysis.

For each design space, the 10 most critical actions are listed, along with the percentage of their

executions which are contained in the C P of the design and the estimated execution time

(EET) (normalized) corresponding to the overall length of the C P for a given design point.

Figures 10.16-10.22 illustrate the chosen results (D0-D4 and D11-D12) of the impact analysis

(both, algorithmic and scheduled) carried out for the considered design spaces. The results for

the design spaces D5-D10 have been skipped in this summary due to their similarity to the

results obtained for the other design spaces. In each case, the 3 most critical actions (according

to the bottleneck analysis) have been analyzed. The analysis used three points, corresponding

to the reduction of the weight of an action by 33, 66 and 100%, respectively. This information

is complementary to that obtained during the bottleneck analysis, because it demonstrates

the actual improvement potential coming from a reduction of the complexity, and hence, the

183

Chapter 10. Experimental results

Algorithmic: EET 1.60
Actor Action CP%

InterPrediction interpolateSamples 38.00
InterPrediction applyWeights 11.35
IntraPrediction computeIntraPu_is4x4 6.98
ReconstructCU getTuIntra_is4x4 6.31
IntraPrediction computeIntraPu_is8x8 6.28
ReconstructCU getTuIntra_isNot4x4 5.04
ReconstructCU sendNeighb_y_is4x4 3.17
IntraPrediction computeIntraPu_is16x16 2.72
ReconstructCU sendNeighb_chr_is4x4 2.31
IntraPrediction computeIntraPu_is32x32 1.93

(a) Algorithmic bottlenecks.

Scheduled: EET 2.45
Actor Action CP%

InterPrediction interpolateSamples 23.40
InterPrediction applyWeights 6.99
IntraPrediction computeIntraPu_is4x4 4.57
ReconstructCU getTuIntra_is4x4 4.13
IntraPrediction computeIntraPu_is8x8 4.11
ReconstructCU getTuIntra_isNot4x4 3.30

Parser read_ResidualCoding. . . 3.24
Parser read_ResidualCoding. . . 2.78
Parser read_ResidualCoding. . . 2.73
Parser read_CodingUnit. . . 2.65

(b) Scheduled bottlenecks.

Table 10.33 – Design space D0.

Algorithmic: EET 1.31
Actor Action CP%

InterPrediction_InterpLuma interpolateSamples 31.64
IntraPrediction computeIntraPu_is4x4 8.86
IntraPrediction computeIntraPu_is8x8 7.98
ReconstructCU getTuIntra_is4x4 7.23

InterPrediction_InterpLuma applyWeights 6.61
ReconstructCU getTuIntra_isNot4x4 5.90
ReconstructCU sendNeighb_y_is4x4 3.88
IntraPrediction computeIntraPu_is16x16 3.76
ReconstructCU sendNeighb_chr_is4x4 2.88
IntraPrediction computeIntraPu_is32x32 2.40

(a) Algorithmic bottlenecks.

Scheduled: EET 2.76
Actor Action CP%

InterPrediction_InterpLuma interpolateSamples 17.11
DBFilter_DeblockFilter filterEdges 5.62

IntraPrediction computeIntraPu_is4x4 3.96
IntraPrediction computeIntraPu_is8x8 3.49

InterPrediction_InterpLuma applyWeights 3.36
SAO getSaoMerge_merge 3.33

Parser read_ResidualCoding. . . 3.07
ReconstructCU getTuIntra_is4x4 3.00
ReconstructCU getTuIntra_isNot4x4 2.90

Parser read_ResidualCoding. . . 2.53

(b) Scheduled bottlenecks.

Table 10.34 – Design space D1.

Algorithmic: EET 1.13
Actor Action CP%

IntraPrediction computeIntraPu_is4x4 10.64
ReconstructCU getTuIntra_is4x4 9.51
IntraPrediction computeIntraPu_is8x8 9.46

InterPrediction_InterpChroma interpolateSamples 9.44
ReconstructCU getTuIntra_isNot4x4 7.03

SAO getSaoMerge_merge 6.41
DBFilter_DeblockFilter filterEdges 4.82

ReconstructCU sendNeighb_y_is4x4 4.52
IntraPrediction computeIntraPu_is16x16 4.13

InterPrediction_InterpChroma applyWeights 3.83

(a) Algorithmic bottlenecks.

Scheduled: EET 2.82
Actor Action CP%

InterPrediction_InterpLuma_1_0_0 interpolateSamples 10.02
DBFilter_DeblockFilter filterEdges 6.58

SAO getSaoMerge_merge 4.42
IntraPrediction computeIntraPu_is4x4 4.13
IntraPrediction computeIntraPu_is8x8 3.58

Parser read_ResidualCoding. . . 3.36
ReconstructCU getTuIntra_is4x4 3.16

Parser read_ResidualCoding. . . 3.12
ReconstructCU getTuIntra_isNot4x4 3.08

Parser read_CodingUnit. . . 2.64

(b) Scheduled bottlenecks.

Table 10.35 – Design space D2.

184

10.7. Variable Space Search

Algorithmic: EET 1.12
Actor Action CP%

IntraPrediction computeIntraPu_is4x4 10.41
IntraPrediction computeIntraPu_is8x8 9.66
ReconstructCU getTuIntra_is4x4 9.23

InterPrediction_InterpChroma interpolateSamples 9.09
ReconstructCU getTuIntra_isNot4x4 7.09

SAO getSaoMerge_merge 6.32
DBFilter_DeblockFilter filterEdges 4.79

ReconstructCU sendNeighb_y_is4x4 4.71
IntraPrediction computeIntraPu_is16x16 3.95

InterPrediction_InterpChroma applyWeights 3.76

(a) Algorithmic bottlenecks.

Scheduled: EET 1.89
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 11.85
DBFilter_DeblockFilter filterEdges 8.37

IntraPrediction computeIntraPu_is4x4 6.14
SAO getSaoMerge_merge 6.01

ReconstructCU getTuIntra_is4x4 5.60
IntraPrediction computeIntraPu_is8x8 5.34
ReconstructCU getTuIntra_isNot4x4 4.73

InterPrediction_InterpChroma applyWeights 4.61
DecodingPictureBuffer getMvInfo_launch 3.44
DBFilter_DeblockFilter getCuPix_launch. . . 3.04

(b) Scheduled bottlenecks.

Table 10.36 – Design space D3.

Algorithmic: EET 1.16
Actor Action CP%

InterPrediction_Interp_1_0_0 interpolateSamples 12.65
IntraPrediction computeIntraPu_is4x4 11.31
ReconstructCU getTuIntra_is4x4 9.60
IntraPrediction computeIntraPu_is8x8 9.28
ReconstructCU getTuIntra_isNot4x4 6.99

SAO getSaoMerge_merge 6.26
DBFilter_DeblockFilter filterEdges 4.69

ReconstructCU sendNeighb_y_is4x4 4.66
IntraPrediction computeIntraPu_is16x16 4.23
ReconstructCU sendNeighb_chr_is4x4 3.2

(a) Algorithmic bottlenecks.

Scheduled: EET 1.84
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 12.02
DBFilter_DeblockFilter filterEdges 8.53

IntraPrediction computeIntraPu_is4x4 6.53
SAO getSaoMerge_merge 6.52

IntraPrediction computeIntraPu_is8x8 5.56
ReconstructCU getTuIntra_is4x4 5.37
ReconstructCU getTuIntra_isNot4x4 4.81

InterPrediction_InterpChroma applyWeights 4.81
DecodingPictureBuffer getMvInfo_launch 3.03

ReconstructCU sendNeighb_y_is4x4 3.02

(b) Scheduled bottlenecks.

Table 10.37 – Design space D4.

Algorithmic: EET 1.13
Actor Action CP%

InterPrediction_Interp_1_0_0 interpolateSamples 13.04
IntraPrediction computeIntraPu_is4x4 10.60
IntraPrediction computeIntraPu_is8x8 9.74
ReconstructCU getTuIntra_is4x4 8.63
ReconstructCU getTuIntra_isNot4x4 7.05

SAO getSaoMerge_merge 6.41
ReconstructCU sendNeighb_y_is4x4 4.79

DBFilter_DeblockFilter filterEdges 4.70
IntraPrediction computeIntraPu_is16x16 4.27
ReconstructCU sendNeighb_chr_is4x4 3.29

(a) Algorithmic bottlenecks.

Scheduled: EET 1.84
Actor Action CP%

InterPrediction_Interp_1_0_0 interpolateSamples 8.22
DBFilter_DeblockFilter filterEdges 6.41

IntraPrediction computeIntraPu_is4x4 5.82
IntraPrediction computeIntraPu_is8x8 5.22

SAO getSaoMerge_merge 4.60
ReconstructCU getTuIntra_is4x4 4.37
ReconstructCU getTuIntra_isNot4x4 4.08
ReconstructCU sendNeighb_y_is4x4 3.11

InterPrediction_InterpChromaU interpolateSamples 3.00
ReconstructCU sendNeighb_chr_is4x4 2.47

(b) Scheduled bottlenecks.

Table 10.38 – Design space D5.

185

Chapter 10. Experimental results

Algorithmic: EET 1.11
Actor Action CP%

InterPrediction_Interp_1_0_0 interpolateSamples 19.60
IntraPrediction computeIntraPu_is4x4 11.00
IntraPrediction computeIntraPu_is8x8 9.55
ReconstructCU getTuIntra_is4x4 8.93
ReconstructCU getTuIntra_isNot4x4 7.26

SAO getSaoMerge_merge 6.45
ReconstructCU sendNeighb_y_is4x4 4.91
IntraPrediction computeIntraPu_is16x16 3.87
ReconstructCU sendNeighb_chr_is4x4 3.26
IntraPrediction computeIntraPu_is32x32 2.62

(a) Algorithmic bottlenecks.

Scheduled: EET 1.63
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 13.70
IntraPrediction computeIntraPu_is4x4 7.06
IntraPrediction computeIntraPu_is8x8 6.36
ReconstructCU getTuIntra_is4x4 5.65

InterPrediction_InterpChroma applyWeights 5.46
ReconstructCU getTuIntra_isNot4x4 5.4

SAO getSaoMerge_merge 5.13
ReconstructCU sendNeighb_y_is4x4 3.44

DBFilter_DeblockFilterVert filterEdges 3.06
ReconstructCU sendNeighb_chr_is4x4 2.76

(b) Scheduled bottlenecks.

Table 10.39 – Design space D6.

Algorithmic: EET 1.16
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 11.50
IntraPrediction computeIntraPu_is4x4 11.39
IntraPrediction computeIntraPu_is8x8 9.85
ReconstructCU getTuIntra_is4x4 8.67
ReconstructCU getTuIntra_isNot4x4 7.02

SAO getSaoMerge_merge 6.25
ReconstructCU sendNeighb_y_is4x4 4.90

InterPrediction_InterpChroma applyWeights 4.63
IntraPrediction computeIntraPu_is16x16 4.29
ReconstructCU sendNeighb_chr_is4x4 3.45

(a) Algorithmic bottlenecks.

Scheduled: EET 1.78
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 12.60
IntraPrediction computeIntraPu_is4x4 6.36
IntraPrediction computeIntraPu_is8x8 5.83

DBFilter_DeblockFilterChroma filterEdges 5.71
ReconstructCU getTuIntra_isNot4x4 5.08
ReconstructCU getTuIntra_is4x4 5.07

InterPrediction_InterpChroma applyWeights 5.03
SAO getSaoMerge_merge 4.98

DecodingPictureBuffer getMvInfo_launch 3.15
ReconstructCU sendNeighb_y_is4x4 3.13

(b) Scheduled bottlenecks.

Table 10.40 – Design space D7.

Algorithmic: EET 1.15
Actor Action CP%

IntraPrediction computeIntraPu_is4x4 11.19
IntraPrediction computeIntraPu_is8x8 9.45
ReconstructCU getTuIntra_is4x4 9.25

InterPrediction_InterpChroma interpolateSamples 9.18
ReconstructCU getTuIntra_isNot4x4 6.75

SAO getSaoMerge_merge 6.17
ReconstructCU sendNeighb_y_is4x4 4.75

DBFilter_DeblockFilter filterEdges 4.58
IntraPrediction computeIntraPu_is16x16 4.16

InterPrediction_InterpChroma applyWeights 3.65

(a) Algorithmic bottlenecks.

Scheduled: EET 1.97
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 11.49
IntraPrediction computeIntraPu_is4x4 5.73
IntraPrediction computeIntraPu_is8x8 4.83

DBFilter_DeblockFilter filterEdges 4.52
InterPrediction_InterpChroma applyWeights 4.43

SAO_Luma getSaoMerge_merge 4.26
ReconstructCU getTuIntra_is4x4 4.24
ReconstructCU getTuIntra_isNot4x4 3.68

InterPrediction_Interp_1_0_0 interpolateSamples 3.39
ReconstructCU sendNeighb_y_is4x4 2.80

(b) Scheduled bottlenecks.

Table 10.41 – Design space D8.

186

10.7. Variable Space Search

Algorithmic: EET 1.12
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 10.97
IntraPrediction_IntraPredLuma computeIntraPu_is4x4 10.57

ReconstructCU getTuIntra_is4x4 10.18
ReconstructCU getTuIntra_isNot4x4 7.49

IntraPrediction_IntraPredChroma computeIntraPu_is8x8 7.04
DBFilter_DeblockFilter filterEdges 6.95

ReconstructCU sendNeighb_y_is4x4 5.62
InterPrediction_InterpChroma applyWeights 4.54

ReconstructCU sendNeighb_chr_is4x4 3.31
ReconstructCU sendNeighb_y_is8x8 2.82

(a) Algorithmic bottlenecks.

Scheduled: EET 2.09
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 10.64
DBFilter_DeblockFilter filterEdges 7.66

DBFilter_GenerateBs getSplitTrafo. . . 5.3
ReconstructCU getTuIntra_is4x4 5.14
ReconstructCU getTuIntra_isNot4x4 4.79

SAO getSaoMerge_merge 4.48
InterPrediction_InterpChroma applyWeights 4.41
IntraPrediction_IntraPredLuma computeIntraPu_is4x4 3.51

ReconstructCU sendNeighb_y_is4x4 2.75
IntraPrediction_MergeProcessDone untagged_0 2.65

(b) Scheduled bottlenecks.

Table 10.42 – Design space D9.

Algorithmic: EET 1.11
Actor Action CP%

IntraPrediction computeIntraPu_is4x4 12.20
IntraPrediction computeIntraPu_is8x8 10.67

InterPrediction_InterpChroma interpolateSamples 9.33
ReconstructCU_Luma getTuIntra_is4x4 8.84
ReconstructCU_Luma getTuIntra_isNot4x4 7.10

SAO getSaoMerge_merge 6.55
ReconstructCU_Luma sendNeighb_y_is4x4 6.12
DBFilter_DeblockFilter filterEdges 4.73

IntraPrediction computeIntraPu_is16x16 4.45
InterPrediction_InterpChroma applyWeights 3.76

(a) Algorithmic bottlenecks.

Scheduled: EET 2.13
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 6.44
DBFilter_GenerateBs getSplitTrafo. . . 5.46

DBFilter_DeblockFilter filterEdges 5.41
IntraPrediction computeIntraPu_is4x4 5.23
IntraPrediction computeIntraPu_is8x8 4.86

SAO getSaoMerge_merge 4.67
InterPrediction_Interp_1_0_0 interpolateSamples 4.55

ReconstructCU_Luma getTuIntra_is4x4 4.42
ReconstructCU_Luma getTuIntra_isNot4x4 4.35
ReconstructCU_Luma sendNeighb_chr_is4x4 3.21

(b) Scheduled bottlenecks.

Table 10.43 – Design space D10.

Algorithmic: EET 1.11
Actor Action CP%

IntraPrediction computeIntraPu 27.39
DBFilter_DeblockFilter filterEdges 11.94

ReconstructCU getTuIntra_is4x4 9.93
InterPrediction_InterpChroma interpolateSamples 9.44

ReconstructCU sendNeighb 8.45
ReconstructCU getTuIntra_isNot4x4 7.49

InterPrediction_InterpChroma applyWeights 4.02
DBFilter_DeblockFilter getCuPix. . . 3.13

Source sendData_launch 2.06
ReconstructCU getSplitTrafo. . . 1.45

(a) Algorithmic bottlenecks.

Scheduled: EET 1.87
Actor Action CP%

IntraPrediction computeIntraPu 14.47
DBFilter_DeblockFilter filterEdges 11.98

InterPrediction_InterpChroma interpolateSamples 8.94
ReconstructCU sendNeighb 4.89
ReconstructCU getTuIntra_is4x4 4.22

InterPrediction_InterpChroma applyWeights 3.89
ReconstructCU getTuIntra_isNot4x4 3.68

InterPrediction_Interp_1_0_0 interpolateSamples 3.68
Source sendData_launch 3.09

DBFilter_DeblockFilter getCuPix. . . 2.41

(b) Scheduled bottlenecks.

Table 10.44 – Design space D11.

187

Chapter 10. Experimental results

Algorithmic: EET 0.98
Actor Action CP%

IntraPrediction_IntraPredLuma computeIntraPu 23.93
InterPrediction_InterpChroma interpolateSamples 11.12

ReconstructCU_Luma getTuIntra_is4x4 11.08
ReconstructCU_Luma getTuIntra_isNot4x4 8.48

SAO getSaoMerge_merge 7.42
ReconstructCU_Luma sendNeighb 6.22
DBFilter_DeblockFilter filterEdges 5.33

InterPrediction_InterpChroma applyWeights 4.89
Source sendData_launch 2.51

DBFilter_DeblockFilter getCuPix. . . 1.93

(a) Algorithmic bottlenecks.

Scheduled: EET 1.82
Actor Action CP%

InterPrediction_InterpChroma interpolateSamples 11.43
IntraPrediction_IntraPredLuma computeIntraPu 10.49

ReconstructCU_Luma getTuIntra_isNot4x4 5.83
ReconstructCU_Luma getTuIntra_is4x4 5.38

InterPrediction_InterpChroma applyWeights 4.86
SAO getSaoMerge_merge 4.85

DBFilter_DeblockFilter filterEdges 3.90
ReconstructCU_Luma sendNeighb 3.37

TwoParsers_P0 read_ResidualCoding. . . 2.41
TwoParsers_P0 read_nal_launch 2.18

(b) Scheduled bottlenecks.

Table 10.45 – Design space D12.

weight of an action. In some cases, the action which appears to be the most critical according

to the bottlenecks, is not the one that offers the biggest improvement potential.

0

5

10

15

20

25

30

35

40

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

IntraPrediction:computeIntraPu_
is4x4

InterPrediciton:applyWeights

InterPrediction:
interpolateSamples

(a) Algorithmic impact analysis.

0

2

4

6

8

10

12

14

16

18

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction:interpolateSamples

InterPrediciton:applyWeights

IntraPrediction:computeIntraPu_
is4x4

(b) Scheduled impact analysis.

Figure 10.16 – Design space D0.

10.7.3 Solutions in multiple spaces

The results presented in this Section aim at summarizing the overall improvement achieved

during the V SS. The first set of charts (Figures 10.23a-10.24b) demonstrates the throughput

for different design points established during the exploration in each space. Each chart targets

a different quality point, dependending on the QP .

The second set of Figures (Fig. 10.25a-10.25b) locates the best design point from each space in

a 3-dimensional space consisting of the throughput (expressed in FPS), the total buffer size

Btot al (expressed in tokens) and the number of machines mX . These dimensions correspond

to the criteria used by the optimization scenarios described in Section 7.6. The Figures have

been generated for a representative fraction among the considered input sequences. The

188

10.7. Variable Space Search

0

2

4

6

8

10

12

14

16

18

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpLuma:inter
polateSamples

IntraPrediction:computeIntraPu_
is4x4

IntraPrediction:computeIntraPu_
is8x8

(a) Algorithmic impact analysis.

0

2

4

6

8

10

12

14

16

18

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpLuma:
inter polateSamples

DBFilter_DeblockFilter:filterEdge s

IntraPrediction:computeIntraPu_
is4x4

(b) Scheduled impact analysis.

Figure 10.17 – Design space D1.

0

2

4

6

8

10

12

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

IntraPrediction:computeIntraPu_
is4x4

ReconstructCU:getTuIntra_is4x4

IntraPrediction:computeIntraPu_
is8x8

(a) Algorithmic impact analysis.

0

1

2

3

4

5

6

7

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpLuma_1_0

_0:interpolateSamples

DBFilter_DeblockFilter:filterEdges

SAO:getSaoMerge_merge

(b) Scheduled impact analysis.

Figure 10.18 – Design space D2.

0

2

4

6

8

10

12

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

IntraPrediction:computeIntraPu_
is4x4

IntraPrediction:computeIntraPu_
is8x8

ReconstructCU:getTuIntra_is4x4

(a) Algorithmic impact analysis.

0

2

4

6

8

10

12

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpChroma:
in terpolateSamples

DBFilter_DeblockFilter:filterEdge s

IntraPrediction:computeIntraPu_
is4x4

(b) Scheduled impact analysis.

Figure 10.19 – Design space D3.

189

Chapter 10. Experimental results

0

2

4

6

8

10

12

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpLuma_1_0

_0:interpolateSamples

IntraPrediction:computeIntraPu_
is8x8

ReconstructCU:getTuIntra_is4x4

(a) Algorithmic impact analysis.

0

2

4

6

8

10

12

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpChroma:in
terpolateSamples

DBFilter_DeblockFilter:filterEdge s

IntraPrediction:computeIntraPu_
is4x4

(b) Scheduled impact analysis.

Figure 10.20 – Design space D4.

0

5

10

15

20

25

30

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

IntraPrediction:computeIntraPu

DBFilter_DeblockFilter:filterEdges

ReconstructCU:getTuIntra_is4x4

(a) Algorithmic impact analysis.

0

2

4

6

8

10

12

14

16

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

IntraPrediction:computeIntraPu

DBFilter_DeblockFilter:filterEdges

InterPrediction_InterpChroma:int
erpolateSamples

(b) Scheduled impact analysis.

Figure 10.21 – Design space D11.

0

2

4

6

8

10

12

14

16

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

IntraPrediction_IntraPredLuma:
computeIntraPu

InterPrediction_InterpChroma:in
terpolateSamples

ReconstructCU_Luma:getTuIntra
_is4x 4

(a) Algorithmic impact analysis.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

33 67 100

E
E

T
 r

ed
u

ct
io

n
 [%

]

Weight reduction [%]

InterPrediction_InterpChroma:in
terpolateSamples

IntraPrediction_IntraPredLuma:c
omputeIntraPu

ReconstructCU_Luma:getTuIntra
_is4x 4

(b) Scheduled impact analysis.

Figure 10.22 – Design space D12.

190

10.7. Variable Space Search

experimental cases (i .e., the sequence-QP combinations) have been chosen according to the

location of the design points allowing a visual evaluation in a 3-dimensional space.

10.7.4 Discussion

The analysis of the initial design space D0 indicates clearly the most critical part of the decoder.

The interpolate Samples action inside the Inter Prediction clearly standouts from the other

actions in terms of the percentage of the C P it takes. Moreover, the second most critical

action apply Weights also belongs to the same actor. Hence, a parallelization of this actor

is responsible for a transition to the next design space D1. Then, it can be observed that

the EET for the algorithmic bottlenecks is reduced (potential parallelism has increased, as

indicated earlier in Table 10.32), however, the same actions responsible for the processing of

the Luma part still appear quite high on the list of most critical parts, for both, algorithmic and

bottleneck analysis. Hence, further parallelization is applied, leading to design spaces D2 and

D3. It can be observed that during this process the criticality of the parts related to the Luma

processing within Inter Prediction decreases and, eventually, it is the Chroma part that starts

to appear among the most critical parts instead. The potential parallelism, the parallelism of

the X ∗(Di) and the values of EET for both types of analysis generally keep improving until

this point.

As mentioned earlier, for the case of low QPs, the bottleneck analysis points only to the Parser.

Considering this property, as well as the fact that in some design spaces even for a high QP the

Parser appears among the most critical parts, a transition from D3 to D4 has been obtained

by applying a multi-parser configuration, i .e., with two instances of the Parser capable of

processing the data in parallel. This transition brings some improvement for high QPs and a

remarkable improvement (up to 121.88%) for low QPs. Considering the algorithmic bottleneck

analysis performed in these 2 cases for BQ Terrace and QP 22, the potential parallelism grows

from 2.41 to 4.71, which fully corresponds to the results obtained on the platform.

Analyzing the design space D4, the algorithmic and scheduled bottleneck analysis point to

slightly different parts of the decoder. It is preferable to rely more on the scheduled analysis,

since it corresponds to the configuration leading to the best throughput really achieved on

the platform. Hence the next candidates for parallelization are: Inter Prediction Chroma,

Deblocking Filter and SAO. The parallelization of these actors (design spaces D5-D8) is char-

acterized by three properties: (1) it does not completely eliminate the actor/action from the

list of most critical parts, because a component (i .e., Luma) always remains one of the most

critical parts, (2) it does not provide any remarkable reduction of the EET , (3) in terms of a

real execution platform, it brings improvement only for some input sequences, being rather a

minority among the tested fraction.

191

Chapter 10. Experimental results

50

70

90

110

130

150

170

190

210

230

250

0 1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

gh
pu

t [
FP

S]

Design space [No]

BQ Terrace

Kimono

Traffic

Jockey

(a) QP37.

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

gh
pu

t [
FP

S]

Design space [No]

BQ Terrace

Kimono

Traffic

Jockey

(b) QP32.

Figure 10.23 – Throughput improvement summary (1).

192

10.7. Variable Space Search

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

gh
pu

t [
FP

S]

Design space [No]

BQ Terrace

Kimono

Traffic

Jockey

(a) QP27.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

gh
pu

t [
FP

S]

Design space [No]

BQ Terrace

Kimono

Traffic

Jockey

(b) QP22.

Figure 10.24 – Throughput improvement summary (2).

193

Chapter 10. Experimental results

0
1

2
3

4

x 10
7

5

6

7

8
20

25

30

35

40

45

50

55

Total buffer size [tokens]

1
0

3

8
411

2

12
7
6

9

5

Number of machines

10

T
h
ro
u
g
h
p
u
t
[F
P
S
]

(a) BQTerrace QP22.

0
1

2
3

4

x 10
7

5

6

7

8
52

54

56

58

60

62

64

Total buffer size [tokens]

0

7

3

2

1

9
5

6

8

4
11

12

10

Number of machines

T
h
ro
u
g
h
p
u
t
[F
P
S
]

(b) Traffic QP27.

Figure 10.25 – Throughput and resources in different design spaces: summary (1).

194

10.7. Variable Space Search

0.5

1

1.5

2

x 10
7

6

7

8
50

55

60

65

70

75

Total buffer size [tokens

0

3

2

1

5

6

8
411

Number of machines

12

9

10

7

T
h
ro
u
g
h
p
u
t
[F
P
S
]

(a) Jockey QP32.

0.5

1

1.5

2

x 10
7

5

6

7

8
140

160

180

200

220

240

260

Total buffer size [tokens]

1

0

5

8

3

411

2

12

9

10

7
6

Number of machines

T
h
ro
u
g
h
p
u
t
[F
P
S
]

(b) Kimono QP37.

Figure 10.26 – Throughput and resources in different design spaces: summary (2).

195

Chapter 10. Experimental results

Summarizing the results for design spaces D5-D8, the next candidates are the Intra Prediction

and Reconstruct CU, leading to design spaces D9 and D10. Unlike for the previous case, in this

design space a remarkable decrease of the throughput occurs for all considered sequences.

This is quite surprising, since the actions belonging to these actors appear quite high on the

list of most critical actions starting already from the initial design space. A deep analysis of the

structure of these two actors supported by profiling (i .e., using the numap library) leads to an

explanation of this behavior. These two actors and, in particular, the involved actions exchange

many tokens with each other. Hence, as long as these two actors are partitioned together in

one processing unit, the communication cost is kept much lower than for the case when they

are separated. Since parallelization always implies partitioning the parallelized components

on different processing units, it leads to a remarkable increase of the communication cost

which apparently outstrips any potential gain coming from the parallelization itself.

This analysis leads to yet another design space D11, where the parts identified to be responsible

for the high communication cost are implemented using the concept of shared-memory. In

this case, the time required for making a copy of the data in order to transfer it as tokens is

eliminated, because it is immediately available as shared-memory variables. This design space

seems to be comparable to its original predecessor (D4), with some slight improvement for

many sequences. Finally, the last design space D12 comprising the modifications attempted in

the design spaces D9, D10 and D11 remarkably improves the value of potential parallelism to

the value of 5.34 (compared to the initial 2.45 and 4.05 for D4). Although the parts responsible

for the processing of the Luma component remain among the most critical actions, they lead

to the workload in C P which is much better distributed among different parts of the decoder.

Studying the impact data for the initial design spaces (i .e., D0, D1, . . .), it can be stated that

the results of the impact analysis fully correspond to those observed in the bottleneck analysis.

The parallelization of Inter Prediction offers the greatest improvement potential and this is

verified by the execution in the platform. However, later on, the improvement coming from

further parallelization of Inter Prediction is very small. In fact, as it can be observed first in

Fig. 10.18b and then in Fig. 10.20a, a saturation of the improvement occurs, which diverts the

next transitions to the new spaces to other parts of the decoder. Along the design spaces, the

modifications of compute Intra Pu in the Intra Prediction remain the most promising direction

for optimizations. Nevertheless, for the design space with the best potential parallelism (D12),

the scheduled impact analysis also points to a quick saturation of the improvement for this

particular action.

As discussed earlier in Section 7.4, the main indication about the quality of the design space is

the quality of its best design point. This criterion is considered here during the evaluation of the

different spaces. In general, the transitions between D0 and D4 lead to visible improvements of

the throughput for all or almost all sequences. Between D5 and D8 some small improvements

196

10.8. Conclusions

appear occasionally, however in most cases the performance is slightly worsened. In design

spaces D9 and D10 the throughput is remarkably decreased in all the cases. Design space

D11 provides similar, or slightly better results. Finally, for the case of design space D12 the

evaluation fully depends on the considered sequence and the value of QP , and may result in

a decrease of performance, a similar performance, as well as a remarkable improvement of

performance in some cases. Comparing different charts it is observed that whereas QPs of 37,

32 and 27 represent a generally similar shape, the chart for QP 22 is completely different. This

is consistent with the earlier observation that high-quality design points obtained for this QP

do not result in high-quality points for the other values, unlike the other way around.

Analyzing the location of different X ∗(Di)′s regarding the possible optimization criteria, notice

that, in general, obtaining higher throughputs implies also increasing the resources in terms

of the number of machines and the Btot al . In fact, approximating the "path" arising between

the points coming from different design spaces a quasi-monotonic curve is obtained in each

case. Exceptions (if any) can be interpreted as a low-quality design space, where the increased

resources do not correspond to an improvement of the throughput. This relationship between

the improvement of the throughput and the increase of the resources can be intuitively

explained. Nevertheless, it must be emphasized that finding the aforementioned "path"

between different X ∗(Di)′s is a difficult task, infeasible without the support of tools, such as

DSE heuristics, performance estimation and bottleneck analysis. Moreover, attempting to

perform the same without such support, can easily lead to design spaces, where the X ∗(Di)

makes very high resource demands that do not necessarily translate into a performance

improvement.

10.8 Conclusions

The results described in this Chapter provided a solid verification of the methodologies in-

troduced in this Thesis. The applications chosen for the experiments ranged from a simple

design, where the exploration is manageable manually (JPEG decoder), up to a complex design

resembling state-of-the art of video decoding (HEVC decoder). The latter is characterized

by a high level of dynamism and strong dependence on the used input sequence, hence, it

shows the properties typical for DDF , which are the target MoC s for this work. Different

platforms used in the experiments encompass architectures that can be translated into a

simple highly-accurate model or a more complex and less accurate model.

The first part of the experiments considered a thorough verification of the proposed partition-

ing heuristics. For different algorithms it has been observed how they approach the potential

parallelism of the considered design or outperform state-of-the-art dataflow partitioning

methodologies. The more complex heuristics (i .e., based on local search or tabu search)

lead to better solutions than the simpler greedy heuristics, but quite naturally, require more

197

Chapter 10. Experimental results

operating time. The best quality solutions were obtained with the most advanced heuristic

combining different variants of tabu search.

In the second part, the buffer dimensioning heuristics were verified to successfully establish

a trade-off between the program throughput and the total buffer size corresponding to the

used resources. The heuristics provided an entire curve of solutions that can be chosen

according to the used optimization scenario. An important part of the experiments related to

the buffer dimensioning was to compare the results obtained with the proposed heuristics

with an approximation of an infinite buffer size. The solutions eventually converge to the ones

obtained for an infinite buffer, but with the buffer sizes smaller by orders of magnitude. Finally,

the experiments in this part have put in evidence the importance of a multidimensional

exploration, since they demonstrated that narrowing the other dimensions prevents the

discovery of high-quality solutions.

Next, experiments with different scheduling policies illustrated that different orders of execu-

tion of the firings lead to very different execution times. The estimated differences translate

also to an improvement on a platform, but identify another property of the scheduling prob-

lem, which is the run-time cost of establishing the schedule.

All of the heuristics relied on the rich performance metrics carried by an execution trace. These

metrics were tracked and extracted by means of performance estimation. The performance

estimation SW tool was experimentally verified to provide a very high accuracy of the estima-

tion that allowed correct evaluation of the moves in the space for the considered platforms,

independently from their complexity. Furthermore, the performance estimation illustrated

that a single model of execution, when provided with appropriate timing information can be

successfully used on different types of platforms.

The experiments related to the V SS methodology have comprised all partial results discussed

in the preceding Sections, because different stages of the methodology consisted of DSE ,

performance estimation and bottleneck analysis implemented on top of it. Using a com-

plex design case, the experiments illustrated how the methodology leads a dataflow designer

through different stages of the design flow and provides refactoring directions enabling discov-

ery of the most promising design space, corresponding to a specific implementation variant of

the design. It must be emphasized, that the programming effort required in the methodology

is reduced to a minimum, since refactoring of an application in terms of code modifications is

required only after exploring the available configurations. Furthermore, it is clearly indicated

which parts of the code should be considered for modification.

198

11 Conclusions

This Thesis provides a systematic methodology for design space exploration of dynamic

dataflow programs. It introduces a novel formulation of the problem, not presented in the liter-

ature so far, which considers a fully dynamic execution of a program and allows an exploration

of different design alternatives. Furthermore, the formulation can be easily referred to different

types of architecture with regard to the architecture-specific constraints and properties. A

detailed execution model required to explore the design space according to the formulation

is provided as an ETG supplied with accurate timing information. The formulation and the

execution model are a base for the set of tools corresponding to different stages of the sys-

tem development design flow. Unlike many state-of-the-art methodologies, the flow avoids

designing application-specific architectures at a detailed level and hence offers much wider

exploration opportunities of different design points. This approach favors defining and finding

trade-offs between the performance, resource utilization and programmability, increasing the

efficiency of a program and fully exploiting its portability.

The tools form a complete methodology supporting the designer in the process of application

development. Hence, an important aspect are the DSE heuristics that allow finding high-

quality configurations of the program without requiring any piece of code to be modified. If

the current design does not allow finding the points satisfying the design constraints (i .e., in

terms of performance), a set of analyses clearly identifies the parts of the code that should be

subject to some programming effort in order to improve the value(s) of the assumed objective

function(s). Both tasks, that is, DSE and bottleneck identification are accomplished by a

highly-accurate performance estimation that makes it possible to evaluate different design

variants and configurations without having to execute them on a physical platform. The

methodology leads to results which, due to the complexity and the level of dynamism inside

the applications, are not possible to obtain manually without appropriate support.

199

Chapter 11. Conclusions

11.1 Achievements of the Thesis

The contributions of this Thesis start from the aforementioned formulation of the design space

exploration problem. This formulation acts as a base for all steps. They include: modeling

of a dynamic execution as an execution trace graph, timing it according to the considered

platform, design space exploration in terms of partitioning, buffer dimensioning and schedul-

ing, performance estimation and a formalization of the Variable Space Search methodology

comprising all previous steps in order to efficiently and systematically analyze and improve

dynamic dataflow programs.

Rigorous design space exploration problem formulation

A novel formulation of the design space exploration problem in terms of partitioning, schedul-

ing and buffer dimensioning has been provided. The formulation operates at the level of

action firings (considered as jobs), which is appropriate to describe fully dynamic applications.

It handles the dependence of different subproblems on each other and does not impose any

specific order in which the solutions to these problems should be provided. Hence, it does

not limit the exploration procedure. The formulation considers the dynamic execution of a

program without narrowing to static or quasi-static dataflow MoC s, as often happens in the

literature.

Furthermore, the formulation has been also referred to two different types of platforms: ho-

mogeneous and heterogeneous. Each type implies a more precise specification of some of the

constraints (i .e., in terms of the cost related to the communication) and/or introduces addi-

tional constraints impacting the problem to be solved. Apart from providing a formulation in

terms of decision variables, objective functions and constraints, a set of examples has demon-

strated the size and the complexity of the problem which make it manually unmanageable.

Definition of an accurate dynamic dataflow program execution model for DSE

An execution trace graph (ETG) has been used as a basic abstract model of a dynamic exe-

cution. It is detailed enough to provide the necessary information for the DSE problem as it

has been formulated. Translating an abstract execution model into a real execution on a phys-

ical platform requires providing it with appropriate timing information obtained by means

of profiling. It has been demonstrated and experimentally verified that using the profiling

tools available for different platforms it is possible to extract such timing information which

is accurate enough to provide rich performance metrics for the purpose of DSE . Such an

approach keeps the application and architecture models separated because a single ETG can

be used for analysis purposes on different platforms, for which models of different accuracy

200

11.1. Achievements of the Thesis

can be constructed.

Efficient DSE heuristics

In order to make the exploration process effective, efficient and automated, several heuris-

tics have been provided. Each of them targets one of the subproblems of the DSE , that is

partitioning, buffer dimensioning or scheduling.

• For the case of partitioning, the heuristics can be ordered according to the complexity

as: greedy constructive heuristics, descent local search, tabu search and advanced tabu

search extended with a probabilistic approach and/or an iterative re-profiling procedure

responding to the demands of NU M A platforms. Experimental results have verified

that the more complex is the heuristic, the better results it provides, but in a longer time.

The performances of the applications under analysis have been improved in terms of

the approach to their potential parallelism in a fully automated way and without making

any modifications to the algorithmic part;

• The buffer dimensioning heuristics are, to the best of the author’s knowledge, the first

heuristics targeting the problem of buffer dimensioning for the purpose of throughput

improvement with regards to the applied partitioning and scheduling configurations.

The two general approaches, bottom-up and top-down have been introduced. They can

be used in different optimization scenarios enabling finding a trade-off between the

performance of the program and the utilization of memory resources. The experiments

with this particular dimension of the design space have also verified the legitimacy of

the novel multidimensional formulation of the problem, since high-quality solutions

can be found during the exploration only by properly expanding the dimensions;

• The difference between the scheduling and the other subproblems of the DSE in terms

of the necessity to perform decisions dynamically lead to the development of different

dynamic scheduling policies. It has been defined and experimentally verified that

the efficiency of a policy: (1) depends on the other configurations, for instance, an

unfavorable partitioning configuration limits the opportunities of applying an efficient

scheduling, (2) is subject to two factors, including the performance potential coming

from different orders of execution and the cost of establishing this order. A figure of merit

has been introduced to express the cost of a policy and an approach for establishing this

cost by means of performance estimation has been presented.

201

Chapter 11. Conclusions

Highly-accurate performance estimation

Based on the ETG complemented with the timing information, a performance estimation

SW tool performing a post-processing of the trace has been developed. The tool allows

estimating the execution time of different design points without having to execute them

on a physical platform. The tool is an essential component of the design flow, because it

provides rich performance metrics extracted from the trace. Different properties tracked

during the execution of a program are then supplied to the DSE heuristics. Experimental

results have verified this tool to be highly accurate and to allow a precise evaluation of different

design points, even if the structural difference between them is very small. Furthermore,

the experiments with the tool confirmed the portability of the ETG , since the same abstract

execution has been used for estimating the performances of a given dataflow program on

different platforms.

Another important aspect of the performance estimation tool is the bottleneck and impact

analysis implemented on top of it. The algorithms for these analyses were originally proposed

in Chapter 8 of [121], but allowed only the analysis for a fully parallel execution without the

notion of limited buffer sizes. Thanks to the novel problem formulation and the performance

estimation tool, these algorithms can be also applied to a given design point giving a more

realistic indication about the bottlenecks.

VSS methodology formalization

The stages of the system development design flow related to the profiling, analysis and provid-

ing refactoring directions have been summarized and formalized as a consistent and complete

analysis and improvement methodology. This methodology relies on the concept of Variable

Space Search introduced originally for the graph coloring problem, where the search for close-

to-optimal points is performed in differently defined spaces. Following the proposed DSE

problem formulation, the concepts of design points, design spaces and the transitions between

them have been introduced and expressed with appropriate notation capturing the multidi-

mensionality of the problem. Different optimization scenarios, in terms of objective functions

and constraints, have been introduced in order to be used in the process of optimization of a

dynamic dataflow program, without narrowing the possible trade-off options.

This methodology minimizes the programming effort, because is relies on an automated

exploration and requires an intervention into the code only if the constraints or the values

of the objective functions are not satisfied. Furthermore, the directions of the optimizations

are clearly given. This approach differs significantly from the exploration methodologies

defined in the literature, where dissatisfaction of the design constraints usually leads to

considerations about the possible modifications of the target platform. Instead, the focus of

202

11.2. Work extensions

the V SS methodology is to improve the efficiency of the design itself, where different target

platforms can be applied.

This methodology, comprising all of the previously described stages, has been thoroughly

verified using the HEVC decoder, which is the current state-of-the art in video decoding. The

results obtained illustrate a consequent improvement of the performance along the transitions

between different design spaces, followed by an increase of the resource requirements. The

complexity of the HEVC decoder prevents such results from being obtained manually, without

systematic support.

11.2 Work extensions

The results reported here constitute a good basis for further investigations aiming at maximiz-

ing the efficiency and usability of the system development design flow and its underlying DSE

methodology. The set of tasks belonging to future work can be separated into two groups. The

first one considers possible improvements and extensions to the provided tools, whereas the

second one identifies some open problems to be investigated.

11.2.1 Improvements

Profiling of heterogeneous platforms

It has been verified that an accurate execution model on different platforms can be built

using the ETG representation. In order to further extend the DSE and V SS methodologies

to various types of platforms, the set of supported and verified target architectures should

be constantly extended. For each new platform, it is essential to analyze the opportunities

for obtaining accurate profiling information. In this context, it is especially interesting to

focus on heterogeneous platforms and dedicate the profiling efforts to the boarder between

the SW and HW components and the communication taking place between them. Such

an investigation can extend and possibly make more precise the constraints identified and

discussed in Section 6.3.2.

Profiling of intra-partition scheduling cost

The biggest source of discrepancy of the performance estimation has been identified as the

missing cost of intra-partition scheduling. Incorporating this cost into the estimation model is

expected to strongly reduce the discrepancy and make it dependent only on the accuracy of

the profiling, not on the accuracy of the model itself. This cost might be subject to multiple

factors, such as: the number and order of appearance of the actors inside each partition, the

203

Chapter 11. Conclusions

number of conditions required to be checked for each firing, the level of dynamism within

the actors etc. Hence, an investigation on the impact of these factors on the accuracy of the

estimation results and the profiling opportunities would be beneficial.

Modeling of caches

As stated in Chapter 5, the profiling results are subject to the availability of data in the caches.

Furthermore, the profiling of the communication cost is related to the levels of caches serving a

given read/write request. Currently, the communication cost assigned to a buffer is estimated

according to the latencies profiled for different memory levels. In order to eliminate this

approximation and hence improve the estimation accuracy, it can be considered to model

the caches and include them in the components composing the DEV S system used in the

performance estimation module. Such a modeling can eliminate, or at least reduce the impact

of a partitioning configuration on the profiling results and enable modeling the execution

times of specific firings more precisely.

Joint multidimensional exploration

The proposed DSE heuristics focus on finding a high-quality solution to only one of the sub-

problems. Hence, it must be chosen in which order the heuristics should be applied. The

current approach is repetitive, for instance, after the initial tuning of buffers, a high-quality

partitioning configuration is established and the buffer size is eventually finally tuned. An

alternative to this approach could be to use a heuristic, such as tabu search, which consid-

ers all dimensions when defining the set of possible moves and neighborhoods. Such an

implementation can increase the level of automation of the DSE stage of the design flow.

Acceleration of the performance estimation

The time required for a single run of the performance estimation depends on the size of the

ETG , which rapidly grows as the number of action firings increases. Considering complex

designs in conjunction with long input stimuli (e.g ., high resolutions for the case of video

decoders), the resulting ETG can quickly grow up to billions of nodes and dependencies.

In order to make a single estimation run faster, the opportunities for using efficient graph

databases to process the ETG can be investigated. Accelerating a single estimation run can

enable evaluating a higher number of moves in different dimensions within the same time

frame and, in consequence, improve the quality of the final solution. Besides that, a faster

exploration and estimation can make the usage of the design flow and, in particular, the DSE

stage more robust.

204

11.2. Work extensions

Mixed evaluation of the moves

Once of the concepts in the field of performance estimation is to combine multiple models

with different levels of detail and accuracy (Section 9.1). In general, the less accurate, but

faster model is used more often, and the more accurate, but time consuming one is used

only occasionally. In this particular case, a faster model can be replaced with an execution

on the target platform. In this way, a move can be evaluated quickly, but without extracting

the execution properties, as for the case of performance estimation. An interesting aspect of

this research would be to establish the appropriate usage ratio for the platform execution and

performance estimation, so that the exploration process is maximally efficient. On the other

hand, studying the correlation between performance estimation and platform execution can

lead to developing some learning features, similarly to the machine learning-based estimation

methods. As in the previous point, a faster evaluation of the moves can increase the number

of moves evaluated during the exploration and, in consequence, improve the quality of the

final solution.

11.2.2 Open problems

Identification of static regions in a dynamic execution

The experiments with different scheduling policies demonstrated two aspects of the scheduling

problem: the performance gain coming from different execution orders and the run-time cost

required to establish this order. An interesting problem is to investigate the existence of some

static regions in a dynamic execution, as already attempted in the literature. Identifying such

regions and eliminating the run-time checking of the firing conditions for them can lead to a

performance improvement. The success of this approach is subject to an integration of such

pattern-extracting solutions to the toolchain under two conditions. First, an identification of

static regions must be performed in conjunction with the bottleneck analysis. For instance,

even if a static region is identified, but it does not belong to the C P , eliminating the scheduler

run-time cost will not lead to a performance improvement, since the length of the C P is not

reduced. Second, the proportions between the sizes of the static and dynamic regions in the

overall execution must be studied. A performance improvement is possible only if the size of

the static regions is remarkably bigger than the dynamic ones. Hence, this approach may be

successful only for a limited set of applications.

Reduction of the intra-partition scheduler working time

Another scheduling-related problem applies to a situation when none of the actors in a

partition is eligible to execute. In this particular case, the core the actors are partitioned to is

idle and the scheduler keeps iterating over the actors and checking the firing conditions in

205

Chapter 11. Conclusions

vain. Identifying the time slots when such a situation occurs and establishing the executions

in other partitions triggering an execution in the idle partition, can lead to a decision about

switching off the core during the unused slot and hence reduce power consumption. An

alternative path towards run-time partitioning is to consider assigning another actor to that

core during the identified time slots. The identification of the idle time slots and the operating

time slots for the actors considered for a run-time partitioning, could be performed by means

of performance estimation.

Identification of alternative improvement paths

If the C P workload is quasi-equally distributed among different components of the design and

further parallelization or algorithmic optimization effort does not bring much improvement,

the rich information obtained in the V SS process can lead to some considerations of new

architectural solutions for the analyzed designs. For the case of the HEVC decoder, one

of the possibilities is to modify the currently used concept of a multi-parser (described in

Section 10.1.3). In its current implementation, it assumes merging different portions of the

parsed data before it is transferred to the rest of the decoder. An alternative to this approach is

to create multiple instances of the decoder operating directly on the portioned and parsed

data. In this way, the merging process could be eliminated and the potential parallelism of

the decoder should grow drastically. The main drawback of this approach is the explosion of

the complexity of the decoder implying also the complexity of the design space and the much

increased resource requirements. Hence, an investigation is required to determine if this cost

is worth the possible performance gain.

206

Bibliography

[1] S. Borkar and A. A. Chien, “ The future of microprocessors,” in Commun. ACM, vol. 54,

pp. 67–77, 2011.

[2] “Epiphany architecture reference.” http://www.adapteva.com/docs/epiphany_arch_ref.

pdf. Accessed: November 2016.

[3] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Leger, B. Orgogozo, J. Reybert, and

T. Strudel, “A distributed run-time environment for the kalray mppa-2556 integrated

manycore processor,” in Procedia Computer Science, 2013.

[4] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel programming models and

tools in the multi and many-core era,” in IEEE Transactions on parallel and distributed

systems, vol. 23, pp. 1369–1386, 2012.

[5] A. Geist, A. Beguelin, J. D. adn W. Jiang, B. Manchek, and V. Sunderam, “PVM: Parallel

Virtual Machine - A Users Guide and Tutotial for Netowrk Parallel Computing,” tech.

rep., MIT Press, Cambridge, MA, 1994.

[6] M. P. Forum, “Mpi: A message-passing interface standard,” tech. rep., Knoxville, TN,

USA, 1994.

[7] “OpenMP 4.0 API C/C++ Syntax Quick Reference Card.” http://openmp.org/

mp-documents/OpenMP-4.0-C.pdf. Accessed: November 2016.

[8] E. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42, 2006.

[9] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog of stream processing

optimizations,” ACM Computing Surveys, vol. 46, no. 4, 2014.

[10] M. Michalska, N. Zufferey, E. Bezati, and M. Mattavelli, “Design space exploration

problem formulation for dynamic dataflow programs on heterogeneous architectures,”

10th International Symposium on Embedded Multicore/Many-core Systems on Chip, Lyon,

France, September 21-23, 2016.

207

http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf

Bibliography

[11] M. Michalska, J. Boutellier, and M. Mattavelli, “A methodology for profiling and parti-

tioning stream programs on many-core architectures,” in Procedia Computer Science Ed.

International Conference on Computational Science (ICCS), Reykjavik, Iceland, June 1-3,

vol. 51, p. 2962–2966, 2015.

[12] S. Casale-Brunet, M. Michalska, J. J. Ahmad, E. Bezati, and M. Mattavelli, “High-accuracy

performance estimation of dynamic dataflow programs on multi-core platforms,” Inte-

gration, the VLSI Journal (to appear), 2017.

[13] M. Michalska, S. Casale-Brunet, E. Bezati, M. Mattavelli, and J. Janneck, “Trace-based

manycore partitioning of stream-processing applications,” 50th Asilomar Conference on

Signals, Systems and Computers, Pacific Grove, USA, November 6-9, 2016.

[14] S. Casale-Brunet, M. Michalska, J. Ahmad, M. Mattavelli, M. Selva, K. Marquet, and

L. Morel, “Memory profiling of dynamic dataflow programs,” in Colloque SoC-SIP, Nantes,

France, June 8-10, 2016.

[15] M. Michalska, S. Casale-Brunet, E. Bezati, and M. Mattavelli, “Execution trace graph

based multi-criteria partitioning of stream programs,” in Procedia Computer Science Ed.

International Conference on Computational Science (ICCS), Reykjavik, Iceland, June 1-3,

vol. 51, pp. 1443–1452, 2015.

[16] S. Casale-Brunet, M. Wiszniewska, E. Bezati, M. Mattavelli, J. Janneck, and M. Canale,

“TURNUS: an open-source design space exploration framework for dynamic stream

programs,” 2014 Conference on Design and Architectures for Signal and Image Processing

(DASIP), Madrid, Spain, October 8-10, 2014.

[17] M. Michalska, N. Zufferey, and M. Mattavelli, “Tabu search for partitioning dynamic

dataflow programs,” in Procedia Computer Science Ed. International Conference on

Computational Science (ICCS), San Diego, California, USA, June 6-8, vol. 80, pp. 1577–

1588, 2016.

[18] M. Michalska, N. Zufferey, and M. Mattavelli, “Performance estimation based multi-

criteria partitioning approach for dynamic dataflow programs,” in Journal of Electrical

and Computer Engineering, vol. 2016, Article ID 8536432, 15 pages, 2016.

[19] M. Michalska, S. Casale-Brunet, E. Bezati, and M. Mattavelli, “High-accuracy perfor-

mance estimation for design space exploration of dynamic dataflow programs,” IEEE

Transactions on Multi-Scale Computing Systems: Special Issue on Emerging Technologies

and Architectures for Manycore (to appear), 2017.

[20] M. Michalska, N. Zufferey, J. Boutellier, E. Bezati, and M. Mattavelli, “Efficient schedul-

ing policies for dynamic dataflow programs executed on multi-core,” 9th International

208

Bibliography

Workshop on Programmability and Architectures for Heterogeneous Multicores (MULTI-

PROG), Prague, Czech Republic, January 18, 2016.

[21] M. Michalska, E. Bezati, S. Casale-Brunet, and M. Mattavelli, “A partition scheduler

model for dynamic dataflow programs,” in Procedia Computer Science Ed. International

Conference on Computational Science (ICCS), San Diego, California, USA, June 6-8,

vol. 80, pp. 2287–2291, 2016.

[22] M. Michalska, S. Casale-Brunet, E. Bezati, and M. Mattavelli, “High-precision perfor-

mance estimation of dynamic dataflow programs,” 10th International Symposium on

Embedded Multicore/Many-core Systems on Chip, Lyon, France, September 21-23, 2016.

[23] M. Michalska, J. J. Ahmad, S. Casale-Brunet, E. Bezati, and M. Mattavelli, “Performance

estimation of program partitions on multi-core platforms,” International Workshop on

Power And Timing Modeling, Optimization and Simulation (PATMOS), Bremen, Germany,

September 21-23, 2016.

[24] E. Lee and A. Sangiovanni-Vincentelli, “Comparing models of computation,” Proceedings

of the 1996 IEEE/ACM international conference on Computer-aided design, pp. 234 – 241,

1997.

[25] W. M. Johnston, J. R. P. Hanna, and R. Millar, “Advances in dataflow programming

languages,” ACM Computing Surveys (CSUR), vol. 36 (1), pp. 1 – 34, 2004.

[26] G. Kahn, “The semantics of a simple language for parallel programming,” Information

processing (J. L. Rosenfeld, ed.), pp. 471 – 475, 1974.

[27] E.Lee and T.Parks, “Dataflow process networks,” Proceedings of the IEEE, pp. 773 – 799,

1995.

[28] J. Janneck, “Actor machines: A machine model for dataflow actors and its applications,”

Technical Memo LTH Report 96, 2011 (corrections 2013-03-01), Lund University, Com-

puter Science Department, 2013.

[29] A. Grabowski, “Scott-continuous functions,” Journal of Formalized Mathematics, vol. 10,

1998.

[30] D. McAllester, P. Panangaden, and V.Shanbhogue, “Nonexpressibility of fairness and

signaling,” J. Comput. Syst. Sci, vol. 47, pp. 287 – 321, 1993.

[31] J. Dennis, “First versionof a dataflow procedure language,” Proceedings Colloque Sur La

Programmation, pp. 362 – 376, 1974.

[32] E. Lee and E. Matsikoudis, “A denotational semantics for dataflow with firing,” Memo-

randum UCB/ERL M97/3, ElectronicsResearch, 1997.

209

Bibliography

[33] J. Johnston, W.and Hanna and R. Millar, “Advances in dataflow programming languages,”

ACM Computing Surveys (CSUR), vol. 36, no. 1, pp. 1–34, 2004.

[34] C. Lucarz, G. Roquier, and M. Mattavelli, “High level design space exploration of RVC

codec specifications for multi-core heterogeneous platforms,” in Design and Architec-

tures for Signal and Image Processing (DASIP), 2010 Conference on, pp. 191–198, Oct.

2010.

[35] S. Bhattacharyya, J. Eker, J. Janneck, C. Lucarz, M. Mattavelli, and M. Raulet, “Overview

of the MPEG Reconfigurable Video Coding Framework,” Journal of Signal Processing

Systems, vol. 63, pp. 251 – 263, 2011.

[36] C. Lucarz, M. Mattavelli, and J. Janneck, “Optimization of portable parallel signal pro-

cessing applications by design space exploration of dataflow programs,” in Signal Pro-

cessing Systems (SiPS), 2011 IEEE Workshop on, pp. 43 –48, Oct. 2011.

[37] C. Lucarz, Dataflow Programming for Systems Design Space Exploration for Multicore

Platforms. PhD thesis, EPFL - STI - EDIC, Lausanne, 2011.

[38] J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid, “Communication-aware Mapping

of KPN Applications Onto Heterogeneous MPSoCs,” in Proceedings of the 49th Annual

Design Automation Conference, DAC ’12, (New York, NY, USA), pp. 1266–1271, ACM,

2012.

[39] S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, eds., Handbook of Signal

Processing Systems. Springer, 2013.

[40] W. Najjar, E. Lee, and G. Gao, “Advances in the dataflow computational model,” Parallel

Computing, vol. 25, no. 13, pp. 1907–1929, 1999.

[41] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow programs

for digital signal processing,” IEEE Transactions on Computers, pp. 24–35, 1987.

[42] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs

to Multiprocessors,” ACM Comput. Surv., vol. 31, pp. 406–471, Dec. 1999.

[43] Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng, and G. Yu, “Static Scheduling and

Software Synthesis for Dataflow Graphs with Symbolic Model-Checking,” in Proceedings

of the 28th IEEE International Real-Time Systems Symposium, RTSS ’07, (Washington,

DC, USA), pp. 353–364, IEEE Computer Society, 2007.

[44] T. Parks, J. Pino, and E. A. Lee, “A comparison of synchronous and cyclo-static dataflow,”

Asilomar Conference on Signals, Systems and Computers, 1995.

210

Bibliography

[45] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static dataflow,” Signal

Processing, IEEE Transactions on, vol. 44, no. 2, pp. 397–408, 1996.

[46] J. Buck and E. Lee, “Scheduling dynamic dataflow graphs with bounded memory using

the token flow model,” in IEEE International Conference on Acoustics, Speech, and Signal

Processing ICASSP-93, vol. 1, pp. 429–432, 1993.

[47] J. Buck, “Static scheduling and code generation from dynamic dataflow graphs with

integer-valued control streams,” in Conference Record of the Twenty-Eighth Asilomar

Conference on Signals, Systems and Computers, vol. 1, pp. 508–513, 1994.

[48] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow modeling for dsp sys-

tems,” in IEEE Transactions on Signal Processing, 2011.

[49] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk, “A scenario-aware

dataflow model for combined long-run average and worst-case performance analysis,”

in Fourth ACM and IEEE International Conference on Formal Methods and Models for

Co-Design, pp. 185–194, 2006.

[50] P. Fradet, A. Girault, and P. Poplavko, “Spdf: A schedulable parametric data-flow moc,”

in DATE, pp. 769–774, 2012.

[51] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueu, “Bpdf: A statically analyzable dataflow

model with integer and boolean parameters,” in EMSOFT, pp. 3–10, 2013.

[52] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “Building an ecosystem for a scalable,

modular and high-efficiency embedded computing accelerator,” in DATE, pp. 983–987,

2012.

[53] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueu, “Bpdf: Boolean parametric data flow,”

in Research Report RR-8333, INRIA, 2013.

[54] X. K. Do, A model of programming languages for dynamic real-time streaming applica-

tions. PhD thesis, Universite Pierre et Marie Cuire, France, 2016.

[55] S. Bhattacharyya, E. Deprettere, and B. Theelen, “Dynamic dataflow graphs,” in Hand-

book of Signal Processing Systems, pp. 905–944, Springer, 2013.

[56] M. Geilen and T. Basten, “Kahn process networks and a reactive extension,” in Handbook

of Signal Processing Systems, pp. 1041–1081, Springer, 2013.

[57] S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. Roquier, M. Mattavelli, and J. W.

Janneck, “Methods to Explore Design Space for MPEG RMC Codec Specifications,” Image

Commun., vol. 28, pp. 1278–1294, Nov. 2013.

211

Bibliography

[58] S. Casale-Brunet, E. Bezati, M. Mattavelli, M. Canale, and J. Janneck, “Execution trace

graph analysis of dataflow programs: bounded buffer scheduling and deadlock recovery

using model predictive control,” in Proceedings of Conference on Design and Architectures

for Signal and Image Processing (DASIP), 2014.

[59] M. Canale, S. Casale-Brunet, E. Bezati, M. Mattavelli, and J. Janneck, “Dataflow programs

analysis and optimization using model predictive control techniques: An example of

bounded buffer scheduling,” in Signal Processing Systems (SiPS), 2014 IEEE Workshop

on, pp. 1–6, Oct. 2014.

[60] J. Ersfolk, G. Roquier, J. Lilius, and M. Mattavelli, “Scheduling of Dynamic Dataflow

Programs Based on State Space Analysis,” in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 1661–1664, IEEE, 2012.

[61] H. Yviquel, J. Boutellier, M. Raulet, and E. Casseau, “Automated design of networks of

transport-triggered architecture processors using dynamic dataflow programs,” Signal

Processing: Image Communication, vol. 28, no. 10, pp. 1295 – 1302, 2013.

[62] J. Ersfolk, Scheduling Dynamic Dataflow Graphs with Model Checking. PhD thesis, TUCS,

2014.

[63] H. Yviquel, A. Sanchez, P. Jaaskelainen, J. Takala, M. Raulet, and E. Casseau, “Embed-

ded Multi-Core Systems Dedicated to Dynamic Dataflow Programs,” Journal of Signal

Processing Systems, vol. 80, no. 1, pp. 121–136, 2015.

[64] J. Eker and J. Janneck, “CAL Language Report: Specification of the CAL Actor Language,”

Technical Memo UCB/ERL M03/48, Electronics Research Laboratory, University of

California at Berkeley, Dec. 2003.

[65] F. Allen and J. Cocke, “A Program Data Flow Analysis Procedure,” Commun. ACM, vol. 19,

pp. 137–147, Mar. 1976.

[66] I. 23001-4:2011, “Information technology - MPEG systems technologies - Part 4: Codec

configuration representation,” 2011.

[67] M. Mattavelli, J. Janneck, and M. Raulet, “MPEG Reconfigurable Video Coding,” in

Handbook of Signal Processing Systems (S. Bhattacharyya, E. Deprettere, R. Leupers, and

J. Takala, eds.), pp. 43–67, Springer US, 2010.

[68] M. Mattavelli, “MPEG reconfigurable video representation,” in The MPEG Representation

of Digital Media (L. Chiariglione, ed.), pp. 231–247, Springer New York, 2012.

[69] E. Jang, M. Mattavelli, M. Preda, M. Raulet, and H. Sun, “Reconfigurable Media Coding:

An overview ,” Signal Processing: Image Communication, vol. 28, no. 10, pp. 1215–1223,

2013.

212

Bibliography

[70] “The Open RVC-CAL Compiler, Orcc.” http://github.com/orcc. Accessed: November

2016.

[71] M. Wipliez, Compilation infrastructure for dataflow programs. Theses, INSA de Rennes,

Dec. 2010.

[72] H. Yviquel, A. Lorence, K. Jerbi, and G. Cocherel, “Orcc: Multimedia development made

easy,” Proceedings of the 21st ACM International Conference on Multimedia, pp. 863–866,

2013.

[73] “Eclipse IDEs.” http://eclipse.org/ide. Accessed: November 2016.

[74] “Eclipse modeling framework.” http://eclipse.org/modeling/emf. Accessed: November

2016.

[75] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Frame-

work 2.0. Addison-Wesley Professional, 2nd ed., 2009.

[76] “Xtext: Language development made easy!.” http://eclipse.org/Xtext. Accessed: Novem-

ber 2016.

[77] “Xtend: Modernized java.” http://eclipse.org/xtend. Accessed: November 2016.

[78] “Daedalus: System-Level Design For Multi-Processor System-on-Chip.” http://daedalus.

liacs.nl. Accessed: November 2016.

[79] M. Thompson, H. Nikolov, T. Stefanov, A. Pimentel, C. Erbas, S. Polstra, and E. Depret-

tere, “A Framework for Rapid System-level Exploration, Synthesis, and Programming

of Multimedia MP-SoCs,” in Proceedings of the 5th IEEE/ACM International Conference

on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’07, (New York, NY,

USA), pp. 9–14, ACM, 2007.

[80] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated Multiproces-

sor System Design, Programming, and Implementation,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 27, pp. 542–555, Mar. 2008.

[81] J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid, H. Meyr, T. Is-

shiki, and H. Kunieda, “MAPS: an integrated framework for MPSoC application paral-

lelization,” in Proceedings of the 45th annual Design Automation Conference, pp. 754–759,

ACM, 2008.

[82] J. Castrillon, R. Velasquez, A. Stulova, W. Sheng, J. Ceng, R. Leupers, G. Ascheid, and

H. Meyr, “Trace-based KPN composability analysis for mapping simultaneous appli-

cations to MPSoC platforms,” Design, Automation and Test in Europe Conference and

Exhibition (DATE), 2010.

213

http://github.com/orcc
http://eclipse.org/ide
http://eclipse.org/modeling/emf
http://eclipse.org/Xtext
http://eclipse.org/xtend
http://daedalus.liacs.nl
http://daedalus.liacs.nl

Bibliography

[83] R. Leupers and J. Castrillon, “MPSoC programming using the MAPS compiler,” in Design

Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pp. 897–902, Jan.

2010.

[84] J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: Mapping concurrent dataflow applica-

tions to heterogeneous MPSoCs,” IEEE Transactions on Industrial Informatics, pp. 527 –

545, 2013.

[85] R. Leupers, M. Aguilar, J. Eusse, and W. Sheng, “MAPS: A software development environ-

ment for embedded multicore applications,” Handbook of Hardware/Software Codesign,

2017.

[86] A. Mihal, C. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S. Weber, Y. Jin, K. Keutzer,

C. Sauer, K. Vissers, and S. Malik, “Developing Architectural Platforms: A Disciplined

Approach,” IEEE Des. Test, vol. 19, pp. 6–16, Nov. 2002.

[87] M. Gries and K. Keutzer, Building ASIPs: The Mescal Methodology. Springer Publishing

Company, Incorporated, 1st ed., 2010.

[88] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-

Vincentelli, “Metropolis: an integrated electronic system design environment,” Com-

puter, vol. 36, pp. 45–52, 2003.

[89] “Metropolis: Design Environment for Heterogeneous Systems.” https://embedded.eecs.

berkeley.edu/metropolis. Accessed: November 2016.

[90] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y. Joo, “PeaCE: A Hardware-software Codesign

Environment for Multimedia Embedded Systems,” ACM Trans. Des. Autom. Electron.

Syst., vol. 12, pp. 1–25, May 2008.

[91] “PeaCE : Codesign Environment.” http://peace.snu.ac.kr/research/peace/index.php.

Accessed: November 2016.

[92] “PREESM: the parallel and real-time embedded executives scheduling method.” http:

//sourceforge.net/projects/preesm/. Accessed: November 2016.

[93] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. Nezan, “An open framework for rapid

prototyping of signal processing applications,” EURASIP Journal on Embedded Systems,

2009.

[94] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J. Nezan, and S. Aridhi, “Preesm: A dataflow-

based rapid prototyping framework for simplifying multicore DSP programming,” in

Education and Research Conference (EDERC), 2014 6th European Embedded Design in,

pp. 36–40, IEEE, 2014.

214

https://embedded.eecs.berkeley.edu/metropolis
https://embedded.eecs.berkeley.edu/metropolis
http://peace.snu.ac.kr/research/peace/index.php
http://sourceforge.net/projects/preesm/
http://sourceforge.net/projects/preesm/

Bibliography

[95] “Ptolemy project: heterogeneous modeling and design.” http://ptolemy.eecs.berkeley.

edu. Accessed: November 2016.

[96] E. Lee, “Overview of The Ptolemy Project,” Technical Memo UCB/ERL M98/71, Elec-

tronics Research Laboratory, University of California at Berkeley, Nov. 1998.

[97] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF for free,” in Application of Concurrency to

System Design, 2006. ACSD 2006. Sixth International Conference on, pp. 276–278, Jun.

2006.

[98] “SDF3.” http://www.es.ele.tue.nl/sdf3/. Accessed: November 2016.

[99] A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring embedded

system architectures at multiple abstraction levels,” Computers, IEEE Transactions on,

vol. 55, pp. 99–112, Feb. 2006.

[100] “RDF4J.” http://rdf4j.org/. Accessed: November 2016.

[101] “Space Codesign Systems.” http://www.spacecodesign.com. Accessed: November 2016.

[102] J. Chevalier, M. de Nanclas, L. Filion, O. Benny, M. Rondonneau, G. Bois, and E. Aboul-

hamid, “A SystemC refinement methodology for embedded software,” Design Test of

Computers, IEEE, vol. 23, pp. 148–158, Mar. 2006.

[103] D. Turaga, H. Andrade, B. Gedik, C. Venkatramani, O. Verscheure, J. Harris, J. Cox,

W. Szewczyk, and P. Jones, “Design Principles for Developing Stream Processing Applica-

tions,” Softw. Pract. Exper., vol. 40, pp. 1073–1104, Nov. 2010.

[104] B. Gedik, H. Andrade, K. Wu, P. Yu, and M. Doo, “SPADE: The System S Declarative Stream

Processing Engine,” in Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’08, (New York, NY, USA), pp. 1123–1134, ACM, 2008.

[105] W. De Pauw, M. Leţia, B. Gedik, H. Andrade, A. Frenkiel, M. Pfeifer, and D. Sow, “Visual

Debugging for Stream Processing Applications,” in Runtime Verification (H. Barringer,

Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Rosu, O. Sokolsky, and N. Till-

mann, eds.), vol. 6418 of Lecture Notes in Computer Science, pp. 18–35, Springer Berlin

Heidelberg, 2010.

[106] “SynDEx.” http://www.syndex.org. Accessed: November 2016.

[107] “SystemCoDesigner.” http://www.mycodesign.com/research/scd. Accessed: November

2016.

[108] C. Haubelt, M. Meredith, T. Schlichter, and J. Keinert, “SystemCoDesigner: Automatic De-

sign Space Exploration and Rapid Prototyping from Behavioral Models,” in Proceedings

215

http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://www.es.ele.tue.nl/sdf3/
http://rdf4j.org/
http://www.spacecodesign.com
http://www.syndex.org
http://www.mycodesign.com/research/scd

Bibliography

of the 45th Design Automation Conference (DAC0́8), (Anaheim, CA, USA.), pp. 580–585,

Jun. 2008.

[109] J. Keinert, M. Streubuhr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, and

M. Meredith, “SystemCoDesigner: an Automatic ESL Synthesis Approach by Design

Space Exploration and Behavioral Synthesis for Streaming Applications,” ACM Trans.

Des. Autom. Electron. Syst., vol. 14, pp. 1–23, Jan. 2009.

[110] S. Verdoolaege, H. Nikolov, and T. Stefanov, “Pn: A Tool for Improved Derivation of

Process Networks,” EURASIP J. Embedded Syst., vol. 2007, pp. 19–19, Jan. 2007.

[111] J. Castrillon, Programming Heterogeneous MPSoCs. Springer, 2013.

[112] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G. Ascheid, and H. Meyr, “A

high-level virtual platform for early MPSoC software development,” in CODES+ISSS

’09: Proceedings of the 7th IEEE/ACM international conference on Hardware/software

codesign and system synthesis, (New York, NY, USA), pp. 11–20, ACM, 2009.

[113] K. Desnos, M. Pelcat, J. Nezan, S. Bhattacharyya, and S. Aridhi, “PiMM: Parameterized

and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration,” in Embed-

ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013

International Conference on, pp. 41–48, Jul. 2013.

[114] T. Grandpierre and Y. Sorel, “From Algorithm and Architecture Specifications to Au-

tomatic Generation of Distributed Real-Time Executives: A Seamless Flow of Graphs

Transformations,” in Proceedings of the First ACM and IEEE International Conference on

Formal Methods and Models for Co-Design, MEMOCODE ’03, (Washington, DC, USA),

pp. 123–133, IEEE Computer Society, 2003.

[115] “Forte Synthesizer.” http://www.cadence.com/products/sd/cynthesizer/. Accessed:

November 2016.

[116] M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich, “ Efficient symbolic multi-objective

design space exploration,” in Proceedings of the 13th Asia and South Pacific Design

Automation Conference (ASP-DAC 2008), pp. 691–696, 2008.

[117] “CAL design suite.” http://sourceforge.net/projects/caldesignsuite/. Accessed: Novem-

ber 2016.

[118] C. Lucarz, G. Roquier, and M. Mattavelli, “ High level design space exploration of RVC

codec specifications for multi-core heterogeneous platforms,” in Conference on Design

and Architectures for Signal and Image Processing, DASIP, 2010.

[119] “COMPA Project.” http://www.compa-project.org. Accessed: May 2015.

216

http://www.cadence.com/products/sd/cynthesizer/
http://sourceforge.net/projects/caldesignsuite/
http://www.compa-project.org

Bibliography

[120] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” in

Science 220, pp. 671–680, 1983.

[121] S. Casale-Brunet, Analysis and optimization of dynamic dataflow programs. PhD thesis,

EPFL, Switzerland, 2015.

[122] E. Bezati, High-level synthesis of dataflow programs for heterogeneous platforms: design

flow tools and design space exploration. PhD thesis, EPFL, Switzerland, 2015.

[123] J. Janneck, I. Miller, and D. Parlour, “Profiling dataflow programs,” in Multimedia and

Expo, 2008 IEEE International Conference on, pp. 1065–1068, Jun. 2008.

[124] C. Zebelein, C. Haubelt, J. Falk, T. Schwarzer, and J. Teich, “Representing mapping and

scheduling decisions within dataflow graphs,” in Specification Design Languages (FDL),

2013 Forum on, pp. 1–8, Sept 2013.

[125] G. M. Amdahl, “Validity of the single-processor approach to achieving large scale com-

puting capabilities,” in AFIPS Conference Proceedings, vol. 30, pp. 483–485, 1967.

[126] P. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A Portable Interface to Hardware

Performance Counters,” in In Proceedings of the Department of Defense HPCMP Users

Group Conference, pp. 7–10, 1999.

[127] P. Jääskeläinen, V. Guzma, A. Cilio, and J. Takala, “Codesign toolset for application-

specific instruction-set processors,” Multimedia on Mobile Devices, Proc. SPIE, vol. 6507,

2007.

[128] O. Esko, P. Jääskeläinen, P. Huerta, C. S. de La Lama, J. Takala, and J. I. Martinez, “Cus-

tomized exposed datapath soft-core design flow with compiler support,” in Proceedings

of the 2010 International Conference on Field Programmable Logic and Applications, FPL

’10, (Washington, DC, USA), pp. 217–222, IEEE Computer Society, 2010.

[129] J. Helkala, T. Viitanen, H. Kultala, P. Jääskeläinen, J. Takala, T. Zetterman, and B. Heikki,

“Variable length instruction compression on transport triggered architectures,” Inter-

national Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation (SAMOS XIV), 2014.

[130] P. Jääskeläinen, H. Kultala, T. Viitanen, and J. Takala, “Code density and energy efficiency

of exposed datapath architectures,” Journal of Signal Processing Systems, vol. 80, 2015.

[131] H. Yviquel, From dataflow-based video coding tools to dedicated embedded multi-core

platforms. PhD thesis, Université Rennes, 2013.

217

Bibliography

[132] M. Selva, Performance Monitoring of Throughput Constrained Dataflow Programs Ex-

ecuted On Shared-Memory Multi-core Architectures. PhD thesis, INSA Lyon, France,

2015.

[133] H. Yviquel, A. Sanchez, P. Jaaskelainen, J. Takala, M. Raulet, and E. Casseau, “Embed-

ded multi-core systems dedicated to dynamic dataflow programs.,” Journal of Signal

Processing Systems, pp. 1–16, 2014.

[134] G. Paoloni, “How to Benchmark Code Execution Times on Intel ®IA-32 and IA-64

Instruction Set Architectures,” tech. rep., Intel Corporation, 09 2010.

[135] J. Ahmad, S. Li, R. Thavot, and M. Mattavelli, “Secure Computing with the MPEG RVC

Framework,” Signal Processing: Image Communication, special issue on Recent Advances

on MPEG Codec Configuration Framework, vol. 28, pp. 1315–1334, November 2013.

[136] M. Selva, L. Morel, and K. Marquet, “numap: A portable library for low level memory

profiling,” International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation (SAMOS XVI), 2016.

[137] V. Weaver, D.Terpstra, and S. Moore, “Non-determinism and overcount on modern

hardware performance counter implementations,” IEEE International Symposium on

Performance Analysis of Systems and Software, Austin, 2013.

[138] O. Sinnen, Task scheduling for parallel systems. Wiley Series on Parallel and Distributed

Computing, 2007.

[139] M. Tanaka and O. Tatebe, “Workflow scheduling to minimize data movement using multi-

constraint graph partitioning,” in Proceedings of the 2012 12th International Symposium

on Cluster, Cloud and Grid Computing, pp. 65–72, IEEE, 2012.

[140] I. Ahmad and Y. Kwok, “On parallelizing the multiprocessor scheduling problem,” in

Transactions on Parallel and Distributed Systems, pp. 424–432, IEEE, 1999.

[141] R. Diekman and R. Preis, “Load balancing strategies for distributed memory machines,”

in Parallel and distributed processing for computational mechanics, pp. 124–157, 1999.

[142] G. N. Khan and M. Jin, “A new graph structure for hardware-software partitioning of het-

erogeneous systems,” in Canadian Conference on Electrical and Computer Engineering,

pp. 229–232, IEEE, 2004.

[143] J. Wang, E. Sha, and N. L. Passos, “Minimization of memory access overhead for multidi-

mensional DSP applications via multilevel partitioning and scheduling,” in Transactions

on Circuits and Systems II: Analog and Digital Signal Processing, pp. 741–753, IEEE, 1997.

218

Bibliography

[144] W. Jigang, T. Srikanthan, and G. Chen, “Algorithmic aspects of hardware/software par-

titioning: 1D search algorithms,” in Transactions on Computers, pp. 532–544, IEEE,

2010.

[145] L. Wang, J. Liu, J. Hu, Q. Zhuge, and E. Sha, “Optimal assignment for tree-structure task

graph on heterogeneous multicore systems considering time constraint,” in Interna-

tional Symposium on Embedded Multicore Socs (MCSoC), pp. 121–127, IEEE, 2012.

[146] B. Tafesse, A. Raina, J. Suseela, and V. Muthukumar, “Efficient scheduling algorithms for

MpSoC systems,” in Eighth International Conference on Information Technology: New

Generations (ITNG), pp. 683–688, IEEE, 2011.

[147] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet, “Efficient multicore scheduling of

dataflow process networks,” IEEE Workshop on Signal Processing Systems (SiPS), pp. 198

– 203, 2011.

[148] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 2008.

[149] C. Lameter, “NUMA (Non-Uniform Memory Access): An Overview,” Queue - Develop-

ment, vol. 11, 2013.

[150] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-node graph,” Tech.

Rep. MSR-TR-2013-102, Microsoft Research, February 2013.

[151] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck, I. D. Miller, and D. B. Parlour, “Automatic

software synthesis of dataflow program: An MPEG-4 simple profile decoder case study,”

in Workshop on Signal Processing Systems, pp. 281–286, IEEE, 2008.

[152] S. Padmanabhan, Y. Chen, and R. D. Chamberlain, “Convexity in non-convex optimiza-

tions of streaming applications,” in IEEE 18th International Conference on Parallel and

Distributed Systems, pp. 668–675, 2012.

[153] T. Saxena and G. Karsai, “Novel heuristic mapping algorithms for design space explo-

ration of multiprocessor embedded architectures,” in 2011 18th IEEE International

Conference and Workshops on Engineering of Computer Based Systems (ECBS), pp. 71–80,

2011.

[154] S. Padmanabhan, Y. Chen, and R. D. Chamberlain, “Optimal design-space exploration

of streaming applications,” in ASAP 2011 - 22nd IEEE International Conference on

Application-specific Systems, Architectures and Processors, pp. 227–230, 2011.

[155] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software performance estimation

methods for hardware/software codesign,” in 33rd Design Automation Conference Pro-

ceedings 1996, pp. 605–610, 1996.

219

Bibliography

[156] S. Tamaskar, K. Neema, T. Kotegawa, and D. DeLaurentis, “Complexity enabled de-

sign space exploration,” in 2011 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pp. 1250–1255, 2011.

[157] S. Sinaei and O. Fatemi, “A meta-framework for design space exploration,” in 2016

24th Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing (PDP), pp. 801–804, 2016.

[158] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimization and evolution-

ary algorithms for the application mapping problem in multiprocessor system-on-chip

design,” in IEEE Transactions on Evolutionary Computation, vol. 10, pp. 358–374, 2006.

[159] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for pareto-optimal config-

urations in parameterized systems-on-a-chip,” in IEEE/ACM International Conference

on Computer Aided Design (ICCAD), pp. 25–30, 2001.

[160] J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to system-level synthesis,”

in In Proc. of Codes/CASHE 97 - the 5th Int. Workshop on Hardware/Software Codesign,

(Braunschweig, Germany), pp. 167–171, Mar 1997.

[161] T. Schlichter, M. Lukasiewycz, C. Haubelt, and J. Teich, “Improving system level design

space exploration by incorporating sat-solvers into multi-objective evolutionary algo-

rithms,” in 2006 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2006), 2-3

March 2006, Karlsruhe, Germany, pp. 309–316, 2006.

[162] T. Saxena and G. Karsai, “Towards a generic design space exploration framework,” in

2010 10th IEEE International Conference on Computer and Information Technology (CIT

2010), pp. 1940–1947, 2010.

[163] A. Hertz, D. Schindl, and N. Zufferey, “Lower bounding and tabu search procedures

for the frequency assignment problem with polarization constraints,” 4OR, vol. 3 (2),

pp. 139 – 161, 2005.

[164] P. Garg, A. Gupta, and J. W. Rozenblit, “Performance analysis of embedded systems in

the virtual component co-design environment,” in 11th IEEE International Conference

and Workshop on the Engineering of Computer-Based Systems, pp. 61–68, 2004.

[165] E. Silver and N. Zufferey, “Inventory control of an item with a probabilistic replenishment

lead time and a known supplier shutdown period,” International Journal of Production

Research, vol. 49, pp. 923–947, 2011.

[166] T. Taghavi, A. D. Pimentel, and M. Thompson, “System-level mp-soc design space

exploration using tree visualization,” in 2009 IEEE/ACM/IFIP 7th Workshop on Embedded

Systems for Real-Time Multimedia, pp. 80–88, 2009.

220

Bibliography

[167] L. Wang, Y. Tang, Y. Deng, F. Qin, Q. Dou, G. Zhang, and F. Zhang, “A scalable and fast

microprocessor design space exploration methodology,” in 2015 IEEE 9th International

Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 33–40,

2015.

[168] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporal, “Automated bottleneck-driven

design-space exploration of media processing systems,” in 2010 Design, Automation

and Test in Europe Conference and Exhibition (DATE 2010), pp. 1041–1046, 2010.

[169] A. Hertz, M. Plumettaz, and N. Zufferey, “Variable space search for graph coloring,”

Discrete Applied Mathematics, vol. 156, pp. 2551–2560, 2008.

[170] Q. Wu and M. S. Hsiao, “A new simulation-based property checking algorithm based on

partitioned alternative search space traversal,” in Tenth IEEE International High-Level

Design Validation and Test Workshop, pp. 121–126, 2006.

[171] M. A. Beck and I. C. Parmee, “Design exploration: extending the bounds of the search

space,” Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, 1999.

[172] J. Ullman, “NP-complete scheduling problems,” Journal of Computer and System Sci-

ences, vol. 10, pp. 384 – 393, 1975.

[173] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping applications to tiled multi-

processor embedded systems,” in Seventh International Conference on Application of

Concurrency to System Desig, pp. 29–40, IEEE, 2007.

[174] M. Garey and D. Johnson, A Guide to the Theory of NP-Completeness. W.H. Freeman,

1979.

[175] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and

conceptual comparison,” ACM Computing Surveys, vol. 35, pp. 268 – 308, 2003.

[176] I. Osman and G. Laporte, “Metaheuristics: A bibliography,” Annals of Operations Re-

search, pp. 513–623, 1996.

[177] M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics. Springer, 2010.

[178] N. Zufferey, “Metaheuristics: Some principles for an efficient design,” Computer Tech-

nology and Application, vol. 3, pp. 446–462, 2012.

[179] M. A. Arslan, J. W. Janneck, and K. Kuchcinski, “Partitioning and mapping dynamic

dataflow programs,” 2012 Conference Record of the Forty Sixth Asilomar Conference on

Signals, Systems and Computers (ASILOMAR), pp. 1452–1456, 2012.

221

Bibliography

[180] A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring embedded

system architectures at multiple abstraction levels,” IEEE Transactions on Computers,

vol. 55, pp. 99–112, 2006.

[181] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent advances in graph

partitioning,” Algorithm Engineering: Selected Results and Surveys, LNCS 9220, 2015.

[182] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning

irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 359 – 392,

1998.

[183] F. Pellegrini and J. Roman, “A software package for static mapping by dual recursive

bipartitioning of process and architecture graphs,” Proceedings of HPCN’96, Brussels,

Belgium, pp. 493 – 498, 1996.

[184] H. Yviquel, E. Casseau, M. Raulet, P. Jaaskelainen, and J. Takala, “Towards run-time actor

mapping of dybamic dataflow programs onto multi-core platforms,” 8th International

SYmposium on Image and Signal Processing and Analysis, pp. 732 – 737, 2013.

[185] T. Tabirca, S. Tabirca, L. Freeman, and L. T. Yang, “A static workload balance scheduling

algorithm,” International Conference on Parallel Processing Workshops, 2002.

[186] S. Thevenin, N. Zufferey, and M. Widmer, “Metaheuristics for a scheduling problem with

rejection and tardiness penalties,” Journal of Scheduling, vol. 18, pp. 89–105, 2015.

[187] F. Glover, “Tabu search - part I,” ORSA Journal on Computing, vol. 1, pp. 190–205, 1989.

[188] G. Kahn, “The semantics of simple language for parallel programming,” IFIP Congress,

1974.

[189] T. Parks, J. Pino, and E. Lee, “A comparison of synchronous and cycle-static dataflow,”

in Signals, Systems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth

Asilomar Conference on, vol. 1, pp. 204–210, IEEE, 1995.

[190] W. Liu, Z. Gu, J. Xu, Y. Wang, and M. Yuan, “An efficient technique for analysis of minimal

buffer requirements of synchronous dataflow graphs with model checking,” in Proceed-

ings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and

System Synthesis, (New York, NY, USA), pp. 61–70, ACM, 2009.

[191] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of synchronous

dataflow graphs with model checking,” in Proceedings of the 42Nd Annual Design Au-

tomation Conference, DAC ’05, (New York, NY, USA), pp. 819–824, ACM, 2005.

222

Bibliography

[192] S. Stuijk, M. Geilen, and T. Baste, “Exploring trade-offs in buffer requirements and

throughput constraints for synchronous dataflow graphs,” in Proceedings of the 43rd

annual conference on Design automation, pp. 899–904, ACM, 2006.

[193] S.-I. Han, X. Guerin, S.-I. Chae, and A. A. Jerraya, “Buffer memory optimization for video

codec application modeled in simulink,” in Proceedings of the 43rd annual conference

on Design automation, pp. 689–694, ACM, 2006.

[194] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-vincentelli, “Scheduling for embed-

ded real-time systems,” in Des. Test, pp. 71–82, IEEE, 1998.

[195] H. Salunkhe, A. Lele, O. Moreira, and K. v. Berkel, “Buffer allocation for dynamic real-time

streaming applications running on a multi-processor without back-pressure,” Euromicro

Conference on Digital System Design, pp. 250–254, 2015.

[196] E. Cheung, H. Hsieh, and F. Balarin, “Automatic buffer sizing for rate-constrained kpn

applications on multiprocessor system-on-chip,” IEEE International High Level Design

Validation and Test Workshop, pp. 37–44, 2007.

[197] S. Casale-Brunet, M. Mattavelli, and J. W. Janneck, “Buffer optimization based on critical

path analysis of a dataflow program design,” in Circuits and Systems (ISCAS), 2013 IEEE

International Symposium on, pp. 1384–1387, IEEE, 2013.

[198] T. Parks, Bounded scheduling of process networks. PhD thesis, University of California at

Berkeley, USA, 1995.

[199] D. J. D. S. Jorre, D. Renzi, S. C. Brunet, M. Wiszniewska, E. Bezati, and M. Mattavelli,

“MPEG high efficient video coding stream programming and many-cores scalability,”

2014 Conference on Design and Architectures for Signal and Image Processing (DASIP),

Madrid, Spain, October 8-10, 2014.

[200] L. Benini, M. Lombardi, M. Milano, and M. Ruggiero, “Optimal resource allocation and

scheduling for the CELL BE platform,” Annals of Operations Research, pp. 51–77, 2011.

[201] M. Eisenring, J. Teich, and L. Thiele, “Rapid prototyping of dataflow programs on hard-

ware/software architectures,” in Proc. of HICSS-31, Proc. of the Hawai Int. Conf. on

System Sciences, pp. 187–196, 1998.

[202] S. Casale-Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. W. Janneck,

“Partitioning and optimization of high level stream applications for multi clock domain

architectures,” IEEE Workshop on Signal Processing, pp. 177–182, 2013.

[203] K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling. Wiley, 2009.

223

Bibliography

[204] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and M. M. Mattavelli, “Scheduling of

dataflow models within the reconfigurable video coding framework,” IEEE Workshop on

Signal Processing Systems, pp. 182–187, 2008.

[205] J. W. Janneck, “Actors and their composition,” Formal Aspects Comput., pp. 349–369,

2003.

[206] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O. Silven, “Actor merging

for dataflow process networks,” IEEE Transactions on Signal Processing, pp. 2496–2508,

2015.

[207] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts. Wiley, 2005.

[208] S. Singh, “Round-robin with credits: an improved scheduling strategy for rate-allocation

in high-speed packet-switching,” Global Telecommunications Conference, 1994.

[209] M. Obaidat and G. Papadimitriou, Applied System Simulation: Methodologies and Appli-

cations. Springer Publishing Company, 2013.

[210] S. Pllana, I. Brandic, and S. Benkner, “Performance modeling and prediction of parallel

and distributed computing systems: A survey of the state of the art,” First International

Conference on Complex, Intelligent and Software Intensive Systems, pp. 279–284, 2007.

[211] P. Bose and T. Conte, “Performance analysis and its impact on design,” Computer, pp. 41–

49, 1998.

[212] H. J. Sri Parameswaran, Alex Ignatovic, “Performance estimation of pipelined multi-

processor system-on-chips (mpsocs),” in IEEE Transactions on Parallel & Distributed

Systems, 2013.

[213] S. L. Shee and S. Parameswaran, “Design methodology for pipelined heterogeneous

multiprocessor systems,” in Proc. 44th ACM/IEEE Annu. DAC, pp. 811–816, 2007.

[214] Q. Hu, J. Shu, J. Fan, and Y. Lu, “Run-time performance estimation and fairness-oriented

scheduling policy for concurrent gpgpu applications,” in 45th International Conference

on Parallel Processing (ICPP), 2016.

[215] N. Frid, D. Ivosevic, and V. Sruk, “Performance estimation in heterogeneous mpsoc

based on elementary operation cost,” in 39th International Convention on Information

and Communication Technology, Electronics and Microelectronics, MIPRO 2016, Opatija,

Croatia, May 30 - June 3, 2016, pp. 1202–1205, 2016.

[216] D. Ivosevic, N. Frid, and V. Sruk, “Function-level performance estimation for heteroge-

neous mpsoc platforms,” in Zooming Innovation in Consumer Electronics International

Conference (ZINC), 2016.

224

Bibliography

[217] C. Lin, X. Du, X. Jiang, and D. Wang, “An efficient and effective performance estimation

method for dse,” in International Symposium on VLSI Design, Automation and Test

(VLSI-DAT), 2016.

[218] A. Gamatie, R. Ursu, M. Selva, and G. Sassatelli, “Performance prediction of applica-

tion mapping in manycore systems with artificial neural networks,” 10th International

Symposium on Embedded Multicore/Many-core Systems on Chip, 2016.

[219] J. Li, X. Ma, K. Singh, M. Schulz, B. R. de Supinski, and S. A. McKee, “Machine learning

based online performance prediction for runtime parallelization and task scheduling,”

in IEEE International Symposium on Performance Analysis of Systems and Software,

ISPASS, 2009.

[220] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level cross-platform power

and performance estimation,” in Proceedings of the 53rd Annual Design Automation

Conference, DAC ’16, (New York, NY, USA), pp. 4:1–4:6, ACM, 2016.

[221] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-based analytical cross-

platform performance prediction,” in International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation (SAMOS XV), 2015.

[222] J. Nutaro, Building Software for Simulation: Theory and Algorithms, with Applications in

C++. Wiley Publishing, 2010.

[223] J. Chen and R. M. Clapp, “Critical-path candidates: scalable performance modeling for

mpi workloads,” in Performance Analysis of Systems and Software (ISPASS), 2015 IEEE

International Symposium on, pp. 1–10, March 2015.

[224] D. Böhme, F. Wolf, B. R. de Supinski, M. Schulz, and M. Geimer, “Scalable critical-path

based performance analysis,” in Parallel Distributed Processing Symposium (IPDPS),

2012 IEEE 26th International, pp. 1330–1340, May 2012.

[225] C. Q. Yang and B. P. Miller, “Critical path analysis for the execution of parallel and

distributed programs,” in Distributed Computing Systems, 1988., 8th International Con-

ference on, pp. 366–373, Jun 1988.

[226] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, vol. 24. Springer

Science & Business Media, 2003.

[227] E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli, “A unified hardware/software co-

synthesis solution for signal processing systems,” in Design and Architectures for Signal

and Image Processing (DASIP), 2011 Conference on, pp. 1–6, Nov. 2011.

[228] document ITU-T Rec. H.265, I.-T. ISO/IEC 23008-2 (HEVC), and ISO/IEC, “High Effi-

ciency Video Coding,” 2013.

225

Bibliography

[229] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “ Overview of the H.264/AVC

video coding standard,” in IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 13, pp. 560–576, 2003.

[230] J. F. Bossen, B. Bross, K. Suhring, and D. Flynn, “ HEVC complexity and implementation

analysis,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 22,

pp. 1685–1696, 2012.

[231] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, and T. Schierl, “Par-

allel scalability and efficiency of hevc parallelization approaches,” in IEEE Transactions

on Circuits and Systems for Video Technology, pp. 1827–1838, Dec. 2012.

[232] S. Casale-Brunet, C. Alberti, M. Mattavelli, and J. Janneck, “Turnus: a unified dataflow

design space exploration framework for heterogeneous parallel systems,” 2013 Confer-

ence on Design and Architectures for Signal and Image Processing (DASIP), Cagliari, Italy,

October 2013.

[233] “TURNUS.” http://github.com/turnus. Accessed: November 2016.

[234] F.-X. Meuwly, B. Ries, and N. Zufferey, “Solution methods for a scheduling problem with

incompatibility and precedence constraints,” Algorithmic Operations Research, vol. 5

(2), pp. 75 – 85, 2010.

[235] D. Schindl and N. Zufferey, “A Learning Tabu Search for a Truck Allocation Problem with

Linear and Nonlinear Cost Components,” Naval Research Logistics, vol. 62 (1), pp. 32 –

45, 2015.

[236] S. Thevenin, N. Zufferey, and M. Widmer, “Metaheuristics for a scheduling problem with

rejection and tardiness penalties,” Journal of Scheduling, vol. 18, pp. 89–105, 2015.

[237] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor

systems,” ACM Computing Surveys, vol. 43, pp. 1 – 44, 2011.

226

http://github.com/turnus

Małgorzata Maria Michalska
malgorzata.michalska@epfl.ch

(last update: February 2017)

Professional experience
 July 2013 - now

Doctoral assistant at Swiss Federal Institute of Technology (EPFL), SCI-

STI-MM group, Lausanne, Switzerland

FNS project: Extension and analysis of software specifications of high-level
software partitioning and architectural solution explorations

 July 2012 - Sep. 2012

Intern at UBS AG, London, United Kingdom

IT Business Analysis, Project Management

 May 2011 - Sep. 2011

Intern at PayCo Services GmbH, Berlin, Germany

Java software development, Technologies: Java Spring, Hibernate, Quartz,
MongoDB, JSP

Education
July 2013 - now

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

 Ph. D: Doctoral School of Electrical Engineering;

Thesis: Systematic design space exploration of dynamic dataflow programs
for multi-core platforms

 Feb. 2012 - June 2013

Gdansk University of Technology, Gdansk, Poland

M. Sc: Computer Science with specialization in Intelligent Interactive

Systems, individual study program;
Thesis: Computer application automatically correcting detuned singing

 (Summa cum Laude)

227

2010 - 2011

Beuth University of Applied Sciences, Berlin, Germany

 Erasmus Student Network, field of study: Media Computer Science

2008 - 2012

Gdansk University of Technology, Gdansk, Poland

B. Eng: Electronics and Telecommunications with specialization in

Multimedia Systems, individual study program since February 2010;
Thesis: Implementation of an algorithm for pitch shifting of a digital sound

(Summa cum Laude)

2005 - 2008

3rd Bilingual High School, Gdynia, Poland

Scholarships and Awards
 September 2016

 Best Paper Award at IEEE 10th International Symposium on Embedded

Multicore/Many-core Systems-on-Chip, Lyon, France

September 2014

 Best Paper Award at ICT Young Conference, Gdansk, Poland

June 2012

The Google Anita Borg Memorial Scholarship, EMEA (scholar)

2009 - 2011:

Merit-based scholarship granted by Gdansk University of Technology,
Poland

Computer skills
Programming languages: Java, C/C++, CAL

Technologies: HTML, PHP, JSP, .NET

Databases: SQL, MongoDB, MS Sharepoint

Operating Systems: Windows, Linux

IDE: Visual Studio, Qt, Eclipse

228

Open source projects

TURNUS co-design framework for analysis of static and dynamic dataflow

applications, https://github.com/turnus/

Publications
Journals

M. Michalska, S. Casale-Brunet, E. Bezati M. Mattavelli. High-accuracy

performance estimation for design space exploration of dynamic dataflow
programs. IEEE Transactions on Multi-Scale Computing Systems: Special Issue on
Emerging Technologies and Architectures for Manycore, 2017 (to appear).

S. Casale-Brunet, M. Michalska, E. Bezati, J. Ahmad, M. Mattavelli. High-accuracy

performance estimation of dynamic dataflow programs on multi-core platforms.
Integration, the VLSI Journal, 2017 (to appear).

M. Michalska, N. Zufferey, M. Mattavelli. Performance estimation based multi-

criteria partitioning approach for dynamic dataflow programs. Journal of
Electrical and Computer Engineering, vol. 2016, Article ID 8536432, 15 pages,
2016.

M. Michalska. Application for the Automatic Pitch Detection and

Correction of Detuned Singing. Pomiary Automatyka Robotyka (PAR), Volume 20,
Pages 25-30, 1/2016.

Conferences

M. Michalska, S. Casale Brunet, E. Bezati, M. Mattavelli, J. Janneck. Trace-Based

Manycore Partitioning of Stream-Processing Applications. 50th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, USA, November 6-
9 2016.

M. Michalska, S. Casale Brunet, E. Bezati, M. Mattavelli. High-precision

performance estimation of dynamic dataflow programs. IEEE 10th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip, Lyon, France,
September 21-23 2016.

229

M. Michalska, N. Zufferey, E. Bezati, M. Mattavelli. Design space exploration

problem formulation for dataflow programs on heterogeneous architectures. IEEE
10th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip, Lyon, France, September 21-23 2016.

M. Michalska, J.J. Ahmad, E. Bezati, S. Casale-Brunet, M. Mattavelli. Performance

Estimation of Program Partitions on Multi-core Platforms. International
Workshop on Power and Timing Modeling, Optimization and Simulation,
Bremen, Germany, September 21-23 2016.

S. Casale-Brunet, M. Michalska, J. Ahmad, M. Mattavelli, M. Selva, K. Marquet,

and L. Morel. Memory profiling of dynamic dataflow programs. Colloque SoC-SIP,
Nantes, France, June 8-10 2016.

M. Michalska, N. Zufferey, M. Mattavelli. Tabu Search for Partitioning Dynamic

Dataflow Programs. Procedia Computer Science, Volume 80, Pages 1577-1588,
International Conference on Computational Science (ICCS), San Diego,
California, USA, June 6-8 2016.

M. Michalska, E. Bezati, S. Casale-Brunet, M. Mattavelli. A Partition Scheduler

Model for Dynamic Dataflow Programs. Procedia Computer Science, Volume 80,
Pages 2287–2291, International Conference on Computational Science (ICCS), San
Diego, California, USA, June 6-8 2016.

M. Michalska, N. Zufferey, J. Boutellier, E. Bezati and M. Mattavelli. Efficient

scheduling policies for dataflow programs executed on multi-core. Proceedings of
the 9th International Workshop on Programmability and Architectures for
Heterogeneous Multicore (MULTIPROG), Prague, Czech Republic, January 18
2016.

M. Michalska, S. Casale-Brunet, E. Bezati and M. Mattavelli. Execution Trace

Graph Based Multi-criteria Partitioning of Stream Programs. Procedia Computer
Science, Volume 51, Pages 1443 - 1452, International Conference on
Computational Science (ICCS), Reykjavik, Iceland, June 1-3 2015.

M. Michalska, J. Boutellier and M. Mattavelli. A Methodology for Profiling and

Partitioning Stream Programs on Many-core Architectures. Procedia Computer
Science, Volume 51, Pages 2962–2966, International Conference on
Computational Science (ICCS), Reykjavik, Iceland, June 1-3 2015.

230

S. Casale-Brunet, M. Wiszniewska, E. Bezati, M. Mattavelli, J. Janneck and M.

Canale. TURNUS: an open-source design space exploration framework for
dynamic stream programs. In Proceedings of Conference on Design and
Architectures for Signal and Image Processing (DASIP), Madrid, Spain, October 8-
10 2014.

D. J. De Saint Jorre, D. Renzi, S. Casale-Brunet, M. Wiszniewska, E. Bezati and M.

Mattavelli. MPEG high efficient video coding stream programming and many-
cores scalability. In Proceedings of Conference on Design and Architectures for
Signal and Image Processing (DASIP), Madrid, Spain, October 8-10 2014.

Scientific interests
 Optimization problems in parallel systems

Digital signal processing and multimedia analysis
Music informatics

Additional
Languages

Polish (mother-tongue)

English (fluent in spoken and written)

German (fluent in spoken and written)

French (intermediate user: level B1/B2)

Hobbies

Music & Choir singing: past member of Gdansk University of Technology Choir,

 Berliner Cappella, Chœur Universitaire de Lausanne

Historical literature, cooking

References
Dr. Marco Mattavelli, SCI-STI-MM Group, EPFL
marco.mattavelli@epfl.ch, (+41) 21 69 36984

Prof. Bozena Kostek, Audio Acoustics Laboratory, Gdansk University of
Technology, bokostek@audioakustyka.org, (+48) 58 347 27 17

231

