7 research outputs found

    Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition.

    Get PDF
    The aim of this study was to demonstrate a new automatic brain segmentation method in magnetic resonance imaging (MRI)

    Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T

    Get PDF
    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in ‘arterial’ and ‘venous’ blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between ‘arterial’ and ‘venous’ contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms

    Automated brain tissue segmentation based on fractional signal mapping from inversion recovery Look-Locker acquisition

    No full text
    Most current automated segmentation methods are performed on T 1- or T 2-weighted MR images, relying on relative image intensity that is dependent on other MR parameters and sensitive to B 1 magnetic field inhomogeneity. Here, we propose an image segmentation method based on quantitative longitudinal magnetization relaxation time (T 1) of brain tissues. Considering the partial volume effect, fractional volume maps of brain tissues (white matter, gray matter, and cerebrospinal fluid) were obtained by fitting the observed signal in an inversion recovery procedure to a linear combination of three exponential functions, which represents the relaxations of each of the tissue types. A Look-Locker acquisition was employed to accelerate the acquisition process. The feasibility and efficacy of this proposed method were evaluated using simulations and experiments. The potential applications of this method in the study of neurological disease as well as normal brain development and aging are discussed. © 2010.link_to_subscribed_fulltex

    Quantitative MR T1 measurements with TOWERS: T-One with enhanced robustness and speed

    Get PDF
    T1 mapping can be beneficial for many applications in magnetic resonance imaging. Such applications include sequence optimization, clinical utility and tissue segmentation. However, the methods in the T1 mapping literature proposed to date either take a great deal of time to acquire or suffer from fundamental shortcomings. In addition, if significant motion occurs even once early in the scan, the operator needs to rerun the sequence, which is costly and time-consuming. Therefore, it is desirable to design a sequence that is not only fast, but also reliable to yield a good-quality T1 map, even in the presence of motion. In this study, we propose an EPI-based sequence with an efficient slice reordering scheme introduced relatively recently. The proposed sequence acquires saturation recovery samples that not only help improve estimation accuracy, but also serve as references for estimating motion parameters that will be used for mitigating the effects of motion. Furthermore, the reconstruction parameters are updated in the middle and at the end of the scan, and are used to retrospectively correct for motion. Phantom and in vivo experiments show the promise of the method.Doctor of Philosoph

    An insight into the brain of patients with type-2 diabetes mellitus and impaired glucose tolerance using multi-modal magnetic resonance image processing

    Get PDF
    The purpose of this thesis was to investigate brain anatomy and physiology of subjects with impaired glucose tolerance (IGT - 12 subjects), type-2 diabetes (T2DM - 17 subjects) and normoglycemia (16 subjects) using multi-modal magnetic resonance imaging (MRI) at 3T. Perfusion imaging using quantitative STAR labeling of arterial regions (QUASAR) arterial spin labeling (ASL) was the core dataset. Optimization of the post-processing methodology for this sequence was performed and the outcome was used for hemodynamic analysis of the cohort. Typical perfusion-related parameters, along with novel hemodynamic features were quantified. High-resolution structural, angiographic and carotid flow scans were also acquired and processed. Functional acquisitions were repeated following a vasodilating stimulus. Differences between the groups were examined using statistical analysis and a machine-learning framework. Hemodynamic parameters differing between the groups emerged from both baseline and post-stimulus scans for T2DM and mainly from the post-stimulus scan for IGT. It was demonstrated that quantification of not-typically determined hemodynamic features could lead to optimal group-separation. Such features captured the pattern of delayed delivery of the blood to the arterial and tissue compartments of the hyperglycemic groups. Alterations in gray and white matter, cerebral vasculature and carotid blood flow were detected for the T2DM group. The IGT cohort was structurally similar to the healthy cohort but demonstrated functional similarities to T2DM. When combining all extracted MRI metrics, features driving optimal separation between different glycemic conditions emerged mainly from the QUASAR scan. The only highly discriminant non-QUASAR feature, when comparing T2DM to healthy subjects, emerged from the cerebral angiogram. In this thesis, it was demonstrated that MRI-derived features could lead to potentially optimal differentiation between normoglycemia and hyperglycemia. More importantly, it was shown that an impaired cerebral hemodynamic pattern exists in both IGT and T2DM and that the IGT group exhibits functional alterations similar to the T2DM group
    corecore