
 

Worst-case temporal analysis of real-time dynamic streaming
applications
Citation for published version (APA):
Siyoum, F. M. (2014). Worst-case temporal analysis of real-time dynamic streaming applications. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR780952

DOI:
10.6100/IR780952

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR780952
https://doi.org/10.6100/IR780952
https://research.tue.nl/en/publications/3d7748a7-196b-475e-89af-354a5ba029a7


i
i

“thesis” — 2014/10/3 — 2:55 — page 1 — #1 i
i

i
i

i
i

Worst-case Temporal Analysis of Real-time
Dynamic Streaming Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op woensdag 19 november 2014 om 16.00 uur

door

Firew Merete Siyoum

geboren te Addis Ababa, Ethiopië
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Abstract

Contemporary embedded wireless and multimedia applications are typically im-

plemented on a Multiprocessor System-on-Chip (MPSoC) for power and per-

formance reasons. The MPSoC commonly comprises heterogeneous resources

that are shared between multiple applications under different scheduling policies.

These applications have strict real-time constraints such as worst-case throughput

and maximum end-to-end latency. It is crucial to guarantee that such constraints

are satisfied at all operating conditions. Simulation and measurement-based anal-

ysis techniques cannot guarantee worst-case temporal bounds, since it is imprac-

tical to cover all possible system behaviors. Thus, analytical techniques are often

used to compute conservative temporal bounds. In particular, dataflow models

of computation (MoCs) have been widely used to model and analyse streaming

applications.

A challenge to dataflow-based design-time analysis of present-day streaming

applications is their dynamic execution behavior. These applications change their

graph structure, data rates and computation loads, depending on their operat-

ing modes. A conservative static dataflow model, such as Synchronous Dataflow

(SDF), abstracts from such varying operating modes for the sake of analysabil-

ity. However, the abstraction leads to overly pessimistic temporal bounds. This

further leads to unnecessarily large resource allocations to guarantee real-time la-

tency and throughput requirements. Thus, a refined temporal analysis that con-

siders the different operating modes is crucial to compute tight real-time temporal

bounds and, consequently, avoid unnecessary overallocation of scarce MPSoC re-

sources. Moreover, the temporal analysis should be fast enough to efficiently

explore the application mapping design-space through an iterative process. To

that end, this thesis presents a number of contributions that form a framework to

analytically determine real-time temporal bounds of streaming applications that

are mapped onto a heterogeneous MPSoC platform.

i
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The analysis framework uses the Scenario-aware Dataflow (SADF) MoC, which

explicitly models each static operating mode, called scenario, of a dynamic ap-

plication with a SDF graph. Furthermore, it captures all possible sequences of

scenario executions by the language of a finite-state machine (FSM).

The thesis begins with an in-depth study of intra-application dynamism in

modern-day streaming applications. The investigation conducts case studies on

different applications, such as LTE, which is a recent cellular connectivity stan-

dard, and MPEG4 video decoder. The case studies demonstrate the benefits of

capturing intra-application dynamism through SADF for tighter temporal anal-

ysis. The case studies also reveal that identification of all scenarios and scenario

sequences can be challenging because of the large number of possible scenarios.

This thesis addresses this challenge with an automated approach that extracts a

scenario-based analysis model for a class of parallel implementations, called Dis-

ciplined Dataflow Network (DDN). The extraction process identifies all possible

scenarios of a DDN and employs state-space enumeration to determine all possi-

ble sequences of executions of these scenarios. The result is an FSM-based SADF

analysis model. The approach is demonstrated for the CAL actor language and

has been implemented in an openly available CAL compiler.

Once a SADF model is constructed, it is mapped onto a heterogeneous MPSoC

platform and resources are allocated, while satisfying real-time constraints such

as throughput and end-to-end latency. The thesis makes the following major

contributions in this respect. First, it generalizes the existing throughput analysis

technique of SADF to support self-timed unbounded scenarios as well as arbitrary

inter-scenario synchronizations through data-dependency actors and initial token

labeling. The generalization lifts existing restrictive assumptions such as self-timed

boundedness and synchronizations limited to initial tokens on identical channels

of scenarios. A byproduct of the generalized throughput analysis technique is an

approach to verify boundedness of FSM-based SADF models.

Another contribution is a faster and tighter approach to analyse application

mappings. The new approach, called Symbolic Analysis of Application Mappings,

avoids constructing resource-aware dataflow models, which are often used in ex-

isting approaches. The new technique combines symbolic simulation in Max-plus

algebra with worst-case resource curves. As a result, it keeps the graph size intact

and improves scalability, which makes it tens of times faster than the state-of-

the-art. Moreover, it gives tighter temporal bounds by improving the worst-case

response times of requests that arrive in the same busy time of a resource.

The final major contribution is an approach to derive the maximum end-to-

end latency of applications mapped onto a shared platform. The approach derives

a bound to the maximum end-to-end latency under a periodic source and sketches

how to address aperiodic sources, such as sporadic and bursty input streams.
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The contributions form an analysis framework that takes a high-level DDN

specification of a dataflow application as an input and then 1) automatically

constructs an FSM-based SADF dataflow model, 2) verifies basic properties such

as deadlock-freedom and boundedness, and 3) derives real-time temporal bounds

such as worst-case throughput and end-to-end latency, while considering resource

sharing in a heterogeneous MPSoC platform. This thesis illustrates this flow with

case-study applications. The contributions advance the state-of-the-art in terms

of accuracy, scalability, model expressiveness as well as ease of use.
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CHAPTER 1

Introduction

Advancements in computer technologies are continuously changing the life-styles

of our modern society. Computers are now tightly linked to most of our daily

lives. We use general-purpose desktop and laptop computers on a daily basis at

home and at work for communication, entertainment, Internet browsing and of-

fice productivity. The majority of computers are, however, embedded systems that

are integrated into many devices to carry out dedicated functionalities. Embed-

ded systems are now core entities in consumer electronics, automotive, avionics,

home appliances, medical appliances and so many others. Parallel to their vast

applicability, the complexity of embedded systems also varies widely from a light-

weight microcontroller in a sensor node to heavy-weight multiprocessor systems

running full-fledged operating systems, like Android and Windows. Nonethe-

less, the pervasive presence of embedded systems is felt nowhere stronger than

connectivity and multimedia domains. Connectivity is all around us more than

ever, with an expected 4.5 billion mobile phone users and 1.7 billion smart-phone

users world-wide in 2014 [24]. Multimedia-rich communication, information and

entertainment are at our fingertips through high-tech consumer electronics such

as smart-phones, high-definition television sets, gaming consoles, digital cameras,

MP3 players and CD/DVD/Blue-ray players. Embedded multimedia and wireless

systems lie at the heart of these devices. These types of embedded applications

are often referred to as embedded streaming applications, as they are characterized

by a continuous processing of data streams such as packets and frames.

1
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2 Section 1.1: Embedded Streaming Applications

The central focus of this thesis is the design of embedded streaming systems.

This chapter introduces major design challenges and outlines the key contribu-

tions made by this thesis to address them. The chapter is organized in five

sections. Section 1.1 discusses current trends and main design challenges of em-

bedded streaming applications. Section 1.2 outlines the approach taken by this

thesis to tackle these design challenges. Section 1.3 lists the key contributions of

the thesis. Section 1.4 presents the organization of the rest of the thesis.

1.1 Embedded Streaming Applications

In the early days, mobile phones were designed only for voice communication.

Today, high-feature cellular phones integrate much more functionalities such as

media playing, gaming, browsing, navigation, messaging, digital imaging and oth-

ers. Many of these functionalities have multimedia content and require wireless

connectivity. As a result, high-feature phones support a wide-range of multimedia

codec and wireless communication standards. Figure 1.1 shows an example of a

board-level view of a high-feature cellular phone. The figure shows that such sys-

tems include multimedia processors for video and audio capturing, recording and

playback. They also have a number of baseband processing blocks for wireless

connectivity, such as WiFi, Bluetooth and 3G/4G cellular modems. Multimedia

processing involves the coding and decoding of digital audio and video streams.

Popular examples are the different MPEG-x standards from the Moving Picture

Experts Group (MPEG) and H.26x standards from the Video Coding Experts

Group (VCEG). Wireless communication standards are also required for different

purposes such as 3G/4G cellular connectivity (e.g. WCDMA, HSDPA, LTE),

wireless connectivity (e.g. IEEE 802.11a/b/g/n), digital video and audio broad-

casting (e.g. DVB, DAB) and GPS navigation. The above mentioned embedded

multimedia and wireless applications are also available in many other consumer

electronics such as DVD, Blue-ray and MP3 players, video cameras, set-top boxes,

television sets, automotive entertainment units and navigation systems.

A characterizing feature of embedded multimedia and wireless applications

is that they process a continuous stream of input data and produce a stream

of output data. As a result, they are often referred to as embedded streaming

applications. A data stream can be a stream of packets/frames in wireless appli-

cations, or a sequence of image frames or a compressed bitstream in video codecs.

Data processing often involves multiple pipelined signal processing stages, where

the output of one stage is fed to the next. Hence, data processing is primarily

data-driven, i.e. the different stages are activated by the arrival of data.
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Figure 1.1: An example of a board-level view of a high-feature cellular phone

(based on [61]). At the center of the system lies a multi-core application proces-

sor that includes a general-purpose multiprocessor, a graphics processor, hard-

ware accelerators and peripherals. The system also includes a number of base-

band processors for wireless connectivity. Baseband processor architectures (cf.

Section 1.1.3) also combine homogeneous and heterogeneous multiprocessing, as

shown by the figure at the bottom.
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1.1.1 Trends in Streaming Applications

The current trend of embedded streaming systems shows that multiple applica-

tions are being integrated into the same device. These applications are started and

stopped at run-time. Adaptivity to different quality requirements and resource

availability (e.g. bandwidth and power) is also highly demanded. These trends

are better seen in two emerging technologies from embedded wireless and mul-

timedia domains: software-defined radio (SDR) and reconfigurable video coding

(RVC), as discussed in the following two sections.

Software-defined Radio

Convergence of application domains and differences in technical merits of stan-

dards are demanding contemporary radio receivers to support various radio stan-

dards and run multiple applications simultaneously. For instance, smart phones

need to support various cellular communication standards (such as GSM, WCDMA

and LTE), broadcast radio and television standards (such as DAB and DVB) and

wireless connectivity standards (such as WLAN 802.11x and Bluetooth). Tradi-

tionally, the physical layer functionality of radios is implemented with hardware

blocks. The main advantage of such hardware-based radio designs is performance

and low power consumption. However, they have very low flexibility to catch up

with the continuously evolving and growing technological advancements at low

cost. A dedicated hardware baseband block per standard also impose high design

and production cost.

As opposed to fully hardware-based solutions, Software Defined Radio (SDR)

is a radio where some or all of the physical layer functionalities are implemented

as software processes that run on a Multiprocessor System-on-Chip (MPSoC)

architecture platform. Software Defined Radio (SDR) brings flexibility and, ulti-

mately, cost efficiency in the design of these multi-functional wireless communi-

cation devices. SDR allows manufacturers to introduce new multi-band and/or

multi-functional wireless products into the market at low design cost. It also

reduces maintenance and support cost as software upgrades, new features and

bug-fixes can be easily provided to existing radio systems.

An important aspect of SDR design for baseband processing is the ability to

support multiple simultaneously running applications. These applications may

also be started or stopped at any time. This results in different use-cases, which

may result in a dynamically changing workload [12, 59]. Furthermore, intra-

application dynamism, from within a single radio, also cause significant work-

load variations. Such dynamism may come from a radio’s adaptation to resource

availability. For instance, 3GPP’s Long Term Evolution (LTE), which is a pre-4G

cellular standard, uses adaptive modulation and coding (AMC) to dynamically
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adjust modulation schemes and transport block sizes to adapt to varying chan-

nel conditions. Intra-application dynamism may also come from the different

modes of operation of data processing. For instance, according to the discussion

in [59], WLAN packet decoding consists of four different modes, namely Synchro-

nization, Header decoding, Payload decoding and Cyclic-redundancy check. Once

a packet is detected, Synchronization mode is executed repeatedly until it suc-

ceeds. Then, Header decoding decodes the packet header to determine the size of

the payload that may vary from 1 to 256 OFDM symbols. After header decoding,

payload decoding is executed as many times as the number of OFDM symbols.

Finally, cyclic redundancy check is performed and an acknowledgment packet is

sent. These modes may activate different sets of tasks that may lead to variations

in the computational workload.

Reconfigurable Video Coding

The different MPEG video coding standards have enjoyed huge acceptance since

their inception in 1988. Over the years, the standards are becoming richer in

syntax and tools, targeting higher quality and compression ratio. This is in turn

making the standards increasingly complex and time-taking to produce. In the

past, standards were specified through a monolithic textual specification and a

sequential C/C++ reference implementation [14]. This kind of monolithic speci-

fication hinders reusability by making use of the significant overlap between suc-

cessive standards. This means, adding new coding tools to a standard requires

a new specification for which all components are modified, even though only a

few tools and interfaces are changed. Another drawback of a monolithic specifi-

cation is that it does not consider the effort needed for a parallel implementation

on multi-core hardware platforms. As a result, video devices typically support a

single profile or a few selected profiles of a specific standard. Consequently, they

have limited adaptivity to different application needs, quality requirements and

resource availability.

These observations led to the development of the Reconfigurable Video Coding

(RVC) standard [58]. RVC aims at providing a model of specifying MPEG stan-

dards at higher-level than the one provided by monolithic C based specifications.

At the core of the RVC standard are the CAL dataflow language [23] and a library

of video coding tools. MPEG standards are then specified by constructing a net-

work of standard components taken from the library. The resulting specification

is compact, modular and exposes the intrinsic concurrency of the video coding

application. The modularity facilitates the design of reconfigurable video codecs

by replacing and reconnecting components at run-time in a plug and play manner.

RVC further provides new tools and methodologies for describing bitstream syn-
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taxes of dynamically configurable codecs. Exposing intrinsic concurrency through

a dataflow language paves the way to an efficient parallel implementation on a

multi-core hardware platform. The parallel specification is a better starting point

than sequential C/C++ reference software, as it opens the opportunity for rapid

parallel implementations through automatic code generation tools such as CAL2C

and CAL2HDL.

In summary, current trends in streaming applications show that there is a

demand to support multiple standards or functionalities on the same device. Ap-

plications are started and stopped at run-time. Reconfigurability and adaptivity

are also required to satisfy different application quality requirements and adapt

to resource availability and environmental conditions.

1.1.2 Real-time Properties

Functionally correct processing (coding and decoding) of input data streams is

not sufficient for a correct implementation of an embedded streaming application.

It is also crucial when the processing is completed. This is because these applica-

tions have timing requirements that determine their proper functionality. A video

decoder has to diligently feed the display a preset number of frames per second to

meet the desired quality requirement. In wireless applications, the rate at which

packets must be processed is dictated by standards. Furthermore, wireless stan-

dards have strict maximum timing requirements to acknowledge (respond to) a

properly received packet. Due to such strict requirements of timely operations,

embedded streaming applications are categorized as real-time applications.

Two key real-time temporal requirements of embedded streaming applications

are throughput and latency. Throughput defines the rate at which data is pro-

cessed, such as the number of video frames or wireless packets per time-unit.

These are mostly dictated by standards. For instance, LTE has a frame struc-

ture, which has 10 sub-frames and is 10msec long. This gives an LTE receiver

a throughput requirement to handle processing of at least one sub-frame every

millisecond. Modern video cameras are also required to support standard video

frame rates such as 24, 25 or 30 frames per second. Latency defines the maximum

end-to-end duration between the arrival of an input data and the completion of its

processing. In WLAN 802.11a, for instance, an acknowledgment packet must be

sent within 16µsec of a successful packet reception. This time guard of 16µsec,

known as the Short Intra-Frame Spacing, is a latency constraint that must be

satisfied. Latency is a requirement that must be met by every individual sam-

ple. Throughput, on the other hand, typically deals with the long-run average

rate, irrespective of arrival or production jitter, which can be smoothed through

buffering and selecting an appropriate sampling rate.
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The real-time embedded community categorizes real-time applications as soft

or hard, depending on the severity of the consequence of failure to met timing con-

straints. Hard real-time applications are often defined as critical systems, where

timing deadlines must be met at all times, such as vehicle airbag system, artificial

cardiac pacemaker or industrial process control. In soft real-time applications,

a limited set of deadline misses are tolerated, at a price of degraded quality of

service, such as artifacts in a decoded video and clicks in audio playbacks. A third

categorization, called firm real-time, is also sometimes used, in which infrequent

deadline misses are tolerated but a result becomes useless after its deadline. In

spite of such classifications, we believe that the class of a real-time application is

a designer’s choice when it comes to a specific implementation. For instance, in

audio codecs, intermittent clicks due to sample dropping can be totally unaccept-

able in today’s competitive market. SDR devices cannot be certified unless they

meet all timing requirements and be compliant with their respective standards.

1.1.3 Heterogeneous Multi-core Architectures

The computational workload of embedded streaming applications is ever increas-

ing, along with their rising quality of service, such as higher resolutions and data

rates. For instance, LTE specifies a downlink rate of at least 300 Mbit/s and an

uplink of at least 75 Mbit/s. It is a pre-4G standard, a step towards its succes-

sor, LTE-Advanced (LTE-A) whose specifications are expected to require a peak

data rate of 1 Gbit/s and higher quality of service [18]. Moreover, hand-held

embedded devices are battery-operated and, as a result, are power-constrained.

Consequently, multi-core hardware architectures have become the ultimate de-

signers’ option to support the high-performance and low-power requirements of

these systems. Other key drivers for multi-core architectures are the much needed

flexibility and reconfigurability, in areas like SDR and RVC.

Multi-core architectures for embedded streaming applications combine homo-

geneous and heterogeneous multiprocessing. They employ devices including gen-

eral purpose processors (GPP), digital signal processors (DSP) and application-

specific programmable accelerators. An example architecture for SDR is shown

by the bottom figure of Figure 1.1, which is intended to run different wireless

standards. An overview of existing architectures and demonstrators for SDR can

be obtained in [41], which also shows the above discussed trends.

The heterogeneity enables to achieve lower-power and high-performance ar-

chitectures using specialized cores, while offering flexibility in a balanced manner.

General-purpose cores (e.g. ARM) are used for handling protocols and control

tasks. A set of DSP cores (e.g. EVP [11]) are used for signal and data processing

algorithms, such as synchronization, channel estimation and demodulation, where
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flexibility is valuable. A set of weakly-programmable hardware accelerators are

used when flexibility is of limited value [10]. For instance, a Multi-Standard

Multi-Channel decoder is a weakly-programmable core that consists multiple re-

configurable Hardware Units (HUs). The core allows limited programmability as

HUs can be reconfigured at run-time to handle different radio standards [93].

The move to heterogeneous multi-core architectures addresses the power and

performance issues by creating multiple specialized processing cores that execute

at lower clock frequencies. Nevertheless, the desired high-performance and low-

power design can not be realized without effectively exploiting the parallelism

offered by such platforms. This means the design challenge heavily shifts to the

software domain as well as to the high-level system dimensioning and scheduling

phases, as further discussed next in Section 1.1.4.

1.1.4 Design Challenges

As highlighted in Section 1.1.1 and 1.1.3, contemporary embedded streaming sys-

tems are required to support multiple applications. The computational workload

of applications is also increasing due to higher quality of service requirements.

As a result, these systems are becoming increasingly complex to design. Time-

to-market is also shortening due to strong competitions, as market opportunities

will be missed if a product is delayed. The industry’s response to cope with these

challenges is the platform-based design. Platform-based design tackles the design

complexity by reusing pre-designed Intellectual Property (IP) components to de-

velop a platform that is suitable for a certain application domain. This shortens

the time-to-market and leads to highly advanced system designs, as it allows ven-

dors to focus on their core competence, while integrating refined and matured IPs

from other vendors into their products. It also helps to reduce non-recurring en-

gineering costs, since the development of new IPs requires significant investment

due to high costs of designers, tools, infrastructures and mask making.

Platform-based design of embedded systems commonly follows the Y-chart

approach, as shown in Figure 1.2. The design begins with a given set of appli-

cations and a multi-core architecture platform template. The design goal is to

instantiate a platform and dimension resources such that design and performance

requirements of all applications are met. This requires mapping applications

onto a platform instance. The mapping involves scheduling tasks and allocat-

ing computation, communication and storage resources. The mapping is followed

by analysing and evaluating the mapping decisions to verify if requirements are

met [64]. This is in general an intensive design-space exploration (DSE) process.

It requires repeated revisions of application specifications and platform instanti-

ations, until requirements are satisfactorily met with minimized cost.
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Figure 1.2: The Y-chart approach

The platform-based design of contemporary embedded streaming applications

incurs a number of challenges. The first one is challenge to predictable design.

These applications have real-time temporal requirements, such as latency and

throughput, as discussed in Section 1.1.2. These temporal requirements come

from standard specifications. To comply with standards, the design of such sys-

tems must guarantee that temporal requirements are met, even at worst-case con-

ditions. Ensuring predictability is challenged by the complexity and dynamism of

applications that lead to data-dependent resource requirements (cf. Section 1.1.1).

In LTE, for instance, physical layer resource allocations of data and control chan-

nels dynamically change across frames, depending on varying channel conditions

(cf. Chapter 4). Designs that do not consider dynamism may have to rely on

static worst-case assumptions that give pessimistic results. In such cases, MPSoC

resources, such as processors and memories, have to be over-allocated to ensure

predictability. Over-allocation of resources brings us to the second design chal-

lenge: challenge to resource-constrained design. MPSoC resources are scarce and

must be efficiently utilized to accommodate the increasingly high workload of

latest streaming applications. E.g., the digital workload of high-feature cellular

phones tops 100GOPS that must be accommodated under a power budget of

1Watt [10]. This requires aggressive resource allocation and mapping strategies.

Consequently, the design of modern-day embedded streaming applications re-

quires a systematic approach that (1) abstracts the system complexity, (2) allows

temporal analyzability to guarantee strict real-time requirements, and (3) is able

to capture the dynamism of applications to avoid over-allocation of resources.
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Figure 1.3: A heterogeneous MPSoC shared by multiple applications. The figure

shows two application models mapped onto the same MPSoC platform.

1.2 Our approach

This thesis makes contributions towards addressing the design challenges of em-

bedded streaming systems through a predictable system design methodology. A

predictable system is defined as a system whose timing behavior can be reason-

ably bounded [7, 9, 56, 85]. A predictable system design aims at guaranteeing

at design-time that an application will meet its timing constraints. It also tar-

gets verifying basic properties such as deadlock-freedom and memory bounded-

ness. A predictable system design requires architectures, application specifica-

tions, schedulers and techniques, which allow analysing timing behavior. Follow-

ing the platform-based design paradigm, we assume a given set of applications

are intended to be mapped on a heterogeneous MPSoC platform, illustrated in

Figure 1.3. The platform comprises a set of processor tiles, which may have lo-

cal instruction and data memories (DMEM and IMEM), but have no caches as

they impede reasonable timing bounds. Processor tiles are connected through a

predictable interconnect [38] that offers each connection a guaranteed bandwidth

and maximum latency. Processor tiles may include general-purpose cores (GPP),

vector processors (VP) and dedicated accelerators (e.g. filters).
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The predictable system design instantiates a platform and allocates resources

to applications such that all real-time requirements are guaranteed to be satisfied.

Figure 1.4 shows the design framework proposed in this thesis. The framework

aims at a predictable design of embedded systems, which comprise multiple dy-

namic streaming applications that are mapped onto a shared MPSoC. The starting

point is a parallel specification of an application. The specification is a network

of dynamic tasks, which may change their input and output data rates between

executions. The goal is then to verify basic properties, such as deadlock-freedom

and boundedness, and real-time constraints, such as throughput and end-to-end

latency. The presented analysis framework achieves this through a model-driven

design strategy that allows formal temporal analysis and automation. These three

aspects are further discussed next in Section 1.2.1, 1.2.2 and 1.2.3, respectively.

1.2.1 Model-driven Design

Streaming applications process a continuous stream of input data. It is essential

to guarantee that these applications can execute ad infinitum without a deadlock.

Moreover, they need to operate also in a bounded buffer space, a property known

as boundedness. Thus, it is crucial to guarantee basic properties such as deadlock-

freedom and boundedness. This is challenging, since modern embedded streaming

applications consist of complex parallel programs with significant dynamism. An

effective strategy is to abstract from implementation details through high-level

analysis models [47]. Such models selectively capture important aspects that

are required for design-time verification of basic properties. Dataflow models of

Computation (MoCs) have been shown to be effective in this regard to model

streaming applications at a higher level of abstraction [96, 101, 105]. A dataflow

MoC consists of a set of actors, which encapsulate computational units. Actors

communicate by sending data tokens through their ports in a message-passing

manner through First-In-First-Out (FIFO) buffer channels. Such a representation

is in-line with the data-driven execution of these applications. Dataflow MoCs are

effective means in verifying basic properties, as they abstract from unnecessary

implementation details, while exposing concurrency and synchronization aspects.

This may enable efficient parallel implementations on MPSoC platforms.

Today, there exists various types of dataflow MoCs which vary with their level

of expressiveness and analyzablity [85]. Synchronous Dataflow (SDF) [53], for

example, has gained broad acceptance in design tools due to its analyzablity. Fig-

ure 1.3 shows two SDF graphs that are mapped on a MPSoC. The black-dots in

the figure are initial tokens of channels. The numbers on the edges indicate data

rates of ports. A SDF actor fires, i.e. starts execution, by consuming from each

of its input ports as many tokens as the port rate. At the end of the execution,
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which takes a given (worst-case) amount of time, it produces at each of its output

ports as many tokens as the port rate. The throughput of a self-timed bounded

SDF graph is analyzed by state-space exploration [35] or (max,+) spectral anal-

ysis [28]. A SDF graph is self-timed bounded if the number of tokens in every

channel is bounded in a self-timed execution. Self-timed execution is of special

interest as it gives the maximum achievable throughput of a SDF graph [34].

Necessary and sufficient conditions for deadlock-free execution of SDF as well as

schedulability with bounded buffer space are studied in [34, 52, 53]. SDF actors

consume and produce fixed number of tokens per execution. As a result, SDF

is too static1 to capture the dynamic behavior of modern-day multimedia and

wireless applications. A static SDF model of a dynamic application has to cap-

ture the worst-case behavior across all modes. However, such abstraction may

lead to overly pessimistic temporal bounds. This further leads to unnecessarily

large budget reservation of resources such as processors and communication in-

terconnects to guarantee real-time latency and throughput requirements. Thus,

a refined temporal analysis that considers the different operating modes of an

application is crucial to compute tight temporal bounds and, consequently, avoid

unnecessary over-allocation of scarce MPSoC resources.

Different dataflow models are proposed that enhance the expressiveness of

SDF [37, 48, 59, 66, 89, 95, 97, 104]. The majority of them, however, are either

not sufficiently analysable or do not have known design-time temporal analysis

techniques at all (cf. Section 3.4 for more). Our analysis framework uses the FSM-

based Scenario-aware dataflow (FSM-SADF) MoC to model dynamic streaming

applications. FSM-SADF is introduced in [28] to improve the expressiveness of

SDF, while allowing for design-time analysability. FSM-SADF splits the dynamic

data processing behavior of an application into a group of static modes of opera-

tion. Each static mode of operation, referred to as scenario, is modeled by a SDF

graph. An FSM-SADF may dynamically change scenarios. The possible orders

of executions of these scenarios are specified by a finite state machine (FSM).

FSM-SADF is expressive enough to capture dynamism in streaming applica-

tions. It allows scenarios to have different graph structures as well as varying port

rates and actor execution times. It also enables a more accurate design-time anal-

ysis of dynamic streaming applications, capitalizing on the analysis techniques of

static SDF. It exploits the sequence of scenario executions encoded by the FSM to

avoid unnecessarily pessimistic analyses. For instance, if scenario sequences are

not considered, consistency and boundedness of the application can only be guar-

anteed if every scenario of the application is also consistent and bounded. This

condition is unnecessarily constraining. With scenario sequences, it is sufficient

1Chapter 3 discusses this challenge in further detail with case-study applications.
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to show that all scenario sequences within cycles of the FSM are bounded and

consistent, even if the individual scenarios are not [31,79].

1.2.2 Automation

Properties guaranteed on a dataflow model are only useful as long as the im-

plementation remains consistent with the model of the system. Otherwise, the

derived guarantees apply only to the model and serve no purpose! Constructing

an FSM-SADF analysis model and maintaining its consistency throughout the

design cycle is not a trivial process. First, the analysis model abstracts from

implementation details such as how scenario switching is decided. This means

some important implementation aspects, such as scenario detection, have to be

addressed, to define the types of parallel implementations for which such a model

can be constructed. Second, the validity of abstraction of the analysis model must

be verifiable. Third, modern-day streaming applications have a large number of

possible scenarios, which makes manual model construction unattractive. It is

time-consuming, error-prone and requires constant revisions to maintain consis-

tency with changes of the application.

This thesis addresses this challenge with an automated approach that extracts

a scenario-based analysis model. The input to the extraction process is a parallel

implementation of the application, written in a concurrent language, illustrated

at (1) in Figure 1.4. The extraction technique is largely language-independent,

since it employs Dataflow Process Networks (DPN) [54] to characterize a parallel

implementation of an application. DPN has been introduced to give a common

denotational semantics to concurrent languages. A DPN is a network of actors

that communicate by message-passing through FIFO buffers. Each actor has a

set of different firings. Each firing consumes and produces a fixed number of

data tokens. Executions of the firings are controlled by firing rules that specify

the conditions for the execution of these firings. These conditions may be data-

dependent and state-dependent, i.e. they may depend on values of input tokens

and actor state. Thus, a DPN actor may have data-dependent token production

and consumption rates.

DPNs are expressively Turing-complete, and hence, it is not always possible

to construct a scenario-based analysis model for arbitrary DPNs. We introduce

a class of parallel implementations, which we call Disciplined Dataflow Network

(DDN) (illustrated at (2) in Figure 1.4), for which construction of a scenario-based

model is guaranteed to be possible. Moreover, a construction process is defined

and automated. The goal of DDN is to define construction rules that enforce a

well-defined structure on the control flow that determines scenarios of a parallel

implementation. To that end, DDN differentiates between detector and kernel ac-
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tors [89]. Detectors are the initiators of variations in dynamic network behaviors,

while kernels are the followers. To keep models analysable, DDN restricts data

and state dependencies of actors. For instance, it restricts the state-dependency

of kernels to a finite set of states and their data-dependencies to control tokens

from detectors. Compliance of an input program with such construction rules can

be automatically checked.

The automated extraction framework identifies all possible scenarios of a DDN

and extracts their SDF graphs. It then derives all possible sequences of executions

of these scenarios through state-space enumeration and constructs a finite-state

machine to characterize the scenario sequences. The extracted scenario-based

model enables analysing the input parallel program for deadlock-freedom, bound-

edness and real-time temporal properties. The programming and extraction tech-

niques are demonstrated for the CAL actor language [23]. CAL is employed by

the ISO/IEC standardization for the Reconfigurable Video Coding (RVC) MPEG

standard. The extraction framework is implemented in an openly available CAL

compiler [2] and interfaced with the SDF3 [86] dataflow analysis toolset. Case

studies are presented for multimedia and wireless radio dataflow networks to show

the applicability of the model extractor.

1.2.3 Formal Temporal Analysis

MPSoC platforms for embedded streaming applications commonly comprise het-

erogeneous resources that are shared between multiple applications under different

scheduling policies. These applications have strict real-time constraints such as

throughput and end-to-end latency. It is crucial to guarantee that such constraints

are satisfied at all operating conditions. Due to this reason, predictable system

designs rely on worst-case temporal bounds; i.e. lower-bound to the worst-case

throughput and upper-bound to the maximum end-to-end latency. Simulation

and measurement based analysis techniques cannot guarantee worst-case tempo-

ral bounds, since it is challenging to cover all possible system behaviors. Thus,

analytical techniques are often used to compute safe or conservative temporal

bounds at design-time.

Conservativeness implies here that a computed value is always worse than,

or at most the same as, the worst-case value. I.e. it is lower than or equal to

the minimum throughput, and higher than or equal to the maximum latency. To

avoid over-allocation of scarce MPSoC resources, a tight temporal bound that is

close to the worst-case value is desired. Next to tightness, fast analysis techniques

are also essential to enable efficient exploration of the mapping and resource allo-

cation design-space, following the platform-based design approach. The temporal

analysis problem, which we address in this thesis, is then stated as follows:
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Given a dynamic streaming application that is mapped onto a shared heteroge-

neous MPSoC platform, how can we derive a tight lower-bound to the minimum

throughput and an upper-bound to maximum end-to-end latency, which enable

efficient exploration of the mapping and resource allocation design-space?

An outline of our approach is given below. Following the scenario-based mod-

eling approach, we first isolate the different operating scenarios of a dynamic

streaming application, where each scenario is modeled by a SDF graph. The pos-

sible orders of scenario executions are encoded by a FSM, as illustrated at (3) in

Figure 1.4. The possible scenarios and scenario sequences can be automatically

extracted from a DDN input, as mentioned in Section 1.2.2. Each scenario is

individually scheduled onto the MPSoC platform, which gives rise to a scenario

mapping, illustrated at (4) in Figure 1.3. The scheduling follows a two-level hi-

erarchical arbitration: inter-application and intra-application. Inter-application

scheduling arbitrates MPSoC resources between the different applications mapped

on the platform. Intra-application scheduling arbitrates a shared resource between

different actors of the same application. For inter-application scheduling, we as-

sume the minimum resource each application is guaranteed to get is given by a

worst-case resource curve (WCRC). A WCRC specifies the minimum amount of

resource in service units that an application is guaranteed to get within a given

time interval. Service units can be, for example, processor cycles or intercon-

nect transactions in bytes. For intra-application scheduling of actors, we use a

static-order (SO) schedule between actors mapped on the same tile.

A scenario mapping decides actor-to-processor and channel-to-interconnect

bindings. In addition, it allocates resources and constructs a SO schedule between

actors that are mapped on the same processor. Given a set of scenario mappings,

we follow a compositional analysis approach to derive temporal bounds. The

compositional approach first analyses each scenario mapping individually. Then,

the results are combined, making use of the possible orders of scenario executions,

given by the FSM. A scenario mapping is analysed by constructing a characteri-

zation matrix, illustrated at (5) of Figure 1.4, that captures its timing behavior

over one graph iteration. The matrix is constructed using a symbolic simulation

in (max,+) algebra [8]. (max,+) algebra is a useful tool to analyse SDF scenar-

ios. In self-timed execution, an actor fires as soon as all input tokens have arrived.

Thus, the firing time of an actor is determined by the last arriving token, i.e. the

maximum of the production times of all input tokens. The completion time of

an actor’s firing is obtained by adding its execution time to its start time. As a

result, the overall timing behavior can be analyzed using (max,+).

The resulting set of matrices, along with the FSM, are then used to analyse

boundedness, worst-case throughput and maximum latency, as illustrated at (6)

in Figure 1.4. The details of these analyses are presented in Chapter 5 and 7.
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1.3 Key contributions

This thesis makes the following key contributions.

• An automated approach is developed to extract an FSM-based SADF model

from a parallel specification of a streaming application. A key enabler is the

introduction of the class of Disciplined Dataflow Networks (DDNs). DDN

defines construction rules for an analysable dynamic dataflow program. This

contribution has been published in [78]. (Chapter 4)

• The generalized eigenmode from (max,+) algebra is used to analyse bound-

edness of SDF scenarios. The technique is further used to develop a general-

ized approach to analyse the worst-case throughput of FSM-SADF models.

The generalized technique lifts existing assumptions that require scenarios

to be self-timed bounded and inter-scenario synchronizations to be enforced

only through initial tokens on common channels. This contribution has been

published in [79]. (Chapter 5)

• Scenario-based modeling and automated model extraction are respectively

demonstrated for LTE baseband and RVC-MPEG-4 SP video decoder. These

contributions have been published in [80] and [78]. (Chapters 3 and 4)

• An approach is developed for a matrix characterization of a scenario map-

ping without explicitly constructing a resource-aware model. The technique

proposes embedding worst-case resource curves (WCRCs) during a (max,+)

symbolic simulation to characterize resource scheduling. Analysis for TDM

and other schedulers under the class of LR servers is demonstrated, and a

WCRC for Credit-Controlled Static Priority arbiter is demonstrated. Fur-

thermore, a symbolic identification of busy times is proposed to improve

the WCRT of service requests that arrive in the same busy time of a re-

source. The approach avoids assuming the critical instant on all requests in a

busy time. The approach improves scalability and enables tighter temporal

bounds. These contributions have been published in [75,77]. (Chapter 6)

• An analytical approach is presented to derive a conservative upper-bound

to the maximum end-to-end latency of an application mapping. Maximum

latency is formalized in the presence of dynamically switching scenarios and

then analysed under a periodic source. Applicability to aperiodic sources,

such as sporadic and bursty source, is also discussed. (Chapter 7)

• The proposed analysis techniques are implemented in SDF3 [86], a dataflow

analysis tool. The model extraction approach has been demonstrated for

the CAL language and implemented in the Caltoopia [2] CAL compiler.
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1.4 Thesis Organization

The rest of this thesis is organized into seven chapters. Chapter 2 recaps basic

dataflow modeling concepts and gives their formal definitions. Chapter 3 high-

lights dynamism of modern-day streaming applications with case-study applica-

tions. The applications are 3GPP LTE and WLAN IEEE 802.11a from wireless

domain and an MPEG-4 video decoder from the multimedia domain. This chap-

ter also presents the FSM-SADF models of the case-study applications. Chapter 4

presents an automated approach to construct analysable dataflow models, such as

SDF and FSM-SADF. The approach extracts analysable models from parallel im-

plementations, which belong to the class of Disciplined Dataflow Network (DDN).

Chapter 5 presents a generalized approach to analyse the worst-case throughput

of FSM-SADF. The generalization lifts existing restrictive assumptions such as

self-timed boundedness and synchronizations limited to initial tokens on identi-

cal channels of scenarios. The chapter also uses the generalized eigenmode from

(max,+) algebra to analyse boundedness of SDF scenarios. Chapter 6 presents a

new faster and tighter approach to analyse dataflow applications that are mapped

onto a shared multiprocessor platform. The new approach, called Symbolic Anal-

ysis of Application Mappings (SAAM), combines symbolic simulation in (max,+)

algebra with worst-case resource availability curves. Chapter 7 introduces a sys-

tematic analytical approach to derive a conservative upper-bound to the maximum

end-to-end latency of application mappings. Chapter 8 concludes the thesis and

gives directions to future work.
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Preliminary

This chapter recaps basic dataflow modeling concepts and gives their formal def-

initions. It also introduces notation used in the rest of the thesis. The chapter

is organized in five sections. Section 2.1 presents notational conventions. Sec-

tion 2.2 briefly introduces the (max,+) algebra. Section 2.3 gives formal defini-

tions of SDF and FSM-based SADF MoCs. Section 2.4 discusses the (max,+)

matrix characterization of SDF scenarios. Section 2.5 introduces the CAL ac-

tor language. It also presents some motivational CAL examples that highlight

the challenges of design-time of analysis of dynamic streaming applications. Sec-

tion 2.6 summarizes this chapter.

2.1 Notation

We use upper-case letters (A,Θ) to denote sets and sequences, except for letters

M and N that denote matrices. We use lower-case Latin letters (a) for individual

elements, lower-case Greek letters (α : A→ B) for functions, P(A) for the power

set of A and bar accents (γ̄) for vectors. We use |A| to denote cardinality or length

of a set, sequence or vector. We use N,N0 and R for natural numbers starting from

1, natural numbers starting from 0 and real numbers, respectively. We denote

the set of real numbers extended with −∞ as Rmax = R ∪ {−∞}. The set of

real numbers extended with +∞ and −∞ is denoted as Rmax = R ∪ {+∞,−∞}.
Exceptions to these conventions will be explicitly stated whenever used.

19
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2.2 Max-Plus Algebra

This section presents basic (max,+) algebra notation used in this thesis. For ele-

ments a, b ∈ Rmax, (max,+) algebra defines a⊕ b def
= max(a, b) and a⊗ b def

= a+ b.

In this paper, we use the standard max and addition notation for the sake of

readability. For any element a ∈ Rmax, max(−∞, a) = max(a,−∞) = a and

a+−∞ = −∞+ a = −∞. The algebra is extended to vectors and matrices as

explained in the following subsections.

2.2.1 Vectors

For n ∈ N, n
def
= {1, 2, · · · , n}. An n dimensional vector is an element of the

set Rnmax. For vector γ̄ ∈ Rnmax, the entry at row i ∈ n is denoted as [γ̄]i. For

c ∈ Rmax, u[c] ∈ Rnmax denotes a vector that has c in all of its entries; i.e. for

any i ∈ n, [u[c]]i = c. In addition, scalar to vector addition and multiplication are

given as [c+ γ̄]i = c+ [γ̄]i and [cγ̄]i = c[γ̄]i, respectively.

Given vectors γ̄, θ̄ ∈ Rnmax, we have the following properties. Vector addition,

subtraction and max operation are element-wise operations, i.e. [γ̄ ± θ̄]i = [γ̄]i ± [θ̄]i
and likewise [max(γ̄, θ̄)]i = max([γ̄]i, [θ̄]i). The norm of vector γ̄ is the maximum

entry of the vector, denoted as ‖γ̄‖ = maxi[γ̄]i. For vector γ̄ with ‖γ̄‖ > −∞,

the normalized vector is denoted as ¯̄γ, where [¯̄γ]i = [γ̄]i − ‖γ̄‖. We write γ̄ � θ̄

if ∀ i ∈ n, [γ̄]i ≤ [θ̄]i. Similarly, γ̄ � θ̄ if θ̄ � γ̄. Vector dot-product γ̄ · θ̄ is

max of sums, which is analogous to sum of products of standard algebra: I.e.

γ̄ · θ̄ = maxi([γ̄]i + [θ̄]i).

2.2.2 Matrices

The set of m × n matrices is denoted as Rm×nmax . Row i ∈ m is denoted as [M ]i:
and column j ∈ n as [M ]:j . An entry at row i ∈ m and column j ∈ n is denoted

as [M ]ij . Given matrix M ∈ Rm×nmax and matrix N ∈ Rn×omax , matrix multiplication

is defined using vector dot-products as [MN ]ij = [M ]i: · [N ]:j . Similarly, matrix-

vector product is given as [Mγ̄]i = [M ]i: · γ̄. ForM,N ∈ Rn×nmax , we writeM � N if

∀ i, j ∈ n, [M ]ij ≤ [N ]ij . Similarly, M � N if N �M . Two interesting properties

of matrix multiplication are linearity and monotonicity, which are rephrased in

Properties 1 and 2, respectively.

Property 1 (Monotonicity). Given vectors γ̄, θ̄ ∈ Rnmax, if γ̄ � θ̄, then

Mγ̄ �Mθ̄.

Property 2 (Linearity). Given vectors γ̄, θ̄ ∈ Rnmax, matrix M ∈ Rm×mmax and

c ∈ Rmax, M(c+ γ̄) = c+Mγ̄ and M(max(γ̄, θ̄)) = max(Mγ̄,Mθ̄)
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x y z
1 1b 2 1c

12

da set of channels: C = {cxx, cxy, cyz, czy}
initial token labeling : I = {a, b, c, d}
initial token placement : ι(a) = (cxy, 1), · · ·
WCETs: χ(x) = 3, χ(y) = 1, χ(z) = 1

Figure 2.1: Example SDF graph

2.3 Dataflow Models of Computation

Timed dataflow models of computation (MoCs) are often used for design-time

analysis of stream-based embedded applications. A dataflow model is a directed

graph that consists of actor nodes and FIFO buffer channels. Such graphs are

worst-case abstractions of parallel programs that comprise multiple concurrent

tasks. An actor abstracts from the implementation details of a task in terms

of its maximum computational requirement, i.e. the worst-case execution time

(WCET), and inter-task synchronization interface, i.e. input-output data rates.

Each actor has a set of input ports and a set of output ports. Actors communicate

by sending data tokens through their ports.

A prominent dataflow model is Synchronous Dataflow (SDF) [53]. Figure 2.1

shows an example of a SDF graph (SDFG) that consists of three actors x, y and

z. The numbers on the edges indicate token production and consumption rates

of ports. A SDFG actor fires, i.e. starts execution, by consuming from each of

its input ports as many tokens as the port rate. After a certain delay, given by

the actor’s WCET, it produces at each of its output ports as many tokens as

the port rate. Therefore, SDF actors have fixed port rates that do not change

between firings. In SDF schematics, black dots represent initial tokens available

in channels at the beginning of execution. Initial tokens have unique labels, as

shown by the letters {a, b, c, d} in Figure 2.1. Definition 1 formally defines SDFGs.

Definition 1 (SDFG). A SDFG g = (A,C, I, χ, ρ, ι) is a 6-tuple, comprising a

set A of actors, a multiset C ⊆ A×A of channels, a set I of initial tokens of

channels, the WCET of actors χ : A→ N0, the source and destination port rates

of channels ρ : C → N× N, and initial token placement ι : I → C × N.

The collection of the minimum number of non-zero actor firings that restores

the graph back to its initial token distribution is called an iteration. The number

of firings of each actor in one iteration is given by the repetition vector. E.g. the

repetition vector of Figure 2.1 is {(x, 1), (y, 1), (z, 2)}, which implies that actors

x and y each fire once, and actor z fires twice. A SDFG is called consistent,

as defined in Definition 2, if it has such a repetition vector. Consistency is a

necessary condition for a deadlock-free execution of a SDFG [53].
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Definition 2 (Repetition Vector and Consistency). The repetition vector of a

SDFG g = (A,C, I, χ, ρ, ι) is denoted as ν : A → N. It specifies the collection

of the minimum number of non-zero actor firings that restores the initial token

distribution. Each actor a ∈ A fires ν(a) times in one iteration. The graph is

said to be consistent if it has such a repetition vector.

The execution of a consistent (and deadlock-free) SDFG where each actor exe-

cutes as soon as it has sufficient input tokens is called self-timed execution. It is of

special interest as it gives the maximum achievable throughput [34]. A self-timed

execution that is schedulable with bounded channel storage is called self-timed

bounded [34]. A sufficient condition for self-timed boundedness is strong connect-

edness [34]. A SDFG is said to be strongly connected if there is a path between

any pairs of actors, where a path between a0 and an is a sequence 〈a0, a1, · · · an〉 of

actors such that for ∀ 0 ≤ i < n, (ai, ai+1) ∈ C. A non-strongly connected SDFG

consists of more than one strongly connected components (SCC). The example

SDFG shown in Figure 2.1 is not strongly connected, since there exists no path

from actor y (or z) to x. Definition 3 formally defines SCCs.

Definition 3. (Strongly Connected Component) A strongly connected

component of SDFG g = (A,C, I, χ, ρ, ι) is a maximal sub-graph of g that has

a connecting path between any two actors a, b of g. The set of SCCs of g is

denoted as scc(g).

SDFGs are too static to model modern-day dynamic streaming applications,

such as wireless radios. These applications have varying computation and com-

munication characteristics that change with the processed data. As a result, they

go through different operating modes, called scenarios [89], depending on the in-

put stream. However, the possible scenarios and the scenario sequences for input

streams are often known at design time. Definition 4 defines a finite state machine

(FSM) on infinite words that captures all possible scenario sequences for a given

set of scenarios.

Definition 4 (Finite-state machine). Given a set S of scenarios, a finite state

machine f on S is a 4-tuple f = (Q, q0, T , ε). Q is a set of states, q0 ∈ Q is an

initial state, T is a transition relation, T ⊆ Q × Q, and ε is a scenario labeling,

ε : Q→ S.

When an application operates at a given scenario, its characteristics mostly

remain static. Hence, a SDFG can be used to effectively model and analyze it. A

dynamic dataflow modeling approach, based on SDFG scenarios and their FSM

is referred to as FSM-based Scenario-aware Dataflow (FSM-SADF) [28, 89], as

defined in Definition 5. In the rest of this thesis, we use the terms scenario and

SDFG interchangeably.
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(a) Scenario s1

w

x

y

z
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2

e

12

a

(b) Scenario s2

q0 q1
ε(q0) = s1

ε(q1) = s2

(c) FSM

Figure 2.2: Example FSM-based SADF dataflow model

Definition 5 (FSM-SADF). A FSM-based Scenario-aware Dataflow (FSM-

SADF) model is a pair (S, f). S is a set of scenarios and f is an FSM on S.

Figure 2.2 shows an example of an FSM-SADF model that has two scenarios

s1 and s2. In the FSM, state q0 is labeled with scenario s1 and q1 with scenario s2.

This FSM encodes infinitely many scenario sequences. An example scenario se-

quence is 〈s1, s2, s1, s1, s1, s2, · · · 〉. The execution of this scenario sequence begins

with the execution of scenario s1 for one iteration. At the end of the iteration, the

initial tokens {a, b, c, d} of the scenario return back to their original locations, but

with different production times. The next scenario, s2, begins its execution from

the production times of these initial tokens. This way synchronization is enforced

between consecutive scenarios. This is further discussed in the next section.

2.4 (max,+) Characterization of a Scenario

The execution of a scenario is a timed simulation of the executions of its actors.

For instance, the repetition vector of scenario s1 of Figure 2.2 is ν(x) = 1, ν(y) = 1

and ν(z) = 1. The completion time of an iteration can be obtained from the

production times of the latest tokens at the end of the iteration. This collection

of tokens is the same as the initial tokens {a, b, c, d}, as mentioned earlier. This

is because the initial tokens of scenario s1 return back to their original locations

at the end of the iteration, but with different production times. A time-stamp

vector γ̄ ∈ Rnmax is used to record the production times of initial tokens after each

iteration. Each initial token has exactly one entry in this vector.
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The (max,+) algebra [8] is a useful tool to compute the production times of

tokens. In self-timed execution of a scenario, an actor fires as soon as all input

tokens have arrived. Thus, the firing time of an actor is determined by the last

arriving token, i.e. the maximum of the production times of all input tokens. The

completion time of an actor’s firing is obtained by adding its execution time to

its start time. As a result, the overall timing behavior of a self-timed execution

of a SDFG can be analyzed using (max,+) expressions.

We show this with an example. Scenario s1 of Figure 2.2 has four initial tokens:

{a, b, c, d}. We represent the time-stamp vector at the end of iteration k ≥ N0 of

scenario s1 using symbolic variables as γ̄k = [ta, tb, tc, td]. The repetition vector

of scenario s1 equals [1, 1, 1]. Hence, in a single iteration, each actor fires once.

Assume the actors have the following WCETs: χ(x) = 1, χ(y) = 3, χ(x) = 2.

The only input token that actor x consumes is token a. Hence, the firing time

of actor x is the availability time of token a, i.e. ta. It then completes its firing

after its WCET. This implies that after the completion of actor x, the production

time-stamp of token a becomes t′a = ta + χ(x) = ta + 1. This can also be written

as a (max,+) vector dot-product as t′a = [1,−∞,−∞,−∞] · γ̄k. This is because

the vector dot-product is max of sums (cf. Section 2.2.1) and it evaluates to

ta + 1 = max(1 + ta,−∞+ tb,−∞+ tc,−∞+ td).

The firing of actor y consumes a token produced by actor x on channel cxy.

This token has the same time-stamp as t′a. Actor y also consumes token d from

channel czy. At the end of the firing, it produces one token on channel cyz,

which will become token b at the end of the iteration. Therefore, the firing of

y completes at max(t′a, td) + χ(y). Thus, the new token b becomes available at

t′b = max(t′a + 3, td + 3) = max(ta + 4, td + 3). In vector dot-product, this is given

as t′b = [4,−∞,−∞, 3] · γ̄k.

Similarly, after the firing of actor z, which consumes token c from channel cyz,

we get t′d = tc + 2 = [−∞,−∞, 2,−∞] · γ̄k. The old token b is not consumed in

this iteration and at the end of the iteration this token becomes token c, due to

the shifting in the FIFO. As a result, t′c = tb = [−∞, 0,−∞,−∞] · γ̄k.

Collecting the production times of the four initial tokens at the end, the time-

stamp vector at the end of the (k+ 1)th iteration is given as γ̄k+1 = [t′a, t
′
b, t
′
c, t
′
d],

where

t′a = [1,−∞,−∞,−∞] · γ̄k,
t′b = [4,−∞,−∞, 3] · γ̄k,
t′c = [−∞, 0,−∞,−∞] · γ̄k and

t′d = [−∞,−∞, 2,−∞] · γ̄k.
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This relationship between two consecutive iterations is conveniently expressed

by the recurrence relation of Equation (2.1).

γ̄k+1 = M · γ̄k (2.1)

M ∈ Rn×nmax is referred to as the matrix of the scenario. The size n of the

matrix is determined by the number of initial tokens; i.e. n = |I|. The matrix of

s1 is given by Equation (2.2). An algorithm to compute the matrix of a scenario

is presented in Algorithm 1 of [28]. The algorithm constructs the matrix from a

single iteration of the scenario through symbolic simulation.

M =


1 −∞ −∞ −∞
4 −∞ −∞ 3

−∞ 0 −∞ −∞
−∞ −∞ 2 −∞

 (2.2)

Every initial token has a distinct index in the recurrence relation of Equa-

tion (2.1), as given in Definition 6.

Definition 6 (Initial Token Index). Given the set I of initial tokens of a scenario,

initial token index is a bijection ζ : I ↔ n, where n = |I| such that for i ∈ I, ζ(i)

is a row index in γ̄k and a row/column index in M .

The initial token index for the running example is ζ(a) = 1, ζ(b) = 2, ζ(c) = 3

and ζ(d) = 4. An entry [M ]ζ(i)ζ(j) of the matrix gives the minimum timing

distance between the time-stamp of token i of iteration k + 1 and token j of

iteration k; i.e. [M ]ζ(i)ζ(j) ≤ [γ̄k+1]ζ(i) − [γ̄k]ζ(j). When [M ]ζ(i)ζ(j) = −∞, it

implies that there is no dependency between the two initial tokens. A matrix is

regular [43] if it has no row whose elements are all −∞. A scenario cannot have

an initial token that has no dependency with any of the initial tokens (including

itself) of the graph. Thus, the matrix of any scenario is regular.

The time-stamp vector of a self-timed bounded scenario becomes periodic

after a finite number of transient iterations [28]. Thus, the normalized vector

(cf. Section 2.2.1) of the time-stamp vector repeats itself after a finite number

of iterations in the periodic phase. I.e. ¯̄γk = ¯̄γk−n, where n is referred to as the

cyclicity factor. The average growth rate of the time-stamp vector is unique and

is given by the eigenvalue of the matrix [28,43].

The regularity and cyclicity properties are important concepts in worst-case

throughput analysis, which is presented in Chapter 5.
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2.5 CAL actor Language

Efficient exploitation of the parallelism offered by multi-core platforms is gen-

erally challenging. Sequential languages such as C/C++ are difficult to paral-

lelize. Concurrent languages, on the other hand, expose application parallelism

and enable efficient mapping onto parallel targets, such as threads and processors.

CAL is an actor-oriented dataflow language [23]. Its main characterizing features

are message-passing communication through FIFO buffers and state-and-data-

dependent execution of actors. CAL is well-suited for programming streaming

applications. In fact, CAL has been selected by ISO/IEC for the Reconfigurable

Video Coding (RVC) MPEG standard. CAL can be compiled to different software

(C, Java) and hardware (VHDL, Verilog) implementations [2, 3, 13].

The Sum actor of Listing 2.1 shows the basic constructs of a CAL actor. The

actor has two input ports in1 and in2 and one output port out, all of type

int. The functionality of a CAL actor is broken down into atomic execution

units, called actions. Actor Sum has one tagged action add, shown at line 2 of

Listing 2.1. When action add is fired, it consumes one token from each of its

input ports and produces one token in its output port. The port-signature of an

action specifies the number of tokens that are consumed and produced per firing.

E.g. the port-signature of action add is
(
[1, 1], [1]

)
for ports ([in1,in2],[out]).

1 actor Sum() int in1, int in2 ==> int out:
2 add: action in1:[x], in2:[y] ==> out:[x + y]
3 end

Listing 2.1: Basic CAL actor constructs

CAL describes an application as a network of actors. Listing 2.2 shows an

example of a CAL network. The network has three actor instances under the

entities block (lines 2-5): one instance of actor X and two instances of actor

Y. The connections between these actors are given under the structure block

(lines 6-9). E.g. x.Out1 --> y1.In denotes a connection from output port

Out1 of actor x to input port In of actor y1.

1 network TopNetwork () ==> :
2 entities
3 x=X(); //actor instantiation
4 y1=Y();
5 y2=Y();
6 structure
7 x.Out1 --> y1.In; //actor_name.port_name
8 x.Out2 --> y2.In;
9 y1.Out --> x.In; //cyclic dependency to ’x’

10 end

Listing 2.2: Basic CAL network constructs
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A CAL actor can maintain state through state variables. It can also have

a finite-state machine (FSM) to encode an action schedule that specifies the

possible orders of action firings. Along with the schedule given by the FSM,

action firings are also decided by firing rules. A firing rule specifies conditions,

in terms of actor state and input data. Each CAL action has a firing rule that

must be satisfied before the action is executed. An action is termed enabled

if its firing rule is satisfied. A firing rule may specify 1) the number of input

tokens that must be available per input port; and 2) the values that input tokens

and state variables must have, also known as guard condition. Firing rules can

be both state-dependent and data-dependent, which means their evaluation may

depend on state variables and input data, respectively. At a particular actor state,

multiple actions may be enabled. In this case, actions are arbitrated based on a

preset priority order.

Listing 2.3 demonstrates basic actor schedule and firing rule constructs. Actor

mc of Listing 2.3 has three actions: f1,f2 and f3. Action f1 has higher priority

than f2 (line 18). The actor’s FSM has two states: state1 and state2. Actions

f1 and f2 are associated with state state1 (lines 21-22) and action f3 with

state state2 (line 23). The actor has a state-variable, payload (line 2). Action

f1 has a guard condition that is data-dependent (line 5) and f3 has a guard

condition that is state-dependent (line 13).

1 actor mc() int in ==> int out:
2 int payload := 0; //actor state
3

4 f1 : action in [ s ] ==> out: [ 1 ]
5 guard s < 0 end //guard based on input peeking
6

7 f2 : action in [ p ] ==> out: [ 2 ]
8 do
9 payload := p;

10 end
11

12 f3 : action in [ c ] ==> out: [ 3 ] repeat 4
13 guard payload > 0 //guard based on actor state
14 do
15 payload := 0;
16 end
17

18 priority f1 > f2; end
19

20 schedule fsm state1: //state1 is the initial state
21 state1 (f1) --> state1;
22 state1 (f2) --> state2;
23 state2 (f3) --> state1;
24 end
25 end

Listing 2.3: Actor schedule constructs
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Initially at state state1, both f1 and f2 are possible to fire. Since f1 has

a higher priority, it is first checked for enabling. Action f1 is fired if there is

at least one input token from the input port in and the value of this token is

less than zero, as given by the guard condition at line 5. Otherwise, action f2

is fired. If action f1 is fired, the FSM stays in state1 (line 21). If, otherwise,

f2 is fired, the FSM transits to state state2. At state state2, only action f3

is allowed to fire. Note that f3 has also a state-dependent guard condition (line

12), which expects the state variable payload to be greater than zero. If this

guard condition is not satisfied, the actor deadlocks, as no other action can be

taken any more. If action f3 is fired, the FSM transits to state state1, resuming

the actor execution starting from the initial state. As it can be seen from this

example, it is crucial to guarantee that a CAL actor can fire its actions indefinitely

without a deadlock. This is not a trivial task, considering the expressiveness of

the language that allows highly dynamic behavior. We illustrate this further with

a motivational example in Section 2.5.1.

2.5.1 Motivational Example

Highly expressive actor languages such as CAL allow for data-dependent, state-

dependent and/or time-dependent actor executions. Data-dependent and state-

dependent actors take different execution paths depending on values of input

tokens and state variables, respectively. Time-dependent actors produce possibly

different results depending on the time at which input tokens are available or

actions are fired [100].

The high expressiveness poses a challenge to design-time analyses such as

deadlock-freedom, memory boundedness and real-time behavior. We illustrate

these challenges with a simple CAL network, shown in Figure 2.3. Both actors

A and B have two actions u and v. The outputs from actor B are feedback to

set the state variable, i.e. T fb, of actor A using the execution of action u. All

port-rates are 1, except for action B.u, which has the port-signature ([1], [2]) for

ports ([i], [o]).

Actor A is deterministic, since priorities have been defined between its actions

u and v. In the presence of sufficient input tokens in both input ports, the actor

state (i.e. fd) is always updated first before the input from port j is processed.

This is because action u has a higher priority than action v. However, this actor

is time-dependent. If the input from port i is delayed (say due to congestion

in the communication interconnect) or absent entirely (say, for instance, actor B

deadlocks), inputs from j will be processed with the old outdated value of the

state. This may result in an unexpected computational result that may further

affect the rest of the network.
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actor A() T i, T j ==> T o:
T fb;

u: action i:[f] ==>
do

fb := foo0(fb,f);
end

v: action j:[d] ==> o:[r]
var T r;
do

r := foo1(fb,d);
end

priority u > v end;
end

o

i

j

actor B() T i ==> T o:

u: action i:[x] ==> o:[r]
guard bitand(x,1) != 0
var T r[2];
do
r := foo2(x);

end

v: action i:[x] ==> o:[r]
guard bitand(x,2) != 0
var T r;
do
r := foo3(x);

end
end

i o

Actor A Actor B

Figure 2.3: Example CAL network of two actors A and B

Actor B is data-dependent. Its actions are guarded with bitand(x,1) != 0

and bitand(x,2) != 0, where bitand is a bitwise AND operator. These two

guards neither cover the complete condition space nor are mutually exclusive.

Non-mutually exclusive guards may lead to non-deterministic actor execution.

For instance, this happens when x = 3 for these two guards. Guards that do

not cover the complete condition space may lead to termination/deadlock (e.g.

for x = 4). If actor B terminates, tokens increasingly accumulate in channel

(A.o,B.i), resulting in an unbounded channel. Buffer sizes are finite in reality,

and hence, the network eventually deadlocks.

The challenge of design-time analysis gets worse in real-life dataflow networks,

which have hundreds of such dynamic actors. To alleviate this problem, we present

construction rules for a Disciplined Dataflow Network (DDN) in Chapter 4. The

construction rules of DDN are defined in such a way that an analysable dataflow

model, such as FSM-SADF and its sub-classes, can be guaranteed to be extracted

from a parallel application specification. Moreover, the extraction process can

also be automated. The automation enables dataflow-based system analysis to be

readily available to the designer, without requiring advanced modeling expertise.

In this manner, we exploit the potential of concurrent languages, such as CAL, for

efficient parallel implementations of dynamic streaming applications, while still

being able to 1) give guarantees on basic properties such as deadlock-freedom

and boundedness, and 2) map applications onto parallel targets under real-time

constraints such as throughput and end-to-end latency.
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2.6 Summary

In this chapter, notational conventions and preliminary dataflow concepts are

presented, which are used in the rest of the thesis. The basis of our temporal

analyses in Chapters 5, 6 and 7 is the (max,+) algebra, which has been sum-

marized in Section 2.2. The temporal analyses are carried out on a FSM-based

SADF analysis model that comprises a set of static SDF scenarios, which are

formally defined in Section 2.3. Section 2.4 has recapped how a SDF scenario

can be characterized using a (max,+) matrix. The FSM-SADF analysis model

is extracted from a parallel specification of a dynamic streaming application. In

this thesis, the extraction process is demonstrated using the CAL actor language,

whose main programming constructs were illustrated in Section 2.5. The section

has also highlighted the challenges of the design-time analysis of dynamic dataflow

networks with a motivational example.
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CHAPTER 3

Dynamism in Streaming Applications

A challenge to the design-time analysis of present-day streaming applications is

their dynamic execution behavior. These applications change their data rates

and computational loads, depending on their operating mode. The intent of this

chapter is to highlight such dynamic behaviors with case-study applications. The

applications are selected from wireless communication and multimedia domains.

Section 3.1 discusses dynamism in 3GPP’s LTE and demonstrates the applicability

of FSM-SADF to model and analyse LTE’s baseband processing. The section also

addresses the issue of modeling inter-scenario dependencies, which is revealed from

LTE’s FSM-SADF modeling. Section 3.2 briefly discusses dynamism in IEEE

WLAN 802.11a and presents a corresponding FSM-SADF model. Section 3.3

highlights dynamism in multimedia applications, using an MPEG4 video decoder.

Section 3.4 presents related work and Section 3.5 summarizes the chapter.

3.1 Long Term Evolution (LTE)

Long Term Evolution (LTE) is a recent standard in cellular wireless communica-

tion technologies. It aims at high bit rates: a downlink peak rate of up to 300

Mbit/s and an uplink of 150 Mbit/s [57]. The design of LTE receivers is quite

complex due to the high bit rates and the resulting high workload. The complex-

ity is further increased by dynamism (data-dependent variations) of frames. In

this section, we focus on the dynamism of LTE’s physical layer frames.

31



i
i

“thesis” — 2014/10/3 — 2:55 — page 32 — #44 i
i

i
i

i
i

32 Section 3.1: Long Term Evolution (LTE)

...

cyclic prefix
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Figure 3.1: LTE frame structure for FDD

LTE uses adaptive modulation and coding (AMC) that dynamically adjusts

modulation schemes and transport block sizes to adapt to varying channel con-

ditions [5]. Consequently, the workload of LTE’s baseband processing changes

dynamically. This section presents a variation-aware dataflow model of LTE

baseband processing, which captures this dynamic workload. Section 3.1.1 first

discusses the sources of dynamism in the physical layer processing of LTE. Sec-

tion 3.1.2 then presents the corresponding FSM-SADF model.

3.1.1 Dynamism in LTE baseband processing

There are multiple sources of dynamism in LTE baseband processing that con-

tribute to variable computation and communication loads [71]. These include

variations in channel allocation of frames, variation in length (number of sym-

bols) of frames and variation in resource block allocations. The forthcoming

discussions are limited to dynamism due to variations in channel allocations of

frames. Nonetheless, the modeling concepts are equally applicable to the other

types of dynamism1.

Consider the downlink communication, which refers to the communication link

from the base station to the User Equipment (UE). There are two types of LTE

physical layer frame structures depending on the type of duplexing. The downlink

frame structure for Frequency Division Duplexing is illustrated in Figure 3.1.

1Our modeling approach is to isolate a dynamic execution behavior into its static constituents

and capture each static behavior with a SDF scenario. In principle, this can capture any variation

in LTE that leads to varying graph structure, port-rates and executions times. For instance,

our LTE model can be straightforwardly extended to handle variations in frame length, which

can be either 12 or 14 OFDM symbols per sub-frame depending of the cyclic prefix used, even

though our modeling covers only the case of 14 symbols per sub-frame.
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Figure 3.2: Resource grid of a sub-frame of LTE, organized into OFDM symbols

(in time-domain) and frequency sub-carriers (in frequency domain)

The rest of this section details how the resource within the frame, shown in

Figure 3.1, is structured and allocated to different data and control channels. The

main intent of the discussion is to show that this resource allocation may vary

dynamically from one frame to another. A single frame is 10 milliseconds (msec)

long. It consists of 10 sub-frames (1msec each) and each sub-frame consists of

2 slots (0.5msec each). LTE employs Orthogonal Frequency Division Multiplex-

ing (OFDM) for downlink data transmission. The transmission resource within

a sub-frame is organized by a resource grid, as shown in Figure 3.2. The width

of the resource grid (in the time domain) equals two times the number of sym-

bols per slot, NDL
symb. The height of the grid (in frequency domain) equals the

number of OFDM sub-carriers per resource block, NRB
sc , multiplied by the num-

ber of resource blocks per sub-frame, NDL
RB . NDL

RB is determined by the downlink

transmission bandwidth, while NDL
symb and NRB

sc are determined by the OFDM

subcarrier spacing and the type of OFDM cyclic prefix used (normal or extended

cyclic prefix). In practice, NDL
RB , NRB

sc and NDL
symb are fixed once the system is

configured. From here on, we consider a bandwidth of 20MHz, a subcarrier spac-

ing of 15KHz and normal cyclic prefix (which means 7 OFDM symbols per slot).

Hence, NDL
RB = 100, NDL

symb = 7 and NRB
sc = 12, as shown in Figure 3.2.
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src mem dem est

mio dmp dec

dmp cqi mc

Figure 3.3: A directed task graph of LTE’s baseband processing. The edges rep-

resent data-dependencies between tasks. The dashed edges indicate dependencies

that exist across the processing of different OFDM symbols.

The time-frequency unit for resource allocation of the resource grid is a re-

source element. Resource elements of the resource grid are allocated to different

data and control channels. Resource elements of the first OFDM symbol (the first

column of the grid) are allocated to the Physical Control Format Indicator Chan-

nel (PCFICH) and partly to the Physical Downlink Control Channel (PDCCH).

PCFICH contains information regarding the resource allocation of PDCCH. PD-

CCH can be allocated resource elements up to the third column of the resource

grid. PDCCH, in turn, tells the locations of data channels, such as the Physical

Downlink Shared Channel (PDSCH). PDSCH can be located between the second

and the fourteenth columns of the resource grid.

Decoding a sub-frame consists of a number of tasks whose data dependencies

are captured by a directed graph, as shown in Figure 3.3. Some major tasks of

the graph include OFDM demodulation (dem), channel estimation (est), multiple-

input and multiple-output summation (mio), OFDM demapping (dmp) and chan-

nel decoding (dec). The input-output data granularity of these tasks is an OFDM

symbol (a column of the resource grid), that is about 4800 bytes. Hence, these

tasks have to be carried out for each of the 14 symbols that constitute a sub-frame.

However, the functionality, execution time and data rates of tasks vary de-

pending on the type of channel allocated to the symbol. For instance, task dec

has a different execution time for symbols that carry a control channel than a data

channel. Task dec takes in the worst-case 192 time-units per symbol to process

a control channel, while it takes in the worst-case 975 time-units for 13 symbols

allocated to a data channel, which is an average of 75 time-units per symbol. In

addition, its input data rate varies between 11, 12 or 13 symbols while decoding

a data channel. This is because the control channel is always between the first

and the third symbols, leaving the remaining symbols for data channels. Conse-

quently, the execution time and the input-output data rates of tasks may change

from one execution to the other. This gives rise to the dynamic behavior of the

application.
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src mem dem est

mio dmp dec

dmp cqi mc

t

Scenario s1

src mem dem est

mio dmp dec

dmp cqi dda

p

t

Scenarios s2, s5 p ∈ {1, 13}

src mem dem est

mio dmp dec

dmp cqi

p

Scenarios s3, s4 p ∈ {11, 12}

q0

q1

q2

q5

q4

q3

ε(q0) = s1

ε(q1) = s2

ε(q2) = s2

ε(q3) = s3

ε(q4) = s4

ε(q5) = s5

FSM χ(src) = 71
χ(mem) = 2
χ(dem) = 60
χ(est) = 16
χ(mio) = 33
χ(dmp) = 50
χ(adp) = 8

χ(cqi) = 70
χ(mc) = 5
χ(dda) = 0
χ(dec) = 192 for s1, s2

χ(dec) = 970 for s3

χ(dec) = 895 for s4

χ(dec) = 820 for s5

Figure 3.4: FSM-based SADF model of LTE baseband processing. The model

has five scenarios. All port rates are 1, except for the input port of dec, which is

indicated by the parameter p. The value of p equals 1, 11, 12 and 13 tokens for

scenarios s2, s3, s4 and s5, respectively.
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3.1.2 FSM-SADF Model of LTE

We identify five different modes of operation of LTE, depending on the type of

symbol it is processing. Each mode defines a scenario in the FSM-SADF model,

shown in Figure 3.4. All port rates are 1, except for port p.

Scenario s1 models the decoding of the first symbol, which has the control

format channel (PCFICH) and part of the control channel (PDCCH). The mode

controller (mc) actor of s1 determines the scenario sequence to decode the re-

maining 13 symbols. The three possible sequences are: 1) executing s5 to decode

all the 13 symbols for the data channel (PDSCH), 2) executing s2 to decode the

second symbol for the control channel (PDCCH), followed by s4 to decode the

remaining 12 symbols for the data channel (PDSCH), and 3) executing s2 twice to

decode the second and third symbols for the control channel (PDCCH), followed

by s3 to decode the remaining 11 symbols for the data channel (PDSCH).

The scenario sequence required to decode a given sub-frame is determined by

actor mc of s1. Hence, the execution of actor mc should be completed before

actors mio, dmp, dec of scenario graphs s2 and s5 start execution. The other

actors in s2 and s3 can start execution ahead of the completion of actor mc. The

dashed edges in the directed task graph of Figure 3.3 indicate those actors that

have dependencies with actor mc. The dashed edges represent data dependencies

that exist across scenarios: from actor mc of s1 to actors mio, dmp and dec of s2

and s5. We refer to such types of data dependencies that exist between scenarios

as scenario dependencies, which is further elaborated as follows.

Scenario dependencies of two scenarios are enforced through the set of initial

tokens they have in common, as discussed in Section 2.3. This is because the

firing times of actors that consume these common initial tokens are determined

by the production times of the initial tokens in previous iterations. Hence, to

enforce scenario dependencies correctly, all data dependencies between iterations

should be captured through common initial tokens of scenarios. However, it is not

always possible to model data dependencies using common initial tokens unless the

channels that carry common initial tokens exist between scenarios. We illustrate

this with the LTE example.

According to the FSM-SADF model of Figure 3.4, there are three possible sub-

frame types and hence, three different scenario sequences to decode a sub-frame:

1 := 〈q0, q5〉, 2 := 〈q0, q1, q4〉 and 3 := 〈q0, q1, q2, q3〉. The type of a sub-frame

is detected by scenario s1. At the end of scenario s1, the mode controller (mc)

actor dispatches the type of sub-frame to be decoded. This requires some kind of

synchronization such that certain sub-frame-specific actors of successive scenarios

(i.e. s2 and s5) do not fire before the sub-frame type is detected. Specifically,

there are dependencies from actor mc of s1 to actors mio, dmp and dec of s2 and
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mio dmp dec

dmp cqi mc

Figure 3.5: A conservative SDFG of LTE’s baseband processing

s5. These dependencies cannot be captured through initial tokens on common

channels, since actor mc is not active in scenarios s2 and s5.

In such cases, we model scenario dependencies through initial-token labeling,

which identifies a token in different scenarios using its identifier (label). This may

require introducing data-dependency actors that carry the dependency token. In

Figure 3.4, this synchronization is modeled by the initial token t and the data-

dependency actor (dda) in scenarios s2 and s5. The data-dependency actor is

a SDF actor, whose WCET is set to 0 and has a self-edge. The self-edge has

initial token t that carries the completion time of actor mc. In this manner,

when a scenario transition is taken from s1 to s2 or to s5, actors mio, dmp and

dec cannot start execution before the finishing time of mc in s1. Inter-scenario

synchronization through initial-token labeling is discussed in detail in Chapter 5,

which also explains why certain initial tokens can be absent in some scenarios.

3.1.3 Conservative SDF Model

A conservative static dataflow model, such as SDF, abstracts from such dynamic

behaviors for the sake of analysability. It models an application with a static

graph that captures the worst-case behavior across all scenarios. However, such

an abstraction may lead to overly pessimistic temporal bounds, as shown next

with the SDF model of LTE.

All tasks of Figure 3.3, except dec, have fixed execution times and input-output

token rates. Thus, the SDF modeling effort simplifies to finding a fixed execution

time for task dec and its input port rate. The requirement for the selection of

these two parameters is that the production time of tokens by actor dec must be

conservative to (not earlier than) the actual production time of data by task dec.

Symbols that carry control channels have to be decoded as soon as they arrive.

This requires the port rate p to be 1 and χ(dec) = 192. This configuration also

ensures that the decoding of a data channel, which is carried out in a chunk of 11,

12 or 13 symbols, is also conservative at a sub-frame level. The resulting SDFG

model is shown in Figure 3.5, where all port rates equal to 1.
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Due to the static nature of the SDFG, the execution time of dec is fixed to

192µsec for all symbols, although it is on average 75µsec for data channels (in the

worst-case 975µsec for 13 symbols). In addition, actor mc is executed for every

symbol, even though it is only needed for the first symbol. As a result, the timing

analysis of the conservative SDFG gives a pessimistic throughput of 2.6 × 10−4

sub-frames per µsec, while the refined FSM-SADF analysis, based on Figure 3.4,

gives a worst-case throughput of 4.3× 10−4 sub-frames per µsec2.

3.2 IEEE WLAN 802.11a baseband processing

Figure 3.6 shows the FSM-SADF model of WLAN 802.11a baseband processing.

This model is derived from the discussion in [59]. WLAN packets arrive spo-

radically (with a certain minimum time interval) and the decoding consists of 4

scenarios. The scenarios are Synchronization (s1), Header decoding (s2), Payload

decoding (s3) and Cyclic-redundancy checking (s4). The FSM also has four states,

which correspond to the four scenarios. All port-rates of the scenarios are 1.

Once a packet is detected, scenario s1 executes repeatedly until synchroniza-

tion succeeds. Then, scenario s2 decodes the packet header to determine the

size of the payload, which may vary from 1 to 256 OFDM symbols, each with a

length of 4µsec. After header decoding, scenario s3 is executed as many times

as the number of OFDM symbols. The FSM approximates this conservatively3

by allowing an arbitrary number of payload symbols, through the self-transition

on state q2. Finally, scenario s4 preforms a cyclic redundancy check (CRC). If

CRC is successful, an acknowledgment packet must be sent within 16µsec of the

reception of the last OFDM symbol. This time guard of 16µsec, known as the

Short Intra-Frame Spacing (SIFS), specifies a real-time latency requirement.

Actors da1 and da2 are data-dependency actors, which are introduced to model

scenario dependencies, as discussed in Section 3.1.2. At the end of header decoding

(s2), several demodulation parameters need to be communicated to actor pdem

of scenario s3, which performs demodulation of payload symbols. This scenario

dependency from scenario s2 to scenario s3 is modeled by actor da1. Similarly,

actor da2 enforces a scenario dependency between scenario s3 and scenario s4.

2Throughput is normally given in iterations per time-unit (ipt). For the sake of comparing

the SDF and FSM-SADF analyses, we have converted the ipt results to sub-frames per time-

unit. For the SDF graph, it requires 14 iterations per sub-frame, since each iteration processes

one OFDM symbol. For the FSM-SADF, we have conservatively assumed the longest sequence,

i.e. 〈s1, s2, s2, s3〉, which has 4 iterations of different scenarios to decode a sub-frame.
3This implies that the FSM also specifies additional scenario sequences, which have more

than 256 executions of scenario s3 consecutively. As a consequence, the corresponding temporal

analysis on the FSM is also conservative.
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Figure 3.6: FSM-based SADF model of WLAN baseband processing

3.3 RVC-MPEG4 Simple Profile video decoder

Reconfigurable Video Coding (RVC) is an MPEG initiative that aims at providing

a model to specify MPEG standards at system-level [14]. The initiative has

standardized a subset of CAL, named RVC-CAL, for specifying reference software

for Functional Units (FUs) (i.e. actors), which form a multitude of video codecs.

This section discusses dynamism in the MPEG-4 Simple Profile video decoder

(RVC-MPEG4 SP). The MPEG-4 standard defines the syntax of an MPEG-4

compliant bitstream, which can be used for coding video for different usecases. A

particular decoder implementation may selectively support a number of subsets,

or profiles, of the standard. The most basic profile is called Simple Profile (SP),

which supports the decoding of simple rectangular video. Figure 3.7 shows a

dataflow network of RVC-MPEG4 SP decoder.
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The dataflow network of Figure 3.7 has four main parts: the parser, a lu-

minance component (Y) processing path, and two chrominance component (U,

V) processing paths [46, 58]. The main functional engines of each path are the

texture decoding and motion compensation blocks. The blocks are themselves

sub-networks of multiple atomic actors. The parser analyses the input bitstream

and extracts key parameters (such as frame size and macroblock type) that are

needed to properly configure the rest of the network, depending on the decoded

video frame. The three processing paths can run concurrently, as they are inde-

pendent of each other and do not share any information. The processed blocks

from each path are then merged to form the decoded video frame, which is fed

to the display. We discuss below the decoding process in more detail to spotlight

the different sources of dynamism of the decoding stages.

The input to the decoder is an MPEG-4 encoded bitstream. The decoding

process performs the video encoding steps in a reverse order. There are two ways

to encode a video frame in an MPEG-4 SP: an I-frame or a P-frame. An I-frame

is encoded without any reference to other frames. Encoding an I-frame begins

with partitioning the frame into a series of 16× 16 non-overlapping colored pixel

blocks called macroblocks. Each macroblock consists of six 8 × 8 monochrome

pixel blocks, where four of them are for the luminance/brightness (Y) channel

and the other two are for chrominance/color (U and V) channels (i.e. a 4:2:0

color subsampling). Each macroblock is encoded through three main processing

units: discrete cosine transform (DCT), Quantization and variable-length cod-

ing (VLC). I-frame encoding is similar to a JPEG still image encoder, with only

slight implementation detail differences. It only considers spatial correlations,

based on information within the current video frame. A P-frame, on the other

hand, exploits temporal redundancies to achieve efficient video compression. This

is because consecutive video frames are significantly similar, except for changes

induced by moving objects within the frames. Thus, a P-frame is a motion com-

pensated frame, which is encoded by making use of the difference between the

current frame and a previous frame (a reference frame). In this case, a residual

error or difference frame is generated, which is then spatially coded similar to the

encoding of an I-frame.

The computational workload of decoding a frame varies dynamically due to

variations in video frame encoding. I-frames, for instance, do not have motion

estimated macroblock, while P-frames do have. I-frames and P-frames also have

their own variants, depending on different processes such as AC prediction, AC

coding and motion estimation. For instance, different types of P-frames may result

from variations in the motion estimation process. The motion estimation process

examines the reference frame in the neighborhoods of the input macroblock for

a closely matching macroblock. The displacement between the input macroblock
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and the point where the best match is found is treated as the motion vector.

Then, the motion vector and the error macroblock are both encoded. If, however,

the block in the reference frame is an exact match, only the motion vector is

transmitted. Another source of dynamism is also variation in the dimension of

frames. This information is encoded in the bitstream at the start of a new video

frame. The number of macroblocks that must be processed to decode a frame

varies with the width and height of the frame. Besides frame type and dimension,

the color channels (Y,U and V) also activate different regions (processing paths)

of the dataflow network of Figure 3.7. Each of these channels defines a different

operating scenario, even though these scenarios execute concurrently, independent

of each other.

Due to the macroblock variations discussed above, the actors of Figure 3.7

have dynamic execution behavior where token production and consumption rates

change between firings. The network of actors that is activated to decode a

particular macroblock also changes dynamically. Constructing the FSM-SADF

model of such dynamic networks is not trivial. All possible scenarios of the net-

work need to be found and the possible orders of execution of these scenarios

should also be encoded by a FSM. This requires advanced expertise in dataflow

modeling and close familiarity with the application implementation. This can be

time-consuming and error-prone, as the number of possible scenarios can be large

in modern-day streaming applications. We address this challenge in Chapter 4

with an automated approach to extract an FSM-SADF model from a dataflow

network, similar to the RVC-MPEG network of Figure 3.7.

3.4 Related Work

There are different dataflow modeling techniques that are more expressiveness

than SDF and can capture different dynamic aspects of streaming applications.

The list includes Khan Process Network (KPN) [48], Boolean-controlled Dataflow

(BDF) and Integer-controlled Dataflow (IDF) [16], Enable Invoke Dataflow (EIDF)

and Core-Function Dataflow (CFDF) [66], Variable-rate Phased Dataflow (VPDF) [96],

Mode-Controlled Dataflow (MCDF) [59] and Scenario-aware Dataflow (SADF) [89].

KPN [48] describes a streaming application as a set of deterministic sequential

processes that communicate through unbounded FIFO connections. No restriction

is placed on the implementation of processes. Each process is permitted to read

from its inputs in arbitrary order, but reading is blocking and port peeking is not

allowed. Processes are deterministic, in that they always produce the same stream

of output values for a given stream of input values. KPN is a superset of most

other dataflow models or languages that are determinate and can be implemented
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without input port peeking. KPN has been used in the literature for high-level

modeling of streaming applications and system-level design-space exploration of

heterogeneous embedded systems [65]. However, KPN is too expressive to analyse

properties such as deadlock-freedom at design-time.

BDF and IDF [16] extend SDF graphs with variable-rate actors, which have a

control port. Variable-rate actors change their input-output rates, depending on

the value of a control token, consumed from the control port. Examples of such

variable-rate actors include Switch, Select, Repeat-Begin and Repeat-End actors.

In BDF, the value of a control token is limited to boolean values (0 and 1), while

in IDF, a control token can assume integer values. In terms of expressivity, BDF

and IDF are Turing-complete [16, 59], which implies memory boundedness and

deadlock-freedom are undecidable. Other expressively Turing-complete dynamic

dataflow models are EIDF and a restricted version of it, CFDF [66]. In EIDF, an

actor may have multiple modes, where the data input-output rate is constant per

mode. After an actor executes at a certain mode, it determines the set of possible

next modes, which depends on the current mode and the input data consumed

at the current mode. CFDF is a restriction over EIDF, where the set of possible

next modes has at most one element.

The different expressively Turing-complete models, discussed above, do not

allow for sufficient design-time analysability such as deadlock-freedom and bound-

edness, let alone real-time temporal analysis. As a consequence, they do not fit

to our predictable system design methodology, discussed in Section 1.2. Instead,

analysable dynamic dataflow models come close to our analysis objectives, since

they intend to posses decidable properties, which may come at a price of extra

restrictions on expressiveness.

One example is Variable-Rate Dataflow (VRDF) [97], which improves SDF

by allowing port-rates to vary within a specified range. Its extension VPDF [96]

furthermore allows actors to cycle through a number of predetermined phases,

each of which may execute multiple times based on a run-time value selected

from a finite interval [96]. This value may assume a value of zero, which allows

modeling conditional behavior. Conservative buffer-sizes can be computed for

VPDF, which meet a throughput constraint imposed by a source/sink actor [96].

VPDF focuses on local variations at actor-level and does not take into account

global correlation between parameter changes. This, on the other hand, is an

important behavior for better design-time analysis, since actor-level variations

have a global correlation, dictated by the input data stream, as also demonstrated

with the case-study applications of this chapter.

A dynamic dataflow MoC, which considers global correlations between actor-

level variations, is MCDF [59]. MCDF is a restriction over IDF with the goal of

supporting run-time mode switchings, along with design-time temporal analysis.
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A MCDF model comprises multiple switch, select and static actors. The model

has a special mode controller actor, which is a static actor that drives the control

inputs of switch and select actors. Every firing of the mode controller activates a

sub-graph of the complete MCDF model. Each of these sub-graphs corresponds

to one mode and can be basically represented by a SDF graph. Such a graph cor-

relates all actor firings that execute together at a global level, enabling verification

of consistency and boundedness properties. In MCDF, a data-dependency across

different modes, say from mode x to y, is explicitly modeled by a tunnel actor,

which is a shorthand representation of a dataflow sub-network that preserves the

data until mode y is executed. In our FSM-SADF modeling, an inter-scenario

dependency is modeled succinctly by a single labeled initial token that carries

a time-stamp from one scenario to another (cf. Section 3.1.2). The properties

of a well-constructed MCDF, its temporal analysis and mapping strategies onto

multi-core architectures are presented in [59]. Nevertheless, the analysis of MCDF

requires conversion to homogeneous SDF (HSDF) graphs, which have a scalability

problem for large graphs [35].

SADF [89] is also designed to capture several dynamic aspects of dataflow

applications through the concept of global scenarios, while still ensuring analysis

of correctness and long-run average and worst-case performance are decidable.

It distinguishes between two types of actors: kernels and detectors. Kernels

are data processing units and they consume and produce fixed amount of data

tokens at a particular scenario. Detector actors configure kernel actors by sending

control tokens, which determine the operating scenarios of kernels, where scenario

transitions are governed by a stochastic model. The throughput analysis of SADF

presented in [89] constructs a global state-space representation of the execution

of scenario sequences, where transitions are at the level of individual firings of

actors. This may result in a very large state-space as the graph size grows. The

FSM-version of SADF, introduced in [28] and largely used in this thesis, encodes

the possible orders of scenario executions using a non-deterministic FSM, thereby

opening an opportunity to construct a much smaller state-space, whose transitions

are at the level of scenario iterations [30].

In summary, there are multiple efforts to extend the expressiveness of static

dataflow models to support dynamic aspects of modern-day streaming applica-

tions. The comparison of the different flavors of dynamic dataflow MoCs, in the

strictest sense, may not be straightforward. In [16], four key aspects are men-

tioned: expressiveness power, compactness, ease of analysis and intuitive appeal.

From the perspective of our predictable design strategy, analysability takes the

central stage. Any extensions, which add to the expressiveness of a dataflow

MoC, should be accompanied by the corresponding analysis techniques (that is

how Chapter 5 of this thesis comes into existence). Compactness and intuitive
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appeal also go together, which have significant implications when it comes to pro-

grammability and scalability. Intuitive appeal refers to how the concepts in a

model are closely related to the concepts in the application being modeled [16].

MCDF [59], for instance, intends to be used as both a programming model and

an analysis model. However, in its current form, where all actors are single-rate

actors, it may suffer from compactness as well as scalability of the analysis. FSM-

SADF, on the other hand, has a global scenario-based view of the application,

which is far from the task-level view of a parallel implementation of an application.

The dataflow model may also suffer from compactness as the number of scenarios

increases. However, FSM-SADF allows rigorous design-time analysis, capitaliz-

ing on the analysability of SDF. In this thesis, we address the programmability

and compactness issues by introducing Disciplined Dataflow Networks (DDN) as

a programming model for dynamic streaming applications, while FSM-SADF is

still used for all analysis purposes.

3.5 Summary

This chapter has discussed the different sources of dynamism, which contribute to

the different modes of operation of modern-day streaming applications. Three ap-

plications are discussed: 3GPP’s LTE (a cellular connectivity standard), WLAN

802.11a (a wireless connectivity standard) and RVC-MPEG-4 SP (a video codec

standard). The sources of dynamism include variations in sub-frame and channel

types of LTE, the different decoding stages and payload variations of WLAN,

and variations in frame types and encoding techniques of MPEG-4 video frames.

FSM-SADF models are presented for LTE and WLAN. An approach for model-

ing arbitrary scenario dependencies is also discussed. The challenges of manually

constructing FSM-SADF models has been brought to attention through the RVC-

MPEG video decoder application. Chapter 4 next addresses this challenge with

an automated approach that constructs an FSM-SADF model from a parallel

dataflow program.
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CHAPTER 4

Disciplined Dataflow Networks

Analysing deadlock-freedom, boundedness and real-time constraints are crucial

steps in the design of embedded streaming applications. To that end, the FSM-

based SADF MoC isolates the individual operating scenarios and analyses the

executions of the possible scenario sequences. This requires identification of all

scenarios and all scenario sequences. This can be challenging because of the large

number of possible scenarios in modern-day dynamic applications, as highlighted

in Chapter 3. Manual construction is generally time-consuming and error-prone.

This chapter addresses this challenge with an automated approach that extracts

a SADF model for a class of parallel implementations, which we call Disciplined

Dataflow Network (DDN). DDN is designed in such a way to guarantee construc-

tion of SADF models. It also enables automating the extraction process that

identifies all possible scenarios of a DDN and employs state-space enumeration to

determine all possible sequences of executions of these scenarios. The approach is

demonstrated for the CAL actor language and has been implemented in an openly

available CAL compiler. Case studies are presented for the RVC-MPEG video

decoder and WLAN 802.11a baseband processing. The chapter is organized as

follows. Section 4.1 outlines the extraction approach. Section 4.2 formally intro-

duces Dataflow Process Networks. Section 4.3 presents DDN construction rules.

Section 4.4 discusses automated extraction of scenarios and scenario sequences

from DDN programs. Section 4.5 presents case studies applications. Section 4.6

presents related work. Section 4.7 concludes the chapter.

47
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4.1 Introduction

Scenario sequences enable effective design-time analysis of streaming applica-

tions [80, 88]. Analysis that does not take into account the dynamic sequences

of executions of scenarios may be pessimistic and restrictive. Take, for instance,

consistency, which is a necessary condition for deadlock-freedom and bounded-

ness [34]. A scenario is consistent if there exists a finite number of actor executions

that returns the graph back to its initial tokens distribution [53]. If scenario se-

quences are not considered and individual scenarios are analyzed in isolation,

consistency of the application can be guaranteed only if the individual scenarios

are consistent. This condition is unnecessarily constraining. With scenario se-

quences, it is sufficient to show that all scenario sequences in cycles of the FSM

are consistent. E.g. consider a FSM with a single cycle, whose scenario sequence is

〈s1, s2〉. Consistency of the application is guaranteed if this sequence is consistent;

i.e. if executing scenario s2 after scenario s1 restores the original tokens distri-

butions. This does not require s1 and s2 to be individually consistent [29,31,89].

A similar argument holds for boundedness, which guarantees an implementation

within a bounded memory [34,79].

Identifying scenario sequences also enables compositional real-time temporal

analysis, such as worst-case throughput [30]. The analysis is more accurate than

approaches that do not consider scenario sequences. This eventually leads to re-

source savings, since real-time requirements can be guaranteed at a lower resource

allocation. In [88], a 66% gain in resource allocation has been reported for a video

decoder application, due to the refined analysis using scenario sequences.

To exploit these benefits, a scenario-based analysis model should be con-

structed from the application implementation. However, this step has a number of

challenges. First, the analysis model abstracts from implementation details such

as how scenario switching is decided. Hence, the types of parallel implementations

for which such a model can be constructed is unknown. Second, the validity of

abstraction of the analysis model must be verifiable. Third, modern-day stream-

ing applications have a large number of possible scenarios, which makes manual

model construction unattractive. It is time-consuming, error-prone and requires

constant revisions to maintain consistency with changes of the application.

This chapter presents an automated approach to the model construction prob-

lem. The input to the extraction process is a parallel implementation of the ap-

plication, written in a concurrent language. The extraction technique is largely

language-independent, since we employ Dataflow Process Network (DPN) [54]

to characterize a parallel implementation of the application. DPN has been in-

troduced to give a common denotational semantics to concurrent languages. A

DPN is a network of actors that communicate by message-passing through FIFO
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Figure 4.1: Automated scenario sequence extraction framework

buffers. Each actor has a set of different firings. Each firing consumes and pro-

duces a fixed number of data tokens. Executions of the firings are controlled by

firing rules that specify the conditions for the execution of these firings. These

conditions may be data-dependent and state-dependent, i.e. they may depend on

values of input tokens and on actor state. Thus, a DPN actor may have data-

dependent token production and consumption rates.

DPNs are, in general, expressively Turing-complete, and hence, it is not pos-

sible to guarantee construction of a scenario-based analysis model for arbitrary

DPNs. We therefore introduce a class of parallel implementations, which we

call Disciplined Dataflow Network (DDN), for which construction of a scenario-

based analysis is guaranteed to be possible. Moreover, the construction process

is automated. The goal of DDN is to define construction rules that enforce a

well-defined structure on the control flow that determines scenarios of a parallel

implementation. To that end, DDN differentiates between detector and kernel

actors, following the spirit of SADF [89]. Detectors are the initiators of variations
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in dynamic network behaviors, while kernels are the followers. To keep models

analysable, DDN restricts the data and state dependencies of actors. For instance,

it restricts the state-dependency of kernel actors to a finite set of states and their

data-dependencies to control tokens from detector actors. Compliance of an input

program with such construction rules can be automatically checked.

The main contribution of this chapter is an automated extraction framework

that 1) defines features of a parallel implementation, through DDN, for which

construction of a scenario-based analysis model can be guaranteed, 2) identifies

all possible scenarios of a DDN and extracts their SDF graphs and 3) derives all

possible sequences of executions of these scenarios through state-space enumer-

ation and constructs a finite-state machine (FSM) to characterize the scenario

sequences. The extracted model enables analysing the input parallel program

for deadlock-freedom, boundedness and real-time temporal properties, such as

worst-case throughput [30].

The programming and extraction techniques are demonstrated for the CAL

actor language [23]. The demonstration setup is shown in Figure 4.1. The input

is a dataflow program written in the CAL actor language. We used Caltoopia [2],

an open-source CAL compiler, to generate an intermediate representation (IR)

of the input program. The generated IR is the input to our model extractor,

which is implemented in Caltoopia. The IR is also the input to CAL2C, a C code

generator in Caltoopia. The generated C-code is profiled to derive WCETs of

actors by static code analysis using the Bound-T tool [1] for the ARM7 TDMI

target. Analysis of the extracted dataflow models is carried out with the SDF3 [86]

tool.

4.2 Dataflow Process Network

Dataflow Process Network (DPN) has been introduced in [54] to give a denota-

tional semantics to dataflow languages. A DPN program, defined in Definition 7,

is a network of dataflow actors that communicate by message-passing through

FIFO channels. Execution of a DPN is a possibly infinite execution of its actors.

The execution of a DPN actor is a sequence of atomic firings. Each firing con-

sumes input data tokens, performs a certain computation and produces output

tokens. A firing also has an associated firing rule that specifies what tokens must

be available at the inputs for the firing to be enabled. A DPN program is in

general dynamic, as it may have actors that change their data production and

consumption rates between firings.

Definition 7 (DPN). A Dataflow Process Network is a tuple (Λ,Γ) of a set Λ of

dataflow actors and a set Γ of FIFO buffer channels.
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ctrl switch

a

b

select

c1

c2

state

Figure 4.2: Example DPN

Let T denote the set of all tokens. A sequence of tokens is denoted as

X = [x1, x2, · · · , xn, · · · ] where xn ∈ T . In a FIFO, token x1 is at the front.

We also write the nth entry xn as X(n). We denote the empty sequence as

⊥. We write X v Y to denote that sequence X is a prefix of sequence Y .

E.g. [x1, x2] v [x1, x2, x3].

The set of all finite and infinite sequences is denoted as X. The set of n-tuples

of sequences is denoted as Xn. E.g. tuple Z =
[
[x1, x2, x3, x4], [x1]

]
∈ X2. We de-

note the cardinality ofX = [X1, X2, · · · , Xn] ∈ Xn as |X| =
[
|X1|, |X2|, · · · , |Xn|

]
.

The cardinality of Z is, for instance, |Z| = [4, 1].

In this chapter, we exceptionally use the letter α, possibly with extra sub-

and-superscripts, to denote DPN actors. For a given DPN actor α ∈ Λ, the

sets inports(α) = {1, 2, · · · , p} and outports(α) = {1, 2, · · · , q} denote input and

output ports, respectively. Firings of the actor can be represented with a firing

function that maps input tokens into output tokens, denoted as f : Xp → Xq.

Actor α may have multiple firing functions ffunc(α) = {f1, f2, · · · , fn} where

fi : Xp → Xq for 1 ≤ i ≤ n. Each firing function fi ∈ ffunc(α) has an associated

firing rule. Hence, actor α has n firing rules frules(α) = {R1, R2, · · · , Rn}, one

for each firing function.

The firing rule of a certain firing function basically specifies the amount of

input tokens as well as their data values that should be available per input port

for the firing function to be executed. E.g. consider the DPN network shown in

Figure 4.2, which has five actors. Actor select has two different firing functions,

say f1 and f2. The firing function f1 reads only from connection 1 (c1) and

f2 reads only from connection 2 (c2). The execution of the actor is a series of

these two firing functions (e.g. 〈· · · , f1, f1, f2, f1, f2, f2, · · · 〉), where one of them

is selected at a time. The selection between these two firings is decided by the

value of a control token received from actor ctrl. The firing f1 is selected if there

is at least one token on c1 and a token of value 1 is sent from the controller actor.

Likewise, firing f2 is selected if there is at least one token on c2 and a token of

value 1 is available from the controller. We define such firing rules in a more

generic manner as follows.
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The firing rule Ri ∈ frules(α) of the firing function fi specifies port rules for

each of the p input ports and is given as Ri = [Ri1, Ri2, · · · , Rip] ∈ Xp. A firing

may consume multiple tokens from a given input port. For this reason, port rule

Rij itself consists of a sequence of patterns that is applied to the input tokens

of port j; i.e. Rij = [Tij1, Tij2, · · · , Tijk, · · · , Tijn] where the firing function fi
consumes n ∈ N tokens from input port j. Each pattern Tijk ⊆ T basically

defines a set of tokens. A sequence of tokens, one from each pattern, must be

available to make a port rule satisfied.

Example: assume the firing function fi consumes n = 4 tokens from input

port j, which has the port rule Rij = [〈6, 9〉, 0, ∗, {t ∈ T | bitand(t) < 8}]. This

port rule has four patterns that specify the following set of tokens.

1. 〈6, 9〉 specifies the set of integers between and including 6 and 9.

2. 0 specifies the set with a single element, whose value is the integer 0.

3. ∗ specifies a set with a single token of arbitrary value.

4. {t ∈ T | bitand(t, 2)! = 0}] specifies the set of tokens whose evaluation with

the bitwise AND function bitand(t, 2) gives a non-zero result.

There are multiple token sequences that satisfy this port rule. E.g. [6, 0, 0, 3].

This chapter uses only the patterns of the above four types and their combinations.

The pattern 1 ∪ 〈4, 7〉, for instance, specifies the set of tokens {1, 4, 5, 6, 7}.
Consequently, port rule Rij defines a set XRij of token sequences of the form

[x1, x2, · · · , x|Rij |]. The port rule Rij =⊥ is satisfied for any input sequence. We

say a firing function is enabled if its firing rule is satisfied. The firing rule Ri is

satisfied if X v Xj for each input port j, where X ∈ XRij and Xj is a sequence

of tokens available on the channel connected to port j.

Example: For Figure 4.2, actor select has two firing rules R1 =
[
[1], [∗],⊥

]
and R2 =

[
[2],⊥, [∗]

]
, where for Ri =

[
Ri1, Ri2, Ri3

]
, the port rules Ri1, Ri2, Ri3

correspond to the inputs connected to actors ctrl, a and b, respectively. Hence,

R1 is satisfied if there is at least one token of value 1 from actor ctrl and one

token from actor a. The status of connection c2 is irrelevant for the firing.

We call a firing rule data-dependent if it has a port rule whose patterns depend

on values of input tokens, such as port rules R11 = [1] and R21 = [2] of actor select.

We call an actor data-dependent if it has a data-dependent firing rule. A DPN

actor may have state that is local to the actor. Actor state can be represented

by a state token on a self-edge that runs from an actor back to itself. Actor ctrl

of Figure 4.2 has such a self-edge to model its statefulness [54]. We call a firing

rule state-dependent if it has a port rule on the input connected to the self-edge,

whose patterns depend on the value of the state. We call an actor state-dependent

if it has a state-dependent firing rule. State and data dependencies allow us to

implement dynamic actors whose input and output rates vary between firings.
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αk1 αk2 αk3 αk4 αk5

αd1 αd2

SSR1 SSR2

detector actor

kernel actor

data channel

control channel

Figure 4.3: Example DDN

4.3 Disciplined Dataflow Networks

A DPN program of a streaming application processes an input stream of data ob-

jects, such as packets and frames. Processing a data object requires a sequence of

firings of different actors, which we refer to as execution path. The possible execu-

tion paths should be known to analyse a DPN for properties such as boundedness

and deadlock-freedom.

Firing rules of a DPN actor are determined by the actor’s state and its input

tokens. Therefore, the sequence of firings of an actor (i.e. its control flow) is

decided locally. Lack of correlation between the control flows of actors poses a

challenge to identify the possible execution paths. In this section, we introduce

a set of construction rules that are intended to enforce some global correlation

between the control flows of actors to allow for an automated analysis. We refer

to a DPN program that complies with these construction rules as Disciplined

Dataflow Network (DDN). Section 4.3.1 gives an overview of DDN.

4.3.1 DDN Overview

The rules of DDN enable constructing an analysable DPN. The DDN rules restrict

state and data dependencies of actors to state variables and input tokens that 1)

are of type integer and 2) can only assume a finite number of values. A DDN

is constructed from two types of actors: detectors and kernels. Detector actors

control the firings of kernel actors by means of the data tokens communicated

from the detector to the kernel. All data-dependent firing rules of kernel actors

are driven by output tokens of detector actors. Figure 4.3 illustrates an exam-

ple DDN. The DDN has two detector actors (αd1 and αd2) and five kernel actors

(αki for 1 ≤ i ≤ 5). Outgoing channels of detector actors are by definition control

channels and all other channels are data channels. A detector actor and the set

of kernel actors it controls form a Scenario Synchronous Region (SSR). Figure 4.3

shows two SSRs: SSR1 of detector αd1 and SSR2 of detector αd2.



i
i

“thesis” — 2014/10/3 — 2:55 — page 54 — #66 i
i

i
i

i
i

54 Section 4.3: Disciplined Dataflow Networks

The figure shows that a detector actor may control other detector actors.

DDN, however, allows only hierarchical detector dependencies, which means cyclic-

dependencies, for instance from αd2 back to αd1, are not allowed. Table 4.1 presents

example firing functions for the actors of Figure 4.3. In the table, an order for

the ports of an actor is given by specifying an order for the actors, with which

it is connected to. Moreover, we reused our notation of patterns of firing rules

(Section 4.2) to input and output token sequences of firing functions.

Example: actor αk1 has only one firing function fk1
1 (
[ ]
,
[
[∗]
]
). The port order

[ ], [αk2 ] indicates that the actor has no input ports (i.e. the [ ] part) and has one

output port connected to actor αk2 . When this firing is taken, the actor reads

no input tokens but, at the end of the firing, it produces a single token at the

output port. The output token can have any arbitrary value, as indicated by the

∗ wildcard character. Similarly, the firing fk2
1 (
[
[1], [∗], [∗]

]
,
[
[∗], [∗]

]
) of actor αk2

is taken if there is at least one token on each of its three input ports, where the

token from the first input port has the value of 1, as encoded by the input part[
[1], [∗], [∗]

]
. At the end of the firing, the actor produces one token on each of its

two output ports, as given by the output part
[
[∗], [∗]

]
.

The construction rule of detector actors

1. allows arbitrary state and data dependencies, but

2. restricts the values of their output tokens to a finite set of integers.

The construction rule of kernel actors

1. reduces the state-dependency to a finite number of states that can be cap-

tured by a finite-state machine, and

2. restricts data-dependencies to input tokens from detector actors.

These rules guarantee that a scenario-based analysis model can be constructed

through an automatic process. Figure 4.4 shows the extracted FSM-SADF model

of Figure 4.3. It shows four extracted scenarios that capture all possible execution

paths and an FSM that characterizes all possible scenario sequences.

Example: when the firing fd1
1 (
[
[∗]
]
,
[
[1], [1],⊥

]
) of detector actor αd1 is taken,

it produces tokens of value 1 to actors αk2 and αk3 , but sends no token to the

other detector actor αd2. As a result, the second detector actor is not activated

and neither are actors αk4 and αk5 , which are in the SSR region of αd2. The

resulting scenario is Scenario s1 of Figure4.4. The scenario has four SDF actors

a, b, c and d1, which correspond to the active DDN actors αk1 , αk2 , αk3 and αd1,

respectively. The input-output data rates of each SDF actor are derived from

the input-output token sequences of the firing function, which is enabled in its

respective DDN actor. The scenario extraction process is presented in further

detail in Section 4.4.1 and 4.4.2.
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DDN

actor

SADF

actor

Port order

[inputs],[outputs]
Firings

αk1 a [ ], [αk2 ] fk1
1 (
[ ]
,
[
[∗]
]
)

αk2 b
[αd1, α

k
1 , α

k
3 ],

[αd1, α
k
3 ]

fk2
1 (
[
[1], [∗], [∗]

]
,
[
[∗], [∗]

]
),

fk2
2 (
[
[〈2, 3〉], [∗], [∗]

]
,
[
⊥, [∗]

]
)

αk3 c
[αd1, α

k
2 ],

[αd2, α
k
2 , α

k
4 ]

fk3
1 (
[
[1], [∗]

]
,
[
[∗],⊥,⊥

]
),

fk3
2 (
[
[2], [∗, ∗, ∗]

]
,
[
⊥, [∗, ∗, ∗], [∗, ∗]

]
),

fk3
3 (
[
[3], [∗]

]
,
[
[∗], [∗], [∗]

]
)

αk4 d
[αd2, α

k
3 ],

[αk5 ]

fk4
1 (
[
[1], [∗]

]
,
[
[∗]
]
),

fk4
2 (
[
[2], [∗]

]
,
[
⊥
]
),

fk4
3 (
[
[3],⊥

]
,
[
⊥
]
)

αk5 e
[αd2, α

k
4 ],

[ ]

fk5
1 (
[
[1], [∗]

]
,
[ ]

),

fk5
2 (
[
[〈2, 3〉],⊥

]
,
[ ]

)

αd1 d1

[αk2 ],

[αk2 , α
k
3 , α

d
2]

fd1
1 (
[
[∗]
]
,
[
[1], [1],⊥

]
),

fd1
2 (
[
⊥
]
,
[
[2, 2, 2], [2], [2]

]
),

fd1
3 (
[
⊥
]
,
[
[3], [3], [3]

]
)

αd2 d2

[αd1, α
k
3 ],

[αk4 , α
k
5 ]

fd2
1 (
[
[2],⊥

]
,
[
[1], [1]

]
),

fd2
2 (
[
[3], [t|foo(t)]

]
,
[
[2],⊥

]
),

fd2
3 (
[
[3], [t|!foo(t)]

]
,
[
⊥, [3]

]
)

Table 4.1: Example firings of DDN of Figure 4.3

We give next a BNF-like representation of DDN programs. Braces {· · · } re-

fer to “zero or more of the enclosed”. ‘〈(ddn) firing rule〉’ → ‘firing function’

says ‘firing function’ is executed if ‘(ddn) firing rule’ holds. The construction

do if ... fi od refers to a repetitive operation of selecting and executing a firing

among the enclosed set of firings. The construction par ... rap refers to parallel

execution. Section 4.3.2 next discusses ddn firing rules and the construction rules

of kernel actors. Section 4.3.3 discusses the construction rules of detector actors.

• 〈firing〉 ::= 〈firing rule〉 → “firing function”

• 〈ddn firing〉::= 〈ddn firing rule〉 → “firing function”

• 〈detector actor〉 ::= do if 〈firing〉{, 〈firing〉} fi od

• 〈kernel actor〉 ::= do if 〈ddn firing〉{, 〈ddn firing〉} fi od

• 〈actor〉::=〈detector actor〉 | 〈kernel actor〉
• 〈DDN〉 ::= par 〈actor〉{, 〈actor〉} rap
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a b c

d1Scenario s1

a b c d e

d1 d2

3 2 3 2

3 2

Scenario s2

a b c e

d1 d2

33 3 2

Scenario s3

a b c d

d1 d2

3 3 3 3

Scenario s4

q0

q1 q2q3

ε(q0) = s1

ε(q1) = s2

ε(q2) = s3

ε(q3) = s4

FSM

Figure 4.4: Extracted FSM-based SADF model of Figure 4.3

4.3.2 Kernel Actors

A kernel actor comprises a set of so-called DDN firings. Each DDN firing has

a corresponding DDN firing rule. These rules can be both data-dependent and

state-dependent, as discussed in Section 4.3.2.

DDN Firing Rules

A DDN firing rule R′i is a firing rule where patterns that depend on values

of input tokens are limited to unions of disjoint integer intervals. Each in-

terval specifies a set of input tokens that satisfy the pattern. E.g. the firing

rule R′i =
[
[〈1, 5〉], [〈1〉 ∪ 〈5,∞〉]

]
needs two tokens

[
[x], [y]

]
to be satisfied, where

x ∈ {1, 2, · · · , 5} and y ∈ {1}∪{5, 6, · · · }. Listing 4.1 shows an example of a CAL

action that has this firing rule, shown at line 3.

1 actor DDNFiringRule() int in1, int in2 ==> :
2 action_tag: action in1:[x], in2:[y] ==>
3 guard x >= 1 and x <= 5, y = 1 or y > 5
4 ...

Listing 4.1: Example DDN firing rule
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Testing patterns, which depend on values of tokens, requires input-port peeking

in implementations. We refer to input ports on which a firing rule peeks as input-

lookaheads. If an input-lookahead port is connected to a self-edge, which models

an actor state, peeking amounts to testing state variables. An input-lookahead

port, which is not connected to a self-edge, is by definition a control port of the

firing. The DDN construction rule requires these control ports to be connected to

output ports of detector actors. In the rest of the chapter, we assume a peeking

depth of one, i.e. firing rules peek on only the front of input-lookahead FIFOs.

This assumption simplifies the discussion of scenario extraction in Section 4.4.

Generalization to arbitrarily peeking depth is straightforward. Definition 8 defines

patterns of a DDN firing rule as a set of integers.

Definition 8 (DDN Firing Rule). A DDN firing rule R′i of actor α ∈ Λ is a

sequence R′i = [R′i1, R
′
i2, · · · , R′ip] ⊆ Xp of port rules, for each of the p input

ports such that for an input-lookahead port l where 1 ≤ l ≤ p, R′il = [tl] where

tl ⊆ Z. Further, |tl| ≤ n for some n ∈ N if l is connected to a self-edge.

Definition 8 states that the pattern of an input-lookahead of a self-edge can

only have a finite set of integer values (since |tl| ≤ n). This restricts the state-

dependency of a kernel actor α to a finite set states(α) of states. Note that the

actor can have any arbitrary set of state variables. The set states(α) specifies only

the set of values (which are numbers assigned to states) that are used in DDN

firing rules. State dependent behavior can be implemented with a state variable.

Actor states and state transitions can also be captured by an FSM. If an FSM

is not explicitly given, a fully-connected FSM can be assumed as an abstraction,

as the state variable may take any value from the set states(α) after each firing.

The FSM encodes the possible orders of firings, which we refer to as the firing

schedule (Definition 9).

Definition 9 (Firing Schedule). A firing schedule of an actor is a directed graph,

where the nodes represent firings and the edges encode the possible orders of firings.

Example firing schedule: assume actor α has three firing rules of the form

{
[
[1], · · ·

]
,
[
[1], · · ·

]
,
[
[2], · · ·

]
}, one for each of its firing functions, where the 1st

port is an input-lookahead connected to a self-edge. Thus, the set of states is

states(α) = {1, 2}. For the FSM given in Figure 4.5a, the corresponding firing

schedule is shown in Figure 4.5b. Each state transition is labeled as R′i → fi,

implying the firing fi is executed if the firing rule R′i is satisfied. The firing

schedule is a useful tool to detect if an actor is a static or dynamic kernel actor,

as discussed next in Section 4.3.2 and 4.3.2.
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1 2

R′1 → f1 R′3 → f3R′2 → f2

R′4 → f4

(a) Actor state transitions

f1 f2 f3 f4

(b) Firing schedule

Figure 4.5: Example firing schedule

Static Kernel Actor

We classify a kernel actor as static if it has a static firing schedule, which means

none of its nodes have multiple outgoing edges. Such a schedule can execute

indefinitely only if it has a cycle. Hence, a static firing schedule consists of a

(possibly empty) transient sequence ftran = 〈f ′t1 , f
′
t2 , · · · , f

′
tm〉 of firings, followed

by a periodic fper = 〈f ′p1
, f ′p2

, · · · , f ′pn〉 sequence of firings. A static firing schedule

also implies that none of the firing rules must have data-dependent patterns, in

order to ensure a non-terminating actor execution. Consequently, a static kernel

actor is data-independent. A static kernel actor is categorized as an SDF actor

if all of the firings in the periodic phase have the same port-signature. We use

the transient firing sequence of static kernel actors to define the initial token

distribution of the extracted SDF graphs, as discussed later in Section 4.4.

Dynamic Kernel Actor

We classify a kernel actor as dynamic if it has an FSM (that encodes the actor’s

state transitions) where each state forms a complete set of DDN firing rules. We

say a set of DDN firing rules are complete if they are mutually exclusive and the

union of the patterns of their input-lookaheads covers the entire condition space,

as given in Definition 10. A set of DDN firing rules are mutually exclusive if any

two firing rules of the set do not have a common tuple of control tokens that

satisfies them. A complete set of firing rules ensures that exactly one firing rule

gets satisfied for a given tuple of control tokens.

Definition 10 (A Complete Set of Firing Rules). Let L denote the set of input-

lookaheads of the firing rule R′i of the ith firing function. Let tl ⊆ Z denote the set

of tokens defined by the pattern of the port rule R′il = [tl] of l ∈ L. Furthermore,

let R̂i denote the set of all tuple of tokens, one per input-lookahead, that satisfy

input-lookahead patterns. I.e. R̂i = Πl∈Ltl. Then, a given set R′ of firing rules

is complete if ∀R′i, R′j ∈ R′, i 6= j, R̂i ∩ R̂j = ∅ and
⋃
R′i∈R′ R̂i = Z|L|.
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Example: Switch and select actors, which are common in dynamic dataflow

programs, are special cases of dynamic kernel actors. These actors have a one-

state FSM whose transitions form a complete DDN firing rule set. Listing 4.2

shows a CAL example of a switch actor. Every time the actor fires, it consumes

a control token from input port ctrl and a data token from input port in. The

data token is forwarded to output port out1 if the value of the control token

is 1 (lines 2-3), to output port out2 if the value of the control token is 2 (lines

5-6) or to output port out3 otherwise (lines 8-9). Therefore, the firing rules are

R′1 =
[
[1], [∗]

]
, R′2 =

[
[2], [∗]

]
, R′3 =

[
[〈∞, 0〉 ∪ 〈3,∞〉], [∗]

]
. Each of the three

firing rules has only one input-lookahead port, which is port ctrl. Therefore,

R′11 = [1], R′21 = [2] and R′31 = [〈∞, 0〉 ∪ 〈3,∞〉]. The actor is complete because

these three port rules have no intersection (are mutually exclusive), while their

union gives the whole set of integers Z.

1 actor sw() int ctrl, T in ==> T out1, T out2, T out3:
2 f1:action ctrl:[c], in:[d] ==> out1:[d]
3 guard c = 1 end
4

5 f2:action ctrl:[c], in:[d] ==> out2:[d]
6 guard c = 2 end
7

8 f3:action ctrl:[c], in:[d] ==> out3:[d]
9 guard c != 1 or c != 2 end

10 end

Listing 4.2: Example switch actor

4.3.3 Detector actors

A detector is a DPN actor whose output tokens are of type integer and take values

from a finite set. It has a finite number of firings and each firing has an associated

firing rule. These firing rules can be data and state dependent, and do not have

to be necessarily DDN-compliant. DDN does not check the completeness of such

firing rules; although it allows for testing whether a firing of a detector is enabled

by other detectors.

Listing 4.3 shows an example of a dummy detector actor, written in CAL,

with three firings (i.e. actions f1,f2 and f3 at lines 4,7 and 12). As far as

the model extraction is concerned, these three firings should not be necessarily

mutually exclusive, but should completely cover the condition space to guarantee

termination-free execution of the detector. Our extractor assumes termination-

free execution of detectors, which can be tested through advanced techniques,

such as abstract interpretation, in a separate step [99].
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1 actor detector() int in ==> int out1, int out2:
2 int payload := 0;
3

4 f1 : action in [ d ] ==> out1: [ 1 ]
5 guard d < 0
6 end // end of action ’f1’
7

8 f2 : action in [ d ] ==> out1: [ 2 ], out2:[ payload ]
9 // ’bitand’ refers to a bitwise AND operation.

10 // It limits the value of ’payload’ to only 0 and 4.
11 do
12 payload := bitand(d, 4);
13 end // end of action ’f2’
14

15 f3 : action ==> out1: [ m ] repeat 4
16 // Line 24 declares a local array variable
17 // ’m’ of size 4. Each entry of the array is
18 // initialized to 3. All four entries are
19 // sent out of the output port ’out1’ at the
20 // end of the firing of action ’f3’.
21 var int [4] m := [3 : for int i in 1 .. 4]
22 do
23 payload := 0;
24 end // end of action ’f3’
25

26 priority
27 f1 > f2;
28 end // end of priority
29

30 schedule fsm state1:
31 state1 (f1) --> state1;
32 state1 (f2) --> state2;
33 state2 (f3) --> state1;
34 end // end of schedule
35 end

Listing 4.3: Example detector actor

Listing 4.3 also shows that a detector actor may have multiple output ports;

i.e. ports out1 and out2. Such output ports are by definition control ports of the

detector if they are connected to the input-lookaheads of dynamic kernel and/or

other detector actors. In this case, each firing of the detector actor produces a

tuple of control tokens, one from each control port. For instance, when action

f2 is taken, it produces the control token 2 on port out1, and either token 0

or 4 on port out2. Hence, the possible tuple of control tokens for action f2 are

(2, 0) and (2, 4). Note that multiple control tokens of the same value are allowed

per port per firing. For instance, in action f3, output port out1 is a multi-rate

port, where all the 4 control tokens have the same value of 3. The tuple of control

tokens produced per detector firing allows us to automatically identify the group

of firings in the SSR region of the detector, which are enabled by the firing. The

group defines a scenario of the SSR region, as discussed in Section 4.4.1.
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4.4 Scenario Sequence Extraction

This section presents extraction of scenario sequences from a DDN program in

three sections. Section 4.4.1 presents extraction of a SDFG that captures a sce-

nario of a DDN. Section 4.4.2 discusses the extraction of all possible scenario

sequences. Section 4.4.3 analyses the algorithmic complexity of the approach.

4.4.1 Scenario Extraction

A scenario is defined by a scenario configuration, which is a tuple of firings,

one from each detector in the network. Similar to [89], we define a Scenario

Synchronous Region (SSR) as a sub-network whose actors are controlled by the

same detector actor. We set the interval of scenario synchronicity to be one firing

of the detector actor of the SSR. This means an SSR has a number of scenarios

and in each of these scenarios, the repetition factor of the detector is one. Hence,

a tuple of firings of detectors determines a scenario of the whole network.

Consider the set of detectors D = {αd1, αd2, · · · , αdn} of a DDN. The set Ω of

possible tuples of firings of detectors is given by the Cartesian product

Ω = ffunc(αd1)× ffunc(αd2)× · · · × ffunc(αdn).

Each tuple fΩ = (fd1 , f
d
2 , · · · , fdn) ∈ Ω defines a scenario configuration where

fdi ∈ ffunc(αdi ).

Some control ports of a detector actor may produce no control token in some

firings. E.g. output port out2 of Listing 4.3 is inactive in actions f1 and f3.

For convenience, we introduce the symbol � to denote the output of an inactive

control port. Thus, firing fdi produces a tuple of control tokens, one on each of the

q control ports. These control tokens can assume a tuple of values from the set

ctokens(fdi ) ⊆ {N ∪ �}q. Thus, fΩ encapsulates a set Θ(fΩ) of tuples of control

tokens,

Θ(fΩ) = ctokens(fd1 )× ctokens(fd2 )× · · · × ctokens(fdn).

Each tuple (c1, c2, · · · , cn) ∈ Θ(fΩ) of control tokens, where ci ∈ {N ∪ �},
specifies a network of enabled actor firings. This network defines an operating

scenario of the DDN. The network can be captured by a SDF graph, since every

firing function consumes and produces a preset fixed amount of tokens.

Example scenario extraction: The DDN of Figure 4.3 has two detector actors

αd1 and αd2. Each actor has three firing functions. The Cartesian product gives 9

scenario configurations. The configuration fΩ = (fd1
1 , fd2

1 ) has only one tuple of

control tokens: (1,�) ∈ Θ(fΩ). fd1
1 produces the control token 1, which enables

firings fk2
1 and fk3

1 of actors αk2 and αk3 . Actor αk1 is a static kernel actor that is

enabled by any configuration. The second detector does not produce any control
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Algorithm 1 ExtractSDFGraph((Λ,Γ), ctuple)

1: ExtractSDFGraph((Λ,Γ), ctuple)

2: A := ∅ //set of SDF actors

3: C := ∅ //set of SDF channels

4: Λq := ∅ //queue of DDN actors to be visited

5: Λq := initialize queue of with source actors of Λ

6: while Λq 6= ∅ do

7: α := remove an actor from Λq
8: if α is not visited & has enabled firing due to ctuple then

9: f(Xp, Xq) := get enabled firing of α due to ctuple
10: a := construct a new SDF actor based on f

11: A := A ∪ {a} //add SDF actor

12: X (a) := profile firing f for WCET

13: for all output ports of α, o = 1 · · · q do

14: if sequence of port o, Xq(o) 6=⊥ then

15: Λq := Λq ∪ {get actor connected to port o}
16: end if

17: end for

18: end if

19: end while

20:

21: // construct SDF channels

22: for all channel γ = (o, i) ∈ Γ do

23: fs(X
ps , Xqs) := get enabled firing of actor of port o

24: fd(X
pd , Xqd) := get enabled firing of actor of port i

25: if fs 6= NULL and fd 6= NULL then

26: c := SDF channel from actor of fs to actor of fd
27: ρ(c) := (|Xqs(o)|, |Xpd(i)|) //assign port-rate

28: fotran := set of transient firings of actor of port o

29: f itran := set of transient firings of actor of port i

30: tprod :=
∑
∀f(Xp,Xq)∈fotran

|Xq(o)| //tokens produced by transients

31: tcons :=
∑
∀f(Xp,Xq)∈fitran

|Xp(i)| //tokens consumed by transients

32: number of initial tokens of c := tprod − tcons
33: C := C ∪ {c} //add SDF channel

34: end if

35: end for

36: return g = (A,C, I, χ, ρ, ι)
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tokens, since it expects a control token of value 2 or 3 to be enabled. As a result,

none of the actors in its SSR has an enabled firing. The SDFG defined by (1,�)

is shown by scenario s1 of Figure 4.3. The port rates of the actors of this SDFG

are derived from the input-output token sequences of the firing functions, which

are enabled in their respective DDN actors. For this example, all port rates are

equal to 1, since the four enabled firing functions, i.e. fk1
1 , fk2

1 , fk3
1 and fd1

1 , all

have input-output token sequences of length 1.

Algorithm 1 gives a sketch of the extraction of an SDFG from DDN (Λ,Γ),

given a tuple ctuple = (c1, c2, · · · , cn) of control tokens. It starts with initializing

a queue of DDN actors Λq with source actors of the DDN (line 5). As long as this

queue is not empty (line 6), the algorithm picks a previously non-visited actor

α from the queue (line 7) and checks it if it has an enabled firing (lines 8-9). A

firing of a kernel actor is enabled if its firing rule is satisfied by ctuple. A firing of a

detector actor is enabled if its firing function is in the scenario configuration fΩ of

ctuple. An SDF actor is created based on the enabled firing function of α (lines 10-

12). Then, all DDN actors that are directly connected to actor α through output

ports, which have non-empty token sequences in the enabled firing, are added

to the queue Λq (lines 13-17). The SDF channels are constructed as outlined

between lines 20-30. For each connection in the DDN, the source and destination

firings fs and fd that are enabled due to ctuple are first extracted (lines 21-22).

If both firings exist (line 23), a channel is created (line 24), whose port-rates are

determined by the port-signatures of fs and fd (line 25). These port-rates can

also be multi-rate (i.e. > 1). The initial tokens of the channel are set (line 26-27)

by summing the tokens produced by the transient firings (cf. Section 4.3.2) of the

source actor to the output port connected to the channel.

4.4.2 Extracting Scenario Sequences

Extracting all scenario configurations using the Cartesian product Ω of the set

of firings of detectors is ineffective, since it may give configurations, which do

not occur in any actual execution of the network. In this case, the extrac-

tion gives an FSM-SADF model, which is unnecessarily large and whose FSM

is fully-connected. Consequently, the resulting analysis such as consistency and

throughput would be pessimistic. This section discusses extraction of scenario

configurations more accurately from local FSMs of detector actors.

We construct the possible scenario configurations through configuration-space

exploration. The resulting configuration-space (CS) is a directed graph whose

nodes and edges represent configurations and configuration transitions, respec-

tively. The exploration is a configuration-space enumeration, based on the firing

schedules of the detector actors. The exploration starts by forming the tuple of
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fd1
1 fd1

2 fd1
3

(a) Firing schedule of αd1

fd2
2 fd2

1 fd2
3

(b) Firing schedule of αd2

f1, f1 f2, f2 f2, f3

f1, f2 f1, f3 f3, f1

f3, f2 f2, f1 f3, f3

(c) Complete configuration-space

f1,−

f2, f1f3, f2 f3, f3

(d) Simplified configuration-space

Figure 4.6: Construction of configuration-space

the initial firings of all firing schedules. Then, the exploration discovers new tu-

ples (i.e. new nodes) by making a transition in each of the firing schedules. Due

to hierarchical dependencies between detectors, some firings of a configuration

may not be enabled. Thus, a transition is made in a firing schedule only if its

firing is enabled in the current configuration. Otherwise, the firing schedule stays

in the same firing until it is enabled, while other detectors make progress. The

exploration terminates when no more new tuples are discovered.

Example: Assume Figures 4.6a and 4.6b are the firing schedules of detectors

αd1 and αd2 of Figure 4.3, whose firings are given in Table 4.1. Starting from fd1
1

and fd2
1 , two transitions are possible for each of the firings. This gives four pos-

sible tuples from the node (f1, f1) (the superscripts d1 and d2 are dropped for

readability), as shown in Figure 4.6c. Progressing from these four tuples eventu-

ally gives the complete configuration-space of Figure 4.6c. The complete space

can be reduced if we avoid paths that lead to non-existent and redundant tuples.

For instance, one of the four possible tuples after the initial node (fd1
1 , fd2

1 ) is

(fd1
2 , fd2

2 ). This tuple cannot occur, since, as we can see from Table 4.1, fd1
2 sends

a control token of value 2, which does not satisfy the firing rule of fd2
2 . Hence,

all paths following (fd1
2 , fd2

2 ) can be avoided from the exploration. The same rea-

soning applies also to (fd1
2 , fd2

3 ) and (fd1
3 , fd2

1 ). Tuples (fd1
1 , fd2

1 ), (fd1
1 , fd2

2 ) and

(fd1
1 , fd2

3 ) are redundant, since in these cases αd2 is not controlled by detector αd1
and the network is solely controlled by αd1. Removing non-existent and redundant

configurations gives a simplified configuration space, shown in Figure 4.6d.
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Algorithm 2 Construct configuration-space (CS) from given a set of detectors

1: ConstructCS(D = {αd1 , αd2 , · · · , αdn})
2: (V,E) = (∅, ∅) //CS is a directed graph

3: Ωq := ∅ //a set of configurations to be explored

4: Ωq := Ωq ∪ {(fd1
1 , fd2

1 , · · · , fdn1 )} //add the initial configuration

5: while Ωq 6= ∅ do

6: fΩ := remove a configuration from Ωq
7: if fΩ is not visited and is valid then

8: V := V ∪ {add a new node}
9: //define the set Θ(fΩ) of tuples of control tokens

10: Θ(fΩ) = ctokens(fd1
1 )× ctokens(fd2

1 )× · · · × ctokens(fdn1 )

11: for all ctuple = (c1, c2, · · · , cn) ∈ Θ(fΩ) do

12: if ctuple is a valid tuple then

13: g = ExtractSDFGraph((Λ,Γ), ctuple)

14: S := S ∪ {g} //add scenario if unique

15: end if

16: end for

17: end if

18: for all fnextΩ directly reachable configuration from fΩ do

19: if fnextΩ is a valid configuration then

20: Ωq := Ωq ∪ {fnextΩ }
21: add transitions to E accordingly

22: end if

23: end for

24: end while

25: return (V,E)

Algorithm 2 shows a sketch of the CS construction from a given set of detector

actors. The CS is a directed graph (line 2), where each node corresponds to a

scenario configuration. The set Ωq keeps configurations to be yet visited (line 3).

The algorithm begins with the initial configuration (line 4) and searches for new

configurations (lines 18-23) by making step transitions in each of the firing sched-

ules of the detector actors. For every valid configuration, a new node is added to

the CS (line 8). For each tuple of control tokens, which is defined by the configu-

ration (lines 10-11), a scenario graph is extracted (lines 12-15) using Algorithm 1.

The outgoing edges of a node are inferred from the set of directly reachable con-

figurations (line 21). Checking for non-existent and redundant configurations and

scenarios are already embedded in the exploration (lines 7,12,14,19).
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The CS is a key step towards extracting an FSM-SADF model. The FSM of

the extracted FSM-SADF model is constructed directly from the CS. A config-

uration fΩ possibly encodes multiple tuples of control tokens, as shown in Algo-

rithm 2 (lines 10-11). These tuples of control tokens lead to a set SfΩ
of scenario

graphs. Hence, multiple FSM states QfΩ
are possible for CS node defined by fΩ

such that each FSM state is labeled with a scenario graph from the set SfΩ
; i.e.

εfΩ : QfΩ → SfΩ , where εfΩ is scenario labeling. In the simplest case, each config-

uration has exactly one scenario graph and, therefore, translates to an FSM state.

The FSM transitions directly follow the edges in the CS. An FSM transition is

added between two FSM states if there is an edge in the CS between the nodes

of these FSM states.

4.4.3 Complexity

Algorithm 1 consists of two loops. In the first loop, each DDN actor is tested

exactly once whether it has an enabled firing. This results in a complexity of

O(|Λ|). The second loop tests each DDN channel once, and thus, has O(|Γ|).
Hence, the algorithm has a linear complexity O(|Λ| + |Γ|) with the number of

actors and channels of the DDN.

The model extractor is correct by construction (i.e. it finds all possible sce-

narios), since it enumerates all possible scenario configurations. Enumerating all

configurations, however, may negatively impact the scalability of the extractor.

The CS construction, sketched in Algorithm 2, has complexity O(n) where n is

the total number of tuples of control. n is given as

n =
∑
fΩ∈Ω

|Θ(fΩ)|

where Ω is the set of all possible tuples of firings of detectors (the set of all scenario

configurations) and Θ(fΩ) is the set of all possible tuples of control tokens of a

scenario configuration fΩ ∈ Ω. n increases exponentially with the number of

detectors |D|, since the lengths of the set Ω and Θ(fΩ) are respectively

|Ω| = Π
|D|
i=1|ffunc(αid)| and |Θ(fΩ)| = Π

|D|
i=1|ctokens(fdi )|.

The control tokens ctokens(fdi ) of firing fdi (of the ith detector in fΩ)) also increases

exponentially with the number q of control ports of the detector. Thus, the

CS construction has an exponential time complexity O(k|D|×q) with number of

detectors and control ports, where k indicates the number of possible values for a

control token. Constructing the FSM states and transitions (which are not shown

in Algorithm 2) each require visiting every node of the CS once. Hence, their

complexity is linearly to the size of the CS.
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Figure 4.7: DDN program of WLAN 802.11a baseband

4.5 Case Study

This section demonstrates automated extraction of scenario sequences for WLAN

802.11a baseband processing and RVC-MPEG video decoder applications. The

demonstration uses the framework presented in Figure 4.1.

4.5.1 DDN program of WLAN 802.11a Baseband

Figure 4.7 shows the DDN program of the baseband (physical layer) processing

of WLAN 802.11a, based on the discussion in [59]. The DDN network is basically

equivalent to the Mode-Controlled Dataflow (MCDF) model presented in [59].

The network has one detector actor (actor mc), four dynamic kernel actors (actors

switch, select, tnl1, tnl2 ) and nine static kernel actors. Actors tnl1 and tnl2 are

tunnel actors in MCDF, which are used to implement data-dependencies across

different modes. A tunnel stores a data token produced at one mode and releases

it in another mode.

The WLAN packet decoding consists of four operating modes, as discussed

in Section 3.2. These modes are determined by the mode controller actor mc,

whose CAL implementation is outlined in Listing 4.4. The actor has four ac-

tions f1,f2,f3 and f4 that correspond to the four operating modes. As in-

dicated by the FSM schedule (lines 25-31), only action f1 can be enabled at

the initial state state1 (line 25). Action f1 tests if synchronization has suc-

ceeded. It is assumed that synchronization does not succeed at beginning, i.e.
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1 actor mc() int from_repl ==> int to_shift, int to_control:
2 int payload := 257; //let 257 indicate an uninitialized payload size
3

4 f1: action from_repl:[data] ==> to_shift:[param()], to_control:[1]
5 guard check_sync(data) <= 0 end
6

7 f2: action from_repl:[data] ==> to_shift:[param()], to_control:[2]
8 guard check_sync(data) > 0 end
9

10 f3: action from_repl:[data] ==> to_shift:[param()], to_control:[3]
11 guard payload > 0
12 do
13 if payload = 257 then
14 payload := payload_size(data);
15 end
16 payload := payload - 1;
17 end
18

19 f4: action from_repl:[data] ==> to_shift:[param()], to_control:[4]
20 guard payload = 0
21 do
22 payload := 257;
23 end
24

25 schedule fsm state1:
26 state1 (f1) --> state2;
27 state2 (f1) --> state2;
28 state2 (f2) --> state3;
29 state3 (f3) --> state3;
30 state3 (f4) --> state1;
31 end
32 end

Listing 4.4: Detector mc of DDN of WLAN shown in Figure 4.7

check sync(data) <= 0 evaluates to true. This enables the firing of f1,

which dispatches the control token 1 and sets the network in synchronization

mode. Then, the scheduler transits to state2 (line 27-28), at which either ac-

tion f1 or f2 are enabled, depending on the result of the previous synchronization

mode. If synchronization has not succeeded, action f1 becomes enabled again.

Otherwise, action f2 gets enabled, whose firing dispatches the control token 2

and sets the network in header decoding mode. After header decoding, the sched-

uler transits to state3 (line 29-30), at which either f3 or f4 can be enabled for

firing. Action f3 and f4 set the network in payload decoding and cyclic redun-

dancy check (CRC) modes, respectively. Action f3 is fired as many times as the

number of symbols (i.e. payload > 0). Action f4 gets enabled when payload

= 0, which sets the network in mode 4 for CRC. After a single firing of action

f4, the schedule returns back to state1 for the next packet decoding.
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As shown in Table 4.2, the automated extractor identified four scenarios that

correspond to these four modes. Different regions of the DDN are activated for

each of these four scenarios. Since the DDN has only one detector actor mc, each

firing fi of mc determines a scenario that comprises those actor firings that are

enabled by the control token produced by fi. For instance, when mc executes one

of its firing functions f1(
[
[∗]
]
,
[
[∗], [1]

]
), it broadcasts a control token of value 1,

which dictates the synchronization scenario s1, shown in Figure 3.6, (actor switch,

select and repl are not shown in the scenario).

Number of WLAN RVC-MPEG

Configurations (Cartesian product) |Ω| 4 320

Configurations (after exploration) 4 32

Tuples of control tokens
∑
|Θ(fΩ)| 4 302

Scenario graphs |S| 4 16

FSM states |Q| 4 72

FSM transitions |T | 6 516

Table 4.2: Results of the automated model extraction

The FSM that encodes all possible sequences of executions of these four sce-

narios is also shown in Figure 3.6. The FSM follows the firing schedule of detector

mc. The self-loops at states q0 and q2 encode the possibilities of multiple execu-

tions of s1 until synchronization succeeds and s3 for decoding each of the OFDM

symbols in the payload, respectively.

4.5.2 DDN program of RVC-MPEG4 SP

For our case study, we used an RVC-CAL implementation of an MPEG4 Simple

Profile (RVC-MPEG4 SP) video decoder. We changed all CAL guards to conform

to DDN firing rules and introduced actors (which are later identified as detectors

by the tool) to control these firing rules. A simplified view of the final DDN is

shown in Figure 4.8. The input bitstream parser is treated as the external source,

and hence, is not part of the DDN.

The DDN has two detector actors dtcr1 and dtcr2 that detect frame types

and color channels in the input video bitstream. There are three instances of

dtcr2, one for each of the three color channels (Y, U and V). A reduced version

of the CAL implementation of detector dtcr1 is shown in Listing 4.5. The

listing shows three actions, namely newVop, skipWH and mb y. The actor also

has two more actions mb u and mb v, whose implementations are not shown, but

their implementations are by large similar to mb y.
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Figure 4.8: DDN program of RVC-MPEG4 SP

dtcr1 has an input port from Parser that is connected to the bitstream

parser. The parser processes the input bitstream, in which the start of a new video

object is marked by a three-byte sequence, named btype. btype encodes values

such as NEWVOP (the start of a new video frame), INTRA (intra-frame or I-frame

type), INTER (inter-frame or P-frame type), MOTION (motion prediction) and

others. Thus, btype encodes the type of frame that is being decoded. Detector

actor dtcr1 receives btype from the parser and encodes it into a control token

that may have 7 possible integer values; i.e. 〈1, 5〉∪{13, 15}. These control tokens

are sent out through the control ports to In, to Y, to U and to V to set the

operating mode of the network. For instance, when a new frame is detected,

action newVop is fired, which sends out the control token 1. This control token

gets the network ready for processing the coming macro-blocks.

The schedule of the actor (lines 42-52) shows that after a new video frame is

found, the macro-blocks (MBs) of the frame are processed. Each MB comprises

6 blocks of 8× 8 pixels (4 blocks for channel Y and the other two for channels U

and V). Y-blocks are processed by action mb y, U-blocks by mb u and V-blocks

by mb v. These actions send out different control values, depending on the frame

type. E.g. they send 3 for an intra-frame (line 24), 4 for an intra-frame with AC

prediction (line 26) and 5, 13 or 15 for inter-frame (line 30) (depending on whether
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1 actor dtcr1 (int ACCODED, int ACPRED, int BTYPE_SZ, int FOURMV,
2 int INTER, int INTRA, int MOTION, int NEWVOP)
3 int from_Parser ==> int to_In, int to_Y, int to_V, int to_U, int to_C:
4 int sb := 0;
5 int sc := 0;
6

7 newVop: action from_Parser: [btype] ==>
8 to_In:[sb], to_Y:[sb], to_V:[sb], to_U:[sb]
9 guard bitand(btype,NEWVOP) != 0

10 do sb := 1; end
11

12 skipWH: action from_Parser: [btype] repeat 2 ==>
13 to_In: [scen] repeat 2, to_Y: [scen] repeat 2,
14 to_V: [scen] repeat 2, to_U: [scen] repeat 2
15 guard sb = 1 or sb = 2
16 var int [2] scen
17 do sb := 2; scen[0] := 2; scen[1] := 2; end
18

19 mb_y: action From_Parser: [btype] ==>
20 to_In: [sb], to_Y:[sb], to_Comp:[sc]
21 guard sc < 4, bitand(btype,NEWVOP) = 0
22 do
23 if bitand( btype, INTRA ) != 0 then
24 sb := 3;
25 if bitand( btype, ACPRED ) = 0 then
26 sb := 4;
27 end
28 else
29 if bitand( btype, INTER ) != 0 then
30 sb := 5 + bitand (btype, 15); //take the last four bits + 5
31 else
32 sb := 21;
33 end
34 end
35 sc := sc + 1;
36 end
37

38 mb_u: action ...
39

40 mb_v: action ...
41

42 schedule fsm newVop:
43 newVop (newVop) --> skipW;
44 cmd (newVop) --> skipW;
45 cmd (mb_y) --> y1;
46 y1 (mb_y) --> y2;
47 y2 (mb_y) --> y3;
48 y3 (mb_y) --> u;
49 u (mb_u) --> v;
50 v (mb_v) --> cmd;
51 skipW (skipWH) --> cmd;
52 end
53 end

Listing 4.5: Detector dtcr1 of DDN of RVC-MPEG of Figure 4.8
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Figure 4.9: One of the extracted scenarios of DDN of Figure 4.8

AC prediction, AC coding and motion compensation are applied). In addition to

this control token, actor dtcr1 also generates another control token through port

to C that indicates the index (1 to 6) of the pixel block being processed. In this

case, action mb y sends out values 1− 4, mb U the value 5 and mb V the value 6.

Another dynamism in the RVC-MPEG DDN is due to the flag AC PRED DIR.

The flag is sent from actor dcip (DC inverse prediction) to actor acip (AC

inverse prediction) to communicate the direction of prediction. The flag also

carries scan-mode information to actor is (inverse scan). The flag can have five

integer values (−2 to 2): E.g. −2 for NEWVOP, −1 for an uncoded block and 0

for no-inverse-AC-prediction but zig-zag-inverse-scan. The second set of detector

actors, i.e. dtcr2, map the flag to a control token with three possible integer

values: flag value −2 to control token 1, flag value −1 to control token 2 and flag

values 0, 1, 2 to control token 3.

Every possible combination of control tokens from actor dtcr1 and the three

instances of actor dtcr2 activate a sub-network of the DDN, and hence, de-

fine a certain operating scenario. As shown in Table 4.2, the Cartesian product

of the firings of the four detector actors gives 320 scenario configurations (i.e.

ffunc(dtcr1) × ffunc(dtcr2)3 = 5 × 43 = 320). The configuration-space explo-

ration has eliminated 288 configurations, discovering that they do not occur. The

remaining 32 valid configurations have 302 tuples of control tokens, which re-

sulted in only 16 unique scenario graphs. The first two scenarios are to initialize

the network, such as setting the frame width and height, when a new frame is

detected in the input stream. Six scenarios correspond to processing different

8 × 8 Y-channel pixel blocks. The other eight scenarios are for different U and
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V-channel pixel blocks. One of the scenario graphs is shown in Figure 4.9. Some

connections are left out for readability and all non-indicated port-rates are 1. The

tuple of control-tokens is ((15, 1), (3),�,�) from the firing of dtcr1 and the fir-

ing of dtcr2 in Y-channel. � indicates that the firing schedule of dtcr2 is not

enabled for channels U and V. The tuple encodes the processing of the first 8× 8

pixel block (channel Y), which is AC coded and motion compensated.

For the WLAN and RVC-MPEG DDN networks, the run-times of the model

extractor are less than a minute on a 2.8GHz Intel dual-core Linux PC.

4.6 Related Work

Dataflow Actor and Network Classification

Classification of CAL actors into known MoCs has been studied in [15, 40, 99,

103]. In [99], abstract interpretation is used to identify CAL actors with static,

cyclo-static or quasi-static behavior. The interpreter executes the implementation

of each actor separately, by consuming tokens whose values are unknown. The

interpreter stops either when the criterion for a given MoC is satisfied or a guard

condition that evaluates an unknown value is encountered. The interpreter first

checks for a static (SDF) actor. The criterion is all actions must have the same

input-output rates. If an actor is found not be static, a cyclo-static check follows:

the criterion is an actor must have a state and a fixed number of data-independent

firings that return the actor to its initial state. Lastly, an actor is checked for

quasi-static behavior: it must have an FSM that branches to a finite number of

transitions from the initial state. Each branch must eventually return back to

the initial state, with the possibility of having cycles within a branch or across

branches. Branching is solely determined by control tokens and all branching

conditions must be mutually exclusive. The abstract interpreter is applied on

each branch, assuming the value of the control token is known, to check whether

there are a fixed number of data-independent firings that return the graph back

to its initial state. The work is limited to actor-level classification, intended for

optimized code generation. Hence, they do not generate a dataflow model (neither

scenarios nor their sequences), as presented in this chapter, for analysing basic

and temporal properties of the entire dataflow network.

[40] presents a framework that extracts statically analysable regions from CAL

programs. The main purpose of the presented approach is to enable construction

of quasi-static schedules for a CAL application. The basis of the methodology is

to group and cluster ports together that form a SDF-like region, referred to as

a Statically Schedulable Region (SSR), in the CAL network. Identifying SSRs

allows to construct a static-order schedule for each SSR. This reduces the run-
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time scheduling overhead as run-time decisions are only needed at SSR boundaries,

resulting in a quasi-static schedule. Our work is not limited to regions and static

patterns. We isolate every possible static execution behavior of the entire dynamic

network and model each with a SDF model. However, we achieve this only for

input programs that comply with our DDN construction rules.

In [103], a conservative classification technique is presented to identify SDF

and CSDF actors from a general dataflow model. The general dataflow model

is similar to a Dynamic Process Network (DPN) actor and is extracted from a

SystemC code. The classification algorithm works on a dynamic state transition

diagram. The state of an actor is determined by its state variables and FSM state.

By merging the transition edges of the diagram, the algorithm finds fixed token

consumption and production patterns and associates them with a (cyclo-static)

state. The work also proposes a reduced state transition diagram by abstracting

from the state variables and only using the FSM states, since the full state-

transition diagram may be intractable. Similar to [40], the work targets only

identifying static actors, with the aim of optimizing static sub-networks of a dy-

namic network. [15] discusses an automated approach for creating quasi-statically

scheduled RVC implementations through dynamic code analysis. Accuracy of a

dynamic code analysis depends on the coverage of the input streams. Thus, it

cannot guarantee finding all possible execution paths. Our work employs DDN

construction rules, which bound the possible program execution paths to a finite

and manageable size. Thus, we avoid computationally heavy techniques such as

abstract interpretation and dynamic code analysis, which suffer from path explo-

sion. This implies that our work trades expressiveness for analysability and easier

implementability.

Another key feature of our work, in contrast to all of the above works, is that

we target extracting the possible orders of executions of scenarios in a form of a

FSM, which enables a more accurate analysis of dynamic streaming applications.

Dataflow MoC generation

This is the first work to introduce an automated approach to construct SDF

scenario sequences from a parallel application implementation. Nevertheless, au-

tomatic derivation of different dataflow MoCs from sequential code have been

studied in the literature.

[49], [94], [62] and [82] transform a nested affine loop program written in Mat-

lab/C++ into a Polyhedral Process Network (PPN) specification, which enables

a systematic mapping of applications onto multi/many-core platforms. [51] in-

troduces the LIME programming model to address the programming challenge of

MPSoC platforms. It uses a “restricted C”, with certain programming constructs,
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to program algorithmic blocks (actors). It also uses an XML graph description

to specify dependencies between actors. The programming model can express

different dataflow MoCs such as KPN, SDF and CSDF. A compiler toolchain is

also demonstrated to automatically generate code for multi-core platforms. [32]

extracts a SVPDF analysis model from a sequential application program, written

in a domain-specific language called OIL [33]. A given OIL program is automat-

ically parallelized into a task graph. The parallelization step extracts function

level parallelism such that a task is created for each function in the input pro-

gram. Synchronization statements are inserted into each task to preserve the

functional behavior of the input program. A SVPDF model is then extracted

from these synchronization statements.

Static models, which are considered in these works, such as SDF, CSDF and

PPN cannot express dynamic streaming applications. KPN, on the other hand, is

expressively Turing-complete and properties such as deadlock-freedom are unde-

cidable. SVPDF can express variable port-rates of a dynamic application, while

still allowing for design-time analysis. Our model extraction work targets FSM-

SADF models, for which deadlock-freedom and boundedness properties are decid-

able at design-time. Unlike the sequential input codes used in the above works,

we extract such models from DDN-complying parallel programs that are written

in dataflow languages such as CAL. We capitalize back-end tools such as CAL2C

to generate sequential C code for individual actors of such parallel programs.

4.7 Summary

The FSM-based SADF MoC enables effective design-time analysis of dynamic

streaming applications. Yet, the construction of SADF models from application

implementations has a number of challenges. First, the model abstracts from im-

plementation details such as how scenario switching is decided. Hence, the types

of implementations for which such a model can be constructed are unknown.

Second, the validity of abstraction of the model must be verifiable. Third, man-

ual construction is time-consuming for large number of scenarios. This chapter

addresses these challenges with an automated approach that identifies and con-

structs all possible scenarios for a class of parallel implementations, which we

call Disciplined Dataflow Network (DDN). The construction rules of DDN en-

able separation of scenario detection from scenario execution. Thus, a state-space

enumeration can be employed to find all possible sequences of scenario execu-

tions and encode them into a finite-state machine (FSM). The extraction process

requires input programs to conform to DDN. This may require certain program-

ming effort. This effort is minimized since compliance of an input program to
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DDN can be automatically tested. If a program fails the test, the unclassified

actors, which are neither kernel nor detector, are reported with an indication why

they failed. This facilitates debugging and improves productivity. The remaining

effort is justified by acknowledging the three main benefits of DDN. DDN can be

seen as an analysable programming model for adaptive streaming applications.

1) It ensures that a scenario-based analysis model can always be constructed.

2) It guarantees the adequacy of abstraction of the analysis model for deadlock-

freedom, boundedness and temporal analysis, since the analysis model has the

same execution semantics as the parallel implementation. 3) The process of con-

structing the analysis model can be automated. The model extraction approach

has been demonstrated for the CAL actor language.
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CHAPTER 5

Worst-Case Throughput Analysis

Wireless and multimedia embedded applications have stringent temporal con-

straints. The arrival and production rates of frames impose throughput require-

ments that must be satisfied. These applications are often dynamic and streaming

in nature. FSM-SADF has been proposed to model such dynamic streaming appli-

cations, as discussed in detail in previous chapters. FSM-SADF splits a dynamic

system into a set of static scenarios. Each scenario is modeled by a SDF graph.

The possible scenario transitions are specified by a FSM.

An execution of FSM-SADF is an execution of the possible scenario sequences

specified by the FSM. In a distributed implementation, the execution of scenarios

is pipelined. As a result, multiple scenarios may be concurrently active. This

poses a challenge to analyse scenario sequences. The techniques in [28, 30] anal-

yse each scenario first individually. Then, they derive performance guarantees for

a sequence compositionally. However, these techniques require two conditions.

First, they assume scenarios must be self-timed bounded. A scenario is self-timed

bounded if the number of tokens in every channel is bounded in a self-timed execu-

tion [34], where an actor fires as soon as all of its input data have arrived. Second,

they assume all inter-scenario synchronizations (data dependencies between sce-

narios) are captured by initial tokens that are common between scenarios. An

initial token is common between two scenarios if it is located on the same chan-

nel in both scenarios. These two conditions can be too restrictive for real-life

application graphs, as illustrated by the motivational example in Section 5.1.

77



i
i

“thesis” — 2014/10/3 — 2:55 — page 78 — #90 i
i

i
i

i
i

78 Section 5.1: Motivational Example

This chapter presents a generalized FSM-SADF analysis approach to bound

the worst-case throughput. The chapter has three main contributions. 1) It

presents a technique to analyse a SDF scenario that is not necessarily self-timed

bounded. The technique is based on the concept of generalized eigenmode from

(max,+) algebra. Combined with a FSM, this contribution also enables to verify

if a given FSM-SADF model is self-timed bounded or not. 2) It introduces initial

token labeling to flexibly specify arbitrary scenario dependencies. 3) It presents

exact and conservative worst-case throughput analysis techniques for FSM-SADFs

that possibly have non-self-timed bounded scenarios.

The remainder of the chapter is organized in eight sections. Section 5.1 high-

lights the contributions with a simple motivational example. Section 5.2 elab-

orates the problem addressed in this paper. Section 5.3 characterizes a SDF

scenario in terms of its self-timed components. This is followed by the analysis

of a scenario and a set of scenarios in Section 5.4 and Section 5.5, respectively.

Experimental results are presented in Section 5.6. Section 5.7 discusses related

work and the paper concludes in Section 5.8.

5.1 Motivational Example

FSM-SADF can sufficiently express dynamic streaming applications while lending

itself to design-time analysability [80]. However, restrictions on existing analysis

techniques limit its applicability for many application graphs. We show a simple

example with LTE baseband processing, whose FSM-SADF model is shown in

Figure 3.4 and is discussed in detail in Chapter 3.1. LTE’s downlink frame consists

of 10 sub-frames. Each sub-frame has 14 OFDM symbols. These symbols are

allocated to data and control channels. The three possible allocations are 1, 2 or

3 control channels, followed by 13, 12, or 11 data channels, respectively. The FSM-

SADF model has five scenarios, which are labeled s1 to s5. Scenario s1 decodes

a control format indicator channel that is allocated at symbol 1. Scenario s2

decodes a control channel that is allocated at symbols 2 and 3. Scenarios s3, s4

and s5 decode a data channel that is allocated from symbol 2 to 14, 3 to 14, and

4 to 14, respectively. This results in three possible scenario sequences and hence,

three different sub-frame types. The sequence for sub-frame type 1, 2 and 3 are

respectively 〈s1, s5〉, 〈s1, s2, s4〉 and 〈s1, s2, s2, s3〉.
Sub-frames are decoded by executing the possible scenario sequences specified

by the FSM. An example sequence is 〈s1, s5, s1, s2, s2, s3, s1, s5, s1, s2, s4, · · · 〉 and

its corresponding sub-frame sequence is 〈1, 3, 1, 2, · · · 〉. The type of a sub-frame

is detected by scenario s1. At the end of scenario s1, a mode controller (mc)

actor dispatches the type of sub-frame to be decoded. This requires some kind of
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synchronization such that certain sub-frame-specific actors of successive scenarios

(i.e. s2 and s5) do not fire before the sub-frame type is detected. This synchro-

nization is modeled by the initial token t and the data dependency actor (dda) in

Figure 3.4. t is like a common variable (flag) that is read and written by actors mc

and dda. Actor dda has zero execution time. Thus, in scenario transitions from

s1 to s2 or to s5, actor dmp cannot start execution before mc of s1 has finished.

Modeling sub-frame detection in LTE violates the two analysis assumptions,

which are mentioned earlier in the introduction. First, scenarios s2 and s5 are not

self-timed bounded. Self-timed executions of these scenarios result in a continu-

ously increasing accumulation of tokens in outgoing channels of actor dda (since

dda has zero execution time). Second, initial token t is not a common initial

token between s1 and s2 (s5), as it is not on the same channel, common between

these scenarios. Initial token t in s1 and initial token t in s2 (s5) are two indepen-

dent initial tokens. Thus, synchronization is not enforced. Consequently, existing

techniques are not directly applicable to analyse the FSM-SADF of Figure 3.4.

5.2 Problem Description

This chapter studies the worst-case throughput (WCT) of FSM-SADF. The analy-

sis of FSM-SADF is challenged by three issues. 1) In distributed implementations,

such as in MPSoCs, scenario executions are pipelined. Thus, multiple scenarios

are concurrently active. 2) Scenarios have data dependencies between each other.

This requires inter-scenario synchronization. 3) If a scenario is not self-timed

bounded, different components of the scenario execute at different rates of itera-

tion. This section discusses these three issues and outlines how we address them.

The main contributions of the chapter are on the second and the third issues.

5.2.1 Pipelined Execution of Scenarios

For the first issue, we follow a similar strategy as in existing approaches. The

techniques introduced in [28] and [30] analyse pipelined scenario executions by

executing scenario sequences, specified by the FSM. The FSM can possibly spec-

ify infinitely many state sequences. An example state sequence of the FSM in

Figure 5.2 is q̃ = 〈q0, q1, q2, q2, q2, q0, q1, · · · 〉. The scenarios in a sequence q̃ are

executed one after the other. The scenario of each FSM state q ∈ q̃, i.e. ε(q), is

executed for one iteration. During the execution of a scenario, all data needed for

synchronization are time-stamped with their production times. Then, the next

scenario is executed, starting from these time-stamps. Therefore, data dependen-

cies between two consecutive scenarios are captured by the time-stamps of the

synchronization data, as discussed in Section 2.4.
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Figure 5.1: Example scenario sequence: s1s3s1s2s3s1s2

Figure 5.1 illustrates an example pipelined (overlapping) execution of a se-

quence that involves three scenarios s1, s2, s3. At time t, all the three scenarios are

concurrently active. The sequence has a length of 7 iterations: s1s3s1s2s3s1s2. A

sequence is basically formed by concatenation of cycles of the FSM. For example,

the FSM of the LTE model of Figure 3.4 has three cycles. Any scenario sequence

specified by this FSM is made up of the three fragments 〈s1, s5〉, 〈s1, s2, s4〉 and

〈s1, s2, s2, s3〉, one for each sub-frame type.

We define the throughput of a sequence as the long-run average of completed

iterations per time-unit. However, this long-run average does not necessarily exist

for all sequences. Instead, it may bounce within a superior and inferior limiting

bounds. We take the limit inferior as the WCT of a sequence. Then, we define the

WCT of FSM-SADF as the minimum among the WCTs of all scenario sequences,

as given by Definition 11.

Definition 11. (Worst-Case Throughput) The worst-case throughput ρ of

FSM-SADF (S, f) is given as

ρ = min
q̃∈L(q̃)

lim inf
k→∞

k

cq̃k
(5.1)

where L(q̃) is the set of sequences specified by FSM f , q̃k is the first k ∈ N
elements of q̃ and cq̃k ∈ N is the completion time of q̃k.

We say an estimated WCT ρe is conservative if ρe < ρ and exact if ρe = ρ.

In Section 5.5, we present both exact and conservative WCT computation tech-

niques. These techniques can also be used to derive conservative throughput

bounds for sequences of finite length.
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Figure 5.2: Example FSM-based SADF model

5.2.2 Inter-scenario Synchronization

The analysis techniques in [28,30] assume that the synchronization data between

two scenarios are the common initial tokens they have. An initial token is common

between two scenarios if it is in a common channel. A channel is common if it

has the same source and destination actor in both scenarios. Synchronization

through common initial tokens requires that 1) common channels must exist to

enforce synchronization and 2) a common channel must have the same number of

initial tokens in all scenarios. These may be restrictive requirements for real-life

application graphs.

A simple example is the modeling of sub-frame detection in LTE (Figure 3.4),

as discussed in Section 5.1. Synchronization is required to stall subsequent scenar-

ios until the sub-frame type is detected. We cannot enforce this synchronization,

since the mode controller actor (actor mc of scenario s1) does not exist in other

scenarios.

In this chapter, we use initial token labeling to model inter-scenario synchro-

nization. Common initial tokens are explicitly defined by their identifier (label).

Two initial tokens of two different scenarios are common if they have the same

identifier. With this approach, common channels need not necessarily have equal

number of initial tokens (cf. Section 5.5.1 for more discussion with an example).
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Figure 5.3: Time-stamp vectors of s1 of Figure 5.2

5.2.3 Self-timed Boundedness

In compositional FSM-SADF analysis approaches, each scenario is first analysed

individually. Then, performance guarantees are given for a sequence of scenarios

compositionally (as also discussed in Section 5.5). To analyse scenarios individ-

ually, the analysis technique of [28, 30] assume scenarios are self-timed bounded.

A self-timed bounded scenario requires bounded buffer sizes in a self-timed ex-

ecution [34]. The time-stamp vector of a self-timed bounded scenario becomes

periodic after a finite number of transient iterations. For instance, the matrix of

scenario s1 of Figure 5.2 is given by Equation (5.2). The time-stamp vectors of

the first 5 iterations are shown by the black solid lines of Figure 5.3, computed

using the relation γ̄k+1 = M · γ̄k, where γ̄0 = u[0] is a zero vector.

M =


2 3 −∞ −∞ 2

5 6 −∞ −∞ 5

5 6 −∞ −∞ 5

−∞ −∞ −∞ 0 −∞
−∞ −∞ 2 −∞ −∞

 (5.2)

This graph becomes periodic after γ̄2. The shape of the vector (which is the

normalized vector ¯̄γk) repeats with cyclicity σ = 2 (i.e. every 2 iterations); for

instance, γ̄4 = γ̄2 + 7. In the periodic phase, it completes 2 iterations every 7

time-units. Hence, the average duration of an iteration is λ = 3.5. λ is referred

to as the period. The periodicity enables to simplify the analysis into an entirely

periodic pattern. The idea is to find a delay τ ∈ R, and a vector γ̄∗ ∈ Rnmax, such

that, for any k > 0,

γ̄k � ˆ̄γk = τ + γ̄∗ + λk. (5.3)

The vector γ̂k is a conservative linear upper-bound to γ̄k, as shown by the red

dashed lines in Figure 5.3. An example delay τ and vector γ̄∗ for scenario s0 are

shown in Figure 5.3.
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Figure 5.4: Time-stamp vectors of scenario s2 of Figure 5.2

However, this periodic behavior does not hold for non-self-timed bounded

scenarios. Consider scenario s2 of Figure 5.2. The token production rate of

channel (x, y) is faster than the consumption rate. Thus, the self-timed execution

leads to an increasing accumulation of tokens in channel (x, y). Figure 5.4 shows

the time-stamp vectors for the first 10 iterations of scenario s1. Scenario s2 has

two strongly-connected components (SCCs), as shown in Figure 5.2. SCC s1
2 runs

at 1 iteration/time-unit, whereas SCC s2
2 runs at 0.6 iteration/time-unit. This

difference causes the time-stamps of tokens b, c, e to continuously diverge from

token a. Thus, the different components of the scenario run at different rates of

iterations. As a result, a recurrent vector does not exist and the algorithms of [28]

cannot find parameters for linear upper-bound characterization.

Limiting FSM-SADF analysis only to self-timed bounded scenarios is restric-

tive. Even though strong-connectedness is a sufficient condition for self-timed

boundedness [34], FSM-SADF scenarios of applications may become non-strongly

connected (cf. LTE in Section 3.1 and WLAN in Section 3.2). These scenarios can

potentially be non-self-timed bounded. Unlike SDF, a non-self-timed bounded

scenario of a FSM-SADF is not necessarily a problem to unbounded channels.

A channel with faster production rate in one scenario may be compensated by

a faster consumption rate in another scenario, resulting in the net effect of a

bounded channel.

One solution to the self-timed boundedness issue is converting scenarios to

strongly connected graphs. In this case, however, the challenge becomes how

to introduce extra channels and initial tokens, while guaranteeing the temporal

behavior of the FSM-SADF is not compromised. Such extra channel additions

may also result in pessimistic temporal bounds. In this chapter, we analyse FSM-

SADF models without requiring every scenario to be strongly-connected or self-

timed bounded. In the remainder of this chapter, we present the analysis in three

steps. 1) Section 5.3 characterizes a scenario in terms of SCCs. 2) Section 5.4

discusses the analysis of a single scenario. 3) Section 5.5 generalizes the single

scenario solution to a set of scenarios.
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5.3 Condensation Graph

Each strongly-connected component (SCC) of a scenario is self-timed bounded.

Hence, the conservative upper-bound characterization, discussed in Section 5.2.3,

is applicable. Thus, each strongly-connected component c has a distinct period

λc ∈ Rmax. If each strongly-connected component of scenario s is contracted into

a single node, a directed acyclic graph (DAG) is obtained. Each node of the DAG

is then associated with a strongly-connected component.

We define the period of node n of the DAG as

λn
def
= rep(c)× λc (5.4)

where c is the strongly-connected component of node n and rep(c) is the

repetition of c, which is defined as the number of iterations of c within one iteration

of scenario s. Repetition is given as

rep(c) =
νs(a)

νc(a)
(5.5)

where νs is the repetition vector of scenario s, νc is the repetition vector

of c and a is any actor of c. For instance, the repetition vector of scenario s3

of Figure 5.2 is given as ν = {(u, 15), (v, 15), (w, 15), (x, 10), (y, 8), (z, 16)}. The

repetition vector of strongly-connected component s1
3 is νc = {(u, 3), (v, 3), (x, 2)}.

Hence, s1
3 has a repetition of 5.

We next partition a scenario into a set of maximal self-timed bounded compo-

nents (STBCs). We achieve this through repetitive SCC grouping. A STBC is

not necessarily strongly-connected but it is self-timed bounded. Consider an edge

(m,n) of the DAG. The maximum rate at which the strongly-connected compo-

nent of node n completes iterations of the scenario is 1
λn

iterations per time-unit.

However, if λm ≥ λn, the SCC of n cannot run faster than the SCC of m in the

execution of the scenario, as it consumes data produced by the SCC of m. As a re-

sult, node n runs at the same rate as node m. Combining the strongly-connected

components of these two nodes, as per their original connections in the scenario,

gives a STBC cmn. We group the two nodes m and n into one node mn. Node

mn is now associated with the STBC cmn. The period of node mn is the slower

(longer) of the the two strongly-connected components, hence λmn = λm.

Repetitive grouping of nodes in such a manner terminates when λm < λn for

any edge (m,n) of the DAG. This operation partitions the scenario into a set of

STBCs. After such node grouping, some channels of the scenario will be left that

are not part of any STBC. These channels only connect the different STBCs. We

refer to such channels as feed-forward channels. The feed-forward channels are

basically the unbounded channels.
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s11

Fs1 = ∅

scg1

s12 s22

Fs2 = {(x, y)}

scg2

s13 s23

s33

Fs3 = {(x,w), (w, y), (x, y)}

scg3

Figure 5.5: Condensation graphs of Figure 5.2

The resulting DAG, after the repetitive node merging, is referred to as con-

densation graph, as defined in Definition 12.

Definition 12 (Condensation Graph). Let BCs and Fs are the set of STBCs and

feed-forward channels of scenario s, respectively. The condensation graph scg of

s is a directed graph (V,E) of a set V of vertices and a set E ⊆ V × V of edges.

Each feed-forward channel cf ∈ Fs has exactly one edge e = (vs, vd) ∈ E assigned

to it such that the source vs and destination vd vertices are respectively labeled

with the source and destination STBCs of cf .

The feed-forward channels and the condensation graphs of the scenarios of

Figure 5.2 are shown in Figure 5.5. Fs1 , Fs2 and Fs3 are respectively the set of

feed-forward channels of scenario s1, s2 and s3, which also have 1, 2 and 3 STBCs.

(The STBCs are shown in red dashed boxes in Figure 5.2). The label inside each

vertex of Figure 5.5 indicates the STBC, which the vertex corresponds to.

We say initial token t of scenario s belongs to vertex vt of condensation graph

scg if t is either in the self-time bounded component of vertex vt or in the feed-

forward channel of an outgoing edge of vertex vt. We use the levels of vertices to

determine dependencies between initial tokens. The level of a vertex is defined in-

ductively as follows: for a root vertex (which has no incoming edges), level(v) = 0

and for any other vertex, level(v) = 1 + maxv∈v− level(v), where v− is the set of

all direct predecessors of v.

If level(vt) < level(vu) then initial token t has no dependency from initial

token u. Hence, the (max,+) matrix of the scenario has [M ]ζ(t)ζ(u) = −∞,

as discussed in Section 2.4. The levels of vertices are also used to construct a

topological order of the condensation graph, as defined by Definition 13.

Definition 13 (Topological Order). A topological order of scg is a linear

ordering of its vertices 〈v1, v2, · · · , vn〉, such that vi comes before vj only if

level(vi) ≤ level(vj), where for i ∈ N, vi denotes the ith vertex in the order.
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t′a

t′b

t′c

t′d



=

1 −∞ −∞ −∞

4 −∞ −∞ 3

−∞ 0 −∞ −∞

−∞ −∞ 2 −∞



 ·
ta

tb

tc

td




Figure 5.6: Matrix partitioning of scenario s2 of Figure 5.2

We use topological order of vertices to present the matrix of a scenario in a

lower triangular form. Shuffle time-stamp vector γ̄k and matrix M based on a

given topological order: I.e. for any two initial tokens t and u in two different

STBCs, assign ζ(t) < ζ(u) only if level(vt) ≤ level(vu). As a result, the indices

of those initial tokens that belong to the same vertex becomes consecutive.

Hence, we can partition γ̄k into a set of n disjoint sub-vectors 〈γ̄1
k, γ̄

2
k, · · · , γ̄nk 〉,

where γ̄ik denotes the sub-vector of vertex vi. Similarly, matrix M is also parti-

tioned into n × n sub-matrices. The resulting matrix has a triangular form, as

shown in the recurrence relation of Equation (5.6).
γ̄1
k+1

γ̄2
k+1
...

γ̄nk+1

 =


M11 −∞ · · · −∞
M21 M22 · · · −∞

...
...

. . .
...

Mn1 Mn2 · · · Mnn

 ·

γ̄1
k

γ̄2
k
...

γ̄nk

 (5.6)

The dimension of sub-matrix M ij is m × n where m = |γ̄ik| and n = |γ̄jk|.
In Equation (5.6), −∞ represents a sub-matrix whose entries are all −∞. Sub-

matrices on the diagonal, i.e. M ii, can be computed from the matrices of the

STBCs of the scenario. Given matrix Mci of the self-timed bounded component

ci of vertex vi, M ii is computed by multiplying Mci with itself rep(ci) times

so that it accounts for a complete iteration of the scenario. The partitioning

of scenario s2 of Figure 5.2, whose matrix discussed in Section 2.4, is shown in

Figure (5.6).

Such kind of matrix partitioning is possible for any reducible (max,+) ma-

trix [43]. The correlation with self-timed bounded components of a scenario is as

follows. Any sub-vector γ̄ik+1 is related to other sub-vectors as given by Equa-

tion (5.7), derived directly from Equation (5.6).

γ̄ik+1 = max
(
M i1 · γ̄1

k, M
i2 · γ̄2

k, · · · , M in · γ̄nk
)

= max

(
i−1
max
j=1

(
M ij · γ̄jk

)
, M ii · γ̄ik

)
(5.7)
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The term maxi−1
j=1

(
M ij · γ̄jk

)
of Equation (5.7) represents the data dependencies

of vertex vi with all its predecessors in the topological order. Equation (5.7)

is a valuable relation to explain a periodic behavior in non-self-timed bounded

scenarios, discussed next in Section 5.4.

5.4 Analyzing a Single Scenario

In this section, we derive conservative upper-bounds to iterations of a scenario

(ˆ̄γk), as discussed in Section 5.2.3. We present a generalized approach that allows

analysing any arbitrary scenario, without requiring self-timed boundedness. A

valuable concept in our approach is the periodicity of a (non-strongly connected)

scenario in a self-timed execution.

The self-timed execution of a SDFG g = (A,C, I, χ, ρ, ι) enters a periodic

phase after a finite number of transient iterations. In the periodic phase, the

timing distance between consecutive time-stamp vectors δ̄k+1 = γ̄k+1−γ̄k becomes

periodic; I.e. δ̄k+1 repeats every σ ∈ N iterations. This periodic behavior is

intuitively explained as follows.

Any vertex of the condensation graph of g is slower than any of its predeces-

sors. This implies that in a self-timed execution of the scenario, tokens increas-

ingly accumulate in all feed-forward channels. Such token accumulations decouple

the executions of neighboring vertices. Consequently, the STBC of each vertex

eventually executes independently, after a finite number of transient iterations.

When a vertex vi enters the independent execution phase, it has no dependen-

cies with its predecessor vertices. Thus, Equation (5.7) becomes γ̄ik+1 = M ii · γ̄ik.

Eventually, the entire γ̄k attains periodicity, as given by Equation 5.8.

∀k ≥ p, γ̄
k+σ

= γ̄
k

+ ση. (5.8)

where p ∈ N is the first iteration of the periodic phase, σ ∈ N is the LCM of

the cyclicities of the STBCs and vector η ∈ Rnmax is the collection of the periods

of the vertices of the condensation graph, as given by Equation (5.9), where vi is

the vertex of initial token i ∈ I.

[η]ζ(i) = λvi (5.9)

The vector η is called cycle-time vector in (max,+) algebra [43]. It indicates

the growth rate of a vector in a recurrence relation of the form of Equation 2.1.

The cycle-time vector of a regular matrix is unique and finite [43]. The maximum

entry of η, ‖η‖ is the period of the slowest vertex. Hence, the worst-case through-

put of a scenario is given as 1
‖η‖ iterations/time-unit. For instance, scenario s1 of
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Figure 5.2 has η = [1, 1.667, 1.667, 1.667]. The maximum entry ‖η‖ = 1.667 is the

period of vertex s1
1, which is the slowest of the two vertices of scenario s1.

As in the case of self-timed bounded scenarios (Section 5.2.3), a conservative

upper-bound ˆ̄γk can also be computed for non-self-timed bounded scenarios, as

given by Equation (5.10). With such conservative characterization, we can derive

a bound to the finishing time of any iteration k > 0.

γ̄k � ˆ̄γk = u[τ ] + γ̄∗ + kη (5.10)

We refer to τ ∈ R as delay and γ̄∗ ∈ Rnmax as initial vector. To compute

these two parameters, we use the concept of generalized eigenmode from (max,+)

algebra, defined in Definition 14 [43]. Generalized eigenmode is a generalization

of eigenvectors to reducible (max,+) matrices, which are matrices of non-strongly

connected graphs.

Definition 14. (Generalized Eigenmode) Given the cycle-time vector η of

matrix M , a generalized eigenmode of M is a pair (η, ν) ∈ Rnmax×Rnmax such that

for any p ∈ N0, M(pη + ν) = (p+ 1)η + ν.

A generalized eigenmode exits for any regular matrix [43]. A (max,+) matrix

M is regular if it has no row whose elements are all −∞. A scenario cannot have

an initial token that has no dependency with any other initial tokens (including

itself) in the graph, as discussed in Section 2.4. Thus, the matrix of any scenario

is regular.

The generalized eigenmode implies that if we execute the recurrence rela-

tion γ̄′k = Mγ̄′k−1 starting from γ̄′0 = ν, the vectors advance exactly by η, i.e.

γ̄′k+1 − γ̄′k = η. This makes ν a suitable candidate for initial vector γ̄∗, because

the average difference between consecutive iterations in the periodic phase is also

equal to η (cf. Equation (5.8)). Thus, these vectors (γ̄′k) can be upper-bounds to

γ̄k if shifted sufficiently. Delay τ is such a shifting distance, i.e. γ̄k � τ + γ̄′k. A

tight delay, however, is key to avoid overly pessimistic analysis.

The generalized eigenvector of a matrix is not unique. Lemma 1 presents

one approach for computing a generalized eigenvector using any σ consecutive

iterations in the periodic phase, generalizing the method of [28].

Lemma 1. (Generalized Eigenvector) Let γ̄k be a time-stamp vector in the

periodic phase where 1 ≤ k ≤ σ. I.e. γ̄σ+1 = γ̄1 + ση. Then, the evaluation

ν = max1≤k≤σ(γ̄k − kη + ση) is a generalized eigenvector.
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Proof.

x
def
= M(pη + ν)

= M(pη + max
1≤k≤σ

(γ̄k − kη + ση)) by substitution of ν

= max
1≤k≤σ

M(γ̄k − kη + ση + pη) by (max,+) multiplication linearity

= max
1≤k≤σ

Mγ̄k − kη + ση + pη

The last step is because, in the periodic phase, maxi−1
j=1[M ]ij · γ̄jk � [M ]ii · γ̄ik, and

if i < j, then c[η]i ≤ c[η]j for any c ∈ N0.

We then get

= max
1≤k≤σ

γ̄k+1 − kη + ση + pη using recurrence relation of Equation (2.1)

= max
1≤k≤σ

γ̄k+1 − kη + ση + pη + η − η adding η − η

= (p+ 1)η + max
1≤k≤σ

γ̄k+1 − (k + 1)η + ση after algebraic steps

= (p+ 1)η + max
1≤k≤σ

γ̄k − kη + ση by periodic property γ̄σ+1 = γ̄1 + ση

The last step then gives x = (p + 1)η + ν. Hence, (η, ν) is a generalized

eigenmode by Definition 14.

Algorithm 3 Compute delay τ

1: ComputeDelay(η, γ̄0, γ̄
∗)

2: k := 0, τ := −∞, ˜̄γ := ∅,
3: (γ̄k, δ̄k) := (γ̄0,u[−∞])

4: loop

5: ˜̄γ := ˜̄γ ∪ {(γ̄k, δ̄k)}, k := k + 1

6: γ̄k := M · γ̄k−1

7: δ̄k := γ̄k − γ̄k−1

8: τ := max(τ, ‖γ̄k − γ̄∗ − kη‖)
9: if ∃(γ̄m, δ̄m) ∈ ˜̄γ : δ̄k = δ̄m then

10: if γ̄k − γ̄m = (k −m) · η then

11: return τ

12: end if

13: end if

14: end loop
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0 5 10 15 20

a

b

c

e

γ̄k ˆ̄γk

ηs2 = [1, 1.67, 1.67, 1.67]

γ̄∗s2 = [2.33, 1.67, 0, 1.33]

τs2 = 2.33

Figure 5.7: Time-stamp vectors of scenario s2 of Figure 5.2

An algorithm for computing a delay τ from a given γ̄∗ and η is given in

Algorithm 3, which generalizes the delay computation algorithm of [28]. Algo-

rithm 3 finds a delay τ ∈ R that satisfies Equation (5.11) that is derived from

Equation (5.10).

u[τ ] � γ̄k − γ̄∗ − kη (5.11)

In the algorithm, ˜̄γ (line 2) is the set of pairs (γ̄k, δ̄k) of a time-stamp vector

and its difference with the previous time-stamp vector. All such pairs are added

to the set (line 5) to test if the execution has reached a periodic phase. The

execution begins with a zero vector γ̄0 (line 3). The algorithm executes the

recurrence relation (line 6) of Equation (2.1) until the periodic phase is detected

(lines 9-10). It tracks the difference vector (line 7) to detect the periodic phase.

After the periodic phase is reached, τ does not change any more and therefore,

the algorithm stops.

Figure 5.7 shows the conservative upper-bounds (ˆ̄γk) of the time-stamp vec-

tors, shown in Figure 5.4 (scenario s2 of Figure 5.2). The initial vector γ̄∗s1 and

delay τs1 are computed by Lemma 1 and Algorithm 3, respectively. Using such

conservative upper-bounds for every individual scenario, we can reason about

completion times of iterations irrespective of the scenario sequence they are exe-

cuted in, as discussed next in Section 5.5.

5.5 FSM-SADF Throughput Analysis

In the execution of a scenario sequence, each scenario is executed for one iteration.

The end of the kth iteration is marked by time-stamp vector γ̄k, which is used

as a starting vector for the (k + 1)th iteration, possibly in a different scenario.

This means, γ̄k+1 = Ms · γ̄k where Ms is the (max,+) matrix of the scenario at

the (k + 1)th iteration. In this section, we analyse the WCT of FSM-SADF, as

given by Definition 11. Section 5.5.1 defines time-stamp vector of FSM-SADF.

Section 5.5.2 and 5.5.3 present conservative and exact analysis techniques, respec-

tively.
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5.5.1 Time-stamp Vector of an FSM-SADF

The scenarios of an FSM-SADF may have different sets of initial tokens. If so,

their respective matrices may have inconsistent dimensions for the recurrence

relation, γ̄k+1 = Ms · γ̄k. Due to this reason, the matrix of a scenario needs to be

extended to accommodate those initial tokens that exist in other scenarios but

not in the scenario.

Denote the set of initial tokens of scenario s as Is. Denote the set of initial

tokens of FSM-SADF (S, f) as

Iz =
⋃
s∈S

Is.

Similar to Definition 6, we associate indices to initial tokens; ζz : Iz ↔ n,

where n = |Iz|. A time-stamp vector of (S, f) is then a vector γ̄k ∈ Rnmax that

has exactly one row for every initial token i ∈ Iz at index ζz(i).

A super-matrix of scenario s, Mz
s ∈ Rn×nmax , is constructed from the original

(max,+) matrix of s, Ms, as given by Equation (5.12). Mz
s accommodates every

initial token i ∈ Iz. When scenario s is executed at some iteration k, the super-

matrix Mz
s enables to preserve the time-stamps of every initial token i ∈ Iz\Is

(A\B denotes set A minus set B) for subsequent iterations beyond k.

[Mz
s ]ζz(i)ζz(j) =


[Ms]ζs(i)ζs(j) i, j ∈ Is

0 i = j ∧ i, j ∈ Iz\Is
−∞ i 6= j ∧ i ∈ Iz\Is ∨ j ∈ Iz\Is

(5.12)

E.g. the initial tokens of the scenarios of Figure 5.2 are Is0 = {a, b, c, d, e},
Is1 = {a, b, c, e} and Is2 = {a, b, c, d, e, f, g}. Therefore, Iz = {a, b, c, d, e, f, g}.
Extending the matrix of scenario s1 (Equation 2.2) to accommodate initial to-

kens Iz\Is1 = {d, f, g} yields matrix Mz
s1 of Equation (5.13). The indices of initial

tokens of Mz
s1 are ζz = {(a, 1), (b, 2), (c, 3), (d, 4), (e, 5), (f, 6), (g, 7)}. Executing

scenario s1 (i.e γ̄k+1 = Mz
s1 · γ̄k) preserves the time-stamps of tokens {d, f, g}, as

[γ̄k]i = [γ̄k+1]i for i ∈ {4, 6, 7}.

Mz
s1 =



1 −∞ −∞ −∞ −∞ −∞ −∞
4 −∞ −∞ −∞ 3 −∞ −∞
−∞ 0 −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ 2 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ −∞ −∞ 0


(5.13)
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5.5.2 Conservative Worst-Case Throughput

This section presents three different conservative WCT analysis techniques. The

WCT of FSM-SADF is the minimum among the WCTs of the possible scenario

sequences, as given by Definition 11. The WCT of a sequence is defined as the

minimum long-run average of completed iterations per time-unit. The FSM can

potentially specify infinitely many scenario sequences. However, all sequences are

basically formed by concatenation of the cycles of the FSM. Hence, a conservative

WCT of FSM-SADF can be computed by a maximum cycle mean (MCM) analysis

on the FSM.

For this purpose, each FSM state q ∈ Q is assigned a weight w
ε(q)
∈ N. A valid

weight is a conservative bound to the duration of one iteration of the scenario of

q. This narrows down the WCT analysis problem to finding such conservative

bounds of scenarios.

Approach 1: Scenario Graph

One simple approach is to abstract from scenario transitions; i.e to derive a bound

for one iteration of a scenario, regardless of other scenarios in the FSM-SADF.

Evaluating Equation (5.10) for the first iteration (k = 1) gives

γ̄1 = Mz
s γ̄0 � u[τs] + γ̄∗s + ηs (5.14)

where γ̄0 = u[0] and ηs, γ̄
∗
s and τs are the cycle-time vector, the generalized

eigenvector and delay of scenario s ∈ S, computed by Equation 5.9, Lemma 1

and Algorithm 3, respectively.

Let scenario s is executed at iteration k of a scenario sequence specified by

the FSM. Generally, ¯̄γk−1 � γ̄0 since all entries of the normalized vector ¯̄γk−1 are

less than or equal to 0. Then, we get

Mz
s

¯̄γk−1 � Mz
s γ̄0........................from monotonicity (5.15)

Mz
s

¯̄γk−1 � u[τs] + γ̄∗s + ηs...........from Equation (5.14)

‖Mz
s

¯̄γk−1‖ ≤ ‖u[τs] + γ̄∗s + ηs‖

The duration of iteration k (i.e. the distance between the finishing times

of iteration k and k − 1) is bounded by ‖Mz
s

¯̄γk−1‖. As a result, the bound

to the first iteration of scenario s, given by Equation (5.16), is a bound to an

iteration of scenario s at any iteration k, in any scenario sequence (since we have

no assumptions regarding the scenario of iteration k − 1).
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ws = ‖u[τs] + γ̄∗s + ηs‖ (5.16)

The inverse of the maximum among all such weights is a valid WCT of FSM-

SADF. We refer to this technique as the scenario graph approach and the WCT

ρsg is given by Equation (5.17) .

ρsg =
1

maxs∈S ws
. (5.17)

Approach 2: Global Initial Vector

A more accurate analysis is obtained if conservative bounds of scenarios are com-

puted, which are tailored to the scenarios in the FSM-SADF. Define a global

initial vector

γ̄∗S = max
s∈S

γ̄∗s (5.18)

where γ̄∗s is the generalized eigenvector of scenario s ∈ S, computed by Lemma 1.

For each scenario s, compute delay τs (Algorithm 3) using the cycle-time vector

of the scenario ηs and γ̄∗S . Following a similar argument as in Approach 1,

ws = ‖u[τs] + γ̄∗S + ηs‖ (5.19)

is a bound to a single iteration of scenario s at any iteration k, in any scenario

sequence. The MCM of the FSM gives a valid WCT ρgv, referred to as global

initial vector approach, as given by Equation (5.20). C denotes the set of cycles

of the FSM. A cycle c ∈ C is a sequence of states 〈qi+0, qi+1, · · · , qi+n, qi+0〉, such

that there exists a transition between consecutive states and no state appears

more than once.

ρgv =
1

max
c∈C

1

|c|
∑
∀q∈c

w
ε(q)

(5.20)

Approach 3: Local Initial Vector

The global initial vector approach can also be further refined by computing local

vectors, shown in Equation (5.21) between every FSM transition (p, q) ∈ T , where

r = ε(p) and s = ε(q).

γ̄∗rs = max(γ̄∗r , γ̄
∗
s ) (5.21)

For FSM transition (p, q), compute delay τrs (Algorithm 3) using cycle-time

vector ηs and γ̄∗rs. Hence, wrs, given by Equation (5.22), is a bound to a single

iteration of scenario s in any scenario transition r to s, in any scenario sequence.
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wrs = ‖u[τrs] + γ̄∗rs + ηs‖ (5.22)

The MCM of the FSM gives a valid WCT referred to as local initial vector

approach, as given by Equation (5.23), where p is the preceding FSM state of q

in cycle c.

ρlv =
1

max
c∈C

1

|c|
∑
∀q∈c

w
ε(p)ε(q)

(5.23)

5.5.3 Exact Worst-Case Throughput

Two exact WCT computation techniques for FSM-SADF, whose scenarios are all

self-timed bounded, are presented in [30]. In this section, we show that one of

these techniques is applicable to compute the exact WCT of FSM-SADF whose

scenarios are possibly non-self-timed bounded. This technique is known by the

name (max,+) automaton [26]. It is based on timed-event graphs of the scenarios

of the FSM-SADF.

A timed-event graph is a weighted directed graph representation of a (max,+)

matrix. It depicts the timing distance between initial tokens. It is also known

as communication graph in (max,+) literature [43]. The timed-event graph of

an n × n matrix has n nodes. The graph has an edge from node i to node j if

[M ]ij 6= −∞ and the weight of the edge equals [M ]ij . The timed-event graph of

Equation (2.2) is shown in Figure 5.8.

a b c

e

4 0

231

Figure 5.8: Timed-event graph of Equation (2.2)

According to the (max,+) automaton technique, the worst-case throughput of

an FSM-SADF is equal to the MCM of the throughput graph of the FSM-SADF.

The throughput graph G = (V,E) is a weighted directed graph that is constructed

from the timed-event graphs of the scenarios and the FSM of the FSM-SADF.

First, for each FSM state q ∈ Q, place the timed-event graph of its sce-

nario, ε(q). Then, for every FSM transition (p, q) ∈ T , add edge from node i

of the timed-event graph of ε(p) to node j of the timed-event graph of ε(q) if

[Mz
ε(q)

]ζz(j)ζz(i) 6= −∞.
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A weight w(e), shown in Equation (5.24), is then set for each edge e = (i, j)

as follows.

w(e) = [Mz
ε(q)

]ζz(j)ζz(i). (5.24)

The weight of an edge is the minimum timing distance between two initial

tokens in consecutive iterations. Hence, it gives the length of an iteration relative

to these two dependent initial tokens. For infinitely long execution of the FSM-

SADF (as in streaming applications), all such distances reside within the cycles

of the throughput graph. Therefore, the inverse of the maximum average weight

among all cycles gives the exact WCT as defined in Definition 11.

The exact WCT of FSM-SADF is then given by the MCM of the throughput

graph as given in Equation 5.25, where C denotes the set of all cycles in the

throughput graph and Ec denotes the set of edges in cycle c.

1

ρma
= max

c∈C

1

|Ec|
∑
∀e∈Ec

w(e) (5.25)

Unlike the conservative approaches of Section 5.5.2, Equation 5.25 gives the

exact WCT that may occur in the execution of the FSM-SADF. The improvement

in accuracy, however, comes at a price of run-time, as discussed next in Section 5.6.

5.6 Evaluation

This section demonstrates the applicability of the presented throughput analy-

sis techniques and evaluates their scalability. Section 5.6.1 assesses the relative

conservativeness of the analysis techniques with different dataflow graphs. Sec-

tion 5.6.2 evaluates the scalability of the analysis techniques as the number of

initial tokens and scenario graphs increase in FSM-SADF models.

5.6.1 Conservativeness

Table 5.1 shows the worst-case throughputs (WCTs) of different FSM-SADF

graphs, according to the different analysis techniques presented in Section 5.5.

The second and third columns of the table indicate the number of initial to-

kens (#tokens) and number of scenarios (#scenarios) of the FSM-SADF graphs.

Columns ρsg, ρgv and ρlv are conservative WCTs, according to Equations (5.17),

(5.20) and (5.23), respectively. Column ρma is the exact WCT, according to

Equation (5.25). The (max,+) automaton ρma gives the exact WCT of the

FSM-SADF graphs. Therefore, it is used as a reference to compare the relative

pessimism (accuracy) of the other three techniques.
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Table 5.1: WCT(×10−4 iterations/time-unit)

Appl.
Properties Throughput

Run-

time

#

tokens

#

scenarios
ρsg ρgv ρlv ρma (msec)

Figure 5.2 9 3 1.6e2 1.7e2 1.7e2 1.7e2 4/0

WLAN 9 4 1.7 2.1 2.5 2.5 4/0

LTE 17 5 4.8 8.1 9.9 14.5 12/4

Satellite 22 1 7.6 9.4 9.4 9.4 124/64

MP3 27 8 1.0e-3 2.4e-3 2.4e-3 3.1e-3 48/32

RVC-

MPEG
255 16 0.1 0.1 0.16 0.31 720/1076

Table 5.1 shows that ρlv gives a better result than the other two, and ρgv is

better than ρsg. This observation also holds in general. ρsg does not consider

the pipelined or overlapped execution of scenarios. Hence, it is the least accurate

among the three approaches. ρlv gives a better result than ρgv as it performs a re-

fined analysis using local transition delays. However, such analysis improvements

come at a price of additional analysis run-times, as discussed in Section 5.6.2.

The last column in the table shows the run-times of the analysis techniques.

The entries (conservative/exact) of the column shows the maximum run-time

among the three conservative techniques and the run-time of the exact technique,

respectively. For the RVC-MPEG application, for example, the maximum analysis

run-time with the conservative techniques is 720msec, while the exact (max,+)

automaton approach takes 1076msec. The run-times of the analysed applications

in Table 5.1 are quite low (almost below 1sec). However, the table shows that

the analysis run-time increases as the number of initial tokens (#tokens) and

scenarios (#scenarios) increase. The next section evaluates the scalability of the

throughput analysis techniques as these parameters increase further.

5.6.2 Scalability

The two main factors that affect the run-times of the analysis techniques are the

number of FSM states and the number of initial tokens.
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Figure 5.9: Analysis run-time as the number of FSM states increases

Number of FSM states

If a dynamic application is modeled in detail, the number of scenarios may sub-

stantially increase. As a result, the size of the FSM may also increase. Conserva-

tive techniques perform MCM analysis on the FSM, while the (max,+) automaton

approach constructs the throughput graph (cf. Section 5.5.3) by replacing each

state of the FSM with the timed-event graph (cf. Section 5.5.3) of the scenario

of the state. Figure 5.9 shows how the run-times of the different analysis tech-

niques scale with increasing number of FSM states. The evaluation is conducted

by generating a random synthetic FSM-SADF graph using the SDF3 [4] dataflow

tool. The generated graph has five scenarios and 22 initial tokens. The number

of FSM states of the graph is then varied from 2 to 60. The figure shows that

conservative techniques in general scale better than the exact technique. The con-

servative techniques perform a MCM analysis on the FSM, which has an order

of complexity O(Q3), since the FSM has |Q| states and at most |Q|2 edges. The

exact technique, on the other hand, performs a MCM analysis on the throughput

graph, which has an order of complexity O(V 3), where V is the number of vertices

of the throughput graph. V = |Q| × |Iz|, where Iz is the number of initial initial

tokens of the FSM-SADF.



i
i

“thesis” — 2014/10/3 — 2:55 — page 98 — #110 i
i

i
i

i
i

98 Section 5.6: Evaluation

55 110 165 220 275
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Initial Tokens

R
un

−
tim

e 
(m

se
c)

 

 

Scenario Graph

Global Initial Vector

Local Initial Vector

Max−plus Automaton

Figure 5.10: Analysis run-time vs. initial tokens (#FSM states=50)

Number of initial tokens

The above discussion also shows that the run-time of the (max,+) automaton

technique has time-complexity with the number of initial tokens. This is demon-

strated in Figure 5.10, which is constructed by increasing the number of initial

tokens on a generated FSM-SADF graph, which has 50 FSM states. The figure

also shows the scalability of the conservative techniques. The dimension of the

(max,+) matrix of a scenario is n × n, where n is the number of initial tokens.

Hence, the computational workload of such matrices is expected to grow with the

number of initial tokens. In particular, the number of initial tokens in FSM-SADF

may increase significantly when additional dataflow components are introduced

in the application graph, to model scheduling and resource allocation1.

Throughput analysis with the conservative techniques involves multiple steps.

1) Constructing a (max,+) matrix for each scenario; 2) Computing the cycle-

time vector of the matrix of each scenario; 3) Computing the generalized eigen-

vector of the matrix of each scenario, as per Lemma 1; 4) Computing delay,

as per Algorithm 3: a) the scenario graph and global initial vector approaches

require delay computation for each scenario and b) the local initial vector approach

requires delay computation for each FSM transition; 5) a MCM analysis on the

1This issue of resource-aware dataflow models is discussed further in Section 6.1.1
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Figure 5.11: Analysis run-time vs. initial tokens (#FSM states=5)

FSM if the global initial vector and local initial vector approaches are used.

Constructing the (max,+) matrix of a scenario (step 1) requires a symbolic

execution of the scenario for one iteration, as per Algorithm 1 of [28]. Hence, it

has complexity with the number of actor firings in one iteration. Steps 2 to 4 are

mainly based on the recurrent execution γk+1 = M · γk, until a periodic phase

is reached. Thus, they have a complexity of O(t · n2), where t is the length of

the transient phase and O(n2) is complexity of matrix-to-vector multiplication.

However, the local initial vector technique requires transition delay computations

(step 4) for each transition in the FSM. This makes the global initial vector

technique computationally more expensive than the other two techniques. Step

5, which is a MCM analysis on the FSM, is not required for the scenario graph

analysis technique (cf. Equation (5.17)). As a result, the technique is generally

faster than the other two techniques.

The above discussion reveals that the conservative analysis techniques are

dominated by matrix-to-vector multiplications. Hence, they have time-complexity

which is polynomial with the number of initial tokens. The (max,+) automaton

technique is also affected by increasing number of initial tokens. However, its

run-time may be low, even in case of a large number of initial tokens, if the sce-

nario matrices are sparse (populated primarily with −∞). This is illustrated in

Figure 5.11, which shows analysis run-time for increasing number of initial to-
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kens. The analysis is carried out using the FSM-SADF model of LTE, shown

in Figure 3.4, by synthetically increasing the initial tokens on two channels: the

channels from actor dmem to actor odmp, and from actor chan to actor chef .

Since the resulting matrices are highly sparse, the number of edges of the through-

put graph is much less than the maximum possible connections. Consequently,

the exact technique is faster than the conservative techniques.

5.6.3 Conclusion

The evaluation in this section demonstrates that the presented analysis techniques

can be directly applied to FSM-SADF graphs, which have non-self-timed bounded

scenarios and inter-scenario synchronizations through non-common channels. Ex-

amples of such cases in Table 5.1 are the FSM-SADF graphs of Figure 5.2, WLAN

and LTE. The results of the conservative techniques show that the local initial

vector technique gives a better throughput bound than the other two techniques,

while the scenario graph approach is the least accurate as it abstracts from sce-

nario transitions. The improvements of the throughput bounds, however, come

at additional run-time cost. The evaluation demonstrates the analysis techniques

have time-complexity with the number of initial tokens and FSM states. The con-

servative techniques are in general faster than the (max,+) automaton approach,

although the latter may still perform better if the scenario matrices are sparse.

5.7 Related Work

Existing throughput analysis techniques of dataflow MoCs or similar analysis

graphs in the literature predominately target Synchronous Dataflow (SDF) [53].

In particular, they focus on a sub-class of SDF where all port-rates are restricted

to exactly one token, also known as Homogeneous SDF (HSDF). The through-

put of a HSDF graph can be analysed through a maximum cycle mean (MCM)

analysis [22] or through a (max,+) formalization [8]. A detailed comparison of

different MCM algorithms can be found in [21]. These MCM algorithms are in

general applicable to SDF graphs through conversion to HSDF equivalents [27,81].

The conversion, however, can lead to an explosion in the size of the graph. As

a result, it may negatively affect the performance of these algorithms, as demon-

strated by the evaluation in [35]. To address this issue, [39] has proposed an al-

ternative (max,+)-based throughput analysis approach using a linear constraint

graph (LCG) that has fewer edges than an equivalent HSDF graph, by consider-

ing only SDF channels with the strongest data dependencies. Another solution

presented in [35] is to directly analyse the throughput of self-timed bounded SDF
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graphs, without requiring conversion to HSDF. The technique is based on a state-

space exploration, where a state is defined by token distributions of channels and

the remaining number of clock cycles of actor executions. The state-space exe-

cution of a self-timed bounded SDF graph reaches a periodic phase after a finite

number of transient states. The periodic phase determines the throughput of

the graph, in terms of the number of completed iterations per time-unit. An-

other SDF analysis technique that does not require conversion to HSDF is shown

in [28]. The technique derives the worst-case throughput from the eigenvalue of

the (max,+) characterization matrix of the SDF graph (cf. Section 2.4). Nev-

ertheless, as efforts being made to extend the expressiveness of SDF to support

application dynamism, new dataflow MoCs have emerged (cf. Section 3.4), which

called for appropriate support for these extensions during temporal analysis.

Variable-Rate Dataflow (VRDF) allows port-rates to vary within a specified

range. Its extension Variable-Rate Phased Dataflow (VPDF) furthermore allows

actors to cycle through a number of predetermined phases, each of which may exe-

cute multiple times, based on a run-time value selected from a finite interval [96].

However, [96] follows a different analysis approach for VRDF and VPDF than

ours, as it does not provide a means to directly compute the worst-case through-

put of these graphs (as we have shown for FSM-SADF in this chapter). Instead,

it indirectly verifies whether a throughput constraint imposed by a source (a sink)

actor can be satisfied by conservatively computing sufficient channel buffer sizes

that enable the construction of strict periodic schedules for actor firings, along

with their starting times.

Mode-Controlled Dataflow (MCDF) [59] supports modeling a dynamic stream-

ing application by identifying different static modes, where each mode can be

represented by a HSDF graph. [59] has proposed different techniques to perform

worst-case throughput analysis of MCDF graphs. One simple technique is to

derive a conservative throughput bound from the rate-equivalent HSDF graph,

which is obtained by replacing all conditional productions and consumptions (i.e.

switches and selects) of the MCDF graph by unconditional ones. This gives a

bound that is guaranteed to be met by all modes, as the MCM analysis on the

HSDF graph considers the MCDF graph as a whole. The other methods improve

this conservative estimation either through a dataflow simulation of all mode se-

quences of interest or by linear-bounding mode sequences through strict periodic

schedules of modes, along with appropriate mode transition intervals. However,

the latter techniques have to be applied to all (finite number of) mode sequences of

interest individually. As such, the throughput analysis abstracts from transitions

between consecutive mode sequences. FSM-SADF makes use of a FSM to encode

infinitely long and infinitely many scenario sequences. Our throughput analysis

takes into account the pipelining between any two finite-length scenario-sequences,
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which are executed, for example, to decode two consecutive data packets. This

leads to tighter throughput bounds. Moreover, MCDF currently supports only

HSDF modes, which have a scalability problem. Our analysis is performed di-

rectly on SDF scenarios, without requiring conversion to HSDF.

Scenario-Aware Dataflow (SADF) [89] improves the expressiveness of SDF

by allowing variable port-rates and execution times of actors, while establishing

correlations between different values of these parameters through the concept of

scenarios. It uses a stochastic approach to model the orders in which scenarios

occur. The throughput analysis of SADF presented in [89] constructs a global

state-space representation of the execution of scenario sequences, where transi-

tions are at the level of individual firings of actors. This may result in a very

large state-space as the graph size grows.

The FSM-version of SADF, introduced in [28], encodes the possible orders of

scenario executions using a non-deterministic FSM, thereby opening an opportu-

nity to construct a much smaller state-space, whose transitions are at the level

of scenario iterations [30]. The state-space enables to derive the exact worst-

case throughput that may occur in the execution of the FSM-SADF. [30] also

introduces another exact worst-case throughput analysis, known as (max,+) au-

tomaton. Faster but conservative analysis of FSM-SADF have also been studied

in [28, 69]. The conservative analysis approach is based on deriving reference

schedules that bound scenario transitions, similar to our conservative worst-case

throughput computation, discussed in Section 5.5.2.

However, these existing scenario-base analysis techniques require scenarios to

be self-timed bounded. In case of self-timed unbounded scenarios, the spectral

analysis presented in Algorithm 3 of [28] does not terminate, as a periodic phase

would never be reached. Moreover, these works implicitly define inter-scenario

synchronizations through common initial tokens. In this chapter, we analyse

FSM-SADF without requiring self-timed boundedness of scenarios. Unlike SDF,

this is essential since an unbounded scenario does not necessarily make a scenario

sequence unbounded. In addition, we use identifiers of initial tokens, instead of

implicit common initial tokens, to explicitly define data dependencies between

scenarios.

Another extension to scenarios of FSM-SADF like ours is presented in [31]

that permits individual scenarios to be inconsistent (cf. Definition 2) as long as

scenario sequences within cycles of the FSM remain consistent. In this case, the

boundedness analysis in Section 5.4 can be used to verify whether every scenario

sequence within a cycle of the FSM is bounded using the characterization matrix

of the scenario sequence. This matrix is constructed as a product of the matrices

of the individual scenarios of the sequence (cf. Section 7.3.3 for more).
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5.8 Summary

The individual scenarios of an FSM-SADF model should not necessarily be self-

timed bounded. This is because a channel, which has a faster production rate than

its consumption rate in one scenario, may stay bounded due to a slower production

rate in another scenario. Moreover, scenarios should not necessarily have the same

set of channels, as the graph structure of the application may change with the

processed input stream. Existing FSM-SADF analysis techniques, however, are

limited to 1) self-timed bounded scenarios and 2) inter-scenario synchronizations

that are captured through initial tokens on common channels between scenar-

ios. This chapter lifts these assumptions and presents a generalized approach to

analyse the worst-case throughput of an arbitrary set of SDF scenarios.

The basis of the generalized analysis is an algorithm, presented in Section 5.4,

that computes the rates of execution of the different self-timed bounded com-

ponents of a scenario. The algorithm is based on the concept of generalized

eigenmode from (max,+) algebra [43]. The algorithm returns the cycle-time vec-

tor of the matrix of a scenario. The cycle-time vector verifies that a scenario is

bounded if all entries of the vector are the same; since this implies that the rates

of execution of all actors are matched. The algorithm can also be used to analyse

boundedness of FSM-SADF models. In this case, boundedness needs to be ver-

ified for every cycle of the FSM, since any sequence of execution of scenarios is

formed by concatenation of the cycles of the FSM. A cycle of the FSM is bounded

if the matrix of the sequence of scenarios of the cycle is bounded. The matrix of

a scenario sequence is basically the product of the matrices of the scenarios of the

sequence.

Based on the results of the analysis of a single scenario in Section 5.4, exist-

ing worst-case throughput analysis techniques are generalized. These techniques

have different levels of accuracy and run-time. The conservative techniques are

generally faster and more scalable than the exact technique. However, they give

only a lower-bound WCT whereas the exact technique gives the actual WCT that

may occur in the execution of the FSM-SADF.
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CHAPTER 6

Analysing Application Mappings

The previous chapter discussed the temporal analysis of FSM-SADF models, with-

out explicitly considering the impact of resource sharing. This chapter presents

an analytical method to compute temporal bounds of applications mapped onto

a shared multi-core platform. The applications are modeled with the FSM-SADF

MoC. The presented analysis method avoids constructing resource-aware dataflow

models, which are often used in existing dataflow-based approaches. As a result,

it keeps the graph size intact and improves scalability. The analysis method fol-

lows a new approach that combines symbolic simulation in (max,+) algebra with

worst-case resource curves (WCRCs). A WCRC specifies the minimum amount

of resource an application is guaranteed to get over a time interval. The analy-

sis enables a tighter performance guarantee by improving the WCRTs of service

requests that arrive in the same busy time of a resource.

The chapter is organized as follows. Section 6.1 motivates the mapping analy-

sis problem and outlines our approach. Section 6.2 presents the problem formula-

tion. Section 6.3 discusses the analysis of an FSM-SADF mapped on a multi-core

platform. Section 6.4 discusses symbolic identification of busy times of a resource

for improved WCRT analysis. Section 6.5 demonstrates derivation of WCRCs

analytically for a real-time arbiter, namely CCSP. Section 6.6 evaluates the ap-

proach. Section 6.7 presents related work. Section 6.8 summarizes the chapter.

105
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6.1 Introduction

Embedded multimedia and wireless systems are typically implemented on a mul-

tiprocessor system-on-chip (MPSoC) that comprises heterogeneous resources that

are shared between multiple applications under different scheduling policies. These

applications have strict real-time constraints, such as throughput and latency. It

is crucial to guarantee that such constraints are satisfied at all times. Analytical

approaches have been widely used to compute conservative temporal bounds (cf.

related works in Section 6.7). Analytical approaches should give tight bounds to

avoid unnecessary resource over-allocation. They should also be fast to explore

the mapping design-space efficiently through an iterative process, following the Y-

chart approach (cf. Figure 1.2). Analysing application mappings using dataflow

MoCs [59, 86] is among such analytical approaches that can give conservative

temporal guarantees at design-time.
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Dataflow-based mapping analysis approaches [59,81,86] construct a resource-

aware dataflow (RAD) model to analyse application mappings. A RAD model is

generated by adding mapping-related dataflow components into the application

model [20] [55]. These components may dilate the graph and result in poor scala-

bility, as discussed in Section 6.1.1. Besides, RAD supports only schedulers that

have dataflow representations. This chapter presents a new analysis approach,

which addresses these limitations, as outlined in Section 6.1.2.

6.1.1 Motivation

Existing dataflow-based analysis approaches [86] [98] [59] construct a RAD model

after an application is mapped on a MPSoC platform. The RAD model incorpo-

rates different system aspects. Figure 6.1 shows two SDF graphs that are mapped

on a heterogeneous MPSoC platform model that comprises a general purpose pro-

cessor (GPP p1) and two vector processors (VP p2 and p3). Figure 6.2 shows the

RAD model of graph g2 of Figure 6.1. A static-order (SO) schedule is used be-

tween actors of the graph. A budget scheduler (e.g time-division multiplexing

(TDM)) is used to share the platform with other graphs.

In the RAD model, the buffer-size of a channel is modeled by adding another

channel in the reverse direction (red edges), with as many initial tokens as the

allocated buffer-size [68]. The model of the SO schedule (green actors and edges)

is based on [20]. The model of the communication delay from actor x to y (blue)

is based on the dataflow model for a class of schedulers known as LR servers [98].

The TDM scheduling is modeled by replacing each actor x by another actor x̄

(brown), whose execution time equals the worst-case response time (WCRT) of x.

The WCRT captures the maximum interference from actors of other graphs. This

WCRT model can be refined by replacing each actor by the two-actor latency-rate

(LR) model [98] or even by the many-actor model of [55].

The total number N of initial tokens of a RAD model plays a key role in the

run-time of temporal analysis. Each matrix has a dimension of N ×N and the

throughput analysis has time complexity with the number of initial tokens, as

discussed in Chapter 5. Figure 6.3 shows the number of initial tokens of RAD

models for different applications, after mapping onto a 4-tile multi-core target

using the SDF3 tool [86]. The applications are taken from the benchmark graphs

of [86]. The figure shows that the throughput analysis takes only few seconds

for N < 500. When N grows to few thousands, the run-time increased to more

than 10 minutes. For the last 3 cases, the large numbers of tokens resulted in

huge matrices, which led to running out of memory and the analysis could not

be completed. As a result, techniques to limit the number of initial tokens to a

manageable level become crucial.
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Figure 6.3: Scalability challenge in RAD-based analysis.

6.1.2 Outline of the Approach

This chapter presents an approach, which we call symbolic analysis of applica-

tion mappings (SAAM), to analyse application mappings, without explicitly con-

structing RAD models. The approach uses FSM-SADF to model applications. In

FSM-SADF, each scenario is modeled by a SDF graph. The resulting set of sce-

narios are analysed compositionally after analysing each scenario separately, using

the techniques discussed in Chapter 5. A scenario is analysed by constructing a

characterization matrix of the corresponding SDF graph. Existing dataflow-based

analysis techniques construct such matrices after RAD models are constructed.

This approach may become problematic as the graph size grows (cf. Section 6.1.1).

This chapter proposes an approach that embeds worst-case resource curves in the

dataflow analysis to model the worst-case (minimal) availability of resources. The

dataflow analysis is based on a symbolic simulation in (max,+) algebra [8], which

takes the static-order schedule of actors and shared resource contentions into ac-

count. As a result, the analysis keeps the graph size, in particular the number of

initial tokens, intact and enables a better scalable analysis. The technique is illus-

trated for four different types of resource models: buffers, static-order scheduling,

budget scheduling and interconnects. The technique further enables tighter tem-

poral bounds by improving the WCRTs of requests that arrive in the same busy

time (i.e. an interval between two idle times) of a resource.
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6.1.3 Contribution

The chapter presents three novel contributions: 1) a matrix characterization of

a dataflow mapping without explicitly constructing a RAD model, and 2) em-

bedding worst-case resource curves during a (max,+) symbolic simulation to

characterize resource scheduling and 3) symbolic identification of busy times for

improved WCRT analysis. The first two contributions, which are presented in

Section 6.3, keep the graph size intact and enable a scalable analysis. The third

contribution, which is presented in Section 6.4, enables tighter temporal bounds

by avoiding the pessimistic assumption of critical instant on all requests. The

critical instant of a request in TDM is, for instance, when a request arrives just

after its allocated time slot has passed.

The new analysis approach is evaluated in Section 6.6 with different multime-

dia and wireless application graphs. The results show significant improvements

in analysis run-time and tightness of temporal guarantees.

6.2 Problem Formulation

This chapter intends to compute worst-case temporal bounds for a streaming

application that is mapped on a heterogeneous set of resources that are shared

with other applications. The application model is the FSM-based SADF MoC,

which is defined in Chapter 2. The resource model and the application-to-resource

mapping are discussed below.

6.2.1 Resource Model

The MPSoC platform comprises a set Π of heterogeneous processor tiles. The

interconnect is abstracted with a set Θ of connections. The platform (Π,Θ) can be

shared between multiple applications under different scheduling policies. Mapping

an application (S, f) to platform (Π,Θ) allocates resources such as processor

budgets. For instance, on a processor under TDM scheduling, an application is

allocated a slice (say 25%) of the TDM frame. At run-time, the application is

preempted by other applications when it runs out of its allocated slice and has to

wait for the next TDM frame.

In general, we characterize the minimum share an application (S, f) has on a

platform (Π,Θ) with worst-case resource curves (WCRCs). WCRCs are the same

as lower-bound service curves of real-time calculus [17]. A WCRC ξ(tδ), defined in

Definition 15, specifies the minimum amount of resource in service units that an

application is guaranteed to get in a given time interval tδ ∈ N (where tδ = v− u
for any time interval [u, v), u, v ∈ N).
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(a)
tδ

ξ(tδ)

(b)
tδ

ξ(tδ)

(c)
tδ

ξ(tδ)

(d)
tδ

ξ(tδ)

Figure 6.4: Example WCRCs

Service unit can be, for example, processor time in cycles for an actor execution

or connection bandwidth in bytes for a token transaction. Figure 6.4 shows some

examples of WCRCs, which show (a) a fully available resource, (b) a bounded

delay resource that guarantees a certain service rate after a bounded delay, (c) a

periodic resource that periodically processes a request and (d) a TDM resource

that replenishes the allocated slice every frame.

Definition 15 (Worst-case Resource Curve - WCRC). A WCRC ξ conservatively

models an actual resource r if for any time interval [u, v) : u, v ∈ N, u ≤ v, if

r[u, v) denotes the amount of service units that an application is guaranteed to

get from the resource over interval [u, v), then r[u, v) ≥ ξ(v − u).

WCRCs capture resource sharing between multiple applications. This is be-

cause each curve specifies the minimal service an application is guaranteed to get

from a processor or a connection, irrespective of other applications sharing the

resource. As a demonstration, Section 6.5 analytically derives the WCRC for one

real-time scheduler, namely Credit-Controller Static Priority (CCSP) [6], often

used in predictable memory controllers.

6.2.2 Application Mapping

The application-to-platform mapping decides actor-to-processor and channel-to-

connection or channel-to-tile bindings. In addition, it allocates resources such

as processor budgets and buffer-sizes. It also constructs a SO schedule between

actors (of the same graph) that are mapped on the same processor. The mapping

of an application may vary from one scenario to another. Definitions 16 defines a

scenario mapping, where Ξ denotes the set of WCRC functions.
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Definition 16 (Scenario mapping). Given a platform (Π,Θ), a scenario mapping

(g, τ, κ, π, θ, β, σ) is a 7-tuple, where g is a scenario graph, τ : A→ Π is actor-to-

processor binding and κ : C → Θ∪Π is channel binding. π : Π→ Ξ and θ : Θ→ Ξ

are the worst-case resource curves of processors and connections, respectively.

β : C → N is the allocated buffer-sizes of channels. σ is a function that returns

the SO schedule σ(p) = 〈a1, a2, · · · , an〉 of actors ai ∈ A on processor tile p ∈ Π.

An application mapping (S, f, µ) is a 3-tuple. S is a set of scenarios, f is a

FSM on S and µ is a function that gives the scenario mapping µ(s) of s ∈ S. We

present our mapping analysis technique in two steps. First, Section 6.3 analyzes

an application mapping by constructing a (max,+) characterization matrix for

each scenario mapping. Then, Section 6.4 improves the tightness/accuracy of the

analysis by computing tighter WCRT bounds for requests that arrive in the same

busy time of a resource.

6.3 Matrix Characterization of a Mapping

Given a scenario mapping, an actor is enabled for firing if 1) the actor is next

in the SO schedule, 2) all input tokens have arrived and 3) there is sufficient

output buffer space. Thus, the enabling time of an actor is determined by the last

condition to be satisfied; i.e. the maximum of the enabling times of the above

three conditions. An upper-bound to the completion time of an actor’s firing can

be obtained by adding its WCRT to its start time, as shown in Equation 6.1.

φ(x, k) denotes the upper-bound for the completion time of the kth firing of actor

x. The parameters ti, to, tp denote input token, output buffer and processor

availability times, respectively.

φ(x, k) = max(ti, to, tp) + ω(x) (6.1)

ω(x) denotes the WCRT of actor x. It depends on the scheduling policy used

to share the processor tile with other applications. It is computed from the WCRC

ξ of the tile, as shown in Equation (6.2). Recall that χ(x) is the WCET of the

actor (cf. Definition 1). Equation (6.2) returns the minimum time interval that

is needed to obtain sufficient service cycles for the WCET of the actor.

ω(x) = inf{tδ ∈ N | ξ(tδ) ≥ χ(x)}. (6.2)

Equation (6.1) illustrates how the timing behavior of a scenario mapping can

be analyzed using (max,+) expressions. The parameters ti, to and tp can also be

derived through (max,+) expressions as explained next.
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x y
p q

ι(cxy) = n

(a) cxy has n initial tokens

x y
1 1

ι(cxy) = n

qp

ι(cyx) = m− n

(b) cxy has a buffer-size of β(cyx) = m

Figure 6.5: Modeling the allocated buffer-size of a channel in RAD

1. The input data availability time ti is determined by the last arriving token,

i.e. the maximum of the production times of all input tokens.

2. The processor availability time tp can be derived from the completion time

of the last actor that is executed on the processor.

3. Output buffer availability time to can be computed from the completion

times of previous actor firings. This is because we employ an acquire-release

FIFO management, where buffer spaces of input tokens are conservatively

released only after the actor firing is completed. E.g. Figure 6.5(a) shows

channel cxy from actor x to y with n ∈ N0 initial tokens. The channel is

allocated a buffer-size of m ∈ N where m ≥ n. The availability times of

free buffer spaces on this channel can be derived by considering how buffer

spaces are modeled in RAD. Buffer spaces are modeled in RAD by adding

another channel in the reverse direction with as many initial tokens as the

number of free buffer spaces [68], as shown in Figure 6.5(b). The tokens

on the reverse channel cyx represent the released/free buffer spaces. The

output buffer availability time on channel cxy for the kth firing of actor x

is given by Equation (6.3). The availability time is basically obtained from

the completion time of a previous firing of actor y.

ψ(x, k, cxy) = φ

(
y,

⌈
p× k −m+ n

q

⌉)
(6.3)

The output buffer availability time to = ψ(x, k) of x for the kth firing is

then the latest buffer space availability time among all outgoing channels of

x, i.e. Cxy = {cxy ∈ C | y ∈ A, cxy = (x, y)}, as shown in Equation 6.4.

ψ(x, k) = max
cxy∈Cxy

ψ(x, k, cxy) (6.4)
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Example: We show the execution of the scenario mapping of graph g2 of

Figure 6.1. Assume the WCETs of the actors are χ(x) = 2, χ(y) = 3 and χ(z) = 1.

Actor x is mapped on processor tile p1 and actors y and z are mapped on p2. The

allocated buffer sizes of channels are β(cxy) = 1, β(cyz) = 3 and β(czy) = 2. The

buffers allow the SO schedules σ(p1) = 〈x〉 and σ(p2) = 〈z, y, z〉. We assume TDM

scheduling on both tiles p1 and p2 with a TDM frame size of 4 and allocated TDM

slice of 2 time-units. To simplify the example, we assume delay-less interconnect.

Interconnect delays are discussed later in Section 6.3.2.

An execution of one iteration comprises four actor firings as given by the

repetition vector [1, 1, 2]. Initially, the only possible firing is actor z. Actor x

cannot fire since it does not have enough output buffer space and actor y is not

next in the SO schedule. When actor z fires, it consumes token c and produces

one token on channel czy. The firing completes after its WCRT ω(z) = 3, waiting

for a maximum of 2 time-units followed by execution of 1. (The computation of

the WCRTs on tile p2 can also be seen on Figure 6.8, which shows the WCRC

of a TDM of frame size 4 and allocated slice 2.) It then produces one token on

channel czy, time-stamped with its production time 3. Then, actor y fires and

completes its firing at φ(y, 1) = max(ti, ψ(y, 1), tp)+ω(y) = max(3, 0, 3)+7 = 10.

Note that ψ(y, 1) = 0 since channel cyz had already 2 free buffer spaces at the

beginning of the iteration. This can also be derived from Equation (6.4), which

gives ψ(y, 1) = φ(z, 0) = 0. Similarly, the remaining two firings complete at

φ(x, 1) = 10 + 4 = 14 and φ(z, 2) = 10 + 3 = 13. The collection of the time-

stamps of the final tokens marks a bound to the end of the iteration. This enables

temporal analysis of a scenario mapping such as throughput, which is given by

iterations per time-unit, as discussed in Chapter 5.

6.3.1 (max,+) matrix of a scenario mapping

Next, we execute the above example using symbolic time-stamps of tokens. By

symbolic execution, as opposed to concrete execution like the above example, we

provide a means to compute a bound for any iteration, given the collection of time-

stamps that mark the start of the iteration. This is given by a recurrent relation

γ̄k+1 = M · γ̄k, where time-stamp vector γ̄k ∈ Rnmax marks the end of iteration k.

M ∈ Rn×nmax is a (max,+) characterization matrix of the scenario mapping.

The production time of a token can be put symbolically as t = maxi(ti + gi),

where ti denotes time-stamps of initial tokens and resource availability, and gi
denotes suitable constants, as presented in Section 2.4. This can be written in a

(max,+) vector dot-product t̄.ḡ, where t̄ = [ta, tb, tc, td, tp1, tp2]T and ḡ ∈ R6
max.

The time-stamp vector has 6 entries: 4 for the initial tokens (a, b, c and d) and 2

for processors p1 and p2.
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Let the time-stamps t̄a, t̄b, t̄c and t̄d correspond to the following time-stamp

vectors, respectively: [0;−∞;−∞;−∞;−∞;−∞]T , [−∞; 0;−∞;−∞;−∞;−∞]T ,

[−∞;−∞; 0;−∞;−∞;−∞]T and [−∞;−∞;−∞; 0;−∞;−∞]T . Similarly, the

time-stamps t̄p1 and t̄p2 encode the availability times of the two processors (p1 and

p2). They correspond to the time-stamp vectors [−∞;−∞;−∞;−∞; 0;−∞]T

and [−∞;−∞;−∞;−∞;−∞; 0]T . Using symbolic versions of Equation (6.1)

and (6.4), where all time-stamps are vectors, the completion time of the first

firing of actor z is given by Equation (6.5).

φ̄(z, 1) = max(t̄c, ψ̄(z, 1), t̄p2) + ω(z)

= max(t̄c, t̄p2) + ω(z)

= [−∞;−∞; 0;−∞;−∞; 0] + 3

= [−∞;−∞; 3;−∞;−∞; 3]

(6.5)

Note that t̄c, ψ̄(z, 1) and t̄p2 are the input token, output buffer and processor

availability times, respectively. According to Equation (6.4), ψ̄(z, 1) evaluates to

φ̄(y, 0), which is the completion time of actor y in the previous iteration on tile p2.

Hence, ψ̄(z, 1) occurs before the current availability time of p2: i.e. ψ̄(z, 1) � t̄p2.

This simplifies the evaluation as shown in Equation (6.5). After the firing of actor

z, the symbolic time-stamp of processor p2, t̄p2 is updated to φ̄(z, 1), marking the

availability of the processor for the next actor firing. This way, the static-order

scheduling of actors mapped on the same processor tile is properly taken into

account in the mapping analysis.

Similarly, we have the following completion times for the other firings.

• The firing of actor y

φ̄(y, 1) = max(t̄b,max(t̄d, φ̄(z, 1)), t̄p2, ψ̄(y, 1)) + ω(y)

= max(t̄b,max(t̄d, φ̄(z, 1)), φ̄(z, 1), ψ̄(y, 1)) + ω(y)

= [−∞; 0; 3; 0;−∞; 3] + 7

= [−∞; 7; 10; 7;−∞; 10]

After the completion of actor y, t̄p2 is updated to φ̄(y, 1).

• The second firing of actor z

φ̄(z, 2) = max(φ̄(y, 1), t̄p2, ψ̄(z, 2)) + ω(z)

= max(φ̄(y, 1), φ̄(y, 1), ψ̄(z, 2)) + 3

= [−∞; 10; 13; 10;−∞; 13]

After the completion of the second firing of actor z, t̄p2 is updated to φ̄(z, 2).
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• The firing of actor x

φ̄(x, 1) = max(t̄a, t̄p1, ψ̄(x, 1)) + ω(x)

= max(t̄a, t̄p1, φ̄(y, 1)) + 4

= [0; 7; 10; 7; 0; 10] + 4

= [4; 11; 14; 11; 4; 14]

After the completion of actor x, t̄p1 is updated to φ̄(x, 1).

Thus, the completion times of the firings are φ̄(y, 1) = [−∞; 7; 10; 7;−∞; 10],

φ̄(z, 2) = [−∞; 10; 13; 10;−∞; 13] and φ̄(x, 1) = [4; 11; 14; 11; 4; 14]. At the end of

the iteration, the new four tokens have the time-stamps t̄′a = φ̄(x, 1), t̄′b = φ̄(x, 1),

t̄′c = φ̄(y, 1) and t̄′d = φ̄(z, 2). The time-stamps of the two processors become

t̄′p1 = φ̄(x, 1) and t̄′p2 = φ̄(z, 2). Collecting the new symbolic time-stamps as

[t̄′a, t̄′b, t̄′c, t̄′d, t̄′p1, t̄′p2] gives Equation (6.6), which captures the worst-case tim-

ing behavior of an iteration. The relation enables to compute a bound for any

iteration, given the start of the iteration, as per the relation γ̄k+1 = M · γ̄k.

t′a
t′b
t′c
t′d
t′p1
t′p2


=



4 11 14 11 4 14

4 11 14 11 4 14

−∞ 7 10 7 −∞ 10

−∞ 10 13 10 −∞ 13

4 11 14 11 4 14

−∞ 10 13 10 −∞ 13


·



ta
tb
tc
td
tp1
tp2


(6.6)

6.3.2 Accounting for Interconnect Delay

If both the source and destination actors of a channel c are mapped on the same

tile, the FIFO buffer of the channel is allocated locally on the tile; i.e. κ(c) ∈ Π.

In this case, modeling these local buffers with time-stamp tokens is not required,

since there is no overlapping between different scenarios of an application on the

same tile. The completion time of a scenario on a tile can be found solely from

the tile’s time-stamp (i.e. t̄p1
and t̄p2

of the running example). This is basically

why we had the simplification earlier in Equation (6.5).

If, however, a channel is mapped on a connection, the earlier simplification

no longer holds. Due to the possibility of overlapped execution of scenarios of an

application on different tiles, we need additional time-stamp tokens for inter-tile

connections in our matrix characterization. These tokens are required to carry the

availability times of connections, source buffers and destination buffers between

consecutive iterations. This section shows how interconnect delays are properly

accounted for in the mapping analysis.
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p1

βsrc(cxy)

p2

βdst(cxy)

r1 r2 r3

A Network-on-Chip Interconnect

Figure 6.6: The buffer-size β(cxy) of channel cxy mapped on a connection is

distributed on the source and destination tiles as β(cxy) = βsrc(cxy) + βdst(cxy)

x y
u v

(a) assume cxy is mapped on a

connection; i.e. κ(cxy) ∈ Θ

x k y
u 1 1 v

v1

βdst(cxy)

1u

βsrc(cxy)

tk

(b) connection κ(cxy) is modeled by a

single actor k with a self-edge

Figure 6.7: Accounting for inter-tile connection delays

If the source and destination actors x and y of channel cxy, with port-rates

ρ(cxy) = (u, v), are mapped on different tiles (Figure 6.7(a)), then the channel is

bound to a connection κ(cxy) ∈ Θ. In this case, the allocated buffer-size β(cxy)

of the channel is distributed on the source and destination tiles, say βsrc(cxy) and

βdst(cxy), as shown in Figure 6.6. A token that is to be sent over the connection

is first written in βsrc(cxy). If a buffer space is available at the destination, the

token is sent, which takes a certain transfer delay before it is written in βdst(cxy).

One approach to account for connections in our mapping analysis is to use

existing RAD techniques to model transfer delays and buffers into the application

graph, and thereafter, use the resulting partial-RAD model as a starting point for

the analysis. The inter-tile connection can be modeled in RAD by a single dataflow

actor or by a two-actors latency-rate model (as shown in Figure 6.2) or even by

a detailed interconnect model [42]. In such cases, the matrix characterization of

Section 6.3.1, as it is, properly takes into account interconnect delays.

An alternative approach is to use our WCRC characterization of resources for

connections. For this approach, a single actor k is introduced between actors x and

y, as shown in Figure 6.7(b). The WCRT of actor k is computed from the WCRC

of the connection, i.e. θ(κ(cxy)), as given by Equation (6.2). It gives the transfer
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delay. Actor k has a self-edge with one initial token tk that stores the availability

time of the connection after the previous transaction is completed. This way, one

time-stamp token is introduced per connection to capture its availability time,

similar to what we did for processor tiles.

The modeling of source and destination buffers is done the same way whether

the RAD-based or the WCRC-based connection analysis is used. The buffers are

modeled by adding reverse channels with as many initial tokens as the allocated

buffer sizes [68], as shown in Figure 6.7. This means the source and destination

buffers require one time-stamp token for each buffer space. However, the number

of time-stamp tokens can be reduced, by taking into account the multi-rate data

consumption and production behavior of SDF actors. In Figure 6.7(b), all v ∈ N
buffer spaces released by the firing of actor y (i.e. tokens produced on channel

cyk) have the same time-stamp. The output buffer availability time of actor x

is determined by the last claimed space (i.e. the last token among the u ∈ N
tokens consumed from channel ckx). As a result, for the source buffer βsrc(c),

keeping only dβsrc(c)/ue time-stamp tokens in the matrix is sufficient, since the

availability time of u consecutive buffer spaces needed by a firing of actor x is

obtained from the last space released among these u spaces. Similarly, for the

destination buffer βdst(c), introducing dβdst(c)/ve time-stamp tokens is sufficient,

since the release times of v buffer spaces by a firing of actor y are all the same.

We conclude the section with some remarks on the RAD-based and WCRC-

based connection analyses. As far as scalability is concerned, the WCRC-based

analysis does not bring improvements if the intention is to substitute simple RAD

models, such as single actor and latency-rate models. Its strong suit is its generic-

ity. It does not require a dataflow model to be available for connections. It enables

to compute WCRTs (in this case transfer delays), given the minimum amount of

bytes a connection is guaranteed to transfer over different time-intervals. The

other point is accuracy. Obviously, it gives the same WCRT as a single-actor

RAD connection model. However, it gives pessimistic WCRT bounds compared

to a latency-rate model, since the equivalent bounded-delay WCRC (cf. Fig-

ure 6.4b) of actor k assumes the initial delay/latency for every transfer request

when the WCRT is computed using Equation (6.2). In the latency-rate model,

the latency is seen only by the first request in case of a bursty transfer request

(i.e. for a burst of n requests, the response-time is (latency + 1
rate ) + n−1

rate ). In

Section 6.4, we address this pessimism of WCRC-based WCRT computation of

Equation (6.2) applying the concept of busy times [73]. The technique identifies

the busy times of a resource from the symbolic time-stamps of actor firings. It

then computes a WCRT based on the cumulative requested service since the be-

ginning of a busy time. This enables to avoid assuming the initial delay for every

transfer request and compute equivalent WCRTs as the latency-rate model.
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Algorithm 4 Construct a (max,+) matrix of a scenario mapping

1: ConstructMaxPlusMatrix (g, τ, κ, π, θ, β, σ)

2: Γ← the set of initial tokens of g = (A,C, ι, χ, ρ)

3: T ← {t̄k | t̄k is a symbolic token for each k ∈ Π,Ω}
4: r̄′ ← compute the repetition vector of g

5: r̄ ← r̄′

6: while r̄ 6= a zero vector do

7: x← pick an enabled actor | r̄(x) > 0

8: Ci ← {ci ∈ C | ci = (a, x) : a ∈ A, ρ(ci) = (ui, vi)}
9: Co ← {co ∈ C | co = (x, a) : a ∈ A, ρ(co) = (uo, vo)}

10: Ti ← collect vi ∈ N tokens from ∀ci ∈ Ci
11: t̄τ(x) ← pick the symbolic token of τ(x) from T

12: t̄o ← max (maxi Ti, ψ(x, r̄′(x)− r̄(x)) , t̄τ(x)) + ω(x)

13: To ← produce uo ∈ N tokens at time t̄o for ∀co ∈ Co
14: T ← (T\Ti) ∪ To
15: t̄τ(x) ← t̄o
16: r̄(x)← r̄(x)− 1 //decrement number of firings

17: update σ(τ(x)) //update SO schedule

18: end while

19: M ← collect all symbolic tokens t̄k ∈ T

6.3.3 Matrix Construction Algorithm

Algorithm 4 sketches the construction of a (max,+) matrix of a given scenario

mapping. To simplify the presentation of the algorithm, we assume inter-tile con-

nections are already modeled in the scenario graph, as illustrated in the dataflow

model of Figure 6.6. Hence, tokens that capture the availability times of con-

nections as well as source and destination buffers are already in the set of initial

tokens of the scenario graph.

The algorithm begins with associating a symbolic token t̄k for each initial

token and each processor tile. These symbolic tokens are collected into the set

T (line 3). Then, it computes the number of actor firings in one iteration of the

scenario (line 4-5). The algorithm picks an enabled actor (line 7). Ci and Co
are the set of input and output channels of the actor (line 8-9). The algorithm

then computes a bound t̄o to the completion time of the actor firing (line 12),

by adding the WCRT of the actor to its enabling time. The enabling time is the

maximum of the availability times of 1) all input tokens Ti (line 10), 2) output

buffers and 3) the processor tile (line 11). The output buffer availability ψ(x, k)

of the kth firing of x, where k = r̄′(x) − r̄(x), is computed from previous actor



i
i

“thesis” — 2014/10/3 — 2:55 — page 119 — #131 i
i

i
i

i
i

Chapter 6: Analysing Application Mappings 119

firings (cf. Equation (6.4)). At the end of the execution, new symbolic tokens are

produced, all time-stamped at t̄o (line 13). The symbolic execution terminates

when all actors are executed as many times as their repetition factors. At the

end of the execution, the set T contains the same number of tokens as the initial

set; exactly one token for every initial token of the scenario graph and all tokens

that model resource availability updated with new values. The collection of these

tokens forms the (max,+) matrix M (line 19) that characterizes the execution of

the scenario mapping.

6.3.4 Composing Matrices of Scenario Mappings

Once a matrix Mµ(s) is constructed for each scenario mapping µ(s) of s ∈ S, the

compositional analysis approach of Chapter 5 is used to analyse the application

mapping (S, f, µ). Both conservative and exact analyses are possible. A simple

conservative analysis is done by assuming a fully-connected FSM [30]. This implies

that all scenario sequences are possible. In this case, the WCT equals the inverse

of the eigenvalue of the matrix of Equation 6.7.

M = max
s∈S

Mµ(s) (6.7)

Another conservative approach is a maximum-cycle-mean analysis on the FSM

f , since all scenario sequences are basically formed by concatenation of the cycles

of the FSM. Such conservative techniques are discussed in Section 5.5.2. For the

exact WCT, the (max,+)-automaton approach of [30] can be used.

6.4 Improving Response-time

We refer to a service request as an abstract unit of granularity of resource access,

such as an actor firing on a processor, a data transaction on an interconnect or

a read/write request to a memory controller. In Section 6.3, WCRCs are used

to derive worst-case response bounds of individual service requests, as given by

Equation (6.2). This is, however, pessimistic, since it assumes the critical instant

irrespective of the arrival time of a request to a resource [73]. The critical instant

can be the worst-case interference in priority-based scheduling or the arrival of

a request just after the end of its allocated slot in TDM scheduling. A known

approach to address this pessimism is the concept of multiple event busy time [73]

[92]. A busy time refers to an interval between two idle times of a resource. The

basic idea of this approach is to use the arrival time of a request to check if it

has arrived while the resource is busy processing previously arrived requests so

that the assumption of the critical instant can be avoided for the request. The
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idea has been used in the literature for tighter response time analysis [92] and

improved event model construction [73]. In this section, we apply the concept

to improve WCRTs. Our contribution is a symbolic identification of busy times

so that bounds tighter than Equation (6.1) can be derived. By using symbolic

analysis, we make it possible to apply the technique by identifying all busy times

of an iteration from the time-stamps of requests.

A busy time is a maximum time interval during which all requests except the

first one have arrived before the preceding is finished [73]. Figure 6.8 illustrates

an example, where the WCRC of a TDM arbiter of frame size 4 time-units and

50% slice allocation is shown. α(k) denotes the arrival time of request k and

σ(k) denotes the total amount of service requested in the busy time until and

including k. The figure shows three request arrivals at time α(1) = 0, α(2) = 2

and α(3) = 7, each of which individually request a service of 1, 2 and 1 service

units, respectively. Hence, the total requested service until request 1 is σ(1) = 1,

until request 2 is σ(2) = 1 + 2 = 3 and until request 3 is σ(3) = 1 + 2 + 1 = 4.

4 8
δt

se
rv

ic
e

u
n

it

1 2 3

arrival time completion time

α(1) = 0 σ(1) = 1 ω+(1) = 3

α(2) = 2 σ(2) = 3 ω+(2) = 7

α(3) = 7 σ(3) = 4 ω+(3) = 8

Figure 6.8: Example WCRT analysis using busy times.

In our analysis, we compute ω+(σ) ∈ N, the maximum time it takes to serve

a total of σ ∈ N service units in a busy time, as ω+(σ) = inf{tδ ∈ N | ξ(tδ) ≥ σ}.
We now update Equation (6.1) to bound the kth request of an arbitrary busy time.

Let ᾱ(k) ∈ Rnmax denote the symbolic arrival time of the kth request. A bound

φ̄(k) ∈ Rnmax to the completion time of the request is given by Equation (6.8),

where ᾱ(1), the arrival time of the first request, is the start of the busy time.

φ̄(k) = ᾱ(1) + ω+(σ(k)) (6.8)

We also update Algorithm 4 to keep track of the busy times of resources in

the symbolic simulation. For each resource, we track the start of the current

busy time, say the lth busy time, with a symbolic time-stamp ᾱl(1) and the total
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service units requested until and including the kth request, i.e. σl(k). Then,

if the arrival time of the kth request is before the completion of the (k − 1)th

request, i.e. ᾱl(k) � φ̄l(k − 1), then the kth request is guaranteed to be in the

same busy time and its symbolic finishing time is given by Equation (6.8). On

the other hand, if ᾱl(k) 6� φ̄l(k − 1), the ≤ comparison is undecidable (or it is

not guaranteed). Hence, we take the conservative assumption and start a new

busy time at ᾱl+1(1) = ᾱl(k). Furthermore, we conservatively assume a busy

time does not span over multiple iterations and hence, all identified busy times

are contained within an iteration 1. We next show the analysis using the running

example of Section 6.3.

Example: The first request on processor p2 (firing of actor z) starts a busy

time at ᾱ1(1) = [−∞,−∞, 0,−∞,−∞, 0]. Hence, its response time is 3, which is

the same as its WCRT. Its finishing time is at φ̄1(1) = [−∞,−∞, 3,−∞,−∞, 3].

The second request (firing of actor y) is enabled at ᾱ1(2) = max(t̄b, t̄d, t̄p2
) =

[−∞; 0; 3; 0;−∞; 0], as shown below.

ᾱ1(2) = max(t̄b, t̄d, t̄p2
)

= max([−∞; 0;−∞; 0;−∞;−∞], [−∞;−∞; 3;−∞;−∞; 3])

= [−∞; 0; 3; 0;−∞; 0]

6� [−∞,−∞, 3,−∞,−∞, 3].

Hence, ᾱ1(2) 6� [−∞,−∞, 3,−∞,−∞, 3]. Since ᾱ1(2) 6� φ̄1(1), the second

request is assumed to start a new busy time at ᾱ2(1) = ᾱ1(2). The finishing

time of y is then φ̄2(1) = ᾱ2(1) + ω+(χ(y)) = [−∞, 7, 10, 7,−∞, 10]. The third

request is the second firing of actor z. It is enabled at ᾱ2(2) = φ̄2(1). Thus, it is

guaranteed to arrive in the second busy time and finishes at φ̄2(2) = ᾱ2(1) + 8,

improving its WCRT from 3 to 1. Then collecting the final tokens, we form a new

matrix, given as

t′a
t′b
t′c
t′d
t′p1
t′p2


=



4 11 14 11 4 14

4 11 14 11 4 14

−∞ 7 10 7 −∞ 10

−∞ 8 11 8 −∞ 11

4 11 14 11 4 14

−∞ 8 11 8 −∞ 11


·



ta
tb
tc
td
tp1
tp2


. (6.9)

Compared to Equation (6.6), the new matrix improves the worst-case through-

put, which is the inverse of the eigenvalue, from 0.077 to 0.091. This is a gain of

18% in tighter WCT bound. Such gains may largely vary with the application

graph and scheduler configurations, as shown in Section 6.6.

1Refer to the discussion on future works in Chapter 8 how this can be further improved.
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6.5 WCRC Derivation: The Case of CCSP

This section demonstrates derivation of WCRCs for a real-time arbiter, namely

Credit-Controlled Static Priority (CCSP) arbiter [6]. The derivation follows an

analytical approach and discusses two WCRCs in Section 6.5.2: an existing linear

WCRC, called latency-rate, and our improved piecewise linear WCRC, called bi-

rate. Section 6.5.1 first recaps the arbitration scheme of CCSP.

6.5.1 Credit-Controlled Static Priority (CCSP)

CCSP [6] arbitrates a shared MPSoC resource between a set R of requestors.

For the analysis, an abstract resource view is used where a service unit is the

access granularity of the resource, which can be served in a time-unit of one

service cycle. Requests arriving from each requestor to the resource are placed in

a separate buffer in front of the resource. Each requestor has a unique priority

level. The arbiter grants access to the highest priority requestor that has requests

waiting but also has enough resource budget [6], as explained next.

The service requests of a requestor are captured by a requested service curve, w

and service provided to a requestor by the provided service curve, w′. These curves

are illustrated in Figure 6.9. On such curves, w(t1, t2) = w(t2 + 1)− w(t1) denotes

the difference in values between the endpoints of the closed interval [t1, t2]. E.g.

w′(t1, t2) denotes the total service provided to a requestor in the interval [t1, t2].

t1 t t2 t3 t4 service cycle

ac
cu

m
u

la
te

d
se

rv
ic

e
u

n
it

rr

br

pr

live line

w

w′

upper-bound on

provided service

Figure 6.9: Allocated service, potential and active period.

The CCSP arbiter consists of a rate regulator and a scheduler [6]. The sched-

uler uses a static-priority scheduling scheme. Each requestor is assigned a unique

priority level. The set of requestors that have higher priority than a requestor

r ∈ R is denoted R+
r . The rate regulator is responsible for accounting the resource



i
i

“thesis” — 2014/10/3 — 2:55 — page 123 — #135 i
i

i
i

i
i

Chapter 6: Analysing Application Mappings 123

budget of requestors. The amount of budget a requestor r has is referred to as

its potential pr. The potential of a requestor is determined by its allocated ser-

vice, which consists of two parameters: the allocated burstiness (br ∈ R) and the

allocated rate (rr ∈ R). For a valid allocation, it should hold that
∑
r∈R rr ≤ 1

and ∀r ∈ R : br ≥ 1. The potential is then defined as follows. Initially, the re-

questor has a potential equal to its allocated burstiness, br. Then, the requestor

receives additional potential at its allocated rate, rr, at every service cycle. To-

gether these two parameters determine the upper bound on the provided service

of the requestor, as illustrated in Figure 6.9. The potential of the requestor is

decremented by one, for every service unit it receives.

This continuous budget replenishment policy is carried out for every active

period of the requestor. The active period of a requestor is the maximum interval

of time, during which (1) the requestor is backlogged, which means it still has

requests waiting to be served, and/or (2) the requestor is live. A requestor is said

to be live at time t if the total requested service is not less than the total service

the requestor would receive if it were continuously getting service at its allocated

rate; I.e. a requestor is live if wr(t1 − 1, t2 − 1) ≥ rr · (t2 − t1 + 1). A requestor

in its active period interval is said to be active and Rat denotes the set of active

requestors at time t. Figure 6.9 illustrates the relationships between allocated

service (rr, br), potential (pr) and active period ([t1, t2] and [t3, t4]).

A requestor is said to be eligible for scheduling: (1) if it is backlogged and (2)

if it has enough potential for at least one service unit i.e. pr ≥ 1− rr (since the

potential of an active requestor increments by rr every service cycle). The set of

eligible requestors at time t is denoted Ret . In summary, at every service cycle,

CCSP grants access to the highest priority eligible requestor.

6.5.2 WCRC of CCSP

A WCRC specifies the minimum service a requestor is guaranteed to get over a

time interval [t1, t2]. Thus, a WCRC w̌′r(t1, t2) ≤ w′r(t1, t2) is a lower bound on

the provided service w′r(t1, t2). A WCRC is computed by considering the worst-

case scenario that leads to the WCRT. For a requestor under the CCSP arbiter,

this worst-case scenario happens when it experiences the maximum interference

from higher priority requestors. According to [6], the maximum interference ex-

perienced by a requestor r ∈ R during an interval [t1, t2] occurs when all higher

priority requestors start an active period at t1 and remain active ∀t ∈ [t1, t2].

It has been shown in [6] that a requestor is guaranteed to receive service at its

allocated rate, rr, after a maximum latency, Lr ∈ R. This WCRC, also known as

the latency-rate service guarantee, ensures an active requestor r ∈ R a minimum

service during an active period [t1, t2] according to Equation (6.10) and (6.11).
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∀t ∈ [t1, t2] : w̌′r(t1, t2) = max(0, rr · (t2 − t1 + 1− Lr)) (6.10)

Lr =

∑
s∈R+

r

bs

1−
∑
s∈R+

r

rs
(6.11)

The latency-rate WCRC guarantees that a requestor would receive service at

its allocated rate, i.e. rr service units every service cycle, after a maximum waiting

latency of L service units. However, in CCSP a requestor can be temporarily

served at a rate higher than its allocated rate after its maximum latency, which

leads to a better service guarantee, as discussed next in Section 6.5.2.

Our Improved Bi-rate WCRC of CCSP

At the end of the maximum latency, a requestor can have an accumulated potential

from two sources (according to the earlier discussion about potential): (1) from

its allocated burstiness i.e. if br > 1 and (2) from potential accumulated while

being blocked by higher priority requestors, i.e. during the maximum latency,

Lr. Thus, at the end of the maximum latency, a requestor has a potential that is

equal to the sum of these two.

When a requestor is at the end of its maximum latency, it implies that higher

priority requestors have utilized their accumulated potential. Thus, they have

to accumulate potential at their respective allocated rate during multiple service

cycles, before they are eligible to access the resource again. Consequently, the re-

questor can use the resource whenever it is not used by higher priority requestors.

This means, the requestor can get service at a higher rate r∗r ≥ rr, where

r∗r = 1−
∑
s∈R+

r

rs. (6.12)

The requestor receives service at this higher rate as long as its potential does

not go below 1− rr, which is the minimum potential a requestor needs to have to

be eligible for scheduling. The service cycle at which the potential drops below

1−rr is referred as the boundary cycle, tbr. After the boundary cycle, the requestor

has to wait multiple service cycles and accumulate potential at its allocated rate

to be eligible. Therefore, it receives service at its allocated rate, rr. The boundary

cycle is given as tbr = min(t2, btxc) where

tx = t1 +

br−1+rr+

∑
s∈R+

r

bs

r∗r−rr
.

(6.13)
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Figure 6.10: Improving WCRT of CCSP by a piecewise linear WCRC

The higher service rate results in a bi-rate service guarantee as the WCRC of

CCSP. The bi-rate service guarantee improves the WCRT of requests compared

to the latency-rate service guarantee, as shown in Figure 6.10. ∆ in the figure

illustrates the improvement in WCRT.

Figure 6.10 shows that under the bi-rate service guarantee, a requestor r is

guaranteed a minimum service at two different rates, r∗r and rr, after a maximum

latency Lr (given in Equation (6.11)). These two rates correspond to the cases

when a requestor has enough potential to access the resource at a high rate,

and when it does not. The bi-rate guarantee is defined based on two linear

equations: higher-rate guarantee w̌′hr and allocated-rate guarantee w̌′ar , given in

Equations (6.14) and (6.15). The bi-rate service guarantee is, then, the lesser of

the two, given in Equation (6.16). L∗r is computed such that the intersection of the

two linear equations, w̌′hr (t1, t2) and w̌′ar (t1, t2), is at tx, given in Equation (6.13).

w̌′hr (t1, t2) = r∗r · (t2 − t1 + 1− Lr) (6.14)

w̌′ar (t1, t2) = rr · (t2 − t1 + 1− L∗r) (6.15)

where

L∗r = −br + r∗r − 1

rr

ˇ̌w′r(t1, t2) = max(0,min(w̌′hr (t1, t2), w̌′ar (t1, t2))) (6.16)

The bi-rate WCRC improves the WCRT of requests, compared to the latency-

rate guarantee. This in turn leads to resource savings [75]. The mathematical

proofs of the bi-rate WCRC derivation are also presented in [75].
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6.6 Evaluation

We evaluate our SAAM mapping analysis approach in terms of analysis run-

time and tightness of the computed temporal bounds. We have mapped different

streaming applications onto a 4-tile platform model using the SDF3 [86] tool. The

dataflow graphs are taken from the SDF3 [86] benchmark and from [59]. One of

the dataflow graphs is shown in Figure 6.11, which is a sample-rate converter used

in CDs. The application has only one scenario. The labels and WCETs of the

actors are indicated inside the actors (e.g. a, 5).

a, 5 b, 2 c, 3 d, 1 e, 4 f, 6
1 1 2 3 2 7 8 7 5 1

a b c d e f

Figure 6.11: A sample-rate converter used in CDs

6.6.1 Analysis run-time

We compare our approach with the state-of-the-art RAD technique in the SDF3

tool [86]. For this purpose, we have also implemented our approach (SAAM) in

the same tool. To analyse an application mapping, SDF3 first constructs a RAD

model of each scenario mapping, as shown in Section 6.1.1. Then, it analyses

the RAD models with different techniques, such as state-space [35], maximum-

cycle-mean (MCM) (on homogeneous SDF graphs) [21] and (max,+) automaton

(MPA) [30]. However, the first two are not applicable to dynamic streaming

applications. Hence, the constructed RAD models are analysed with MPA [30]

and the results are compared with our approach, SAAM.

Consider the following mapping for Figure 6.11: {a, c}, {b, d, e} and {f} are

mapped on processor tiles p1, p2 and p3. The TDM frame is 100 time-units and

the allocated slice is 50% on all tiles. The RAD model of this mapping has 14955

initial tokens. This is mainly due to the long SO schedule of the graph, which has a

repetition vector of [147, 147, 98, 28, 32, 160], and hence, a total of 612 actor firings

per iteration. Due to the large number of tokens, the MPA analysis of the RAD

model terminated without a result due to an out of memory exception. When the

RAD model is directly analysed by state-space throughput analysis [35], it took

more than 30mins. When the state-space analysis is optimized by embedding

the SO schedule during the state-space analysis, the analysis is completed in

1820msec. Our approach completed the analysis in 72msec by limiting the initial

tokens to just 25, giving the same throughput as the state-space analysis [35],

4.99× 10−5 iterations per time-unit.
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Table 6.1: Improvements in analysis runtime

Application
Initial Tokens Run-time (msec) Speed-up

RAD SAAM RAD SAAM avg/max

H263encoder 444/567 104/169 7/12×103 124/352 72/95

Modem* 456 54/- 5652 13/- 434

H263decoder* 2386 32/44 826×103 8/16 103×103

WLAN 62/72 32/46 22/36 5/12 5/20

LTE 646/1124 56/80 196/366×103 85/144 3/6×103

TD-SCDMA 31/39 11/15 4/8 1/4 4/8

Modem 95/119 54/82 42/80 13/32 4/8

H263decoder 75/88 32/44 24/36 8/16 3/7

H263encoder 402/465 104/169 4480/7792 119/524 57/103

MP3 60/68 41/52 15/24 5/8 3/12

LTE 80/101 56/86 956/4436 113/856 10/22

Sample-rate 1640* 21/28 - 56/88 -

RVC-MPEG 4385* 384/659 - 22/88×103 -

Satellite 11642* 31/47 - 637/1132 -

The number of initial tokens of a RAD model changes with the mapping and

the constructed SO schedule. Table 6.1 shows the average/maximum number of

tokens and the corresponding run-time improvements. Hundreds of different map-

pings are analysed for each application. The table has three blocks, separated by

double-lines. In the first block, all initial tokens are used in the analysis. In the

second block, only manually selected tokens are used as an optimization step to

reduce the problem size for RAD. The last block shows applications which termi-

nated without results in RAD, with or without optimization, due to insufficient

memory on a 2.4GHz dual-core PC with 4GB memory. (* entries are based on

limited samples due to the long run-times of these mappings.)

Table 6.1 shows significant improvements. The gains translate to savings of

hours during design-space exploration, since throughput is analysed repetitively.

E.g. the reduction from an average of 4.4 to 0.12 seconds of H263encoder saves

11 hours for 104 mappings. Moreover, these gains are achieved without any loss

of accuracy. In all cases, the computed throughputs of the two approaches are

exactly the same if we do not use busy times in the analysis. We further gain in

tighter bounds if busy times are used, as shown next.
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Figure 6.12: Improvements in worst-case temporal bounds

6.6.2 Tightness of performance bound

We have computed the worst-case throughput of each mapping in two ways for

comparison: 1) using constant WCRT (Section 6.3) and 2) using multiple event

busy times (Section 6.4). For the example mapping of Figure 6.11, given earlier

in this section, the results are 4.99×10−5 and 8.80×10−5 iteration per time-unit,

respectively. Thus, the latter improves the performance guarantee by 76% due to

the improved WCRT analysis.
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Figure 6.12 shows average improvements in throughput for different TDM

frames and slice allocations. Applications with large repetition vectors, such as

Satellite receiver, Sample-rate (SR) and LTE, have high gains, due to their long

busy times. E.g. the Satellite receiver graph has 4515 actor firings per iteration,

which gives it a long busy time. For a TDM slice allocation of 1, there is no

gain, as expected, since the resource is fully allocated to the application and the

worst-case waiting time is zero. The gain in the throughput bound improves as

the TDM frame-size gets longer, since it increases the chance for multiple requests

to fit within a slice of a frame, without extra waiting times due to preemptions.

Generally, the result shows tighter performance bounds by using busy times in

our symbolic analysis, without additional analysis run-time overhead.

6.7 Related Work

Compositional methods such as Real-Time Calculus (RTC) [17, 90] and Sym-

TA/S [44, 73] apply concepts from network calculus to embedded streaming ap-

plications. They use event traffic propagation between resources to analyse the

system. Their main strengths are modular analysis and support for priority-based

as well as budget-based schedulers. Nevetheless, the aforementioned methods

assume task graphs that are not sufficiently expressive to model adaptive ap-

plications, which change their graph structure, execution times and data rates

dynamically. Even within a static mode, streaming applications require a task

graph that supports cyclic-dependencies, multi-input tasks, multi-rate tasks (i.e.

multiple tokens per input) and a natural way of handling back-pressured buffer

communication. Our mapping analysis uses the FSM-SADF MoC, which allows

modeling dynamic applications with variable port-rates and data-dependent work-

loads. As the same time, the MoC still allows us to verify basic properties such

as deadlock-freedom and boundedness at design-time.

Existing dataflow-based mapping analysis approaches construct resource-aware

dataflow (RAD) models [59,68,86,96,102] to analyse application mappings. These

techniques account for resource allocations and scheduler configurations by intro-

ducing additional dataflow components into the application model to construct

a RAD model. In the RAD model, the buffer-size of a channel is modeled by

adding another channel in the reverse direction, with as many initial tokens as

the allocated buffer-size [68]. Actors that are mapped on the same processor tile

are executed following a static-order (SO) schedule, which can be modeled in a

SDF scenario using the technique presented in [20]. Resources that are shared

using arbiters under the class of latency-rate servers [84] can be modeled by the

two-actors latency-rate dataflow model of [98].



i
i

“thesis” — 2014/10/3 — 2:55 — page 130 — #142 i
i

i
i

i
i

130 Section 6.7: Related Work

RAD modeling of system-level mapping decisions has an advantage, since it

maintains the same MoC as the application model. This implies that no new

solutions are required to analyse mappings, as existing temporal analysis meth-

ods of the application MoC are immediately applicable. Yet, this approach has

some drawbacks. First, dataflow components should be developed to model dif-

ferent types of resource arbitration schemes. This is not a trivial process. Up

until now, only a limited number of models for predictable arbiters are devel-

oped [55,76,83,98]. The latency-rate model [98] partially addresses this challenge,

as it offers a generalized linear model that is applicable to a number of schedulers

under the class of LR servers [84]. However, the generalization comes at a price,

as this simple linear model is not able to take unique features of individual arbiters

into account for a tighter analysis. This may lead to pessimistic WCRT bounds,

as demonstrated in [55, 76, 83]. A good example is the bi-rate WCRC of CCSP,

presented in Section 6.5.2, which improves the latency-rate model and leads to re-

source savings [75]. To address the pessimism of simple general models, a detailed

model, which is tailored to the arbiter under consideration, may be required. This

brings us to the second challenge. Detailed models may introduce a large number

of actors (which could be thousands for unfortunate combinations of parameters)

into the application model. This can be seen in the TDM model of [55] and the

SO model of [20]. As a result, detailed resource modeling may significantly dilate

the graph, causing the analysis run-time to explode (cf. Section 6.1.1).

Our technique avoids constructing RAD models. Rather, it includes resources

in the simulation, while embedding WCRCs in the dataflow analysis to char-

acterize resource sharing. WCRCs are similar to lower-bound service curves of

RTC [17]. We use such curves as flexible alternatives to represent a wide-range

of resource arbitration strategies, while maintaining a good balance between ac-

curacy and scalability. Unlike RTC, we do not compute through (max,+) convo-

lution the outgoing event stream and remaining capacity of a resource for a given

input event stream (arrival curve). Rather, we use them to compute WCRTs of

individual service requests, such as actor firings, for a duration of one graph itera-

tion. This opens an opportunity to compute tighter WCRTs by identifying service

requests, which arrive in the same busy time of the resource. The idea is known by

the name multiple event busy time in the literature and has been used for tighter

response time analysis [92] and improved event model construction [73]. In our

work, we safely identify busy times of resources from the symbolic arrival times

of requests, as presented in Section 6.4. Consequently, we avoid the assumption

of having the critical instant on all service requests and improve WCRTs. It is

also worth mentioning that our mapping analysis strategy can still be applied on

a partial-RAD model if certain resources (such as DMA communication [25] and

interconnects [42]) are found to be better represented by dataflow components.
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6.8 Summary

This chapter has presented an efficient approach for temporal analysis of dataflow

applications, mapped onto shared heterogeneous resources. The analysis approach

avoids constructing resource-aware dataflow models, which are often used in exist-

ing approaches. It combines (max,+)-based symbolic simulation with worst-case

resource availability curves. It avoids introducing tokens to model on-tile buffers

as well as SO and budget schedulers. As a result, it keeps the graph size intact and

improves scalability, which makes it tens of times faster than the state-of-the-art.

Moreover, it gives tighter temporal bounds, up to a factor of 4, compared to the

typical worst-case analysis, by improving the WCRTs of requests that arrive in

the same busy time.
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CHAPTER 7

Analysing Maximum End-to-end Latency

The throughput analysis of dataflow applications and their mappings have been

presented in Chapter 5 and 6. Another important real-time property of stream-

ing applications is end-to-end latency. In a wireless application, for instance, the

acknowledgement of a properly received packet has to be sent within a certain

timing duration, which is often set by the standard. Such kind of timing con-

straints imposes a real-time latency requirement that must be met. This chapter

presents a design-time analytical technique to derive a conservative upper-bound

to the maximum end-to-end latency of an application mapping. It formalizes

the latency analysis problem in the presence of dynamically switching scenarios,

modeled by the FSM-SADF MoC. Each scenario mapping is characterized by a

(max,+) matrix, as discussed in Section 6.3. The resulting matrices are then

composed to derive a bound to the end-to-end latency under a periodic source.

Aperiodic sources such as sporadic streams can be analyzed through reduction to a

periodic reference. Moreover, the technique is illustrated with a trade-off analysis

in resource reservation under a throughput constraint. The chapter is organized

in eight sections. Section 7.1 and 7.2 highlight the latency analysis challenges and

then outline our approach. Section 7.3 formalizes the latency definition of FSM-

based SADF models. Section 7.4 and 7.5 present the proposed latency analysis

technique for a periodic source and then discuss other extensions such as aperiodic

sources. Section 7.6 evaluates the techniques. Section 7.7 discusses related work.

Section 7.8 concludes the chapter.

133
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7.1 Introduction

This chapter presents a design-time analytical approach to derive a conserva-

tive bound to the maximum end-to-end latency of a streaming application, while

considering the different operating modes of the application. It assumes the appli-

cation is modeled with the FSM-SADF MoC and is mapped on a heterogeneous

MPSoC that is shared between multiple applications. It has been shown in previ-

ous chapters that FSM-SADF gives a tighter throughput guarantee than a static

SDF model. This eventually leads to resource savings, since real-time require-

ments can be guaranteed at a lower resource allocation.

Nevertheless, the maximum end-to-end latency, which is a key real-time re-

quirement, has never been studied in the presence of dynamically switching sce-

narios. For instance, in WLAN, whose FSM-SADF model is shown in Figure 3.6,

an acknowledgment packet must be sent within 16µsec of the reception of the

last OFDM symbol if the cyclic redundancy check (CRC) is successful. This time

guard of 16µsec, known as the Short Intra-Frame Spacing (SIFS), is a latency

constraint that must be satisfied [59]. A WLAN packet may have a maximum of

256 OFDM symbols. Payload decoding is executed by scenario s3 of Figure 3.6.

Thus, s3 may be executed multiple times before the CRC is executed by s4. This

implies that the maximum timing distance between the last execution of s3 and

the execution of s4 must be computed to verify if the SIFS latency constraint

is met. Cellular connectivity standards also have radio-trip time (RTT) require-

ments (e.g. 10msec for LTE), which specifies the maximum communication delay

from a terminal to the network and back to the terminal. Such RTT requirements

leave only a limited latency budget for baseband processing at the terminal [45].

The latency analysis of FSM-SADF has its own peculiarities and challenges,

which deserve appropriate formalization and analysis techniques. For instance,

existing latency analysis techniques in SDF are limited to computing temporal

distance between events within the same iteration [36, 60]. However, analyzing

latency in FSM-SADF requires computing the temporal distance that separates

two causally-related events that are possibly multiple scenarios/iterations apart.

This has two implications. First, the analysis should consider the overlapped

transitions between scenarios to enable tighter bounds. Second, a bound to the

maximum latency may not exist for an arbitrary FSM, since bounding the max-

imum latency also requires bounded-length scenario sequences. If the number of

scenario sequences between the two causally-related events is unbounded (i.e. if

there are cycles in between), the latency becomes unbounded. Thus, it is crucial

to identify FSMs, whose end-to-end latency can be bounded. This chapter intro-

duces a latency automaton that defines the class of FSMs with bounded-length

scenario sequences between source and sink scenarios.
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7.2 Approach

The main contribution of the chapter is a systematic approach to analyze the

end-to-end latency of a dynamic streaming application, which has a set of dy-

namically switching scenarios modeled with an FSM-SADF. Latency is formally

defined in terms of two causally related actor firings between a source and a sink

actor, in a source and a sink scenario, respectively. The FSM can possibly have

multiple source and sink scenarios. All possible scenario sequences between source

and sink scenarios are then extracted from the FSM. Each scenario sequence is

characterized by a matrix in (max,+) algebra [43] that captures its end-to-end

timing behavior. A bound to the maximum latency is then derived in two dif-

ferent ways with respect to a periodic source: 1) from a state-space, constructed

in a breadth-first-search manner, by considering the possible transitions between

scenario sequences, and 2) from a spectral analysis of the single-matrix characteri-

zation of all scenario sequences. Both techniques give the exact maximum latency

if any arbitrary transition is possible between the scenario sequences. Otherwise,

when specific sequences are specified by the FSM, the state-space technique still

gives the exact maximum latency, while the single-matrix characterization only

gives a conservative bound. The analysis of aperiodic sources, such as sporadic

input streams, can be carried out through reduction to a periodic reference, by

making use of the linearity property of (max,+) systems.

Both analysis options have time complexity which is polynomial with the num-

ber of initial tokens of the graph. Thus, reducing the number of tokens becomes

crucial for a faster analysis. To that end, we analyse scenario mappings with-

out constructing resource-aware dataflow (RAD) models, which are often used in

existing dataflow-based analysis techniques [20, 59, 86]. RAD models are gener-

ated by modeling scheduling and resource allocation decisions into the application

model. Such additions may significantly dilate the RAD model and result in poor

scalability as the graph size grows. We instead use a symbolic execution of sce-

nario mappings that result in compact (max,+) matrices. The construction of

such compact matrices is presented in detail in Chapter 6.

We demonstrate the latency analysis technique with dataflow models from the

wireless application domain. Moreover, we present a trade-off analysis in resource

reservation under a throughput constraint. The throughput constraint is set by

the source’s period, which is modeled by the WCET of a source actor. Our

analysis detects if the throughput constraint is not met, which implies that the

end-to-end latency is unbounded. In this case, the analysis gives the minimum

period the application supports. The evaluation shows that the approach has a

low run-time that enables it to be effectively integrated in multiprocessor design

flows for streaming applications.
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7.3 Problem Formulation

A streaming application processes a sequence of input data objects (packets,

frames, etc). It then produces the corresponding sequence of output data ob-

jects. We define a stream as a sequence of arrival/production time-stamps of

these data objects, as defined in Definition 17.

Definition 17 (Stream). A stream ϕ̄ is an element of the set RN
max such that

for ϕ̄ = 〈ϕ̄1, ϕ̄2, · · · , ϕ̄n, · · · 〉 and n ∈ N, ϕ̄n ∈ Rmax is the time-stamp of the nth

element of the stream.

The time-stamp of the nth element of a stream denotes the arrival time of

the nth input or the production time of the nth output. As further discussed in

Section 7.3.1, we construct streams in such away that there exists a one-to-one

causal relation between the elements of an input stream and its corresponding

output stream. Given an input stream and its corresponding output stream,

the maximum end-to-end latency is determined by the longest timing separation

between their elements, as defined in Definition 18.

Definition 18 (Maximum latency). Given an input stream ϕ̄in ∈ RN
max, its cor-

responding output stream ϕ̄out ∈ RN
max and a dependency distance d ∈ N between

corresponding input-output elements, the maximum latency l ∈ Rmax is defined as

l = max
i∈N

(
ϕ̄out(i+ d)− ϕ̄in(i)

)
(7.1)

where ϕ̄out(i+ d) is the corresponding output element of input ϕ̄in(i).

In Definition 18, the dependency distance d ∈ N denotes a delay where d

output elements are produced even before the first input arrives, due to the initial

state of the application. This section discusses the construction of input and

output streams from scenario graphs and the identification of the causal relations

between elements of the streams, along with their dependency distance.

7.3.1 Causality between Input and Output Streams

Given an application mapping (S, f, µ), the input stream is constructed from the

firings of a single source actor asrc and the output stream is constructed from the

firings of a single sink actor asnk. We refer to a scenario that asrc belongs to as

a source scenario ssrc ∈ S. Similarly, a scenario to which the sink actor belongs

to is referred to as a sink scenario ssnk ∈ S. There can be multiple source and

sink scenarios, since source and sink actors may be active in multiple scenarios.

A scenario can also be a source and a sink scenario at the same time.



i
i

“thesis” — 2014/10/3 — 2:55 — page 137 — #149 i
i

i
i

i
i

Chapter 7: Analysing Maximum End-to-end Latency 137
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(a) Source scenario. Actor u is the source actor.
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(b) Sink scenario. Actor v is the sink actor.

Figure 7.1: Example source and sink scenarios. Actors u and v are added to

record the time-stamps of input and output streams through tokens tsrc and tsnk.

The firing times of the source actor form the input stream ϕ̄in. The firing

times of the sink actor form the output stream ϕ̄out. We require the source

and sink actors to fire exactly once per iteration to simplify the identification of

causally related source and sink actor firings. Hence, the repetition factors of the

source and sink actors should be 1 in the repetition vectors of their corresponding

scenario graphs. Otherwise, new actors, which serve as source and sink actors, can

be introduced with appropriate port-rates. The new actors ensure a repetition

factor of 1, as shown in Figure 7.1. In the figure, actors u and v are introduced to

record the firing times of actors x and z, respectively. The original source and sink

actors ( i.e. x and z) fire 6 and 2 times per iteration, respectively. The number of

initial tokens on the channel cxu determines which one of the 6 firings of actor x

is recorded by the production time of token tsrc. In the example, this is the first

firing. A similar approach also works for channel czv. The newly added actors

u and v become the source and sink actors, by replacing the original source and

sink actors x and z. The time-stamps of token tsrc constitute the input stream

ϕ̄in. Similarly, the time-stamps of token tsnk constitute the output stream ϕ̄out.

Consider the execution of a sequence of scenarios 〈ssrc, s1, s2, · · · , ssnk〉 that

begins with a source scenario and ends with a sink scenario and no other source or

sink scenario in between. A firing of the source actor eventually influences some

firing of the sink actor. However, the influence does not necessarily occur in a

single execution of the sequence. This is due to initial tokens that may exist in

the graph, which may cause the sink actor to fire, even before the source actor

fires. We refer to the number of iterations of the sink scenario before a source



i
i

“thesis” — 2014/10/3 — 2:55 — page 138 — #150 i
i

i
i

i
i

138 Section 7.3: Problem Formulation

firing influences the sink actor as its dependency distance.

For instance, consider the graph of Figure 7.1a and assume it is both a source

and a sink scenario, where actor x and z are the original source and sink actors,

respectively. In the execution of this scenario, actor z can fire twice and complete

its firings of the iteration before actor x fires. We are interested in one of the

two firings of actor z, which will be recorded by the time-stamp token tsnk. This

results in a dependency distance of 1, where the firings of actor x influences actor

z in the next iteration. If there are multiple scenarios between a source and a sink

scenario, the computation of the dependency distance becomes more involved (cf.

Section 7.5.2 for further discussion).

We perform latency analysis by considering scenario sequences allowed by the

FSM. However, the FSM can potentially specify infinitely many and infinitely long

scenario sequences, due to cycles in the FSM. Scenario sequences that indefinitely

stay within cycles without reaching a sink scenario may have no practical rele-

vance. The latency of such sequences is also unbounded. Section 7.3.2 discusses

a proper latency automaton that suffices to guarantee a bounded latency.

7.3.2 Latency Automaton

A common property of FSMs of real-life streaming applications is a recurrent state

qr ∈ Q. Streams are processed in fragments of data such as packets and frames.

Applications often start processing a data fragment at a particular defined state.

Then, they go through a sequence of states to process the data fragment and,

eventually, return back to the recurrent state to process the next data fragment.

However, the sequence of states an application goes through may vary with the

content, size or type of the data fragment to be processed.

We define a state-sequence as a finite length sequence 〈qr, q1, q2, · · · , qn〉 of

states that starts with the recurrent state qr. Section 7.4 later presents the latency

analysis of FSM-SADF models whose FSMs specify a finite number of state-

sequences with a common recurrent state. This requirement is formally specified

by defining an automaton of a proper FSM for latency analysis, as defined in

Definition 19. The definition states that a proper FSM for the latency analysis

has a recurrent state qr such that for every state q ∈ Q, any path starting from q

must lead to qr (i.e. has no infinitely long path, without revisiting qr).

Definition 19 (Latency Automaton). Given an application mapping (S, f, µ), a

latency automaton of FSM f = (Q, q0,T ,ε) is a tuple (f,Q↓) such that Q↓ ⊆ Q is

a set of final states. We say (f,Q↓) is proper for latency analysis if it recognizes

the language L = {q0T (qrP )∗ ∈ Q∗ | T, P ∈ Q∗ : |T |, |P | ≤ m}, where qr ∈ Q is

a recurrent state, Q∗ is the set of strings over Q and m ∈ N0.
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q0 q1 q2 q3

q4

q5

q6

q7 q8

ssrc

ssnk

ssnk

ssrc

Figure 7.2: An example of a proper latency automaton

According to Definition 19, a proper latency automaton specifies transient

sequences of states (denoted by q0T ), followed by repetitive concatenation of

state-sequences (denoted by qrP ). In the sequel, we use the term state-sequence to

refer to also transient sequences. Figure 7.2 shows an example of a proper latency

automaton. It has six state-sequences, where q2 is the recurrent state: 〈q0, q1〉,
〈q2, q3, q4〉, 〈q2, q3, q5, q4〉, 〈q2, q3, q5, q6〉, 〈q2, q3, q5, q7, q6〉 and 〈q2, q3, q5, q7, q8, q4〉.
Among the six, q0q1 is the only transient sequence.

A state-sequence may contain source and sink scenarios in different possible

orders. We define a latency-sequence recursively as a sub-sequence of a state-

sequence such that the first state is labeled with a source scenario, the last state

with a sink scenario and there is no other latency-sequence in between. The first

and the last states of a latency-sequence can be conveniently referred to as source

and sink states, respectively. Some examples of latency-sequences of Figure 7.2

are q3q4, q3q5q4, q3q5q6 and q7q6. The sequence q3, q5, q7, q8, q4 is not a latency-

sequence, since its sub-sequence q7, q8, q4 is already a latency-sequence.

A state-sequence may have multiple latency-sequences. The latency-sequences

in a state-sequence can be identified by associating or pairing each sink state with

a source state. To do the pairing, we start from the last sink state and go in the

reverse direction, as shown by the example of Figure 7.3. The last sink state is

paired with the first source state that is encountered while going in the reverse

direction. This gives the pair (q9, q6) in Figure 7.3, which defines the latency-

sequence q6q7q8q9. By moving further in the reverse direction, the next sink state

is paired with the first source state, which is not yet paired with another sink state.

This gives the pair (q8, q4), which defines the latency-sequence q4q5q6q7q8. If the

number of source and sink states are properly matched, none of the source and sink

states will be left unpaired at the end. Otherwise, some source or sink states will

be left unpaired (in front of the other source-sink pairs). The implication of such

unpaired source/sink states in the latency analysis is discussed in Section 7.5.2.
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· · · q2 q3 q4 q5 q6 q7 q8 q9

ssrc ssrc ssrc ssnk ssrc ssnk ssnk

traverse in the reverse direction starting from q9

Figure 7.3: Identifying latency-sequences in a state-sequence

q0 q1

q2

q3

q4

q5

Figure 7.4: A condensed FSM of Figure 7.3

7.3.3 Condensed FSM

A proper latency automaton has a condensed FSM representation, which is con-

structed by replacing each state-sequence by a new FSM state. The condensed

FSM comprises a finite number of transient states, followed by a finite set of fully

connected states. Figure 7.4 shows the condensed FSM of the latency automaton

of Figure 7.2, which has 6 state-sequences. Each of these state-sequences cor-

responds to a state in the condensed FSM of Figure 7.4, where q0 = 〈q0, q1〉,
q1 = 〈q2, q3, q4〉, q2 = 〈q2, q3, q5, q4〉, q3 = 〈q2, q3, q5, q6〉, q4 = 〈q2, q3, q5, q7, q6〉
and q5 = 〈q2, q3, q5, q7, q8, q4〉. q0 is a transient state. The other states are fully

connected, which implies that the state-sequences may occur in any arbitrary or-

der. (As a post-optimization step, the transitions in the condensed FSM can be

made to capture only the possible orders of executions of state-sequences).
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Algorithm 5 Construct the states of a condensed FSM

1: CondensedFSMStates (f = (Q, q0, T , ε), qr)

2: Q← the set of state-sequences

3: for every outgoing transition t = (qr, qs) of qr do

4: qr := new state-sequence

5: push back qr to qr

6: findStateSequences(Q,qr, qr, t)

7: end for

8: return Q

Algorithm 6 Find state-sequences from a given transition t and add them Q

1: findStateSequences (Q,q, qr, t)

2: qs := destination state of tranition t of FSM f

3: if qs equals qr then

4: Q := Q ∪ {q}
5: return terminate path //state-sequence found

6: end if

7: for every q′ in q do

8: if q′ equals qs then

9: return search fail //unbounded loop detected

10: end if

11: end for

12: for every outgoing transition t = (qs, qu) of qs do

13: qs := new state-sequence

14: copy q into qs

15: push back qs at the end of qs

16: findStateSequences(Q,qs, qr, t)

17: end for

Algorithms 5 and 6 outline the construction of the states of a condensed FSM

from a given proper latency automaton. The algorithms do not consider transient

states for readability reasons. All transient states can be simply found from paths

that start with the initial state of the FSM and end at the recurrent state qr.

Algorithm 5 starts from the recurrent state qr and searches for state-sequences in

every outgoing transition t (line 3). Each outgoing transition potentially leads to

a new state-sequence. Hence, a new state-sequence is started for each outgoing

transition (line 4) that begins with qr (line 5). Then, the search for valid state-

sequences continues from the destination state of transition t (line 6) using the

recursive procedure of Algorithm 6.
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Algorithm 6 recursively searches for state-sequences starting from a given tran-

sition t with destination state qs (line 2). Every outgoing transition of state qs
(line 12) potentially starts a new state-sequence (line 13). The new state-sequence

basically contains all sequences that led upto, and including, state qs (line 14)

and (line 15). Then, the search continues from each of the immediately reachable

states of qs (line 16). A state-sequence is found if a path reaches a recurrent state

qr (line 3-6). A path may also return to an already traversed state before reaching

the recurrent state (line 8). This indicates a cycle that creates an infinitely long

(or unbounded) state-sequence. In this case, the algorithm terminates unsuccess-

fully (line 9), claiming the input FSM is not a proper automaton for the latency

analysis1

If the algorithm succeeds, it returns a set of state-sequences. Each state-

sequence forms a state of the condensed FSM. Each state of the condensed FSM

is annotated with a matrix, which is the matrix product of the state-sequence

matrices. A state-sequence 〈qr, q1, q2, · · · , qn〉 has a corresponding scenario se-

quence 〈sr, s1, s2, · · · , sn〉, where sx = ε(qx) is the scenario associated with state

qx, according to Definition 4. The execution of this scenario sequence from a time-

stamp vector γ̄k−1 yields a new vector γ̄k = Mn ·Mn−1 · · ·M1 ·Mr · γ̄k−1. Matrix

Mx is the matrix of the scenario mapping of sx, which is constructed using the

approach presented in Chapter 6. Due to associativity of (max,+) matrix multi-

plication, γ̄k = M · γ̄k−1, where M is given as M = Mn ·Mn−1 · · ·M1 ·Mr. This

way, each state of the condensed FSM gets a matrix that relates the end-to-end

timing behavior of its scenario sequence. Once a condensed FSM is constructed

and its states are annotated with matrices, a bound to the maximum latency is

derived following the techniques presented in Section 7.4.

1To limit the occurrences of such cases, one improvement over the algorithms would be to

start with a compact FSM, which has counters over its transitions. The compact FSM is then

unfolded during the state-sequence construction. In this case, one may assign bounds to the

transitions of the compact FSM. A bound of a transition specifies the maximum number of times

the transition can be traversed while constructing a state-sequence. The algorithms can then

keep track of the number of traversals of a transition by decrementing its bound. If a transition

is not bounded, its bound can be assumed to be ∞ and the decrement operation does not affect

it. If the transitions of a cycle of the FSM are bounded, the algorithm unrolls the cycle and

constructs a bounded-length state-sequence. For instance, state q2 of the FSM of WLAN, shown

in Figure 3.6, can have a bound of 256. This bound exists because the maximum number of

OFDM symbols in a WLAN packet is 256. Consequently, scenario ε(q2) = s3, which performs

the payload decoding, can be executed only for a maximum of 256 iterations per packet. The

unrolling of the self-transition at state q2 leads to 256 different state-sequences, in which the

number of state q2 varies from 1 to 256.
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7.4 Analysing Latency under a Periodic Source

We compute latency between a given source actor and a sink actor. Any actor,

except the source actor, can be a sink actor. However, the source actor is treated

differently. A source is an external entity from an application’s perspective. The

arrival of input data objects from a given source, such as the RF frontend of

a baseband modem, can be periodic or aperiodic, such as sporadic, bursty or

periodic with jitter, as per the event model characterization suggested in [70].

This section derives a bound to the maximum latency under a periodic source.

The analysis of aperiodic sources is handled by reduction to a periodic reference

source using the approach of [60], as discussed in Section 7.5.1. Furthermore,

in this section, the latency analysis is presented for the basic case. The basic

case assumes a dependency distance of 0 (cf. Section 7.3.1) and a maximum of

one latency-sequence per state-sequence (cf. Section 7.3.2). The extension of

the analysis for the general case, where these two assumptions do not hold, is

discussed in Section 7.5.2.

A periodic source is characterized by a period p ∈ N between consecutive

firings. In dataflow graphs, a periodic source can be modeled by an SDF actor,

with a self-edge, as shown by actor x of Figure 7.1. The period of the source is the

WCET of the actor; i.e. p = χ(x). Next, we present two approaches to derive a

bound to the maximum latency under a periodic source: state-space analysis and

spectral analysis. The former always gives the exact maximum latency. The latter

gives only a conservative bound if the FSM is not fully connected. In general, the

latter has a lower run-time, specially in case of large number of state-sequences,

as shown later in Section 7.6.

7.4.1 State-Space Analysis

An execution of FSM-SADF is an execution of a sequence of states allowed by the

condensed FSM. The execution of a state is given by the relation γ̄
k

= M · γ̄
k−1

,

where M is the (max,+) matrix of the scenario sequence of the state, as discussed

in Section 7.3.3. In the basic case, there is at most one latency-sequence per state.

If a latency-sequence exists in a state, the source and sink actors fire exactly once

during the execution of the scenario sequence of the state. The firing times of these

two actors are then recorded by the time-stamp tokens tsrc and tsnk, respectively.

We define the latency of the scenario sequence, in isolation, as the relative timing

distance between the time-stamps of the source and the sink time-stamp tokens,

i.e. tsrc and tsnk. These two time-stamps form the ith input-output element pair,

ϕ̄in(i) and ϕ̄out(i) (cf. Definition 18), since dependency distance d = 0 in the

basic case. The latency of the scenario sequence is given by Equation (7.2). Note
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that [γ̄]t denotes the entry of token t in vector γ̄ and ¯̄γ is a normalized vector.

li = ϕ̄out(i)− ϕ̄in(i) (7.2)

= [γ̄
k
]tsnk − [γ̄

k
]tsrc

= [¯̄γ
k

+ ‖γ̄
k
‖]tsnk − [¯̄γ

k
+ ‖γ̄

k
‖]tsrc

= [¯̄γ
k
]tsnk − [¯̄γ

k
]tsrc

Equation (7.2) needs to be computed for all reachable time-stamp vectors to

find the maximum latency. The set of all reachable time-stamp vectors can be

found using state-space exploration. The state-space is constructed in a breadth-

first-search manner from the condensed FSM, following the approach of [30].

States in the state-space consist of a state-vector pair (q, γ̄
k−1

), where q is a

state of the condensed FSM, executed from a time-stamp vector γ̄k−1. Executing

q from vector γ̄
k−1

yields a new vector γ̄
k
. Since the FSM is non-deterministic,

there may be multiple outgoing transitions from state q. This results in multiple

state-vector pairs (q′, γ̄
k
), where q′ a directly reachable state from q. Continuing

the execution from each of these new pairs yields either new or already-visited

pairs. If there are no more new pairs generated, the exploration is terminated and

the set of reachable time-stamp vectors are finite. The maximum latency is then

derived from the set Sγ of all reachable vectors γ̄k, as given by Equation (7.3).

l = max
γ̄k∈Sγ

([¯̄γ
k
]tsnk − [¯̄γ

k
]tsrc) (7.3)

An important question is if the state-space of state-vector pairs is finite. A

sufficient condition for the finiteness of the state-space is the self-timed bound-

edness of the matrices of the states of the condensed FSM. An argument for the

sufficiency of this condition is given as follows. The number of states of the con-

densed FSM is finite. Hence, the finiteness of the state-space is determined by

the boundedness of the normalized time-stamp vector ¯̄γ. The normalized vector

specifies the relative distance between the time-stamps of initial tokens. If such

distances are bounded, then the entries of the time-stamp vector can only take

values from a bounded range. As a result, there will be finite number of possible

time-stamp vectors and, hence, the state-space is also finite. The relative dis-

tances between initial tokens are bounded, since the application is driven by the

source actor, and as a result, no part of the graph can run independent of the

source firing. If there are tokens that are not dependent on the source (during

the execution of the scenario sequence of a state of the condensed FSM), these

tokens must evolve as fast as the source time-stamp token; otherwise, the matrix

of the state would not have been self-timed bounded. Consequently, the maxi-

mum relative distance between time-stamps of initial tokens is bounded due to

the periodic source.
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InitialState

I

0

0

0

0

0

0

0

0

0

0

0


‖γ̄‖ = 0

A

〈q0, q1, q2, q2, q3〉

−10519

−10519

−4462

−10522

-4462

−2522

0

−1322

−1922

−1

0


‖γ̄‖ = 16000

B

〈q0, q1, q2, q3〉

−6520

−6520

−4462

−6522

-4462

−2522

0

−1322

−1922

−1

0


‖γ̄‖ = 15161

C

〈q0〉

0

0

−1301

−1301

-1301

−1301

-1301

−1301

−1301

−1301

−1301


‖γ̄‖ = 5301

D

〈q0, q1, q2, q2, q3〉

−3161

−3161

−4462

−10522

-4462

−2522

0

−1322

−1922

−1

0


‖γ̄‖ = 4000

E

〈q0, q1, q2, q2, q3〉

−3161

−3161

−4462

−6522

-4462

−2522

0

−1322

−1922

−1

0


‖γ̄‖ = 4000

Source time-stamp, tsrc

Sink time-stamp, tsnk

Figure 7.5: State-space of WLAN with a maximum payload of 2 symbols
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If all matrices of the states of the condensed FSM are self-timed bounded,

the state-space is finite and the latency computed by Equation (7.3) is the exact

maximum latency. Otherwise, one may replace the unbounded matrices with con-

servative bounded matrices to obtain a finite state-space that gives a conservative

bound to the maximum latency. If matrix M is replaced by a conservative matrix

M̂ � M , then M̂γ̄ � Mγ̄ from monotonicity (cf. Equations (7.6) and (7.7) to

see how this is done). Hence, the replacement gives conservative time-stamps for

the sink time-stamp token, while the time-stamps of the source token remains

unchanged (as the firing of the source is periodic). This guarantees that the

computed latency is a conservative bound to the maximum latency.

Figure 7.5 shows the state-space of WLAN (cf. Section 3.2) where the maxi-

mum payload size is limited to 2 OFDM symbols (to keep the state-space simple

for illustration). This gives three state-sequences: Sequence 1 = 〈q0, q1, q2, q2, q3〉
for decoding a payload of two symbols, Sequence 2 = 〈q0, q1, q2, q3〉 for decoding

a payload of one symbol and Sequence 3 = 〈q0〉 for synchronization. The matrix

of a state-sequence is obtained from the product of the matrices of the scenarios

of the sequence, as discussed in Section 7.3.3. The matrices of Sequence 1, 2 and

3 are given in Equations (7.4),(7.5) and (7.6).



1944 3244 9943 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1944 3244 9943 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 16000 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1941 3241 9940 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 16000 −∞ 0 −∞ −∞ −∞ −∞ −∞ −∞
3883 5183 17940 1840 −∞ 0 −∞ −∞ −∞ −∞ −∞
6405 7705 20462 4362 −∞ 2522 0 601 2522 1922 1

5083 6383 19140 3040 −∞ 1200 −∞ 600 1200 −∞ −∞
4483 5783 18540 2440 −∞ 600 −∞ −∞ 600 −∞ −∞
6404 7704 20461 4361 −∞ 2521 −∞ −∞ 2521 1921 −∞
6405 7705 20462 4362 −∞ 2522 −∞ 601 2522 1922 1



(7.4)



1943 3243 9942 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1943 3243 9942 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 12000 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1941 3241 9940 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 12000 −∞ 0 −∞ −∞ −∞ −∞ −∞ −∞
3882 5182 13940 1840 −∞ 0 −∞ −∞ −∞ −∞ −∞
6404 7704 16462 4362 −∞ 2522 0 601 2522 1922 1

5082 6382 15140 3040 −∞ 1200 −∞ 600 1200 −∞ −∞
4482 5782 14540 2440 −∞ 600 −∞ −∞ 600 −∞ −∞
6403 7703 16461 4361 −∞ 2521 −∞ −∞ 2521 1921 −∞
6404 7704 16462 4362 −∞ 2522 −∞ 601 2522 1922 1



(7.5)
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1 1301 5301 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1 1301 5301 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 4000 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ 0 −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ 0 −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ 0 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0



(7.6)

The matrices are based on eleven initial tokens from the FSM-SADF model

of WLAN. The first seven initial tokens have the following indices in the ma-

trix: {(a, 1), (b, 2), (c, 3), (d, 4), (tsrc, 5), (e, 6), (tsnk, 7), · · · }. The other four initial

tokens are from the self-edges of actors crc, ack, spl and shr. The matrices of

Sequence 1 and 2 are self-timed bounded. However, the matrix of Sequence 3 is

not. This is because tokens such as d, e, tsrc and tsnk do not exist in Sequence

3. As a result, the matrix entries at (i, i) are set to zero for 4 ≤ i ≤ 11, which

makes the matrix self-timed unbounded. The zero entries on the diagonal imply

that the time-stamps of these tokens do not change when Sequence 3 is executed.



1 1301 5301 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1 1301 5301 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 4000 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ 4000 −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ 4000 −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ 4000 −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ 4000 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ 4000 −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4000 −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4000 −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4000



(7.7)

To obtain a finite state-space, the matrix of Sequence 3 is replaced with a

conservative self-timed bounded matrix M̂ �M , shown in Equation (7.7). Matrix

M̂ is constructed by replacing diagonal entries (i, i) of M by ‖η‖ if [η]i ≤ ‖η‖,
where η is the cycle-time vector (cf. Section 5.4) of matrix M . This technique is

chosen so that the growth rate of the token associated with index i becomes ‖η‖.
As a result, matrix M̂ gets a cycle-time vector whose entries are all the same,

ensuring self-timed boundedness. The replacement enables to construct a finite

state-space and derive a bound to the maximum latency.
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The construction of the state-space, shown in Figure 7.5, begins with a zero

vector at the initial state I. This initial state is required since any one of the three

state-sequences can be the first to be executed. The initial state enables to execute

all the three state-sequences starting from a zero vector. The execution results

in three new time-stamp vectors, indicated in the figure as A, B and C. Three

further executions from each of these three time-stamp vectors give two more

new vectors D and E, besides returning to an already visited state. Additional

executions do not lead to new vectors and, as a result, the state-space construction

terminates. Sequence 1 and 2 have one latency-sequence, which is between states

q2 and q3
2. Sequence 3, however, does not have a latency-sequence. Thus, vectors

A, B, D and E encode the timing distance between tsnk and tsrc, which is the

latency of the corresponding state-sequence. The maximum among these four

relative distances, which is 4462, is a conservative bound to the maximum latency

of WLAN when the number of symbols are limited to 2.

7.4.2 Spectral Analysis

The state-space approach gives the exact worst-case latency. However, it may

suffer from state-space explosion [80], as the number of states increases. This

section presents another analysis option that improves the analysis run-time. A

faster analysis can be achieved by considering the fact that all states, except the

transient states, are fully-connected in the condensed FSM. This is because the

fully-connected part has a simple one-matrix representation [30]. This matrix is

given as M = maxq∈Q′Mq where Mq is the matrix of state q and Q′ is the set of

states, except the transient states. Once such a matrix is constructed, the latency

analysis is carried out through the recurrence relation γ̄k = M · γ̄k−1, where

γ̄0 is the time-stamp vector after executing the transient state-sequences. The

execution of the recurrence relation is terminated once the time-stamp vector

returns to a recurrent vector i.e. ¯̄γk = ¯̄γk−n for some n ∈ N. This because

the execution enters a periodic phase (cf. Section 5.2.3) and the time-stamp

vectors will repeat themselves afterwards. The maximum end-to-end latency is

then computed according to Equation (7.3), where Sγ is the set of all encountered

time-stamp vectors. This technique improves the run-time of the latency analysis

compared to the state-space alternative; in particular, when the number of state-

sequences is large, as demonstrated later in Section 7.6.3. The improvement is

achieved without any loss of accuracy as long as γ̄0 is the time-stamp vector at

the end of the transient states (not a zero vector). A conservative analysis results

if otherwise a fully-connected condensed FSM is assumed, including the transient

states.

2The latency requirement of WLAN is further discussed in Section 7.6.1
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7.5 Extensions

In Section 7.4, the latency analysis is presented for a periodic source. Furthermore,

the basic case is assumed where dependency distance is 0 and there is at most

one latency-sequence per state-sequence. This section discusses how the periodic

source and the basic case solution can be extended for a more general case.

7.5.1 Aperiodic Sources

It has been shown in [60] that the latency analysis of aperiodic sources can be

analysed by reduction to a periodic reference. In [60], two types of aperiodic

sources are considered: sporadic and bursty sources. A sporadic source produces

events non-deterministically at arbitrary moments, but with some minimum inter-

arrival time of d ∈ N. Figure 7.6 shows the events of a sporadic source. The

corresponding events of a reference periodic source is also shown in dashed lines.

The period of the periodic reference equals the minimum inter-arrival time d.

time

d

Figure 7.6: Sporadic events with minimum inter-arrival time of d

It has been shown in [60] that the maximum latency of a single-rate SDF

graph under a sporadic source of minimum inter-arrival time d is the same as

the maximum latency under a periodic source with period d. The basis of this

result is the linear timing property of SDF graphs. Linear timing states that

the production times of tokens cannot be delayed by more than the delays in

the availability of input tokens [59, 96]. This can also be seen from the linearity

property of (max,+) matrices, as shown in Equation 7.8, where δ̄ ∈ Rnmax is a

delay vector, whose entries all non-negative; i.e. δ̄ � u[0].

M · (γ̄ + δ̄) �M · γ̄ + ‖δ̄‖ (7.8)

It can also be seen from Equation 7.8 that FSM-SADF has linear timing prop-

erty. This is because M can also denote the matrix of a sequence of scenarios.

The linearity property enables to analyse the maximum latency of FSM-SADF

under a sporadic source using a reference periodic source, by applying the same

technique as [60]. The reference periodic source is modeled by a SDF actor, whose

WCET equals the minimum inter-arrival time d of the sporadic source. Then, the

maximum latency under a sporadic source is at most equal to maximum latency
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computed for the reference periodic source. If an input from a sporadic source

arrives later than its periodic reference by ‖δ̄‖ ≥ 0 time units, the firing of the

sink will be delayed in the worst-case by ‖δ̄‖, due to linear timing property. Con-

sequently, the relative maximum timing distance between the sink and the source

time-stamp tokens does not increase; i.e. (tsnk + ‖δ̄‖)− (tsrc + ‖δ̄‖) ≤ tsnk − tsrc.
Another type of aperiodic source is a bursty input stream. Following the

definition of [70], a bursty event model (ti, Tb, Nb) is characterized by a minimum

inter-arrival time ti ∈ N and the maximum number Nb ∈ N of events that may

occur in a time window of Tb ∈ N. In [60], the latency analysis of single-rate

SDF graphs under a bursty input stream is discussed. The approach derives a

conservative upper-bound to the maximum latency under a bursty source by first

reducing the analysis to a reference periodic source, and then, accounting for

the maximum deviation from the periodic reference. This approach can also be

applied to FSM-SADF models, by using the technique of [60]. The period of the

periodic reference is derived from the highest average firing rate of the bursty

source, which equals Nb
Tb

. The maximum deviation is found for the interval where

all the Nb events arrive with a separation of the minimum inter-arrival time ti .

7.5.2 Extending the Basic Case

In Section 7.4, the latency analysis has been presented for the basic case, where

there is at most one latency-sequence per state-sequence, the dependency distance

is zero and there are no unpaired source and sink scenarios in a state-sequence.

This section discusses how the basic case of the latency analysis can be extended

to a more general case.

• Multiple latency-sequences per state-sequence: If there are multiple latency-

sequences in a state-sequence, the computed latency from Equation 7.2

would be based on only the last latency-sequence of the state-sequence and

the other latency-sequences would not be part of the analysis. This is be-

cause, at the end of the state-sequence, the source and sink time-stamp

tokens tsrc and tsnk respectively record the last firings of the source and

sink actors. This is due to the fact that the time-stamp of the previous

firing is overwritten, every time the source (or the sink) actor fires. As a

result, the computed latency, as per Equation 7.2, takes only the last pair

of source and sink actor firings (or the last latency-sequence) into account.

This may lead to an underestimation of the latency. One solution to handle

the analysis of multiple latency-sequences in a state-sequence is to carry

out the analysis in multiple steps, by considering only one latency-sequence

at a time. For instance, Figure 7.3 shows an example of a state-sequence
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that has three latency-sequences. In this case, the analysis is carried three

times. First, only q3 and q5 are labeled as source and sink scenarios. In

the second and third analyses, only q4 and q8 and q6 and q9 are labeled as

source and sink scenarios, respectively. The maximum latency is then given

by the maximum among these three possibilities.

• Non-zero dependency distance: A non-zero dependency distance implies that

the sink actor can fire some d number of times even before the source actor

fires, due to the initial state of the application. This means that only the

(i+d)th output element ϕ̄out(i+d) is causally related to the ith input element

ϕ̄in(i). The first d firings of the sink actor do not have corresponding source

firings. Hence, for these firings, latency cannot be defined and they are left

out of the latency analysis.

Consequently, the latency analysis can be reduced to the case where the

dependency distance is zero. This is achieved by starting the analysis from

the state of the application where the first d sink firings are completed. To

realize this, each state-sequence needs to be executed while blocking (not

firing) the source actor, until the sequence deadlocks. The resulting scenario

graphs will have new distributions of initial tokens, where the first firing of

the sink actor has a causal dependency with the first firing of the source.

The analysis matrices for the latency analysis are then constructed from

the new scenario graphs, which guarantee that output element ϕ̄out(i) is

causally related to input element ϕ̄in(i).

• Unpaired source and sink scenarios in a state-sequence: In Section 7.3.2,

identification of latency-sequences from a state-sequence has been discussed.

The technique associates/pairs each sink scenario with a source scenario, by

traversing a state-sequence in the reverse direction. It is possible that some

source (or sink) scenarios can be left without being associated with sink (or

source) scenarios. Such unpaired scenarios are always in front of the paired

source-sink scenarios (latency-sequences) of the state-sequence.

The analysis in Section 7.4 allows for some source scenarios to be left un-

paired. A good example is the case of WLAN, where the source scenario s3

is executed multiple times (as many times as the number of OFDM symbols

in a packet) before the sink scenario s4 is executed. The latency require-

ment, which is between the last s3 and scenario s4, is properly captured by

the latency-sequence of a state-sequence that decodes a packet3. This holds

generally because all unpaired source scenarios are in front of the latency-

sequences of a state-sequence. As a result, the source time-stamp token

3The latency requirement of WLAN is further discussed in Section 7.6.1
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tsrc gets overwritten as these latency-sequences are executed later in the

sequence and, hence, the timing distance between tsrc and tsnk eventually

depends only on the actual latency-sequences (i.e. the paired source-sink

scenarios). However, it is not possible for some sink scenarios to be left

unpaired, since this would imply a non-zero dependency distance, where a

sink actor can fire before the source fires.

7.6 Evaluation

This section evaluates the presented latency analysis techniques. It also demon-

strates applicability in MPSoC design-space exploration. The evaluation has three

sections. Section 7.6.1 analyzes the end-to-end latencies of two wireless baseband

applications: WLAN 802.11a and 3GPP’s LTE. Section 7.6.2 binds these applica-

tions onto a multi-core platform model and discusses trade-offs between resource

allocation and achievable temporal bounds. Section 7.6.3 evaluates the run-time

of the analysis techniques.

7.6.1 Applications

This section discusses the maximum end-to-end latencies of two wireless baseband

applications, before they are mapped onto a multi-core platform.

WLAN 802.11a baseband processing

The baseband processing of WLAN 802.11a is discussed in Section 3.2. The corre-

sponding FSM-SADF model is shown in Figure 3.6. The payload size of a WLAN

packet may vary from 1 to 256 OFDM symbols. Each symbol has a duration

of 4µsec. Packets in WLAN arrive sporadically. Hence, the maximum latency is

equivalent to a periodic source of period 4µsec, as discussed in Section 7.5.1. After

these symbols are demodulated and decoded, a cyclic-redundancy check (CRC) is

performed. If CRC is successful, an acknowledgment must be sent within 16µsec

of the end of reception. This defines a latency requirement between the reception

of the last symbol and the sending of the acknowledgement. Hence, the source

scenario is s3 i.e. ε(qi2) and the sink scenario is s4 i.e. ε(q3). The source and sink

actors are actors src and spd. Note that the last source scenario at qi2 is only

paired with a sink scenario. The other source scenarios are not paired with a sink

scenario. This is allowed by the analysis, as explained in Section 7.5.2.

Due to the variable number of OFDM symbols in a WLAN packet, scenario

s3 is executed as many times as the number of OFDM symbols. The FSM of Fig-

ure 3.6 conservatively approximates this behavior by allowing an arbitrary number
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of payload symbols, as indicated by the self-transition in state q2. As a result of

this cycle on state q2, Algorithm 5 fails to construct a valid condensed FSM. To

address this issue, we carried out the analysis on the actual FSM, which has 256

FSM states labeled with scenario s3, compared to the conservative version with a

single state (i.e. q2). The 256 states have the form qi2, where 0 ≤ i ≤ 255. This re-

sults in a condensed FSM that has 257 state-sequences. One state-sequence is 〈q0〉,
which captures the execution of scenario s1 repeatedly until synchronization suc-

ceeds. The remaining 256 sequences have the form qi = 〈q0, q1, q
0
2 , q

1
2 , · · · , qi2, q3〉,

that specifies the scenario sequence to decode a packet of length i+ 1 symbols.

The latency of the model has been analysed with both the state-space (Sec-

tion 7.4.1) and the spectral analysis (Section 7.4.2) techniques. The constructed

state-space has 514 states (state-vector pairs). The obtained maximum latency

bound equals 4.46µsec and the analysis took 1200msec. In fact, all visited states,

which have a latency-sequence, have given the same latency bound as the max-

imum latency. The spectral analysis also gives the same latency bound in this

case. This is expected because the condensed FSM does not have transient state-

sequences and the state-sequences are fully-connected. Moreover, the analysis

run-time of the latter approach is only 84msec.

Long Term Evolution (LTE) baseband processing

LTE’s downlink frame consists of 10 sub-frames, as discussed in Section 3.1. Each

sub-frame is 1000µsec long and has 14 OFDM symbols. Hence, the source pro-

duces OFDM symbols periodically with a period of 1000µsec/14 = 71.4µsec.

The FSM-SADF model of LTE, shown in Figure 3.4, comprises five scenarios

s1 − s5 [80]. Sub-frame processing always starts at scenario s1 (i.e. source sce-

nario) and terminates at s3, s4 or s5 (i.e. sink scenarios). This results in three

possible state-sequences, which are also latency-sequences. The state-sequences

correspond to the three possible sub-frame types in LTE. Figure 7.7 shows the

condensed FSM. In the condensed FSM, state I is introduced as an initial state,

which is annotated with a zero matrix. This is because execution may initially

start with any one of the three possible sub-frame types.

If a state-sequence is slower than the rate of the source, the graph cannot meet

the required throughput. The temporal distance between the source and the sink

also diverges indefinitely. As a result, the maximum latency becomes unbounded.

The application is also termed as unbounded. A state-sequence is bounded if and

only if its matrix has a cycle-time vector4 whose entries are all the same. This

indicates that all actors have the same execution rate.

All three state-sequences of this LTE model are unbounded for the given source

4The computation of cycle-time vectors is studied in Chapter 5.4.
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I q1 q2 q3

q1 = 〈q0, q3〉
q2 = 〈q0, q1, q4〉

q3 = 〈q0, q1, q2, q5〉

Figure 7.7: Condensed FSM of LTE, based on the FSM-SADF of Figure 3.4

period, which also means the application is too slow. This requires speeding-

up critical actors so that the application can cope with the rate of the source.

E.g. if actor dec, which performs data and channel decoding, is accelerated by

a factor of 4, its execution time reduces and all state-sequences become bounded

for the source period of 71.4µsec. Thus, the acceleration of this actor makes the

application bounded and it achieves the throughput constraint set by the source.

The maximum latency is 1568µsec, according to both the spectral and the state-

space techniques. The results are the same since the condensed FSM is fully

connected and has no transient sequences. The state-space has 13 states and the

maximum latency is observed for state-sequence 〈q0, q3〉. The analysis run-time

is under 12msec for both analysis techniques.

If critical actors, such as actor dec, are not accelerated, the minimum period

the graph can support is 127µsec. Any period lower than this becomes too fast to

be supported by the application. When the application is run under the minimum

period, the maximum latency bound is 3752µsec, according to both the state-

space and the spectral techniques. The state-space has 157 states. The maximum

latency is observed for state-sequence 〈q0, q3〉 and the other sequences have a lower

latency. The analysis run-time is under 20msec for both analysis techniques.

7.6.2 Resource Reservation vs. Temporal Bound Trade-offs

This section demonstrates how the presented latency analysis techniques can be

used for a trade-off analysis between resource reservation and achievable temporal

bounds for a software-defined radio (SDR) design using the same WLAN and

LTE FSM-SADF models. A SDR comprises a heterogeneous MPSoC platform

that is shared between multiple wireless radio applications. For instance, the

baseband processor of high-feature phones is a MPSoC [19] that supports multiple

applications, such as WLAN for wireless connectivity and WiMax and LTE for

3G/4G cellular connectivity.
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Table 7.1: Constructed actor-to-processor bindings

Appl. GPP VP1 VP2 VP3 WPA1 WPA2 SNK

Binding-1

WLAN
mc, dda1,

dda2, crc

shift, sync,

hdem, pdem
- -

hdec,

pdec
-

ack,

spld,

shdr

LTE
mc,dda,

mem, dem

est, adp,

cqi, dmp
- - - dec -

Binding-2

WLAN
mc, dda1,

dda2, crc
shift, sync hdem pdem

hdec,

pdec
-

ack,

spld,

shdr

LTE
mc,dda,

mem, dem
est

adp,

cqi
dmp - dec -

Platform

SDR platforms combine homogeneous and heterogeneous multiprocessing, similar

to the platform in Figure 1.1. A typical SDR MPSoC comprises a general-purpose

processor (GPP) (e.g. ARM) for control and generic tasks, a set of vector proces-

sors (VPs) (e.g. EVP [11]) for tasks such as synchronization and demodulation,

and a set of weakly-programmable hardware accelerators (WPAs) for tasks such

as Turbo decoding. Each processor tile has a local data and instruction memory,

but has no cache. It is assumed that these processors are connected through a

predictable interconnect [38] that uses a contention-free routing, based on TDM

switching. Hence, each connection on the interconnect has a guaranteed band-

width and maximum latency. For all connections, the same bounded delay WCRC

(cf. Figure 6.4b) is assumed.

Application mapping

The application-to-platform mapping allocates resources such as buffer sizes of

channels and TDM slices of applications. The design-space is vast for the system

under consideration. Hence, we use fixed settings in this exercise for actor bindings

and buffer sizes of channels to simplify the discussion. Channel bindings are

infered from actor bindings. Hence, we explore the design-space with different

TDM frame sizes and slice allocations, which give a trade-off between temporal

bound and resource reservation.
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Figure 7.8: Timing Analysis of WLAN Mapping

We constructed two sets of actor-to-processor bindings, where control-oriented

tasks are mapped on the GPP and signal processing tasks are mapped on the VPs,

as shown in Table 7.1. A static-order schedule is constructed per tile between

actors of the same application. The buffer-size of each channel c from actor p to

actor q is set to a fixed value, equal to 2×u×ν(p)+ ι(c), where ι(c) is the number

of initial tokens of channel c, u is the source port-rate of the channel and ν(p) is

the repetition factor of source actor p. We set the buffer-sizes to fixed values in

order to control the effects of variable buffer-sizes on the temporal analysis.

Both applications are intended to run together on the same platform, where

TDM scheduling is used to arbitrate the processor tiles between them. Thus,

TDM slices are allocated for each application, on each tile, on which the actors

of the application are mapped.

Temporal Analysis

Figure 7.8 shows the worst-case throughput (WCT) and the worst-case latency

(WCL) of WLAN Binding-1 for different TDM frame sizes and slice allocations.

The results for Binding-2 are similar and are not shown here. The legend shows

the different frame-sizes. The required throughput is 2.5 × 10−4 per nsec. The

figure on the left shows that this throughput is not met until the slice allocation

is sufficiently large (depending on the frame size). The figure on the right shows

that a bound to the maximum latency does not exist when the WCT is less than

the rate of the source (i.e. 2.5 × 10−4 per nsec). For instance, for a frame size

of 100, all slice allocations less than 0.5 make the application unbounded. As a
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Figure 7.9: Timing Analysis of LTE Mapping

result, the maximum latency is also unbounded. Once the throughput require-

ment (which is the rate of the source) is met, increasing the resource reservation

does not lead to a further increase in throughput. However, it helps to reduce the

maximum end-to-end latency. The latency constraint is 16µsec. The constraint

specifies the maximum timing before sending an acknowledgement [59]. The la-

tency analysis shown in Figure 7.8 demonstrates that all slice allocations that

satisfy the throughput requirement satisfy this latency constraint.

Figure 7.9 and 7.10 show the timing analysis of the LTE processing in Binding-

1 and Binding-2. Figure 7.9 shows that Binding-2 gives almost twice the through-

put of Binding-1 for similar resource reservations. Figure 7.9 also shows that a

TDM frame size of 104nsec gives the best performance. Shorter frame sizes have

lower performance due to extra overhead from frequent context switching. Longer

frame sizes (e.g. 106nsec), on the other hand, have lower performance due to

longer response times. However, this frame size of 104nsec gives a degraded per-

formance for WLAN if both applications are running together. As a compromise,

one may select a frame size of 103nsec.

None of the resource reservations of the two LTE bindings satisfies the through-

put requirement, which is dictated by the period of the source, 71.4µsec. Thus,

a bound to the maximum latency also does not exist for this source period (un-

less some critical actors are accelerated, as demonstrated in Section 7.6.1). The

upper and lower figures of Figure 7.10 show the minimum supported period and

the corresponding maximum latency bound, respectively, for different frame sizes

and TDM slice allocations. For instance, for a TDM frame size of 103nsec and

allocated slice of 0.7, the minimum supported period equals 238µsec and a bound
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Figure 7.10: Timing Analysis of LTE Mapping

to the maximum end-to-end latency equals 1982µsec for binding-2.

7.6.3 Scalability

A key parameter that determines the run-time of the analysis techniques is the size

of the matrices of state-sequences. Another parameter is the number of different

state-sequences (or states) of the condensed FSM. Figure 7.11 shows how the run-

time of the latency analysis scales with increasing number of initial tokens (and

hence size of the matrices) and state-sequences. The experiment is conducted

by randomly adding synthetic initial tokens and FSM transitions in the FSM-

SADF model of LTE, shown in Figure 3.4. The run-times are shown for both the

state-space (SS) analysis and the spectral analysis (SA) techniques.

The analysis with the SA technique involves three steps: 1) constructing the
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Figure 7.11: Analysis run-time for large problem sizes

matrices of the state-sequences, 2) a max operation on these matrices and 3) a

spectral (eigenvalue) analysis of the final matrix. The time complexity of each

of these three steps are discussed as follows. The matrices of state-sequences are

of size n× n, where n is the total number of initial tokens. This includes tokens

that are used to capture processor and interconnect availabilities. Constructing

the matrices (step 1) has a complexity of O(l · m · n3), where l is the number

of state-sequences, m is the maximum length of state-sequences and O(n3) is

complexity of matrix-to-matrix multiplication. The max operation (step 2) over

these matrices is linear with the number of state-sequences and the size of the
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matrices (n2). The spectral analysis (step 3) uses Algorithm 3 of [28], which is

based on the recurrent execution γk+1 = M ·γk, until a periodic phase is reached.

Thus, it has a complexity of O(t ·n2), where t is the length of the transient phase

and O(n2) is complexity of matrix-to-vector multiplication. The length of the

transient phase largely varies with the nature of the FSM-SADF graph, such as

execution times and repetition factors of actors.

The analysis with the state-space technique also first requires constructing

the matrices of the state-sequences (similar to step 1 of the spectral analysis). It

further requires a matrix-to-vector computation of complexity O(s·n2), where s is

the number of state-vector pairs of the state-space. The state-space is constructed

through a breadth-first-search algorithm.

The size of the state-space may vary with the nature of the graph. For instance,

it may increase exponentially with the number of state-sequences (states of the

condensed FSM). This is because the execution of an FSM of l states starting

from the initial state gives at most l and ll new states, respectively, after the

first and second rounds of executions. Consequently, the performance of the

state-space technique may degrade with increasing number of states. This can

also be seen from Figure 7.11, where the spectral analysis performs better than

the state-space technique as the number of state-sequences increases (the bottom

figure). However, the results show comparable performance between the two

techniques when the run-time is evaluated for increasing number of initial tokens

(the top figure). This is justifiable, as the number of state-sequences is low for this

experiment (it has only three state-sequences); for the rest, both techniques have

similar time complexity, which is polynomial with the number of initial tokens.

7.7 Related Work

Existing analytical techniques follow different approaches to compute exact or

conservative upper-bounds to the maximum end-to-end latency of distributed

real-time systems. These approaches differ in the expressiveness of the application

model they use, the types of schedulers they support, the tightness of their analysis

as well as their scalability and modularity [63].

Exploiting classical uni-processor scheduling to multi-core systems has been

widely done to compute end-to-end latency in distributed real-time systems.

These works can be categorized as modular or holistic. SymTA/S [44] is a mod-

ular approach where each system component is analyzed locally with classical

algorithms. Then, the local results are propagated to other connected compo-

nents through appropriate event model interfaces. The analysis is completed

successfully if all event streams converge towards a fixed-point through an itera-
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tive process. An end-to-end latency analysis based on the SymTA/S approach has

been studied in [72]. The technique supports forks, joins and cyclic-dependencies

in the task graph. However, it is limited to single-rate task graphs and does not

support delays (also called initial tokens in dataflow MoCs). A related approach

that integrates dataflow MoCs in the SymTA/S flow has also been presented

in [74]. It allows a SymTA/S component to be modeled as a single-rate SDF

graph, also called Homogeneous SDF (HSDF), which restricts all port-rates of

the graph to be only 1. Holistic approaches [50,67,91] follow a different direction

than SymTA/S to exploit classical uni-processor scheduling for multi-core real-

time systems. They extend classical algorithms for specific combinations of task

model, resource sharing and communication policy. As such, they integrate task

and communication scheduling into a single analysis framework. Thus, they may

give tight performance bounds by taking system-level correlations into account.

However, these techniques are not modular and may require a completely new

analysis for a new combination of schedulers and task model [63].

Another modular end-to-end latency analysis that supports arbitrary event

models, so-called arrival curves, has been presented in [90]. The approach is

based on Real-Time Calculus [17], which adopts concepts from network calculus

to distributed real-time applications and shared resources. Real-time calculus em-

ploys service curves to model the availability of computation and communication

resources. The approach propagates the output service curves of local resource

analysis to connected components for a compositional performance analysis. By

using service curves, the approach supports a wide range of scheduling policies.

However, the application specification is still restricted to a single-rate task graph.

Dataflow MoCs have also been widely used to model and analyze streaming

applications. In [60], maximum latency analysis for HSDF graphs has been studied

under periodic, sporadic and bursty sources. The analysis derives a conservative

latency bound after constructing a strictly periodic schedule (SPS) that gives

upper-bounds to iterations. The analysis is first derived for a periodic source.

Then, the analyses of sporadic and bursty sources are reduced to the analysis of

a reference periodic source. The technique supports arbitrary cycles and delay

tokens. However, analysis of an SDF graph requires conversion to an HSDF

equivalent. In [36], a technique has been presented to compute the minimum

achievable latency between a designated pair of SDF actors. The approach does

not require conversion to HSDF and uses a state-space analysis, similar to [35],

to find an execution scheme for the minimum latency.

The aforementioned and similar methods assume application models that are

less suitable to model adaptive applications, which change their graph structure,

execution times and data rates dynamically. Even within a static mode, streaming

applications require a task graph that supports cyclic-dependencies, multi-input
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tasks, multi-rate tasks (i.e. multiple data per input before a task is enabled),

a natural way of handling back-pressured buffer communication and a (quasi-

)static-order scheduling between tasks. The above approaches [50, 60, 72, 74, 90]

support only single-rate tasks. Conversion from multi-rate to single-rate (HSDF)

graphs is possible [81]. However, the conversion as well as the follow-up analysis

may take tens of minutes for real-life application graphs, due to an exponential

growth in the graph size [35]. Moreover, conservatively abstracting from the dy-

namism in modern-day applications leads to pessimistic temporal bounds, which

may further result in unnecessary resource over-allocation [88].

Performance analysis techniques for FSM-SADF are presented in [28, 30, 79].

However, these works focus only on throughput analysis. This chapter stud-

ies the maximum end-to-end latency of a dynamic streaming application, which

is modeled by an FSM-based SADF graph. The proposed analysis techniques

in this chapter further consider the impact of resource sharing between multi-

ple applications that are mapped on the same MPSoC. Unlike existing dataflow

approaches [59, 86, 96], the presented latency analysis techniques do not require

construction of resource-aware dataflow models to analyze resource sharing, as

discussed in Chapter 6.

7.8 Summary

This chapter presents a systematic analytical approach to compute the exact or

conservative maximum end-to-end latency of an FSM-SADF application model.

The presented techniques determine a bound to the maximum latency with re-

spect to a given periodic source. Aperiodic sources such as sporadic streams can

be analyzed by reducing the analysis to the analysis of a periodic source. The

analysis techniques have polynomial time complexity with the number of initial

tokens. Thus, reducing the number tokens is crucial for a scalable analysis. The

matrix construction algorithm of scenario mappings of Algorithm 4 helps to re-

duce the number of tokens, compared to resource-aware dataflow approaches. The

technique is evaluated with existing dataflow models from the wireless applica-

tions domain. The evaluation also demonstrates the use of the analysis method

for trade-off analysis in resource reservation under a throughput (source period)

constraint. The technique can determine if the constraint is met. The technique

can be combined with existing throughput and boundedness analysis methods

to provide the minimum period the graph can support and the corresponding

latency.
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CHAPTER 8

Conclusion and Future Work

Current trends in embedded multimedia and wireless systems show that multiple

applications are being integrated onto the same platform. Moreover, the applica-

tions are becoming computationally intensive, due to increasing demand for higher

quality of service. Heterogeneous Multiprocessor System-on-Chip (MPSoC) has

become the preferred choice of designers to implement such systems, as it provides

the much-needed high performance at lower power consumption. An efficient im-

plementation on such platforms requires an extensive design-space exploration

(DSE), early in the design process. The DSE needs to find satisfactorily good

design-points that meet real-time requirements at low resource cost. Dataflow

models of computation (MoCs), as a means of achieving these goals, have been

the focus of research in the past years. This thesis builds on the results of these

researches, which have demonstrated the potential of dataflow-based approaches

in designing predictable systems.

One aspect that plays a key role for the successful applicability of dataflow-

based techniques is the sufficiency of expressiveness of the chosen MoC. Most

importantly, the expressiveness should be sufficient enough to capture intra-

application dynamism in modern-day streaming applications. The discussions

in Chapter 3 have enlightened the types of dynamism in these applications. The

chapter has demonstrated that these applications change their graph structures

as well as their operating modes, depending on the processed input stream. Mode

switchings occur dynamically, since different input data types may arrive in ar-
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bitrary order. Along with the mode switchings, actors may dynamically change

their input/output data rates, and even their functionalities. The chosen MoC

in this thesis, FSM-SADF, has the expressiveness to capture such kinds of dy-

namism. It groups those actor properties that belong to the same mode into a

SDF scenario. It allows scenarios to have different graph structures, actors to

have variable WCETs and ports to have variable token rates. It further provides

a FSM to encode the possible orders of executions of scenarios. Such kind of rich

expressiveness, however, does not come for free. It brings new challenges when it

comes to programmability and analysability. This thesis has made contributions

towards addressing these challenges.

Chapter 4 introduces Disciplined Dataflow Network (DDN), as an analysable

dynamic programing model, to tackle the programmability challenge. FSM-SADF

has a scenario-view of the application, which is good for analysis, but not intu-

itive for programming. DDN has an actor-view of the application, where the

application is represented by a network of dynamic actors. DDN provides a con-

cise and programmer-intuitive representation of a dynamic streaming application.

DDN is constructed in such a way that an FSM-SADF analysis model can be au-

tomatically extracted from it. As such, DDN serves as a common application

specification for both the analysis and implementation trajectories. The basic

idea is that the extracted model can be kept in the loop, performing different

types of analysis and giving instant feedback to the designer. With the analy-

sis framework, basic properties such as boundedness and deadlock-freedom can

be checked. Deadlock-freedom is verified by analysing DDN actors individually

as well as the extracted SDF scenarios. A SDF scenario is tested for deadlock-

freedom by verifying consistency and the presence of sufficient initial tokens for

one iteration [53]. In FSM-SADF, consistency is guaranteed if every cycle of the

FSM is consistent [31]. Another property that can be checked is boundedness.

Chapter 5 presents an algorithm to check boundedness of a scenario from the cycle-

time vector of its matrix. Similar to consistency, boundedness of FSM-SADF is

guaranteed if every cycle of the FSM is bounded.

The other challenge is temporal analysis. A designer requires to verify if

his/her design choices would meet real-time constraints, before going to imple-

mentation. Decisions have to be made between multiple application partitioning

options. After partitioning, actors and channels need to be bound to processors

and the interconnect network, respectively. The result is an application mapping.

The mapping also decides the resource share of the application if the platform

is shared with other applications. The final set of design choices needs to be

analysed to verify if the design can handle the arrival rate of the input source or

can provide the sink with the required output data rate. Moreover, the analysis

should be sufficiently fast so that the mapping and resource allocation design-
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space can be efficiently explored iteratively to arrive at a low cost solution. In the

light of these requirements, Chapter 6 has introduced an approach to analyse ap-

plication mappings. The approach embeds worst-case resource curves (WCRCs)

in (max,+) symbolic simulation to model resource sharing. The benefit of this

technique is that it avoids the construction of resource-aware dataflow models to

analyse application mappings. The result is a more compact matrix representa-

tion of application mappings, which enables a faster timing analysis. Moreover,

the approach improves the WCRTs of requests that arrive in the same busy time

of a resource. This is achieved by identifying the busy times of an iteration from

the symbolic time-stamps of actor firings. The technique enables tighter tempo-

ral bounds than existing approaches, which do not consider busy times in their

analysis. The tightness of the temporal analysis is crucial, since the system di-

mensioning (e.g. buffer-allocation, processor budgets, etc) strongly depends on it.

Otherwise, resources have to be unnecessarily over-allocated to be assured that

real-time constraints are met.

An important real-time constraint in streaming applications is throughput.

It determines the maximum input source rate the application can support, or

the maximum output data rate it can provide to a sink. Such constraints come

from customer requirements or standard specifications. Hence, they must be met.

Chapter 5 has presented techniques to derive a bound to the worst-case through-

put of SDF scenarios. The techniques are generalizations of existing methods in

the literature. The generalizations become mandatory, since we intend to im-

prove the expressiveness of SDF scenarios. Introducing new features to a MoC

to improve its expressiveness, without supporting these features in the temporal

analysis, will have no or little benefit in the design of predictable embedded sys-

tems. In the case of FSM-SADF, we have identified two important features that

should be added to improve its expressiveness.

The first expressiveness feature we added is support for self-timed unbounded

scenarios. In SDF, self-timed boundedness is crucial as it implies the number of

tokens of a channel is bounded in a repeated self-timed execution of the graph [34].

In FSM-SADF, however, a SDF scenario is not necessarily repeatedly executed.

Rather, a sequence of different scenarios is executed; one scenario followed by

possibly another different scenario. Thus, it is sufficient to guarantee that such

scenario sequences are bounded, irrespective of the boundedness of individual

scenarios. The second required feature is to introduce a flexible way of encoding

synchronizations between different scenarios. Existing techniques assume inter-

scenario synchronizations between two scenarios are encoded by the initial tokens

they have on common channels. For such common channels to exist, the corre-

sponding source and destination actors must also exist in both scenarios. This is

obviously a restrictive assumption. Chapter 5 has lifted these restrictive assump-
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tions and introduced a generalized throughput analysis approach that allows self-

timed unbounded scenarios and inter-scenario synchronizations between arbitrary

initial tokens. The chapter has presented different techniques, which have varying

trade-offs between accuracy and scalability, to bound the worst-throughput of a

set of SDF scenarios.

The end-to-end latency of streaming applications is also more than just a per-

formance metric that need to be optimized on a best-effort basis. It is a real-time

requirement that must be met. A tight latency bound needs to be derived, for

a given set of resource allocations and scheduler configurations. Deriving such a

bound in the presence of dynamism adds another dimension to the latency anal-

ysis problem. The start and end points of the latency analysis may belong to

two different scenarios. In case of dynamically switching scenarios, the analysis

requires to verify if these two points are causally related and if the maximum

latency between them is bounded. Chapter 7 tackles this analysis challenge. It

formalizes the latency definition in the presence of dynamically switching sce-

narios. It introduces a sufficient condition on the FSM to guarantee a bounded

maximum latency. Then, it presents two techniques to derive a bound to the

maximum latency under a periodic source.

The above discussed contributions form an analysis framework that takes a

high-level DDN specification of a streaming application as an input. Then, it

1) automatically constructs a FSM-based SADF dataflow model, 2) verifies basic

properties such as deadlock-freedom and boundedness, and 3) derives real-time

temporal bounds such as worst-case throughput and end-to-end latency, while

considering resource sharing in a heterogeneous MPSoC platform. The frame-

work is crafted in such a way that actor code can be automatically generated

from the DDN specification so that consistency can be maintained automatically

between the implementation and the analysis model. The techniques are imple-

mented in open-source dataflow tools, SDF3 [4] and Caltoopia [2]. The contribu-

tions advance the state-of-the-art dataflow-based design methodologies in terms

of accuracy, scalability, model expressiveness as well as ease of use.

Yet, there are still some open research questions that would strengthen these

contributions and build paths to practical adoption of the framework for industrial

use. Some of the main research directions in the context of this thesis are listed

as follows for future work.

• Quasi-Static Order Scheduling

The analysis of application mappings, presented in Chapter 6, assumes a

static-order (SO) schedule is given for each scenario separately. Often, sce-

nario executions are pipelined and scenario switchings occur only at scenario

detection points. This gives rise to a quasi-static-order (QSO) schedule of
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the FSM-SADF. Such a schedule can be conveniently constructed from the

DDN program, since scenario detection points are explicitly given by the

firings of detector actors. The QSO schedule should then be the one to be

used for implementation, while the SO schedules of individual scenarios are

constructed from the QSO schedule for the mapping analysis. The construc-

tion of the QSO schedule, in turn, depends on the allocated buffer-sizes of

channels, which brings us to the next future work.

• Buffer-size Analysis

Buffer-size allocation is strongly tied with the timing behavior of the ap-

plication. The static-order scheduling is also influenced by the allocated

buffer-sizes. Works exist that study buffer-throughput trade-offs [87,97,106]

of SDF graphs. Similar studies for the FSM-based SADF MoC, however,

are not available up until now. A starting point would be to investigate

the trade-offs between buffer-size allocation and the worst-case throughput,

as well as the maximum end-to-end latency. Moreover, for a given set of

buffer-size allocations, the total buffer-size can be minimized through buffer

sharing. The analysis techniques, presented in this thesis, are well suited

for this. This is because a buffer space that is shared between multiple

channels can be easily enforced in the analysis by putting a token with the

same identifier on all of these channels.

• Busy-times across Iterations

Improvements in WCRTs in Chapter 6 are achieved by identifying busy-

times that are within a single iteration. Tighter temporal bounds can be

further obtained if the busy-time analysis is extended across iterations. This

is possible, for instance, if we take a look at the end-to-end latency analysis

in Chapter 7. The characterization matrix of a state-sequence is computed

after analyzing each scenario of the sequence separately. If, instead, the ma-

trix is constructed directly from a symbolic simulation of a single execution

of the sequence, a matrix that gives tighter bounds can be obtained. This

is because the symbolic execution can make use of busy times that extend

across multiple iterations of different scenarios.

• Code Generation

The framework discussed in this thesis covers temporal analysis, based on

FSM-SADF models that are constructed from a DDN specification. The

DDN specification is also intended as a programming model, from which

implementation code can be generated. During the course of this work,

we have experimented with the Caltoopia [2] compiler to generate C code

directly from a DDN specification, written in CAL actor language. CAL
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aims at platform-independent application programming by separating the

compilation process into two phases: frontend and backend. The frontend

parses the input CAL program and generates an intermediate representation

(IR), which is a common input to different types of backend compilations.

The backend compilation is platform-dependent and generates code to a

specific target. Different backend compilation paths exist today, such as

CAL2C for C and CAL2HDL for VHDL/Verilog code generations. This is

an interesting infrastructure to efficiently program heterogeneous MPSoCs,

which comprise different types of cores, from a target-agnostic application

specification. The temporal analysis presented in this thesis comes into play

here, guiding the designer and verifying basic and temporal properties.
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