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Abstract

Today, embedded systems can be found in a wide range of applications like
transportation systems, consumer electronics, medical equipment, industrial
applications, or computer networking devices. Embedded systems are hardware/
software systems which are dedicated to a particular task in the context of a larger
system. Depending on the application, embedded systems have to meet a wide
range of constraints like performance, power, area, reliability, safety, or security
constraints. Besides these constraints, the time to market becomes more and
more important. It follows that designing and programming embedded systems
is a challenging task.
A design methodology is therefore required which supports the automatic

decision-making and refinement process at system level, as manually performing
these tasks is time-consuming and error-prone. Here, model-based design flows
could be a solution. Supporting the automatic decision-making process at system
level, a plethora of analysis and optimization techniques have been developed
for many different formal models. In contrast, the automatic refinement of the
application model in a model-based design flow is still an open problem.
This thesis therefore proposes novel approaches for the specification and

refinement of streaming applications in a model-based design flow. To this
end, it focuses on dataflow models. In a dataflow model, concurrent modules
communicate and synchronize via packets transmitted over channels. Dataflow
models can be used to implement a wide range of streaming applications as
commonly found in the multimedia or networking domain. The most important
contributions of this thesis can be summarized as follows:
1. The proposed dataflow model provides for the most general dataflow seman-

tics, namely dynamic dataflow (DDF), which allows a wide range of streaming
applications to be implemented in principle.
2. Despite its expressiveness, the proposed dataflow model still permits the

identification of restricted dataflow models. In turn, this enables the application
of domain-specific analysis and optimization techniques that have been developed
for these restricted dataflow models.
3. At system level, binding and scheduling decisions are incorporated into

the dataflow model by means of hierarchical modules. In contrast to existing
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Abstract

hierarchical dataflow models, hierarchical modules have the same dataflow se-
mantics as non-hierarchical modules, which are used to implement the behavior
of the application. In turn, the same analysis and optimization techniques can
be applied to hierarchical and non-hierarchical modules.
4. In the proposed seamless model-based design flow, the hierarchical dataflow

model at system level constitutes the input model for subsequent hardware/soft-
ware synthesis steps at the next lower levels of abstraction. Thus, a wide range of
scheduling strategies can be synthesized in principle. More importantly, complex
model-based optimizations can still be applied during synthesis at these lower
levels of abstraction. As these optimizations can be automatically performed
based on the proposed dataflow model, the overall modeling complexity is greatly
reduced. Moreover, the proposed model-based optimizations considerably extend
the design space, as different configurations can be automatically synthesized
and evaluated during design space exploration in principle.
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Kurzfassung

Heutzutage sind eingebettete Systeme in vielfältigen Anwendungsbereichen
anzutreffen. Beispiele hierfür sind Verkehrsmittel, Unterhaltungs- und Haushalt-
selektronik, medizinische Geräte, industrielle Anwendungen, sowie Computernet-
zwerke. Eingebettete Systeme sind Hardware/Software-Systeme, die im Rahmen
eines größeren Systems eine bestimmte Aufgabe erfüllen. Je nach Anwendung
müssen eingebette Systeme unterschiedlichste Rahmenbedingungen einhalten.
Beispiele hierfür sind Rechenleistung, Stromverbrauch, Größe, Zuverlässigkeit,
Betriebssicherheit oder Informationssicherheit. Neben diesen Rahmenbedingun-
gen spielt auch die Produkteinführungszeit (engl. “time to market”) eine immer
wichtigere Rolle. Somit stellt der Entwurf und die Programmierung von einge-
betteten Systemen eine schwierige Aufgabe dar.
Aus diesem Grund wird eine Entwurfsmethodik benötigt, die es erlaubt, automa-

tisch Entscheidungen auf Systemebene zu treffen, sowie die getroffenen Entschei-
dungen automatisch in der Anwendung umzusetzen. Hier könnten modellbasierte
Entwurfsflüsse eine Lösung darstellen. In einem modellbasierten Entwurfsfluss
dient ein formales Anwendungsmodell als Eingabe für die Entscheidungsfindung
und Verfeinerung auf Systemebene. Um die automatische Entscheidungsfindung
auf Systemebene zu unterstützen, wurden bereits eine Vielzahl von Analyse-
und Optimierungsverfahren für unterschiedlichste formale Modelle entwickelt.
Andererseits ist die automatische Verfeinerung des Anwendungsmodells in einem
modellbasierten Entwurfsfluss noch ein ungelöstes Problem.
In dieser Arbeit werden deshalb neuartige Ansätze zur Spezifikation und Ver-

feinerung von Streaming-Anwendungen in einem modellbasierten Entwurfsfluss
vorgestellt. Dazu konzentriert sich die Arbeit auf Datenflussmodelle. In einem
Datenflussmodell kommunizieren nebenläufige Module durch Pakete miteinander,
die über Kanäle weitergeleitet werden. Datenflussmodelle eignen sich gut zur
Modellierung von Streaming-Anwendungen, die häufig im Multimedia- oder
Netzwerkbereich vorzufinden sind. Die wichtigsten Beiträge dieser Arbeit lassen
sich wie folgt zusammenfassen:
1. Das vorgeschlagene Datenflussmodell besitzt die allgemeinste Datenflussse-

mantik, nämlich dynamischen Datenfluss, und ermöglicht somit die Implemen-
tierung einer Vielzahl von Streaming-Anwendungen.
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Kurzfassung

2. Trotz seiner Ausdruckskraft erlaubt das vorgeschlagene Datenflussmodel
dennoch die Erkennung von eingeschränkten Datenflussmodellen. Dies wiederum
ermöglicht den Einsatz von domänenspezifischen Analyse- und Optimierungsver-
fahren, die für diese eingeschränkten Datenflussmodelle entwickelt worden sind.
3. Auf Systemebene werden getroffene Bindungs- und Ablaufplanungsentschei-

dungen durch hierarchische Module in der Anwendung umgesetzt. Im Gegensatz
zu anderen hierarchischen Datenflussmodellen besitzen die hierarchischen Module
dieselbe Datenflusssemantik wie die nicht-hierarchischen Module, die verwen-
det werden, um das Anwendungsverhalten zu implementieren. Dies wiederum
ermöglicht den Einsatz derselben Analyse- und Optimierungsverfahren sowohl
für hierarchische als auch für nicht-hierarchische Module.
4. Im vorgestellten durchgängig modellbasierten Entwurfsfluss stellt das hierar-

chische Datenflussmodell auf Systemebene das Eingabemodel für anschließende
Syntheseschritte auf den nächstniedrigeren Abstraktionsebenen dar. Somit lassen
sich prinzipiell vielfältige Ablaufplanungsverfahren synthetisieren. Wichtiger
jedoch ist die Tatsache, dass komplexe modellbasierte Optimierungsverfahren
somit auch noch während der Synthese auf diesen niedrigeren Abstraktionsebenen
eingesetzt werden können. Da diese Optimierungsverfahren basierend auf dem
vorgeschlagenen Datenflussmodell automatisch angewendet werden können, wird
damit der Modellierungsaufwand erheblich reduziert. Darüber hinaus erweit-
ern die vorgeschlagenen Optimierungsverfahren den Entwurfsraum deutlich, da
verschiedene Konfigurationen während der Entwurfsraumexploration prinzipiell
automatisch synthetisiert und evaluiert werden können.

vi



Acknowledgments

First and foremost, I would like to express my sincere gratitude to professor
Christian Haubelt and professor Jürgen Teich. As advisors, their continued
support and guidance over the past few years gave me invaluable inspiration for
my work and this thesis.
Special thanks go to my colleagues from the University of Erlangen-Nuremberg

and the University of Rostock. In particular, I want to thank Joachim Falk, Jens
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1
Introduction

Today, embedded systems can be found in a wide range of applications. Well-
known examples are transportation systems like automobiles or airplanes, con-
sumer electronics like smartphones, digital cameras, washing machines, or home
automation systems, medical equipment for the monitoring of vital signs or
medical imaging, industrial applications like factory automation systems, or
computer networking devices like routers or network adapters.
Embedded systems are hardware/software systems which are dedicated to a

particular task in the context of a larger system. Typically, they do not interface
with the environment by means of familiar human interface devices like keyboards,
mice, or computer monitors. Instead, serial or network connections are typically
used by embedded systems to exchange data with the environment. Additionally,
sensors may be used to gather information from the environment, while actuators
may be used to influence the environment.
Depending on the application, embedded systems have to meet a wide range of

constraints. Performance constraints like latency or throughput, as well as power
and area constraints can often be found in consumer electronics or networking
devices. Reliability is most important for mission-critical embedded systems
like those employed in airplanes or spacecraft, while automation systems are
expected to operate continuously without user interaction for extended time
spans like years or even decades. Safety constraints can be found in numerous
applications where failure may lead to the harming of humans. Here, medical
equipment or transportation devices are well-known examples. In particular,
safety-critical applications are typically subject to real-time constraints which
guarantee that the system reacts to certain events within strict time constraints
known as deadlines. Here, air bag control systems and anti-lock braking systems
(ABS) employed in automobiles are prominent examples. Security is important
for devices which may handle confidential data which must not be accessed or
modified by unauthorized users. Here, cryptographical algorithms are typically
used to protect information.
Besides these constraints, the time to market becomes more and more impor-

tant, especially in the context of highly competitive global markets. Here, new
features must be conceived, designed, and implemented before similar features
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1. Introduction

are integrated into products from competitors or the product demand is falling.
However, the time to market should not be reduced at the expense of the relevant
constraints outlined above. Thus, designing and programming embedded systems
is a challenging task:

1. At the system level, a wide range of heterogeneous resources are at the
designer’s disposal in order to meet the constraints identified for the par-
ticular task to be performed by an embedded system: Computing resources
like microprocessors, dedicated hardware accelerators, or analog and mixed-
signal components can be used to execute certain parts of the application.
For example, a dedicated hardware accelerator may be used instead of a
general-purpose microprocessor in order to improve the performance of
the final product. Storage resources like random-access memory (RAM)
or flash memory are used to store data. Here, storage size, access times
and the interface bandwidth are important factors w.r.t. the overall de-
sign constraints. Finally, communication resources like buses or crossbars
provide for the communication between computing and storage resources.
Thus, some questions to be answered by the designer at system level can
be stated as follows: Which resources should be selected from this set of
possible resources? Which parts of the application should be bound to
which resources that have been selected? How should resource contention
be resolved if multiple parts are bound to the same resource? Without
a design flow supporting this decision-making process, the designer must
answer these questions in an ad-hoc manner, which almost certainly would
result in some of the identified constraints not being met, thereby increasing
the time to market. Thus, a design methodology at system level is required
which supports the automatic decision-making process at system level.

2. Subsequently, the made decisions must be incorporated into the application
such that the refined application ties in with the design methodologies
used at the next lower levels of abstraction in order to provide for a
seamless design flow. However, if done manually, this refinement step is
time-consuming and error-prone. Thus, the design methodology at system
level should also support the automatic refinement process at system level.

In order to solve these problems, model-based design flows could be a solution.
In a model-based design flow, a formal application model serves as input to the
decision-making and refinement process at system level. In turn, this permits the
application of analysis and optimization techniques that have been developed for
the formal model in question, thereby supporting the automatic decision-making
process at system level. While a plethora of analysis and optimization techniques
have been developed for many different formal models, the automatic refinement
of the application model in a model-based design flow is still an open problem.
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1.1 Summary of Contributions

This thesis therefore proposes some novel approaches for the specification
and refinement of streaming applications in a model-based design flow. To this
end, it focuses on dataflow models. In a dataflow model, concurrent modules
communicate and synchronize via packets transmitted over channels. Dataflow
models can be used to implement a wide range of streaming applications as
commonly found in the multimedia or networking domain. Examples are video
compression algorithms or the packet processing performed by various components
in computer networks. The most important contributions of this thesis can be
summarized as follows:

1. The proposed dataflow model provides for the most general dataflow se-
mantics, namely dynamic dataflow (DDF), which allows a wide range of
streaming applications to be implemented in principle.

2. Despite its expressiveness, the proposed dataflow model still permits the
identification of less expressive dataflow models. In turn, this enables the
application of domain-specific analysis and optimization techniques that
have been developed for these less expressive dataflow models.

3. At system level, binding and scheduling decisions are incorporated into the
dataflow model by means of hierarchical modules. In contrast to existing
hierarchical dataflow models, hierarchical modules have the same dataflow
semantics as non-hierarchical modules, which are used to implement the
behavior of the application. In turn, the same analysis and optimization
techniques can be applied to hierarchical and non-hierarchical modules.

4. In the proposed seamless model-based design flow, the hierarchical dataflow
model at system level constitutes the input model to subsequent synthesis
steps at the next lower levels of abstraction. This enables complex model-
based optimizations to be applied even at these lower levels of abstraction.

In the following, these contributions are discussed in more detail by means of
the structure of this thesis (cf. Figure 1.1).

1.1 Summary of Contributions

Large parts of the solutions and results presented in this thesis have been
published previously. A list of all publications authored and co-authored by the
author of this thesis can be found starting at page 183. The thesis at hand
unifies and expands on several aspects of these publications in order to provide
a consistent presentation from the formal input model at system level to the
refined model at lower levels of abstraction, as described in the following.
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1. Introduction

Chapter 3:
“Model”

Chapter 4:
“Analysis”

Chapter 5:
“System
Synthesis”

Chapter 6:
“HW/SW
Synthesis”

Preceeding chapter is required

Preceeding chapter is recommended

Chapter 2:
“Motivation”

• It is shown how less expressive
dataflow models (HSDF, SDF,
CSDF, BDF, and deterministic
dataflow) can be represented and
identified.

• This allows existing analysis and
optimization techniques to be ap-
plied to the proposed model.

• A dataflow model is proposed
which provides for dynamic (i.e.,
nondeterministic) dataflow se-
mantics.

• This allows a wide range of
streaming applications to be im-
plemented.

• A framework for the HW/SW
synthesis of the proposed data-
flow model is introduced.

• Model-based optimizations like
inter-process resource sharing are
proposed.

• It is shown how binding and
scheduling decisions can be rep-
resented within the proposed
dataflow model.

• This allows a wide range of
scheduling strategies to be mod-
eled and synthesized in principle.

Figure 1.1: Dependencies between the main chapters of this thesis. While all
chapters contain own contributions, the most important contributions
can be found within the shaded chapters.

Dynamic Dataflow Model

This thesis proposes a seamless model-based design flow from the specification
at system level to lower levels of abstraction. To this end, it focuses on dataflow
models. In a dataflow model, concurrent modules communicate and synchronize
via packets transmitted over channels. Dataflow models can be used to implement
a wide range of streaming applications as commonly found in the multimedia or
networking domain. The non-hierarchical dataflow model has been presented in
[ZHF+13; ZHFT13]. A unified and comprehensive description of the proposed
dataflow model is given in Chapter 3 (cf. Figure 1.1). Suffice to say, the proposed
dataflow model provides for the most general dataflow semantics, namely DDF,
which allows a wide range of streaming applications to be implemented in
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1.1 Summary of Contributions

principle. In this context, the extension of the model by hierarchical finite state
machines (FSMs) (which are not to be confused with hierarchical modules) has
been proposed in [ZFH+10]. Please note that Chapter 2 reviews the typical steps
in the design of digital systems from the specification to an implementation in
more detail, and additionally motivates the proposed dataflow model by means
of a JPEG decoder.

Representation and Identification of Restricted Dataflow Models

The proposed dataflow model provides for the most general dataflow semantics,
namely DDF. Nevertheless, in contrast to existing dataflow models, the proposed
dataflow model still permits the identification of less expressive dataflow models.
In turn, this enables the application of domain-specific analysis and optimization
techniques that have been developed for these less expressive dataflow models.
Chapter 4 discusses the representation and identification of some well-known less
expressive dataflow models (cf. Figure 1.1). The identification of static dataflow
models has been proposed in [ZFHT08]. The corresponding discussion in Chap-
ter 4 has been adapted to the proposed dataflow model, and some proofs have been
added. The identification of more expressive dataflow models has been partially
adapted from [Lee97; BHLP09]. The representation of all considered less expres-
sive dataflow models by the proposed dataflow model represents novel work.

Model-Based Representation of Binding and Scheduling Decisions

The refinement step at system level requires binding and scheduling decisions to
be incorporated into the dataflow model. To this end, hierarchical modules are
used. In contrast to existing hierarchical dataflow models, hierarchical modules
have the same dataflow semantics as non-hierarchical modules, which are used
to implement the behavior of the application. In turn, the same analysis and
optimization techniques can be applied to hierarchical and non-hierarchical
modules. The hierarchical model has been proposed in [ZHF+13; ZHFT13]. A
unified and comprehensive description is given in Chapter 5 (cf. Figure 1.1).
Selected scheduling strategies have been evaluated to show that the proposed
hierarchical model can be used to represent a wide range of scheduling strategies in
principle. In particular, the periodic partial order scheduling strategy evaluated in
Chapter 5 has been presented in [ZHF+13]. The quasi-static scheduling strategy
evaluated in Chapter 5 is mainly driven by Falk [FKH+08; FZK+11; FZHT11;
FZHT13]. Thus, only a brief summary is given.

Model-Based Optimizations at Lower Levels of Abstraction

In the proposed seamless model-based design flow, the hierarchical dataflow model
at system level constitutes the input model to subsequent hardware/software syn-
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thesis steps at the next lower levels of abstraction. Thus, a wide range of scheduling
strategies can be synthesized in principle. More importantly, complex model-
based optimizations can still be applied during synthesis at these lower levels of
abstraction. As these optimizations can be automatically performed based on
the proposed dataflow model, the overall modeling complexity is greatly reduced.
Moreover, the proposed model-based optimizations considerably extend the design
space, as different configurations can be automatically synthesized and evaluated
during design space exploration in principle. The hardware/software synthesis of
the proposed dataflow model, as well as model-based optimizations are discussed
in Chapter 6 (cf. Figure 1.1). The overall synthesis framework has been presented
in [ZHFT12b]. The micro-architectural optimizations described in Chapter 6 have
also been presented in [ZHFT12b]. The inter-process resource sharing approach
has been introduced in [ZHFT12a] for a small number of actor instances, and has
been extended in [ZHF+14] to accommodate a large number of actor instances.
The required modeling extensions have been presented in [ZFH+10].
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2
Motivation

This chapter motivates the proposed dataflow model. To this end, Section 2.1 first
reviews the typical steps in the design of digital systems from the specification to
an implementation. In this context, the levels of abstraction from system level to
gate level are described. For example, at system level, it is decided which parts
of the application are to be computed in software, and which parts are to be
computed in hardware. Here, multiprocessor System-on-Chip (MPSoC) archi-
tectures are becoming more and more important as implementation platforms
for embedded systems due to the ever-increasing number and computational
demands of functions performed by embedded software. These heterogeneous
platforms are typically composed of computing resources like microprocessors,
dedicated hardware accelerators, or analog and mixed-signal components, stor-
age resources like random-access memory (RAM) or flash memory, as well as
communication resources like buses, crossbars, and networks on chip (NoCs).
However, without a design flow supporting these emerging complex platforms,
the designer has to perform the system synthesis in an ad-hoc manner [Mar06].
Basically, system synthesis consists of two steps: First, it is decided which parts
of the application should be bound to which resource available in the platform.
However, this may result in resource contention, which must be resolved by a
temporal scheduling of parts bound to the same resource. Second, the binding
and scheduling decisions must be incorporated into the application.
Thus, at system level, a programming model which supports this synthesis

process is desirable. Here, dataflow models of computation (MoCs) can be a
solution. In a dataflow model, concurrent modules communicate via packets
transmitted over channels. The dataflow model proposed in this thesis is described
in Chapter 3. However, while this approach cleanly separates computation
from communication, it is still unclear how the behavior of modules should be
described. For the purpose of system synthesis, modules are typically constrained
to a functional behavior, i.e., they should be platform-independent. Then, this
separation of concerns (i.e., the separation of computation from communication
and the separation of functionality from architecture) allows different bindings
of the modules to the resources available in the platform to be automatically
evaluated during design space exploration [KMN+00; KSS+09].
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After a binding of modules to resources has been determined, modules bound
to the same resource must be scheduled, as they cannot be executed concurrently.
Here, a possible solution consists in generating a multi-threaded implementation,
where each module is executed by a dedicated thread. This approach is outlined in
Section 2.2. However, in order to reduce the scheduling overhead, a single-threaded
implementation may be desirable. To this end, a formal model which provides for
the partial evaluation of a module can be extracted from the functional behavior
of each module. Then, multiple modules can be executed by a single thread in
principle. This approach is outlined in Section 2.3.

After all binding and scheduling decisions have been made, the first step in
system synthesis is finished. Subsequently, the made decisions must be incorpo-
rated into the dataflow model. For the proposed dataflow model, this second
step in system synthesis is described in more detail in Chapter 5.

2.1 System Design and Levels of Abstraction

Figure 2.1 gives an abstract view on the design process of digital systems
[KDWV02]: The starting point corresponds to the specification which has the
maximal number of degrees of freedom. In order to transform the specification
into an implementation, these degrees of freedom must be eliminated by decision-

Implementation

Evaluation

Exploration

Degrees of freedom Specification

Design Space

High

HighLow

Low

Cost

Performance

Decision Making
& Refinement

Figure 2.1: Starting from the specification, the degrees of freedom are elimi-
nated by subsequent decision-making and refinement steps until an
implementation is reached [KDWV02].
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Figure 2.2: The double roof model defines a concrete top-down design process
for digital hardware/software systems [TH07; GHP+09].

making and refinement [GHP+09]. At any level of abstraction, the input to the
decision-making process is a behavioral model. The typical problems which must
be solved by decision-making are (i) the allocation of resources, (ii) the binding
of elements comprising the behavioral model to allocated resources, and (iii) the
scheduling of elements bound to the same resource [TH07]. Subsequently, the
made decisions are incorporated into the behavioral input model by a refinement
step in order to obtain a structural output model. Together, decision-making
and refinement are known as synthesis which must be performed at each level of
abstraction. Note that a component of the structural output model corresponds
to the behavioral input model to the synthesis step at the next lower level of
abstraction.

The double roof model [TH07; GHP+09] defines a concrete top-down design
process for digital hardware/software systems. The left-hand side of the model
corresponds to the software design process, while the right-hand side corresponds
to the hardware design process. For each side, different levels of abstraction can
be identified. In turn, for each level of abstraction, the vertical arrow represents
the synthesis step (i.e., decision-making and refinement) which must be performed
in order to transform a behavioral input model into a structural output model.
In contrast, the horizontal arrows represent the selection of a component of
the structural output model to be used as the behavioral input model to the
synthesis step at the next lower level of abstraction. Note that a possible layout
roof representing the physical geometry as proposed in [GK83; WT85] has
been omitted in Figure 2.2 for the sake of clarity. While traditionally, layout
information has been of minor importance at higher levels of abstraction, it is
increasingly employed even at the system level [PDBB06; ZGDS07].

As outlined above, at system level, it is decided which parts of the application
are to be computed in software, and which parts are to be computed in hardware.

9
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For the latter, at the algorithmic level, the transition from an untimed algorithm
to a cycle-accurate structural description is performed by behavioral synthesis
(also known as high-level synthesis (HLS)). At logic level, the cycle-accurate
register-transfer level (RTL) description of the algorithm is further translated
by logic synthesis tools to obtain the netlist representing the algorithm at gate
level. At the hardware side, another level of abstraction (not shown in Figure 2.2)
is the circuit level, where the gates determined by logic synthesis are further
translated into transistors.
For parts to be computed in software, a compiler is typically used at the task

level to translate these parts from a high-level language like C/C++ or Java into
the instruction set architecture (ISA) of the target processor. Subsequently, at
the instruction level, the instruction set of programmable processors is realized
in hardware. The resulting structural model of the microarchitecture is typically
specified as an RTL description.
Note that this thesis is mainly concerned with the higher levels of abstraction,

namely the system level, the algorithmic level, and the task level. Chapter 3
presents the basic dataflow model which is used as input model at system
level. The proposed dataflow model is expressive enough to model dynamic
dataflow (DDF) applications. As a consequence, design methods applicable to
less expressive models, like the static scheduling of modules bound to the same
resource, cannot be used in the presence of such a highly expressive model. In
order to use this potential, modules which adhere to less expressive models must
be identified. This is discussed in Chapter 4. Note that this analysis is required
in order to support the decision-making process at system level. The decision-
making process itself as part of design space exploration at system level is not
discussed in the context of this thesis. Subsequently, Chapter 5 discusses the
refinement step at system level, i.e., the incorporation of binding and scheduling
decisions into the dataflow model. Finally, Chapter 6 describes the synthesis
step at the algorithmic and task levels. In particular, a synthesis framework is
presented which provides for the hardware/software synthesis of the proposed
dataflow model.
Figure 2.1 illustrates the importance to start a design flow at higher levels

of abstraction: The more degrees of freedom have already been eliminated by
previous synthesis steps, the smaller the influence of the remaining synthesis
steps becomes w.r.t. the quality indicators of the design like cost, performance,
or power consumption. In turn, this means that the possible design alternatives
at each level of abstraction are covering increasingly smaller parts of the overall
design space, as illustrated in the lower part of Figure 2.1. For example, the
four possible design alternatives depicted in the center may be the result from
providing different optimization flags to a compiler, resulting only in a minor
trade off between throughput and code size. Obviously, at this level of abstraction,
it is no longer possible to significantly improve the overall performance, which
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would instead require to go back to higher levels of abstraction, and, for example,
bind some parts of the application to hardware instead of software. However, the
later in the design process such decisions are made, the more time-consuming
(and thus expensive) the required changes become.

Thus, it is not only important to start a design flow at higher levels of ab-
straction in order to not exclude parts of the design space in the first place, but
also to obtain early estimates of the quality indicators by evaluating the design
alternatives preferably without having to construct the final product. In principle,
this allows design alternatives to be selected during the decision-making process
such that back-tracking to higher levels of abstraction is avoided.

For lower levels of abstraction, the synthesis steps are mostly well established
by existing methodologies and tools. For example, at the software side, compilers
for high-level languages have been researched for decades, and usually generate
effective and efficient machine code. Analogously, on the hardware side at logic
level, logic synthesis tools are in a similar position. At the algorithmic level,
HLS tools are used by more and more industrial design flows, as can be seen by
the broad availability of commercial HLS tools [MVG+13; For14; Cad14; Cal14;
NEC14; Xil14]. These state-of-the-art HLS tools are usually able to transform a
module into an equivalent RTL description if certain design rules are met. For
example, dynamic memory management or recursion is typically not supported.

At system level, system description languages are still an active topic of
research. Such a language should (i) provide for the functional description of the
application in order to enable early functional validation, (ii) support automatic
decision-making by providing for early quality estimation as outlined above, and
(iii) provide for automatic refinement to a lower level of abstraction, as manually
refining the application is usually time-consuming and error-prone.

Existing high-level languages like C/C++ are often used for task (i). However,
due to the sequential nature of these languages, concurrency cannot be expressed
adequately, rendering such languages unsuitable for task (ii) if the application
is mapped to a platform with multiple computing resources, which is often the
case in modern MPSoCs.

In order to address the shortcomings of sequential programming languages,
various approaches have been proposed. For example, MATLAB/Simulink can
be used to model, simulate, and analyze multidomain dynamic systems [BC12].
However, the inherent notion of simulation time makes MATLAB/Simulink
models less suitable for task (i). In contrast, system description languages like
SpecC [GZD+00] and SystemC [GLMS02] provide for the untimed and timed
simulation of models. In all approaches, a high-level model (HLM) basically
consists of a set of concurrent modules which communicate with each other via
channels.
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Figure 2.3: HLM of a JPEG decoder

Example 2.1. An example HLM is depicted in Figure 2.3, which shows the
modules and channels comprising a JPEG decoder. While the shaded vertices
represent the modules, the edges connecting the modules represent channels
with first in, first out (FIFO) semantics. In the following, the data transmitted
via FIFO channels are referred to as tokens.

In case of SpecC and SystemC, each module encapsulates one ore more processes
as known from hardware description languages like VHDL or Verilog. In this
case, the concurrent execution of processes is typically simulated by means of
a discrete-event (DE) simulation. Note that instructions comprising a single
process are always executed sequentially.

Example 2.2. Figure 2.4 shows the implementation of the InverseQuant
module from Figure 2.3. Note that the module consists of two input ports
(infoIn and dataIn), one output port (dataOut), and a single process
(thrd) declared by the SC THREAD macro. The InverseQuant module per-
forms the inverse quantization of the DC/AC coefficients comprising a minimum
coded unit (MCU) (also known as macroblock) by multiplying each coefficient
with the corresponding entry of the quantization table quantTable. To this
end, the InverseQuant module first reads the number of MCUs comprising
the image, followed by the quantization table for the image.
As implemented, the InverseQuant module assumes that an MCU consists

of 8× 8 = 64 coefficients, which in turn consist of exactly one DC coefficient
corresponding to the average brightness of the MCU, and 63 AC coefficients
corresponding to the brightness variations across the MCU. Note that the
DC/AC coefficients are computed by a discrete cosine transform (DCT) from
the brightness values of the original MCU. The IDCT2D module reverses this
operation.

Initially, an HLM based on a system description language like SpecC or
SystemC is typically constrained to a functional behavior, i.e., it should be
platform-independent. In order to obtain a timed model suitable for early quality
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1 SC_MODULE(InverseQuant) {

2 public:

3 sc_fifo_in<int> infoIn;

4 sc_fifo_in<int> dataIn;

5 sc_fifo_out<int> dataOut;

6

7 SC_CTOR(InverseQuant) {

8 SC_THREAD(thrd);

9 }

10

11 private:

12 int quantTable[64];

13

14 void thrd() {

15 while(true) {

16 // Read the number of MCUs for the next frame

17 int mcuCount = infoIn.read();

18 // Read the quantization table

19 for(int i = 0; i < 64; ++i) {

20 quantTable[i] = infoIn.read();

21 }

22 // Process the MCUs

23 for(int m = 0; m < mcuCount; ++m) {

24 for(int j = 0; j < 64; ++j) {

25 dataOut.write(dataIn.read() * quantTable[j]);

26 }

27 }

28 }

29 }

30 };

Figure 2.4: Implementation of the InverseQuant module from Figure 2.3

estimation, the HLM is typically augmented with architecture information, i.e.,
number and type of processing and communication resources including buses
and memories. By specifying the HLM binding to this architecture, and by
using estimates for execution times, so called Virtual Architecture Models can be
generated, permitting a combined functional and timed simulation, and hence,
an early quality estimation [BBDV06; SFH+06; HHP+07; SGHT09; OGM+11;
GCKR12]. In turn, this separation of concerns (i.e., the separation of computation
from communication and the separation of functionality from architecture)
directly supports the automatic decision-making at system level, as different
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bindings of the HLM to the architecture can be easily evaluated during design
space exploration [KMN+00; KSS+09].

However, the scheduling of modules bound to the same resource, which is
also part of the decision-making process as outlined above, is more difficult to
achieve for HLMs based on system description languages like SystemC. Here,
a possible solution consists in generating a multi-threaded implementation,
where each module is executed by a dedicated thread. This approach is outlined
in Section 2.2. However, in order to reduce the scheduling overhead, a single-
threaded implementation may be desirable. To this end, a formal model is typically
extracted from the functional behavior of each module which provides for the
partial evaluation of each module. Then, multiple modules can be executed
by a single thread in principle. This approach is motivated in Section 2.3.
Moreover, such a formal model enables the application of model-based analysis
and optimization techniques as described in Chapter 4 and Chapter 6. In principle,
both scheduling approaches could be evaluated during design space exploration
in order to support the automatic decision-making at system level.

Task (iii), namely the refinement of the model by incorporating binding and
scheduling decisions, is discussed in the context of this thesis solely for the
formal dataflow model proposed in Chapter 3. Basically, binding and scheduling
decisions are represented within the model by means of hierarchical modules.
This refinement approach is discussed in more detail in Chapter 5.

2.2 Multi-Threaded Scheduling

Once a binding of modules to resources has been determined, the modules bound
to the same resource must be scheduled. As each module consists of a set of
processes, a possible solution would be to transform the model into a multi-
threaded software implementation. As SystemC also provides synchronization
channels like mutexes and semaphores, communication between processes via
shared memory could be modeled and synthesized (although implementations
based on these synchronization mechanisms are usually error-prone and thus
not advisable in the general case [Lee06]). Then, for channels, a thread-safe
implementation can be provided, and multiple threads can be executed on the
same processor by means of a preemptive multitasking scheme. Here, each thread
is guaranteed a slice of processor time in regular intervals. However, this approach
requires an operating system which supports such a multitasking scheme. While
readily employed in desktop PCs, the use of such an operating system may be
infeasible in embedded systems due to limited resources.

A possible solution is to perform cooperative multitasking, i.e., tasks are exe-
cuted until they relinquish control to the governing process. Incidentally, this is
also the approach used by SystemC. Here, the governing process is the simulation
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kernel, while a task corresponds to a process of a module. Each time a process
calls wait(e), control is handed back to the simulation kernel, and the process
is suspended until the specified event e is signaled. Note that in Figure 2.4, the
wait calls are hidden in the read and write methods of the input/output
ports: If the attached input FIFO channel is empty, the process is suspended until
at least one token is available. Likewise, if the attached output FIFO channel is
full, the process is suspended until at least one free place is available. Methods
of channels which may call wait are known as blocking methods, because they
may suspend the process.

The key observation here is that it is safe to suspend a process when a wait
statement (or a blocking channel method) is encountered. Then, once a process
has been suspended, a different process may be executed on the same processor.
Basically, a process then corresponds to a coroutine, which generalize subroutines
by allowing multiple entry points for suspending and resuming execution at
certain locations. In particular, each coroutine has associated its own stack
pointer, so that stack variables are still available when a coroutine is resumed.
In principle, coroutines can be realized by means of user threads (also known as
fibers) [Sch13].

Coroutines must be scheduled by the user. In the case of SystemC, the DE
simulation kernel uses an event list which is sorted by the simulation time when
the events will be signaled. Each event has a set of associated processes which
should be activated when the event is signaled. For software synthesis, simulation
time could be ignored, thereby eliminating the need of a sorted event list. However,
some scheduling overhead caused by event management and context switching
remains which cannot be eliminated.

Example 2.3. Table 2.1 compares the different multi-threading strategies based
on the InverseQuant module from Figure 2.3. In order to obtain a complete
model, source and sink modules have been connected to the InverseQuant
module by means of three FIFO channels. All three modules have been bound
to the same core of an Intel Xeon E7-8837 processor with a clock frequency
of 2.67GHz. Linux is used as operating system. It can be observed that the
preemptive multitasking implementation based on POSIX threads (Pthreads)
suffers from the fine granularity of the model, i.e., the amount of communication
far outweighs the amount of computation performed by the InverseQuant
module. Thus, the performance is significantly degraded by the thread-safe
FIFO channel implementation, in addition to the expensive context switches
incurred by the preemptive multitasking scheme. In contrast, the SystemC
simulation performs much better than the Pthreads implementations: First,
thread-safe channels are not required. Second, the scheduling overhead is reduced
by the cooperative multitasking scheme used by SystemC, which is implemented

15



2. Motivation

FIFO channel
size

Multi-Threaded Single-Threaded
Pthreads SystemC QT DS QSS Merged

1 138440 10150 1861 384 124 54
2 135390 5730 1114 381 - -
4 135930 3680 850 356 - -
8 135190 2560 520 342 - -
16 126676 2000 418 333 - -
32 126286 1740 378 352 - -
64 124744 1570 331 340 - -
128 126742 1550 336 360 - -
256 126478 1620 318 333 - -
512 123250 1460 312 332 - -
1024 125644 1550 309 333 - -

Table 2.1: Latency (in ms) for different implementations of the InverseQuant
module from Figure 2.3 with additional source and sink modules. The
number of MCUs per frame has been set to 400000, and the given
numbers correspond to the average latency of 10 frames.

by means of the QuickThreads framework [Kep93]. Note that for larger sizes
of the FIFO channels, less context switches have to be performed, thereby
reducing scheduling overhead and improving the performance. By eliminating
the scheduling overhead imposed by the DE simulation kernel of SystemC, a
minimal implementation also based on the QuickThreads framework further
improves the latency by a factor of 5 for this example (cf. column “QT” in
Table 2.1).

2.3 Single-Threaded Scheduling

In order to further reduce the scheduling overhead, the multi-threaded implemen-
tation may be transformed into a single-threaded implementation. Compared
to the cooperative multitasking approach, this mainly requires the elimination
of the stack pointer associated with each process. To this end, an analytical
model which provides for a partial evaluation of processes must be extracted from
the process-based model. For example, such a model could be based on a finite
state machine (FSM), where the states (in the following called modes) represent
conditions in which the process is waiting for missing resources (e.g., tokens or
free places on FIFO channels), while the transitions represent instruction se-
quences which can be executed without blocking if enough resources are available.
After such an analytical model has been extracted from the process-based model,
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the individual stack pointers can be eliminated by transforming the live stack
variables of each transition into member variables of the module. Note that live
variables of a transition are variables that may be read by another (or the same)
transition before they are written. Given an FSM as described above, the live
variables can be determined by performing a classic dataflow analysis [Kil73].

In order to transform a process into an FSM as described above, an intuitive
approach first identifies all blocking channel method calls. Then, for each blocking
channel method call, a mode is allocated in which the process may wait for missing
resources corresponding to the blocking channel method call. Consequently, a
return statement is inserted into the process before each blocking channel
method call. In this way, the process is exited before a blocking channel method
is called, thereby allowing the scheduling code to execute transitions of other
processes. When enough resources are eventually available such that the blocking
channel method can be executed without blocking, we must be able to return to
the point of exit, i.e., the blocking channel method call. For example, this can be
achieved by associating a case label with the blocking channel method call, and
wrapping the process in a switch statement. Note that the blocking channel
method call corresponds to the first instruction associated with a transition.

Let M = {m0, . . . ,mn} be the set of modes allocated by the proposed transfor-
mation. Then, it can be observed that for the FSM derived from any process by
this transformation, by construction, a mode mi ∈M has exactly one outgoing
transition ti corresponding to the sequence of instructions from the blocking
channel method call associated with mi to a return statement associated with
another mode mj. However, due to complex control flow of the process, dif-
ferent return statements may be reached from the blocking channel method
call in principle. Thus, a transition ti may have a set of possible target modes
M ′(ti) ⊆M from which the concrete target mode is selected by the transition
during its execution. For each transition ti, the set of possible target modes
M ′(ti) can be efficiently determined, e.g., by means of a depth-first search (DFS)
of the control flow graph (CFG) of the transformed process starting from the
first instruction of ti, i.e., the blocking channel method call.

Example 2.4. The result of this transformation for the InverseQuant mod-
ule from Figure 2.4 is shown in Figure 2.5. As there are four blocking channel
method calls (cf. line 12, line 16, line 22, and line 25), we first allocate four
modes m1–m4 where the process is blocked waiting for resources. Note that
an additional mode m0 is allocated for one-time initialization code. Remem-
ber that each mode mi ∈ {m0, . . . ,m4} has exactly one outgoing transition
ti ∈ {t0, . . . , t4}. For example, the sole outgoing transition t3 of mode m3 corre-
sponds to lines 22–23, and the only target mode of t3 is m4, i.e., M

′(t3) = {m4}.
In contrast, knowing that the loops with constant lower and upper bounds
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1 class InverseQuantFsm {

2 public:

3 ...

4 enum Mode { M0, M1, M2, M3, M4 };

5

6 template<Mode mode> Mode thrdFsm() {

7 switch(mode) {

8 case M0:

9 while(true) {

10 return M1;

11 case M1:

12 mcuCount = infoIn.read();

13 for(i = 0; i < 64; ++i) {

14 return M2;

15 case M2:

16 quantTable[i] = infoIn.read();

17 }

18 for(m = 0; m < mcuCount; ++m) {

19 for(j = 0; j < 64; ++j) {

20 return M3;

21 case M3:

22 tmp = dataIn.read() * quantTable[j];

23 return M4;

24 case M4:

25 dataOut.write(tmp);

26 }

27 }

28 }

29 }

30 }

31

32 private:

33 int quantTable[64];

34 int mcuCount, i, m, j, tmp;

35 };

Figure 2.5: Transformed thrd process from Figure 2.4.

(lines 13 and 19) are executed at least once, the set of possible target modes for
transition t2 of mode m2 is M ′(t2) = {m1,m2,m3}.

The stack variables mcuCount, i, m, and j (cf. Figure 2.4) have been iden-
tified as live variables and consequently have been transformed into member
variables of the InverseQuant module. Note that an additional variable tmp
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has been allocated which stores the multiplied DC/AC coefficient (cf. line 22)
until it can be written on the output port dataOut (cf. line 25).
Note that the process has been transformed into a C++ template method

which must be parameterized by the desired mode m0–m4. For example, by
instantiating the template method by means of a function call thrdFsm<M1>,
a compiler should be able to eliminate the switch statement, and only retain
the instructions associated with the only outgoing transition of m1, i.e., t1.

The sequence of instructions associated with a transition is called action
function in the following. An action function can be invoked (or fired) only
if enough resources are available. To this end, the condition which determines
whether the action function may be fired or not is annotated as a guard predicate
to the transition. As each action function is associated with at most one blocking
channel method call according to the proposed transformation, each transition
also has at most one guard predicate pertaining to resources required to execute
the action function. Note that Chapter 3 extends transitions to more general
guard predicates which also permit the annotation of resource requirements for
more than one channel, as well as the evaluation of member variables and tokens
on input ports.

Example 2.5. The FSM resulting from analyzing the transformed thrd pro-
cess from Figure 2.5 is shown in Figure 2.6. Note that pseudostates (represented
by the small black circles) are used to visualize the transitions with more than
one possible target mode (cf. Example 2.4). Transitions are shown in the form
“ti: guard predicate/action function”. For example, the guard predicate of tran-
sition t1 consists of “#infoIn ≥ 1”, which encodes that at least one token
is required on input port infoIn in order to execute the associated action
function thrdFsm<M1>.

Having determined an FSM for each process of the example, the transitions of
the FSMs must be scheduled. A possible approach is to dynamically schedule
the transitions. Dynamic scheduling performs all scheduling decisions at run
time. Here, one possibility is to evaluate the modules in a round-robin fashion,
moving on to the next module if no more transitions of the current module can
be executed.

Example 2.6. Results for dynamically scheduling the transitions of the FSMs
are given in column “DS” in Table 2.1. It can be observed that for small sizes of
the FIFO channels, the dynamically scheduled single-threaded implementation
outperforms the multi-threaded implementation based on QuickThreads by
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m0 m2

m3

t4: #dataOut ≥ 1 / thrdFsm<M4>

m1

m4

t2: #infoIn ≥ 1 / thrdFsm<M2>

t0: / thrdFsm<M0>

t3: #dataIn ≥ 1 / thrdFsm<M3>

t1: #infoIn ≥ 1 / thrdFsm<M1>

Figure 2.6: FSM representing the communication behavior of the transformed
thrd process from Figure 2.5. Pseudostates (small black circles) are
used to visualize transitions with more than one possible target mode.

a factor of approximately 5. This is due to the fact that the single-threaded
implementation eliminates all context switches still required for the cooperative
multitasking scheme implemented by means of the QuickThreads framework.
For larger sizes of the FIFO channels, the dynamically scheduled single-threaded
implementation performs slightly worse than the multi-threaded implementation
based on QuickThreads due to the scheduling overhead incurred by the former.

In order to further reduce the overhead of the dynamic scheduling scheme,
a quasi-static scheduling scheme has been evaluated. A quasi-static schedule
(QSS) executes static transition sequences (that have been determined at compile
time) based on data-dependent scheduling decisions that are made at run time.
At a glance, the transitions of the modules are matched, similar to the scheme
presented in [PSB09a]. This approach results in a QSS which evaluates the
current modes of the generated FSMs at run time, but is then able to execute
static transition sequences without having to make intermediate scheduling
decisions. For example, a transition tp which produces a token onto a channel
should have a corresponding transition tc which consumes the token from the
channel. In this case, the static transition sequence 〈tp, tc〉 can be executed at
run time without having to make intermediate scheduling decisions.

Example 2.7. Consider again Figure 2.6: In order to execute transition t1, one
token is required from input port infoIn. Then, one has to find a transition
of the source module which produces the corresponding token, and so on. The
longest static transition sequence found in this way consists in the production
of a DC/AC value by the source module, followed by transitions t3 and t4 of
the InverseQuant module which transform and forward the DC/AC value,
and finally the consumption of the DC/AC value by the sink module.
Results for quasi-statically scheduling the transitions of the FSMs are given

in column “QSS” in Table 2.1. Note that increasing the sizes of the FIFO

20



2.4 Related Work and Limitations

channels makes no sense in this case, because the maximal buffer size required
by the calculated QSS is 1. Thus, increasing the sizes of the FIFO channels is,
in fact, detrimental to the performance (not shown). It can be observed that
the quasi-statically scheduled implementation outperforms the dynamically
scheduled implementation by a factor of approximately 3.

A further reduction of scheduling overhead can be achieved by manually
merging the processes bound to the same processor core into a single process.
In particular, this allows the compiler to perform some more optimizations and
improves cache locality.

Example 2.8. Results for the manually merged processes are given in the
rightmost column “Merged” in Table 2.1. It can be observed that this approach
outperforms the quasi-statically scheduled single-threaded implementation by a
factor of approximately 2.3.

In general, the influence of the scheduling overhead on the overall performance is
reduced the more coarse-grained the modules become, i.e., the more computation
is performed in relation to communication. Thus, choosing the right granularity
of modules is a challenging task. If the HLM consists only of a small number
of coarse-grained modules, the parallelism offered by the platform may not be
utilized to its full potential. Here, automatic parallelization at task level has been
studied for decades but shows success only in limited areas like loop parallelization
[GGL12]. Thus, it is a feasible approach to assume a large number of fine-grained
modules, which then, however, induces the scheduling problem as outlined above.
To reiterate, the dataflow model based on transitions is formally introduced

in Chapter 3, while the incorporation of scheduling decisions (like the QSS as
outlined above) into the model is described in Chapter 5.

2.4 Related Work and Limitations

The transformation of a multi-threaded implementation to a single-threaded
implementation has been studied before. The proposed approach is similar to the
one presented in [FZK+11]. However, in [FZK+11], the resulting FSM is based
on the CFG of the process. Thus, this results in an initially large FSM, as the
complete control flow is reflected by the FSM. As a consequence, it follows that not
all transitions perform a blocking channel method call. In order to alleviate this
problem, [FZK+11] performs a post-processing step to merge some of the modes
and transitions. In contrast, the proposed approach as outlined above generates
a minimal number of modes (and transitions) w.r.t. the number of blocking
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channel method calls (ignoring the single transition corresponding to one-time
initialization code), thereby rendering a post-processing step superfluous.
Furthermore, the modes calculated by [FZK+11] may have (i) multiple outgoing

transitions (with different communication behaviors), and (ii) transitions with
more complex guard predicates which may evaluate member variables of the
modules. By construction, each mode of the proposed approach only has one
outgoing transition. Moreover, the guard predicate of each transition consists
only of the number of resources required by the transition. Thus, scheduling
overhead is reduced, as less transitions have to be evaluated in each mode, and
no evaluation of member variables is necessary.
A similar approach is used by the asynchronous programming feature of C# 5.0

[BRM+12]. Here, asynchronous methods return task objects which implement a
similar state machine as derived by the proposed approach. While this scheme
allows a dynamic creation of tasks objects, the scheduling of transitions is tightly
coupled with the resulting state machine, i.e., custom scheduling strategies are
not supported. In contrast, the proposed approach supports custom scheduling
strategies as outlined in the previous section. However, in the general case,
dynamic creation of tasks is not supported by the proposed approach. Note that
this also prohibits the use of recursive functions if blocking channel method
calls are performed in such a function. However, as a module description should
serve for both hardware and software synthesis, recursive functions usually must
be avoided anyway, as HLS tools typically perform a similar transformation to
obtain a single, static FSM.
The FSM generated by the proposed process transformation only reflects

blocking channel methods calls. For SystemC FIFO channels, these are calls to
the read and write methods. In contrast, non-blocking channel methods are
not reflected, which may hinder analysis. However, it should be noted that these
methods are implicitly supported by the proposed process transformation, as they
can never block on missing resources. Concerning SystemC FIFO channels, the
nb read and nb write methods implicitly check if at least one token or free
place is available before consuming or producing the token. Thus, these methods
can be trivially rewritten to utilize only the blocking read and write methods
and the non-blocking num available and num free channel methods, which
can be used to explicitly perform resource availability checks before consuming or
producing tokens. While all token accesses would then be properly reflected by the
FSM, the resulting transitions would still contain calls to the num available

and num free channel methods. Moreover, similar resource availability checks
are performed by the scheduling code, thereby effectively duplicating the resource
availability checks. For the proposed dataflow model, however, eliminating the
calls to the num available and num free channel methods is not feasible in
the general case, mainly due to data-dependent control flow, and the fact that
guard predicates cannot check the absence of resources.
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Due to the ever-increasing number and computational demands of functions
performed by embedded software, multiprocessor System-on-Chip (MPSoC) ar-
chitectures are becoming more and more important as implementation platforms
for embedded systems. These heterogeneous platforms are typically composed of
multiple microprocessors, dedicated hardware accelerators, analog and mixed-
signal components, as well as interconnects like buses, crossbars, and networks on
chip (NoCs). Thus, at system level, choosing the right programming model is a
challenging task. Here, dataflow models of computation (MoCs) naturally expose
the parallelism contained in the application, and thus yield well to synthesis for
MPSoC platforms. In a dataflow model, concurrent modules communicate via
packets transmitted over channels. The resulting model is also referred to as
dataflow graph (DFG)in the following.
Figure 3.1 shows an exemplary design flow supported by the proposed dataflow

model. Note that only the steps pertaining to system synthesis are shown. Initially,
the desired behavior is specified by a DFG, where functionality is still separated
from architecture. For example, the modules of the DFG could be derived from
well-formed SystemC modules as described in Section 2.3, reused from a module
library, or written from scratch according to the model semantics described in this

a1 a2 a3 a4

r2r1

a2

a1

a4

a3

a1 a2 a3 a4

r1 r2

a4a3a2a1

Specification
DFG

Partitioned
DFG

Scheduled

System

Binding SchedulingApplication
DFG

Algorithmic/Task

Figure 3.1: Design flow supported by the proposed model. Only the steps per-
taining to system synthesis are shown (cf. Figure 2.2 on page 9).
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chapter. This application DFG (“Application DFG”) can be used, for example,
to perform functional verification. Note that the application DFG corresponds
to the non-hierarchical model which is discussed in this chapter.

After having determined a binding of modules to resources available in the
MPSoC platform, the modules of the application DFG can be partitioned accord-
ingly during the refinement step, resulting in a hierarchical DFG (“Partitioned
DFG”). This step represents a structural refinement only, and modules are still ex-
ecuted in an unconstrained manner. Next, modules assigned to the same resource
are scheduled (“Scheduled DFG”), as they cannot be executed concurrently. The
incorporation of binding and scheduling decisions into the model is discussed in
Chapter 5. The scheduled DFG serves as input to subsequent synthesis steps
of the design flow at lower levels of abstraction, namely the task level and the
algorithmic level. These synthesis steps are discussed in Chapter 6.

In Section 3.1, the basic (i.e., non-hierarchical) dataflow model and its opera-
tional semantics are described. In Section 3.2, the basic model is extended by
hierarchical finite state machines (FSMs) as known from Statecharts [Har87]
in order to cope with the complexity found in real-world applications. This
extension has been used to model the running example from the networking
domain in Chapter 6. Finally, Section 3.3 shows that the model, if restricted
to guard predicates which specify resource requirements only, is as expressive
as the unrestricted model, where guard predicates are also allowed to evaluate
member variables and tokens on input ports. Note that the restricted dataflow
model basically corresponds to the formal model which can be extracted from
well-formed SystemC modules as described in Section 2.3. Whereas Section 3.1
is required for the following chapters, Section 3.2 and Section 3.3 can be skipped
in principle.

3.1 Non-Hierarchical Model

In this section, the basic (i.e., non-hierarchical) dataflow model as introduced in
[ZHF+13; ZHFT13] is described. In order to enable model-based transformations
(including the scheduling of modules as outlined in Section 2.3), the behavior
of a module can be described by a set of firing rules [LP95]. In the following,
modules described by firing rules are referred to as actors. In turn, firing rules are
often described by means of guarded actions [RA04; BSS10]. A guarded action
consists of a guard predicate and an action function, and the guard predicate
determines whether the action function can be executed or not. Guarded actions
are particularly suited do describe dynamic dataflow (DDF) applications, where
actor firings may depend on the availability of tokens on different channels, or
on the values of actor variables. However, besides DDF actors, firing rules can
also be used to model static dataflow actors. For example, if all firing rules
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3.1 Non-Hierarchical Model

have the very same token consumption and production rates, the actor can be
classified as a synchronous dataflow (SDF) [LM87] actor. Chapter 4 discusses
the identification and representation of less expressive dataflow models in more
detail.

In the following, non-hierarchical actors are called leaf actors, while hierarchical
actors are called composite actors. The discussion of the hierarchical model is
postponed to Section 5.1, as it is mainly used to reflect binding and scheduling
decisions. It should be noted that the set of leaf actors is a strict subset of the
set of composite actors, i.e., a leaf actor is also a valid composite actor.

At a glance, leaf actors consist of a structural part (ports), and a behavioral
part (transitions). More formally, leaf actors are defined as follows:

Definition 3.1 (Leaf actor). A leaf actor a = (I, O,M,mcur,m0, v, v0, Fg, Fa, T ,
peek, cons, prod) consists of a set of input ports I, a set of output ports O, a set of
actor modes M , a current actor mode mcur ∈M , an initial value m0 ∈M formcur,
an n-tuple of actor variables v = (v1, . . . , vn) ∈ Zn representing some internal
actor state, initial values v0 ∈ Z|v| for v, a set of guard functions Fg representing
general predicates on token values or actor variables, a set of action functions
Fa, a set of transitions T implementing the behavior of the actor, a function
peek: I × Fg → N0 which specifies for each input port p ∈ I and guard function
fg ∈ Fg the number of tokens evaluated by fg, a function cons : I × Fa → N0

which specifies for each input port p ∈ I and action function fa ∈ Fa the number
of tokens consumed by fa, and a function prod: O × Fa → N0 which specifies
for each output port p ∈ O and action function fa ∈ Fa the number of tokens
produced by fa.

In principle, actor ports are connected by point-to-point channels with first in,
first out (FIFO) semantics. As the channels are part of the hierarchical actor
model, the formal definition of the resulting topology is postponed to Section 5.1.

In the following, we abstract from complex token and variable types, and assume
that they are integers, i.e., whole numbers. Note that mcur can be considered
as an additional actor variable in addition to v, which leads to the following
definition of the overall actor state:

Definition 3.2 (Actor State). The actor state s = (v,mcur) consists of the actor
variables v and the current actor mode mcur. Consequently, the initial actor state
corresponds to s0 = (v0,m0).

Guard functions are associated with transitions, and determine whether a
transition is enabled or not. To this end, they may evaluate the actor state and
tokens on input ports. More formally, each guard function fg ∈ Fg is defined as
follows:
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Definition 3.3 (Guard function). A guard function fg is a function

fg : Zpeek(i1,fg) × · · · × Zpeek(i|I|,fg) × Z|v| ×M → {⊤,⊥}

which evaluates sequences of input tokens and the actor state in order to determine
whether the governing transition is enabled or not.

It should be noted that this definition of guard functions implies that a guard
function cannot transform the actor state, nor consume or produce tokens. This
means that they are side-effect free w.r.t. the state of the model. In contrast,
action functions may transform the actor state, and usually consume or produce
tokens. More formally, each action function fa ∈ Fa is defined as follows:

Definition 3.4 (Action function). An action function fa is a function

fa : Zcons(i1,fa) × · · · × Zcons(i|I|,fa) × Z|v| ×M →

Zprod(o1,fa) × · · · × Zprod(o|O|,fa) × Z|v| ×M

which transforms sequences of input tokens into sequences of output tokens, and
may additionally transform the actor state.

Transitions combine actor modes, guard functions, and action functions in
order to form the actor FSM. More formally, transitions of leaf actors are defined
as follows:

Definition 3.5 (Transition). A transition t = (m,M ′, fg, fa) ∈ T specifies
the source mode m ∈ M in which the transition is active (i.e., considered for
evaluation), a set of possible target modesM ′ ⊆M , a guard function fg ∈ Fg, and
an action function fa ∈ Fa. A transition is well-formed in the proposed dataflow
model if ∀p ∈ I : peek(p, fg) ≤ cons(p, fa). In the following, only well-formed
transitions are considered.

Not all combinations of guard functions and action functions result in well-
formed transitions in the proposed dataflow model: For a given transition, the
guard function fg is not allowed to peek at more tokens from any input port p ∈ I

than the associated action function fa consumes, i.e., peek(p, fg) ≤ cons(p, fa).
Thus, the values of cons correspond to the overall communication behavior of
a transition, even if the guard function accesses tokens. This restriction allows
us to abstract from the values of peek for analytic purposes, because they are
subsumed by the values of cons.
It should be obvious from the above definitions that transitions in the proposed

dataflow model exhibit a static communication behavior, i.e., when executed,
a transition always consumes and produces the same number of tokens w.r.t.
an actor port, and this number is statically known at compile time. While the
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Figure 3.2: Components of the InverseQuant actor. Note that Fg = ∅ as per
construction (cf. Section 2.3).

proposed dataflow model provides for DDF actors, this property ensures that
less expressive dataflow MoCs can still be identified as described in Chapter 4.
In the following, the special guard function f⊤ is used to denote a guard function

which does not peek at tokens from input ports (i.e., ∀p ∈ I : peek(p, f⊤) = 0),
whose result does not depend on the actor state, and which always evaluates to
⊤: f⊤(〈〉, . . . , 〈〉, v,mcur) 7→ ⊤. Note that 〈〉 denotes the empty token sequence.
The guard function f⊤ is implicitly added to the set of guard functions Fg of an
actor, and permits to model transitions with no guard function.

Example 3.1. Figure 3.2 shows the InverseQuant actor from Fig-
ure 2.5 on page 18 according to the proposed dataflow model. It con-
sists of input ports I = {i1, i2}, output ports O = {o1}, variables
v = (mcuCount, i,m, j, quantTable, tmp), and action functions Fa =
{fa0, fa1, fa2, fa3, fa4}. Note that, as per construction, Fg = ∅ (cf. Section 2.3).
The initial values of the variables can be assumed to be v0 = 0, although being
derived from a SystemC thread, transition t0 is typically used to reset the
variables.

The shaded vertices in the lower part of Figure 3.2 correspond to the modes
M = {m0, . . . ,m4}, with m0 being the initial mode (cf. Figure 2.6 on page 20).
Each modemi has one outgoing transition ti, represented by the edges connecting
the modes. Remember that transitions with more than one possible target
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mode (t2 and t4 in this case) are visualized by pseudostates (small black
circles). As per construction, no transition has an associated guard function,
i.e., ∀t ∈ T : t.fg = f⊤. For the sake of clarity, the annotation of f⊤ to the
transitions in Figure 3.2 is omitted.
Concerning the token consumption and production rates, “#p ≥ n” annotated

to a transition t with action function fa specifies either cons(p, fa) = n if
p ∈ I, or prod(p, fa) = n if p ∈ O, respectively. For the sake of clarity, the
annotation of token consumption and production rates is omitted for a port
p if cons(p, fa) = 0 or prod(p, fa) = 0, respectively. For example, the token
consumption and production rates of fa1 are cons(i1, fa1) = 1, cons(i2, fa1) = 0,
and prod(o1, fa1) = 0, which can be deduced by inspecting transition t1 in
Figure 3.2.

3.1.1 Operational Semantics

In general, actors transform sequences of input tokens into sequences of output
tokens. To this end, s(p) refers to the sequence of tokens currently available on
a port p ∈ I ∪ O, while |s(p)| refers to the length of s(p), i.e., the number of
tokens currently available on a port p ∈ I ∪O.
As a transition t consists of a guard function fg ∈ Fg and an action function

fa ∈ Fa, the operational semantics of transitions can be split into two phases,
namely an evaluation phase where fg is evaluated, possibly followed by an
execution phase where fa is executed. The two phases are described in more
detail in the following sections.

Evaluation phase

During the evaluation phase, a transition t is evaluated in order to determine
whether it is enabled or not. The evaluation phase is summarized by Algorithm 3.1.
Basically, t is enabled if the current actor mode matches t.m, enough resources
are available in order to execute t.fa, and the guard function t.fg evaluates to ⊤.
In more detail, t is enabled if all of the following conditions are met:

• The current actor mode must be equal to the actor mode in which the
transition is active, i.e., mcur = t.m (cf. lines 2–4). This condition prevents
the execution of transitions which are not active according to the current
actor mode.

• On each input port p ∈ I, at least cons(p, t.fa) tokens must be available,
i.e., ∀p ∈ I : |s(p)| ≥ cons(p, t.fa) (cf. lines 5–7). This condition prevents
action functions from processing possibly invalid token values.
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3.1 Non-Hierarchical Model

Algorithm 3.1 Evaluation phase of transitions

1: procedure Evaluate(Transition t)
2: if mcur 6= t.m then

3: return ⊥
4: end if

5: if ∃p ∈ I : |s(p)| < cons(p, t.fa) then
6: return ⊥
7: end if

8: if ∃p ∈ O : |s(p)|+ prod(p, t.fa) > K(p) then
9: return ⊥
10: end if

11: return t.fg(shead(i1, t.fg), . . . , shead(i|I|, t.fg), v,mcur)
12: end procedure

• On each output port p ∈ O, at least prod(p, t.fa) free places must be
available (cf. lines 8–10). Note that in contrast to SDF graphs, channels in
our model are bounded, which is why we also perform space availability
checks.1 To reiterate, channels are part of the hierarchical actor model
which is discussed in Section 5.1. Suffice to say that in the following, the
function K: O → N is used to denote the capacity of the FIFO channel
bound to an output port p ∈ O. Then, enough free places are available on
p if |s(p)|+ prod(p, t.fa) ≤ K(p). This condition prevents action functions
from overwriting tokens which are not yet consumed from the channel.

• Finally, the guard function t.fg applied to the actor state and the token sub-
sequences from the input ports according to the values of peek must evaluate
to ⊤ (cf. line 11). To this end, on each input port p ∈ I, at least peek(p, t.fg)
tokens must be available, i.e., ∀p ∈ I : |s(p)| ≥ peek(p, t.fg). Note that for
any input port p ∈ I, the availability of at least cons(p, t.fa) tokens also
implies the availability of at least peek(p, t.fg) tokens, because according to
Definition 3.5, ∀p ∈ I : cons(p, t.fa) ≥ peek(p, t.fg). Thus, (the sequential)
Algorithm 3.1 does not explicitly perform these resource availability checks.
If enough tokens are available on each input port p ∈ I, the sequence of
available tokens s(p) can be split into two subsequences shead(p, fg) and
stail(p, fg) such that2 s(p) = shead(p, fg)

astail(p, fg), and |shead(p, fg)| =

1Note that a bounded channel can be modeled by two unbounded channels where one of the
channels contains a number of initial tokens equal to the capacity of the bounded channel.
Thus, a model with bounded channels is not more expressive than a model without bounded
channels.

2The sequence concatenation operator “a” is defined for two sequences a = 〈a1, . . . , an〉 and
b = 〈b1, . . . , bm〉 as follows: a

ab = 〈a1, . . . , an, b1, . . . , bm〉.
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peek(p, fg). Then, the result of executing fg is r = fg(shead(i1, fg), . . .,
shead(i|I|, fg), v,mcur) (cf. Definition 3.3). Thus, fg evaluates to ⊤ if r = ⊤.

When all conditions are met, t is enabled and becomes eligible for execution,
which is detailed in the next section.

Example 3.2. Consider transition t1 from Figure 3.2. As cons(i1, fa1) = 1,
cons(i2, fa1) = 0, and prod(o1, fa1) = 0 (cf. Example 3.1), only input port i1
may not have enough tokens. Therefore, t1 is enabled if mcur = t.m = m1

and |s(i1)| ≥ cons(i1, fa1) = 1. Note that the guard function t.fg = f⊤ always
evaluates to ⊤ according to its definition.

Execution phase

During the execution phase, the action function fa of a transition t is invoked,
thereby consuming and producing tokens and possibly modifying the actor state.
The execution phase is summarized by Algorithm 3.2.
First, the action function fa is applied to the actor state and the token

subsequences from the input ports according to the values of cons (cf. line 2).
Remember that the evaluation phase ensures that enough tokens are available

according to cons. Thus, analogously to the evaluation of guard functions, the
token sequence s(p) available at each input port p ∈ I can again be split into two
subsequences shead(p, fa) and stail(p, fa) such that s(p) = shead(p, fa)

astail(p, fa),
and |shead(p, fa)| = cons(p, fa).
Furthermore, the evaluation phase ensures that enough free places are available

according to prod. In the following, sprod(p, fa), denotes the sequence of tokens
produced by fa on an output port p ∈ O, i.e., |sprod(p, fa)| = prod(p, fa).

Algorithm 3.2 Execution phase of transitions

1: procedure Execute(Transition t)
2: Let (sprod(o1, t.fa), . . . , sprod(o|O|, t.fa), v

′,m′)←
t.fa(shead(i1, t.fa), . . . , shead(i|I|, t.fa), v,mcur)

3: for all p ∈ I do

4: s(p)← stail(p, t.fa)
5: end for

6: for all p ∈ O do

7: s(p)← s(p)asprod(p, t.fa)
8: end for

9: v ← v′

10: mcur ← m′

11: end procedure
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Then, the result of executing fa is (sprod(o1, fa), . . . , sprod(o|O|, fa), v
′,m′) =

fa(shead(i1, fa), . . . , shead(i|I|, fa), v,mcur) (cf. Definition 3.4). Executing fa has
the following effects on the overall model state:

• For each input port p ∈ I, the sequence of currently available tokens
s(p) is shortened by the sequence of consumed tokens shead(p, fa), i.e.,
∀p ∈ I : s(p) = shead(p, fa)

astail(p, fa)← stail(p, fa) (cf. lines 3–5).

• For each output port p ∈ O, the sequence of currently available tokens s(p)
is extended by the sequence of produced tokens sprod(p, fa), i.e., ∀p ∈ O :
s(p)← s(p)asprod(p, fa) (cf. lines 6–8).

• Finally, the actor state s = (v,mcur) is updated with the corresponding
transformed values v′ and m′ (cf. lines 9–10). Note that the selected target
mode m′ must be a valid possible target mode according to t.M ′, i.e.,
m′ ∈ t.M ′. Otherwise, the model behavior is undefined.

Example 3.3. Consider again transition t1 from Figure 3.2. Then, according
to Definition 3.4, fa1 is defined as follows:

fa1 : Zcons(i1,fa1) × Zcons(i2,fa1) × Z|v| ×M → Zprod(o1,fa1) × Z|v| ×M

Remember that cons(i1, fa1) = 1, cons(i2, fa1) = 0, and prod(o1, fa1) = 0 (cf.
Example 3.1). Thus, the definition of fa1 can be rewritten as follows:

fa1 : Z1 × Z0 × Z6 ×M → Z0 × Z6 ×M

The behavior of fa1 consists in initializing the variable mcuCount to the value
of the token s1 consumed from input port i1, setting the variable i to 0, and
selecting m2 from the set of possible target modes t1.M

′ = {m2} (cf. Figure 2.5
on page 18):

fa1(〈s1〉, 〈〉, (mcuCount, i, . . . , tmp),mcur) 7→ (〈〉, (s1, 0, . . . , tmp),m2)

The actor state s = (v,mcur) and the token sequence s(i1) are subsequently
updated accordingly.

Given a transition t, an important property of the guarded action semantics as
described above is that if the guard function t.fg peeks at some tokens on an input
port p, the action function t.fa must be provided the very same token sequence
for which t.fg has been evaluated if t is subsequently executed. Otherwise, the
model behavior is undefined.
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Requirement 3.1. Given a transition t that is evaluated and subsequently
executed. Then, for all input ports p, the sequence of tokens shead(p, t.fg) evaluated
by t.fg must be a prefix 3 of the sequence of tokens shead(p, t.fa) supplied to t.fa,
i.e., ∀p ∈ I : shead(p, t.fg) ⊑ shead(p, t.fa).

Finally, transitions of the same actor are assumed to be executed sequentially.
However, the execution of transitions may be pipelined, comparable to the
pipelining of instructions which is typically performed by processors. As such
optimizations are part of the micro-architecture generated by subsequent synthesis
steps, they are not further discussed at this point. Note that transitions may
be evaluated concurrently, as the evaluation of transitions is side-effect free.
This approach cleanly decouples the dataflow concurrency model from the FSM
semantics as proposed in [GLL99].

3.2 Hierarchical Modes

In order to cope with the complexity found in real-world applications, hierarchical
FSMs are a solution. These are characterized by the fact that modes can contain
other modes, which provides for a subsequent refinement of the behavior of an
actor. Hierarchical modes have been used to model the running example from
the networking domain in Chapter 6.
The basic model is extended by the two most important hierarchical modes

known from Statecharts, namely AND modes and XOR modes [Har87]. In the case
of XOR modes, the FSM is in exactly one of its child modes, whereas in the case
of AND modes, the FSM is in all of its child modes. The key difference compared
to [Har87] is that AND modes inherit the sequential execution semantics of
transitions as described above. In particular, this means that transitions of
different child modes of an AND mode are always executed sequentially. Thus,
AND modes cannot be used to model the concurrent execution of transitions of
an actor, but are solely used to reduce the number of modes and transitions of
an actor compared to a functionally equivalent, non-hierarchical FSM.
In order to reflect the different kinds of modes, the set of actor modes M (cf.

Definition 3.1) is partitioned into three disjoint subsets, namely M = Mleaf ∪
Mxor ∪ Mand. Here, Mleaf denotes the set of leaf modes, which correspond to
the modes from the basic model without hierarchical modes. In contrast Mxor

denotes the set of XOR modes, while Mand denotes the set of AND modes. We
use the function Mchild : Mxor ∪Mand → P(M) to denote the child modes of a
hierarchical mode, and Minit : Mxor →M to identify the user-defined initial child
mode Minit(m) ∈ Mchild(m) of an XOR mode m ∈Mxor.

3A sequence s1 is a prefix of a sequence s2, written s1 ⊑ s2, if s2 can be decomposed such
that s2 = s1

as′, where s′ is a possibly empty sequence. Obviously, the empty sequence 〈〉
is a prefix of any other sequence s, i.e., 〈〉 ⊑ s.
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Figure 3.3: a) Hierarchical modes example, and b) corresponding mode tree GM

induced by the parent/child relation of the modes. Modes m0–m4 are
leaf modes, m5,m6,mroot are XOR modes, and m7 is the only AND
mode. In order to visually convey this information, its child modes
m5 and m6 are separated by dashed lines. The set of initial modes
for the root mode is M0(mroot) = {m0,m2}.

The parent/child relation of modes induces a directed graph GM = (VM , EM ),
where the vertices VM correspond to the modes M , and for each hierarchical
mode m ∈ Mxor ∪Mand, an edge (m,m′) is added to EM for each child mode
m′ ∈ Mchild(m). We require that the induced graph does not contain cycles, i.e.,
GM must be a tree. Furthermore, we assume that a dedicated root mode mroot ∈
M exists, such that all remaining modes M ′ = M \ {mroot} are descendants of
mroot w.r.t. GM . In the following, we write m1 � m2 if m1 is an ancestor of m2

w.r.t. GM . Note that m1 � m2 also if m1 = m2. Thus, “�” defines a (non-strict)
partial order over the set of modes M . The root mode mroot is an ancestor of
every mode m ∈M (including mroot), i.e., ∀m ∈M : mroot � m.
Before discussing the operational semantics of transitions w.r.t. hierarchical

modes, we refine the notion of the current actor mode and the initial actor mode.
In principle, m0 and mcur are replaced by sets of leaf modes M0 ⊆ Mleaf and
Mcur ⊆Mleaf , respectively. This is due to the fact that, for AND modes, all child
modes are active simultaneously.
Thus, the set of initial modes for a given mode m, M0 : M → P(Mleaf) is

recursively defined as follows:

M0(m) =











{m} if m ∈Mleaf

M0(Minit(m)) if m ∈Mxor
⋃

mc∈Mchild(m) M0(mc) if m ∈Mand

(3.1)

For a leaf mode m ∈Mleaf , the set of initial modes is defined to be only the
mode m itself. For an XOR mode m ∈Mxor, the set of initial modes is recursively
computed from the user-defined initial mode Minit(m) of m. For an AND mode
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m ∈Mand, the set of initial modes is recursively computed from the initial modes
of all child modes.
Initially, the set of current modes is Mcur = M0(mroot). In the following, a

mode m ∈M is said to be active if m is an ancestor mode of one of the current
actor modes Mcur, i.e., m is active if ∃mcur ∈Mcur : m � mcur. In particular, as
the root mode mroot is an ancestor of every mode, mroot is always active.

Example 3.4. Figure 3.3 gives an example for the proposed hierarchical modes.
The overall set of modes is M = {m0, . . . ,m7,mroot}, with mroot being the root
mode. The set of leaf modes consists of Mleaf = {m0, . . . ,m4}. The set of XOR
modes consists of Mxor = {m5,m6,mroot}. The set of AND modes consists
of Mand = {m7}. The parent/child relation is indicated by the hierarchical
structure of Figure 3.3a, and the corresponding mode tree GM induced by the
mode hierarchy is shown in Figure 3.3b. For example, the child modes of the AND
mode m7 consist of the XOR modes m5 and m6, i.e., Mchild(m7) = {m5,m6}.
According to Figure 3.3a, the initial modes of the XOR modes are defined

as follows: Minit(mroot) = m7, Minit(m5) = m0, and Minit(m6) = m2. Thus, the
set of initial modes of the root mode mroot can be calculated according to
Equation (3.1) as M0(mroot) = {m0,m2}. This means that, initially, Mcur =
{m0,m2}, and hence, all modes except m1, m3 and m4 are active.

Intuitively, not all possible combinations of leaf modes result in a valid set
of current modes. Let Mactive(m) = {m′ ∈ Mchild(m) | ∃mcur ∈Mcur : m

′ � mcur}
be the set of active child modes of a hierarchical mode m ∈Mxor ∪Mand.

Definition 3.6 (Valid set of current modes). A set of current modesMcur ⊆Mleaf

is valid if the following conditions hold for all hierarchical modesm ∈Mxor∪Mand:

• If m ∈Mxor (i.e., m is an XOR mode), at most one of its child modes must
be active: |Mactive(m)| ≤ 1. Note that if none of its child modes are active,
m is not active, which is perfectly valid.

• If m ∈ Mand (i.e, m is an AND mode), either none of its child modes
must be active, or all of its child modes must be active: |Mactive(m)| =
0 ∨ |Mactive(m)| = |Mchild(m)|. Again, if none of its child modes are active,
m is not active, which is also perfectly valid in this case.

Example 3.5. Consider again Figure 3.3. Initially, Mcur = {m0,m2}, which
represents a valid set of leaf modes: Mactive(m5) = {m0}, Mactive(m6) = {m2},
Mactive(m7) = {m5,m6}, and Mactive(mroot) = {m7}. In contrast, Mcur = {m1}
would be an invalid set of modes, because |Mactive(m7)| = |{m5}| = 1 6= 2 =
|Mchild(m7)|.
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3.2 Hierarchical Modes

Transitions are not modified compared to the basic model, i.e., a transition t

specifies a single source mode m ∈M in which it is active, and a set of possible
target modes M ′ ⊆M . The operational semantics of the hierarchical FSM are
defined in terms of the non-hierarchical FSM from Definition 3.1. To this end,
the hierarchical FSM must be flattened. This can be achieved, for example, by a
symbolic execution of the hierarchical FSM which computes all reachable sets of
modes, starting from the initial set of modes M0(mroot). This process is detailed
in the following section.

3.2.1 Operational Semantics

Starting with a valid set of current modes Mcur = M0(mroot) according to
Definition 3.6, each transition t ∈ T is analyzed whether it is active according to
the set of current modes Mcur or not. Note that the transitions can be processed
in isolation, as AND modes inherit the sequential execution semantics of the
basic model, i.e., transitions of different child modes of an AND mode are always
executed sequentially. A transition t is active if its source mode t.m is active, i.e.,
if ∃mcur ∈ Mcur : t.m � mcur. If t is active according to Mcur, for each possible
target mode m′ ∈ t.M ′, the set of target modes in the hierarchical model is
calculated based on the set of current modes Mcur.
Executing an active (and enabled) transition t means transitioning the FSM

from mode t.m to a mode m′ ∈ t.M ′. In the following, m denotes t.m, while m′

denotes a possible target mode m′ ∈ t.M ′. Then, transitioning the FSM from a
mode m to a mode m′ corresponds to a traversal of the mode tree GM induced by
the mode hierarchy: Starting from the source mode m, GM is traversed upwards
until the lowest common ancestor (LCA) mode m̂ of m and m′ is reached. The
LCA mode m̂ = lca(m1,m2) of two modes m1 and m2 is a mode m̂ such that
m̂ � m1 ∧ m̂ � m2 ∧ ∄m̂′ 6= m̂ : m̂′ � m1 ∧ m̂′ � m2 ∧ m̂ � m̂′. Note that in
case of the rooted mode tree GM , such an LCA mode can always be found for
two modes. The modes encountered during this upward traversal are left (i.e.,
become inactive), including the LCA mode m̂. Then, starting from the LCA
mode m̂, GM is traversed downwards until the target mode m′ is reached. The
modes encountered during this downward traversal are entered (i.e., become
active), including the LCA mode m̂. The resulting set of active leaf modes M ′

cur

then becomes the new set of current modes Mcur.

Example 3.6. Consider again Figure 3.3. Given the initial set of current modes
Mcur = {m0,m2}, only transitions t2 and t5 are active: For t2, we have that
t2.m = m2 � m2 ∈ Mcur, and for t5, we have that t5.m = m7 � m0 ∈ Mcur.
If t2 is executed, the FSM transitions from mode m2 to mode m3. It follows
that m̂ = lca(m2,m3) = m6 (cf. Figure 3.3b). The tree traversal results in the
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Algorithm 3.3 Selection of child modes

1: procedure Mselect(m ∈Mxor,m
′ ∈M)

2: if ∃mc ∈ Mchild(m) : mc � m′ then

3: return mc

4: else

5: return Minit(m)
6: end if

7: end procedure

following operations: (1) leave m2, (2) leave m6, (3) re-enter m6, and (4) enter
m3. The new set of current modes is therefore M ′

cur = {m0,m3}.
If t5 is executed, the FSM transitions from mode m7 to mode m7. In this

case, it follows that m̂ = lca(m7,m7) = m7. The tree traversal results in the
following operations: (1) leave m7, and (2) re-enter m7. The new set of current
modes is therefore M ′

cur = {m0,m2}.

We still have to formalize the concepts of leaving and entering a mode m.
Leaving a mode means that all leaf modes which are descendants of m become
inactive. More formally, function leave calculates this set of leaf modes for a
given mode m:

leave(m) = {ml ∈Mleaf | m � ml} (3.2)

The entering of a mode m is more complicated, as the semantics depend on the
kind of mode that is entered and the target mode m′. To this end, the procedure
to determine the set of initial modes of a mode (cf. Equation (3.1)) is modified
such that when entering an XOR mode m, the initial mode Minit(m) ∈ Mchild(m)
is only entered (i.e., becomes active) if no other child mode mc ∈ Mchild(m) exists
which is an ancestor mode of the target mode m′. If such a child mode mc exists,
mc must be entered instead of the user-defined initial mode Minit(m). This mode
selection process is summarized by Algorithm 3.3. Function enter is then defined
as follows:

enter(m,m′) =











{m} if m ∈Mleaf

enter(Mselect(m,m′),m′) if m ∈Mxor
⋃

mc∈Mchild(m) enter(mc,m
′) if m ∈Mand

(3.3)

Given a set of current modes Mcur, a source mode m, a target mode m′, and
the LCA mode m̂ of m and m′, the new set of current modes M ′

cur can then be
calculated as follows:

M ′
cur = (Mcur \ leave(m̂)) ∪ enter(m̂,m′) (3.4)
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3.2 Hierarchical Modes

Example 3.7. Consider again Figure 3.3. Given the initial set of current modes
Mcur = {m0,m2}, only transitions t2 and t5 are active (cf. Example 3.6). If
t2 is executed, the FSM transitions from mode m2 to mode m3. In this case,
it follows that m̂ = lca(m2,m3) = m6 (cf. Figure 3.3b). Thus, leave(m6) =
{m2,m3}, and enter(m6,m3) = {m3} (because Mselect(m6,m3) = m3). Thus,
M ′

cur = ({m0,m2} \ {m2,m3}) ∪ {m3} = {m0,m3}.
If t5 is executed, the FSM transitions from mode m7 to mode m7. In this case,

it follows that m̂ = lca(m7,m7) = m7. Thus, leave(m7) = {m0,m1,m2,m3},
and enter(m7,m7) = {m0,m2}. Thus, M

′
cur = ({m0,m2} \ {m0,m1,m2,m3}) ∪

{m0,m2} = {m0,m2} = Mcur.

Theorem 3.1. Given a source mode m ∈M , a target mode m′ ∈M , and a valid
set of current modes Mcur according to Definition 3.6. Then, the set of target
modes M ′

cur computed by Equation (3.4) is also a valid set of modes according
to Definition 3.6.

Proof. Let m̂ = lca(m,m′). If a mode me ∈M is entered, it follows that m̂ � me.
However, leave(m̂) leaves all child modes which are descendants of m̂. As me is
a descendant of m̂, it directly follows that, in particular, all child modes which
are descendants of me are left by leave(m̂). Thus, if me is entered, it cannot
be active anymore. To complete the proof, we have to show that enter as per
Equation (3.3) is correct according to Definition 3.6. However, this is trivially
accomplished: for a leaf mode me ∈ Mleaf , only me itself is entered. For an
XOR mode me ∈Mxor, exactly one mode according to Mselect(me,m

′) is entered.
Finally, for an AND mode me ∈Mand, all child modes are entered. This behavior
adheres to Definition 3.6.

An immediate consequence of Theorem 3.1 is that all combinations of source
and target modes are valid for a transition t. The FSM flattening procedure is
summarized by Algorithm 3.4. Note that each mode m ∈ M of the flattened
FSM corresponds to a set of leaf modes of the hierarchical FSM. At a glance,
the algorithm selects an unprocessed set of modes as the current set of modes
Mcur, and subsequently determines the transitions which are active in Mcur (cf.
lines 6–8). Then, for each active transition, the set of possible target modes
M ′ of the transition w.r.t. the flattened FSM are computed (cf. lines 9–14).
Subsequently, a transition t is added to the set of transitions T of the flattened
FSM (cf. lines 15–16). Finally, the set of possible target modes M ′ is added to
the set of modes M of the flattened FSM (cf. line 17). When all transitions
which are active in Mcur have been processed, the current set of modes Mcur is
marked as processed (cf. line 20). When no unprocessed set of modes remains,
the flattening process is finished, and the flattened FSM is returned (cf. line 22)
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Algorithm 3.4 Flattening of hierarchical FSMs

1: procedure FlattenFSM(Modes M , Root mode mroot ∈M , Transitions T )
2: Let m0 ←M0(mroot) ⊲ Initial mode of the flattened FSM
3: Let M ← {m0} ⊲ Modes of the flattened FSM
4: Let T ← ∅ ⊲ Transitions of the flattened FSM
5: Let Mp ← ∅ ⊲ Processed sets of modes
6: for all Mcur ∈M \Mp do

7: for all t ∈ T do

8: if ∃mcur ∈Mcur : t.m � mcur then

9: Let M ′ ← ∅
10: for all m′ ∈ t.M ′ do

11: Let m̂← lca(t.m,m′)
12: Let m′ ← (Mcur \ leave(m̂)) ∪ enter(m̂,m′)
13: M ′ ←M ′ ∪

{

m′
}

14: end for

15: Let t = (Mcur,M ′, t.fg, t.fa)
16: T ← T ∪

{

t
}

17: M ←M ∪M ′

18: end if

19: end for

20: Mp ←Mp ∪ {Mcur}
21: end for

22: return (M,m0, T )
23: end procedure

Example 3.8. The flattened FSM corresponding to the hierarchical FSM from
Figure 3.3 is shown in Figure 3.4a. The initial modem0 = {m0,m2} = M0(mroot)
corresponds to the initial set of modes for the root mode of the hierarchical
FSM. While the number of modes of the flattened FSM is equal to the number
of leaf modes of the hierarchical FSM, the former has more than twice as many
transitions as the latter.

3.2.2 Implementation

While the flattening of a hierarchical FSM is useful for analytic purposes, an
implementation may abstain from doing so, because the number of modes and
transitions may become very large. A more efficient solution consists in keeping
the hierarchical FSM. To this end, a bit vector of size |Mleaf | can be allocated,
where a bit bi corresponds to a leaf mode mi ∈Mleaf . Bit bi is set only if mi is
active, i.e., if mi ∈Mcur.
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a) Flattened FSM b) Bit vector

Figure 3.4: a) Flattened FSM corresponding to the hierarchical FSM from Fig-
ure 3.3, and b) bit vector reflecting the leaf modes from Figure 3.3.

Example 3.9. A possible bit vector for the leaf modes of the hierarchical FSM
from Figure 3.3 is shown in Figure 3.4b. As the initial set of current modes is
Mcur = M0(mroot) = {m0,m2}, only the bits corresponding to leaf modes m0

and m2 are set initially.

Given such a bit vector, the following operations can be efficiently implemented:

• In order to determine whether a mode m ∈M is active, at least one of the
bits corresponding to m must be set.

• In order to leave a mode m, the bits corresponding to leave(m) must be
cleared.

• In order to enter a mode m, the bits corresponding to enter(m,m′) must
be set (m′ is the target mode).

As the functions enter and leave only depend on the source mode and possible
target modes of a transition and not on the set of current modes, the corresponding
bit masks can be precomputed at compile time.

Example 3.10. Consider again Figure 3.3 and Figure 3.4b. All modes except
m4 are active. For example, the bits corresponding to m6 are (1, 0) 6= 0. The
bits corresponding to m7 are (1, 0, 1, 0) 6= 0.
Given the initial set of current modes Mcur = {m0,m2}, only transitions t2

and t5 are active (cf. Example 3.6). If t2 is executed, the FSM transitions from
mode m2 to mode m3. As m̂ = lca(m2,m3) = m6, it follows that leave(m6) =
{m2,m3} and enter(m6,m3) = {m3} (cf. Example 3.7). Concerning the bit
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vector, leave(m6) clears the corresponding bits, resulting in a new bit vector
(1, 0, 0, 0, 0). Subsequently, enter(m6,m3) sets the corresponding bits, resulting
in a new bit vector (1, 0, 0, 1, 0).

3.2.3 Extensions

In [ZFH+10], hierarchical transitions have been extended compared to transitions
of the basic model. In particular, a transition t may specify a set of modes M+

(in addition to t.m) which must also be active, and a set of modes M− which
must not be active. This behavior can be easily achieved by extending the notion
of an active mode.
Furthermore, a transition t may specify a set of modes which are entered when

t is executed (not to be confused with the set of possible target modes t.M ′, of
which exactly one mode is entered when t is executed). This behavior can be
easily achieved by extending the function enter to accommodate a set of target
modes.

3.3 Restricted Model

In this section, a restricted actor model is described which does not allow the
use of guard functions. It can be observed that this restricted model may lead to
more accurate analysis results and moreover simplifies some synthesis tasks as
outlined in the corresponding sections. For example, in the context of hardware
synthesis, some data hazards cannot occur in the absence of guard functions.
In the following, it is shown that the restricted model is as expressive as the
basic actor model. To this end, the basic model is transformed into the restricted
model. However, in the worst case, the number of modes may grow exponentially
due to this transformation. As result, we can conclude that certain problems can
be represented much more efficiently (i.e., by smaller FSMs) by the use of guard
functions. Moreover, guard functions are side-effect free by definition, which
allows them to be evaluated in parallel in principle. This parallelism is lost in
the restricted model.
The restricted model is derived from the basic model by eliminating the set

of guard functions Fg and the function peek from Definition 3.1, and the guard
function fg from Definition 3.5. Concerning the operational semantics, line 11 of
Algorithm 3.1 is replaced by “return ⊤”. Note that the process transformation
as outlined in Section 2.3 generates transitions which adhere to the restricted
actor model, i.e., they don’t require guard functions.
In order to transform an FSM with guard functions into an equivalent FSM

without guard functions, one possibility is to perform a symbolic evaluation,
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like done for the transformation of hierarchical FSMs into the basic model (cf.
Algorithm 3.4). To this end, starting from the initial mode m0, all outgoing
transitions are transformed into transitions t′ = (m,M ′, fa) according to the
restricted model as explained in the following.
First, each transition t = (m,M ′, fg, fa) is split into two partial transitions,

namely t′grd = (m, {m⊤,m⊥} , f
′
g) and t′act = (m⊤,M

′, f ′
a). Basically, the action

function f ′
g of t′grd evaluates the guard function fg, while the action function f ′

a

of t′act executes the action function fa. Note that ti must be split in the general
case because tokens may be produced by fa, i.e., if ∃p ∈ O : cons(p, fa) > 0. In
this case, the tokens can only be produced if fg evaluates to ⊤.
When t′grd is executed, its action function f ′

g evaluates the guard function fg.
For the sake of readability, we assume that t′grd consumes all tokens according
to the values of cons, and not just those specified by peek. As the result of fg
cannot be queried by guard functions in the restricted model, it is captured
by two additional modes m⊤ and m⊥ which are the possible target modes of
t′grd. Additionally, f

′
g caches the tokens consumed from an input port p ∈ I

in additional actor variables. This corresponds to the semantics of the basic
model which requires that guard functions do not consume tokens: The cached
tokens are valid until a partial transition t′act is executed which “consumes” (i.e.,
invalidates) some (or all) of these cached tokens. In the following, we use the
function cvalid : I ×M → N0 to denote the number of valid cached tokens in a
mode m for an input port p ∈ I.
Then, for the partial transition t′grd attached to mode m, it follows that ∀p ∈

O : prod(p, f ′
g) = 0, and ∀p ∈ I : cons(p, f ′

g) = max {0, cons(p, fa)− cvalid(p,m)}.
Note that if enough tokens are cached, no tokens have to be consumed at
all. For the possible target modes m⊤ and m⊥ of t′grd, it follows that ∀p ∈
I : cvalid(p,m⊤) = cvalid(p,m⊥) = cvalid(p,m) + cons(p, f ′

g) = cvalid(p,m) +
max {0, cons(p, fa)− cvalid(p,m)} = max {cvalid(p,m), cons(p, fa)}. The maximal
number of tokens cached for an input port p can be statically determined to
cmax(p) = maxfa∈Fa

{cons(p, fa)}. In the following, vcache(p) denotes the cmax(p)-
tuple of actor variables used to cache the tokens consumed from an input port
p ∈ I. In addition, vorig denotes the original actor variables without the added
variables used as token cache.

The partial transition t′act is only active in mode m⊤, and waits for free places.
Note that all tokens required by t′act have already been consumed (and cached)
by t′grd. When executed, its action function f ′

a executes the action function
fa. Thus, for the partial transition t′act attached to mode m⊤, it follows that
∀p ∈ O : prod(p, f ′

a) = prod(p, fa), and ∀p ∈ I : cons(p, f ′
a) = 0. Furthermore,

for the possible target modes M ′ of t′act, it follows that ∀m′ ∈ M ′ : ∀p ∈ I :
cvalid(p,m

′) = cvalid(p,m⊤)− cons(p, fa).
Note that the mode m⊥ has no outgoing transitions (for now), as t′act is only

attached to m⊤: If the original transition t is the only transition attached to its
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Algorithm 3.5 Behavior of the action function f ′
g

1: procedure f ′
g(shead(i1, f

′
g), . . . , shead(i|I|, f

′
g), v,m)

2: Let vorig
avcache(i1)

a . . .avcache(i|I|)← v

3: for all p ∈ I do

4: Let vvalid(p)
avupdate(p)

avinvalid(p)← vcache(p)
s.t. |vvalid(p)| = cvalid(p,m) and |vupdate(p)| =

∣

∣shead(p, f
′
g)
∣

∣

5: Let v′cache(p)← vvalid(p)
ashead(p, f

′
g)

avinvalid(p)

6: Let vhead(p)
avtail(p)← v′cache(p) s.t. |vhead(p)| = peek(p, fg)

7: end for

8: if fg(vhead(i1), . . . , vhead(i|I|), vorig,m) = ⊤ then

9: Let m′ ← m⊤

10: else

11: Let m′ ← m⊥

12: end if

13: Let v′ ← vorig
av′cache(i1)

a . . .av′cache(i|I|)
14: return (〈〉, . . . , 〈〉, v′,m′)
15: end procedure

source mode t.m, it can be observed that the original FSM would be stuck in
mode t.m if the guard function t.fg evaluates to ⊥: Once evaluated, the result
of t.fg can only change if some of the tokens accessed by t.fg are consumed, or
if the actor variables read by t.fg are modified. Both conditions, however, can
only be met if a transition of the actor in question is executed. (Remember that
we assume channels to be point-to-point connections.) However, as t is the only
transition attached to its source mode t.m, and t.fg is assumed to evaluate to
⊥, no other transition can be executed for the actor in question. Consequently,
the transformed FSM would be stuck in mode m⊥ in this case. If the mode t.m

has some outgoing transitions besides t, the partial transitions of all outgoing
transitions of t.m will be interleaved. Then, m⊥ has some outgoing transitions
in principle. This interleaving of partial transitions is described later.

Algorithm 3.5 summarizes the behavior of f ′
g: First, for each input port p ∈ I,

v′cache(p) is computed from vcache(p) by replacing the appropriate token subse-
quence by the tokens consumed from p (i.e., shead(p, f

′
g)) (cf. lines 3–7). Note

that in particular, cached tokens which are already valid are not overwritten.
Subsequently, the guard function fg is evaluated, which determines the target
mode of the transition (cf. lines 8–12). To this end, the cached tokens are supplied,
as well as the original actor variables. Finally, the modified actor variables and
the selected target mode are returned by f ′

g (cf. line 14). Note that f ′
g does not

produce any tokens, i.e., ∀p ∈ O : cons(p, f ′
g) = 0, corresponding to the empty

sequences in line 14.
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Algorithm 3.6 Behavior of the action function f ′
a

1: procedure f ′
a(shead(i1, f

′
a), . . . , shead(i|I|, f

′
a), v,m)

2: Let vorig
avcache(i1)

a . . .avcache(i|I|)← v

3: for all p ∈ I do

4: Let vhead(p)
avtail(p)← vcache(p) s.t. |vhead(p)| = cons(p, fa)

5: Let v′cache(p)← vtail(p)
avhead(p)

6: end for

7: Let (sprod(o1, f
′
a), . . . , sprod(o|O|, f

′
a), v

′
o,m

′)←
fa(vhead(i1), . . . , vhead(i|I|), vorig,m)

8: Let v′ ← v′o
av′cache(i1)

a . . .av′cache(i|I|)
9: return (sprod(o1, f

′
a), . . . , sprod(o|O|, f

′
a), v

′,m′)
10: end procedure

Algorithm 3.6 summarizes the behavior of f ′
a: First, for each input port p ∈ I,

v′cache(p) is computed from vcache(p) by invalidating the tokens consumed by fa
(cf. lines 3–6). Subsequently, the action function fa is executed (cf. line 7). To
this end, the cached tokens are supplied, as well as the original actor variables.
Subsequently, the produced tokens, the modified actor variables, and the selected
target mode are returned by f ′

a (cf. line 9).

Example 3.11. Consider the FSM shown in Figure 3.5a. It consists of the single
modem0 and two transitions t1 and t2, both of which are attached tom0. Initially,
splitting t1 results in t′1 = (m0, {m1⊤,m1⊥} , f

′
g1) and t′2 = (m1⊤,m0, f

′
a1), while

splitting t2 results in t′3 = (m0, {m2⊤,m2⊥} , f
′
g2) and t′4 = (m2⊤,m0, f

′
a2). While

f ′
g1 evaluates fg1 as described in Algorithm 3.5, f ′

a1 executes fa1 as described in
Algorithm 3.6. Analogously, f ′

g2 evaluates fg2, and f ′
a2 executes fa2. The number

of valid cached tokens is annotated as tuple (cvalid(i1,m), cvalid(i2,m)) to each
mode m. For example, in mode m1⊤, one token from i1 is cached, while for i2,
no tokens are cached. In contrast, in mode m2⊤, no tokens from i1 are cached,
while for i2, one token is cached.

Having determined the partial transitions, the next step of the transformation
process consists in interleaving the partial transitions of all outgoing transitions
of a mode m. While only described informally, this step is necessary due to
the additional modes m⊤ and m⊥ which have been introduced to capture the
result of a guard function: On the one hand, if the FSM transitions into m⊤

by means of t′i,grd, and if t′i,act is the only outgoing transition of m⊤, the FSM
would remain in m⊤ until enough free places are available in order to execute
f ′
a, which may never be the case, depending on the behavior of the environment.
On the other hand, if the FSM transitions into m⊥, no outgoing transitions
means that the FSM would be stuck in m⊥ indefinitely. Both cases show that
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m0

t1 : #i1 ≥ 1 ∧#o1 ≥ 1 ∧ fg1 / fa1

t2 : #i2 ≥ 1 ∧#o2 ≥ 1 ∧ fg2 / fa2

i2

i1 o1

o2

a) FSM with guard functions
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t′10 : #o1 ≥ 1 / f ′
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g1

t′5 : #i2 ≥ 1 / f ′
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g2

t′4 : #o2 ≥ 1 / f ′
a2

(0, 1)

t′12 : #o2 ≥ 1 / f ′
a2 (1, 0)

b) Equivalent (partial) FSM without guard functions

Figure 3.5: Transformation of an FSM with guard functions (a) into an equivalent
FSM without guard functions (b). The tuple annotated to a mode m
specifies the values of cvalid(i1,m) and cvalid(i2,m).

the partial transition t′j,grd of another transition tj 6= ti with tj.m = ti.m must be
attached to both modes m⊤ and m⊥, which, of course, requires duplicating t′j,grd
appropriately. The interleaving process results in new modes which encode all
possible combinations of guard results. For each of these modes m, the number
of valid cached tokens cvalid(p,m) corresponds to the maximal number of tokens
consumed from each input port by the partial transitions t′i,grd and t′j,grd.

Example 3.12. Consider again the FSM shown in Figure 3.5a. Interleaving
the partial transitions corresponding to transitions t1 and t2 leads to the four
additional modes which encode the results of both fg1 and fg2. For example,
both modes m1⊤ and m1⊥ now have outgoing transitions, namely t′5 and t′6,
which correspond to the partial transition t′3. Analogously, both modes m2⊤

and m2⊥ now have outgoing transitions, namely t′7 and t′8, which correspond to
the partial transition t′1 (cf. Example 3.11). However, if both guard functions
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fg1 and fg2 have been evaluated to false, the FSM transitions into mode m1⊥,2⊥

which has no outgoing transitions. Note that in all four additional modes, one
token is cached for each input port i1 and i2.

While interleaving the partial transitions is necessary in order to not introduce
deadlocks into the model, it also creates a new problem: There may still exist
valid cached tokens even after a partial transition t′act has been executed. Given
two transitions ti and tj , ti 6= tj . Assume that first, the partial transition t′i,grd is
executed, then t′j,grd, and finally t′j,act. This means that t′i,grd may consume (and
cache) tokens which are not required by t′j,grd. In turn, these cached tokens are
still valid after t′j,act has been executed.
Let m′ ∈ t.M ′ be a possible target mode of a transition t for which the partial

transition t′act has been executed. Assume that a token cache configuration
is already associated with m′ where no cached tokens are valid, i.e., ∀p ∈ I :
cvalid(p,m

′) = 0. If after executing t′act, however, some cached tokens are still
valid,m′ is not a feasible target mode, as the calculated token cache configuration
conflicts with the values of cvalid for mode m′. In this case, a new mode m′

k must
be allocated corresponding to m′, and the possible set of target modes of t′act
is set to t′act.M

′ = (t.M ′ \ {m′}) ∪ {m′
k}. Note that the outgoing transitions of

m′ are duplicated and attached to m′
k accordingly. Subsequently, the calculated

token cache configuration is associated with m′
k. Depending on the interleaving

of partial transitions, multiple such modes may be allocated for a mode m′, each
of which corresponds to a different token cache configuration.
The transformation process then continues with m′

k. The transformation
process is finished when a fixed point is reached, i.e., no new modes are added
to the FSM according to the restricted model.

Example 3.13. Consider again the FSM shown in Figure 3.5b. Assume that t′1
is executed first, followed by t′5, and finally, t′11. In this case, the token consumed
from i1 which is cached by t′1 is still valid after both t′5 and t′11 have been
executed (which corresponds to transition t2 in Figure 3.5a). In contrast, the
token consumed from i2 which is cached by t′5 is no longer valid. Thus, mode m0,2

encodes cvalid(m0,2, i1) = 1 and cvalid(m0,2, i2) = 0. Starting from mode m0,2, the
transformation procedure basically duplicates the FSM shown in Figure 3.5b,
but for i1, reduces the values of cons accordingly (not shown). Analogously,
mode m0,1 encodes cvalid(m0,1, i1) = 0 and cvalid(m0,1, i2) = 1, leading again to
a duplication of the FSM from Figure 3.5b with reduced values of cons for i2.
Note that for mode m0, cvalid(m0, i1) = 0 and cvalid(m0, i2) = 0.

Let T (m) = {t ∈ T | t.m = m} be the set of outgoing transitions of a mode
m ∈M , and n = |T (m)| ≥ 1. For the worst case interleaving of split transitions
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resulting from T (m), it can be shown that the number of modes Mguard(m) which
encode the results of guard functions amounts to:

|Mguard(m)| =
n
∑

k=1

(

n

k

)

2k = 3n − 1 = 3|T (m)| − 1 (3.5)

Thus, the number of modes Mguard(m) grows exponentially with the number of
outgoing transitions of a mode m. The transformation procedure shows that
while it is possible to cope without guard functions, certain problems can be
represented much more efficiently (i.e., by smaller FSMs) by the use of guard
functions. Moreover, guard functions are side-effect free by definition, which
allows them to be evaluated in parallel in principle. This parallelism is lost by
the FSM corresponding to the restricted model, where the guard functions are
evaluated by action functions.
Note that if transitions of the basic model would be restricted to a single

possible target mode, the transformation procedure described above would be
no longer applicable. In this case, the basic model with guard functions would
be more expressive than the restricted model without guard functions.

3.4 Related Work and Limitations

One of the first modeling approaches integrating FSMs with dataflow models
is *charts (pronounced ”star charts”) [GLL99]. The *charts approach focuses
on the nesting of hierarchical FSMs within a variety of concurrency models, like
dataflow, synchronous/reactive (SR), and discrete-event (DE). For this purpose,
*charts pursue a “black box” approach, i.e., on each level of hierarchy, a set of
connected actors is described, while actors are treated as black boxes. As will
be seen, this approach is comparable to the hierarchical model introduced in
Section 5.1. However, the FSM is only used to control the nested actors, but
cannot be used to describe the behavior of the nested dataflow actors. To this
end, a separate modeling formalism must be used. In order to embed DDF actors,
the modeling formalism must describe these actors by means of firing rules. As
the proposed approach is based on firing rules (cf. Definition 3.5), it could be
used by hierarchical FSMs according to the *charts approach.
The CAL actor language presented in [EJ03] is part of the Ptolemy II project

[EJL+03]. In CAL, actors are described by means of actions, which are similar
to transitions of the proposed dataflow model. In particular, an action consists
of an input pattern which specifies the tokens to be consumed from each input
port, an output pattern which specifies the tokens to be produced on each output
port, a guard expression which may evaluate token values and actor variables,
and an action body which can modify the actor variables. Moreover, actions

46



3.4 Related Work and Limitations

may be scheduled by means of an FSM or regular expressions (which, of course,
can be transformed into each other). The main difference between CAL and
the proposed approach is that in CAL, the number of tokens consumed and
produced inferred from the input patterns and output patterns may depend on
actor variables. Thus, in the general case, it is not statically known how many
tokens will be consumed and produced by an action. In fact, the number of
tokens produced is known only after the action block has been executed, as the
output pattern may depend on actor variables which are updated by the action
block. In this case, the action block may stall if not enough space is available
on some output ports. While CAL actions are therefore more expressive than
the proposed approach, it also hinders analysis and hierarchical composition of
actors. In contrast, the proposed dataflow model restricts transitions to a static
communication behavior.
The Extended Codesign Finite State Machine (ECFSM) model has been

presented in [SSL00]. The original Codesign Finite State Machine (CFSM)
model used in POLIS [BGJ+97] is a special case of the ECFSM model. Both
models, however, are refinements of the Abstract Codesign Finite State Machine
(ACFSM) model, also presented in [SSL00]. An actor described by an ACFSM
consists of a set of transitions, each of which specifies an input enabling rate,
an input consumption rate, an output production rate, a guard expression, and
a set of vectors of expressions which determine the values of produced tokens.
While actor variables are not supported by ACFSMs, these can be represented
by additional self-loop FIFO channels which contain the actor variables. While
similar to the proposed dataflow model, an important difference is that transitions
may “flush” an input channel by consuming all tokens from it. This is realized
by means of a special input consumption rate Ialln . While this feature can be
used to model exception handling and reactions to disruptive events (e.g., errors
and re-initializations), it leads to the same problems as described for CAL w.r.t.
analysis and hierarchical composition of actors. In contrast, the proposed dataflow
model restricts transitions to a static communication behavior. Transitions in
ACFSMs are not governed by means of an FSM (despite the name). Instead,
the selection of transitions is solely based on the input enabling rate and output
production rate, as well as the result of the guard expression. This makes analysis
of the communication behavior of an ACFSM more difficult, as all transitions of
the ACFSM must be considered to be active in the general case.
FunState [TSZ+99; STG+01] uses nested components which are controlled

by FSMs. Components consist of storage units, functions, or other components.
Storage units consist of FIFO queues (of unbounded size) and registers. Functions
and nested components are controlled by state machines. Transitions in FunState
consist of a predicate and an action. The predicate specifies the required number
of tokens in a queue, and can also evaluate token values or register values. While
the guard predicates are similar to the proposed approach, actions use events
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to activate components, i.e., functions or nested components. This may result
in a non-sequential behavior of components, where a transition may be started
before the previous one is finished. In turn, actor variables must be stored in
a self-loop channel, and tokens must be consumed and produced atomically
at the beginning and end of an action, respectively. In contrast, transitions of
an actor have sequential semantics in the proposed dataflow model, and thus,
stateful actors are permitted, and tokens can be consumed and produced at any
time during the execution of a transition. Moreover, transitions of the proposed
dataflow model have a static communication behavior, which may not be the
case in FunState.
In [PSK+08], the enable-invoke dataflow (EIDF) model is introduced. Here,

an actor also consists of modes. However, each mode is implicitly associated
with only a single transition. Thus, in order to provide for DDF actors, an actor
may have multiple active modes. The enabling function of an actor determines
whether a mode is enabled or not. To this end, it is provided an active mode,
and the number of tokens available on each input port. Note that it is mentioned
that “each mode, when executed, consumes and produces a fixed number of
tokens”. This corresponds to the static communication behavior of transitions in
the proposed dataflow model. In contrast to transitions of the proposed dataflow
model (cf. 3.1), decisions depending on token values or actor variables are not
supported. While possibly cumbersome as outlined in Section 3.3, this makes
the model not less expressive if action functions can select the target mode.
Indeed, this is supported by EIDF: the invoking function of an actor is provided
an active mode (for which the enabling function returned ⊤), consumes and
produces tokens, and determines a set of modes which should be active after the
invoking function is finished. While actor variables are not supported by EIDF,
these can be represented by additional self-loop FIFO channels which contain
the actor variables. A less expressive model, namely core functional dataflow
(CFDF), restricts the invoking function to return only a single mode instead of a
set of modes. As each actor mode is associated with only a single transition, the
deterministic CFDF is less expressive than EIDF, which can be used to model
nondeterministic behavior.
Bluespec SystemVerilog (BSV) [RA04; ANRD04] is based on a synthesizable

subset of SystemVerilog [Acc04]. In BSV, modules consist of a set of variables
and a set of rules, which are based on guarded atomic actions. Modules expose
interface methods which can be called by other modules. A rule is enabled if the
guard predicate is true. When an enabled rule is selected for execution, its action
is executed atomically. Rules may be executed in parallel if the result matches
the result of a sequential execution of the rules. To this end, the BSV compiler
analyzes the rules in a design and synthesizes hardware scheduling logic which
controls the parallel execution of rules. While BSV is also based on guarded
actions comparable to the proposed approach, the level of abstraction is lower
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than the proposed approach. In particular, rules are already at register-transfer
level (RTL) and are thus assumed to take only one clock cycle. In other words,
rules describe the combinational logic between registers. In contrast, action
functions (and guard functions) in the proposed dataflow model are expected to
be synthesized to RTL by a high-level synthesis (HLS) tool, and can therefore
require multiple clock cycles for execution. Note that the parallel execution of
transitions in the proposed dataflow model is also allowed if the resulting model
state corresponds to a sequential execution of the transitions in question as
described in Section 3.1.1.
In StreamIt [TKA02], actors (called filters) consist of only a single action

function which is executed when enough tokens and free places are available.
Analogously to transitions in the proposed dataflow model, filters are constrained
to static token consumption and production rates in order to improve analyz-
ability. As a filter consists only of a single action function, guard functions are
not necessary. In contrast, the proposed dataflow model provides for multiple
transitions of an actor with possibly different (static) token consumption and
production rates. While StreamIt allows some out-of-stream communication
between filters and an occasional structural modification of the filter graph,
filter graphs are restricted to (basic) filters with one input port and one output
port, Split filters with one input port and two output ports, and Join filters
with two input ports and one output ports. Thus, in contrast to the proposed
approach, only limited graph topologies can be realized. Moreover, the proposed
approach provides for actors with an arbitrary number of input ports and output
ports.
In SysteMoC [FKH+08; FZK+11; FZHT11; FZHT13] actors are also described

by means of an FSM similar to the proposed approach. In this case, the key
difference can be found in the well-defined hierarchical compositionality of the
proposed dataflow model as described in Section 5.1. In particular, hierarchi-
cal actors in the proposed dataflow model can be used to implement custom
scheduling schemes, whereas hierarchical actors in SysteMoC are limited to a
structural refinement, and the same dynamic scheduling scheme is used for all
hierarchical actors. In SysteMoC, transitions may specify enabling rates sepa-
rately from the token consumption and production rates. In other words, more
tokens or free places may be required by a transition in order to be enabled than
tokens are consumed and produced by the associated action function. In order
to increase analyzability, transitions of the proposed dataflow model have no
separate enabling rates, i.e., a transition is enabled if enough tokens and free
places according to the values of cons and prod are available, and the associated
action function must consume and produce exactly as many tokens. Note that
peek(p, t.fg) ≤ cons(p, t.fa) for a given well-formed transition t and input port
p ∈ I. These token consumption/production semantics adhere to the established
token consumption/production semantics of less expressive dataflow models, like
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SDF or cyclo-static dataflow (CSDF). An available implementation of SysteMoC
is based on SystemC, while the current reference implementation of the proposed
dataflow model is not based on SystemC. To this end, SysteMoC extends Sys-
temC by guarded actions (cf. Definition 3.5) and custom FIFO channels in order
to support the communication semantics of guard functions and action functions
(cf. Definitions 3.3 and 3.4). However, the designer is supposed to follow a certain
coding style which basically forbids the use of processes and channels except
the custom FIFO channels in order to obtain an analyzable dataflow model.
Thus, while the SystemC utility classes like logic data types, logic vectors, etc.
can be used by models, SystemC is mainly used as a simulation vehicle. As the
reference implementation of the proposed dataflow model separates the model
from the simulation, arbitrary simulation back ends can be developed in principle,
including a similar SystemC-based simulation back end.
The proposed dataflow model is based on interleaved guarded actions, i.e.,

only a single enabled transition of a given actor is chosen for execution at any
one time. In contrast, synchronous programming languages like Quartz [Sch09],
SIGNAL [LBBG86], LUSTRE [CPHP87], or Esterel [BG92] can be translated
into synchronous guarded actions [BSS10], where all guarded actions of an actor
are executed synchronously within each macro step of the system. In order to
leverage the analysis, verification and synthesis tools available for models based
on interleaved guarded actions, it is desirable to translate synchronous guarded
actions into interleaved guarded actions as shown in [BBS11; GS13b; GS13a;
KBS14]. In particular, the latter approach translates synchronous guarded actions
into the SysteMoC model which has been reviewed above. Thus, the proposed
dataflow model could also be used to represent these translated synchronous
guarded actions.
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The dataflow model proposed in Chapter 3 is expressive enough to model DDF
(i.e., nondeterministic) applications. As a consequence, design methods applicable
to less expressive dataflow models, like the static scheduling of actors, cannot
be used in the presence of such a highly expressive model. In order to use
this potential, actors which adhere to less expressive dataflow models must be
identified. In this chapter, some well-known dataflow MoCs are discussed. In
particular, for each dataflow MoC, it is described how it can be represented
by the proposed dataflow model, and how it can be extracted from a given
actor implemented by means of the proposed dataflow model. Section 4.10
discusses related work and the limitations of the proposed classification approach.
Concerning the exemplary design flow supported by the proposed dataflow model
as shown in Figure 4.1, the proposed classification approach therefore supports
the (automatic) decision-making process at system level.

a1 a2 a3 a4

r2r1

a2

a1

a4

a3

a1 a2 a3 a4

r1 r2

a4a3a2a1

Specification
DFG

Partitioned
DFG

Scheduled

System

Binding SchedulingApplication
DFG

Algorithmic/Task

Figure 4.1: Design flow supported by the proposed model. Only the steps per-
taining to system synthesis are shown (cf. Figure 2.2 on page 9).
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SDF

BDF
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Figure 4.2: Dataflow models sorted by expressiveness.

4.1 Dataflow Models of Computation

Over the last decades,many dataflowMoCs have been developed. They are usually
classified according to their expressiveness, i.e., which kind of applications can be
modeled by using a given dataflow MoC. It can be observed that analyzability of
dataflow MoCs is inversely related to their expressiveness, i.e., there are problems
which are decidable for less expressive dataflow MoCs, but are not decidable for
more expressive dataflow MoCs. As analyzability directly influences the Quality
of Results (QoR) of the final product4, dataflow MoCs with a high analyzability
are usually desirable. For example, scheduling at compile time (static scheduling)
is usually preferred over scheduling at run time (dynamic scheduling) in order
to reduce the overhead incurred by the scheduling strategy. However, static
schedules can only be computed for dataflow MoCs with limited expressiveness.
Figure 4.2 shows some well-known dataflow MoCs, where larger circles denote
more expressive MoCs [SGTB11]. These are discussed in the following sections.

4The Quality of Results (QoR) refers to the set of quality indicators of the final product like
cost, performance, or power consumption.
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4.2 (Homogeneous) Synchronous Dataflow

The synchronous dataflow (SDF) model has been introduced in [LM87]. SDF
actors are characterized by the fact that they have static (i.e., data-independent)
token consumption and production rates. In other words, an SDF actor, when
fired, consumes a fixed number of tokens from each input port, and produces a
fixed number of tokens on each output port. To avoid confusion, “synchronous”
in this context refers to the static token consumption and production rates, and
is therefore used in a different sense compared to synchronous programming
languages like Quartz [Sch09], SIGNAL [LBBG86], LUSTRE [CPHP87], or
Esterel [BG92]. In contrast, asynchronous actors exhibit data-dependent token
consumption and production rates. Considering Figure 4.2, this is the case for the
Boolean dataflow (BDF) model and the dataflow models of higher expressiveness.
An SDF graph G = (V,E, cons, prod,D) consists of a set of actors V , a set

of unbounded channels E ⊆ V × V , token consumption rates cons : E → N,
token production rates prod: E → N, and a delay function D: E → N0 which
specifies the number of initial tokens on each channel. For multi-rate SDF graphs,
the values of cons and prod are unconstrained. For single-rate SDF graphs, the
values of cons and prod are constrained to be equal w.r.t. a given edge, i.e.,
∀e ∈ E : cons(e) = prod(e). For homogeneous synchronous dataflow (HSDF)
graphs, the values of cons and prod are constrained to be 1, i.e., ∀e ∈ E :
cons(e) = 1 ∧ prod(e) = 1.
Both SDF and HSDF graphs are special cases of Petri nets (in the sense of

place/transition (P/T) nets) [Mur89]. In particular, HSDF graphs correspond
to marked graphs (MGs) [CHEP71], while SDF graphs correspond to weighted
marked graphs (WMGs) [TCCS92]. As we are more interested in the operational
semantics of SDF and HSDF graphs, we refrain from a formal definition of Petri
nets. Suffice to say, the key difference between SDF graphs and Petri nets is that
SDF graphs are conflict-free, which means that once an actor is enabled (i.e.,
enough tokens are available on input ports), it cannot be disabled by the firing
of a different actor. This is due to the fact that channels in SDF graphs have
point-to-point semantics, i.e., they have exactly one source actor and one sink
actor. In contrast, places in Petri nets may have more than one sink transition.
Note that all dataflow MoCs examined in this chapter are conflict-free due to
the point-to-point semantics of channels.
For SDF graphs, an important concept is the repetition vector γ ∈ N|V |. The

repetition vector γ denotes the smallest non-trivial vector of actor firings which
return the SDF graph into its initial state. The state of an SDF graph is defined
by the number of tokens on each channel. More formally, the repetition vector (if
it exists) is the non-trivial solution to the balance equations which can be stated
as follows:

∀e = (vi, vj) ∈ E : γi · prod(e) = γj · cons(e) (4.1)

53



4. Analysis

v2v1 v3
e1 e2

3123

v2,2

v2,3

v2,1

v3,1

v1,1

v1,2

a) SDF graph a) Equivalent HSDF graph

Figure 4.3: a) SDF graph with repetition vector γ = (2, 3, 1), and b) equivalent
HSDF graph with duplicated actors according to γ.

The balance equations can be solved efficiently in linear time complexity O(|V |+
|E|) by means of a depth-first search (DFS) of the SDF graph. If such a vector
can be computed for a given SDF graph, the SDF graph is said to be consistent.
Note that for single-rate SDF graphs and HSDF graphs, γ = 1. For consistent
SDF graphs, it is possible to determine a periodic static order schedule (PSOS)
for the actor firings specified by γ if enough initial tokens have been placed on
channels which comprise the cycles of the SDF graph. A PSOS is a total ordering
of the actor firings after which the SDF graph returns into its initial state.

Example 4.1. Consider the SDF graph shown in Figure 4.3a. It consists of
three actors v1, v2 and v3, and two edges e1 = (v1, v2) and e2 = (v2, v3). When v1
is fired, it produces three tokens on e1. When v2 is fired, it consumes two tokens
from e1, and produces one token on e2. When v3 is fired, it consumes three
tokens from e2. Thus, prod(e1) = cons(e2) = 3, cons(e1) = 2, and prod(e2) = 1.
Note that D(e1) = D(e2) = 0, i.e., no initial tokens are placed on any channel.
Obviously, the repetition vector is γ = (2, 3, 1), i.e., in order to return the SDF
graph into its initial state, v1 must be executed twice, v2 three times, and v3
only once. A possible PSOS in this case is S1 = 〈v

2
1, v

3
2, v3〉, which fires v1 twice,

v2 three times, and v3 once. Such a PSOS is also called a single-appearance
schedule (SAS), because each actor appears only once in S1. Note that S1

requires a maximal buffer size of 6, which can be verified by simulating the
PSOS. Another possible PSOS is S2 = 〈〈v1, v2〉

2, v2, v3〉 = 〈v1, v2, v1, v2, v2, v3〉,
which is not a SAS. However, in contrast to S1, S2 only requires a maximal
buffer size of 4.

Every consistent SDF graph can be transformed into a functionally equiv-
alent HSDF graph if we allow multiple edges between actors [NS99]. Basi-
cally, an actor vi is duplicated γi times, and edges are added according to the
token consumption and production rates of vi. Additional edges are added

54



4.3 Cyclo-Static Dataflow

in order to serialize the firings of the duplicated instances of vi. Note that
this is only necessary if vi has some internal actor state. In this case, the
token passed between the duplicated instances of vi represents the internal
actor state. However, it can be shown that the number of duplicated actors
of the resulting HSDF graphs grows exponentially with the number of actors
|V | of the SDF graph in the worst case: Consider an SDF graph with actors
V = {v1, v2, . . . , vn}, edges E = {(v1, v2), . . . , (vi, vi+1), . . . , (vn−1, vn)}, token
production rates prod(e) = 2, and token consumption rates cons(e) = 1. Then, it
follows that γ = (1, 21, 22, . . . , 2n−1). Therefore, the number of duplicated actor
instances is

∑n−1
i=0 2i = 2n − 1 = 2|V | − 1. Thus, algorithms which transform an

SDF into an HSDF graph for analytic purposes are typically only feasible for
small SDF graphs.

Example 4.2. Consider again the SDF graph shown in Figure 4.3a. In order to
obtain an equivalent HSDF graph, the actors v1, v2, and v3 have been duplicated
according to γ = (2, 3, 1) (cf. Figure 4.3b). Note that the dashed edges are only
required if v1 and v2 have some internal state. In this case, the initial tokens
placed on the incoming edges of v1,1 and v2,1 represent the initial internal state.

As both HSDF and SDF are special cases of the CSDF model, the discussion
of the model representation and analysis is postponed to the next section.

4.3 Cyclo-Static Dataflow

The cyclo-static dataflow (CSDF) model has been introduced in [BELP96].
A CSDF actor consists of one or more phases as specified by the function
P: V → N. In each phase, a CSDF actor may have different (but static) token
consumption and production rates. Thus, in contrast to SDF actors, the token
consumption rates are defined as cons : E × N→ N0, and the token production
rates are defined as prod: E × N→ N0. Note that for any edge e = (vi, vj) ∈ E,
prod(e, n) = prod(e, n+ k · P(vi)), and cons(e, n) = cons(e, n+ k · P(vj)), with
n ∈ N and k ∈ N0. Each actor v is initially in phase 1. After firing v, it is in
phase 2, etc. When v is in phase P(v), firing v returns it to phase 1. If a given
CSDF actor v consists only of a single phase, i.e., P(v) = 1, v is actually an
SDF actor. Remember that HSDF actors are additionally constrained to token
consumption and production rates of 1.

In order to determine the repetition vector γ of a CSDF graph, the following
modified balance equations must be solved first, resulting in a vector γ ′:

55



4. Analysis

∀e = (vi, vj) ∈ E : γ′
i

P (vi)
∑

n=1

prod(e, n) = γ′
j

P (vj)
∑

n=1

cons(e, n) (4.2)

Note that γ ′ corresponds to the number of complete cycles for each actor. As
each cycle of an actor vi consists of P (vi) firings, it follows that γi = γ′

i · P (vi).
Thus, γ = (γ′

1 · P (v1), . . . , γ
′
n · P (vn)).

Example 4.3. Consider the CSDF graph in Figure 4.4. Structurally, it is
equivalent to the SDF graph shown in Figure 4.3a. However, actors v1 and v3
now consist of three phases (i.e., P(v1) = P(v3) = 3), while actor v2 consists of
two phases (i.e., P(v2) = 2). Note that the values of cons and prod are annotated
as tuples to the edges. For example, v2 produces one token on e2 in its first
phase, but produces no tokens on e2 in its second phase. As the sums specified
in Equation (4.2) correspond to the token consumption and production rates of
the SDF graph from Figure 4.3a, it follows that γ ′ = (2, 3, 1) (cf. Example 4.1).
This results in a repetition vector γ = (2 · 3, 3 · 2, 1 · 3) = (6, 6, 3) of the CSDF
actor. A possible PSOS is S = 〈〈v1, v2〉

2, v3〉
3, which requires only a maximal

buffer size of 1, and additionally, is a SAS.

4.3.1 Representation

Given a CSDF graph G = (V,E, cons, prod,D,P) which consists of a set of
actors V , a set of unbounded channels E ⊆ V × V , token consumption rates
cons : E ×N→ N0, token production rates prod: E ×N→ N0, a delay function
D: E → N0 which specifies the number of initial tokens on each channel, and a
function P: V → N which specifies for each actor the number of phases.
Then, for a given actor v ∈ V , a functionally equivalent actor a in the modeling

approach presented in Section 3.1 can be constructed as follows: First, the input
ports I and output ports O of a correspond to the incoming and outgoing edges
of v, respectively. For each phase k ∈ N, 1 ≤ k ≤ P(v), a mode mk ∈ M is
allocated, with the initial mode being m1. For each mode mk, a single outgoing
transition tk is allocated as follows: The source mode of tk is mk, and the (only
possible) target mode of tk is mk+1 if k < P(v), or m1 if k = P(v). Thus, modes
and transitions form a cycle in the FSM (cf. Figure 4.5). The transitions do not

v2v1 v3
(1, 1) (1, 0)(1, 1, 1)

e1 e2

(1, 1, 1)

Figure 4.4: CSDF graph

56



4.3 Cyclo-Static Dataflow

m2m1 m3

t2t1

m4

t3

mP(a)

tP(a)

t1: #i1 ≥ 1 ∧#o1 ≥ 1 / f1

i1 m1 m2

t2: #i1 ≥ 1 / f2

o1

a) Normalized FSM of a CSDF actor b) Normalized example FSM

Figure 4.5: The normalized representation of the FSM of a CSDF actor a with
P(a) phases is shown in (a). Note that each mode mi has exactly one
outgoing transition ti with ti.fg = f⊤. The normalized example FSM
of the CSDF actor v2 from Figure 4.4 with two phases is shown in (b).

have a guard function, i.e., ∀t ∈ T : t.fg = f⊤. Concerning the action function,
each transition is associated with the corresponding firing of the CSDF actor,
i.e., ∀tk ∈ T : tk.fa = fk, where fk denotes the functionality associated with
the firing of the CSDF actor in phase k. For the token consumption rates of an
action function fk, it follows that for each input port p ∈ I corresponding to an
incoming edge e ∈ E, a.cons(p, fk) = G.cons(e, k). Analogously, for the token
production rates of an action function fk, it follows that for each output port
p ∈ O corresponding to an outgoing edge e ∈ E, a.prod(p, fk) = G.prod(e, k).

Example 4.4. For the CSDF actor v2 from Figure 4.4, the resulting normalized
actor FSM is shown in Figure 4.5b. Corresponding to the first phase, transition
t1 consumes a token from i1, and produces a token on o1. Corresponding to the
second phase, transition t2 only consumes a token from i1.

The channels of the proposed dataflow model are bounded. In this respect, the
CSDF model is more expressive than the proposed dataflow model. However, an
unbounded accumulation of tokens on a channel is typically considered undesired
behavior in real-world applications. Thus, we can assume that only consistent
CSDF graphs are considered, for which a repetition vector can be calculated. In
this case, an unbounded accumulation of tokens on a channel is not possible, and
any schedule (if one exists) can be implemented by means of bounded channels.

4.3.2 Identification

While it is possible to transform any CSDF actor (but not any CSDF graph)
into the proposed dataflow model as described in the previous section, it is much
more difficult to check if a given actor shows CSDF behavior. This is due to
the fact that, in the general case, actor FSMs are not normalized as shown in
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Figure 4.5. Given an arbitrary actor FSM in the proposed dataflow model, the
question therefore is: does every possible transition path from the initial mode
m0 exhibit the same (cyclo-)static communication behavior? The basic idea of
the classification algorithm presented in [ZFHT08] can be summarized as follows:

• During the first phase, the smallest repeatable communication pattern
is identified. This is done by successively constructing and validating
communication patterns. If every possible transition path from the initial
modem0 adheres to such a constructed communication pattern, a repeatable
communication pattern has been found, and the first phase is finished
successfully. If no more communication patterns can be constructed, the
actor does not show CSDF behavior, and the remaining phases are skipped.

• During the second phase, the repeatable communication pattern is par-
titioned into phases. If the chosen partitioning is successfully validated
against every possibly transition path from the initial mode m0, the actor
shows CSDF behavior. Otherwise, the actor does not show CSDF behavior,
and the last phase is skipped.

• During the third phase, the actor FSM is transformed into the normalized
representation as shown in Figure 4.5a according to the partitioning of the
repeatable communication pattern into phases as determined during the
previous phase.

Before illustrating the proposed classification algorithm by means of a small
example, we first introduce some notations which are used in the following:
A static communication pattern is specified by the vectors cons and prod.
While cons = (c1, . . . , c|I|) specifies that ck tokens are consumed from the input
port ik ∈ I, prod = (p1, . . . , p|O|) specifies that pk tokens are produced on the
output port ok ∈ O. In order to simplify the notation, cons and prod are also
written as a combined vector cp = cons a prod. In the following, the vector-
based token consumption and production rates are also used for transitions.
To this end, the token consumption rates of a transition t are referred to as
cons(t) = (cons(i1, t.fa), . . . , cons(i|I|, t.fa)), while the token production rates of
t are referred to as prod(t) = (prod(o1, t.fa), . . . , prod(o|O|, t.fa)). Analogously
to cp = cons a prod, we use cp(t) = cons(t)a prod(t). Note that comparison
operations between two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) are defined
as follows: a ≥ b⇔ ai ≥ bi, 1 ≤ i ≤ n, and a > b⇔ a ≥ b ∧ a 6= b.
A sequence of transitions p = 〈t1, . . . , tn〉 is a transition path if the set of

possible target modes of a transition ti contains the source mode of transition
ti+1, i.e., ∀i, 1 ≤ i < n : ti.M

′ ∋ ti+1.m. A transition path p = 〈t1, . . . , tn〉 is
a transition cycle if the set of possible target modes of transition tn contains
the source mode of transition t1, i.e., tn.M

′ ∋ t1.m. A transition path p is
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an elementary transition path if p does not contain any cyclic subpaths. A
transition cycle p is an elementary transition cycle if p does not contain any cyclic
subpaths (except p itself). In the following, the vector-based token consumption
and production rates are also used for transition paths p = 〈t1, . . . , tn〉, i.e.,
cons(p) =

∑n

i=1 cons(ti), and prod(p) =
∑n

i=1 prod(ti). Analogously to cp =
cons a prod, we use cp(p) = cons(p)a prod(p).

Example 4.5. Consider the normalized actor FSM in Figure 4.5b. Assume that
a communication pattern cp = (2, 1) has been constructed (or guessed). In this
case, two tokens are consumed from input port i1, and one token is produced on
output port o1. Starting from the initial mode (m1 in this case), cp is validated
against all possible transition paths. It should be obvious that the only possible
transition path is p = 〈t1, t2〉, and that cp(p) = cp(t1)+cp(t2) = (1, 1)+(1, 0) =
(2, 1) = cp. Thus, a repeatable communication pattern cp = (2, 1) has been
found. Note that cp spans multiple transitions. During the next phase of the
classification algorithm, cp is partitioned into phases. This is done by means
of a transition path p from the initial mode m1 with cp(p) = cp. Obviously,
p = 〈t1, t2〉 in this case. Note that the proposed partitioning algorithm creates
as few phases as possible, but as many as necessary in order to guarantee a
deadlock-free execution of the transformed model, where the actor in question
is treated as a CSDF actor. In this case, the resulting partitioning of p is
p = p1

ap2, where p1 = 〈t1〉, and p2 = 〈t2〉. Obviously, the chosen partitioning is
successfully validated against all possible transition paths from m1. Thus, we
conclude that the actor corresponds to a CSDF actor with two phases. Finally,
as the actor FSM is already normalized, the third phase of the classification
algorithm outputs the very same actor FSM.

The example shows that for normalized actor FSMs, the actor classification
is trivially accomplished. In the following, however, arbitrary actor FSMs are
analyzed. To this end, we first describe some requirements which the given actor
must satisfy such that the introduction of deadlocks into the transformed model
(which treats a given actor as a CSDF actor) is avoided.

Requirement 4.1 (Liveness). Let T (m) = {t ∈ T | t.m = m} be the set of
outgoing transitions of a mode m ∈ M . We require that all modes m ∈ M

have some outgoing transitions (i.e., T (m) 6= ∅), and that at least one of these
transitions is eventually enabled if mcur = m. Note that for a mode m ∈ M

where T (m) = ∅, the classification procedure assumes that the FSM is dead, and
immediately discards the given actor as not being a CSDF actor, as CSDF actors
are expected to fire an infinite number of times. However, for a modem ∈M where
T (m) 6= ∅, this problem is undecidable in the general case due to the presence of
guard functions. Thus, the user has to ensure that this requirement is met.
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m m′

t1 tn

cp =
∑n

i=1 cp(ti)

Figure 4.6: The static communication pattern may span multiple transitions.

Requirement 4.2 (Active input/output behavior). An actor may have tran-
sitions which do neither consume nor produce any tokens. While this is not a
problem in the general case, we require that, eventually, the actor must be blocked
on missing tokens or free places. This requirement ensures that the merging
of transitions in order to determine the normalized FSM does not introduce
infinite loops into the actions of the merged transitions. Note that this is basically
the same constraint imposed by SystemC on processes, which must relinquish
control to the simulation kernel eventually. Thus, actors derived from well-formed
SystemC modules as described in Section 2.3 should meet this requirement.

Smallest Repeatable Communication Pattern

The first goal of the classification algorithm is to verify whether or not all possible
transition paths from the initial mode adhere to a given static communication
behavior cp, which is formally defined as follows:

Definition 4.1. A transition path p adheres to a given static communication
behavior cp if the sum of the token consumption and production rates of the
transitions of p are equal to the token consumption and production rates as
specified by cp, i.e., if cp(p) = cp.

In order to increase the number of actors which are identified as a CSDF actor,
we allow p to span multiple transitions (cf. Figure 4.6). It should be noted that
Condition 4.1 is checked incrementally while traversing the FSM.
The validation of a static communication pattern cp for a mode m is summa-

rized by Algorithm 4.1. Here, cp′ denotes the number of remaining tokens which
must still be consumed and produced by subsequent transitions (remember that
the communication pattern may span multiple transitions).
Procedure ValidateMode (cf. lines 1-14) validates all outgoing transitions

of a mode m. If m starts a new iteration of the static communication pattern, i.e.,
if cp = cp′, we first check ifm is already marked as validated (cf. lines 2-3). In this
case, we assume that the validation of m is successful, and return ⊤ (cf. line 4).
Otherwise, m is marked as validated (cf. line 6). Subsequently, the outgoing
transitions ofm are validated (cf. lines 8-12). Here, if ValidateTransition

returns ⊥, ValidateMode also returns ⊥. If all outgoing transitions have
been successfully validated, ValidateMode returns ⊤ (cf. line 13). In this
case, m adheres to the static communication pattern cp.
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Algorithm 4.1 Validation of the static communication pattern

1: procedure ValidateMode(Mode m, cp, cp′)
2: if cp = cp′ then ⊲ Mode m starts a new iteration
3: if m is marked as validated then

4: return ⊤
5: end if

6: Mark m as validated
7: end if

8: for all t ∈ T (m) do ⊲ Process outgoing transitions of m
9: if ValidateTransition(t, cp, cp′) = ⊥ then

10: return ⊥
11: end if

12: end for

13: return ⊤
14: end procedure

15: procedure ValidateTransition(Transition t, cp, cp′)
16: if cp(t) � cp′ then ⊲ Condition 4.1
17: return ⊥
18: end if

19: cp′ ← cp′ − cp(t)
20: if cp′ = 0 then ⊲ Transition path finished
21: cp′ ← cp

22: end if

23: for all m′ ∈ t.M ′ do ⊲ Process possible target modes of t
24: if ValidateMode(m′, cp, cp′) = ⊥ then

25: return ⊥
26: end if

27: end for

28: return ⊤
29: end procedure

Procedure ValidateTransition (cf. lines 15-29) validates a transition t

as follows: First, Condition 4.1 is checked. Condition 4.1 is violated if t does not
consume and produce less or equal tokens than specified by cp′, i.e., if cp(t) � cp′

(cf. lines 16–18). If Condition 4.1 is violated, the FSM does not adhere to the
static communication pattern cp, and ⊥ is returned. Otherwise, cp′ is updated
as follows: First, the tokens consumed and produced by t are subtracted from
cp′ (cf. line 19). If no tokens remain, i.e., if cp′ = 0, transition t successfully
completed the validation of a transition path, and cp′ is reset to cp (cf. lines
20–22). Subsequently, the possible target modes of t are processed analogously to
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procedure ValidateMode (cf. lines 23–27). If all possible target modes have
been successfully validated, ValidateTransition returns ⊤ (cf. line 28).

It should be noted that Algorithm 4.1 as given does not terminate if there are
transition cycles p that do not consume or produce any tokens, i.e., if cp(p) = 0.
In this case, Condition 4.1 is never violated (cf. lines 16–18), and cp′ is never
decremented (cf. line 19), with the effect that p is traversed an infinite number
of times. However, as an infinite traversal of p must not happen when executing
the actor according to Requirement 4.2, such transition cycles can be safely
ignored. Note that the detection of such transition cycles requires some additional
bookkeeping, which has been omitted in Algorithm 4.1 for the sake of clarity.

As each actor FSM starts in the initial mode m0, the validation of the FSM is
initiated by ValidateMode(m0, cp, cp).

Example 4.6. Consider the actor FSM in Figure 4.7a. The corresponding
actor has two input ports i1 and i2, and one output port o1. First, assume that
cons = (c1, c2) = (0, 1) and prod = (p1) = (0), i.e., cp = (0, 1, 0). In this
case, starting from m0, validation fails for transition t1, as cp(t1) = (2, 1, 0) �
(0, 1, 0) = cp′.

Observing that t1 consumes two tokens from i1, we now set cp = (2, 1, 0).
Now, validation succeeds, e.g., for the transition path 〈t1〉. In this case, mode

m1

m3m4m5

i2

i1 o1

t2: #o1 ≥ 1

t5: #i1 ≥ 2 t3

t4: #i2 ≥ 1

t1: #i1 ≥ 2 ∧#i2 ≥ 1 ∧ fg1

t7: #i2 ≥ 1

m0 m2

t6: fg2

a) Example FSM 1

o1i1
m0

m4m3

t6: #o1 ≥ 2

t7: #i1 ≥ 2 ∧#o1 ≥ 4

m1 m2

t2: #o1 ≥ 2

t3: #i1 ≥ 1 ∧#o1 ≥ 1

t4: #i1 ≥ 1 ∧#o1 ≥ 3

t5: #i1 ≥ 2 ∧#o1 ≥ 4t1: #i1 ≥ 1 ∧#o1 ≥ 1

b) Example FSM 2

Figure 4.7: Example FSMs with a static communication behavior (a), and a
non-static communication behavior (b). For the sake of clarity, action
functions have been omitted.
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m1 starts a new iteration of cp. Obviously, validation now fails for transition
t2, as cp(t2) = (0, 0, 1) � (2, 1, 0) = cp′.
Observing that t2 produces a token on o1, we now set cp = (2, 1, 1). Now,

validation succeeds, e.g., for the transition path 〈t1, t2〉. In this case, mode m2

starts a new iteration of cp. As the only transition path 〈t3, t4, t5, t2〉 from m2

also adheres to the static communication pattern (2, 1, 1), m2 is successfully
validated. As the only remaining transition path from m0, namely 〈t6, t7, t5, t2〉
also adheres to the static communication pattern (2, 1, 1), and m2 is already
marked as validated, validation of m0 is completed successfully. Thus, the FSM
has been successfully validated for cp = (2, 1, 1).
With regard to the second phase of the classification algorithm, assume that

cp is partitioned into only one phase. In this case, we can conclude that the
actor FSM shows SDF behavior, and that each firing consumes two tokens from
i1, one token from i2, and produces one token on o1.
Now, consider the actor FSM in Figure 4.7b. The corresponding actor has

one input port i1 and one output port o1. In this case, the FSM cannot be
successfully validated for any values cp.

Until now, the construction of communication patterns has been neglected.
As we are interested in the smallest repeatable communication pattern, the
chosen construction algorithm can be outlined as follows: First, a transition
cycle c is selected which is reachable from m0 by means of a (possibly empty)
transition path p, and consumes or produces some tokens, i.e., cp(c) 6= 0. The
resulting infinite transition path p∞ = pacaca . . . = 〈t1, . . .〉 from the initial
mode m0 is then used to construct the communication patterns. To this end,
the first transition ti of p∞ is determined which consumes or produces some
tokens, i.e., cp(ti) 6= 0 and ∀k, 0 < k < i : cp(tk) = 0. Note that according to
the construction of p∞, such a transition must exist. For this first transition, we
initialize cp← cp(ti), and try to validate the FSM according to Algorithm 4.1.
If validation succeeds, the actor FSM adheres to the static token consumption
and production pattern cp.

If validation fails, the basic idea is to enlarge the static communication pattern
cp. To this end, the next transition tj , j > i of p∞ is determined which consumes
or produces some tokens, i.e, cp(tj) 6= 0 and ∀k, i < k < j : cp(tk) = 0. Note that
according to the construction of p∞, such a transition must exist. Then, the token
consumption and production rates of tj are added to cp, i.e, cp← cp+ cp(tj).
Now, the FSM is validated again according to Algorithm 4.1, and so on. This
pattern construction scheme ensures that the smallest repeatable communication
pattern is found (if it exists).
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Theorem 4.1. At least one cyclic transition path c exists which is reachable
from m0 by means of a (possibly empty) transition path p, and consumes or
produces some tokens.

Proof. As we only consider finite actor FSMs, the existence of a transition cycle
c which is reachable from m0 by means of a (possibly empty) transition path
p directly follows from the finite number of actor modes and Requirement 4.1,
which states that all modes must have at least one outgoing transition.

Now assume that no transition cycle c reachable from m0 consumes or produces
any tokens. Then, a necessary condition to satisfy Requirement 4.2 is that there
must exist at least one transition t, such that t is reachable from m0 and consumes
or produces some tokens. Given such a transition t, Requirement 4.2 is satisfied
only if t.m is reachable from all transition cycles c. However, this means that t
is part of a transition cycle reachable from m0. This contradicts the assumption
that no transition cycle c reachable from m0 consumes or produces any tokens.
Thus, at least one transition cycle c reachable from m0 exists which consumes or
produces some tokens.

Example 4.7. Consider the FSM shown in Figure 4.7a. A transition path
according to Theorem 4.1 is p1 = p′1

ac1
ac1

a . . ., where p′1 = 〈t6, t7〉 and c1 =
〈t5, t2, t3, t4〉. In this case, the communication patterns constructed from p1 are
cp1 = (0, 1, 0), cp2 = (2, 1, 0), cp3 = (2, 1, 1), and so on. Note that cp3 is
successfully validated by Algorithm 4.1 (cf. Example 4.6).
Now, consider the FSM shown in Figure 4.7b. A transition path according to

Theorem 4.1 is p2 = p′2
ac2

ac2
a . . ., where p′2 = 〈t1〉 and c2 = 〈t2, t3〉. In this case,

the communication patterns constructed from p2 are cp1 = (1, 1), cp2 = (1, 3),
cp3 = (2, 4), cp4 = (2, 6), cp5 = (3, 7), cp6 = (3, 9), and so on. As the reader
can easily verify, none of these communication patterns is successfully validated
by Algorithm 4.1. In the following, it is shown that after cp6 has been processed,
no more communication patterns need to be constructed.

As an infinite number of communication patterns can be constructed from
the selected transition path p∞ in principle, the classification algorithm never
terminates if no static communication pattern exists for which the actor FSM
can be successfully validated. In order to derive a termination criterion, we first
define the notion of cycle compatibility and path compatibility :

Theorem 4.2 (Cycle compatibility). Given two transition cycles c1 and c2 whose
transitions do consume or produce some tokens, i.e., cp(c1) 6= 0 and cp(c2) 6= 0.
If ∄r1, r2 ∈ N : r1 cp(c1) = r2 cp(c2), then it is not possible to successfully
validate the FSM. Note that in particular, the trivial solution r1 = 0 and r2 = 0
is not a feasible solution.
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Note that transition cycles c whose transitions do not consume or produce any
tokens are ignored as they cannot be iterated an infinite number of times due to
Requirement 4.2.

Proof. Assume that for two transition cycles c1 and c2, a non-trivial solution
cannot be found, but that the FSM is successfully validated for a static commu-
nication pattern cp. Then, according to Condition 4.1, it follows that each cycle
can be traversed one or more times in order to complete one or more iterations
of the static communication pattern. Thus, for c1 and c2, it follows that

∃a1, a2 ∈ N : a1 cp(c1) = a2cp

∃b1, b2 ∈ N : b1 cp(c2) = b2cp

Thus, it follows that

cp =
a1

a2
cp(c1) =

b1

b2
cp(c2)

We now set r1 = a1b2, and r2 = a2b1, and note that r1 > 0 and r2 > 0. Then, it
follows that r1 cp(c1) = r2 cp(c2). This is a contradiction to the assumption that
a non-trivial solution cannot be found.

Note that this property can be checked prior to validation by identifying the
set of all elementary transition cycles C of the FSM, which can be efficiently
done in O((|M |+ |T |)(|C|+ 1)) according to [Joh75]. Thus, FSMs which do not
adhere to Theorem 4.2 are easily identified, and validation aborted.

Example 4.8. Consider the FSM shown in Figure 4.7a. The only elementary
transition cycle is c = 〈t2, t3, t4, t5〉. Thus, Theorem 4.2 is trivially satisfied.
Now, consider the FSM shown in Figure 4.7b. The elementary transition cycles

are c1 = 〈t2, t3〉, and c2 = 〈t6, t7〉. It follows that cp(c1) = (1, 3), and cp(c2) =
(2, 6). It follows that r1 = 2, and r2 = 1. Thus, Theorem 4.2 is also satisfied. How-
ever, we know that the FSM does not show a static communication behavior.

The example shows that Theorem 4.2 is only a necessary condition for suc-
cessful validation. In order for a static communication pattern to exist which is
successfully validated, any transition path from m0 by which a cycle is reached
must also be considered. In order to define the notion of path compatibility, we
assume the scenario shown in Figure 4.8, i.e., a mode m1 of a transition cycle
c = 〈t1, . . . , tn〉 is reached by a transition path p′ from m0.
A static communication pattern cp is repeatable from a mode m in c if starting

from m, a transition path p exists which contains only transitions of c such that
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m0 m1 m2
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Figure 4.8: Path compatibility

cp(p) = cp, and if cp is repeatable from the mode m′ of c which is reached
by the last transition of p. This property is easily checked by traversing the
transitions of c until either an incompatible transition is reached, or a mode is
reached which has already been validated successfully. Note that this procedure
is similar to Algorithm 4.1, but is constrained to a local FSM traversal of the
cycle c. In the following, we use repeatable(cp, c,m) ∈ {⊤,⊥} to denote whether
a static communication pattern cp is repeatable in cycle c starting from a mode
m of c. If repeatable(cp, c,m) = ⊤, it follows that ∃r1, r2 ∈ N : r1cp = r2 cp(c),
i.e., in order to complete r1 iterations of cp in c, c must be traversed r2 times.
For example, c may be traversed once to complete multiple iterations of cp, or c
may be traversed multiple times to complete a single iteration of cp. Note that
the existence of factors r1 and r2 is a necessary, but not a sufficient condition for
the static communication pattern to be repeatable in c.

Theorem 4.3. Given a static communication pattern cp, a cycle c, and mode m
traversed by c. Then, repeatable(cp, c,m) = ⊤ if (and only if) repeatable(cp+
cp(c), c,m) = ⊤.

Proof. Theorem 4.3 follows directly from the fact that cp(c) is obviously a
repeatable pattern in c from any mode m traversed by c. Nevertheless, we
illustrate this property by means of Figure 4.9, which shows a repeatable pattern
with r1 = 3 and r2 = 4, i.e., cycle c is traversed 4 times in order to complete 3
iterations of cp+ cp(c). In the following, we use ecp = cp+ cp(c) to refer to
the larger static communication pattern.
We first show that repeatable(cp, c,m) = ⊤ if repeatable(ecp, c,m) = ⊤. As

ecp ≥ cp, it follows that a transition subpath corresponding to one iteration
of cycle c is contained in each of the r1 iterations of ecp. For example, for the
first iteration of ecp in Figure 4.9 which corresponds to the transition path
p1 = 〈t1, t2, t3, t4, t1, t2〉, three such subpaths exists, namely p1,1 = 〈t1, t2, t3, t4〉,
p1,2 = 〈t2, t3, t4, t1〉, and p1,3 = 〈t3, t4, t1, t2〉.
Removing an arbitrary transition subpath corresponding to cp from each

iteration of ecp, some transitions remain for each iteration of ecp, and they
form again a transition path. For example, removing p1,2 from p1, the residual
transition path corresponds to p′1 = 〈t1, t2〉. If instead, p1,3 is removed from p1,
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t1 t2 t4t3t1 t2 t4t3 t1 t2 t4t3 t1 t2 t4t3

cp(c)

r2 = 4

t2 t4

cp+ cp(c)

r1 = 3
t3t1

Figure 4.9: repeatable(cp, c,m) = ⊤ iff repeatable(cp+ cp(c), c,m) = ⊤.

the residual transition path is again p′1 = 〈t1, t2〉. In fact, as always a whole
iteration of c is eliminated, these residual transition paths must always be the
same. Note that if all residual transition paths p′k of all r1 iterations of ecp are
concatenated, they correspond to multiple iterations of c in the general case. (In
the example, however, they only correspond to a single iteration of c.) Thus, the
residual transition paths are repeatable in c.
It should be obvious that for each residual transition path p′k, 1 ≤ k ≤

r1, it follows that cp(p′k) = ecp − cp(c) = cp + cp(c) − cp(c) = cp. Thus,
the static communication pattern cp is repeatable in c from mode m, i.e.,
repeatable(cp, c,m) = ⊤.
The other direction, i.e., given repeatable(cp, c,m) = ⊤ should be obvious

from the above: It is always possible to traverse one or more transitions from m

according to cp to reach a mode m′ of c, then to perform one (or more) complete
iterations of c (thereby returning to mode m′), from which cp is again repeatable,
etc.

Theorem 4.4 (Path compatibility). Given a transition path p′ which reaches a
transition cycle c = 〈t1, . . . , tn〉 in mode m1 (cf. Figure 4.8). Note that p′ may
not be an elementary path in the general case. If the following condition is not
satisfied, then it is not possible to successfully validate the FSM:

(repeatable(cp(p′) , c,m1) = ⊤) ∨

∨ (repeatable(cp(p′a〈t1〉) , c,m2) = ⊤) ∨

∨ (repeatable(cp(p′a〈t1, t2〉) , c,m3) = ⊤) ∨

∨ . . . ∨

∨ (repeatable(cp(p′a〈t1, . . . , tn−1〉), c,mn) = ⊤)

In other words, cp(p′) must be repeatable from m1 in c, or cp(p′a〈t1〉) must be
repeatable from m2 in c, or cp(p′a〈t1, t2〉) must be repeatable from m3 in c, etc.
Note that according to Theorem 4.3, no more transitions have to appended to
p′, because repeatable(cp(p′a〈t1, . . . , tn〉, c,m1) = repeatable(cp(p′ac), c,m1) =
repeatable(cp(p′) + cp(c), c,m1) = repeatable(cp(p′), c,m1).
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Proof. Assume that Theorem 4.4 is not satisfied for a given path p′ and cycle c =
〈t1, . . . , tn〉, but that the FSM is successfully validated for a static communication
pattern cp ≥ cp(p′). Note that once a valid pattern has been found, it is always
possible to enlarge it, i.e., if cp is a repeatable pattern, so is q · cp, q > 0. Then,
because cp ≥ cp(p′), it follows that cp can be written as cp = cp(p′)+r ·cp(c)+
cp(p) such that r ≥ 0, and cp(p) < cp(c). Here, p denotes a (possibly empty)
transition path from m1 in c to a mode mk in c (i.e., mk denotes the target mode
of the last transition of p). Note that this transition path must exist, due to cp
being a validated repeatable pattern. Due to the same reason, it follows that
repeatable(cp, c,mk) = ⊤. Then, applying Theorem 4.3, it follows that:

⊤ =repeatable(cp, c,mk)

= repeatable(cp(p′) + r · cp(c) + cp(p), c,mk)

= repeatable(cp(p′) + cp(p), c,mk)

= repeatable(cp(p′ap), c,mk)

However, repeatable(cp(p′ap), c,mk) = ⊤ is a contradiction to the assumption
that Theorem 4.4 is not satisfied for p′ and cycle c.

Note that it is not sufficient to validate all elementary paths from m0 that
reach a mode m traversed by a cycle c. Theorem 4.4 is therefore checked during
the FSM traversal for all paths p′ from m0 that reach a cycle c. Obviously, paths
p′ which have already been validated can be cached to speed up the validation
process. If a path p′ is encountered which does not adhere to Theorem 4.4,
validation fails ultimately. In this case, the FSM does not adhere to the static
communication pattern cp, or to any larger pattern which may be constructed
from the selected reference path p∞.
It should be noted that Theorem 4.4 implies that eventually, all transition

cycles c are reachable. However, it is not sufficient to show that an elementary
transition path p′ from m0 to c exists: Consider a port for which p′ consumes or
produces some tokens, but the selected reference path p∞ does not. In this case,
cp will always have a zero entry for this port, regardless of how many transitions
of p∞ are added to cp. However, this situation is easily identified by analyzing
the selected reference path, and validation aborted.
Finally, it can be observed that if all cycles are compatible according to

Theorem 4.2, and no incompatible transition paths can be found during the
validation procedure according to Theorem 4.4, the validation of the FSM is
successfully completed eventually. The sketch of the proof is as follows: Assume
that a non-elementary path p′ first traverses a cycle c1 before reaching another
cycle c2 6= c1 in mode m. According to Theorem 4.2, all cycles are compatible.
Thus, we can find integers r1 > 0 and r2 > 0 such that r1 cp(c1) = r2 cp(c2).
Assume that p′ traverses c1 at least r1 times, which is eventually the case when
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the constructed communication patterns become large enough. In this case, r1
iterations of c1 can be eliminated from p′, and the remaining shortened path p′′

still reaches cycle c2 in the same modem. Now, appending r2 iterations of c2 to the
shortened path p′′, it follows that repeatable(cp(p′), c2,m) = repeatable(cp(p′′)+
r2 cp(c2), c2,m) = repeatable(cp(p′′), c2,m) according to Theorem 4.3. As the
shortened path p′′ must have been evaluated before for smaller communication
patterns, validation would have already stopped earlier if p′′ is not repeatable
according to Theorem 4.4.

Example 4.9. Consider the FSM shown in Figure 4.7a. For example,
transition path p′1 = 〈t1〉 reaches the only cycle c = 〈t2, t3, t4, t5〉. As
repeatable(cp(p′1

a〈t2〉), c,m1) = ⊤, Theorem 4.4 is satisfied for p′1. The other
transition path p′2 = 〈t6, t7〉 also satisfies Theorem 4.4. As Theorem 4.2 is
trivially satisfied, we can conclude that a repeatable communication pattern
exists, which has already been shown in Example 4.6.
Consider the FSM shown in Figure 4.7b. Example 4.8 has already shown

that Theorem 4.2 is satisfied. Assume that the selected reference path is p∞ =
pac1

ac1
a . . ., where p = 〈t1〉 and c1 = 〈t2, t3〉. Note that the other transition

cycle is c2 = 〈t6, t7〉. In this case, the communication patterns constructed
from p∞ are cp1 = (1, 1), cp2 = (1, 3), cp3 = (2, 4), cp4 = (2, 6), cp5 = (3, 7),
cp6 = (3, 9), and so on. Concerning the elementary paths into each cycle,
all three paths p′1 = 〈t1〉, p

′
2 = 〈t1, t2, t4〉 and p′3 = 〈t5〉 satisfy Theorem 4.4

for the corresponding transition cycle c1 or c2. However, traversing cycle c1
once, it follows for the resulting non-elementary path p′4 = 〈t1, t2, t3, t2, t4〉 that
cp(p′4) = (3, 9). It is easily verified that p′4 does not satisfy Theorem 4.4 w.r.t.
cycle c2. Thus, after evaluating cp6 ≥ p′4, we can conclude that no repeatable
(even larger) communication pattern for the FSM in Figure 4.7b exists.

Partitioning into Phases

It should be noted that, in principle, an identified repeatable static communication
pattern cp could be partitioned into arbitrary phases. However, the more fine-
grained the phases become, the smaller the chance becomes that the chosen
partitioning is successfully validated, as each phase must be covered by distinct
transition paths. In other words, a single transition cannot span multiple phases
(whereas a single phase may span multiple transitions).

In this section, we propose a partitioning scheme such that the actor, when
treated as a CSDF actor, does not introduce deadlocks into the model. To this
end, we assume that we are given a transition path p from the initial mode m0

in the validated actor FSM such that cp(p) = cp. This path is used to partition
the communication pattern cp into phases.
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In order to illustrate the property of the proposed partitioning approach,
assume that the given transition path p is already partitioned into τ ∈ N
subpaths such that p = p1

a . . . apτ . Then, in order to prevent the introduction
of deadlocks into the model, the transitions comprising each transition subpath
pk must consume all tokens before producing any tokens:

Definition 4.2. Given a transition path p which is partitioned into τ subpaths
such that p = p1

a . . . apτ . The partitioning is well-formed if for each subpath
pk = 〈tk,1, . . . , tk,n〉 the following condition holds:

∃j, 1 ≤ j ≤ n :
(

j
∑

i=1

cons(tk,i) = cons(pk)

)

∧

(

n
∑

i=j

prod(tk,i) = prod(pk)

)

Note that transition tk,j of a well-formed subpath pk may consume and produce
tokens. For the remaining transitions of pk, this restriction stems from the
possibility that tokens consumed by a transition t2 may depend on tokens
produced by a different transition t1, either via self-loop FIFO channels, or via
feedback loops over multiple actors. As the transitions which comprise a phase are
executed atomically, such dependencies between transitions may become cyclic
dependencies, thereby introducing deadlocks into the model. This restriction
could be relaxed after the analysis of feedback loops.

Example 4.10. Consider Figure 4.10: Assuming that transition t2 requires the
token produced by t1, merging transitions t1 and t2 introduces a deadlock into
the model.

m3m1

i1 o1

m0

t1: #o1 ≥ 1 t2: #i1 ≥ 1

a) Token dependency between transition t1 and t2.

i1

m3

o1

m0

t′1: #i1 ≥ 1 ∧#o1 ≥ 1

b) Cyclic dependency after the merging of transitions t1 and t2.

Figure 4.10: The merging of transitions (a) may create cyclic dependencies (b)
which must be avoided in the general case.
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Algorithm 4.2 Validation of the partitioning of cp into phases

1: procedure ValidateTransition(Transition t, Phase k, cons′, prod′)
2: if cons(t) � cons′ ∨prod(t) � prod′ then ⊲ Condition 4.1
3: return ⊥
4: end if

5: if cons(t) < cons′ ∧prod(t) 6= 0 then ⊲ Condition 4.2
6: return ⊥
7: end if

8: cons′ ← cons′− cons(t)
9: prod′ ← prod′−prod(t)
10: if cons′ = 0 ∧ prod′ = 0 then ⊲ Finished the current phase
11: if k = τ then ⊲ Process the next phase
12: k ← 1
13: else

14: k ← k + 1
15: end if

16: cons′ ← cons(pk)
17: prod′ ← prod(pk)
18: end if

19: . . . ⊲ Process possible target modes of t
20: end procedure

Then, in order to partition cp into phases, we determine the longest prefix
path p1 of p = 〈t1, . . . , ti, tj, . . . , tn〉 which still satisfies Condition 4.1. Assuming
that p1 = 〈t1, . . . , ti〉 is the longest prefix path which satisfies Condition 4.1, any
longer prefix path p′ = 〈t1, . . . , tj, . . .〉 therefore does not satisfy Condition 4.1.
Subsequently, we determine the longest subpath p2 of p (starting from transi-
tion tj) which satisfies Condition 4.1, and so on. In this way, p is successively
partitioned into τ phases such that p = p1

a . . . apτ .

Finally, the FSM is traversed to verify that the partitioning of cp into phases
is viable. Note that if validation fails for the computed phases, validation for any
other partitioning of cp into phases which satisfies Condition 4.2 would also fail.
This is due to the fact that the partitioning procedure creates as few phases as
possible (but as many as necessary) for the given path p, and p is a transition
path from m0, i.e., p is also validated.

The validation of the chosen partitioning of cp into phases proceeds analogously
to Algorithm 4.1. Thus, only the relevant procedure ValidateTransition

is shown in Algorithm 4.2. In contrast to Algorithm 4.1, the additional parameter
k identifies the current phase k, 1 ≤ k ≤ τ , for which transition t is validated.
Note that cons′ and prod′ now denote the number of remaining tokens yet to be
consumed and produced by subsequent transitions in the current phase k only.
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Procedure ValidateTransition validates a transition t as follows: First,
t must not consume or produce more tokens than remain for the current phase (cf.
lines 2–4). Next, Condition 4.2 is checked. Condition 4.2 is violated if t produces
some tokens but does not consume all remaining tokens of the current phase, i.e.,
prod(t) 6= 0 and cons(t) < cons′ (cf. lines 5–7). If Condition 4.2 is violated, the
FSM does not adhere to the chosen partitioning of cp into phases. Otherwise,
cons′ and prod′ are updated (cf. lines 8–9). If no tokens remain, i.e., cons′ = 0
and prod′ = 0, transition t successfully completed the validation of the current
phase k. In this case, cons′ and prod′ are reset to the the token consumption
and production rates of the next phase (cf. lines 10–18). Remember that pk
denotes the transition path corresponding to phase k. Subsequently, the possible
target modes of t are processed as done by Algorithm 4.1. Finally, the initial
mode m0 starts in phase 1, i.e., k = 1, cons′ = cons(p1), and prod′ = prod(p1),
where p1 denotes the transition path corresponding to phase 1.

Example 4.11. Consider the FSM shown in Figure 4.7a. As shown in Ex-
ample 4.6, the smallest repeatable static communication pattern is given by
cp = (2, 1, 1). A possible transition path p which can be used to compute
the phases is p = 〈t6, t7, t5, t2〉. In this case, the whole path p satisfies Condi-
tion 4.2, as only the last transition t2 produces a token. Thus, we set τ = 1,
and p1 = p. Obviously, validating the FSM against this partitioning scheme
succeeds. Therefore, the actor FSM corresponds to a CSDF actor with one
phase and the communication behavior as specified by cons and prod.

Merging of Transitions

Finally, we generate an actor in the proposed dataflow model which corresponds
to the CSDF actor determined by the classification procedure. In the following,
underlying actor FSM refers to the FSM of the actor identified as a CSDF
actor (cf. Figure 4.7), while (normalized) actor FSM refers to the FSM of the
transformed actor according to Figure 4.5. The structure of the normalized
actor FSM has been described in Section 4.3.1. Concerning the action function
fk for a phase k, 1 ≤ k ≤ τ , one possibility is to quasi-statically schedule the
transitions of the underlying actor FSM. This requires enumeration of all possible
transition paths, and adding guard function evaluations as necessary. To this
end, we allocate a new actor variable mu which reflects the current mode of the
underlying actor FSM. Its initial value is the initial mode of the underlying FSM.
In contrast, the initial mode of the normalized actor FSM is the mode allocated
for the first phase. This variable is required because different transition paths
of the underlying actor FSM may have to be executed depending on mu in the
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Algorithm 4.3 Action function corresponding to the CSDF actor derived from
the actor FSM shown in Figure 4.7a

1: procedure f1(. . . , v,m)
2: assert(m = m1) ⊲ The CSDF actor has only one phase (τ = 1)
3: Let vorig

a〈mu〉 ← v

4: switch mu do

5: case m0

6: if fg1(. . . ,m0) = ⊤ then

7: (. . . ,mu)← t1.fa(. . . ,m0)
8: (. . . ,mu)← t2.fa(. . . ,m1)
9: else

10: assert(fg2(. . . ,m0) = ⊤) ⊲ Requirement 4.1
11: (. . . ,mu)← t6.fa(. . . ,m0)
12: (. . . ,mu)← t7.fa(. . . ,m5)
13: (. . . ,mu)← t5.fa(. . . ,m4)
14: (. . . ,mu)← t2.fa(. . . ,m1)
15: end if

16: break

17: case m2

18: (. . . ,mu)← t3.fa(. . . ,m0)
19: (. . . ,mu)← t4.fa(. . . ,m5)
20: (. . . ,mu)← t5.fa(. . . ,m4)
21: (. . . ,mu)← t2.fa(. . . ,m1)
22: break

23: end switch

24: return (. . . , vorig
a〈mu〉,m1)

25: end procedure

general case. Note that the paths can be constructed by additional bookkeeping
logic in Algorithm 4.2.

Example 4.12. Consider the actor FSM in Figure 4.7a. As shown in Exam-
ple 4.6, the communication behavior of the actor FSM adheres to the static
communication behavior of an SDF actor with cp = (2, 1, 1). Thus, the nor-
malized actor FSM consists of one mode m1, and one self-loop transition t1.
The action function f1 of t1 is shown in Figure 4.3. For the sake of clarity,
token consumption and production details have been omitted. Depending on
the current mode of the underlying actor FSM, different transition paths are
executed. In particular, in mode m0, the guard function fg1 must be evaluated.
Thus, f1 implements a quasi-static schedule. Note that the guard function fg2
need not be evaluated if fg1 = ⊥, as one of both transitions t1 or t6 of the
underlying actor FSM must be enabled due to Requirement 4.1.
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If the possible number of transition paths becomes very large, quasi-static
scheduling may be no longer feasible. In this case, a dynamic scheduling scheme
could be used, which dynamically schedules the transitions of the underlying
actor FSM. To this end, the transformed actor FSM could allocate an additional
actor variable for each input port and output port, which specify the number of
tokens which must yet be consumed and produced in the current phase. Note that
these variables correspond to the vectors cons′ and prod′ used in Algorithm 4.2.
Then, we can execute transitions of the underlying FSM as long as cons′ 6= 0
or prod′ 6= 0. When cons′ = 0 and prod′ = 0, the current phase is finished,
and cons′ and prod′ are initialized with the consumption and production rates
of the next phase. Note that static analysis has shown that cons′ and prod′

will always become zero after some transitions have been executed. While this
scheduling scheme induces some run-time overhead, it does not require the
explicit construction of transition paths, thereby potentially reducing the code
size of the synthesized actor.
Due to the general undecidable nature of the problem, the presented classifi-

cation algorithm represents only a sufficient but not a necessary condition for
an actor to adhere to a static dataflow model. In particular, the classification
algorithm lacks propagation of guard condition invariants across multiple transi-
tions, i.e., even if we know that a certain guard function has been evaluated to
true, and subsequent action functions do not change the guard value, the next
evaluation of this guard function will again be considered uncertain.
Finally, the difference between the general actor model presented in Section 3.1

and the restricted actor model without guard functions described in Section 3.3
affects Requirement 4.1, which then only requires that eventually, enough tokens
and free places must be available in order for any transition to be enabled.
However, as it is unknown which of the possible target modes is selected by a
transition at run time, the presented classification algorithm still only represents
a sufficient but not a necessary condition for an actor to adhere to a static
dataflow model.

4.3.3 Results

In order to evaluate the optimization potential for real-world examples, the
classification algorithm has been applied to a JPEG decoder as seen in Fig-
ure 2.3. As a result, the JPEGSource actor, the InverseQuant actor, the
InverseZigZag actor, and additionally all actors of the hierarchical IDCT2D
actor are classified either into the SDF or CSDF MoCs. The hierarchical IDCT2D
actor transforms blocks of 8× 8 frequency coefficients into equally sized image
blocks, and is depicted in detail in Figure 4.11a and b.
This enables the application of model-based optimizations including the clus-

tering of the static dataflow actors into a single composite actor shown in
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Figure 4.11: Composite IDCT2D actor (c) resulting from clustering all static
dataflow actors of (a) and (b). Note that token consumption and
production rates are equal to 1 unless indicated otherwise.

Figure 4.11c by statically scheduling all actors from Figure 4.11a and b. This
composite IDCT2D actor must, however, be dynamically scheduled due to the
heterogeneous environment in which it is embedded (cf. Figure 2.3 on page 12):
To determine if the composite IDCT2D actor could be activated, both the incom-
ing and outgoing channels must be checked for the required number of tokens
and free places.

Without knowing the underlying model of computation, this optimization
step would not be possible, i.e., no composite actor could be generated and the
IDCT2D actor must be synthesized as seen in Figure 4.11a and b. Therefore,
instead of having to check the fill level of only two channels, the dynamic scheduler

Hierarchical IDCT2D actor Composite IDCT2D actor Reduction

0.305s 0.132s 57%

Table 4.1: Measured latencies for the synthesized JPEG decoder from Figure 2.3
on page 12. The latency is here defined as the time needed to decode
a single JPEG picture of the size 176× 144 pixels.
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must check all 55 channels in turn, thereby wasting precious computational power.
Moreover, besides checking the fill level of the channels, a dynamic round-robin
scheduler must also poll each actor individually to see if it can fire or not, due
to the guard functions associated with the transitions of the actors.
Comparing the latencies of the JPEG decoder, the version containing the

composite IDCT2D actor outperforms the version implementing the hierarchical
IDCT2D actor approximately by a factor of two, as summarized by Table 4.1.
Due to the single-processor scheduling, the throughput could only be improved
by the same value of 57%.

4.4 Boolean Dataflow

The Boolean dataflow (BDF) model has been introduced in [Buc93]. BDF extends
CSDF by data-dependent SWITCH and SELECT actors (cf. Figure 4.12). The
SWITCH actor consists of one control input port, one data input port, and two
data output ports. The SWITCH actor, when fired, consumes a Boolean control
token from its control input port, a data token from its data input port, and,
depending on the value of the control token, forwards the data token to one of
its data output ports. Analogously, the SELECT actor consists of one control
input port, two data input ports, and one data output port. The SELECT actor,
when fired, consumes a Boolean control token from its control input port, and,
depending on the value of the control token, consumes a data token from one of
its data input ports and forwards it to the data output port.
In order to determine the repetition vector of a BDF graph, variables are

introduced, representing the non-static token production rates of SWITCH
actors and the non-static token consumption rates of SELECT actors. When
solving the balance equations, constraints for these variables may be calculated.
In order for a repetition vector to exist, these constraints must be met. However,
in order to automatically show whether these constraints are met or not, one
would have to prove that two streams of Boolean tokens are identical, which is
undecidable in the general case. Thus, [Buc93] suggests to “add assertions to
the graph that would explicitly provide the missing information”.

Example 4.13. Consider the BDF graph shown in Figure 4.12. It consists of
the SDF actors v1, v3, v4, and v6 with static token consumption and production
rates, a SWITCH actor v2 with non-static token production rates, and a SELECT
actor v5 with non-static token consumption rates. The variables denoting the
non-static token production and consumption rates could be interpreted as
probabilities, or more intuitively, as the actual number of tokens produced and
consumed. For example, if p1 = 1, v2 produces one token on its upper output
port, and no tokens on its lower output port. In contrast, if p1 = 0, v2 produces
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Figure 4.12: BDF graph with a SWITCH actor v2 and a SELECT actor v5.

no tokens on its upper output port, and one token on its lower output port.
Calculating the repetition vector γ, we first set γ1 = 1. From the balance
equations, it follows that γ2 = 2. For v3, it follows that γ3 = 2p1, while for
v4, it follows that γ4 = 1− p1. For v5, two values for γ5 can be derived, based
on γ3 and γ4: γ

′
5,1 = 2 · p1

p2
and γ′

5,2 = 2 · 1−p1
1−p2

. Thus, in order for γ5 to exist,
γ′
5,1 = γ′

5,2 ↔ p1 = p2. Basically, this means that the streams of Boolean control
tokens produced by v1 must be equal, which, however, cannot be inferred from
the BDF graph automatically. Assuming that p1 = p2, it follows that γ5 = 2.
Finally, for v6, it follows that γ6 = 1. Thus, the repetition vector γ, which now
depends on the variable p1, evaluates to γ(p1) = (1, 2, 2p1, 1− p1, 2, 1). In order
to determine a complete cycle of a BDF graph, further analysis of γ is necessary
(cf. [Buc93]). Suffice to say, in CSDF graphs, a complete cycle corresponds
to the number of actor firings specified by γ. In contrast, for the example, a
complete cycle is finished only when v1 has produced an even number of tokens
with value ⊤ or ⊥, respectively. For example, a sequence 〈⊤,⊤〉 of produced
control tokens corresponds to a complete cycle, as does the sequence 〈⊥,⊥〉.
On the other hand, a sequence 〈⊤,⊥,⊥, . . .〉 forms a complete cycle only when
a second control token with value ⊤ is produced, and the number of produced
control tokens with value ⊥ is even at this point.

4.4.1 Representation

BDF extends CSDF models by SWITCH and SELECT actors (cf. Figure 4.12).
Figure 4.13 shows how these actor could be represented in the proposed dataflow
model. For example, the SWITCH actor consisting of two input ports and two
output ports can be implemented by means of the general actor model as shown
in Figure 4.13a. The actor FSM consists of a single mode with two self-loop
transitions t1 and t2. While both transitions consume a token from the control
input port ic and the data input port i1, transition t1 forwards the data token
to output port o1, and transition t2 forwards the data token to output port o2.
The SELECT actor can be implemented analogously in the general actor model
(cf. Figure 4.13c).
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Figure 4.13: FSMs corresponding to the BDF SWITCH and SELECT actors in
the proposed dataflow model.

In the restricted actor model, the SWITCH actor can be implemented as
shown in Figure 4.13b: First, transition t1 consumes a token from the control
input port ic, and selects either target mode m⊤ or m⊥ depending on the value
of the control token. Subsequently, one token is forwarded from the data input
port i1 to the corresponding output port o1 or o2. The SELECT actor can be
implemented analogously in the restricted actor model (cf. Figure 4.13d).

4.4.2 Identification

Concerning the identification of SWITCH and SELECT actors, the token con-
sumption and production rates are known (in contrast to CSDF actors as
discussed in Section 4.3.2). For SWITCH actors, an actor must have two input
ports and two output ports. Then, one of the input ports is assumed to be
the control input port ic. For each token consumed from ic, exactly one token
must be consumed from the other input port i1, and exactly one token must be
produced on exactly one of the output ports o1 or o2. In order to validate such
token consumption and production patterns, Algorithm 4.1 can be modified to
permit alternative communication patterns cpk.
For each alternative static communication pattern cpk, Algorithm 4.1 individ-

ually tracks the number of tokens yet to be consumed or produced by subsequent
transitions, and excludes an alternative pattern if a transition t does not consume
or produce less or equal tokens than specified by the value of cp′

k. In this case,
validation fails only when all alternative patterns have been excluded. If any cp′

k
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becomes zero, validation succeeds for the current transition path, and the next
iteration is considered. In this case, all alternative patterns are considered again.

For a SWITCH actor as defined by BDF, two possible alternative patterns
exist, namely cpa = (1, 1, 1, 0), and cpb = (1, 1, 0, 1). (Note that the first entry
corresponds to the control input port ic.) In other words, while no alternative
token consumption rates are possible (consa = consb = (1, 1)), a token could
either be produced on output port o1 (proda = (1, 0)), or on output port o2
(prodb = (0, 1)). Note that ic and i1 are interchangeable w.r.t. the validation
algorithm, i.e., it cannot be determined which input port is the control input port
and which one is the data input port. This would require analysis of the guard
function or action function, but as this analysis is undecidable in the general
case, it is not considered here.

For a SELECT actor as defined by BDF, two possible alternative patterns
exist, namely cpa = (1, 1, 0, 1), and cpb = (1, 0, 1, 1). (Note that the first entry
corresponds to the control input port ic.) In other words, while no alternative
token production rates are possible (proda = prodb = (1)), a token could either
be consumed from input port i1 (consa = (1, 1, 0)), or from input port i2 (consb =
(1, 0, 1)). In this case, it is possible to determine which input port corresponds
to the control input port by validating the FSM for each input port assumed to
be the control input port in turn. It should be obvious that validation succeeds
only if the proper input port has been assumed to be the control input port.

Example 4.14. For the SWITCH actor in Figure 4.13a, the validation al-
gorithm starts in mode m0 with cp′

a = (1, 1, 1, 0), and cp′
b = (1, 1, 0, 1). Se-

lecting transition t1, cp(t1) = (1, 1, 1, 0) ≤ cp′
a, but cp(t1) � cp′

b. Thus,
alternative pattern cp′

b is excluded. For the remaining pattern, it follows that
cp′

a ← cp′
a− cp(t1) = (0, 0, 0, 0). As cp′

a = 0, validation succeeds for transition
t1. Analogously, validation succeeds for transition t2. Note that in this case,
however, alternative pattern cp′

a is excluded. Thus, validation succeeds for all
possible paths from m0, and the actor under consideration indeed corresponds
to a SWITCH actor. As outlined above, it cannot be determined which input
port corresponds to the control input port. The alternative implementation of
the SWITCH actor (cf. Figure 4.13b) is successfully validated analogously.
For the SELECT actor in Figure 4.13c, the validation algorithm starts in

mode m0 with cp′
a = (1, 1, 0, 1), and cp′

b = (1, 0, 1, 1). If the proper input port
has been assumed to be the control input port, the FSM is successfully validated
analogously to the SWITCH actor. If the wrong input port has been assumed
to be the control input port, it is easily verified that either transition t1 or
transition t2 fails validation. The alternative implementation of the SELECT
actor (cf. Figure 4.13d) is successfully validated analogously.
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In principle, the transformation of the FSM of an actor identified as a SWITCH
or SELECT actor into a normalized representation can be performed as described
for CSDF actors in Section 4.3.2. Thus, it is not described in more detail at this
point. It should be noted that the alternative token consumption and production
rates must be considered appropriately.

4.5 Parameterized Synchronous Dataflow

The parameterized synchronous dataflow (PSDF) model has been introduced
in [BB00b]. Despite the name, the PSDF model is actually a meta-modeling
technique which can be applied to any underlying DFG which has a well-defined
notion of iteration. For the dataflow models reviewed in this section, this applies
to the HSDF, SDF, CSDF, and BDF models. For the former three models, an
iteration consists of the actor firings according to the repetition vector, while
for the BDF model, an iteration consists of a complete cycle (cf. Example 4.13).
Thus, we place PSDF above BDF in terms of expressiveness (cf. Figure 4.2).
A PSDF graph Φ consists of a body DFG Φb where token production and

consumption rates may depend on some parameters, an init DFG Φi, and a
subinit DFG Φs. The operational semantics of a PSDF graph Φ can be sketched
as follows: First, the init graph Φi is executed once, which must configure those
parameters of the body graph which must be known in order to calculate the
repetition vector γ. The values of these parameters are fixed for one iteration
of the body graph Φb. Subsequently, the repetition vector of the body graph
Φb is computed, followed by the computation of a schedule for Φb. Finally, one
iteration of Φb is executed. Here, prior to the firing of an actor of Φb according to
the schedule, the subinit graph Φs is executed, which (re-)configures the values
of those parameters which are not set by Φi. For a detailed discussion of the
subinit graph, we refer the reader to [BB00b].

Example 4.15. Consider the body graph Φb of a PSDF graph Φ shown in
Figure 4.14. It consists of actors v1, v2, and v3 whose token consumption and
production rates depend upon parameters p1 and p2. The repetition vector
evaluates to γ = (p1, 1, 1). Thus, a possible schedule is S = 〈vp11 , v2, v3〉. As γ
(and therefore also S) depend on the value of p1, p1 must be configured by the
init graph Φi. In contrast, p2 can be configured by the subinit graph Φs.

v2v1 v3
p2p1 p21

Φb

Figure 4.14: Body graph Φb of a PSDF graph Φ with parameters p1 and p2
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The discussion of the model representation and analysis is postponed to
Section 4.7.

4.6 Heterochronous Dataflow

The heterochronous dataflow (HDF) model has been introduced in [GLL99].
Similarly to PSDF, the token consumption and production rates of actors in a
DFG can be reconfigured only after an iteration of the whole DFG is finished.
While PSDF uses initialization DFGs for this purpose, HDF employs an FSM for
this task. Moreover, while PSDF allows arbitrary configurations of parameters,
HDF provides for a finite number of (static) type signatures per actor. Thus,
while PSDF requires to compute the repetition vector and a schedule at run
time after the token production and consumption values have been configured,
HDF allows the same tasks to be performed at compile-time. However, if the
number of possible combinations of type signatures becomes very large, these
tasks could also be performed at run time.

In this context, it should be noted that the repetition vector of CSDF graphs
can be calculated with a time complexity of O(|V |+ |E|), while a schedule for
(acyclic) CSDF graphs can be found by topologically sorting the actors, which
has the same linear time complexity. For cyclic graphs, however, scheduling
is more difficult, and, in the worst case, may require a symbolic simulation of
the DFG [HB07]. The discussion of the model representation and analysis is
postponed to the next section.

4.7 Scenario-Aware Dataflow

The (general) scenario-aware dataflow (SADF) model has been introduced in
[TGB+06]. Similar to the PSDF and HDF models, it extends SDF graphs by
variable token consumption and production rates. To this end, each actor has
an associated non-empty set of scenarios, each of which specifies the token con-
sumption and production rates of the actor. Furthermore, actors are partitioned
into kernel actors and (scenario) detector actors. While kernels represent the
data processing part of a streaming application, detectors model the control part
of the application that dynamically detects scenarios. Thus, a detector, when
fired, determines the scenario in which itself and its depending kernels operate
based on a stochastic model, and sends control tokens to the depending kernel
actors accordingly.

In the general SADF model, scenarios can be changed within an iteration of the
DFG. While this makes the model more expressive compared to the PSDF/HDF
models, analyzability is reduced. In particular, static scheduling is not possible.
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A restricted form of SADF is based on an FSM controlling the scenarios of the
actors. This restricted form, however, is syntactically equivalent to the HDF
model [SGTB11].

4.7.1 Representation

The PSDF model and the (general) SADF model allow token rates to be de-
termined by the actors of the model, which is currently not supported by the
proposed dataflow model, as it only provides for static token consumption and
production values of actors in order to increase analyzability.
For the HDF model and the FSM-based SADF model, each actor (or the whole

DFG) is associated with a finite set of static token production and consumption
values. The selection of a specific set is governed by an FSM in both models.
Thus, in order to implement such a behavior in the proposed dataflow model, the
actors (or to be more precise, the transitions of the actors) could be duplicated
for each set of token production and consumption values. As will be seen in
Section 5.1, a hierarchical actor could then implement the switching of token
production and consumption values by selecting the appropriate instance from
the duplicated transitions. Note that the problem of scheduling the actors is an
orthogonal problem, and is not considered here. Suffice to say, Section 5.3 shows
that the proposed dataflow model allows a wide range of scheduling schemes to
be implemented by action functions of hierarchical actors.

4.7.2 Identification

In contrast to CSDF and BDF models, HDF and FSM-based SADF models
are represented by hierarchical actors in the proposed dataflow model. Thus,
the identification of an analyzable HDF or FSM-based SADF model is more
difficult. In particular, due to the implementation-oriented nature of the proposed
dataflow model, action functions are considered to be black boxes which are only
analyzable w.r.t. their input/output behavior (cf. Definition 3.4). While action
functions therefore can be used to implement a wide range of scheduling schemes,
it is not possible in the general case to extract a specific scheduling scheme from
a given action function of a hierarchical actor. However, this information would
be required to reconstruct the underlying parameterized SDF actors of an HDF
or FSM-based SADF model.

4.8 Deterministic Dataflow

A DFG is deterministic if actors always produce the same token sequences,
regardless of the order in which actors are fired. Here, the Kahn process network
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(KPN) model, introduced in [Kah74], is widely seen as the foundation for other
dataflow models. A simple language for parallel programming, the behavior of
actors can be summarized as follows:

• Actors communicate only via FIFO channels of unbounded size.

• An actor either waits for data from exactly one input port (i.e., performs
a blocking read on an input port), or is performing some computation.
However, this blocking read requirement can be relaxed while still retaining
deterministic behavior as shown in the following. Thus, blocking reads
represent a sufficient but not a necessary condition in order for an actor to
be deterministic.

More formally, a Kahn process is a function F: Sm → Sn which maps a tuple of
input sequences s = (s1, . . . , sm) into a tuple of output sequences s

′ = (s1, . . . , sn).
A sequence s1 = 〈x1, x2〉 ∈ S is a prefix of a sequence s2 = 〈x1, x2, x3〉 ∈ S,
written s1 ⊑ s1. The empty sequence 〈〉 ∈ S is a prefix of any other sequence
s ∈ S, i.e., 〈〉 ⊑ s. Note that sequences may be infinite, in which case they are
called streams. The partial order “⊑” over the set of finite and infinite sequences
is a complete partial order (cpo) (S,⊑). The cpo (S,⊑) can be extended to tuples
of sequences by pointwise comparison, i.e., s = (s1, . . . , sn) ⊑ s′ = (s′1, . . . , s

′
n) if

∀i, 1 ≤ i ≤ n : si ⊑ s′i.
In order to be a Kahn process, the function F must be continuous. Informally,

continuous functions prevent an actor to produce some output only after receiving
an infinite amount of input. It can be shown [Kah74; LP95] that continuous
functions are also monotonic, i.e., given two sequences s1 ⊑ s2, it follows that
F (s1) ⊑ F (s2). Informally,monotonic functions may compute parts of the output
sequences given a prefix of the final input sequences. A well-known fixed-point
theorem states that continuous functions defined on a complete partial order
have a least fixed-point s ∈ Sm such that F (s) = s, and for any other s′ ∈ Sm

with F (s′) = s′, it follows that s ⊑ s′. Thus, in order to find s, one can start
with the m−tuple of empty sequences s0 = 〈〉m = (〈〉, . . . , 〈〉), and subsequently
enlarge the sequences according to si+1 = F (si), until si+1 = si.
Note that the procedure to find the least fixed-point is usually not a feasible

execution strategy, because if an infinite sequence is generated by a process,
this process will obviously never terminate. Thus, in practice, processes must
be partially evaluated. This partial evaluation corresponds to the execution of
firing rules on which many dataflow models are based, including the proposed
dataflow model. Let R ⊆ Sm be a set of finite m-tuples, representing the set of
firing rules of an actor. Furthermore, the firing function f : R→ Sn specifies the
finite token sequences produced by each firing rule r ∈ R.
In [Lee97; BHLP09], some criteria are described which must be satisfied by R

and f such that a Kahn process F can be constructed from R and f . These rules
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are stated as follows: Given two rules r, r′ ∈ R with r 6= r′ that have a common
upper bound in Sm, i.e., ∃s ∈ Sm : r ⊑ s ∧ r′ ⊑ s. Note that these rules r and
r′ are both enabled for such a tuple of input sequences s. Then, the order of
execution of r and r′ must make no difference w.r.t. the overall token sequences
produced, i.e.5, f(r)a f(r′) = f(r′)a f(r), and r and r′ do not have a common prefix
other than the m-tuple of empty sequences, i.e., ∄s ∈ Sm, s 6= 〈〉m : s ⊑ r∧s ⊑ r′.
For the resulting definition of the Kahn process F based on R and f , we refer

the reader to [Lee97].

Example 4.16. In the following, we consider token sequences S over an al-
phabet of {0, 1}, i.e., the token sequences are (possibly empty) binary strings.
Then, the set of firing rules of an actor with one input port (i.e., m = 1) and
one output port (i.e., n = 1) which simply forwards the tokens from the input
port to the output port is as follows: R = {r1, r2}, with r1 = (〈0〉), r2 = (〈1〉),
and ∀r ∈ R : f(r) = r. Note that both firing rules r1 and r2 do not have a
common upper bound in S. Thus, the process induced by R is continuous and
therefore deterministic.
Consider the set of firing rules of an actor with two input ports (i.e., m = 2)

and two output ports (i.e., n = 2) which forwards the tokens from input port i1
to output port o1, and the tokens from input port i2 to output port o2. Note
that such an actor can be seen as the composition of two simple forwarding
actors as in the previous example. Then, the set of firing rules is as follows:
R = {r1, r2, r3, r4}, with r1 = (〈0〉, 〈〉), r2 = (〈1〉, 〈〉), r3 = (〈〉, 〈0〉), r4 = (〈〉, 〈1〉),
and ∀r ∈ R : f(r) = r. For example, rules r1 and r4 have a common upper
bound in S2, e.g., (〈0〉, 〈1〉). In this case, both rules are enabled. Thus, we
have to show that f(r1)

a f(r4) = f(r4)
a f(r1). Indeed, f(r1)

a f(r4) = r1
ar4 =

(〈0〉, 〈1〉) = r4
ar1 = f(r4)

a f(r1). The remaining rules are verified analogously.
Thus, this forwarding actor is also deterministic. Interestingly, however, it cannot
be implemented by a blocking read on either input port: Assume that the actor
blocks on i1, and no more tokens arrive on i1. Then, tokens on i2 will never be
forwarded.
Next, consider the set of firing rules of an actor with two input ports (i.e.,

m = 2) and one output port (i.e., n = 1), which forwards the tokens from
i1 and i2 to the single output port o1. The forwarding is solely based on the
availability of tokens. Then, the set of firing rules is as follows: R = {r1, r2, r3, r4},
with r1 = (〈0〉, 〈〉), r2 = (〈1〉, 〈〉), r3 = (〈〉, 〈0〉), r4 = (〈〉, 〈1〉). Note that R

corresponds to the set of firing rules from the previous example. However, the
definition of f is different: f(r1) = f(r3) = (〈0〉), and f(r2) = f(r4) = (〈1〉). We

5The sequence concatenation operator “a” is pointwise extended to tuples of sequences:
(a1, . . . , an)

a(b1, . . . , bn) = (a1
ab1, . . . an

abn) where ai and bi are sequences (of possibly
different length).
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consider again rules r1 and r4 which have a common upper bound in S2. Then,
f(r1)

a f(r4) = (〈0〉)a(〈1〉) = (〈0, 1〉) 6= (〈1, 0〉) = (〈1〉)a(〈0〉) = f(r4)
a f(r1).

Thus, this merge actor is nondeterministic (hence the name nondeterministic
merge), as firing r1 after r4 yields a different result than firing r1 before r4.
In contrast, the SWITCH and SELECT actors of the BDF model (cf. Sec-

tion 4.4) are deterministic: For the SELECT actor, the firing rules are as follows:
R = {r1, r2, r3, r4}, with r1 = (〈0〉, 〈0〉, 〈〉), r2 = (〈0〉, 〈1〉, 〈〉), r3 = (〈1〉, 〈〉, 〈0〉),
r4 = (〈1〉, 〈〉, 〈1〉), and f(r1) = f(r3) = (〈0〉), and f(r2) = f(r4) = (〈1〉). Note
that compared to the nondeterministic merge, each firing rule consumes an
additional token from the control input port. As no pair of rules has a common
upper bound in S3, we can conclude that the SELECT actor is deterministic
(and, analogously, the SWITCH actor as well).

4.8.1 Representation

As the proposed dataflow model is based on transitions, a set of (deterministic)
firing rules R and the associated firing function f can be easily transformed into
the proposed dataflow model as follows: A single mode m0 is allocated which
also corresponds to the initial mode. For each firing rule r ∈ R, a transition
t = (m,M ′, fg, fa) is allocated such that m = m0, and M ′ = {m0}. Note that as
firing rules are not governed by an FSM, the normalized representation outlined
in this section simply allocates a single actor mode m0 and attaches all firing
rules as self-loop transitions to m0. In other words, all firing rules are assumed to
be potentially enabled at the same time. Other representations are conceivable,
but would require to infer an FSM from the firing rules such that no deadlocks
are introduced into the model. This could be part of future work. Concerning the
action function fa, the number of tokens consumed from each input port p ∈ I

is set to the length of the corresponding token sequence of the m-tuple r, while
the number of tokens produced on each output port p ∈ O is set to the length
of the corresponding token sequence of the n-tuple f(r). The behavior of the
action function corresponds to f(r), which specifies the values of the produced
tokens. Concerning the guard function fg, the values of peek are set to the values
of cons, and fg basically compares the values of the peeked tokens against the
values specified by r.

4.8.2 Identification

As explained in the previous section, firing rules are evaluated by guard functions
in the proposed dataflow model. While guard functions therefore can be used to
implement a wide range of predicates, it is not possible in the general case to
extract the values against which the peeked tokens are compared from a given
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t1: #i1 ≥ 1 ∧#o1 ≥ 1

t2: #i2 ≥ 1 ∧#o2 ≥ 1

i2

i1
m0

o2

o1

Figure 4.15: Deterministic forwarding actor.

guard function, which would be required in order to infer the firing rules as
described above. Moreover, as action functions are also considered to be black
boxes, the values of produced tokens cannot be inferred from an action function
in the general case.
Thus, we have to abstract from the token values specified by the set of firing

rules R and the firing function f . To this end, we use the token value “∗”, which
matches any token (but not any token sequence). Note that the tokens produced
according to the firing function f are indexed by the firing rule (or transition)
which produces them. For example, assume that firing rule ri produces a token ∗i,
while firing rule rj produces a token ∗j . Then, if i 6= j, both tokens are considered
to have a different value.
Note that this analysis applies only to functional actors, i.e., for actors with

no variables and only one mode m0. In the general case, however, an actor in the
proposed dataflow model may have state, i.e., variables and multiple modes. For
the purpose of this analysis, the actor state must be explicitly modeled by one (or
more) self-loop FIFO channels (cf. [LP95]). In the general case, it is not known
statically how the current actor state is transformed by an action function, as
these transformations may be data-dependent. Thus, the tokens representing
the current actor state are also specified by means of the token value “∗” in
the general case. However, concerning the actor mode, some static knowledge
may be exploited as for a given transition t, the set of possible target modes M ′

is known at compile time. In particular, if M ′ consists only of a single mode,
i.e., M ′ = {m′}, m′ must be selected as target mode by the action function t.fa.
Note that firing rules are represented by stateless actors in the proposed dataflow
model as described in the previous section.
Finally, guard functions and action functions in the proposed dataflow model are

assumed to be deterministic in the sense that output tokens and the transformed
actor state only depend on input tokens and the actor state.

Example 4.17. Consider the actor FSM shown in Figure 4.15, which forwards
tokens from input port i1 to output port o1, and tokens from input port i2
to output port o2, possibly transforming the token values in the process. In
this case, the actor is assumed to be stateless, i.e., the set of actor variables
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is empty, and the set of modes consists of the single mode m0. Thus, the
set of firing rules derived from the FSM is as follows: R = {r1, r2}, with
r1 = (〈∗〉, 〈〉, 〈m0〉), r2 = (〈〉, 〈∗〉, 〈m0〉), f(r1) = (〈∗1〉, 〈〉, 〈m0〉), and f(r2) =
(〈∗2〉, 〈〉, 〈m0〉). Note that each rule matches any token, but the produced tokens
have been tagged by the firing rule which produces them. Additionally, the
actor mode is explicitly represented by R and f. For example, rules r1 and r2
have a common upper bound in S3, e.g., (〈∗〉, 〈∗〉, 〈m0〉). In this case, both rules
are enabled. Thus, we have to show that f(r1)

a f(r2) = f(r2)
a f(r1). Indeed,

f(r1)
a f(r2) = (〈∗1〉, 〈∗2〉, 〈m0,m0〉) = f(r2)

a f(r1). Thus, this forwarding actor
shows deterministic behavior (under the assumption that the action functions
are deterministic).
Next, consider again the set of firing rules of a nondeterministic merge actor

with two input ports (i.e., m = 2) and one output port (i.e., n = 1), which
forwards the tokens from i1 and i2 to the single output port o1. Here, the set
of firing rules derived from the corresponding actor FSM (not shown) is as
follows: R = {r1, r2}, with r1 = (〈∗〉, 〈〉, 〈m0〉), r2 = (〈〉, 〈∗〉, 〈m0〉). Note that
R corresponds to the set of firing rules from the previous example. However,
the definition of f is different: f(r1) = (〈∗1〉, 〈m0〉), and f(r2) = (〈∗2〉, 〈m0〉). We
consider again rules r1 and r2 which have a common upper bound in S3. Then,
f(r1)

a f(r2) = (〈∗1, ∗2〉, 〈m0,m0〉) 6= (〈∗2, ∗1〉, 〈m0,m0〉) = f(r2)
a f(r1). Thus,

this merge actor is correctly analyzed to show nondeterministic behavior, as
firing r1 after r2 yields a different result than firing r1 before r2.
For the SELECT actor of the BDF model as shown in Figure 4.13c, the

firing rules derived from the actor FSM are as follows: R = {r1, r2}, with
r1 = (〈∗〉, 〈∗〉, 〈〉, 〈m0〉), r2 = (〈∗〉, 〈〉, 〈∗〉, 〈m0〉), f(r1) = (〈∗1〉, 〈m0〉), and
f(r2) = (〈∗2〉, 〈m0〉). In this case, there is a common upper bound in S4,
e.g., (〈∗〉, 〈∗〉, 〈∗〉, 〈m0〉). It follows that f(r1)

a f(r2) = (〈∗1, ∗2〉, 〈m0,m0〉) 6=
(〈∗2, ∗1〉, 〈m0,m0〉) = f(r2)

a f(r1). Thus, in this case, the SELECT actor would
be classified as nondeterministic, even though transitions t1 and t2 cannot be
enabled at the same time. However, due to the black box approach for guard
functions, this property is undecidable in the general case.
In contrast, consider the SELECT actor implemented by means of the re-

stricted actor model (cf. Figure 4.13d). In this case, the result of the guard
function is explicitly represented by the distinct modes m⊤ and m⊥. The fir-
ing rules derived from the actor FSM are as follows: R = {r1, r2, r3}, with
r1 = (〈∗〉, 〈〉, 〈〉, 〈m0〉), r2 = (〈〉, 〈∗〉, 〈〉, 〈m⊤〉), and r3 = (〈〉, 〈〉, 〈∗〉, 〈m⊥〉). In
this case, the firing rules do not have a common upper bound in S4. In particular,
it is important to understand that 〈∗〉 is not an upper bound of 〈m0〉, 〈m⊤〉,
and 〈m⊥〉. Thus, the SELECT actor implemented by means of the restricted
actor model is correctly analyzed to show deterministic behavior. This example
shows that the restricted actor model may improve the analyzability of actors.
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4.9 Nondeterministic Dataflow

A DFG is nondeterministic if the token sequences produced by actors depend
on the order in which actors are fired. Note that as seen in some previous
examples, allowing non-blocking reads is, however, not a sufficient criterion for
nondeterminism. (In contrast, only allowing blocking reads is a sufficient criterion
for deterministic actors.) In the following, DDF is used to refer to the class of
nondeterministic actors.

In order to implement DDF actors, guard functions and multiple transitions
with different token consumption and production rates can be used. In particular,
it is possible to implement a nondeterministic merge actor. Note that in [Buc93],
it is shown that BDF is already Turing complete. Concerning the analysis, every
actor which has not been classified as CSDF, BDF, or deterministic, is assumed
to be a DDF actor.

4.10 Related Work and Limitations

Models of Computation are an important concept in the design of embedded
systems [LS98]. MoCs permit the use of efficient domain-specific optimization
methods [LBS+11]. The advantages have been shown by many examples, e.g.,
for real time reactive systems [BFM+05] and in the signal processing domain
[BB00b; BB00a]. An environment for modeling and simulating different and
heterogeneous MoCs is provided by Ptolemy II [Pto14]. Actors are classified by
the domain they are assigned to, and the domain is explicitly stated by a director
that is responsible for proper actor invocation. In Ptolemy II, heterogeneous
MoCs can be composed hierarchically, i.e. an actor can be refined by a network of
actors, which is again controlled by a domain-specific director. Other approaches
to model well-defined MoCs are also library-based and do not require actor
classification, e.g., YAPI [dKES+00] and SHIM [ET05].

Other heterogeneous MoCs have been proposed. FunState [TSZ+99; STG+01],
which has already been reviewed in Section 3.4, is of particular interest as it is
similar to the proposed dataflow model. However, the authors only provide some
kind of modeling guidelines to translate static and dynamic dataflow models as
well as FSMs into FunState. The reverse, i.e., the actor classification, is neglected.

On the other hand, SystemC [GLMS02] is becoming the de facto standard
for the design of digital hardware/software systems. While SystemC permits
the modeling of many different MoCs, there is no unique representation of a
particular MoC in SystemC. An approach for representing MoCs in SystemC is
described in [HSV04]. They have implemented a custom library of channel types
like rendezvous channels on top of the SystemC DE simulation kernel. However,
implementing these channels on top of the SystemC DE simulation kernel
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curtails the simulation performance. In order to improve the simulation efficiency,
Patel et al. [PS04] extend SystemC itself with different simulation kernels for
Communicating Sequential Processes [Hoa85] and Finite State Machine MoCs.
Thus, the classification of actors is again based on explicit modeling primitives.
In contrast, the proposed approach can be applied to actors derived from existing
well-formed SystemC modules as described in Section 2.3.

One major problem, even when models are restricted to a subset of SystemC,
is the unstructured use of communication primitives which makes the automatic
classification of a SystemC design a hard problem. The SystemC transaction level
modeling (TLM) standard [Acc12] does not alleviate these problems because it
is not concerned with defining representations of MoCs in SystemC. Instead, the
TLM-2.0 standard defines transaction level interfaces via method calls, therefore
improving simulation efficiency and providing the foundation for platform-based
design in SystemC. In this context, the work of Habibi et al. [HTS+06; HMT06]
and Niemann and Haubelt [NHUT07] goes one step further. They use the TLM
standard in combination with (Abstract) Finite State Machines which specify
the behavior of single SystemC modules. In both cases, the focus is on the
formalization of the entire SystemC transaction level model, and not on the
classification of a single actor.
There are few publications on the classification of dataflow actors into known

models of computation. This is not surprising, as this problem in its general
form is not decidable. However, some approaches have been published since the
proposed approach has been presented in [ZFHT08].
In [CPB12], an instrumentation-driven classification approach for DFGs is

presented. To this end, dataflow models are instrumented such that traces of the
communication patterns are recorded while executing the model. Subsequently,
these communication traces are analyzed whether they correspond to the CSDF
model of computation or not. Due to the incompleteness of simulation, this
trace-based approach represents only a necessary condition for a given actor
being a CSDF actor. In other words, depending on the input data, an actor may
no longer adhere to the CSDF model of computation. In this case, treating the
actor like a CSDF actor could introduce deadlocks into the model. This problem
is avoided by the proposed classification algorithm, which statically analyzes the
actor FSM and therefore represents a sufficient condition for an actor to adhere
to a static dataflow model. Moreover, the proposed approach permits the static
communication pattern to span multiple transitions, which is not considered by
the trace-based approach. However, the trace-based approach does not depend on
a certain representation of the underlying dataflow actor, whereas the proposed
approach obviously requires a representation based on transitions with a static
communication behavior.
The classification methodology presented in [WR10; WR12] is based on the

CAL actor language reviewed in Section 3.4. Both papers improve the proposed
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approach by performing an abstract interpretation of the CAL actor under consid-
eration. Thus, more actors may be identified as SDF or CSDF actors compared
to the proposed approach in principle, which only analyzes the static commu-
nication behavior of transitions. The basic classification algorithm, however, is
similar to the proposed approach. In particular, SDF actors are constrained to
actions that have the same input and output patterns. In contrast, the proposed
approach permits the static communication pattern to span multiple transitions.
In [WR10; WR12], it is also described how quasi-static actors can be detected.
Quasi-static actors in this context are comparable to CSDF actors, with the key
difference being that phases are not traversed cyclically. Instead, an arbitrary
successor phase can be selected after the current phase is finished. In principle, a
similar detection mechanism could be realized for the proposed dataflow model
by allowing alternative communication patterns, as has been outlined for the
SELECT and SWITCH actors of the BDF model in Section 4.4.2. However, as
this quasi-static schedule (QSS) model is not a well-defined dataflow MoC, we
abstain from discussing the analysis in more detail. In contrast, we mainly use
QSSs for the representation of scheduling decisions as discussed in Section 5.3.
Finally, [SGE+13] describes how FSM-based SADF graphs can be extracted

from disciplined dataflow networks (DDNs). Basically, DDNs restrict actor vari-
ables and input tokens to integer type, and require that they can only assume a
finite number of values. The approach first identifies all possible scenarios of a
DDN, and subsequently extracts their SDF graphs. Then, the possible sequences
of executions of these scenarios are derived by means of a state-space exploration.
Finally, an FSM is constructed for the identified scenario sequences. The classifi-
cation methodology is applied to CAL actor networks. The analysis is based on
firing rules as described in Section 4.8. In particular, the token value abstraction
used in Section 4.8.2 is supported. Thus, this classification approach could be
applied to the proposed dataflow model in principle.
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System Synthesis

After having introduced the non-hierarchical dataflow model and some related
analysis techniques, this chapter focuses on the hierarchical dataflow model which
is used to incorporate design decisions into the model. Considering again the
exemplary design flow supported by the proposed dataflow model as shown in
Figure 5.1, Chapter 3 describes how an application can be modeled by means of
the non-hierarchical dataflow model (“Application dataflow graph (DFG)”). Ap-
plicable to both, the hierarchical and non-hierarchical dataflow model, Chapter 4
outlines the representation and identification of less expressive dataflow models
in order to support the decision-making process at system level. Note that the
decision-making process itself as part of design space exploration is not discussed
in the context of this thesis. This chapter therefore is mainly concerned with the
refinement step at system level, i.e., the incorporation of binding and scheduling
decisions into the dataflow model.
Binding decisions can be incorporated into the model by means of hierarchical

DFGs (“Partitioned DFG”). To this end, the hierarchical actor model is intro-
duced in Section 5.1. This step represents a structural refinement only, and actors
are still executed in an unconstrained manner. The incorporation of binding
decisions into the model is described in Section 5.2. Scheduling decisions can be

a1 a2 a3 a4

r2r1
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a1

a4
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a1 a2 a3 a4

r1 r2

a4a3a2a1

Specification
DFG

Partitioned
DFG

Scheduled

System

Binding SchedulingApplication
DFG

Algorithmic/Task

Figure 5.1: Design flow supported by the proposed model. Only the steps per-
taining to system synthesis are shown (cf. Figure 2.2 on page 9).
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incorporated into the model also by means of hierarchical DFGs (“Scheduled
DFG”). This refinement step is described in Section 5.3 for various scheduling
schemes. Results are presented in Section 5.4. Finally, Section 5.5 discusses
related work and the limitations of the hierarchical modeling approach.

5.1 Hierarchical Model

In this section, the hierarchical actor model as introduced in [ZHF+13; ZHFT13] is
described. At a glance, composite (i.e., hierarchical) actors consist of a structural
part (ports, actors and channels), and a behavioral part (transitions). More
formally, composite actors are defined as follows:

Definition 5.1 (Composite Actor). A composite actor a = (I, O,A,C,K,D, B,
M,mcur,m0, v, v0, Fg, Fa, T , peek, cons, prod) extends the definition of leaf actors
(cf. Definition 3.1) by a set of child actors A, a set of channels C ⊆ A.O × A.I

connecting output ports of child actors with input ports of child actors6, a
function K: C → N which specifies the capacity of each channel, a function
D: C → N0 which specifies the number of initial tokens on each channel, and a
set of port-to-port bindings B ⊆ (I × A.I) ∪ (A.O ×O) connecting input ports
of the composite actor with input ports of child actors, and output ports of child
actors with output ports of the composite actor, respectively.

Each input port of each child actor must be bound to exactly one channel or
input port of the composite actor, and each output port of the composite actor
must be bound to exactly one output port of a child actor:

∀p ∈ A.I ∪O : |{p′ ∈ A.O ∪ I | (p′, p) ∈ C ∪ B}| = 1 (5.1)

Analogously, each output port of each child actor must be bound to exactly
one channel or output port of the composite actor, and each input port of the
composite actor must be bound to exactly one input port of a child actor:

∀p ∈ A.O ∪ I : |{p′ ∈ A.I ∪O | (p, p′) ∈ C ∪ B}| = 1 (5.2)

As Conditions (5.1) and (5.2) induce a surjective mapping between a child
actor port p ∈ A.I ∪ A.O and the channel c ∈ C to which p is connected to, we
use D(c) and K(c) interchangeably with D(p) and K(p) in the following. If p is
bound to a port of the composite actor, this notation is implicitly extended to
the parent actor of the composite actor, etc.

6A.O denotes the set of all output ports of all child actors, i.e., A.O =
⋃

a∈A
a.O. This

notation is also used for other sets, e.g., for input ports A.I and transitions A.T .
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Figure 5.2: Composite actor which bundles the per-component decoding func-
tionality of the JPEG decoder from Figure 2.3 on page 12.

Example 5.1. Figure 5.2 shows a composite actor ComponentDecode which
contains those actors from Figure 2.3 on page 12 that are responsible for
decoding the image components (Y, Cb, Cr) of a JPEG image. By instantiating
the resulting composite actor more than once, the parallel processing of image
components can be modeled (and synthesized). This particular composite actor
consists of the child actors InverseQuant, InverseZigZag, and IDCT2D.
The ports of the child actor are connected by channels c1 and c2, and to the
ports of the composite actor by port-to-port bindings b1, b2, and b3. Note that
the IDCT2D actor could be in turn hierarchically refined as shown in Figure 4.11
on page 75.

In the following, a composite actor without transitions (i.e., T = ∅) is called
structural composite actor, whereas a composite actor with T 6= ∅ will be referred
to as functional composite actor. While the set of leaf actors models the function-
ality of the application (cf. actors a1–a4 in Figure 5.1), structural composite actors
can be used to model binding decisions (cf. actors r1 and r2 in Figure 5.1), and
functional composite actors are used to represent scheduling decisions (cf. finite
state machines (FSMs) in Figure 5.1). Note that a leaf actor is, in fact, a composite
actor without child actors (i.e, A = ∅), and therefore, C = ∅ and B = ∅.

Example 5.2. The composite actor ComponentDecode shown in Figure 5.2
is a structural composite actor as indicated by the absence of an actor FSM. In
turn, the child actors InverseQuant, InverseZigZag, and IDCT2D are
not scheduled (yet).

As will be seen, a functional composite actor is only allowed to schedule its
immediate child actors. Thus, structural composite actors cannot be child actors
of functional composite actors in the proposed dataflow model, as structural
composite actors do not have transitions, and therefore cannot be scheduled by a
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hypothetical functional composite parent actor. Thus, if a structural composite
child actor needs to be scheduled, it must be either (recursively) dissolved by
inlining its child actors into the functional composite parent actor, or a scheduling
scheme must be (recursively) annotated to the structural composite child actor.

The parent-child relation of actors induces a directed graph GA = (VA, EA),
where the vertices VA correspond to the actors of an application, and for each
composite actor a and each child actor a′ ∈ a.A, an edge (a, a′) is added to EA.
We require that the induced graph does not contain cycles and that each child
actor has exactly one parent actor, i.e., GA must be a tree. In the following, we
assume the existence of a root actor aroot, which is defined as a composite actor
with no ports, i.e, I = O = ∅. The root actor represents the overall application.
In turn, this means that each port of an actor is eventually bound to a channel of
a composite actor. In the following, we write a � a′ if a is an ancestor of a′ w.r.t.
GA. Note that a � a′ also if a = a′. Thus, “�” defines a (non-strict) partial
order over the the set of actors comprising the application. The root actor aroot
is an ancestor of every nested actor a (including aroot).

5.1.1 Operational Semantics

Transitions are kept unchanged for composite actors compared to leaf actors (cf.
Definition 3.5). In particular, this means that transitions of a functional composite
actor also have a static communication behavior. In turn, functional composite
actors can be treated as leaf actors for analytic purposes. In order to support
the scheduling of child actors, guard functions and action functions are extended
for functional composite actors by the concept of tasks and task lists. Basically,
tasks represent transitions of child actors, while task lists specify dependencies
between tasks. Tasks and task lists are created by functional composite actors,
and can be used in guard functions and action functions to implement a wide
range of scheduling schemes, as will be seen in Section 5.3.

Definition 5.2 (Task). Given a functional composite actor a. Then, a task τ of
a is a non-empty set of transitions of a child actor a′ ∈ a.A, i.e., τ ⊆ a′.T .

In order to simplify the notation, we write τ = a′ in the special case that
τ = a′.T . In other words, specifying an actor a′ as task is equivalent to specifying
all of its transitions a′.T . In the following, we use parent(τ) = a′ to refer to the
child actor a′ ∈ a.A such that τ ⊆ a′.T .

Definition 5.3 (Task List). Given a functional composite actor a. Then, a
task list λ = (Γ,≺) of a is a strict partial order “≺” over a multiset of tasks
Γ = {τ1, . . . , τn} of a. Each task τ ∈ Γ is a non-empty set of transitions of a
child actor a′ ∈ a.A according to Definition 5.2.
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Algorithm 5.1 Evaluation of a task τ

1: procedure Evaluate(Task τ)
2: for all t ∈ τ do

3: if Evaluate(t) = ⊤ then

4: Remember t as enabled transition
5: return ⊤
6: end if

7: end for

8: return ⊥
9: end procedure

Algorithm 5.2 Evaluation of a task list λ

1: procedure Evaluate(Task list λ)
2: for all τ ∈ Γeval(λ) do
3: if Evaluate(τ) = ⊥ then

4: return ⊥
5: end if

6: end for

7: return ⊤
8: end procedure

A task list represents dependencies between tasks: If for any two tasks τi and τj ,
τi ≺ τj , task τi must be executed and finished before task τj can be evaluated or ex-
ecuted. In the following, Γpred(λ = (Γ,≺), τ) = {τ ′ ∈ Γ | τ ′ ≺ τ} denotes the set
of predecessor tasks of a task τ w.r.t. a task list λ. Note that Γ is defined as a mul-
tiset in order to accommodate multiple occurrences of the same transition set.

Evaluation phase

The evaluation phase of a task τ is summarized by Algorithm 5.1: Each transition
t ∈ τ is evaluated as described in Section 3.1.1. If at least one transition t ∈ τ is
enabled, task τ is enabled. In contrast, if no transition t ∈ τ is enabled, task τ is
not enabled.
Note that if an enabled transition t is found during the evaluation of a task τ ,

this transition may be cached for the subsequent execution phase. However, after
the execution phase, τ must be re-evaluated, because the cached transition may
be no longer enabled in the general case. However, if we consider only conflict-free
DFGs, this situation can only arise if a (possibly different) task τ ′ is executed
such that parent(τ) = parent(τ ′).
The evaluation phase of a task list λ is summarized by Algorithm 5.2: Basically,

all tasks without predecessor tasks are evaluated. Note that only tasks without
predecessor tasks are evaluated, because evaluating tasks with predecessor tasks
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Algorithm 5.3 Execution of a task τ

1: procedure Execute(Task τ)
2: Let t be an enabled transition of τ
3: Execute(t)
4: end procedure

Algorithm 5.4 Execution of a task list λ

1: procedure Execute(Task list λ)
2: Let 〈τ1, . . . , τn〉 ← topSort(λ)
3: for i← 1, n do

4: if Γpred(λ, τi) 6= ∅ then
5: Evaluate(τi)
6: end if

7: Execute(τi)
8: end for

9: end procedure

would obviously require executing the predecessor tasks, which is not allowed
during the evaluation phase. Thus, the set of tasks to evaluate is:

Γeval(λ = (Γ,≺)) = {τ ∈ Γ | Γpred(λ, τ) = ∅}

A task list λ is enabled if all tasks τ ∈ Γeval(λ) are enabled. Otherwise, λ is not
enabled.
As the evaluation of transitions is side-effect free according to the semantics

of the proposed dataflow model, the evaluation of tasks and task lists is also
side-effect free w.r.t. the state of the dataflow model. Thus, transitions of tasks,
as well as tasks of task lists can be evaluated in parallel in principle.

Execution phase

The execution phase of an enabled task τ is summarized by Algorithm 5.3.
Basically, the enabled transition found during the evaluation phase is executed
as described in Section 3.1.1.
Finally, the execution phase of an enabled task list λ is summarized by Al-

gorithm 5.4. Basically, all tasks in Γ are executed. Remember that tasks with
predecessor tasks must still be evaluated. However, during the execution phase,
this poses no problem, and a task is evaluated after all predecessor tasks have
been executed. In contrast to the evaluation phase, we now expect that evaluation
always succeeds, i.e., each task must be enabled. Otherwise, the model behav-
ior is undefined. Let topSort(λ = (Γ,≺)) = 〈τ1, . . . , τn〉 denote a topological
ordering of the task set Γ w.r.t. the strict partial order “≺”. Note that such a
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Figure 5.3: Example functional composite actor acomp with SDF child actors a–d.

topological ordering can always be found for a strict partial order, as the induced
dependency graph is acyclic. Then, τ1 is executed (it must have been evaluated
during the evaluation phase due to having no predecessor tasks). Subsequently,
τ2 is evaluated (if Γpred(λ, τ2) = {τ1}) and executed, and so on. When the last
task τn has been evaluated and executed, the execution of λ is finished.

Example 5.3. Consider the functional composite actor depicted in Figure 5.3.
It consists of four synchronous dataflow (SDF) child actors with the anno-
tated token consumption and production rates. Thus, a possible periodic
static order schedule (PSOS) as described in Section 4.2 is S = 〈a, b2, c, d〉
which fires actor a once, actor b twice, actor c once, and finally, actor d

once. A possible task list λ = (Γ,≺) which implements S consists of Γ =
{τ1 = a, τ2 = b, τ3 = b, τ4 = c, τ5 = d}, and τ1 ≺ τ2 ≺ τ3 ≺ τ4 ≺ τ5. This means
that a must be executed first, followed by the first firing of b, and so on. It should
be noted that a PSOS represents a total ordering on the actor firings. In turn,
“≺” also induces a total ordering on tasks in a task list when implementing a
PSOS. Finally, the task list λ could be evaluated and executed by the action
function fa of the (only) transition t1 of the given composite actor. In this
case, evaluating λ results in evaluating task τ1, which is the only task without
predecessor tasks. Subsequently, when executing λ, τ1 is executed first (it is
already evaluated), followed by the evaluation and execution of τ2, etc. When
τ5 has been executed, the execution of λ is finished.

Forwarding of Token Sequences

Until now, the forwarding of tokens from/to ports of the composite actor to/from
ports of child actors, as well as the forwarding of tokens from output ports of
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Figure 5.4: Consumption and production of tokens in a hierarchical model.

child actors to input ports of child actors has been neglected. While the former
is represented by port-to-port bindings, the latter is represented by channels (cf.
Definition 5.1).

To this end, we assume that a composite actor a and two child actors a′1, a
′
2 ∈

a.A are given as shown in Figure 5.4. Concerning the channel c1, token sequences
produced by actor a′1 on o1,1 are simply forwarded to input port i2,1 of actor a′2
by means of a first in, first out (FIFO) buffer associated with channel c1. This
behavior is basically the same for structural composite actors and functional
composite actors.

Concerning the port-to-port bindings b1 and b2, two cases can be distinguished:
If a is a structural composite actor, token sequences are simply forwarded from
input port i1 of the composite actor a to input port i1,1 of the child actor a′1.
Analogously, token sequences are simply forwarded from output port o2,1 of the
child actor a′2 to output port o1 of the composite actor a.

If a is a functional composite actor, the token sequences provided to the guard
function fg and action function fa of a transition t of the composite actor are
based on the values of peek(p, fg) and cons(p, fa) for a given input port p ∈ I as
described in Section 3.1.1 (cf. Algorithm 3.1 and 3.2). Basically, fg and fa are
free to transform these token sequences before forwarding them to input ports
of child actors that are bound to input ports of the composite actor. Transitions
of child actors are then evaluated based on these (possibly transformed) token
sequences. Note that the action function fa is also responsible for producing a
token sequence based on the value of prod(p, fa) for a given output port p of
the composite actor (cf. Algorithm 3.2). Again, fa is free to transform token
sequences from output ports of child actors that are bound to output ports of
the composite actor in order to accomplish this task.

In principle, an implementation is free to provide appropriate token forwarding
mechanisms. For example, an existing implementation allows FIFO buffers to
be associated with a port-to-port binding, analogously to channels. In addition,
as discussed in Section 6.2, this implementation allows guard functions and
action functions to randomly access the tokens on these FIFO buffers in the
range specified by the values of peek, cons, and prod, respectively. Thus, an
action function can read a token in a FIFO channel (via an actor input port),
transform the token, and place it in the FIFO buffer associated with a port-to-
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port binding, where it can be subsequently consumed by transitions of a child
actor. Analogously, an action function can read a token in the FIFO buffer
associated with a port-to-port binding, transform it, and subsequently store it
in a FIFO channel (via an actor output port). However, when using such an
implementation-defined forwarding mechanism, the designer has to ensure that
Requirement 3.1 is satisfied. Otherwise, the model behavior may be undefined.
Remember that transitions of functional composite actors have the same

semantics as transitions of leaf actors (cf. Definition 3.5). From an analytical
point of view, a concrete token forwarding mechanism therefore does not influence
the static communication behavior of transitions. In particular, this means that
the same analysis and optimization techniques can be applied to leaf actors and
functional composite actors.

5.2 Binding

In order to describe binding decisions, we assume a set of computing resources
R = {r1, . . . , rn} that are available in the target platform, like processor cores
etc. Furthermore, we assume that the function β : VA → R specifies for each
actor a ∈ VA of a hierarchical dataflow model the resource β(a) ∈ R to which a is
bound to. The values of β can be determined, e.g., by an automatic design space
exploration, or specified by the user. In particular, child actors of a composite
actor may be bound to different resources.
Although structural composite actors do not have any functionality, they may

be bound to a resource. In this way, structural composite actors can be conve-
niently used to represent binding decisions, as child actors of a composite actor
which are not bound to a resource inherit the binding of their parent composite
actor. In order to indicate that an actor is not bound to a resource, a special re-
source rnone is used in the following. In order to simplify the notation, it is assumed
in the following that the values of β correspond to a normalized representation
where all functional composite actors (and leaf actors) are bound to a resource
r 6= rnone, while all structural composite actors are not bound to a resource.
The actor hierarchy graphGA = (VA, EA) and the binding of actors to resources

induces a directed resource dependency graph GR = (VR, ER), where the vertices
VR correspond to the resources R, and for each edge (a, a′) ∈ EA, an edge
(β(a), β(a′)) is added to ER if β(a) 6= β(a′). Note that the latter condition
prevents self-loops in GR. These are easily handled as will be shown in the
following, and can therefore be omitted from GR. Moreover, rnone is either the
root vertex of GR, or does not appear in GR at all, depending on whether the
root actor aroot is a structural composite actor or not.
In order to derive simple operational semantics and an efficient runtime en-

vironment (RTE), we assume in the following that any vertex r ∈ VR of the
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resource dependency graph GR does have at most one incoming edge: If a vertex
r ∈ VR has multiple incoming edges (r1, r) ∈ ER and (r2, r) ∈ ER such that
r1 6= r2, resources r1 and r2 may compete for the same resource r. In this case,
an additional scheduling mechanism would be required for resource r which
arbitrates requests from resources r1 and r2. While possible in principle, the op-
erational semantics would become more complex. In the following, the necessary
changes are outlined in order to support such a scenario.

5.2.1 Operational Semantics

As the transitions of a task τ belong to the same actor, the operational semantics
of tasks are not refined compared to Section 5.1.1. In other words, the transitions
of τ are evaluated on resource β(parent(τ)).
On the other hand, the tasks in a task list may have different parent actors.

Thus, depending on the binding of actors to resources, the evaluation and
execution of tasks in a task list must be delegated to the appropriate resources.

Evaluation Phase

Algorithm 5.5 summarizes the binding-aware evaluation phase of a task list τ
when executed by an actor bound to a resource rself . To this end, Γeval(λ, r) =
{τ ∈ Γeval(λ) | β(τ) = r} denotes the set of tasks to be evaluated on a given
resource r. Remember that Γeval(λ) refers to the tasks of λ without predecessor
tasks. First, the evaluation of tasks which are bound to different resources is
started asynchronously on the corresponding resources (cf. lines 2–6). Subse-
quently, tasks bound to rself are evaluated synchronously on rself (cf. lines 7–13).
Finally, we wait for the completion of the asynchronously evaluated tasks (cf.
lines 14–21). If the overall result res is already ⊥ after the partial evaluation
of tasks, the evaluation of the remaining tasks can be skipped or canceled in
principle. However, this behavior depends on the implementation (and target
resources), and is not reflected by Algorithm 5.5.
In order to support multiple incoming edges in the resource dependency graph

GR as discussed above, lines 14–21 could no longer just wait until all pending tasks
are finished that are evaluated asynchronously on different resources. Instead,
task evaluation or execution requests from other resources that are posted to
rself would have to be processed here in order to prevent the introduction of
deadlocks into the model (in the case of cyclic resource dependencies).

Execution Phase

Algorithm 5.6 summarizes the binding-aware execution phase of a task list τ
when executed by an actor bound to a resource rself . Analogously to Γeval(λ, r),
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Algorithm 5.5 Binding-aware evaluation of a task list λ on a resource r

1: procedure Evaluate(Task list λ = (Γ,≺), Resource rself)
2: for all r ∈ R do ⊲ Asynchronous task evaluation
3: if r 6= rself ∧ Γeval(λ, r) 6= ∅ then
4: Asynchronously start the evaluation of tasks Γeval(λ, r) on resource r

5: end if

6: end for

7: Let res← ⊤ ⊲ Synchronous task evaluation
8: for all τ ∈ Γeval(λ, rself) do
9: if Evaluate(τ) = ⊥ then

10: res← ⊥
11: break

12: end if

13: end for

14: for all r ∈ R do

15: if r 6= rself ∧ Γeval(λ, r) 6= ∅ then
16: Wait for completion of tasks Γeval(λ, r) on resource r with result resr
17: if resr = ⊥ then

18: res← ⊥
19: end if

20: end if

21: end for

22: return res
23: end procedure

we use Γexec(λ = (Γ,≺), r) = {τ ∈ Γ | β(τ) = r} to denote the set of tasks to be
executed on a given resource r. First, the execution of tasks which are bound to
different resources is started asynchronously on the corresponding resources (cf.
lines 2–6). Subsequently, tasks bound to rself are executed synchronously on rself
(cf. lines 7–17). Note that in contrast to Algorithm 5.4, we now have to wait for
the completion of predecessor tasks that are executed on resources other than
rself (cf. lines 11–13). Finally, we wait for the completion of the asynchronously
executed tasks (cf. lines 18–22).
Again, in order to support multiple incoming edges in the resource dependency

graph GR as discussed above, both places where we wait for pending tasks to
complete on other resources (i.e., lines 11–13 and lines 18–22) would have to
process task evaluation or execution requests from other resources that are posted
to rself in order to prevent the introduction of deadlocks into the model (in the
case of cyclic resource dependencies).

Example 5.4. Consider again the functional composite actor depicted in
Figure 5.3. A slightly different static scheduling scheme compared to the PSOS
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Algorithm 5.6 Binding-aware execution of a task list λ on a resource r

1: procedure Execute(Task list λ = (Γ,≺), Resource rself)
2: for all r ∈ R do ⊲ Asynchronous task execution
3: if r 6= rself ∧ Γexec(λ, r) 6= ∅ then
4: Asynchronously start the execution of tasks Γexec(λ, r) on resource r

5: end if

6: end for

7: Let Γself ← Γexec(λ, rself) ⊲ Synchronous task execution
8: Let 〈τ1, . . . , τn〉 ← topSort(Γself ,≺)
9: for i← 1, n do

10: if Γpred(λ, τi) 6= ∅ then
11: for all τpred ∈ Γpred(λ, τi) \ Γself do

12: Wait for completion of task τpred on resource β(parent(τpred))
13: end for

14: Evaluate(τi)
15: end if

16: Execute(τi)
17: end for

18: for all r ∈ R do

19: if r 6= rself ∧ Γexec(λ, r) 6= ∅ then
20: Wait for completion of tasks Γexec(λ, r) on resource r

21: end if

22: end for

23: end procedure

S = 〈a, b2, c, d〉 (cf. Example 5.3) consists of the task list λ = (Γ,≺) with
Γ = {τ1 = a, τ2 = b, τ3 = b, τ4 = c, τ5 = d}, τ1 ≺ τ4 ≺ τ5, and τ2 ≺ τ3 ≺ τ4. In
this case, the partial order “≺” is described by means of two chains. A chain is
a totally ordered subset of a partially ordered set. In contrast to the total order
induced by the PSOS S, the two firings of b do not depend on the firing of a in
this case. Thus, in principle, they can be performed in parallel, depending on
the binding of actors to resources. Moreover, both tasks τ1 and τ2 don’t have
any predecessor tasks in this case.

In order to illustrate the binding-aware execution of λ, assume a set of
resources R = {r1, r2}, and the following values of β: β(acomp) = β(a) = β(c) =
β(d) = r1, and β(b) = r2, i.e., all actors except b are bound to resource r1, while
b is bound to resource r2. Then, the sequence diagram in Figure 5.5 shows
the possible execution of λ during the execution of the action function fa of
transition t1 of actor acomp (cf. Figure 5.3). First, the evaluation of τ2 = b is
started on resource r2, followed by the evaluation of τ1 = a on resource r1.
Assuming that the evaluation succeeds, τ2 and τ3 are executed on r2, while τ1,
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r1

Evaluate τ2
Evaluate τ1

Execute τ1, τ4, τ5

r2

fa

Execute τ2, τ3

Evaluate τ2

Execute τ2

Evaluate τ3

Execute τ3

Evaluate τ1

Execute τ1

Evaluate τ4
Execute τ4
Evaluate τ5
Execute τ5

Figure 5.5: Binding-aware execution of the action function fa from Figure 5.3

τ4 and τ5 are executed on r1. Note that the evaluation and execution of τ4 is
started only after τ3 is finished on r2.

5.2.2 Runtime Environment

Depending on the resource dependency graph GR, two types of resources can be
distinguished: Initiator resources are resources where at least one actor is bound
to that is not scheduled by its parent actor. Given the directed graph of actors
GA = (VA, EA) representing the actor hierarchy, this set of actors is defined for
a given resource r as follows:

Ainitiator(r) = {a ∈ GA | β(a) = r ∧ (∄a′ ∈ GA : (a′, a) ∈ EA ∧ β(a′) 6= rnone)}

Thus, a resource r is an initiator resource if Ainitiator(r) 6= ∅. In this case, the
RTE of r consists of an implementation-defined scheduling scheme for the actors
in Ainitiator(r). As implemented, a simple round-robin dynamic scheduling scheme
is used which is summarized by Algorithm 5.7.
On the other hand, target resources are resources where at least one actor is

bound to that is scheduled by its parent actor, and the parent actor is bound to a
different resource. Given the directed graph of actors GA = (VA, EA) representing
the actor hierarchy, this set of actors is defined for a given resource r as follows:

Atarget(r) = {a ∈ GA | β(a) = r ∧ (∃a′ ∈ GA : (a′, a) ∈ EA ∧ β(a′) 6= rnone

∧ β(a′) 6= r)}
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Algorithm 5.7 Runtime environment of an initiator resource

1: procedure RteInitiator(Resource rself)
2: loop

3: for all a ∈ Ainitiator(rself) do
4: Let τ ← a.T

5: if Evaluate(τ) = ⊤ then

6: Execute(τ)
7: end if

8: end for

9: end loop

10: end procedure

Algorithm 5.8 Runtime environment of a target resource

1: procedure RteTarget(Resource rself)
2: loop

3: Wait for task evaluation or execution request
4: if Received task evaluation request Γeval(λ, rself) then
5: Evaluate tasks Γeval(λ, rself) according to lines 7–13 of Algorithm 5.5
6: else if Received task execution request Γexec(λ, rself) then
7: Execute tasks Γexec(λ, rself) according to lines 7–17 of Algorithm 5.6
8: end if

9: end loop

10: end procedure

Thus, a resource r is a target resource if Atarget(r) 6= ∅. Note that there may
exist actors bound to a resource r that are neither contained in Ainitiator(r) nor
in Atarget(r). These are actors that are scheduled by actors bound to the same
resource r, which is handled by Algorithms 5.5 and 5.6. A target resource processes
task evaluation and execution requests for actors in Atarget(r) as summarized by
Algorithm 5.8.

In order to support multiple incoming edges in the resource dependency graph,
the RTEs would have to accommodate the following scenarios:

• Algorithm 5.8 may have to queue and process task evaluation and execution
requests from different resources. This could be accomplished rather easily,
e.g., by means of a first-come, first-served (FCFS) scheduling scheme.

• The more difficult scenario consists in a resource r for which Ainitiator(r) 6=
∅ and Atarget(r) 6= ∅. In this case, resource r is an initiator resource
and a target resource at the same time, which requires the merging of
Algorithm 5.7 and Algorithm 5.8. Basically, this requires the use of a suitable
scheduling scheme which periodically executes the actors in Ainitiator(r),
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but also processes aperiodic task evaluation and execution requests for
actors in Atarget(r).

• Finally, cyclic resource dependencies are more difficult to handle, as task
evaluation and execution requests may have to be processed while evaluating
and executing a task. This problem has been addressed in the context of
Algorithm 5.5 and Algorithm 5.6.

5.3 Scheduling

In [Lee89], the scheduling taxonomy shown in Table 5.1 has been introduced.
In the general case, actors must be assigned to a specific computing resource.
Subsequently, actors assigned to the same resource must be ordered. Finally, the
time at which they fire must be determined.
Fully dynamic scheduling performs all tasks at run time. In particular, actors

are bound to resources at run time. In Section 5.2, the binding-aware operational
semantics of the proposed dataflow model have been described. However, a static
binding has been assumed. In principle, it is possible to extend the approach
to also provide for a dynamic binding of actors to resources. This is mainly a
task of the underlying RTE. Here, numerous approaches have been proposed
[LKP+10; HN12; HT12; SGB+12; HHB+12; QP13]. In particular, actors can
be easily remapped after a transition has been executed, as in this case, only
the actor state has to be transferred, and no local variables which may be used
during the execution of a guard function or an action function. In fact, a related
approach is described in Chapter 6.3.4.
Static-assignment scheduling performs the binding of tasks at compile time,

while the ordering and timing of actor firings is performed at run time. This
scheduling class has also been referred to as dynamic scheduling in previous
sections. Note that this is the default scheduling scheme used for initiator
resources as described in Section 5.2.2.
In contrast, self-timed scheduling determines the ordering of actors at compile

time. This corresponds to the periodic static order scheduling as described in

Scheduling class
Scheduling task

Assignment Ordering Timing

Fully Dynamic Run Run Run
Static-assignment Compile Run Run
Self-timed Compile Compile Run
Fully static Compile Compile Compile

Table 5.1: Scheduling taxonomy according to [Lee89].
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Section 4.2. Note that the timing of actor firings is still deferred to run time. For
this class of schedules, Example 5.3 already illustrated how such schedules can
be represented in the proposed dataflow model.

An additional class of schedules, namely quasi-static schedules (QSSs) are not
reflected by Table 5.1. A QSS defers data-dependent scheduling decisions to run
time, while data-independent scheduling decisions are performed at compile time.
Thus, QSSs reside between static-assignment schedules and self-timed schedules
according to Table 5.1. As will be seen, transitions can be also used to represent
such schedules in the proposed dataflow model.

Finally, fully static scheduling performs all tasks at compile time. In particular,
the timing of actor firings is determined at compile time. This is currently not
supported by the proposed approach, where actor firings are either functionally
synchronized by means of tokens transmitted over channels, or by the use of task
lists, where synchronization is based on a partial ordering between tasks. Note
that this approach would require to compute exact (or worst-case) execution
times of guard functions and action functions in addition to token access times,
which may be difficult in case of data-dependent control flow.

5.3.1 Self-Timed Scheduling

In this section, two self-timed scheduling strategies are discussed, namely periodic
static order scheduling and periodic partial order scheduling. While the former
corresponds to a total ordering of actor firings, the latter corresponds to a strict
partial ordering of actor firings.

Periodic Static Order Scheduling

In order to implement a periodic static order schedule S = 〈a1, . . .〉 for a set of
cyclo-static dataflow (CSDF) actors a1–an, a functional composite actor acomp

can be used which consists of a single self-loop transition t1 from the initial mode
m0 (cf. Figure 5.3). The guard function is set to f⊤, and the action function
evaluates and executes a task list λ = (Γ,≺) which consists of a total ordering
of all actor firings as specified by S. In the following, it is assumed that each
task τ ∈ Γ only consists of a single transition tk corresponding to phase k of
the CSDF actor a = parent(τ) ∈ acomp.A. In particular, this is the case if a is a
normalized CSDF actor as described in Section 4.3.2.

In order to determine the token production and consumption rates of the
action function fa associated with the only transition t1 of the composite actor
acomp, only ports of the CSDF child actors that are bound to ports of acomp

according to the set of port-to-port bindings acomp.B have to be considered. To
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this end, the token consumption and production rates of a task τ = {tk} w.r.t. a
port p ∈ I ∪O of acomp can be determined as follows:

cons(p, τ = {tk}) =
∑

p′∈parent(τ).I : (p,p′)∈B

cons(p′, tk.fa) (5.3)

prod(p, τ = {tk}) =
∑

p′∈parent(τ).O : (p′,p)∈B

prod(p′, tk.fa) (5.4)

Note that each sum contains at most one element according to Conditions (5.1)
and (5.2). Then, the token consumption and production rates of fa w.r.t. a port
p ∈ I ∪O of acomp can be determined based on the task list λ = (Γ,≺) as follows:

cons(p, fa) =
∑

τ∈Γ

cons(p, τ) (5.5)

prod(p, fa) =
∑

τ∈Γ

prod(p, τ) (5.6)

Example 5.5. Consider the functional composite actor γ1 depicted in Fig-
ure 5.6 which consists of the homogeneous synchronous dataflow (HSDF) ac-
tors a1–a4. A possible PSOS is S1 = 〈a1, a2, a3, a4〉. The task list λ = (Γ,≺)
executed by the action function fa1 of transition t1 then consists of Γ =
{τ1 = a1, τ2 = a2, τ3 = a3, τ4 = a4}, and τ1 ≺ τ2 ≺ τ3 ≺ τ4. According to Equa-
tion (5.5), it follows that cons(i1, fa1) = cons(i1, τ1)+cons(i1, τ2)+cons(i1, τ3)+
cons(i1, τ4) = 0 + 0 + 0 + 1 = 1. Analogously, it follows that prod(o1, fa1) = 1.

Periodic Partial Order Scheduling

A PSOS is usually determined for each resource where multiple static actors are
bound. Thus, in the presence of multiple resources, multiple PSOS are determined
and implemented in a distributed manner. However, in the general case, this
may introduce deadlocks into the model if the guarded actions semantics of the
proposed dataflow model are imposed on the distributed PSOS.

Example 5.6. Consider again Figure 5.6. If γ1 implements the PSOS S1 =
〈a1, a2, a3, a4〉 (cf. Example 5.5), it can be observed that a deadlock has already
been introduced into the model, regardless of the schedule implemented by γ2
(which may be a similar PSOS S2 = 〈a5, a6, a7, a8〉). This is due to the fact that
in order to execute transition t1 of γ1, one token must be available on channel
c2. However, this token is produced by actor a7, which can only fire after actor
a6 has been fired, which in turn can fire only if one token is available on channel
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a1 a2 a3 a4
c3 c4 c5

γ2 → r2

γ1 → r1

a5 a6 a7 a8
c6 c7 c8

c1 c2

t1: #i1 ≥ 1 ∧#o1 ≥ 1 / fa1

t2: #i1 ≥ 1 ∧#o1 ≥ 1 / fa2
i1

o1

o1

i1

Figure 5.6: HSDF actors a1–a8 and functional composite actors γ1 and γ2. There
are no initial tokens on any channel c1–c8. Actor γ1 (and actors a1–a4)
are bound to resource r1, while actor γ2 (and actors a5–a8) are bound
to resource r2.

c1. However, this token is also produced by transition t1 of γ1, which cannot
fire due to the missing token on channel c2. As will be seen in Section 5.3.2,
one possibility to solve this problem is to split S1 into two partial PSOS, e.g.,
S1,1 = 〈a1, a2, a3〉 and S1,2 = 〈a4〉. Note that S1,1 and S1,2 then correspond to
two transitions t1,1 and t1,2, respectively. Then, transition t1,1 can be executed
first, followed by transition t2 of γ2, followed by the execution of t1,2.

The example shows that while it is possible to split a PSOS such that a
deadlock-free execution is possible in the presence of guarded actions semantics,
it can also be observed that a PSOS for the overall model may exist. In this
case, it seems counterintuitive to implement distributed PSOS, which must be
additionally split into multiple transitions in order to not introduce deadlocks
into the model. Note that in the general case, the actor FSMs representing these
quasi-static schedules may become quite large in practice (cf. Section 5.3.2).
The periodic partial order scheduling approach presented in [ZHF+13] solves
this problem by providing for a partial ordering of actor firings in contrast to
the total ordering imposed by a PSOS. In the proposed dataflow model, this
corresponds to a partial ordering of transition sets (tasks) from which an enabled
transition is selected at run time (cf. Definition 5.3). Thus, this approach still
allows a concurrent execution of actors on different resources, but, in contrast
to the distributed PSOS approach, provides for a simple task synchronization
mechanism not based on FIFO channels. In principle, this approach therefore also
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a1 a2 a3 a4
c3 c4 c5

m0

t1: / fa

aroot

c1

a5 a6 a7 a8
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c2

Figure 5.7: The root actor aroot and HSDF actors a1–a4 are bound to resource
r1, while actors a5–a8 are bound to resource r2. The action function
fa implements a PPOS for actors a1–a8.

allows the replacement of inter-resource FIFO channels by simpler communication
primitives without a coupled synchronization mechanism, like registers.

Example 5.7. Consider Figure 5.7, which contains the same HSDF leaf actors
a1–a8 as shown in Figure 5.6. However, the functional composite actors γ1 and
γ2 are not required in this case, as the root actor aroot implements a PPOS
for actors a1–a8. To this end, a task list λ = (Γ,≺) is executed by the action
function fa of the only transition t1 of aroot. The tasks executed by λ correspond
to Γ = {τ1 = a1, τ2 = a2, . . . , τ8 = a8}, and the tasks are ordered as follows:
(1) τ1 ≺ τ2 ≺ τ3 ≺ τ4, (2) τ5 ≺ τ6 ≺ τ7 ≺ τ8, (3) τ1 ≺ τ6, and (4) τ7 ≺ τ4.
Given the resource binding β(aroot) = β(a1) = β(a2) = β(a3) = β(a4) = r1 and
β(a5) = β(a6) = β(a7) = β(a8) = r2, this allows, e.g., the concurrent execution
of actors a1 and a5, a2 and a6, etc. Note that all FIFO channels c1–c8 could be
replaced by registers in this case.

5.3.2 Quasi-Static Scheduling

In the previous section, Example 5.6 illustrated that a given PSOS for a resource
might introduce deadlocks into the model, and therefore has to be split into a
set of partial PSOS in order to accommodate token feedback loops over multiple
actors. The periodic partial order scheduling approach solved this problem
differently. However, it is only applicable if an overall PSOS for the actors that
are part of a token feedback loop can be determined. In the general case, an
application consists of static actors and dynamic actors, and token feedback loops
may include dynamic actors. Note that in this context, dynamic actor refers to
actors that are not CSDF actors (and therefore, neither SDF nor HSDF actors).
In this case, an overall PSOS for the relevant actors cannot be determined, but
implementing a PSOS only for static subgraphs might be infeasible in the general
case as illustrated by Example 5.6.
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Figure 5.8: QSS for actors a1, a2, and a3 implemented by the functional composite
actor acomp. In order to improve readability, token consumption and
production rates have been omitted in the actor FSM, and the partial
PSOS annotated to each transition is executed by the corresponding
action function.

A possible solution could be to resort to the dynamic scheduling of all actors,
including the static actors of an application. However, this might introduce
unnecessary scheduling overhead for the static actors of the application. Another
possibility consists in quasi-statically scheduling the static actors. In this case,
the QSS for the static subgraph must be constructed such that the introduction
of deadlocks into the model is prevented. Basically, each transition of the actor
FSM which implements the resulting QSS then corresponds to a partial PSOS
as illustrated by Example 5.6.
The basic idea to derive such a QSS has been presented in [FKH+08; FZK+11]

and consists in the observation that the resulting QSS does not introduce dead-
locks into the model if each partial PSOS consumes a minimal number of tokens
from input ports of the composite actor which implements the QSS, and produces
a maximal number of tokens on output ports of the composite actor. In other
words, the QSS must not hold back already produced tokens in order to wait for
some additional tokens on input ports to produce some more tokens.

Example 5.8. For the functional composite actors depicted in Figure 5.6,
the resulting partial PSOS have already been described in Example 5.6: For
actor γ1, PSOS S1,1 = 〈a1, a2, a3〉 and S1,2 = 〈a4〉, while for actor γ2, the PSOS
S2 = 〈a5, a6, a7, a8〉 does not require splitting.
A more complex example is shown in Figure 5.8. Here, actors a1, a2, and a3

are SDF actors with the given token consumption and production rates. Note
that D(c1) = 2, and D(c3) = 1, i.e., two initial tokens are placed on channel
c1, while one initial token is placed on channel c3. A PSOS corresponding to
the overall repetition vector γ = (2, 1, 2) is, e.g., S = 〈a21, a2, a

2
3〉. However,

implementing S by means of a single transition might introduce deadlocks
into the model. Instead, we have to compute actor firings such that a maximal
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number of tokens is produced on output ports o1 and o2 by consuming a minimal
number of tokens from input ports i1 and i2.
Initially, two possibilities exist: If two tokens are available on input port i1,

actor a2 can be fired once, thereby producing two tokens on output port o1.
This corresponds to transition t1 which executes the partial PSOS S1 = 〈a2〉.
On the other hand, one token may be available on input port i2. In this case,
actor a1 can be fired once, followed by a single firing of actor a3, which produces
one token on output port o2. This corresponds to transition t2 which executes
the partial PSOS S2 = 〈a1, a3〉.
In mode m1, no tokens are left on channel c1, while three tokens are available

on channel c3. Thus, actor a2 cannot be fired even if two tokens are available
on input port i1. Instead, we must wait until one token is available on input
port i2 in order to execute PSOS S3 = 〈a1, a3〉 by means of transition t3.
Analogously, in mode m2, no tokens are left on channel c3, while three tokens

are available on channel c1. Thus, actor a1 cannot be fired even if a token is
available on input port i2. Instead, we must wait until two tokens are available
on input port i1 in order to execute PSOS S4 = 〈a2〉 by means of transition t4.
Finally, in mode m3, one token is available on channel c1, while two tokens

are available on channel c3. Again, actor a2 cannot be fired even if two tokens
are available on input port i1. Thus, when a token is available on input port i2,
the PSOS S5 = 〈a1, a3〉 is executed by transition t5. Note that after executing
transition t5, two tokens are available on channel c1, and one token is available
on channel c2. This corresponds to the initial mode m0, which is therefore the
target mode of transition t5.
It should be noted that the actor classification algorithm presented in Sec-

tion 4.3.2 correctly finds a repeatable communication pattern cp = (2, 2, 2, 2),
corresponding to the overall PSOS S = 〈a21, a2, a

2
3〉. However, the subsequent

validation of the partitioned communication pattern fails as expected, and the
actor is therefore not classified as a CSDF actor.

It can be observed that the resulting actor FSM which implements a QSS
derived by the methodology presented in [FKH+08; FZK+11] contains transitions
that execute the very same partial PSOS. In order to reduce the size of the
actor FSM, [FZHT11; FZHT13] describes how these transitions can be merged
in principle. To this end, rules are used that encode lower and upper bounds
on the number of actor firings for which a certain partial PSOS is enabled, i.e,
could be executed if enough tokens and free places are available. Basically, while
the original method explicitly encodes the number of tokens on channels of
the composite actor by means of modes, the rule-based method encodes this
information by counting the number of firings which have already been performed
for each child actor. While this requires some additional actor variables and
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Rule Lower bound li Upper bound ui Increment si PSOS
r1 (0, 0, 0) (0,∞, 0) (1, 0, 1) S1 = 〈a1, a3〉
r2 (0, 0, 0) (∞, 0,∞) (0, 1, 0) S2 = 〈a2〉
r3 (1, 1, 1) (1,∞, 1) (1, 0, 1) S3 = 〈a1, a3〉

Table 5.2: Rules generated for quasi-statically scheduling the actors a1, a2, and
a3 from Figure 5.8. Note that the repetition vector γ = (2, 1, 2).

induces some additional run-time overhead, the overall size of the generated
actor FSMs is reduced.

Example 5.9. Consider again Figure 5.8. Applying the rule-based quasi-static
scheduling approach results in three rules r1, r2, and r3 summarized by Table 5.2.
As there are three SDF actors to be scheduled, the lower and upper bounds on the
number of actor firings are encoded by vectors li ∈ N3

0 and ui ∈ (N0∪{∞})
3. Let

q ∈ N3
0 denote the number of actor firings which have already been performed.

Initially, q = 0. Then, a rule ri is enabled if li ≤ q ≤ ui. For q = 0, both rules
r1 and r2 are enabled, corresponding to transitions t1 and t2 in Figure 5.8.
When a rule ri is executed, the corresponding PSOS is executed, and q is

incremented by the value of si., i.e., q← q+ si. For example, if r1 is executed,
PSOS S1 = 〈a1, a3〉 is executed, and q ← (0, 0, 0) + (1, 0, 1) = (1, 0, 1). Note
that now, only rule r2 is enabled, corresponding to transition t4 in Figure 5.8.
If r2 is executed instead of r1, q← (0, 1, 0), and only rule r1 remains enabled,
corresponding to transition t3 in Figure 5.8.
When both rules r1 and r2 have been executed, it follows that q = (1, 1, 1),

and rule r3 becomes enabled, corresponding to transition t5 in Figure 5.8.
Finally, when r3 has been executed, it follows that q = (2, 1, 2). In this case,
q ≥ γ = (2, 1, 2), and we set q← q− γ = (0, 0, 0).
In the proposed dataflow model, rules are implemented by self-loop transitions

of the initial mode. Note that only two transitions are required in this case, as r1
and r3 execute the same PSOS, and also have the same token consumption and
production rates. While the lower and upper bounds li and ui are evaluated by
the guard function of a transition, the action function executes the corresponding
PSOS by means of a task list, increments q by si, and finally subtracts γ from
q if q ≥ γ.

Finally, it should be noted that an FSM which implements a QSS derived by
the approaches described in this section can be easily distributed across multiple
resources by means of the periodic partial order scheduling approach described
in Section 5.3.1.
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5.3.3 Static-Assignment Scheduling

Static-assignment scheduling (or dynamic scheduling) basically encompasses any
scheduling strategy that can be implemented by the proposed approach. Due to
the black box approach for guard functions and action functions, a wide range of
dynamic scheduling strategies can be implemented. In particular, a task τ may
contain only a single transition t, in which case the evaluation and execution of
τ corresponds to the evaluation and execution of the guard function t.fg and
the action function t.fa, providing for a fine-grained selection of transitions of
child actors.
Table 5.3 summarizes the scheduling strategies which are currently supported

by the proposed dataflow model. Compared to Table 5.1, it can be observed that
a dynamic binding of actors to resources is currently not supported. Moreover,
non-functional scheduling schemes like time-driven scheduling or preemptive
scheduling are not considered in this thesis. Typically, such scheduling schemes are
implemented by the RTEs of resources (cf. Section 5.2.2). In this context, the in-
tegration of non-functional scheduling schemes could be studied by future work.

5.4 Results

In this section, we quantitatively compare the scheduling strategies discussed in
the previous section (cf. Table 5.3). To this end, we generated synthetic SDF
graphs and mapped them to different multicore processors. The structure of the
generated SDF graphs is comparable to the DFG shown in Figure 5.6. Inspired
by real-world multimedia applications, the actors bound to each resource could
represent, e.g., the per-component encoding/decoding functionality of audio/video
streams (cf. Figure 5.2) on a fine-grained (e.g., macroblock) level. Note that
synthetic SDF graphs have been chosen in order to systematically explore the
influence of various graph properties like token consumption and production
rates on the evaluated scheduling strategies.
As the focus of this chapter is not how to find (Pareto-)optimal binding and

scheduling solutions of arbitrary SDF graphs, but rather to show how such
binding and scheduling decisions can be represented in a model-based manner,

Scheduling class
Scheduling task

Assignment Ordering Timing

Static-assignment Compile Run Run
Quasi-static Compile Run/Compile Run
Self-timed Compile Compile Run

Table 5.3: Scheduling strategies supported by the proposed dataflow model.
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Figure 5.9: Actor hierarchy and resource types as induced by the binding of
actors to resources (indicated by the colored areas).

we generated acyclic single-rate SDF graphs (cf. Section 4.2) in the following
way: The application is represented by the root actor aroot, which instantiates
a composite actor γi for each resource ri. In turn, each composite actor γi
instantiates the same number of SDF actors, resulting in approximately the
same latency w.r.t. each core, thereby minimizing the overall latency of the
DFG, which could be an optimization objective of design space exploration. Note
that we chose 50 actors per composite actor, representing a fine-grained DFG.
However, given the nature of the generated graphs, the latency scales linearly
with the number of actors. The resulting actor hierarchy GA = (VA, EA) is shown
in Figure 5.9. After instantiating the actors, channels are added between the
SDF actors such that the resulting graph is acyclic, thus enabling a deadlock-free
execution of the graph without having to add initial tokens.
A prototype of the modeling framework has been implemented in C#, which

offers extensive support for reflection, which is important for synthesis tasks.
The framework allows DFGs to be created and transformed according to the
proposed dataflow model. However, there is no simulation built into the model.
Instead, model transformations as well as simulation and synthesis tools can be
implemented by means of plug-ins which process a given DFG. To this end, we
implemented a functional simulation plug-in (also in C#), which performs the
binding-aware evaluation and execution phases as described in Section 5.2. In
particular, for each resource, a single thread is created. Note that the functional
simulation of the model mostly corresponds to the software synthesis of the
model, which is discussed in more detail in Chapter 6. The following testcases
have been evaluated:

• Testcase DS dynamically schedules the SDF actors. In this case, each
resource ri is an initiator resource which schedules its bound SDF actors
according to Algorithm 5.7 (cf. Figure 5.9a). This testcase is evaluated for
the single-core and multi-core bindings.

• Testcase PSOS statically schedules the SDF actors as described in Sec-
tion 5.3.1. To this end, each composite actor γi implements the corre-
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sponding PSOS. Each resource ri is also an initiator resource, but now
only dynamically schedules its bound functional composite actor γi (cf.
Figure 5.9b). This testcase is evaluated only for the single-core bindings.

• Testcase QSS quasi-statically schedules the SDF actors as described in
Section 5.3.2. To this end, each composite actor γi implements the cor-
responding QSS. Each resource ri is also an initiator resource, but now
only dynamically schedules its bound functional composite actor γi (cf.
Figure 5.9b). This testcase is evaluated only for the multi-core bindings.

• Testcase PPOS implements a periodic partial order schedule as described
in Section 5.3.1. To this end, the transitions of each composite actor γi
first encapsulate the firings of the SDF actors. Then, the root actor aroot
implements a PPOS for the transitions of the composite actors γi. Now, the
only initiator resource corresponds to the resource where the root actor aroot
is bound to (we used r1 for this task), and the remaining resources are target
resources (cf. Figure 5.9c). Note that in this case, only the single transition
of aroot implementing the PPOS has to be scheduled dynamically. This
testcase is evaluated only for the multi-core bindings. Note that a PPOS
where all actors are bound to the same resource basically corresponds to a
PSOS, which is handled by a separate testcase.

The testcases have been evaluated for two target platforms, namely a) the
Xilinx Zynq-7000 All Programmable SoC with a dual-core ARM Cortex-A9
processor operating at 667 MHz, and b) an Intel Xeon E7-8837 processor with 8
cores operating at 2.67 GHz. Both platforms are running Linux and the Mono
framework [Mon14], which is an open source implementation of the ECMA
standard for C# [Ecm06]. In case of a multi-core binding, thread-safe FIFO
channels are used if necessary, and each thread is pinned to the corresponding
processor core in order to minimize the influence of the operating system.
The simulation results are shown in Figure 5.10, 5.11, and 5.12. For each test-

case, several graph parameters have been explored as explained in the following:

• Avg. out degree refers to the average number of output ports per actor.
This parameter also corresponds to the average number of input ports per
actor.

• Avg. computation refers to the average number of operations (additions)
performed by each actor. The single-core testcases have been evaluated
for computation values of 100 and 1000. For the multicore testcases, the
computation value is fixed at 1000.

• Avg. communication refers to the average token consumption and produc-
tion rates of actors w.r.t. the input and output ports. All testcases have
been evaluated for rates of 1, 5, 10, and 20 tokens.
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• Inter-resource channels refers to the fraction of channels which connect
actors that are bound to different resources w.r.t. the total number of
channels. The multi-core testcases have been evaluated for 20% and 50% of
all channels being inter-resource channels. As intra-resource communication
is usually preferred to inter-resource communication, larger values have
not been considered.

In order to show the impact of the scheduling strategies on the scheduling
overhead, the latency values of the evaluated testcases are normalized against
the DS testcase. For each set of parameter values, 10 random DFGs have been
generated, and each DFG has been evaluated 5 times. In order to obtain mean-
ingful results, the number of graph iterations has been chosen such that execution
times of several seconds per graph evaluation have been obtained. For each set of
parameter values, the given (normalized) latency is therefore the average latency
of 50 graph evaluations. Note that besides the average latency, the standard
deviation is shown.

Concerning the resulting latencies of the single-core bindings (cf. Figure 5.10),
it can be observed that PSOS always performs better than DS, in particular for
smaller values of the computation and communication parameters. This stems
from the fact that if the scheduling overhead remains constant, its influence on
the overall latency is diminished when action functions take longer to complete
(which is the case for larger values of the computation and communication
parameters): Assume that LDS and LPSOS denote the measured latencies for a
given set of parameter values, and that LDS < LPSOS. The normalized PSOS
latency is therefore L = LPSOS

LDS
. Increasing only the values of the computation and

communication parameters, the same latency increase L∆ should be observed
for both testcases in principle, corresponding to additional arithmetic operations
and memory accesses performed by action functions. Then, it follows that the
resulting normalized PSOS latency L′ = LPSOS+L∆

LDS+L∆
> L (without proof).

If the graph structure is modified by increasing the average number of in-
put/output ports per actor, the scheduling overhead imposed by DS also increases,
as increasing the number of channels means that more token and space avail-
ability checks must be performed. Note that the scheduling overhead imposed
by PSOS can be considered constant and is very small, as each composite actor
γi only consists of a single transition which is dynamically scheduled by the
corresponding RTE. In particular, token and space availability checks can be
eliminated in this case.

In case of the ARM platform, these effects are well observable. In case of
the Xeon platform, the latency difference between DS and PSOS for graphs
with average token consumption and production rates of 5 and 10 is less than
expected. This may be caused by the more complex cache hierarchy of the Xeon
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Figure 5.10: Single-core simulation results comparing the scheduling strategies in
terms of latency. The results are normalized against the DS testcase.

processor, which typically causes a highly dynamic behavior, and makes latency
predictions difficult in the general case [WM05].

Concerning the resulting latencies of the multi-core bindings (cf. Figure 5.11),
the same observations can be made for the QSS/PPOS testcases versus the DS
testcase in principle. However, it can be observed that the latency difference
between QSS/PPOS and DS is smaller compared to the single-core testcases. In
this case, the dynamic scheduling performed by the RTE of each resource seems to
be advantageous compared to the static actor order imposed by the QSS/PPOS
testcases, which possibly prevents enabled actors from being executed earlier on
an idle resource.
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Figure 5.11: Multi-core simulation results comparing the scheduling strategies in
terms of latency. The results are normalized against the DS testcase.
The computation value is fixed at 1000 for all testcases.

Furthermore, it can be observed that PPOS outperforms QSS in almost all
testcases. Remember that periodic partial order scheduling provides for a more
efficient synchronization mechanism compared to quasi-static scheduling. In
particular, the implementation uses a single bit to signal the completion of a task
τ to the successor tasks of τ which are executed on different resources. Assuming
that the selected transition t ∈ τ produces tokens on multiple inter-resource
channels, evaluating this single bit may subsume multiple token availability
checks which would have to be performed by the successor tasks of τ in the QSS
scenario. Analogously, multiple space availability checks may be subsumed by
evaluating this single bit. Thus, the larger the number of ports per actor bound
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Figure 5.12: Multi-core simulation results comparing the scheduling strategies in
terms of the resulting task list sizes of the composite actors γi. The
computation value is fixed at 1000 for all testcases.

to inter-resource channels becomes, the larger the latency difference between
QSS and PPOS becomes.

However, it should be noted that even in the DS and QSS scenarios, token
and space availability checks can be performed very efficiently once the read
and write pointers of the FIFO channel in question are cached. Moreover, the
cache coherence protocol which is used by the ARM and Xeon processors ensures
that the cached copies of the read and write pointers of the FIFO channels are
efficiently updated when these pointers are modified by the consumption and
production of tokens. Thus, for the considered multi-core processors, the latency
difference between QSS and PPOS can be expected to be relatively small.
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In Figure 5.12, the average size of the task lists executed by the transitions of
the composite actors γi is shown. Note that only results for the multi-core bindings
are given, as in case of the single-core bindings, the task list executed by the single
transition of γ1 corresponds to the overall PSOS, and thus obviously contains
all 50 SDF child actors of γ1. It can be observed that the larger the number
of ports per actor bound to inter-resource channels becomes, the smaller the
average size of the task lists becomes. For the QSS testcase, this follows directly
from the splitting of the overall PSOS into partial PSOS in order to prevent the
introduction of deadlocks into the model (cf. Example 5.6). Concerning the PPOS
testcase, a similar scheme has been used which results in slightly shorter partial
PSOS in order to minimize the impact on the resulting latencies. Note that in
this case, however, the composite actors γi could have been eliminated instead
(cf. Example 5.7), as the overall PPOS is implemented by the root actor aroot.

For both testcases (i.e., QSS and PPOS ), the size of the task lists has little
impact on the overall performance: Concerning the QSS testcase, the resulting
FSMs basically show CSDF behavior, i.e., the partial PSOS are executed in a
cyclic fashion (cf. Figure 4.5 on page 57). Thus, the scheduling overhead in order
to select the next transition to be executed is negligible in this case (as each
mode only has a single outgoing transition). Concerning the PPOS testcase, the
scheduling overhead is minimized anyway, as the overall PPOS is implemented
by the root actor aroot. Remember that in this case, only the single transition of
aroot implementing the PPOS has to be scheduled dynamically.

It should be noted that the results show mostly the predicted behavior. However,
it was not our goal to determine which scheduling strategy is the best for a
given DFG, but to show that the proposed hierarchical modeling approach is
able to effectively and efficiently represent different scheduling strategies in a
model-based way.

5.5 Related Work and Limitations

The refinement of models in order to incorporate binding and scheduling de-
cisions has been studied before. The approaches can roughly be divided into
three categories, namely analysis-oriented approaches, implementation-oriented
approaches, and simulation-oriented approaches. Analysis-oriented approaches
try to retain the analyzability of the original dataflow model. To this end, binding
and scheduling decisions are typically incorporated into the underlying dataflow
model solely by modeling primitives provided by the dataflow model of computa-
tion (MoC) (like SDF or CSDF) corresponding to the underlying dataflow model.
In contrast to analysis-oriented refinement approaches, implementation-oriented
approaches trade off analyzability against the possibility to derive efficient imple-
mentations from the refined model. Note that the proposed refinement approach
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based on hierarchical actors belongs to this category. Finally, simulation-oriented
approaches typically possess an inherent notion of time, and are therefore used
as virtual platforms for software development, and for performance analysis of
hardware architectures.
Analysis-oriented approaches try to retain the analyzability of the original

dataflow model. The decision state modeling (DSM) technique presented in
[DSB+12] back-annotates a PSOS for an SDF (sub)graph by adding channels
to the original SDF graph such that i) subsequent firings of the same actor
are serialized, (ii) subsequent iterations of the PSOS are serialized, and (iii)
the actor ordering imposed by the PSOS is enforced. While (i) is realized by
adding a self-loop channel to each actor appearing in the PSOS, (ii) is realized
by adding an actor and two channels to create a dependency between the
last actor and the first actor appearing in the PSOS. Finally, (iii) is realized
by forcing the correct actor firing w.r.t. the PSOS in the decision states. In
a decision state, more than one actor appearing in the PSOS is enabled in
the underlying DFG. Therefore, in order to select the only permissible actor
according to the PSOS, additional channels are added. The resulting SDF graph
can then be used to apply well-known SDF analysis techniques, like latency and
throughput calculation, or buffer sizing. This approach can only be used for DFGs
for which a PSOS can be determined, i.e., static graphs like SDF and CSDF
graphs. In contrast, the proposed implementation-oriented approach aims at
dynamic dataflow (DDF) graphs and thus also supports, for example, quasi-static
scheduling (which requires run-time decisions) and the switching of scheduling
modes as known from scenario-aware dataflow (SADF). The DSM technique
has been extended in [LF13] in order to incorporate binding and pipeline stage
assignment decisions.
In [BKKB02], PSOS are back-annotated by first translating the underlying

SDF graph into a functionally equivalent HSDF graph, and then adding channels
to the resulting HSDF graph such that the actor ordering imposed by the PSOS
is enforced. As outlined in Section 4.2, the number of actors of the HSDF graph
grows exponentially with the number of actors of the SDF graph in the worst case.
Thus, this approach is typically only feasible for small SDF graphs. Note that
this problem is avoided by the DSM technique presented in [DSB+12]. Besides
the back-annotation of PSOS, [BKKB02] also introduces the ordered transactions
scheduling strategy. The ordered transaction scheduling strategy requires that in
addition to the PSOS for each resource, the actor firings which perform inter-
resource communication are also totally ordered. The resulting ordering of actor
firings is then enforced by special hardware. As a result, the ordered transaction
scheduling strategy eliminates the need for run-time synchronization and bus
arbitration. Note that the periodic partial order scheduling approach presented in
Section 5.3.1 is not concerned about the total ordering of transactions on a bus,
but provides for the partial ordering of transitions of actors bound to different
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resources. While an ordered transaction schedule could be represented by a
PPOS by totally ordering the transitions of actors which perform inter-resource
communication by means of the same communication resource, the synthesis of
special hardware for the communication resource is not addressed in this thesis,
but could be part of future work.
Implementation-oriented approaches trade off analyzability against the pos-

sibility to derive efficient implementations from the refined model. Here, one
possibility consists in incorporating the binding and scheduling decisions by
means of an unspecified internal representation, and to output only the result-
ing model in a high-level language like C/C++. While this approach has been
traditionally used to synthesize DFGs [BL93; Buc94; BBHL95; BLM96; BML97;
SLWS99; BLM00; HKB05; KB06], the analysis of the refined model is difficult. In
order to retain some analyzability, more recent approaches incorporate binding
and scheduling into the model by means of hierarchical DFGs, comparable to
the proposed dataflow model. To this end, the firing of an actor is usually refined
by firings of other actors.
The generalized schedule tree (GST) approach [KZP+07] differentiates be-

tween leaf nodes and internal nodes: While leaf nodes represent actors from the
underlying DFG, internal nodes implement looped schedules, i.e., they execute
its child nodes a given number of times. The underlying DFG is based on enable-
invoke dataflow (EIDF), which has been reviewed in Section 3.4. In this context,
EIDF actors cannot specify schedules for child actors. Instead, a secondary
scheduling mechanism (like GSTs) is required. In contrast, actors in our model
are expressive enough to specify schedules for child actors, thereby eliminating
the need for secondary scheduling mechanisms. In [PSB09b], it is described how
a GST can be decomposed into a set of static interacting graphs in order to
improve the simulation time compared to a dynamic execution of the GST.
In [WSS+11], dataflow schedule graphs (DSGs) are used to implement sched-

ules for actors of an underlying DFG. A DSG consists of reference actors and
schedule control actors. While the former are used to represent firings of actors
of the underlying DFG, the latter are used to model control-flow as known
from sequential programming languages (e.g., loops and branches). In order
to guarantee a sequential execution of actors bound to the same resource, a
single control-flow token is passed along reference and schedule control actors.
Additionally, control flow tokens may be duplicated and merged to model syn-
chronization between concurrent resources. As dataflow actors and reference
actors are only loosely coupled, the authors claim that the approach works for
any underlying dataflow representation based on guarded actions, e.g., EIDF.
Again, the need for a secondary scheduling mechanism like DSGs is eliminated by
the proposed refinement approach, as composite actors are expressive enough to
specify schedules for child actors. Note that control flow in the proposed dataflow
model is naturally represented by FSMs.
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FunState [TSZ+99; STG+01] uses nested components which are controlled
by FSMs (cf. Section 3.4). As has been pointed out, action functions use events
to activate nested components. This may result in a non-sequential behavior
of components, where a transition may be started before the previous one is
finished. In turn, actor variables must be stored in a self-loop channel, and tokens
must be consumed and produced atomically at the beginning and end of an
action, respectively. In contrast, transitions of an actor have sequential semantics
in the proposed dataflow model, and thus, stateful actors are permitted, and
tokens can be consumed and produced at any time during the execution of a
transition. Moreover, transitions of the proposed dataflow model have a static
communication behavior, which may not be the case in FunState.

The structural composite actors available in SysteMoC (cf. Section 3.4) have
been extended in order to support the rule-based quasi-static scheduling approach
described in Section 5.3.2 [FZHT11; FZHT13]. Basically, a counter is associated
with each actor which is incremented when the actor is fired. In turn, a firing
rule encodes lower and upper bounds on these counters to determine when it is
enabled. Thus, these firing rules have limited expressiveness compared to guard
functions and action functions of the proposed dataflow model.

Finally, formalized simulation-oriented approaches like [KR11] possess an
inherent notion of time, and are therefore used as virtual platforms for software
development, and for performance analysis of hardware architectures. As a
purely functional model, our proposed approach is architecture-independent,
but in principle can be annotated with timing information in order to obtain a
transaction-level performance model (cf. [SFH+06; SGHT09]).

The ForSyDe methodology presented in [SJ04] is based on a synchronous
MoC. The synchronous computational model is implemented by means of process
constructors. A process constructor is a higher-order function that takes combi-
national functions and values as input, and produces a process as output. Each
process constructor explicitly specifies hardware and software semantics which
provides for the synthesis of processes to lower levels of abstraction. In contrast
to the proposed dataflow model, the designer is restricted to a set of pre-defined
process constructors in order to specify a system. Model refinement is performed
by transformation rules which can be classified into semantic preserving trans-
formations and design decisions. While the former are mainly used to optimize
the model, the latter change the meaning of the model. Transformation rules
are also pre-defined and are chosen from a transformation library. In [AS11], it
is described how processes can be refined by components that are modeled and
executed in different tools and languages. This approach is employed in [BAS12]
in order to refine processes by SystemC-transaction level modeling (TLM) com-
ponents. In principle, this refinement approach provides for the heterogeneous
co-simulation of a partially refined system. For the proposed dataflow model,
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5. System Synthesis

a similar co-simulation approach could be realized by means of the synthesis
framework presented in the next chapter.
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After a fully bound and scheduled model has been obtained, the next step in
the design flow could consist of synthesizing the model to the given target
architecture. For actors bound to software, this requires the generation of code
which is executed on the target processors, while for actors bound to hardware,
custom intellectual property (IP) cores must be generated (if not available
off-the-shelf).
Figure 6.1 summarizes the proposed design flow from the algorithmic/task

level to the logic/instruction level. Based on the input model, namely a sched-
uled dataflow graph (DFG) which has been obtained as described in Chapter 5,
Section 6.1 describes a framework which provides for the synthesis of the in-
put model such that arbitrary bindings of actors to hardware and software are
supported. Section 6.2 describes the task of communication synthesis at the
algorithmic/task level in the context of the proposed synthesis framework. Anal-
ogously, Section 6.3 discusses the task of computation synthesis, and describes
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Figure 6.1: Design flow supported by the proposed model. Only the steps per-
taining to behavioral synthesis are shown (cf. Figure 2.2 on page 9).
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optimizations and an inter-process resource sharing approach in the context of
hardware synthesis. Finally, Section 6.4 discusses related work and the limitations
of the hardware/software synthesis approach.

6.1 Synthesis Framework

Based on the dataflow model described in Sections 3.1 and 5.1, the proposed
synthesis framework has been introduced in [ZHFT12b]. Please note that the
proposed framework does not make any assumptions about the binding of actors
to resources (hardware/software, or mixed).
At a glance, the synthesis framework processes an input dataflow model in three

phases as shown in Figure 6.1: i) The front end parses the source code of the input
model, and provides the resulting abstract syntax tree (AST) to the subsequent
synthesis phase. ii) During the synthesis phase, the different components of the
scheduled DFG are processed by generators in order to generate all necessary
data for the next phase. Generators are instantiated by a generator factory based
on the binding of actors to resources. iii) The various back ends collect the data
generated during the previous phase, and finally assemble all files which make
up the synthesized application. In the following, the three phases are discussed
in more detail.

6.1.1 Front End

The task of the front end is to extract static information from the scheduled DFG.
This static information corresponds to information which can be determined at
compile time, like guard functions and action functions of actors, token types,
etc. In the general case, this information is represented by an AST. For the
C# implementation of the proposed dataflow model, this information can be
conveniently extracted from the compiled application by means of the reflection
system built into C#. Note that in this case, guard functions and action functions
have been compiled into the Common Intermediate Language (CIL). For a
C++ implementation of the proposed dataflow model, this information can be
extracted, e.g., by the LLVM/Clang modular compiler framework [LA04], which
provides access to the C++ AST in an object-oriented way. The static part of
the application can be used by generators, for example, to extract token sizes, or
to perform source code transformations of guard functions or action functions.
The various components of the DFG (like actors, ports, channels, etc.) cannot be

statically extracted by a parser, as we allow these components to by dynamically
constructed during an elaboration phase. This allows the user, for example, to
procedurally generate the transitions during elaboration, or to instantiate actors
based on some configuration parameters. Note that the DFG is assumed to be
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static after this elaboration phase. In particular, task lists (cf. Section 5.1.1) are
currently also supposed to be constructed during the elaboration phase. However,
different task lists can be evaluated and executed at run time depending on the
values of actor variables or tokens. The C# implementation of the proposed
dataflow model permits to query the components of the generated DFG after
this elaboration phase. Future work may research the possibility of dynamically
instantiating child actors in order to provide for an improved utilization of
resources available in the platform [THH+11; HHB+12].

6.1.2 Synthesis

For each component of the DFG, exactly one generator exists which synthesizes
this particular element. Basically, a generator is associated with a specific compo-
nent of the DFG (an actor, a port, a channel, etc.) and transforms this element
into the target representation. For example, the actor’s target representation
could be a C++ class, in which case the generator would create a corresponding
C++ AST snippet.

Generators may require information from other generators. In order to be able
to mix generators for different synthesis targets, generators implement a certain
interface corresponding to their associated dataflow component. For example, the
generator associated with a guard function or action function can be queried to
return the name of the synthesized function. This name can then be used, e.g., by
the generator responsible for synthesizing a transition t to generate the function
calls to t.fg and t.fa. As can be seen from this example, generators usually have
state. Due to this reason, there exists only one generator for a specific element
during the whole synthesis process. This is enforced by the generator pool which
acts as a generator cache: The pool can be queried for a generator for a given
component of the DFG. If the generator already exists, it is returned. If it is
not contained in the generator cache, it is created by the generator factory (and
subsequently inserted into the generator cache).

The creation of generators is the task of the generator factory: Based on the
binding of actors to resources as specified by the user (possibly during design
space exploration), the factory instantiates the corresponding generator. For
example, if a certain actor is bound to a processor, the factory instantiates a
generator which performs software synthesis for this actor. However, if the actor
should be implemented, e.g., as a transaction level modeling (TLM) module
for a virtual prototype, the factory instantiates a different generator. As the
exact type of generator is not needed by other generators (the interface methods
should be used), this approach provides for the mixing of generators for different
synthesis targets in principle. For example, a functional composite actor may be
bound to software, while its child actors are bound to hardware.
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Given the hierarchical definition of actors (cf. Definition 5.1), components
may contain other components (e.g., an actor contains input and output ports).
Without going into details, this induces a similar concept for generators, i.e.,
a generator may be instantiated by another generator, possibly modifying the
instantiating generator in the process. For example, an actor generator instantiates
a port generator for each of its ports. In turn, a port generator may add a variable
to the code snippet generated by the actor generator which provides the channel
access methods synthesized by the port generator (cf. Section 6.2).
Finally, the platform generator is the top-level generator in the hierarchy

representing the overall synthesized application. It basically instantiates the
generator for the root actor aroot, which in turn instantiates the generators for
its child actors, and so on. In this way, the DFG is traversed, and the application
is synthesized in the process.

6.1.3 Back Ends

The data produced by generators in the previous step is collected by various back
ends in order to assemble the files which make up the synthesized application. For
generators which produce C++ AST snippets, these are combined into a C++
AST and pretty-printed into one or more source files to be processed by subsequent
synthesis steps. For this task, the LLVM/Clang compiler framework can be used.
Other back ends are available or can be implemented within the framework
in order to produce, e.g., XML configuration files for virtual prototypes or
VHDL/Verilog files for the subsequent logic synthesis. Afterwards, the generated
artifacts are further processed by a commercial high-level synthesis (HLS) tool
or a compiler in order to obtain an implementation at the logic/instruction level.

6.2 Communication Synthesis

The task of computation synthesis at system level is to bind actors to computing
resources like processors or custom IP cores, and to schedule actors bound to the
same computing resource (cf. Chapter 5). Analogously, communication synthesis
at system level comprises the following two tasks: First, the abstract first in,
first out (FIFO) channels must be bound to storage resources like memories or
custom IP cores. In the general case, this induces a scheduling problem if multiple
FIFO channels are bound to the same storage resource [MM08]. Second, token
sequences must be transported from the computing resources where the actors
are bound to the storage resources where the FIFO channels are bound (and
vice versa). These transactions must be bound to communication resources like
buses, networks on chip (NoCs), etc. Again, this induces a scheduling problem if
multiple transactions are bound to the same communication resource.
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Note that the decision-making process itself as part of design space exploration
is not discussed in the context of this thesis. The refinement step at system level,
i.e., the incorporation of binding and scheduling decisions into the dataflow model
has been addressed in Chapter 5 for computing resources to which the actors are
bound to. For storage resources and communication resources, similar scheduling
strategies can be identified in principle. To some extend, the periodic partial order
scheduling approach described in Section 5.3.1 permits to schedule transactions
bound to the same communication resource in a model-based way. However, more
comprehensive model-based representations of scheduling strategies for storage
resources and communication resources may be researched in future work.
In the following, the communication synthesis at the algorithmic/task level

is discussed. At this level of abstraction, the two tasks comprising the commu-
nication synthesis can be stated as follows: First, depending on the binding
of FIFO channels to storage resources, custom IP cores must be generated (if
not available off-the-shelf). Second, depending on the binding of transactions
to communication resources, appropriate token transport mechanisms must be
generated. In the context of the synthesis framework outlined in Section 6.1,
channel generators perform the first task, while port generators perform the
second task. Both generator types are described in more detail in the following.
As outlined in Section 3.1, actors communicate with each other by means

of token sequences transmitted over FIFO channels. While guard functions
evaluate sequences of input tokens (cf. Definition 3.3), action functions transform
sequences of input tokens into sequences of output tokens (cf. Definition 3.4). One
possibility to realize this concept is to allow guard functions and action functions
to randomly access the tokens on FIFO channels within the range specified by
the values of peek, cons, and prod, respectively. The resulting abstract channel
interface methods are shown in Figure 6.2. The semantics of the write interface
provided by output ports can be summarized as follows:

• The write method allows an action function fa ∈ Fa to write a token on
the FIFO channel bound to an output port p ∈ O within the range specified
by the value of prod(p, fa). While the token corresponds to the data

argument, the offset argument identifies the token address relative to
the current value of the write pointer wr associated with the FIFO channel
bound to p. Note that the designer must ensure that 0 ≤ offset <

prod(p, fa). Otherwise, the model behavior is undefined. The absolute
token address is defined as address = (wr+ offset) mod K(p).

• The space method returns the number of free places on the FIFO channel
bound to an output port p ∈ O.

• The commit method increments the write pointer wr by the value of
the tokens argument. In effect, this makes some more tokens visible
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void commit(int tokens)

Input Port

int tokens()

T read(int offset)

Fifo Channel

Token Memory

Write Pointer wr

Read Pointer rd

Output Port

void commit(int tokens)

void write(T data, int offset)

int space()

Figure 6.2: Abstract FIFO channel interfaces provided by input/output ports.
Concrete implementations of the interface methods are created by
port generators, while FIFO channels are synthesized by channel
generators.

at the read interface of the FIFO channel. Note that this operation is
performed by the runtime environment (RTE) after an action function has
been executed (cf. Algorithm 3.2).

Analogously, the semantics of the read interface provided by input ports can
be summarized as follows:

• The read method allows a guard function fg ∈ Fg or an action function
fa ∈ Fa to read a token on the FIFO channel bound to an input port
p ∈ I within the range specified by the value of peek(p, fg) or cons(p, fa),
respectively. The offset argument identifies the token address relative to
the current value of the read pointer rd associated with the FIFO channel
bound to p. Note that in case of a guard function fg ∈ Fg, the designer
must ensure that 0 ≤ offset < peek(p, fg). Analogously, for an action
function fa ∈ Fa, the designer must ensure that 0 ≤ offset < cons(p, fa).
Otherwise, the model behavior is undefined. The absolute token address is
defined as address = (rd+ offset) mod K(p).

• The tokens method returns the number of tokens on the FIFO channel
bound to an input port p ∈ I.

• The commit method increments the read pointer rd by the value of the
tokens argument. In effect, this makes some more free places visible at the
write interface of the FIFO channel. Note that this operation is performed
by the RTE after an action function has been executed (cf. Algorithm 3.2).

As outlined above, channel generators create custom IP cores for the FIFO
channels, if necessary. Complementary, port generators create concrete imple-
mentations of the abstract FIFO channel interface methods, depending on the
binding of transactions to communication resources. Assume that an actor a is
bound to a computing resource rc, and a FIFO channel c connected to a is bound
to a storage resource rs. Then, the binding of a transaction to communication
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Channel
Binding Memory IP core

Actor
Processor Memory-mapped Memory-mapped
IP core DMA Signals

Table 6.1: Depending on the binding of actors and channels to resources, typical
token transport mechanisms can be identified.

resources7 specifies how tokens are transported (or routed) from ra to rb (or
vice versa), assuming that the transaction in question involves the actor a and
the FIFO channel c. Obviously, it is not possible to describe every possible
token transport scenario. However, considering only the resource types of ra
and rb, three typical token transport mechanisms can be identified, which are
summarized by Table 6.1. Thus, port generators usually have to create concrete
implementations of the abstract FIFO channel interface methods based on these
typical token transport mechanisms, which are discussed in more detail in the
following.

6.2.1 Memory-Mapped Channel Access

If an actor a is bound to a processor, the FIFO channels connected to a are
typically memory-mapped, and can therefore be accessed by means of pointers.

For channels bound to memory, the channel access methods created by the
port generators are responsible for calculating the absolute addresses of requested
tokens, and to update the read and write pointers associated with the FIFO
channel. In this case, additional synchronization mechanisms may be required for
inter-resource channels such that updates to the FIFO channel become visible
to the involved resources in a consistent manner. For example, one must ensure
that new token values become visible at the read interface before the value of
the incremented write pointer becomes visible, as otherwise, old token values
may be read. To this end, locks or (potentially more efficient) memory barriers
can be used.

For channels bound to hardware, a more efficient memory-mapping scheme can
be used in principle. In particular, it is not necessary to memory-map the read
pointer, the write pointer, and the memory associated with the FIFO channel.
Instead, the abstract channel access methods as summarized by Figure 6.2 can
be directly implemented by the IP core created by the corresponding channel
generator. In this case, the channel access methods created by the port generators
are merely responsible for propagating the arguments and return values to and

7Note that in the general case, it is possible to bind a transaction to multiple communication
resources, which is known as multi-hop communication.
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Figure 6.3: Hardware FIFO channel implementation.

from the memory-mapped registers of the channel IP core, while the token
address calculation, as well as the updates to the read and write pointers are
performed by the channel IP core. Note that a concrete implementation of a
channel IP core is described in Section 6.2.3.

6.2.2 DMA-Based Channel Access

If an actor a is bound to hardware, and a FIFO channel connected to a is bound
to memory, the channel access methods created by the port generators must
issue memory read and write commands similar to an actor which is bound to a
processor. To this end, the actor IP core created must be configured with the
physical base address of the FIFO channel. This can be done either statically at
compile time or dynamically at run time. In case of the latter, a memory-mapped
register can be additionally allocated for the actor IP core which receives the
base address of the FIFO channel. Note that if an operating system like Linux is
used, the physical base address of the FIFO channel may not be known until run
time, which therefore requires the FIFO channel to be configured dynamically. In
the context of this thesis, DMA-based channel accesses have not been evaluated.
Instead, the results focus on memory-mapped channels for the purpose of software
synthesis, and on channels mapped to hardware for the purpose of hardware
synthesis.

6.2.3 Signal-Based Channel Access

Finally, an actor a may be bound to hardware, and a FIFO channel connected
to a may also be bound to hardware. In this case, the channel access methods
created by the port generators must read or drive the input/output signals of the
channel IP core created by the corresponding channel generator (cf. Figure 6.3).
Note that the created channel access methods are at register-transfer level (RTL)
level, and may require one or more clock cycles to complete. In the context of
the proposed synthesis framework, SystemC code is generated.
The input/output signals of the channel IP core and their usage by the channel

access methods created by the port generators can be summarized as follows:
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• The number of tokens and free places is provided by the RD TOKENS and
WR SPACE signals, respectively. These signals are read by the tokens
and space methods.

• In order to write a token, the desired token value and offset must be provided
via the WR DATA and WR OFFSET signals, and the WR ENABLE signal
must be asserted for one cycle. These signals are driven by the write
method.

• In order to read a token, the desired offset must be provided via the
RD OFFSET signal, and the RD ENABLE signal must be asserted for
one cycle. The requested token is returned via the RD DATA signal in the
next clock cycle. These signals are driven and read by the read method.

• In order to make some more tokens visible, the WR COMMIT signal must
be set to the corresponding number. The channel’s control logic samples
this signal each clock cycle and advances the write pointer accordingly.
This signal is driven by the commit method of the write interface.

• In order to make some more free places visible, the RD COMMIT signal
must be set to the corresponding number. The channel’s control logic sam-
ples this signal each clock cycle and advances the read pointer accordingly.
This signal is driven by the commit method of the read interface.

Finally, the channel generator is responsible for creating the channel IP core,
which comprises the token memory and the address calculation logic. Note that it
is assumed that the writing of a token takes exactly one cycle, while the reading
of a token takes exactly two cycles. For Xilinx FPGAs, this assumption can be
satisfied by binding the token memory to block RAM (BRAM). However, for
variable latency memory accesses, an ACK signal could be implemented with
little effort.

6.3 Computation Synthesis

As outlined above, communication synthesis is performed by port generators and
channel generators. In this section, the generators pertaining to computation
synthesis are discussed.

6.3.1 Software Synthesis

For actors bound to a processor, the generators pertaining to computation
synthesis generate sequential C++ code which is further processed by a compiler
in order to obtain an implementation at the instruction level (cf. Figure 6.1).
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• Actor generators are responsible for synthesizing the guard functions and
action functions that can be used by transitions. At a glance, this requires
rewriting of the AST extracted from the input model. For example, port
accesses must be replaced by the concrete channel access methods created by
the corresponding port generators as described in Section 6.2. Analogously,
task list evaluation and execution requests must be replaced by the concrete
implementation created by the corresponding task list generators (described
below).

• Transition generators are responsible for synthesizing the evaluation phase
and execution phase of transitions according to Algorithms 3.1 and 3.2.
Concerning the evaluation phase, code is generated which checks the avail-
ability of tokens and free places according to the values of cons and prod,
and invokes the guard function of the transition. Note that the current
actor mode is evaluated by task generators in this case (described next).
Concerning the execution phase, code is generated which invokes the action
function of the transition, and subsequently advances the read/write point-
ers of the involved FIFO channels. Note that the port generators provide
the required channel access methods, and the actor generator provides the
synthesized guard functions and action functions.

• Task generators are responsible for synthesizing the evaluation phase and
execution phase of tasks according to Algorithms 5.1 and 5.3. Concerning
the evaluation phase, actor modes can be synthesized into a C++ enumera-
tion. Then, a switch-case statement over the current actor mode efficiently
determines the subset of active transitions. Subsequently, the transitions in
this set are evaluated in a round-robin fashion until an enabled transition
has been found. The transition generators provide the required evaluation
and execution methods of transitions.

• Task list generators are responsible for synthesizing the (binding-aware)
evaluation phase and execution phase of task lists according to Algo-
rithms 5.5 and 5.6. In particular, task list generators have to synthesize
the distributed evaluation and execution of tasks. This encompasses two
tasks (cf. Section 5.2): First, the evaluation and execution of tasks must
be asynchronously started on resources. Second, a task must wait until
its predecessor tasks are finished. Suitable shared data structures can be
placed in shared memory or in memory-mapped registers, depending on the
binding of child actors to resources. Some inter-processor synchronization
mechanism can then be used to notify other processors that the shared
data structures have been modified. Typical synchronization mechanisms
are the polling of flags, inter-processor interrupts, or, if an operating system
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is used, synchronization primitives offered by the operating system like
mutexes and condition variables (Linux), or events (Windows).

As task lists are currently created during the elaboration phase, the com-
putation of the topological ordering of tasks can be performed by the
generators at compile time. In the future, this task could be postponed to
run time in order to support the dynamic creation of task lists.

The functional simulation used in Section 5.4 in order to evaluate synthetic
synchronous dataflow (SDF) graphs mostly corresponds to the software synthesis
outlined in this section. The key difference is that the input model has not
been translated from C# to C++. Synthesis results for the JPEG decoder from
Figure 2.3 on page 12 are presented in Section 6.3.3.
In the next section, the hardware synthesis is described. It can be observed

that the generators instantiated for the purpose of software synthesis largely
correspond to the generators instantiated for the purpose of hardware synthesis.
Thus, for generators discussed in this section, only the most important differences
are discussed in the next section.

6.3.2 Hardware Synthesis

For actors bound to hardware, the generators pertaining to computation synthesis
transform the untimed hierarchical input model into a bus-cycle-accurate SystemC
representation, which is further processed by a (commercial) HLS tool in order
to obtain an implementation at the logic level (cf. Figure 6.1). While sequential
SystemC code can be generated in principle, certain optimizations based on the
underlying dataflow model of computation can be performed in order to improve
the performance of the synthesized model.

• Actor generators still generate sequential code for guard functions and
action functions. In this case, the abstract channel access methods are
typically replaced by cycle-accurate channel access methods which imple-
ment a certain input/output protocol (cf. Sections 6.2.2 and 6.2.3). Thus,
the generated bus-cycle-accurate SystemC code is still untimed except for
code blocks corresponding to channel accesses. Note that commercial HLS
tools can be typically instructed to observe the user-defined scheduling of
operations in such cycle-accurate code blocks. For example, the employed
Cynthesizer [For14] HLS tool uses pragmas for this task. In order to reduce
the latency of guard functions and action functions, tokens may be cached.
This optimization is described in more detail in Section 6.3.3.

• Transition generators correspond to those instantiated for the purpose of
software synthesis, as the availability of tokens and free places should still
be checked before the guard function is evaluated.
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• Task generators can exploit the fact that the evaluation of transitions
is side-effect free and thus can be performed in parallel. The parallel
evaluation of transitions is described in more detail in Section 6.3.3.

• Task list generators largely correspond to those instantiated for the pur-
pose of software synthesis. However, child actors which are also bound
to hardware are effectively inlined into the functional composite actor,
resulting in a single SystemC module which is synthesized to a single IP
core by subsequent synthesis tools. Note that independent tasks can be
evaluated and executed in parallel in principle.

In summary, the generated bus-cycle-accurate SystemC model implements the
channel accesses of guard functions and action functions in a cycle-accurate way,
whereas the remaining behavior of an actor is still untimed. Bus-cycle accurate
models may be used to explore the communication design space in order to
decide how the abstract FIFO channels should be bound to resources available
in the platform (e.g., shared memory vs. custom IP cores).

6.3.3 Token Caching and Parallel Evaluation of Transitions

In this section, the optimizations outlined in the previous section are described
in more detail. In particular, the caching of tokens and the parallel evaluation
of transitions is discussed. These micro-architectural optimizations have been
presented in [ZHFT12b].

Token Caching

The token access as described in Section 6.2 requires the designer to provide
an offset for each token to be read. While this permits random access to the
tokens in the channel, it also sequentializes token accesses, as only one token can
be read each clock cycle. Thus, if a guard function or action function accesses
multiple tokens (possibly multiple times), latency may increase. For example,
the three port accesses in Figure 6.4a read tokens from the same channel via
input port i1. Assuming that a read operation has a latency of two clock cycles,
and that a new read operation can be started each clock cycle, the three port
accesses take four clock cycles to complete.
In order to hide this token access latency, a token cache can be added to

the read interface (cf. Figure 6.4b). Note that the token cache only uses the
abstract channel interface methods as shown in Figure 6.2. Thus, the proposed
token cache can be used independently from the concrete implementation of the
interface methods provided by the port generator which is associated with the
actor input port in question.
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Figure 6.4: Token access with a token cache.

In order to prevent the generation of large multiplexer structures, the cache
module is only used for token accesses with a constant offset. For token accesses
with a variable offset, the random-access protocol is still used, and thus, the cache
module also has to provide this protocol. In summary, the cache module works
as follow: If a token access with a variable offset is active, it is simply forwarded
by the cache module to the read method provided by the port generator. If no
such access is active and the cache is not yet full, the cache module itself invokes
the read method provided by the port generator and stores the returned token
in the cache.

In order to prevent a function from reading invalid token values from the cache,
the number of available tokens as reported by the cache module is calculated as
follows: If the cache is not yet full, the number of cached tokens is returned. If
the cache is full, the actual number of tokens available in the FIFO channel is
returned by invoking the tokens method provided by the port generator. Note
that this behavior does not introduce deadlocks into the model.

For example, consider Figure 6.4b, where a cache module with space for two
tokens has been inserted. Assuming that the cache is full, the two port accesses
with a constant offset can concurrently access tokens t1 and t2, while the port
access with a variable offset k can randomly access token t1, t2 or t3. Thus, in
this case, only two clock cycles are required to perform all three port accesses.

As described in Section 6.2, the read and write pointers of a FIFO channel are
incremented during the commit phase which is performed after the execution
of an action (cf. Figure 6.4c). Thus, token values do not change during the
execution of a guard function or action function, assuming point-to-point FIFO
channels as specified by the underlying dataflow model of computation. Thus,
the cache is cleared only during the commit phase, and is subsequently refilled
(cf. Figure 6.4c).

In order to access the cached tokens, the cache module provides a readCache
method which simply returns the value of the register corresponding to the
specified constant token offset. Finally, whether or not a token offset is constant
(i.e., an integer constant expression) is determined while traversing the AST of
the function body.
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Parallel Evaluation of Transitions

Task generators instantiated for the purpose of software synthesis evaluate the
transitions of the associated task sequentially in a round-robin fashion. While this
is a sensible approach for software synthesis, hardware synthesis should exploit the
fact that the evaluation of transitions is side-effect free and thus can be performed
in parallel. Note that in order to achieve a concurrent RTL implementation after
HLS, transitions have to be evaluated in concurrent SystemC processes. However,
evaluating transitions in concurrent SystemC processes raises some problems, as
discussed next.

First, the channel interface methods provided by port generators may now be
invoked by different processes. This may result in concurrent token accesses which
must be arbitrated appropriately. To this end, an arbitration module is provided
which arbitrates concurrent token accesses from different processes. Similar to
the token cache module, the arbitration module only uses the abstract channel
interface methods as shown in Figure 6.2. Thus, the proposed arbitration module
can be used independently from the concrete implementation of the interface
methods provided by the port generator which is associated with the actor input
port in question. Note that token accesses may take more than two cycles due
to the arbitration of concurrent token accesses. However, token requests from
different processes can be served simultaneously if they refer to the same token
(i.e., if they specify the same token offset). Moreover, the arbitration mechanism
is only required for variable token offsets, as for constant token offsets the token
is fetched from the token cache without driving any signals (assuming that a
token cache module has been instantiated for the port in question).

Second, transferring the evaluation of transitions into separate processes re-
quires the introduction of enable and ready signals. The enable signal can be
implemented as a reset signal which is active until the transition should be
evaluated. The ready signal is asserted when the transition has been evaluated,
and stays active until the transition is re-evaluated. Thus, the process which
invokes the action functions can check the ready signals of the various evaluation
processes at any time. It remains the question when to reset an evaluation
process. Due to the underlying model of computation, the evaluation result only
depends on the actor state and tokens on incoming channels. Thus, a conservative
approach is to reset all evaluation processes after an action function has been
executed, and the corresponding tokens have been consumed.

Results

In order to show the applicability of the proposed software synthesis, hardware
synthesis, and optimizations, the JPEG decoder depicted in Figure 2.3 on page 12
has been synthesized. Concerning the software test case (SW), all actors of the

138



6.3 Computation Synthesis

Synthesis Latency Throughput LUTs Registers DSP48s

SW 60.8ms ≈ 40 FPS - - -
HW-Seq 28.3ms ≈ 40 FPS 13692 9293 8
HW-Tok 17.8ms ≈ 60 FPS 13389 11483 9
HW-Par 11.5ms ≈ 100 FPS 11692 10285 9

a) End-to-end performance and resource utilization. SW: Software synthesis (Intel Xeon E7-
8837). HW-Seq: Sequential evaluation of transitions, no token cache. HW-Tok: Sequential
evaluation of transitions, token cache. HW-Par: Parallel evaluation of transitions, token cache.

Actor Synthesis Latency LUTs Registers DSP48s

HuffmanDecoder
HW-Seq 14.0ms 8203 5200 0
HW-Tok 9.3ms 7604 4806 0
HW-Par 9.5ms 6590 3851 0

InverseZRL
HW-Seq 12.1ms 685 302 0
HW-Tok 7.3ms 566 309 0
HW-Par 7.7ms 369 131 0

InverseQuant
HW-Seq 25.3ms 926 294 1
HW-Tok 15.6ms 800 274 1
HW-Par 7.7ms 374 244 1

InverseZigZag
HW-Seq 12.2 133 82 0
HW-Tok 11.9 134 81 0
HW-Par 9.7 78 46 0

IDCT2D
HW-Seq 11.2ms 3637 3286 6
HW-Tok 6.9ms 4060 5887 8
HW-Par 7.4ms 4060 5887 8

YCbCr2RGB
HW-Seq 12.7ms 108 129 1
HW-Tok 7.7ms 225 126 0
HW-Par 8.5ms 221 126 0

b) Per-actor latencies and resource utilization for the hardware synthesis.

Table 6.2: a) End-to-end performance and resource utilization of the synthesized
JPEG decoder from Figure 2.3 on page 12. b) Latencies and resource
utilization of selected individual actors. The latencies corresponding
to the bottlenecks have been highlighted for each test case.

model have been automatically translated to C++ as described in Section 6.3.1.
The resulting code has been compiled and executed on an Intel Xeon E7-8837
running at 2.67GHz. Concerning the hardware test cases (HW-Seq, HW-Tok,
and HW-Par), all actors have first been automatically translated into a bus-cycle-
accurate SystemC representation as described in Section 6.3.2. Subsequently, all
actors except the JPEGSource and ImageSink actors have been synthesized
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to RTL by the ForteDS Cynthesizer HLS tool [For14]. For this purpose, a Xilinx
Virtex-5 XC5VLX110T FPGA has been chosen as target platform. The target
clock period has been set to 10ns. Synopsys Synplify Pro has been used for logic
synthesis, and the Xilinx tools have been used for place and route. Note that
the JPEGSource and ImageSink actors represent the testbench and have not
been further processed.
The overall results are shown in Table 6.2a, while the results for some individual

actors are shown in Table 6.2b. In the general case, the given latencies correspond
to the time required to decode a single JPEG picture with QCIF resolution
(i.e., 176x144 pixels). In case of the SW test case, the latency corresponds to
the average time required to decode the same picture five times. In case of the
HW test cases, it should be noted that the JPEG decoder is pipelined based on
minimum coded units (MCUs), but the given latencies of individual actors also
refer to the decoding of a whole picture, which consists of 396 MCUs.
Concerning the SW test case, the peak throughput of approx. 40 FPS can

be achieved by decoding Motion-JPEG videos with at least 200 frames (with
the same QCIF resolution). Compared to the latency of a single picture, the
micro-architectural optimizations like instruction pipelining and caches of the
Intel Xeon processor considerably increase the throughput of the JPEG decoder
synthesized to software.
Concerning the HW-Seq test case where transitions are evaluated sequentially

and no token cache is used, the peak throughput of approx. 40 FPS is limited by
the slowest actor in the actor chain, which is the InverseQuant actor in this
case. It should be noted that the throughput is comparable to the throughput
achieved by the SW test case. However, the Intel Xeon processor is running at
2.67GHz, while the IP core corresponding to the JPEG decoder synthesized to
hardware is running at only 100MHz.
It can be observed that the latency is improved significantly by the presented

optimizations: Token caching (test case HW-Tok) reduces the latency by approx.
40% w.r.t. the HW-Seq test case, while token caching combined with the parallel
evaluation of transitions (test case HW-Par) reduces the latency by approx. 60%
w.r.t. the HW-Seq test case. At a glance, the largest latency savings can be
observed in modules with a majority of token accesses with constant offsets and
many transitions. On the other hand, actors with a majority of token accesses
with variable offsets and less transitions do not contribute much to the latency
improvements. According to the bottleneck actors of the corresponding test cases,
the throughput could be increased to approx. 60 frames per second and 100 frames
per second, respectively. However, it should be noted that the QCIF resolution
is quite small. For a typical high-definition resolution of 1280x720 pixels, the
throughput can be expected to decline to approx. 3 frames per second, which
indicates that the input model and the hardware synthesis should be further
optimized in future work. For example, micro-architectural optimizations like a
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pipelined or speculative evaluation/execution of transitions could be considered.
In particular, the latter can exploit the fact that only those transitions may
become active which are attached to the possible target modes of the transition
which is currently being executed.

Concerning the LUT utilization, a reduction can be observed when applying
the presented optimizations. For the token caching alone, the slight reduction
probably stems from the fact that more tokens are accessed via constant offsets
than via variable offsets. In this case, less logic is needed to implement the
random-access protocol for token accesses, due to the fact that a majority of
token accesses is directly wired to the registers of the token cache module. In
case of the parallel evaluation of transitions, the LUT utilization is reduced even
more due to the fact that guard functions are no longer inlined (and possibly
duplicated) into the main process.
As could be expected, the register utilization in case of the sequential evaluation

of transitions with token caching increases (by approx. 23%) compared to the
baseline synthesis due to the additional registers used by the token cache. However,
this increase in register usage is alleviated by the parallel evaluation of transitions,
which reduces the number of registers used for implementing the guard functions,
due to the same reason as described for the LUTs.
Finally, the optimized variants require nine DSP48 resources instead of eight re-

quired by the baseline synthesis. Concerning the parallel evaluation of transitions,
this may be caused by less possibilities for resource sharing when functionality
is split into separate SystemC processes, as HLS tools typically do not perform
resource sharing across process boundaries.

6.3.4 Inter-Process Resource Sharing

The hardware synthesis as described in the previous sections leaves all resource
sharing decisions to the HLS tool which is used to further process the generated
bus-cycle-accurate SystemC model. While in this case, all logic is inlined into
a single SystemC process which maximizes the resource sharing possibilities, it
is difficult to express parallelism using this approach. The parallel evaluation
of transitions partially solved this problem by generating concurrent SystemC
processes for the transitions. While this approach reduces resource sharing
possibilities for the subsequent HLS of the bus-cycle-accurate model, even more
resources could possibly be saved by this approach if some transitions specify
the same guard function. In this case, only one instance of the guard function is
synthesized instead of synthesizing all inlined guard function calls. The parallel
evaluation of transitions may also result in improved performance as shown in
the last section.
For a single actor, guard functions that are used by more than one transition

may not be encountered very often. While the parallel evaluation of transitions
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Figure 6.5: Overview of the proposed inter-process resource sharing approach: A
large number of logical actor instances is bound to a smaller number
of reservation stations, which are in turn bound to an even smaller
number of physical actor instances (which are comprised of functional
units). In turn, this creates opportunities for resource sharing between
functional units.

may still improve performance, resources cannot be shared in this case. However,
it can be observed that for a wide range of applications, the same actor is instan-
tiated more than once. In particular, multimedia applications can benefit from
modeling the processing of different audio/video components as a (hierarchical)
actor which is instantiated according to the number of components.

Example 6.1. The composite actor shown in Figure 5.2 on page 93 can be
instantiated three times in order to model the parallel decoding of the image
components (Y, Cb, Cr) of a JPEG image. In this case, each of the child actors
InverseQuant, InverseZigZag, and IDCT2D is instantiated three times.

In such a scenario, it is possible to realize resource sharing across process
boundaries not only based on guard functions, but also to consider action functions.
For a small number of identical actors, this inter-process resource sharing approach
has been proposed in [ZHFT12a].

Example 6.2. Another application domain where the proposed resource sharing
approach can be employed is the networking domain. Here, the transport
layer according to the Open Systems Interconnection (OSI) reference model
[DZ83] is responsible for providing end-to-end communication services for
applications. Typically, the complex behavior of a single communication end-
point (EP) depends on packets received from the peer EP, or on data received
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from the application. Here, the proposed dataflow model can be used to efficiently
implement the behavior of a single communication EP as shown in [ZFH+10].

In such a scenario, a very large number of identical actors must be accommo-
dated. In this case, the inter-process resource sharing approach as presented in
[ZHFT12a] must be adapted as described in [ZHF+14].
Figure 6.5 summarizes the proposed inter-process resource sharing approach: If

a very large number of identical actors is to be processed, they are first bound to
a smaller number of reservation stations. Subsequently, the reservation stations
are bound to an even smaller number of physical actor instances. Each physical
actor instance is comprised of functional units, which in the proposed dataflow
model simply correspond to the synthesized guard functions and action functions.
In turn, this creates opportunities for resource sharing between functional units,
which is, however, not considered in this thesis.
The logical actor instances are implemented by means of the (hierarchical)

dataflow model presented in Sections 3.1 and 5.1. Before the input model expected
by the resource sharing approach is described in more detail, the example
which is used throughout the remaining chapter is outlined in the next section.
Subsequently, the inter-process resource sharing approach is described.

System-Level Overview

Example 6.3. The example used in the following is based on an InfiniBand
(IB) [Inf14] network adapter contained in a PCI Express (PCIe) system (cf.
Figure 6.6). PCIe employs point-to-point links to overcome the limitations of a
shared bus. In a PCIe system, a root complex device connects the processor and
memory subsystem to the PCIe switch fabric comprised of one or more switch
devices. As a packet-based protocol, PCIe consists of three layers as known
from the networking domain, namely the transport layer, the data link layer,
and the physical layer.
The network adapter implements the InfiniBand SEND operation defined

on the transport layer. With a SEND operation, the local EP transmits data
to a remote EP. To this end, each EP has an associated send queue (SQ) and
receive queue (RQ) where work queue elements (WQEs) are inserted by the
user. A WQE (“wookie”) specifies where to fetch or store the transmitted data.
Each EP processes its posted WQEs, and, for each finished WQE, places a
completion queue element (CQE) (“cookie”) in an associated completion queue
(CQ) polled by the user. The InfiniBand specification provides for a total of 224

EPs. Note that an EP can simultaneously process WQEs from its SQ and its
RQ. The SQs, RQs, and CQs are stored in main memory (cf. Figure 6.6).
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Figure 6.6: System-level overview of the running example based on an InfiniBand
network adapter in a PCIe system.

In order to reduce the complexity of the example, only the unreliable con-
nection mode specified by InfiniBand has been implemented. In this mode,
the requester receives no acknowledgments for transmitted packets, and no
guarantees concerning the packet order are given.
The behavior of a single EP is summarized by the sequence diagram shown

in Figure 6.7. In order to reduce the modeling complexity, the SQ and RQ
processing logic is implemented by means of hierarchical modes as described in
Section 3.2. To be more precise, an EP consists of a top-level AND mode, whose
XOR child modes implement, amongst others, the SQ and RQ processing logic.
An additional XOR child mode (which is not reflected by Figure 6.7) handles
memory-mapped configuration register accesses by applications (or the driver
if an operating system like Linux is used).
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Store payload data
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Figure 6.7: Work queue element (WQE) processing by an EP.
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Input Model and Modeling Extensions

The input model expected by the inter-process resource sharing approach consists
of a structural composite actor γ which has n instances of identical functional
composite child actors a1–an. In the following, these child actors are called logical
actor instances.

Tokens from an input port p of the composite actor γ (or from an output
port p of a child actor of γ) may have to be forwarded to an input port p′ of a
logical actor instance. In principle, this could be achieved by a dispatch actor
with one input port i1 and n output ports o1–on. Then, a port-to-port binding
(or a channel) (p, i1) is added, and a channel (ok, ak.p

′) for each logical actor
instance 1 ≤ k ≤ n. Analogously, tokens produced by a logical actor instance
on an output port p′ typically may have to be forwarded to an output port p
of the composite actor γ (or an input port p of a child actor of γ). In this case,
a merge actor with n input ports i1–in and one output port o1 could be used.
Then, a channel (ak.p

′, ik) for each logical actor instance 1 ≤ k ≤ n is added,
and a port-to-port binding (or a channel) (o1, p).

While these user-defined dispatch and merge actors would not require any
modeling extensions, this approach has some problems: The number of transitions
of these actors corresponds to the number of logical actor instances, which may
become very large. This is due to the fact that these actors explicitly encode
the target and source logical actor instances by means of dedicated output and
input ports. However, these user-defined dispatch and merge actors cannot be
automatically transformed to support a different token forwarding scheme based
on physical actor instances instead of logical actor instances in the general case.
Thus, if the logical actor instances are bound to fewer physical actor instances,
additional multiplexing logic would be required to forward tokens from the output
ports of the dispatch actor to the input ports of the few physical actor instances,
while additional demultiplexing logic would be required to forward tokens from
the output ports of the few physical actor instances to the input ports of the
merge actor.

Concerning the user-defined dispatch actor, a more efficient approach decouples
the decision to which logical actor instances tokens should be forwarded from
the concrete implementation of the forwarding mechanism. To this end, an
additional communication primitive is provided which can be used to replace
the user-defined dispatch actor [ZFH+10]: In order to forward a token t to the
appropriate logical actor instance ak, we only have to know the logical actor
instance associated with t. This task can be performed in isolation by an actor
which transforms a token t into a token (t, k) which contains the original token t

and additionally specifies the index of the logical actor instance ak to which t

should be forwarded. This process is referred to as token coloring in the following,
and the compound token (t, k) is referred to as colored token.
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The colored token (t, k) is produced on a dispatch channel which basically
behaves like the dispatch actor described above: The original token t of a colored
token (t, k) stored on the dispatch channel is made available at the attached input
port p′ of the corresponding logical actor instance ak. However, in contrast to
user-defined dispatch actors, dispatch channels are implemented by the generators
of the proposed synthesis framework, and can therefore be easily adapted in order
to support physical actor instances instead of logical actor instances. Dispatch
channels are 1 : n connections, i.e., they connect exactly one output port with n

input ports, possibly via port-to-port bindings.
The size of a dispatch channel refers to the number of colored tokens which

can be stored on the dispatch channel. In turn, tokens are assumed to be
consumed in a sequential manner, i.e., if the sequence of colored tokens stored
on a dispatch channel is S = 〈(t1, k1), (t2, k2), . . . , (tn, kn)〉, only the first j

tokens of the same color are visible to the logical actor instance ak1 , i.e., j =
maxi {∀q, 1 ≤ q ≤ i : k1 = kq}. The designer has to consider these semantics: In
particular, deadlocks could be introduced into the model if the logical actor
instance ak1 does not eventually consume the first j tokens, because in this case,
subsequent colored tokens never become visible at their respective logical actor
instance. Note that colored tokens in dispatch channels always target a specific
logical actor instance. Thus, if only dispatch channels are used alongside regular
point-to-point FIFO channels, the resulting input model is still conflict-free, even
though dispatch channels are not point-to-point connections in the general case.
In order to replace the user-defined merge actors, merge channels are intro-

duced. Merge channels are n : 1 connections, i.e., they connect n output ports with
exactly one input port p, possibly via port-to-port bindings. In this case, a token
produced by a logical actor instance ak on an output port p′ is made available at
the only connected input port p as a colored token (t, k). Here, the question arises
in which order the merge channel should forward tokens from different logical actor
instances to the connected input port p. If no restrictions can be imposed on the
forwarding of tokens from different logical actor instances, the multiplexed tokens
may appear in the wrong order at p, and may have to be re-ordered by an interme-
diate actor. Unfortunately, in contrast to the actors which perform the coloring of
tokens for dispatch channels, these token re-ordering actors would be more com-
plex. In particular, the re-ordering of tokens requires the buffering of tokens.
A possible solution is to extend the logical actor instances to produce tokens

(t, l) where l ∈ {⊤,⊥} is a flag that indicates whether the token t is the last
token in a sequence of tokens that must not be interleaved with tokens from other
logical actor instances. Then, the semantics of merge channels are as follows:
Tokens (t, l) produced by a logical actor instance ak on an output port p′ are made
available at the only connected input port p as a colored token (t, k). However,
only after a token with l = ⊤ has been forwarded, tokens from a different logical
actor instance can be forwarded.
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The size of a merge channel refers to the number of colored tokens which can
be stored on the merge channel. Thus, in principle, conflicts may be introduced
into the resulting input model if merge channels are used. An implementation
must resolve these conflicts appropriately, e.g., by allocating dedicated FIFO
buffers such that the logical actor instances can produce tokens in isolation before
the tokens are merged onto a single channel.
In real-world designs, it is typically desirable to model limited resources. In

principle, this could be achieved by a dedicated server actor which manages the
resources in question. Then, actors which want to acquire a resource can send a
request token to this server actor. When a resource becomes available, the server
actor sends an acknowledgment token to the next requesting actor. When the
actor has finished using the resource, it sends a release token to the server actor.
While feasible, this approach results in more complex actor finite state machines

(FSMs) which must model this server/client behavior. In contrast, a set of limited
resources can also be modeled by a simple semaphore, which is basically a counter
that is decremented when a resource is acquired, and incremented when a resource
is released. This behavior is provided by semaphore channels: In contrast to
dispatch channels, tokens in a semaphore channel are not associated with a
specific logical actor instance, and thus, can be consumed by any logical actor
instance. In turn, these tokens are referred to as colorless tokens in the following.
Semaphore channels are n : m connections, i.e., n output ports are connected
to m input ports, possibly via port-to-port-bindings. Thus, conflicts between
actors may occur as semaphore channels are not point-to-point channels in
the general case, and colorless tokens may be consumed by any logical actor
instance. An implementation must resolve these conflicts appropriately. However,
for semaphore channels, it can be assumed that always enough free places are
available in order to produce some tokens. This is due to the fact that a correct
model must never produce more tokens on a semaphore channel than previously
consumed from the same channel, i.e., resources must have been acquired by an
actor before they are released.
In the following, it is assumed that for a given dispatch channel or semaphore

channel which is connected to the input ports of the logical actor instances
contained in the structural composite actor γ, no input ports of actors not
contained in γ are additionally connected. Analogously, it is assumed that for a
given merge channel or semaphore channel which is connected to output ports
of the logical actor instances contained in the structural composite actor γ, no
output ports of actors not contained in γ are additionally connected. These
restrictions ensure that the additional communication primitives can be locally
replaced by the regular point-to-point FIFO channels (cf. Definition 5.1) by
model transformations. Moreover, conflicts between transitions of logical actor
instances induced by merge channels or semaphore channels can therefore be
resolved in a local manner.
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Figure 6.8: The proposed inter-process resource sharing approach transforms the
input model (a) into a model where the logical actor instances are
multiplexed onto a few physical actor instances (b)

Example 6.4. The input model of the InfiniBand network adapter is shown in
Figure 6.8a. The four input ports and three output ports correspond to tokens
from/to the PCIe switch fabric, tokens from/to the link interface, tags which
are assigned to memory read requests issued by the model, and link credits
consumed by the model before sending a token to the link interface. Note that
link credits are generated by the link interface, and not by the logical actor
instances EP1–EPn.
Link credits and PCIe tags are colorless tokens and can therefore be consumed

by any EP. In contrast, PCIe and IB tokens are colored tokens, as they always
target a specific EP. Note that for a data path width of 32 bits, PCIe and IB
packets are transmitted by means of multiple 32 bit tokens. Thus, the actors
which perform the token coloring must analyze the token stream accordingly.
Typically, the target EP can be determined from the header tokens which are
possibly followed by payload tokens.
In case of InfiniBand tokens, the resulting FSM is outlined in Figure 6.9.

Note that the target EP is contained in the second token of the base transport
header (BTH). Thus, the three preceding header tokens can only be produced
onto the dispatch channel when the target EP is known, which requires some
additional buffering of tokens. However, the concrete implementation is left to
the designer. Considering Figure 6.9, three IB tokens have been assigned to
EPgreen, while the subsequent token has been assigned to EPred.
Concerning PCIe tokens, the actor which performs the token coloring is

slightly more complex. In case of write and read requests, the target EP is
determined from the target address specified by a PCIe header token. In case
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Figure 6.9: Token coloring for InfiniBand packets. The modes correspond to the
tokens which make up the local route header (LRH) and BTH of
IB packets. Note that depending on the LRH, a global route header
(GRH) may be inserted between the LRH and the BTH which is not
reflected by the FSM but should be considered in the general case.

of a read response, the target EP is determined based on the tag which is
contained in the read response. Note that the tag is contained in the read
request issued earlier by an EP, and is simply copied into the read response by
the target device in the PCIe switch fabric which processes the read request.
Thus, the PCIe token coloring actor must know which EP is associated with
a given tag. For example, when sending a PCIe read request, an EP can also
produce a token (tag,⊤) on an additional merge channel connected to the PCIe
token coloring actor (cf. Figure 6.8a). In this case, the PCIe token coloring
actor receives a token (tag, k), and can update its internal tag table accordingly.
However, the concrete implementation is again left to the designer.

In principle, the result of multiplexing the logical actor instances onto the
physical actor instances can be represented by a functional composite actor
(cf. Figure 6.8b). Note that in this transformed model, only point-to-point
channels are used. This functional composite actor can be generated, e.g., in
order to perform functional verification of the multiplexing logic. In principle,
this functional composite actor could also be used to perform hardware synthesis.
However, the input model is chosen such that the generators employed by the
synthesis framework can directly output the synthesized model without having
to generate the functional composite actor. This enables optimizations during
synthesis which cannot be represented in the proposed dataflow model, like the
asynchronous execution of child actors. Note that such execution semantics of
child actors are supported by the FunState model, which has been reviewed in
Section 3.4.

Mapping of Logical Actor Instances to Reservation Stations

The first step of the inter-process resource sharing approach dynamically maps
the logical actor instances a1–an to a smaller set of reservation stations RS1–RSq,
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q ≤ n (cf. [ZHF+14]). To this end, the following problems must be solved:
First, the logical actor instances to be bound to reservation stations must be
selected from the set of all logical actor instances. Second, the selected logical
actor instances must be scheduled if not enough reservation stations are available.
Third, the scheduled logical actor instances must be bound to reservation stations.
Please note that in this case, the scheduling is performed prior to the binding
of logical actor instances to reservation stations. This is made possible by the
fact that each reservation station (RS) can execute any logical actor instance. In
turn, the utilization of reservation stations is improved.
Concerning the selection of logical actor instances, a simple round-robin scheme

is infeasible if it is to be expected that only a few logical actor instances have
some enabled transitions. However, as described in Section 3.1, the availability
of sufficient tokens and free places on channels is a necessary condition for a
transition to be enabled. Therefore, logical actor instance can be selected based
solely on tokens available on input ports, and free places available on output
ports. In the following, it is assumed that logical actor instances are initially
blocked on colored tokens. If this is not the case, all logical actor instances must
be initially considered as potentially having enabled transitions. In principle, the
proposed approach also supports such a scenario, as will be seen later.
The scheduling of selected logical actor instances is based on credits. However,

this is explained in more detail after the binding of logical actor instances to
reservation stations has been described, which can be outlined as follows: Given
a colored token (t, k) from a dispatch channel, we first check whether the logical
actor instance ak is already bound to a reservation station RSi. If this is the
case, the original token t is extracted from the colored token, and forwarded to
the corresponding reservation station. Otherwise, an idle reservation station is
selected. An RS is idle if either no logical actor instance is bound to the RS, or
all of the following conditions are satisfied:

• The input channels to the RS corresponding to dispatch channels must be
empty. This requirement prevents the RS from consuming tokens which
target a logical actor instance that is no longer bound to this RS. Note that
this requirement implies the assumption that the RS eventually consumes all
tokens from input channels. However, according to the sequential semantics
of dispatch channels, this assumption must be satisfied anyway in order to
not introduce deadlocks into the input model.

• The output channels from the RS corresponding to merge channels must
either be empty, or the last token (t, l) produced onto a merge channel
must correspond to the last token of a token sequence, i.e., l = ⊤. This
requirement prevents the generation of spurious token sequences, because
according to the semantics of merge channels, tokens must be forwarded
from the same logical actor instance until a token (t,⊤) is encountered.
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Figure 6.10: Data path of the InfiniBand example. For the sake of clarity, only
dispatch and merge channels are shown. The dotted rectangle indi-
cates the mapping of the reservation stations to the physical actor
instances (cf. Figure 6.11).

Note that this requirement does not introduce deadlocks into the model, as
the input model must already adhere to the semantics of merge channels.

• The RS must not currently evaluate or execute a transition. In particular,
this requirement ensures that no action function of the RS is being executed,
and that the logical actor instance currently bound to the RS therefore is
in a consistent state.

• The RS should not have any enabled transitions. In this case, it is typically
better to execute an enabled transition before evicting the logical actor
instance currently bound to the RS. However, if a logical actor instance
never blocks on missing tokens or free places, it may have to be evicted
despite having enabled transitions. In the following, it is assumed that this
scenario does not occur. Note that this is basically the same assumption
as Requirement 4.2 on page 60 postulated for the actor classification.

Example 6.5. Considering Figure 6.10, EPred is currently bound to RS1, while
EPgreen is currently bound to RS2. Both reservation stations are not idle, as
there are some tokens on the input channels to each RS. The colored tokens
are subsequently forwarded to the corresponding RS.

In principle, the selection of an idle reservation station to which the logical
actor instance ak should be bound to can be based on existing cache replacement
strategies, like least recently used (LRU). A more informed selection strategy
may inspect the first colored tokens on the dispatch channels and refrain from
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selecting an RS for which colored tokens are queued. As implemented for the
example, a simple random selection strategy is used, i.e., any idle RS is selected.
After an idle reservation station RSi has been selected, the logical actor instance

aj currently bound to RSi is evicted from RSi. To this end, the actor state (cf.
Definition 3.2) of aj is written into some backing store (e.g., off-chip memory).
Afterward, the logical actor instance ak is assigned to RSi. When the actor state
of ak has been fetched from the backing store, transitions of RSi can be evaluated
and executed.
Assuming that the evicted logical actor instance is not solely blocked on colored

tokens, but misses some colorless tokens or free places on output channels, it
will never again be evaluated if no more colored tokens for the evicted logical
actor instance are received. Thus, the evicted logical actor instance must be
remembered in order to provide for an efficient selection when enough resources
are eventually available (remember that a simple round-robin scheme is infeasible
if it is to be expected that only a few logical actor instances have some enabled
transitions). To this end, one or more initiative queues are allocated, where
initiative tokens are enqueued. An initiative token consists only of the index of
the logical actor instance which has been evicted. Thus, it is basically a colored
token without data.
An initiative queue is associated with a set of requirements which must be

met in order to dequeue an initiative token. A requirement may either encode
the number of colorless tokens required on a semaphore channel, or the number
of free places required on a merge channel. Remember that it is assumed that
always enough free places are available on semaphore channels. The requirement
sets are statically determined by analyzing the transitions of a logical actor
instance. Note that transitions which consume at least one colored token are
ignored, because in this case the actor is activated by the colored tokens as
described above.

Example 6.6. Analyzing the transitions of an InfiniBand EP results in the
requirement sets r1–r5 shown in Table 6.3a. For example, r1 specifies that one

Requirement Set itags icredits opcie oib
r1 1 0 3 0
r2 0 0 4 0
r3 0 0 7 0
r4 0 6 0 6
r5 0 69 0 0 r⊥

r4 r5r1 r2

r3

a) Requirement sets b) Partial order

Table 6.3: Requirement sets computed from the transitions of an InfiniBand EP.
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colorless tag token is required, in addition to three free places on the PCIe merge
channel. Note that r1 corresponds to a PCIe read request issued by an EP.

In principle, an initiative queue could be allocated for each requirement set.
While this approach retains the exact requirements, it may also lead to the
allocation of many initiative queues. It can be observed that the requirement
sets form a partial order under vector comparison “<”. Given two resource
requirements r1 and r2, r1 < r2 if r1 ≤ r2 and r1 6= r2. In this case, the larger
requirement set r2 could be ignored in principle, and an initiative queue can
be allocated for r1 only. Then, an initiative token j for an evicted logical actor
instance aj which would normally be enqueued to the initiative queue allocated
for r2 is instead enqueued to the initiative queue allocated for r1. Note that it is
also possible to determine requirement sets that do not correspond to transitions
of the logical actor instances. In particular, a requirement set r⊥ = 0 may be used
to replace any other requirement set r > r⊥. In this case, only a single initiative
queue would be required. However, all information about resource requirements
is lost in this case. The allocation of initiative queues therefore can be seen as
an optimization problem which may be studied in future work.

Example 6.7. The partial order “<” over the requirement sets from Table 6.3a
is shown in Table 6.3b. In particular, r2 < r3. For the example, an initiative
queue is allocated for requirement sets r1, r2, r4, and r5.

When a logical actor instance aj is evicted from a reservation station, an
initiative token j is enqueued to the initiative queue(s) according to the current
actor mode. Thus, in principle, a logical actor instance may be contained in more
than one initiative queue. In order to ensure that aj is only enqueued once in a
given initiative queue, a bit is stored alongside the actor state which indicates
whether aj is enqueued in the initiative queue. This bit is set when the initiative
token j is enqueued to the initiative queue, and cleared when the initiative token
j is dequeued from the initiative queue (and the actor state has been fetched
from the backing store).

Example 6.8. For the example, four initiative queues have been allocated.
Thus, an evicted EP may be enqueued in up to four initiative queues. In this
case, four bits are allocated alongside the actor state of each logical actor
instance in order to remember this information. For 224 EPs, this requires an
additional 8 MB of memory in the backing store. In contrast, as implemented,
the actor state amounts to 107 bytes for one EP, i.e., a total of approx. 1.7 GB
of memory is required in the backing store.
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An initiative token j which becomes visible on an initiative queue is immedi-
ately dequeued if the corresponding logical actor instance aj is already bound
to a reservation station, analogously to colored tokens on dispatch channels.
Otherwise, an idle reservation station must be determined. In this case, however,
the semaphore channels and the outgoing channels of an idle RS are checked
whether enough tokens and free places are available according to the requirements
associated with the initiative queue in question. Note that the initiative token
is only dequeued from the initiative queue if this is the case. Otherwise, the
initiative token is not dequeued.
Overall, colored tokens on dispatch channels and initiative tokens on initiative

queues represent token sources from which logical actor instances are determined
that have to be bound to reservation stations. As there are typically multiple
dispatch channels and initiative queues, the question arises which token source
should be considered next if there are any idle reservation stations. Here, a
possible scheduling scheme consists in allocating some credits for each token
source. The number of reservation stations then corresponds to the total number
of allocated credits. A token of color j is only dequeued from a token source (and
possibly forwarded to an RS) if either the logical actor instance aj is already
bound to an RS and has already acquired a credit for the token source, or if the
token source has some credits left. In case of the latter, a credit is consumed for
the token source and associated with the RS to which the token is forwarded.
This credit is returned when the RS becomes idle. While at least one credit must
be allocated for each token source, allocating more than one credit allows more
logical actor instances to be processed concurrently. Other scheduling schemes
may be studied in future work.

Example 6.9. For the InfiniBand example, at least six reservation stations
must be allocated if the credit-based scheduling scheme is used: One RS for each
dispatch channel, and four reservation stations for the four initiative queues.

Mapping of Reservation Stations to Physical Actor Instances

Compared to the input model where the logical actor instances would be syn-
thesized as dedicated entities, the mapping of logical actor instances to a few
reservation stations already results in significant resource savings (or may even
enable synthesis in the first place). However, it can be observed that not all guard
functions and action functions of the reservation stations are active at the same
time in the general case. Thus, it is typically possible to reduce the number of
instantiated guard functions and action functions without significantly degrading
the overall performance of the synthesized model (cf. [ZHF+14; ZHFT12a]).
In the following, a synthesized guard function or action function is referred
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Figure 6.11: Token forwarding to/from functional units. For the sake of clarity,
channels for IB tokens and link credits have been omitted.

to as functional unit (FU). A physical actor instance therefore can be seen as
instantiating one FU for each guard function and action function of the actor
in question. While more than one physical actor instance could be instantiated
in principle, a more fine-grained allocation of FUs is also possible in order to
eliminate bottlenecks. In order to provide for a fine-grained utilization of FUs,
each FU can be individually configured with the desired reservation station
number (RSN) for which the FU should be executed.
The dynamic mapping of reservation stations to functional units is performed

according to the operational semantics outlined in Sections 3.1.1 and 5.1.1.
During the evaluation phase of a transition t, the resources (i.e., tokens and free
places) required by t are checked against the available resources.
For colored tokens from dispatch channels, the number of available tokens

is equal to the number of tokens available in the corresponding FIFO channel
to the RS. (Remember that these FIFO channels contain only tokens of the
same color.) Analogously, for tokens produced on merge channels, the number
of available free places is equal to the number of free places available in the
corresponding FIFO channels from the RS.

Example 6.10. Consider Figure 6.10 and Figure 6.11: Two PCIe tokens and
no IB tokens are currently available for EPred. In contrast, one PCIe token and
one IB token are currently available for EPgreen.

In contrast to colored tokens, colorless tokens cannot be assigned to a logical
actor instance when they appear at the composite actor. In fact, doing so may
introduce deadlocks into the system. Instead, colorless tokens can only be assigned
to a logical actor instance when a transition is about to be executed. To this end,
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if a transition t is to be executed, the requested tokens according to cons(p, t.fa)
can be copied to a dedicated FIFO buffer allocated for the FU corresponding to
the action function t.fa. While the reserved tokens are copied, the semaphore
channel appears empty to other guard functions and action functions in order
to avoid token conflicts. Note that guard functions which have been evaluated
earlier may have peeked at the tokens which are now copied to the FU. The
corresponding conflict-resolution scheme is discussed later. For tokens produced
on semaphore channels, it is assumed that enough free places are always available.

Example 6.11. Considering Figure 6.11, ffetchWqeSq is currently executed for
RS1, while ffetchWqeRq is executed for RS2. While one tag token has been reserved
and copied to each action FU, both action FUs have not yet consumed their
reserved token. For other guard functions and action functions, one tag token
is still available in the semaphore channel.

Assume that for a transition t of a reservation station RSi enough tokens are
available according to the values of peek. Then, the guard function t.fg can be
evaluated. The corresponding FU can be executed for RSi if it is not currently
executed for any RS. In this case, the FU is configured with the RSN i, and
execution is started. After the execution of the FU is finished, the result is cached
in RSi. This prevents multiple evaluations of t.fg for RSi, and allows another
transition t′ with t′.fg = t.fg to reuse the cached result of t.fg.
The action function t.fa can be executed if the cached result of t.fg is ⊤,

and enough tokens and free places are available according to the values of cons
and prod. The corresponding FU can be executed for RSi if it is not currently
executed for any RS, and no action function is currently executed for RSi. In this
case, the FU is configured with the RSN i, and execution is started. Executing
t.fa has the following consequences:

• All guard function results cached in RSi are invalidated, as they must be
re-evaluated after the action function has been executed.

• All FUs which are currently executed for RSi are reset, thereby freeing the
FUs for different reservation stations. Note that these reset FUs correspond
to guard functions.

• RSi is blocked from starting any other FU until the action function has
been executed.

• For other reservation stations than RSi, cached guard function results are
invalidated and active FUs corresponding to guard functions are reset, but
only if the guard function may have peeked at tokens that are now reserved
for the executed action function.
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Let Isem ⊆ I be the subset of input ports of a logical actor instance connected
to semaphore channels. Remember that only colorless tokens can induce conflicts
between reservation stations. Then, the subset of guard functions F̂g(fa) ⊆ Fg

that are invalidated by an action function fa ∈ Fa can be statically determined
as follows: F̂g(fa) = {fg ∈ Fg | ∃p ∈ Isem : cons(p, fa) > 0 ∧ peek(p, fg) > 0}, i.e.,
guard functions which peek at some tokens on an input port p from which the
action function fa consumes some tokens.

Example 6.12. In the InfiniBand example, the set of invalidated guard func-
tions is empty for all action functions.

The dynamic mapping of reservation stations to physical actor instances must
satisfy Requirement 3.1 on page 32. For colored tokens, this requirement is trivially
satisfied by the fact that only a single action function may be active for the
corresponding RS, and the invalidation of cached guard function results when an
action function is executed for the RS. For colorless tokens, assume two transitions
t1 and t2 which are evaluated and executed for different reservation stations, and
that t1.fg ∈ F̂g(t2.fa) and t2.fg ∈ F̂g(t1.fa). Without loss of generality, assume
that t1.fa is executed before t2.fa. In this case, the peeked tokens are copied
into the FIFO channel to the FU which corresponds to t1.fa before t1.fa is
executed. Additionally, the cached results of t1.fg and t2.fg are cleared. Then,
t2.fa cannot be executed until t2.fg has been re-evaluated, which can only happen
after the reserved tokens (including the peeked tokens) have been removed from
the corresponding semaphore channel. Thus, Requirement 3.1 is satisfied.
The actor variables of a logical actor instance are stored alongside the RS where

the logical actor instance is bound to, and can be accessed by FUs accordingly.
Concerning hazards w.r.t. the actor variables, write-after-write (WAW) hazards
are prevented as only one action function may be executed for a given RS at
any one time. Note that only action functions may modify the actor variables.
Read-after-write (RAW) hazards are avoided because no FUs are started for
a given RS while an action function is executed for the RS. Write-after-read
(WAR) hazards are resolved by resetting all FUs which are currently executed
for a given RS when an action function is to be executed for the RS.

Results

In order to show that the proposed inter-process resource sharing approach can
multiplex a large number of logical actor instances without introducing deadlocks
into the system, it has been applied to the InfiniBand network controller. To this
end, a single EP and the token coloring actors have been implemented within the
proposed dataflow model. Subsequently, the multiplexing logic has been semi-
automatically generated for the single EP as described in the previous sections.
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Two variants have been generated: 1) a functional implementation realized as a hi-
erarchical actor within the proposed dataflow model, and 2) a bus-cycle-accurate
SystemC RTL model. While the former is used for functional verification of the
proposed multiplexing approach, the latter is used to obtain performance estima-
tions, and could be used for subsequent HLS steps as described in Section 6.3.2.
In the following, only the SystemC model is discussed in more detail.

In order to model the environment, certain assumptions about the target
platform have been made. Considering a Xilinx Virtex 6 FPGA platform, the
various latencies are given in Table 6.4. The EP state consists of the actor
variables (105 bytes), the current actor mode (16 bits), and the bits which
indicate the initiative queues where an EP is enqueued to (4 bits). Thus, for 224

EPs, a backing store of ca. 1.7 GB is required for the overall EP state, which is
therefore assumed to be bound to an off-chip memory. Note that this off-chip
memory has a data path of 512 bits in case of the target platform. Thus, the
state of an EP can be written in two cycles. In order to hide the off-chip memory
read latency of 60 cycles, the implementation uses a direct-mapped cache for
the EP state. Here, 24 BRAM blocks (with 36 kbit memory each) can be used
to cache the state of 1024 EPs. In order to provide for a fast access of actor
variables, these are assumed to be kept in registers in each RS. Finally, for each

Parameter Value

Active EPs 1, 4, 16, 64, 256, 1024, 4096, 16384
WQEs per SQ/RQ 64
WQE size 1024 bytes (256 tokens)
IB/PCIe MTU size 256 bytes (64 tokens)
WQE post delay per SQ/RQ 150,000,000 cycles – 1 cycle
Credits per dispatch channel 1, 4
Credits per initiative queue 1
Reservation stations 6, 12
FUs per guard/action function 1
Size of EP state cache 1024 EPs
BRAM/FIFO write latency 1 cycle
BRAM/FIFO read latency 1 cycle
Off-chip mem. write latency (EP state) 1 cycle
Off-chip mem. read latency (EP state) 60 cycles
Main mem. write latency (PCIe) 1 cycle
Main mem. read latency (PCIe) 60 cycles
Link delay 20000 cycles

Table 6.4: Simulation/Architecture parameters
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Figure 6.12: Results for the simulation parameters given in Table 6.4.

FU, a SystemC process has been instantiated. This allows subsequent HLS tools
to generate concurrent modules for each FU (cf. Section 6.3.3).

The various parameters of the evaluated test cases are also given in Table 6.4.
For each test case, a certain number of EPs is initialized prior to the posting of
WQEs. Then, WQEs are simultaneously posted to the SQ of an EP and to the
RQ of its peer EP after the WQE post delay has elapsed for the SQ. A WQE is
retired when the corresponding CQE has been generated by the associated EP.
The simulation is finished when all WQEs have been retired.

The simulation results are shown in Figure 6.12 (throughput) and in Figure 6.13
(latency). On the one hand, throughput denotes the ratio between the total
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Figure 6.13: Results for the simulation parameters given in Table 6.4.

number of bytes transferred between the EPs and the total number of cycles
of the simulation. On the other hand, avg. WQE latency denotes the average
number of cycles from the posting of a WQE to the receiving of the corresponding
CQE. The following observations can be made:

• The WQE latency does not approach infinity because only a limited number
of 64 WQEs is posted to each SQ/RQ.

• A single EP cannot fully utilize the functional units even if the WQE post
frequency is increased, resulting in a low throughput.
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Figure 6.14: Normalized SQ latencies for 16384 EPs. The RQ latencies are virtu-
ally identical and are therefore not shown.

• For the minimum number of 6 reservation stations, the throughput for 4
and 16 EPs is slightly better than the throughput for more EPs. As only
one reservation station is allocated per dispatch channel in this case, EPs
have to be evicted more often from the reservation stations for more than
16 EPs. Eliminating this bottleneck by allocating four reservation stations
per dispatch channel improves both peak throughput and latency by a
factor of ca. 2.6 for test cases with more than 16 EPs, because more EPs
can now be executed concurrently by the FUs.

• The peak throughput can be sustained even for a large number of active EPs
in case of 12 reservation stations. This shows that only a small overhead is
incurred by the dynamic scheduling scheme based on dispatch channels
and initiative queues.

• While easily accomplished, increasing the number of FUs has only a neg-
ligible effect on the peak throughput of the generated bus-cycle-accurate
SystemC model with a 32 bit data path, as the peak throughput of ca.
3.2 bytes/cycle for the minimum number of FUs already approaches the
theoretical maximum throughput of 4 bytes/cycle. Note that after HLS, the
FUs may require more cycles compared to the bus-cycle-accurate model.
In this case, increasing the number of FUs may be required in order to
eliminate some bottlenecks.

Figure 6.14 shows the normalized minimal and maximal SQ latencies for 16384
active EPs. Note that the RQ latencies are virtually identical to the SQ latencies
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and are therefore not shown. Here, SQ/RQ latency refers to the average number
of cycles from the posting of the first WQE to the SQ/RQ to the receiving of the
CQE corresponding to the last WQE posted to the SQ/RQ. Note that for each
WQE post delay, the resulting minimal and maximal SQ/RQ latencies have been
normalized w.r.t. their respective average latency obtained for the WQE post
delay, which is therefore not shown. It can be observed that the maximal SQ/RQ
latency is at most 8% larger than the average latency in case of 6 reservation
stations, and at most 11% larger in case of 12 reservation stations. Furthermore,
it can be observed that the minimum SQ/RQ latency is at most 15% smaller
than the average latency in case of 6 reservation stations, and at most 80%
smaller than the average latency in case of 12 reservation stations.
Here, the initiative queues which are basically FIFO channels apparently

provide for a fair arbitration of logical actor instances which are blocked on
some missing resources. In case of 12 reservation stations, the small minimum
latency may stem from the fact that four reservation stations are allocated
for each dispatch channel, and that the implemented selection strategy of idle
reservation stations always selects the first one. Thus, some EPs may reside
longer in reservation stations without being evicted, and can therefore process
their WQEs faster than other EPs. Here, a different selection scheme of idle
reservation stations like LRU may improve the average latencies.
Finally, the Xilinx Vivado HLS tool has been evaluated in order to further

synthesize the generated bus-cycle-accurate SystemC model. To this end, the
FUs have been successfully synthesized to RTL in isolation. Note that results for
the synthesis of a bus-cycle-accurate model with similar FUs have been presented
in Section 6.3.3 in the context of the parallel evaluation of transitions. Next, the
remaining data path (cf. Figure 6.10 and Figure 6.11) and the overall control logic
which performs the mapping of logical actor instances to reservation stations
and the mapping of reservation stations to FUs should have been synthesized
by the HLS tool. However, due to the control-flow-dominated nature of the
control logic, the Vivado HLS tool was not able to synthesize the control logic.
As a time-consuming manual translation of the control logic to RTL is beyond
the scope of this thesis, the synthesis of the bus-cycle-accurate SystemC model
therefore has not been pursued any further.
In the general case, the inter-process resource sharing approach extends the

design space by providing for an automatic mapping of n logical actor instances
to m physical actor actor instances. Thus, it is possible to choose a desired
number of 1 ≤ m ≤ n physical actor actor instances, e.g., based on the evaluation
of the generated bus-cycle-accurate model. In particular, the simulation results
of the bus-cycle-accurate InfiniBand model show that a large number of logical
actor instances can be bound to a single physical actor instance. Instantiating
more physical actor instances in order to eliminate bottlenecks is then easily
achieved during design space exploration at the algorithmic/instruction level.
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6.4 Related Work and Limitations

Daedalus [TNS+07; NSD08] is a system-level design flow which starts by trans-
lating sequential C programs into a platform-independent Kahn process network
(KPN) (cf. Section 4.8) suitable for design space exploration. However, the input
C programs are restricted to static affine nested loop programs (SANLPs). While
our proposed design flow requires the user to provide a concurrent (dataflow)
model as input, the model is not restricted to KPNs, and the functionality of the
application is not restricted to loop programs. The resulting dataflow model is
then synthesized by the ESPAM tool [SDN06] which is similar to the proposed
synthesis framework. However, in contrast to our proposed design flow, the syn-
thesis at system level is not separated from the synthesis at the algorithmic/task
level.
Koski [KKO+06] is a multiprocessor System-on-Chip (MPSoC) design flow

based on UML 2.0. Comparable to the hierarchical model described in Sec-
tion 5.1, components can be hierarchically nested, and are divided into structural
components and functional components. The behavior of functional components
is modeled by Statecharts [Har87], comparable to the proposed dataflow model
(cf. Section 3.2). Components communicate with other components by means
of ports which are connected by signals. While not formally described, compo-
nents adhere to the KPN model of computation (MoC). Actors in the proposed
dataflow model are not restricted to KPN semantics.
The System-on-Chip Environment (SCE) introduced in [DGP+08] is based

on SpecC [GZD+00] (cf. Section 2.1). In contrast to the proposed approach,
actors implemented by means of SpecC are not restricted to communication via
channels with FIFO semantics. While SCE therefore supports the automatic
refinement of the model during system synthesis, (automatic) decision-making is
difficult [GHP+09]. In order to enable model-based analysis and optimizations
in principle, actors implemented by means of SpecC may be transformed into
the proposed dataflow model as described in Section 2.3.
The Oldenburg System Synthesis Subset (OSSS) [GON+08] is based on a

synthesizable subset of SystemC. While actors can be synthesized to software or
hardware, no explicit support for model-based optimizations is included. Again,
in order to enable model-based analysis and optimizations in principle, it may be
possible to transform actors implemented by means of the OSSS into the proposed
dataflow model as described in Section 2.3. In this context, [GKO+10] describes
how methods of user-defined SystemC primitive channels can be transformed
into guarded actions.
PeaCE (Ptolemy extension as a Codesign Environment) [HKL+08] provides

a design flow for multimedia applications with real-time constraints. PeaCE
classifies actors into signal processing actors and control actors. While signal
processing actors are limited to the SDF MoC, control actors are described
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by FSMs. In contrast, the proposed dataflow model unifies signal processing
actors and control actors by providing for dynamic dataflow (DDF) actors which
are described by FSMs. Besides asynchronous communication, PeaCE supports
synchronous communication between actors, which basically corresponds to
FIFO channels of size 0 (which are also known as rendezvous channels). For the
synthesis framework presented in Section 6.1, the support of rendezvous channels
could be considered as part of future work.
While more and more industrial design flows rely on HLS tools as can be seen by

the broad availability of commercial HLS tools [MVG+13; For14; Cad14; Cal14;
NEC14; Xil14], they do not support model-based optimizations. In particular,
global optimizations like resource sharing across process boundaries are typically
not supported.
HLS approaches like [ALP95; WL96; HM99; JH04] concentrate on static

dataflow MoCs. In this context, some inter-process resource sharing approaches
are reported for identical SDF actors, comparable to the binding of reservation
stations to physical actor instances described in Section 6.3.4. However, the
proposed inter-process resource sharing approach not only targets more general
DDF graphs, but additionally considers the binding of a large number of logical
actor instances to a smaller number of reservation stations.
In [JL98], it is shown how resources can be shared within a process group

such that less than one resource per operation type and process is required.
Basically, a periodic authorization function is defined for each global resource
which permits processes to access a shared resource during fixed time slots. Note
that while this approach permits static scheduling using a modified list scheduling
scheme, time slots cannot be reused if the corresponding process is not active.
The inter-process resource sharing approach presented in Section 6.3.4 uses a
dynamic scheduling scheme which is able to efficiently capture the fact that
actors may not always be active. However, this is an orthogonal approach, and
the fine-grained resource sharing scheme from [JL98] may well be used to perform
resource sharing between the functional units used in the proposed approach (cf.
Figure 6.5 on page 142).
More recently, [SWN07] introduces resource sharing in the context of pipeline

scheduling. Here, the goal is to construct pipelined schedules that are expected to
meet a particular target throughput. However, the approach only addresses SDF
graphs. The inter-process resource sharing approach presented in Section 6.3.4
targets more general DDF graphs.
In [JMP+11], the HLS of CAL actors (cf. Section 3.4) is described. Similar

to the bus-cycle-accurate model (cf. Section 6.3.2) generated by the proposed
synthesis framework where transitions can be evaluated in parallel, actions of
CAL actors are synthesized to distinct processes which provides for a parallel
evaluation of the input patterns and guard expressions. However, no inter-process
optimizations are reported.
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Heterogeneous multiprocessor System-on-Chip (MPSoC) architectures are be-
coming more and more important in embedded systems in order to satisfy the
ever-increasing computational demands of functions to be performed by these
systems. Thus, at system level, choosing the right programming model is a
challenging task. In this thesis, dataflow models of computation (MoCs) have
been considered, which are typically used to model streaming applications as
commonly found, e.g., in the multimedia or networking domain. In a dataflow
model, concurrent actors communicate and synchronize via tokens transmitted
over channels.

As a key result, the proposed dataflow model provides for a seamless model-
based design flow from the system level to the instruction/logic level for a
wide range of streaming applications. At system level, binding and scheduling
decisions are incorporated into the model by means of hierarchical actors which
have the same dataflow semantics as leaf actors. In turn, this enables the same
analysis and optimization techniques like the identification of less expressive
dataflow MoCs to be applied to leaf actors and hierarchical actors. Incorporating
scheduling decisions into the model allows a wide range of scheduling strategies
to be synthesized at the task/algorithmic level in principle. As the proposed
hierarchical dataflow model is used as input to subsequent synthesis steps at the
task/algorithmic level, complex model-based optimizations like the inter-process
resource sharing approach can still be applied at these lower levels of abstraction.

Expressiveness vs. Analyzability

In order to support a wide range of streaming applications, actors are described
by means of a finite state machine (FSM) whose transitions are based on guarded
actions and exhibit a static communication behavior. Thus, in contrast to ex-
isting dataflow models, the proposed dataflow model provides for dynamic (i.e.,
nondeterministic) actors, while the static communication behavior of transitions
still enables the identification of less expressive dataflow MoCs. In turn, this
enables the application of domain-specific analysis and optimization techniques
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which have been developed for these restricted dataflow MoCs, like the static
scheduling of SDF and CSDF actors.

Concurrency Model vs. Actor Semantics

It has been shown that the proposed dataflow model can be automatically derived
from existing (well-formed) SystemC models, and that a wide range of scheduling
strategies can be subsequently incorporated into the model at system level. The
expressiveness of the proposed dataflow model has been chosen as restricted
as possible in order to adequately achieve these objectives. In particular, the
proposed dataflow model cleanly separates the concurrency model from the
FSM semantics: Actors are executed concurrently, whereas the transitions of a
given actor are executed in a sequential manner. While more expressive dataflow
MoCs exist which provide for the non-sequential execution of transitions, the
sequential semantics of transitions provide for an efficient hardware/software
synthesis of actors. Moreover, the sequential semantics of transitions induce the
same well-defined semantics to AND modes of hierarchical FSMs, which can be
used to cope with the complexity of real-world applications as outlined for an
InfiniBand network adapter in Section 6.3.

Model-Based Optimizations

Applying model-based micro-architectural optimizations like token caching and
the parallel evaluation of guards, the throughput of a JPEG decoder synthesized
to hardware could be improved from 40 frames per second (FPS) to 100 FPS.
In the context of inter-process resource sharing, an InfiniBand network adapter
consisting of 224 logical actor instances could be successfully multiplexed onto a
single physical actor instance. As these optimizations are automatically performed
based on the proposed dataflow model, the overall modeling complexity is greatly
reduced. Moreover, these model-based optimizations considerably extend the
design space, as different configurations can be automatically synthesized and
evaluated during design space exploration in principle.

7.1 Future Work

Dynamic Model

It can be observed that the proposed dataflow model is static, i.e., model compo-
nents like actors and channels cannot be instantiated at run time. However, as
action functions are considered to be black boxes, the proposed dataflow model
provides for the dynamic instantiation of actors in principle. In the context
of hardware synthesis, the dynamic instantiation of components is difficult to
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achieve (it may be possible using partial reconfiguration features offered by
FPGAs). However, the proposed inter-process resource sharing approach could
be used to dynamically instantiate actors even in hardware, as only the physi-
cal actor instances have to be synthesized, and the logical actor instances are
multiplexed onto these physical actor instances at run time. In the context of
software synthesis, a dynamic instantiation of components could provide for a
more efficient utilization of computing resources in future many-core embedded
systems [THH+11].

Scheduling Actors Bound to Hardware

Typically, only actors bound to the same processor are scheduled, as they cannot
be executed concurrently. However, future work may evaluate the scheduling of
actors bound to hardware. In this case, however, the goal is not to reduce the
scheduling overhead, which can be considered to be nonexistent for actors bound
to hardware, as they are evaluated and executed concurrently in the absence
of any scheduling strategy. Instead, it can be expected that resource utilization
is reduced, as resources can then be shared between actors. The feasibility of
scheduling actors bound to hardware has been shown by the proposed inter-
process resource sharing approach.

Model-Based Representation of Transaction Schedules

The scheduling of transactions bound to the same communication resource
has only been casually addressed in the context of the periodic partial order
scheduling approach. While a more comprehensive model-based representation of
transaction schedules may be studied by future work, the emergence of networks
on chip (NoCs) as the prevalent communication resource in MPSoCs suggests
that transactions initiated by many applications are bound to the same NoC.
However, as these applications are typically executed independently of each other,
a model-based representation of transaction schedules seems difficult in this case.
It can therefore be assumed that the scheduling of transactions bound to the
same NoC is preferably performed by the communication resource in question,
typically in a dynamic manner, analogously, e.g., to concurrent memory accesses
which are typically dynamically scheduled by memory modules.

Non-Functional Scheduling Strategies

The hierarchical dataflow model provides for the efficient representation of a
wide range of scheduling strategies. However, only functional scheduling schemes
have been considered. The integration of non-functional scheduling schemes like
time-driven scheduling or preemptive scheduling could be studied by future work.
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Mixed Hardware/Software Synthesis

Finally, the proposed synthesis framework provides for a mixed hardware/software
synthesis in principle. However, as this thesis focuses on model-based optimiza-
tions, the hardware synthesis and software synthesis of the proposed dataflow
model have only been evaluated in isolation. The evaluation of a mixed hard-
ware/software synthesis could be conducted by future work.
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“An Overview of Today’s High-Level Synthesis Tools”, Design Au-
tomation for Embedded Systems, 2013.

[NEC14] NEC, CyberWorkBench, http://www.nec.com/global/
prod/cwb/, 2014.

[NHUT07] B. Niemann, C. Haubelt, M. Uribe, and J. Teich, “Formalizing
TLM with Communicating State Machines”, in Advances in Design
and Specification Languages for Embedded Systems, S. A. Huss, Ed.,
Springer, 2007, pp. 225–242.

[NS99] M. Nakamura and M. Silva, “Cycle Time Computation in Deter-
ministically Timed Weighted Marked Graphs”, in Proceedings of the
International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 2, 1999, pp. 1037–1046.

[NSD08] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and au-
tomated multiprocessor system design, programming, and imple-
mentation”, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 27, no. 3, pp. 542–555, Mar.
2008.

178

http://www.mono-project.com
http://www.nec.com/global/prod/cwb/
http://www.nec.com/global/prod/cwb/


Bibliography

[OGM+11] L. Ost, G. Guindani, F. Moraes, L. Indrusiak, and S. Määttä,
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ACFSM Abstract Codesign Finite State Machine

AST Abstract syntax tree

BDF Boolean dataflow

BRAM Block RAM

BSV Bluespec SystemVerilog

BTH Base transport header

CFDF Core functional dataflow

CFG Control flow graph

CFSM Codesign Finite State Machine

CIL Common Intermediate Language

CQ Completion queue

CQE Completion queue element

CSDF Cyclo-static dataflow

DCT Discrete cosine transform

DDF Dynamic dataflow

DDN Disciplined dataflow network

DE Discrete-event

DFG Dataflow graph

DFS Depth-first search

DMA Direct memory access

DSG Dataflow schedule graph

DSM Decision state modeling

ECFSM Extended Codesign Finite State Machine

EIDF Enable-invoke dataflow
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FIFO First in, first out

FPGA Field-Programmable Gate Array

FPS Frames per second

FSM Finite state machine

FU Functional unit

GST Generalized schedule tree

HDF Heterochronous dataflow

HLM High-level model

HLS High-level synthesis

HSDF Homogeneous synchronous dataflow

IB InfiniBand

IP Intellectual property

ISA Instruction set architecture

JPEG Joint Photographic Experts Group

KPN Kahn process network

LCA Lowest common ancestor

LRU Least recently used

LUT Lookup table

MCU Minimum coded unit

MG Marked graph

MoC Model of computation

MPSoC Multiprocessor System-on-Chip

MTU Maximum transmission unit

NoC Network on chip

OSI Open Systems Interconnection

PCIe PCI Express

PSDF Parameterized synchronous dataflow

PSOS Periodic static order schedule

P/T Place/transition
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QoR Quality of Results

QSS Quasi-static schedule

RAM Random-access memory

RAW Read-after-write

RQ Receive queue

RS Reservation station

RSN Reservation station number

RTE Runtime environment

RTL Register-transfer level

SADF Scenario-aware dataflow

SANLP Static affine nested loop program

SAS Single-appearance schedule

SDF Synchronous dataflow

SQ Send queue

SR Synchronous/reactive

TLM Transaction level modeling

UML Unified Modeling Language

WAR Write-after-read

WAW Write-after-write

WMG Weighted marked graph

WQE Work queue element
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Theses

Model-Based Design Flow

• Embedded systems can be found in a wide range of applications like
transportation systems, consumer electronics, medical equipment, industrial
applications, or computer networking devices.

• Embedded systems have to meet a wide range of constraints like perfor-
mance, power, area, reliability, safety, or security constraints. Besides these
constraints, the time to market becomes more and more important.

• A design methodology is required which supports the automatic decision-
making and refinement process at system level. Here, model-based design
flows could be a solution.

• This thesis proposes a seamless model-based design flow from the system
level to the instruction/logic level. To this end, it focuses on dataflow models,
which can be used to implement a wide range of streaming applications.
In a dataflow model, concurrent modules communicate and synchronize
via packets transmitted over channels.

Model

• Modules (actors) are described by means of finite state machines (FSMs)
whose transitions are based on guarded actions and exhibit a static commu-
nication behavior. These semantics provide for dynamic dataflow (DDF)
actors, but still enable the identification of less expressive dataflow models.

• The sequential semantics of transitions provide for an efficient hardware/
software synthesis of actors, and impose the same well-defined sequen-
tial semantics to hierarchical FSMs, which can be used to cope with the
complexity of real-world applications.

• Transitions are based guarded actions. While it is shown that guard func-
tions are not strictly required, they may greatly reduce the modeling
complexity in certain cases.
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Theses

Analysis

• The proposed dataflow model is expressive enough to model DDF applica-
tions. Thus, less expressive dataflow models must be identified in order to
use domain-specific design methods developed for these models.

• For static dataflow models (HSDF, SDF, and CSDF), the proposed identi-
fication methodology has been successfully applied to a JPEG decoder in
order to reduce the scheduling overhead imposed by the IDCT2D actor.

• For the BDF model, the proposed identification methodology has been
extended to accommodate a data-dependent communication behavior.

System Synthesis

• Hierarchical actors are used to incorporate binding and scheduling decisions
into the dataflow model. It is shown that a wide range of scheduling
strategies can be represented by the proposed hierarchical model.

• In contrast to existing hierarchical dataflow models, hierarchical actors
have the same dataflow semantics as non-hierarchical actors. In turn, the
same analysis and optimization techniques can be applied to hierarchical
and non-hierarchical actors.

• Child actors in the hierarchical model may be bound to different resources
than their parent actor. Thus, appropriate binding-aware operational se-
mantics are proposed and evaluated for the hierarchical model.

HW/SW Synthesis

• The hierarchical dataflow model at system level constitutes the input model
to subsequent synthesis steps at the next lower levels of abstraction. In turn,
this enables model-based optimizations at these lower levels of abstraction.

• A synthesis framework is introduced that permits, amongst others, the
hardware/software synthesis of the proposed hierarchical dataflow model.
To show the applicability of the framework, a JPEG decoder is synthesized
to hardware and software.

• Applying model-based optimizations like token caching and the parallel
evaluation of guards, the throughput of the JPEG decoder synthesized to
hardware could be improved from 40 frames per second (FPS) to 100 FPS.

• In the context of inter-process resource sharing, a complex InfiniBand
network adapter consisting of 224 logical actor instances could be successfully
multiplexed onto a single physical actor instance.
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oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Die
vorliegende Arbeit wurde bisher weder im Ausland noch im Inland in gleicher
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