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ABSTRACT 

Cihat Eldeniz: Quantitative MR T1 Measurements With  

TOWERS: T-One With Enhanced Robustness And Speed 

(Under the direction of Weili Lin and Hongyu An) 

 

T1 mapping can be beneficial for many applications in magnetic resonance imaging. 

Such applications include sequence optimization, clinical utility and tissue segmentation. 

However, the methods in the T1 mapping literature proposed to date either take a great deal 

of time to acquire or suffer from fundamental shortcomings. In addition, if significant motion 

occurs even once early in the scan, the operator needs to rerun the sequence, which is costly 

and time-consuming. Therefore, it is desirable to design a sequence that is not only fast, but 

also reliable to yield a good-quality T1 map, even in the presence of motion. In this study, we 

propose an EPI-based sequence with an efficient slice reordering scheme introduced 

relatively recently. The proposed sequence acquires saturation recovery samples that not only 

help improve estimation accuracy, but also serve as references for estimating motion 

parameters that will be used for mitigating the effects of motion. Furthermore, the 

reconstruction parameters are updated in the middle and at the end of the scan, and are used 

to retrospectively correct for motion. Phantom and in vivo experiments show the promise of 

the method. 
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CHAPTER 1: INTRODUCTION 

Magnetic resonance imaging (MRI) is in ubiquitous use today. Although it is difficult 

to enumerate the imaging techniques currently being used in research centers and hospitals, 

all of these techniques rely upon the very basic parameters discovered in the early days of 

nuclear magnetic resonance. Therefore, the quantification of these parameters will always be 

important no matter towards which direction MR research will proceed. This study is aiming 

at quantifying one such fundamental parameter – T1, the longitudinal relaxation time.  

Having accurate measurements of T1 can serve many purposes ranging from sequence 

optimization to clinical use and from temperature measurements to tissue segmentation. 

Currently, the methods for mapping T1 throughout the whole brain stand on a balance point 

between accuracy and acquisition time. Nevertheless, to the best of our knowledge, no group 

has specifically dealt with motion. Thus, should significant motion occur during the MR 

scan, the sequence needs to be rerun from the beginning.  

In this study, we propose an EPI-based sequence with an efficient slice reordering 

scheme introduced relatively recently. When the acquisition is high-speed, the dynamic range 

of the experiment and hence the accuracy is reduced because the system is never allowed to 

get back to equilibrium. As a remedy to this problem, the proposed sequence acquires 

equilibrium-like samples. Interestingly, these samples also serve as references for estimating 

motion parameters. Moreover, the segmented structure of the proposed scheme allows for the 
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updating of the reconstruction parameters which can be used retrospectively to correct for 

motion.  

This dissertation is organized as follows: Chapter 2 covers the MR basics. Chapter 3 

reviews the existing methods in the T1 mapping literature. Chapter 4 discusses the design 

decisions and the trade-offs involved. Chapter 5 details the estimation procedure. Chapter 6 

handles motion in depth. Finally, Chapter 7 provides a summary, discusses the limitations 

and indicates future research directions. 
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CHAPTER 2: MR BASICS 

2.1 Introduction to MRI 

Nuclei have electrical charges and rotate about their own axes. This leads to the so-

called magnetic moment, a physical vector quantity whose magnitude is proportional to the 

angular moment with the proportionality constant being dependent on the type of nucleus (1). 

The direction of the magnetic moment is along the axis of rotation and follows the thumb of 

the right hand when the other four fingers follow the direction of rotation. When no external 

magnetic field exists, each individual spin in a volume of interest will have a random 

orientation. If, on the other hand, an external magnetic field, Bo, is applied, the spins will 

now align with this field; either in a parallel manner or in an anti-parallel manner. Figure 2.1 

depicts this phenomenon.  

 

Figure 2.1 – Spins before and after the application of the external magnetic field Bo. The black arrows pointing 

upward in the “AFTER” image show the parallel spins whereas those pointing downward show the anti-parallel 

spins. Mo is the resulting net magnetization. 

file:///E:/Thesis/Dissertation/,%202000%232
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The spins are going to precess about the magnetic field in a clockwise direction. That 

is, they are not only going to rotate around themselves, but they will also rotate about the 

external magnetic field. The trajectory of this second rotation is indicated with the two red 

circles in Figure 2.1 and the angular frequency of rotation is given by the Larmour equation: 

       (2.1) 

where   is the gyromagnetic ratio, which is nucleus-specific and has the units of 

radians/second/Tesla. The spins aligned parallelly will be slightly larger in number, yielding 

a net magnetization vector, Mo, along the direction of the main magnetic field. 

The spins aligned anti-parallelly with the external magnetic field, that is, the ones 

pointing downward on the right-hand side of Figure 2.1, possess higher potential energy than 

those aligned parallelly. This means that, if it is desired to have the net magnetization point in 

a different direction, say in the direction exactly opposite to the external magnetic field, 

energy should be injected into the system so that the low-energy parallel spins shall switch to 

the high-energy state and the number of the anti-parallel spins shall exceed the number of 

parallel spins. For the sake of simplicity, the rest of the discussion is going to be centered on 

the net magnetization, rather than the state of individual spins. Also, without loss of 

generality, the main magnetic field, Bo, is assumed to point in the direction of the positive z-

axis. 

The net equilibrium magnetization along z, Mo, manifests no detectable change. In 

order to make measurements, however, a changing magnetic flux is needed (2). This is 

accomplished by tipping Mo away from z by injecting energy into the system; in which case, 

the magnetization begins to rotate around z, inducing a changing flux and hence a detectable 
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signal in the receiver coil(s). In order for the magnetization to be tipped away from the z-axis 

by a desired angle, the energy injection should be performed via a radiofrequency (RF) pulse 

whose frequency is matched to the Larmour frequency. Otherwise, the tipping will not be 

effective (2). This matching condition is known as the on-resonance condition and gives 

MRI its name: magnetic resonance imaging. Figure 2.2 demonstrates what the trajectory of 

the magnetization would look like during this process in the fixed laboratory frame of 

reference. 

 

Figure 2.2 – Trajectory of the net magnetization vector as it is being tipped by 90 degrees away from the z-axis. 

Each cycle around the z-axis along the spiral trajectory is completed within one Larmour period which can be 

expressed as To = 2π/  . 

If a rotating frame of reference is chosen, the tipping process can be visualized in a 

much clearer way. Considering a frame of reference (x’,y’,z’), whose z’-axis coincides with 

the z-axis of the fixed reference frame and which rotates around the z-axis in a clockwise 

direction with the Larmour frequency, the spins visualized in this newly-defined rotating 

reference frame do not precess around the z’-axis. In addition, the RF field oscillating with 

y

z

x
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the Larmour frequency is stationary in this rotating reference frame and, thus, behaves as a 

constant magnetic field around which the net magnetization is going to rotate clockwise. 

Figure 2.3 plots the same tipping procedure as in Figure 2.2, but now in the rotating reference 

frame. The RF field along the x’-axis is usually denoted by B1. Because the precession 

frequency depends on the magnetic field strength, due to the Larmour relation in Equation 

(2.1), how long the tipping will take depends on the B1 amplitude.  

After any tipping procedure, the system of spins will try to get back to the original, 

low-energy equilibrium state where the net magnetization is Mo and points along the positive 

z-axis. This process is called relaxation. In order to analyze how relaxation occurs, we need 

to decompose the magnetization vector into two perpendicular components, as Figure 2.4 

exhibits: the longitudinal component (Mz’) and the transverse component (Mx’y’). Mz’ will 

relax back to Mo whereas Mx’y’ will relax back to zero. It is clear that, by the end of the 

tipping procedure, the two components of magnetization will become Mz’ = Mo cos(β) and 

Mx’y’ = Mo sin(β), where β is the flip angle. 
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Figure 2.3 – The tipping of the magnetization in the rotating reference frame. 

 

Figure 2.4 – Longitudinal and transverse components of magnetization. 

The relaxation processes are governed by the following first-order differential 

equations (1): 

    

  
     

      

  
 (2.2) 

  

y'

z'

x'  RF Field

file:///E:/Thesis/Dissertation/,%202000%232
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          (2.3) 

 

where T1 is called the longitudinal relaxation time and T2 is called the transverse relaxation 

time. Due to the nature of the interactions behind the relaxation phenomena, T1 and T2 are 

also called, respectively, the spin-lattice relaxation time and the spin-spin relaxation time. In 

this study, it is T1 that is to be measured. 

The solution of Equation (2.2) for an initial longitudinal magnetization value of  

Mz’ (0) = Mz’,0  = Mo cos(β) 

is given by: 

   ( )        
        (        )     [  (      ( ))      ]  (2.4) 

β = 90
o
 and β = 180

o
 yield the two special cases encountered the most in the T1 measurement 

literature. 

2.2 Image Acquisition 

In the presence of a linear gradient field vector,  ⃗, superimposed on the main 

magnetic field, a spatially varying precessional angular frequency is achieved: 

 ( ⃗)    (    ⃗  ⃗) (2.5) 

In the rotating reference frame, the contribution of the main magnetic field can be 

dropped, yielding: 
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 ( ⃗)    ⃗  ⃗ (2.6) 

This precessional angular frequency will determine the phase of the spins. If the spin 

density at  ⃗ is given by  ( ⃗), the signal collected within an infinitesimal   ⃗ is given by (1): 

  ( ⃗  )   ( ⃗)    ( ⃗)   ⃗   ( ⃗)    ( ⃗  ⃗)   ⃗ (2.7) 

which leads to the following signal equation when integrated: 

 ( )  ∫ ( ⃗)    ( ⃗  ⃗)   ⃗  ∫ ( ⃗)    ⃗⃗  ⃗  ⃗   ( ⃗⃗) 
(2.8) 

where  ⃗⃗( )     ⃗  is in units of radians/meter and hence denotes spatial angular frequency. 

Equation (2.8) clearly shows that  ( ⃗) and  ( ⃗⃗) constitute a Fourier transform pair and that 

the measured signal is in the spatial angular frequency domain, or, equivalently, in the so-

called k-space. After digitization and assuming a 2D image, the following discrete Fourier 

transform pair is obtained: 

 [     ]  ∑ ∑ [   ]   (       )

  

   

  

   

 (2.9) 

     [   ]  
 

    
∑ ∑  [     ] 

 (       )

  

    

  

    

 (2.10) 

Signal acquisition results in [     ], and an  inverse 2D Fourier transform yields  [   ]. 
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Since k is directly proportional to the time integral of the gradient waveform, one can 

use gradient lobes in any direction to achieve any desired k value to the extent that practical 

constraints permit. Figure 2.5 exhibits the gradient waveforms for the acquisition of a single 

row in the k-space table, or, in more simple and convenient terms, a single k-space line. Each 

line is acquired with an associated RF pulse. For gradient echo sequences of this type, the 

time it takes from the center of RF excitation to the center of the kx = 0 point is called echo 

time (TE). 

 

Figure 2.5 – Illustration of k-space line acquisition for a gradient echo sequence. The area under each 

waveform was indicated for convenience. The green dashed line marks the time at which kx = 0. The red 

asterisks mark the sampling times. kx takes negative values at the points to the left of the dashed line. 

Echo-planar imaging (EPI) sequences, on the other hand, acquire all lines with a 

single RF excitation and, therefore, are very fast (3). As Figure 2.6 shows, the k-space lines 

are acquired one after the other with neighboring lines being traversed in opposite directions. 

In this case, TE is defined as the time between the center of the RF pulse and the origin of the 
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whole k-space, kx = ky = 0. Short TE values are desirable for accelerating image acquisition. 

In addition, the signals measured in the transverse plane have an exponential dependence on 

TE which may be expressed as        
 
 where T2

*
 is the transverse relaxation time in the 

presence of field inhomogeneities and is smaller than T2. Therefore, short TE values are 

desirable to avoid signal loss in the vicinity of the sinus cavity and the temporal bones where 

field inhomogeneity is an issue, due to the air-tissue interfaces.  

 

Figure 2.6 – EPI sequence structure. The green dashed line marks the time at which kx = ky = 0, the 

center of k-space. 
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2.3 Partial Fourier Acquisition 

The k-space of a real image exhibits Hermitian symmetry. That is,  

S(-kx,-ky) = S*(kx,ky) 

where * denotes complex conjugation. In this respect, it is possible to perfectly reconstruct a 

real image from only half of its k-space.  However, k-space data acquired by MRI almost 

never exhibit such symmetry, due to a number of reasons, including resonance frequency 

offsets, B1-field inhomogeneity, eddy currents, and hardware group delays (4). It is, 

therefore, necessary to acquire at least slightly more than half of the k-space data in order to 

deal with these problems.  

The reconstruction algorithm commonly used is an iterative one where high-

frequency content is used for estimating magnitude and low-frequency content is used for 

estimating phase (4). The missing portion of k-space is then filled with these new estimates 

and the iterations continue until a user-specified stopping criterion is satisfied. 

In an EPI sequence, partial Fourier acquisition in the ky-direction decreases the 

number of lines prior to the central line and, hence, decreases TE, the time to reach the k-

space center, at the expense of the reduction in the amount of data being acquired, which 

leads to lower SNR in the resulting MR images.  

2.4 Parallel Imaging 

The main idea underlying data collection in k-space is spatial encoding, which is 

performed with the use of imaging gradients. However, it is also possible to accomplish part 
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of the spatial encoding through the use of multiple coils around the volume of interest. This 

is because each coil is more sensitive to the regions closer to it and, therefore, introduces its 

own spatial encoding. When the collection of all coils is considered, this makes it possible to 

skip some of the k-space lines, leading to an acceleration in data acquisition. 

The field of MR imaging techniques that make use of this additional spatial encoding 

provided by different coils is referred to as parallel MR imaging (pMRI). Many pMRI 

methods have been proposed to date (4). pMRI can be implemented in the image domain, in 

the frequency domain or in both domains. Today, two methods are being widely used: 

Sensitivity encoding (SENSE) (5), an image domain method, and Generalized autocalibrating 

partially parallel acquisitions (GRAPPA) (6), a frequency domain method. Since GRAPPA is 

being utilized in this study, only this method is going to be briefly explained. 

GRAPPA interpolates the missing lines in the k-space of each coil by linearly 

weighting the non-missing lines. However, the key point is that a missing line in a given coil 

is reconstructed not only by weighting the neighboring lines in the same coil, but also by 

weighting the same set of non-missing lines in the other coils as Figure 2.7 illustrates. The 

weighted sum of Lines a7, a9, a11, a13, b7, b9, ..., d11, d13 are being used to 

reconstruct a single line, namely Line a10 in Coil 1. A similar weighted sum operation is 

going to be performed for every single missing line in every single coil. However, in order to 

perform this operation, the weights need to be determined. Figure 2.8 demonstrates how this 

can be achieved. In this so-called calibration scan, the outer portion of k-space is skipped 

and the central portion is acquired. The central portion is preferred because the SNR in this 

portion is high and this helps more accurately estimate the weights. Line a10 and all other 
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lines in the central portion of all coils (shown in red in Figure 2.8) that are normally skipped 

are acquired during this calibration scan. This way, the reconstruction coefficients can be 

learned via an inverse problem and applied later during the actual imaging scans. 

 

Figure 2.7 – Illustration of GRAPPA reconstruction. 

By enabling the skipping of many k-space lines, the use of GRAPPA is going to 

decrease the number of lines to be acquired until the k-space center is reached and, thus, 

reduce TE. As an added benefit, the geometric distortion inherent to EPI sequences, due to 

the very low bandwidth along the phase encode direction, will also be alleviated with the 
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increased sampling bandwidth in the same direction. However, the SNR will decrease due to 

the reduction in the amount of data being acquired. 

 

Figure 2.8 – Illustration of GRAPPA calibration 
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CHAPTER 3: BACKGROUND AND LITERATURE REVIEW 

3.1 Underlying Physical Principles 

Longitudinal relaxation is one of the fundamental processes in MRI (1,2) and can be 

explained as follows. The strong magnetic field along the longitudinal axis of an MR 

machine causes MR-active nuclei, such as hydrogen nuclei, to become aligned and yield a 

net amount of magnetization in the same direction as the magnetic field. However, the 

receiver coils are sensitive only to the magnetization in the transverse direction.  Therefore, a 

measurement can only be performed by tipping the net magnetization so as to have a 

transverse component. This can be achieved with the use of an excitatory RF pulse tuned to 

the Larmour frequency, whose value is proportional to the field strength. The resulting high-

energy state is unstable. In order to reestablish stability, the energy injected into the system 

of protons, via the RF pulse, is given away to the surrounding molecules, the lattice. In other 

words, the spin system recovers back to its original equilibrium state through an energetic 

interaction with the surroundings. This recovery process is called longitudinal relaxation, 

spin-lattice relaxation, or T1 relaxation, and is governed by the following first-order 

differential equation:  

    

  
  

     

  
 

(3.1) 
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where Mo is the net equilibrium magnetization, Mz is the magnetization along the longitudinal 

axis, and T1 is the longitudinal relaxation time.  

The value of T1 depends on many factors, such as macromolecule concentration, 

water content, water binding, paramagnetic substance concentration, temperature, and the 

field strength of the MR machine (7,8). The larger the T1 value, the longer it takes the net 

magnetization to get back to equilibrium. 

3.2 Applications of T1 Measurement 

T1 is a very fundamental parameter in MR and the measurement of T1 is, thus, vital 

for many MR applications. One such application is the measurement of the blood-brain 

barrier (BBB) permeability (7,9-11). Healthy BBB does not allow for the passage of the 

contrast agent to the intercellular space, but, if the BBB is broken, the contrast agent 

accumulates inside the tissue, causing a decrease in the apparent T1 value. In order to 

estimate the BBB leakage, the T1 map of the volume of interest is computed first. Later, a T1-

shortening contrast agent is injected into the subject and the effect on the signal is screened 

periodically. The permeability constant can then be obtained through a model equation that 

involves the baseline T1 value. The accuracy of the permeability constant estimate, therefore, 

strongly depends on the accuracy of the precontrast T1 map.   

T1 maps have also been used for diagnosis or to gauge the effectiveness of treatment 

for some diseases. Multiple sclerosis, intracranial tumors, epilepsy, stroke, dementia, 

schizophrenia, depression, Parkinson’s disease, and acquired immunodeficiency syndrome 

(AIDS) are among such diseases (7). Because of the inconsistency regarding the T1 values 

reported by different clinical centers and because of the fact that significant overlap exists 
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between normal and diseased tissue T1 values, healthy vs. diseased tissue classification based 

on a single T1 map is not reliable (8,12). However, a longitudinal study of the T1 maps for a 

given patient imaged at a certain clinical center should provide information concerning the 

status of the disease.  

Other applications of T1 mapping include temperature mapping (13-15), tissue 

segmentation (16,17), and suppression of signals coming from tissues that are not of interest 

(18,19).  

3.3 Inversion Recovery: The Gold Standard 

Numerous T1 mapping methods have been proposed in the literature. Among these 

methods, the inversion recovery (IR) sequence (20) remains the gold standard, due to the fact 

that it provides the highest possible dynamic temporal dynamic range for T1 recovery. In this 

sequence, the longitudinal magnetization is inverted by an RF pulse and, after a certain time 

period called the inversion time (TI), it is sampled by a second RF pulse that tips the 

magnetization to the transverse magnetization. Assuming that the first RF pulse yields 

perfect inversion, the differential equation given in Equation (3.1) can be solved for Mz with 

the initial condition Mz(0) = -Mo. Sampling Mz at t=TI yields: 

   (  )    (    
 
  
  ) (3.2) 

The experiment is repeated for a set of TI values and the system of spins is set idle for 

at least five times the maximum T1 in the system after each measurement so that the 

equilibrium is practically restored by the beginning of the next measurement. The T1 value is 

then obtained through a least-squares fit to Equation (3.2). Although this scheme allows for a 

fairly good sampling of the recovery curve, the long acquisition time limits its use in vivo. 
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The fast inversion recovery (FIR) is a modified version of this gold standard where the 

repetition time (TR) of the sequence is kept much shorter (21). This version is certainly 

faster; however, high signal-to-noise ratio (SNR) requirements imposed by the desire to 

collect good-quality samples, places a lower limit on how short the TR can be made because 

the net magnetization cannot recover enough to yield high signal if the TR is too small, 

which in return limits the in-vivo use of this version as well. 

3.4 Progressive Saturation 

The progressive saturation (PS) sequence (22) is a faster alternative where a comb of 

nullifying, rather than inverting, RF pulses is applied. The recovery begins with zero net 

magnetization each time and the measurement is performed after a steady state is established 

over the course a few repetitions. The sequence can be run with different TR values, yielding 

the required data for fitting a curve over the TR space. This scheme is fast, however, TR 

cannot be very short in a multi-slice acquisition, making it difficult to collect samples from 

the early phase of the recovery curve and, hence, imposing a lower limit on the minimum T1 

that can be measured. In addition, the dynamic range of the PS sequence is much lower than 

that of the IR sequence, making it more prone to noise. 

The variable flip angle (VFA) method (23) is a variation of the PS sequence where 

the experiment is repeated with a number of various flip angles rather than various repetition 

times. Although a set of images can be collected in only a few minutes with the use of a short 

TR value, this sequence is very sensitive to B1 field inhomogeneity. 
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3.5 Two-point Methods 

Two-point methods have also been proposed (24-26). Two PS images, two IR 

images, or one PS and one IR image can be divided into one another and a look up table can 

then be used to compute the T1 maps. The PS/IR pair has been shown to be the most optimal 

choice (27,28). Although these two-point methods require the acquisition of two images 

only, and, under certain conditions, can yield T1 maps that are comparable in quality to those 

obtained by multi-point FIR sequences, these methods can be very sensitive to systematic 

errors such as inversion profile imperfections (7,29,30). 

Stimulated echo (STE) imaging (31,32) is yet another two-point method. Being a 

single-shot method, STE can yield two images in a single experiment. The fundamental 

building block of an STE sequence is an additional RF pulse that is used to store half of the 

magnetization along the longitudinal axis for later use. The STE method is fast, but suffers 

from poor signal-to-noise ratio (SNR) since only half of the magnetization leads to the 

stimulated echo. 

3.6 Look-Locker 

Look-Locker (LL) sequences sample the longitudinal magnetization at various stages 

of T1 recovery via the use of low flip angles (33-39). However, LL sequences suffer from flip 

angle errors. Furthermore, the images collected with the use of low flip angles are low-SNR 

in nature and averaging is needed to establish a clinically acceptable level of SNR, which 

negate the advantage of fast acquisition. It is also worth noting that low flip angles reduce the 

dynamic range of the experiment, making the data more prone to noise. 
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3.7 Slice Reordering Methods 

Another class of sequences makes use of slice reordering (40-42). The slices of 

interest are inverted in groups and then sampled in an order that is circularly-shifted from 

repetition to repetition.  This way, all slices are given the chance to be sampled at different 

phases of T1 recovery. During postprocessing, it is important to take into account the fact that 

the slices will never fully T1-recover, especially if the TR is short.  
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CHAPTER 4: DESIGN AND DEVELOPMENT 

4.1 Design Objective 

T1 mapping is basically a curve-fitting problem. The relaxation process is sampled at 

various stages and the T1 value is then obtained through a fit to the model equation. 

Therefore, it is almost always beneficial to collect more samples to improve the quality of the 

estimates. However, time is a significant constraint.  

In this study, the acquisition objective is to develop a sequence that can collect a high 

number of samples in only a few minutes while making sure that the samples being collected 

are of good quality.  

4.2 Data Collection Scheme 

Single-shot methods are well-suited for high-speed acquisition. These methods need 

only one RF excitation to collect all of the k-space data needed to reconstruct a single slice. 

Although spin-echo-based and gradient-echo-based sequences exist, the fastest possible 

option is the echo planar imaging, or EPI, and was described in Chapter 2.  

In a conventional repeated MR acquisition, the order of slices being acquired is kept 

fixed across all repetitions of the sequence. However, changing the order of slices from 

repetition to repetition offers a unique opportunity to accelerate acquisition. The T1 mapping 

methods proposed in (40-42) are good examples for this kind of approach. Figure 4.1 
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illustrates this family of acquisitions. In this scheme, the order of slices is circularly shifted 

from repetition to repetition so that different slices have a chance to be sampled at different 

temporal locations with respect to the non-slice-selective inversion pulse. Defining the 

temporal distance of a given slice to the inversion pulse as the effective inversion time (TI), 

this scheme makes it possible for each slice to be sampled at all possible effective TI’s if the 

slices are circularly shifted by 1, as in Figure 4.1.  

 

Figure 4.1 – Slice reordering scheme for 4 slices only (for the sake of simplicity). INV indicates the 

non-slice-selective inversion pulse applied at the beginning of every repetition that inverts the magnetization of 

all slices. This scheme allows each of the 4 slices to be sampled at each of the 4 possible effective inversion 

times (TI). If the repetition time (TR) is short, it is clear that this acquisition will take a very short time. 

In our acquisition scheme, which typically involves 60 slices, we are deploying the 

same principle. Figure 4.2 shows the slice reordering scheme in this case. At each repetition, 

the slices are circularly shifted by 4, which is, in fact, a large amount of shift that limits the 

set of possible effective TI’s to 15 per slice, but the complete acquisition of the volume is 
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performed twice with a shift of 2 slices in between. This way, 30 distinct effective TI’s exist 

for all slices. 

 

Figure 4.2 – Basic slice reordering scheme. Slices are circularly shifted by 4 within each section while 

a circular shift of 2 takes place while transitioning from Section 1 to Section 2. 

A rapid sequence requires a short repetition time. It is clear that a short repetition time 

imposes a natural limit on how large the maximum effective TI can be, and this constraint 

decreases the dynamic range of the samples collected, making the estimation more prone to 

noise. In this respect, in addition to the inversion recovery (IR) repetitions depicted in Figure 

4.2 that include an inversion pulse, it is beneficial to place at the beginning of each section 
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one saturation recovery (SR) measurement that does not include an inversion pulse. Figure 

4.3 exhibits that a higher signal intensity value is obtained by SR.  

 

Figure 4.3 – Inversion and saturation recovery processes as a function of time for T1 = 1650 ms. Note 

the intensity difference between the IR and the SR samples at the same time point, namely 4000 ms, that makes 

the SR sample valuable for estimation 

In Chapter 5, the experimental results will show that these SR samples alleviate the 

underestimation problem. However, the SR samples are going to find their actual use in 

dealing with motion, as to be described in Chapter 6, where it will be shown that the addition 

of the third SR repetition is very useful for artifact reduction purposes. Figure 4.4 

demonstrates the final sequence diagram after incorporating the SR repetitions. 
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Figure 4.4 – Overall acquisition scheme 

4.3 Design trade-offs 

Although EPI offers fast acquisition, it suffers from a number of drawbacks. Firstly, 

the sampling bandwidth along the phase encoding (PE) direction is low, leading to geometric 

distortion in that direction (4). Secondly, the T2
*
 relaxation taking place throughout the data 

acquisition window causes blurring. Finally, the relatively long echo times (TE) associated 

with EPI sequences cause undesired T2
*
-weighting in the images.  

The parallel imaging method GRAPPA, mentioned in Chapter 2, is a remedy for all 

of these issues. Skipping lines in the PE direction doubles the bandwidth along that direction, 

lessening geometric distortion. Moreover, with the number of k-space lines being acquired 

being reduced to one half, the acquisition window is also halved, which reduces T2
*
 blurring. 

Lastly, the time it takes to get to the center of the k-space is significantly shortened, 

decreasing TE, and hence the T2
*
-weighting in the images. Although GRAPPA brings in 

many advantages, the drawback is the reduced amount of data, decreasing SNR. 

Furthermore, GRAPPA relies on the spatial encoding capabilities of the multi-channel coils. 

For a reduction factor of R = 2, the noise enhancement should be quite uniform, as to be 
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demonstrated in Chapter 5. However, reduction factors larger than 2 may cause localized 

noise enhancement patterns, depending on the design of the coil. In this study, R is set to 2. 

In addition to GRAPPA, the sequence is also employing partial Fourier acquisition. 

As described in Chapter 2, Hermitian symmetry allows reduction of the amount of data by 

skipping some of the lines towards the edges of k-space.  This shortens the acquisition 

window, and hence TE, alleviating both the T2
*
 blurring and the T2

*
-weighting; however, this 

does not help with the low bandwidth along the PE direction since the spacing between the 

adjacent lines remains the same. The partial Fourier factor used in this study is 3/4. 

The TE of the sequence can be further reduced by increasing the bandwidth along the 

readout direction. This is because each k-space line will be acquired faster. Nevertheless, the 

disadvantage is that, since the spectral window is widened, a higher amount of noise is 

spectrally welcomed into the acquisition. Despite this fact, doubling the bandwidth does not 

halve the SNR. That is, the effect of increasing the bandwidth does not very substantially 

decrease the SNR. In addition, a high number of samples are going to be collected by the 

sequence, introducing an intrinsic averaging effect during estimation. In this respect, a high 

bandwidth value yielding the shortest possible TE is preferred in this study.    

4.4 More on the usefulness of SR repetitions 

The SR repetitions shown in Figure 4.4 serves two very useful purposes in terms of 

sequence design – providing high-SNR phase correction scans for low-SNR or negated 

slices, and providing high-SNR GRAPPA calibration data. These two issues will be detailed 

next. 
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In EPI, the k-space lines are acquired in alternating directions. That is, if one line is 

acquired in the negative-to-positive direction, to form one of the so-called odd echoes, the 

next line is acquired in the positive-to-negative direction, to form one of the so-called even 

echoes. Before applying an inverse Fourier transform operation, the even echoes have to be 

flipped. This leads to phase inconsistencies caused by factors such as eddy currents, Bo-field 

inhomogeneity, group delays in circuitry, and concomitant magnetic fields (4).  

The sequence in this study involves an inversion pulse, meaning that the spins in the 

volume of interest will experience inversion recovery and be sampled at different phases of 

this recovery process. The data used in this study was collected on a Siemens Tim Trio 3T 

MR scanner (Siemens Healthcare, Erlangen, Germany). By default, a number of phase 

correction scans are acquired before each slice and these scans are used to infer the phase 

correction to be applied to the true imaging scans. As Figure 4.5 depicts, when a slice goes 

through the negative portion of the inversion recovery process, that is, when the longitudinal 

magnetization vectors point in the negative z direction, the phase correction algorithm fails.  

In order to overcome this surprising problem, an in-house reconstruction module with 

memory is developed and integrated into the reconstruction chain. As spins go through 

various portions of the recovery process, the SNR can become very low, especially while 

passing through the zero-crossing point. The custom module developed for this study simply 

stores the phase correction scans coming with the high-signal SR repetitions and, for any 

other repetition, determines whether or not the phase correction scans need to be negated. 

The module then sends the stored phase correction scans accordingly. As Figure 4.6 

indicates, this solution works very well.  
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Figure 4.5 – EPI phase correction fails when some tissues are within the negative portion of the inversion 

recovery process. 

 

Figure 4.6 – The in-house reconstruction module successfully overcomes the problem shown in Figure 4.5.  
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In addition to the good-quality phase correction scans, SR repetitions are also useful 

for obtaining good-quality GRAPPA calibration data. By default, the GRAPPA calibration 

repetitions possess the same magnetization preparation scheme as the repetitions to which 

they are attached. For example, if the imaging repetition has an inversion pulse, so does the 

GRAPPA calibration repetition prepended to it. Since the SR repetitions do not have any 

inversion pulses, the GRAPPA calibrations attached to them do not have them either. 

Because the GRAPPA calibration scans are performed at the beginning, it is a prudent 

selection to place the SR repetitions at the beginning of each segment of the sequence. 

Otherwise, if an IR repetition is used, the GRAPPA calibration repetition will also have an 

inversion pulse and, depending on the temporal order of acquisition, some slices may very 

well go through the zero-crossing point during calibration. The end result is that the 

GRAPPA calibration data acquired for such slices will be very low-SNR and the GRAPPA 

reconstruction for that slice will be problematic. Figure 4.7 illustrates this problem. An 

inversion pulse was intentionally placed at the GRAPPA calibration repetition. It can be seen 

that some slices show severe ghosting. The reason why neighboring slices do not manifest 

this problem is that the even slices are acquired first and the odd slices are acquired later. 

Figure 4.8 closely represents the GRAPPA calibration repetition, and hence explains why 

ghosting takes place. The slices with failing GRAPPA reconstruction in Figure 4.7 show 

moderate to low SNR values in Figure 4.8, implying that the SNR of the GRAPPA 

calibration data will be low for those slices. However, as Figure 4.9 demonstrates, when the 

inversion pulse is removed from the GRAPPA calibration repetition, the artifacts disappear. 
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Figure 4.7 – SR repetition images (Slices 1-24) when an inversion pulse is placed before the GRAPPA 

calibration scan. The red arrows indicate the artifacts due to GRAPPA failure caused by poor calibration data. 
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Figure 4.8 – The IR repetition right after the first SR repetition. This repetition closely represents the situation 

in the GRAPPA calibration repetition. The low-signal slices experience GRAPPA failure as shown in Figure 

4.7, with the impact being stronger for the slices with even lower intensities 
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Figure 4.9 – SR repetition images when no inversion pulse is placed before the GRAPPA calibration scan. 

GRAPPA calibration data is now high-SNR for all slices and the issue in Figure 4.8 is resolved. 
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CHAPTER 5: T1 MAPPING 

5.1 Weighted least-squares (WLS) 

The longitudinal recovery process is governed by the following first-order differential 

equation (1):  

    

  
  

     

  
 

(5.1) 

where Mo is the net equilibrium magnetization, Mz is the magnetization along the longitudinal 

axis at any given time, and T1 is the longitudinal relaxation time. The solution of Equation 

(5.1) for an initial longitudinal magnetization value of Mz’ (0) = Mz’,0 is given by: 

   ( )        
        (        )  (5.2) 

The first thing to realize is that, when a slice is sampled, the longitudinal 

magnetization is nullified for all spins and they will start to recover from Mz’,0 = 0, which 

implies that the governing equation from the time of being sampled to the time of being 

sampled again or being inverted by the inversion pulse becomes: 

   ( )    (        )  (5.3) 

Remembering that no inversion pulses are played during the GRAPPA calibration 

repetitions or the SR repetitions, a given slice has a whole repetition time (TR) to relax 

before being sampled at these repetitions. Therefore, we are able to express the 

magnetization sampled at these repetitions as:  
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   (  )    (         )  (5.4) 

For the IR repetitions, however, the issue is a bit more complicated. The time the 

spins spend relaxing in the preceding repetition and the inversion pulse being played in the 

current repetition are the two critical points. The former determines the magnitude of the 

magnetization before it hits the inversion pulse, and the latter negates it and yields an initial 

condition for the recovery process. More formally, right after the application of the inversion 

pulse, the longitudinal relaxation process in an IR repetition is, again, governed by Equation 

(5.2), but with the following initial condition:  

         (    (         )   )  (5.5) 

where (TR-TIprev) is the time the spins spend relaxing between the time of being sampled in 

the preceding repetition and the time of the application of the inversion pulse in the current 

repetition. The minus sign is due to the application of the inversion pulse. The spins will now 

relax with this initial magnetization until the slice is sampled, in which case, the longitudinal 

magnetization becomes: 

   (      )     (    (         )   )              (             )

   (              )     
 (                )    

(5.6) 

The longitudinal magnetization at each repetition can now be calculated from 

Equations (5.4) and (5.6).  

The GRAPPA reconstruction works by obtaining individual coil images and then 

combining them through a sum-of-squares reconstruction. From this point on, the notation 

used in (43) will be adopted with some modifications.     
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For a receiver system with K coils, the signal measured at a given voxel in the 

individual image of coil k at any given time point can be expressed as: 

             (           )      (5.7) 

where Ak is the noise-free signal from coil k, Ck is the coil sensitivity,  ( ) performs the 

operations in Equations (5.4) or (5.6) and outputs Mz’, Mo is the net equilibrium 

magnetization, T1 is the longitudinal relaxation time, TI is the vector of inversion times, or, 

put differently, the vector of sampling times at each repetition, TR is the repetition time of 

the sequence and, finally, nk is the noise term, the distribution of which can be shown to be 

Gaussian (43). It should be noted that, although  ( ) takes as input the whole TI vector, it 

uses only two of its elements at any given inversion recovery repetition; the inversion time 

for the previous repetition and that for the current repetition, because the magnetization 

depends only on these two inversion times as can be seen in Equation (5.6).  

The sum-of-squares reconstruction yields: 

     √∑  
 

 

   

 (5.8) 

In (43), the authors prefer to give the statistical properties of     
  rather than     . It is 

shown that     
  approximately follows a non-central χ

2
 distribution with the following mean 

and standard deviation: 

 {    
 }      

     ( ) (5.9) 

   {    
 }         ‖ ‖ 

  (5.10) 
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where    [         ]
 ,     

      and C is the K × K covariance matrix computed 

between the coils for the pixel of interest. Mo and T1 would then be obtained by the 

minimization of the following weighted least-squares cost function: 

  

     ∑
(      

        
     ( ))

 

   
      ‖ ‖ 

 

 

   

 (5.11) 

where N is the number of data points to be used during curve-fitting that were acquired at 

various phases of the recovery process and the subscript i signifies the quantities obtained at 

time point i. Please note that, in this equation,       
  and    are the noise-free measurements 

obtained by the model equation given in Equation (5.7). The fitting process begins by 

calculating these noise-free quantities from the initial values of the parameters. The 

parameter estimates will then be refined by minimizing      until convergence is achieved.  

5.2 Ordinary least-squares (OLS) 

The cost function in Equation (5.11) does not look cumbersome, but it does require a 

large amount of additional data. In order to estimate the coil sensitivities used in Equation 

(5.7), at least one set of uncombined coil images are needed. Moreover, reliable estimation of 

the covariance matrix C will be possible only if many more sets of uncombined coil images 

are collected. For a 60-slice acquisition with 32 coils, collecting 100 sets of uncombined coil 

images amounts to 60x32x100 = 192,000 images! Considering the huge memory 

requirements and the difficulty of data transfer, this is not feasible at all, especially in a 

clinical setting.  



 

38 
 

It is also worth noting that the correlation between the receiver coils violates the 

assumption of having a non-central χ
2
 distribution with K degrees of freedom, K being the 

number of coils. The degrees of freedom thus need to be reduced to arrive at a more accurate 

model (43). Furthermore, the assumption gets even worse for SNR>2. Looking at the 

Gaussian approximation to the non-central χ
2
 distribution in (43), Gaussianity can safely be 

assumed for SNR>3 and, when Gaussianity is in place, ordinary least-squares can provide a 

more straight-forward solution. The question would then be “Does in vivo data exhibit such 

high SNR?”. The best answer would come from the data itself. Without loss of generality, 

let us focus on the putamen. Figure 5.1 depicts a middle slice for the first 6 repetitions of the 

sequence. The intensity loss in the putamen can clearly be observed in the 3
rd

 repetition. 

 

Figure 5.1 – Various phases of inversion recovery for a middle slice which clearly shows the putamen going 

through intensity variations. 

In order to quantitatively assess the average SNR in the putamen, the so-called 

“difference method” is deployed (44-46) because it has been shown to yield the best result in 

reference to the gold-standard method of acquiring the images multiple times (47), is much 
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simpler to implement, and is also more preferable in vivo since the long acquisition times 

associated with the gold-standard method increase the risk of motion. In this method, an 

image is acquired twice using identical parameters. After computing the sum of and the 

difference between the two images, the mean value and the standard deviation is computed in 

a region of interest (ROI). Dividing the mean value by the standard deviation and also by a 

factor of √  yields the average SNR in that ROI. 

Figure 5.2 plots the average SNR in the putamen area as a function of sequence 

repetitions so that the SNR in the putamen can be observed at various stages of inversion 

recovery. It can be readily observed that the SNR never drops below 3. Similar results were 

obtained for ROIs drawn in the white matter and the cortical gray matter. Thus, the use of 

ordinary least squares is justified.  

 

Figure 5.2 – Average SNR in the putamen as a function of sequence repetitions. The red band shows the SNR 

range for which the Gaussianity assumption is invalid. 
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The cost function for the ordinary least-squares problem would simply be  

     ∑(             )
 

 

   

 (5.12) 

 

5.3 Comparison of WLS and OLS 

 A single-slice experiment was run where, in addition to images acquired by the 

proposed method, 100 sets of 32 uncombined images were collected to get a reliable 

covariance matrix estimate. Equations (5.11) and (5.12) were then used to get the T1 

estimates. All computations were performed on Matlab (Mathworks, Natick, MA). 

Figure 5.3 exhibits the means and standard deviations of the T1 values in an ROI 

drawn onto the central region of the phantom whereas Figure 5.4 illustrates the associated 

histograms.  

 

Figure 5.3 – Average T1 values as measured by WLS and OLS with error bars. Because the standard deviations 

are small, the error bars are barely visible. 
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Figure 5.4 – Histograms of T1 values as measured by WLS and OLS. The distribution of the WLS values shows 

a very slight shift towards right. 

 

It can be seen that the WLS method yields slightly larger T1 values. The difference is 

within the noise floor. It is worth noting that, for a sample with a much larger T1, the 

difference would be larger. However, it is expected that this difference will still be within the 

variation in the estimates since these variations are generally amplified with increasing T1. 

Careful experimenters are, nevertheless, encouraged to confirm this guess before assuming 

that it indeed is the case.   

Considering the many disadvantages of the WLS scheme, the OLS scheme will be the 

method of choice for the rest of the study. 
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5.4 Comparison with the gold standard in phantom 

 Four different concentrations of Ni(II)SO4.6H2O were prepared to mimic the T1 

values encountered in the human brain. The parameters for the gold standard inversion 

recovery (IR) sequence were as follows: Matrix size = 128x128, FOV = 200mm x 200mm, 

Slice thickness = 2mm, TE = 19 ms, Bandwidth = 1562 Hz/pixel, GRAPPA R = 2, Number 

of calibration lines = 30, Partial Fourier Factor = 6/8. (The parameters up to this point were 

the same for the proposed method.) TR = 20000 ms, Number of slices = 1, # TI values = 43 

with an additional, almost fully relaxed Mo scan at the very beginning, Minimum TI value = 

25 ms, Maximum TI value = 14525 ms. In all phantoms, the last sample with TI = 9925 ms 

showed ghosting artifacts for unknown reasons, and hence was discarded. The total 

acquisition time was about 22 minutes. 

As for the proposed method: TR = 4000 ms, Number of slices = 60, # repetitions = 33 

that includes three saturation recovery (SR) samples – one at the beginning, one in the middle 

and one at the very end, Slices were shifted by 4, Slice 30 was matched with the single-slice 

gold standard acquisition above. The total acquisition time was 2 minutes and 32 seconds. 

At this point, it is useful to recall the sequence structure given in Chapter 4. Figure 5.5 details 

the proposed sequence. 

The data acquired with the proposed method was post-processed in two ways: 1) 

including, 2) excluding the SR repetitions (that is, the repetitions that do not involve an 

inversion pulse).  This way, it can be confirmed whether or not the SR samples indeed help 

alleviate underestimation by bringing in high-amplitude samples. 
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Figure 5.5 – Structure of the proposed sequence   

Figure 5.6 shows the means and the standard deviations for the gold standard IR 

method along with the two post-processing schemes for the proposed method. It can be seen 

that, regardless of which post-processing scheme is used, the T1 estimates are quite close to 

those obtained by the IR method, albeit with some underestimation. The inclusion of the SR 

samples, however, does help with the underestimation issue, especially for the long-T1 

species. This has been confirmed in each of the four phantoms with paired t-tests which 

yielded p-values that are practically zero. Figure 5.7, on the other hand, exhibits the Bland-

Altman plot, which quantifies the percent estimation errors as a function of T1 values. The 

proposed method is able to estimate T1 with less than 5% error. 
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Figure 5.6 – Means and standard deviations for the gold standard IR method and the proposed method 

 

Figure 5.7 – Bland-Altman plot 
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5.5 Comparison with the gold standard in vivo 

The acquisition parameters were exactly the same as those used in the phantom 

experiment. However, it is worth noting that, while acquiring the data for the gold-standard 

method, it was not easy for the subjects to keep still for the whole length of the sequence, 

which is more than 20 minutes. Fortunately, the motion was mostly in-plane and was 

corrected by Matlab’s imregister function. The registration was selected to be rigid and the 

cost was chosen to be mutual information since the relative intensities would vary by a great 

deal during the recovery process. 

Data was collected from four subjects with ages between 25 and 36 years. Written 

informed consent was obtained from all participants.  

Figure 5.8 qualitatively compares the T1 values obtained by the proposed method 

with those obtained by the gold standard IR method while Figure 5.9 yields a more 

quantitative comparison. Although the errors were within 5% in phantom, the 

underestimation in vivo is much larger. The slice cross-talk, that is, the disturbance of the 

neighboring slices while exciting the intended slice, has some contribution to the 

underestimation; however, the magnitude of this effect should not be large. Otherwise, the 

phantom results would also show that. As also pointed out nicely in (42), the actual effect 

should be coming from something that does not exist in the phantom: perfusion. Blood flow 

and the exchange between blood and brain water cause a decrease in the apparent T1 value 

(48). Nevertheless, as Figure 5.10 illustrates, the values output by the two methods are almost 

perfectly correlated. 
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Figure 5.8 – Comparison of the T1 values obtained by the proposed method (right column) with those obtained 

by the gold standard method (left column). The values are in milliseconds. 
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Figure 5.9 – Comparison of the T1 values obtained by the proposed method with those obtained by the gold 

standard method across four subjects and in four anatomical regions 

 

 

Figure 5.10 – Correlation between the T1 values obtained by the proposed method with those obtained by the 

gold standard method across four subjects and in four anatomical regions 
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Figure 5.11 shows what happens when the repetition time of the sequence is 

lengthened. In this case, the perfusion effects are alleviated and the underestimation is much 

less pronounced. However, this long-TR version of the sequence takes about 12.5 minutes, as 

opposed to 2.5 minutes. This increases the risk of motion. Furthermore, if, while the slices 

are being shifted 4 by 4, a slice can never get to the slot closest to the inversion pulse, the 

smallest TI value it can experience in any of the two segments is about 350 ms for this long-

TR version. Considering the fact that the early phase of the recovery is faster, this amounts to 

losing a sample that is very valuable for curve fitting purposes. This long-TR effect is 

noticeable when one visually goes through all of the slices in the volume. The slices that 

cannot get temporally very close to the inversion pulse exhibit some underestimation 

compared to the ones that can. 

 

Figure 5.11 – Demonstration of the effect of lengthening the repetition time of the sequence in one of the 

subjects  
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One could ask if underestimation is an issue only for TR values below a certain 

threshold, or if underestimation is always an issue no matter what the TR is and becomes 

more severe with decreasing values of TR. The answer is perhaps: a combination of both. 

When the TR is above a certain threshold, the transient perfusion effects mentioned above 

may have enough time to completely disappear. However, if the amplitude of the samples 

being collected decreases gradually as the TR of the experiment decreases (which makes full 

relaxation unachievable), the dynamic range of the experiment decreases and this leads to 

estimation errors, typically underestimation.  

In (42), the authors expressed the true longitudinal relaxation rate, which is simply 

the reciprocal of the longitudinal relaxation time T1, as a linear function of the apparent 

relaxation rate. This linear relationship was then used to “rectify” the underestimated T1 

values. This approach was not adopted in this study. 

5.6 Reproducibility 

In order to test the reproducibility of the mapping procedure, three of the four 

subjects mentioned above were scanned 4 times with identical scan parameters. Figure 5.12 

depicts the coefficients of variation (CVs) calculated as the standard deviations divided by 

the means across all 4 scans. It can be seen that the CVs are all below 3%, which indicates 

the reliability of method. 
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Figure 5.12 – Coefficients of variation across four identical scans  
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CHAPTER 6: MOTION 

6.1 Effects of motion 

Motion damages the proposed acquisition scheme mainly in the following three ways: 

1) The sequence is using single-shot EPI (3), which is capable of, with the help of some 

acceleration techniques, acquiring the data sufficient to reconstruct a single slice 

within less than 100 ms. Should significant motion occur, even during this short 

interval, k-space inconsistencies, and hence image artifacts are inevitable. However, 

due to the speed of the EPI technique, this first problem is seldom an issue. 

2) The proposed scheme is making use of GRAPPA (6), a parallel imaging method that 

makes use of the spatial encoding capability introduced by multiple surface coils to 

fill in missing k-space lines that have been skipped intentionally to accelerate the 

acquisition. These missing lines are calculated from the acquired ones through a 

linear operator whose coefficients are computed using the calibration data acquired 

typically at the beginning of the acquisition. Motion at any time simply invalidates 

the reconstruction coefficients and the calibration scan has to be repeated. Otherwise, 

the newly filled-in k-space lines will be inaccurate, leading to ghosting in the 

resulting images. Past experience shows that this second problem is substantial if the 

motion is large in magnitude. For small motion, GRAPPA does not fail very easily, 

especially when the number of coil elements is sufficiently high. In what follows, the 

robustness of the proposed sequence is going to be tested under harsh motion 

scenarios where GRAPPA failure may occur. 

3) Each slice acquired by the proposed sequence goes through a different magnetization 

pathway. Therefore, if the slice locations change as a result of motion, the 

magnetization pathway will also be altered and this needs to be taken into account 

during post-processing. This third problem is the most significant one, because even a 

small shift in the slice-select direction causes a substantial change in the 

magnetization pathway. Furthermore, if motion occurs in one repetition, at least one 

more sequence repetition is required for the magnetization to completely settle down 

into one of the predefined pathways. 
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6.2 Redoing the GRAPPA calibration 

In a typical sequence that makes use of the GRAPPA technique, the calibration scans 

are acquired only at the very beginning and the update of the reconstruction coefficients is 

thus almost never performed within the sequence. It is a fortunate coincidence that, at the 

beginning of 2012, Dr. Jürgen Finsterbusch of Institut für Systemische Neurowissenschaften 

Universitätsklinikum Hamburg-Eppendorf provided a nice solution for this problem. Dr. 

Finsterbusch’s solution is able to place the GRAPPA calibration scans at any given temporal 

location inside the sequence. It stores the latest set of calibration data and sends it through the 

reconstruction chain so that each repetition receives the most up-to-date set of calibration 

data.  

6.3 Importance of the retrospective approach 

The solution mentioned in the previous section is very elegant. However, the newly 

acquired calibration scans are useful only for the repetitions that follow those scans, not for 

the ones that precede it. The following example can better illustrate the problem:  

Let us assume that the subject moved only once, but significantly, at the 3
rd

 repetition, 

and that the GRAPPA calibration update is going to be run right before the 11
th

 repetition. In 

this case, the images acquired at repetitions 11, 12, 13 and so on would not show any artifacts 

because they are going to benefit from the newly acquired calibration data. Nevertheless, 

repetitions 4, 5, 6, 7, 8, 9 and 10, which are also acquired at the new position, are going to 

suffer from the use of old, incompatible calibration data. All these seven repetitions need to 

be discarded, which is clearly a waste of the time spent to acquire them. In this respect, it 
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would be extremely useful to retrospectively apply the appropriate calibration, and thus turn 

the images acquired at these repetitions into good-quality, usable pieces of data.  

6.4 Usefulness of the SR repetitions 

At this point, it is worthwhile to recall the sequence structure. Figure 6.1 depicts the 

three calibration scans that can be utilized for improved GRAPPA reconstruction.   

 

Figure 6.1 – Overall acquisition scheme 

As mentioned in Chapter 4 and demonstrated in Chapter 5, the Mo-like SR repetitions 

help alleviate underestimation. As far as motion is concerned, however, they serve two other 

substantial purposes – they behave as solid reference points to be used for the retrospective 

treatment of motion artifacts and they can be registered onto each other in order to clarify if, 

and by how much, a given spin changes its location, and hence its magnetization pathway.  

6.5 Saving the calibration data 

Retrospective reconstruction requires that the calibration information at each SR 

repetition be saved for later use. Rather than saving the k-space calibration lines themselves, 

the in-house reconstruction program saves the ultimate piece of information, namely the 
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reconstruction coefficients, or, equivalently, the information about how the data acquired 

from all individual coil elements should be combined to reconstruct the missing k-space 

lines. This way, the memory requirement is much less stringent. Storing the coefficients 

rather than a large number of k-space lines provides 2 to 3 orders of magnitude savings in 

disk usage. For instance, for a 32-channel coil, saving the calibration lines would occupy 

about 1.32 GBs of disk space, whereas saving the coefficients would occupy only about 2.81 

MBs. In order for the sequence to be of practical use in an imaging center where large 

numbers of patients are being scanned daily, this simplification is extremely valuable.  

It is also worth noting that the high-SNR phase correction scans mentioned in Chapter 

4 that are coming from the SR repetitions are stored together with the GRAPPA 

reconstruction coefficients and are co-applied during retrospective reconstruction.  

With the coefficients and the phase correction scans in place, the next step for 

retrospective reconstruction is deciding which repetition should be reconstructed with which 

set of coefficients. A semi-automatic motion detection scheme is proposed in the next section 

for this purpose.  

6.6 Semi-automatic motion detection 

Since the intensities can show a great deal of variation from slice to slice during 

repetitions that play an inversion pulse, which were termed as IR repetitions above, not all 

slices can be used for motion detection. Instead, for each IR repetition, all voxel values in 

each slice are summed up, the slices are then sorted with respect to this sum, and the 5 

highest-intensity slices are selected. In order to simplify the illustration of the method, these 

five-slice bundles from each repetition will be termed as High5. Each of the slices in the 
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High5 group of an IR repetition is compared to its counterpart in the most recent SR 

repetition via the following 2D cross-correlation metric:  

  (     )  
∑ ∑  (       ) (       )  

√∑ ∑  (       )   √∑ ∑  (       )   

 (6.1) 

where s is the slice index, r is the repetition index and k is the SR repetition index. If any of 

the comparisons yields a correlation value less than 95%, the motion detection scheme issues 

a warning. The user checks the images and makes the final decision about what set to use for 

what repetition.  

Once the repetitions are matched with the coefficient sets, this information can be 

instructed to the reconstruction program via a very simple plain text file which has only two 

columns – the first column keeping the repetition index and the second column indicating 

which of the three sets of coefficients the retrospective reconstruction should make use of. 

Figure 6.2 summarizes the retrospective reconstruction scheme for a 20-slice 

acquisition.  
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Figure 6.2 – Retrospective reconstruction in the presence of motion. Arrows show to which IR repetitions a 

given set of calibration data is applied. Hands represent the High5 slices. The change of position is indicated by 

the change in the orientation of the hands. 

 

6.7 Retrospective reconstruction: An example 

Figure 6.3 exhibits a sample case for movement-related GRAPPA failure. A 12-

channel coil was used for this experiment. Therefore, with its reduced encoding capability 

compared to a 32-channel coil, the GRAPPA reconstruction should be more vulnerable to 

motion. The subject moved with some exaggeration and, it can be seen that, although the 

second and third SR repetitions reduce the strength of the artifact, they cannot completely 

remove it. This is perhaps because the brain remains far away from some of the channels, and 

these channels cannot make a sufficiently good contribution to the GRAPPA reconstruction. 
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Figure 6.3 – A motion-corrupted data set. Red squares indicate the SR repetitions where the GRAPPA 

coefficients are being calculated and updated. 

 

 

Figures 6.4, 6.5 and 6.6 exhibit, respectively, the 2D correlations of all slices in all 

repetitions with those in the first, second and third SR repetitions. For this particular case, all 

of the High5 slices in Repetitions 9-16 showed correlation values below 85% when 

compared with their counterparts in the first SR repetition, whereas those in Repetitions 24-

33 showed correlation values below 70% when compared with their counterparts in the 

second SR repetition. It should be acknowledged that, for such a large motion, it is expected 

to have correlation values as low as these, making motion detection very easy. However, the 

true strength of the motion detection scheme can perhaps be better appreciated when applied 
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onto the other subjects to be mentioned later in the chapter, who did not move as much as 

this subject.  

 

Figure 6.4 – Correlations with the first SR repetition 

 

 

Figure 6.5 – Correlations with the second SR repetition 
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Figure 6.6 – Correlations with the third SR repetition 

 

Figure 6.7 shows the images obtained by the proposed retrospective reconstruction. 

The artifacts are reduced except for Repetition 24 (row 4, column 3), which is a repetition of 

motion where some slices are acquired before, some are acquired after, and some are 

acquired during subject motion. The slice in Repetition 24 was acquired before motion. 

Therefore, the GRAPPA coefficients do not match. However, as mentioned before, the 

motion repetition and the repetition thereafter will be discarded during post-processing. 

Figure 6.8 shows a closer comparison. The bad-quality weight set on the left leads to not only 

ghosting, but also a slight location shift that can very well blur the resulting T1 map. It is, 

however, worth noting that the retrospective reconstruction can yield worse results at times. 
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Figure 6.7 – The data set in Figure 6.3 after retrospective reconstruction 

 

 

Figure 6.8 – Comparison at 13
th

 image. The dashed orange line helps notice the shift of location. 

 

For the 32-channel coil, possibly due to the high encoding capability with a higher 

number of channels, the amount of ghosting due to motion is less noticeable in most cases. 

However, it is important to note that the retrospective reconstruction works well only if the 

coefficients calculated during the SR repetitions are of good quality. It has been observed 



 

61 
 

that the updated coefficient set can, in some cases, yield worse results for no apparent reason. 

Figure 6.9 shows an example for this issue in three different slices while Figure 6.10 depicts 

the opposite on the images from the same repetition. Please note that no images are 

completely artifact-free, and, when all 60 slices are considered, the retrospective 

reconstruction yields a better result for the majority of the slices. Figure 6.11 exhibits the 

middle slice in Figure 6.9 together with the two temporally-adjacent slices. These slices were 

acquired in succession and the interslice time separation was only 66 milliseconds. It can be 

clearly seen that the artifact randomly hit the middle slice. The most plausible reason is that 

the GRAPPA weight set calculation is multi-threaded where synchronization is very critical. 

However, it is possible, and clearly advisable, to make this calculation single-threaded. As an 

additional precaution, the retrospective reconstruction can be easily modified to let the user 

make the weight set assignment in a slice-selective manner so that more than one weight set 

can be utilized for a single repetition to arrive at the best combination. 
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Figure 6.9 – Original (left) and retrospectively-reconstructed (right) images. The red arrows indicate the 

reconstruction artifacts 
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Figure 6.10 – Original (left) and retrospectively-reconstructed (right) images. The red arrows indicate the 

reconstruction artifacts 

 

 

Figure 6.11 – Three consecutively-acquired slices from the retrospectively-reconstructed data set.  
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6.8 Motion relocates spins 

The detailed retrospective reconstruction mentioned above aims at reducing the image 

artifacts that occur due to motion. In other words, the main objective of the retrospective 

reconstruction is to improve the quality of each individual image. Although this is valuable 

for good estimation, it does not account for the fact that spins in a given voxel may very well 

be relocated in the scanner frame of reference. If the spins appear on a different slice after 

motion, the magnetization pathway they follow will be completely altered, and this needs to 

be taken into account during curve-fitting. 

Figure 6.12 illustrates how a spin can get relocated because of motion while Figure 

6.13 depicts how different the magnetization pathways can be on two neighboring slices. The 

reason for such a significant difference is the fact that even slices are acquired before the odd 

slices and vice versa. Therefore, spatially adjacent slices are, in fact, temporally very far 

away from each other.  

 

6.9 Spin tracking 

The large difference observed in Figure 6.13 is a valuable reminder that, in the case 

of motion, the location of each individual spin needs to be tracked very carefully. This can be 

accomplished by the use of SR repetitions, as mentioned in Section 6.4.  

The tracking procedure begins by registering the second and third SR images onto the 

first SR image using FSL’s linear registration tool FLIRT (49,50). The registration is rigid 

with 6 degrees of freedom. The default correlation-based cost function is sufficient in many 
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cases; however, if the subject motion is very large, a mutual information-based cost function 

seems to work better.  

 

Figure 6.12 – Change of slice location as a result of motion. The bright cyan spot represents a spin on Slice 4 

that gets relocated onto Slice 5 after motion. For ease of demonstration, the slices were drawn much thicker than 

they actually are. 

 

 

Figure 6.13 – The magnetization pathways of a spin on two neighboring slices, namely Slices 40 and 41 

In addition to the registered image, FLIRT also outputs a 4x4 transformation that 

encapsulates the rotation and translation parameters that have been estimated during 

registration. FSL, however, does not provide a utility that will map a single point in the 
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source image space to its corresponding point in the target image space, or vice versa. This 

mapping is absolutely essential for spin tracking. In this respect, an in-house program was 

developed to calculate this correspondence. With the use of this tool, it is possible to find out 

to what position a given spin will be relocated. The magnetization pathway can then be 

modified to take this change into account.  

Figure 6.14 presents an example of relocation for three spins on the same slice. It can 

be seen that the magnetization pathway can be heavily altered for some spins.    

 

Figure 6.14 – Demonstration of spin relocation due to motion. A, B and C represent three spins on the same 

slice that get relocated on different slices after the subject moves once before and once after the second SR 

repetition.   

Figure 6.15, on the other hand, indicates an alternative way of looking at the effect of 

motion. When all of the spins in the first SR image space are taken to the second and third 

SR image spaces by applying the appropriate transformations, it can be readily observed 
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from the banding that different portions of the slice of interest in the first SR repetition are 

relocated onto different slices in the later SR repetitions. This shows the importance of spin 

tracking for proper estimation.  

 

Figure 6.15 – Same spins as in Figure 6.14 with an alternative demonstration where the focus is slice relocation. 

After the first motion, the slice locations for A, B and C respectively become 30, 32 and 34. And after the 

second motion, the slice locations become 31, 32 and 33 in respective order.    

 

Figure 6.16 plots the magnetization pathways for Spin A introduced in Figure 6.14. 

The figure draws a clear picture of how the spin switches from one magnetization pathway to 

the other as a result of motion. It is worth noting that Pathways 1 and 3 are very similar. This 

is because Slices 31 and 33 are temporally adjacent except for Repetition 30, in which case 

the signals are of opposite polarity but still similar in magnitude.  

Once the magnetization pathways are identified for a given spin, the model equation 

used during least-squares fitting will be a composite one. For instance, again for Spin A, the 

blue pathway in Figure 6.16 will be used as the model for the measurements acquired before 

the 9
th

 repetition. The red one will be used for Repetitions 10-23, and the green one will be 

used for Repetitions 25-33. Repetitions 9 and 24 will be discarded since the spin history gets 
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corrupted and becomes unpredictable at these repetitions. All of these error terms will be 

collected in a single vector of residuals, and the fitting algorithm will try to minimize the 

norm of this composite vector to arrive at a T1 estimate for Spin A.  

 

Figure 6.16 – Magnetization pathways for Spin A that was introduced in Figure 6.14     

 

6.10 Experiments 

Data was collected from four subjects with ages between 23 and 36 years. Written 

informed consent was obtained from all participants. Each subject has at least one scan with 

no motion. During the motion experiments, the subjects were asked to change the position of 

their heads at two different times: 1) About midway between SR1 and SR2, and 2) About 

midway between SR2 and SR3. 

Table 6.1 lists the estimated motion parameters for the cases to be presented. Please 

note that FSL uses a left-handed coordinate system whose origin is centered at the lower-left 

voxel of the first slice in the volume. Therefore, the translation estimates may not seem 

intuitive.  
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Table 6.1 – Estimated motion parameters for the cases to be presented 

Case 1:  

Figure 6.17 shows the motion pattern whereas Figure 6.18 shows the High5 

correlations, according to which the motion detection scheme assigns Repetitions 1-10 to 

SR1, Repetitions 11-21 to SR2, and Repetitions 22-33 to SR3.  

 

 

Figure 6.17 – Slice 29 across all repetitions     



 

70 
 

 

Figure 6.18 – High5 correlations with SRs across all repetitions 

 

Figure 6.19 depicts the T1 maps for the cases with and without motion. It is worth 

noting that the images in the bottom row show a banded pattern due to motion. Figure 6.20 

provides a clearer picture of this pattern. This issue will be dealt with in the next section, 

which introduces smoothing into the fitting procedure. 

 

 

Repetition

 

 

5 10 15 20 25 30

SR1

SR2

SR3

0.95

0.96

0.97

0.98

0.99

1



 

71 
 

 

Figure 6.19 – T1 maps computed using the original (top) and motion-corrupted (bottom) data sets 

 

 

Figure 6.20 – A sample slice showing the banded pattern due to motion 

 

Case 2:  

Figure 6.21 shows the motion pattern whereas Figure 6.22 shows the High5 

correlations, according to which the motion detection scheme assigns Repetitions 1-8 to SR1, 

Repetitions 9-24 to SR2, and Repetitions 25-33 to SR3.  
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Figure 6.23 depicts the T1 maps for the cases with and without motion. No banding is 

seen for this case, but rather a black-pepper like noise pattern is observed, as Figure 6.24 

shows. Figure 6.25 exhibits the cost functions for a well-behaved voxel and a noise-like 

voxel. It can be seen that the noise-like voxel has two local minima rather than one. The 

motion seems to have introduced some irregularity into the cost function. The smoothing 

operation to be introduced in the next section is going to alleviate this problem to some 

extent. 

 

Figure 6.21 – Slice 31 across all repetitions     
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Figure 6.22 – High5 correlations with SRs across all repetitions 

 

 

Figure 6.23 – T1 maps computed using the original (top) and motion-corrupted (bottom) data sets 
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Figure 6.24 – Comparison of the T1 maps computed using the original (left) and motion-corrupted (right) data 

sets. A single slice is shown for better visualization 

 

Figure 6.25 – Cost functions for a well-behaved voxel (left) and a noise-like voxel (right). The fitting algorithm 

converged to the points indicated by the red asterisks. 

Case 3:  

Figure 6.26 shows the motion pattern, whereas Figure 6.27 shows the High5 

correlations, according to which the motion detection scheme assigns Repetitions 1-8 to SR1, 

Repetitions 9-23 to SR2, and Repetitions 24-33 to SR3.  

Figure 6.28 depicts the T1 maps for the cases with and without motion. 
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Figure 6.26 – Slice 31 across all repetitions     

 

Figure 6.27 – High5 correlations with SRs across all repetitions 
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Figure 6.28 – T1 maps computed using the original (top) and motion-corrupted (bottom) data sets 

 

The maps computed using the motion-corrupted data set manifest some pixelation, as 

Figure 6.29 indicates. The smoothing operation to be introduced in the next section is going 

to alleviate this problem as well to some extent. 

 

 

Figure 6.29 – Comparison of the T1 maps computed using the original (left) and motion-corrupted (right) data 

sets. A single slice is shown for better visualization.  
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Case 4:  

This case was the most challenging one. Figure 6.30 shows the motion pattern, 

whereas Figure 6.31 shows the High5 correlations, according to which the motion detection 

scheme assigns Repetitions 1-8 to SR1, Repetitions 9-23 to SR2, and Repetitions 24-33 to 

SR3. Please note that, due to the large amount of motion, even the High5 correlation values 

fall below 95%. This is why Figure 6.31 shows a great deal of dark blue regions. Figure 6.32 

displays the same correlations, but with a wider display window so that the values below 

95% become visible. 

 

 

Figure 6.30 – Slice 31 across all repetitions  
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Figure 6.31 – High5 correlations with SRs across all repetitions 

 

Figure 6.32 – High5 correlations with a different display window 

Figure 6.33 depicts the T1 maps for the cases with and without motion. It can be seen 

that, even in this difficult situation, the postprocessing scheme was able to get similar T1 

maps. However, it is worth noting that the banded pattern in this case is even stronger 

compared to Case 1. The smoothing scheme in the next section offers a remedy for this case 

as well. 
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Figure 6.33 – T1 maps computed using the original (top) and motion-corrupted (bottom) data sets 

 

 

Figure 6.34 – A sample slice showing the banded pattern due to motion. The banding in this case is in two 

different directions. 

 

Please note that all four cases presented so far manifested bulk motion that could 

relocate a voxel well beyond the neighboring slices. If the subject moved such that a higher 

percentage of any given voxel remains in that voxel’s original slice, the fitting routine would 



 

80 
 

process the data as if no motion occurred, because such small motion would be below the 

detectable threshold while quantizing the voxels by slice. Considering the fact that any given 

pair of neighboring slices go through very different magnetization pathways, the T1 estimate 

for a voxel that dwells upon two adjacent slices after motion would be erroneous, with the 

amount of error depending on the percentage of the voxel leaving the original slice – the 

higher the percentage, the higher the error. Sub-voxel smoothing, to be detailed in the next 

section, is a beautiful remedy for this problem because, in that scheme, the voxels are 

allowed to be split into a number of sub-voxels that can go through many different 

magnetization pathways. 

6.11 Sub-voxel smoothing 

The estimation procedure described so far treated each voxel as a single spin and 

tracked its trajectory accordingly. However, the spins in the same voxel may show up in 

different voxels after motion. Therefore, treating the whole voxel as a single spin might be 

very erroneous as shown by the results in the previous section. In this respect, it is more 

reasonable to represent each voxel as a 3D lattice of spins. 

Figure 6.35 shows various lattice configurations. The single-spin configuration in 

Figure 6.35 (a) is the configuration that was used in the previous section.  
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Figure 6.35 – Lattice configurations for a single spin (a), for 3x3x3=27 spins (b) and for 5x5x5 = 125 spins (c)  

 

It should be emphasized that each individual spin will be treated separately while 

applying the rigid transformations. This way, it will be possible for the spins in a voxel to fall 

into separate voxels after motion, which is certainly more realistic.  

Let NSpinsPerDim denote the number of spins along a single dimension so that the total 

number of spins in a given voxel, NSpins, will be given by NSpinsPerDim×NSpinsPerDim×NSpinsPerDim. 

The lattice configurations in Figure 6.35 were thus for NSpinsPerDim = 1, 3, and 5, respectively. 

During model fitting, Mo will be replaced with Mo divided by NSpins while computing the cost 

for each individual spin, whereas the T1 value of each spin will be the same as the T1 value 
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for the whole voxel – allowing for no partial volume effects. This is for the model equation. 

As for the measurements to be used as the target during model fitting, if an individual spin is 

found to fall into a voxel with intensity I after motion, the target value will be set to I divided 

by NSpins. With the modeled and the target values at hand, the costs of all spins will be 

summed up, and this sum will be minimized to arrive at the (Mo, T1) pair for the voxel of 

interest that originally encapsulated all those NSpins spins. One could imagine that the vector 

of residuals would be NSpinsPerDim×NSpinsPerDim×NSpinsPerDim times larger than the original 

scheme detailed in Section 6.9; however, the cost function still has only a single pair of 

parameters to estimate – Mo and T1. 

Figure 6.36 demonstrates a beautiful example – motion distributes the spins in the 

same voxel into 6 different voxels in 2 different slices. Please note that the subject rotated his 

head about more than one axes. This is why the bottom slices do not look like the slice in the 

upper left corner. 

 

Figure 6.36 – Redistribution of same-voxel spins into 6 different voxels in 2 different slices after motion 
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Figures 6.37-40 show the alleviation of the problems mentioned in the previous 

section by the proposed sub-voxel smoothing scheme. As expected, the images computed 

from motion-corrupted data sets are not as high-quality as the ones computed from motion-

free data. However, even in the harshest scenario, namely Case 4, sub-voxel smoothing 

provides significant improvement. 

 

Figure 6.37 – Case 1: Motion-free (left), Motion-corrupted with NSpins=1 (middle), Motion-corrupted with 

NSpins=3 (right) 

 

 

Figure 6.38 – Case 2: Motion-free (left), Motion-corrupted with NSpins=1 (middle), Motion-corrupted with 

NSpins=3 (right) 
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Figure 6.39 – Case 3: Motion-free (left), Motion-corrupted with NSpins=1 (middle), Motion-corrupted with 

NSpins=3 (right) 

 

 

 

Figure 6.40 – Case 4: Motion-free (left), Motion-corrupted with NSpins=1 (middle), Motion-corrupted with 

NSpins=3 (right) 

 

 

What would happen if NSpins was set to 5? Figure 6.41 compares NSpins=3 and NSpins=5. 

It can be seen that they are almost identical. This is a case of diminishing returns because, as 

NSpins is increased, the computation time increases substantially. Figure 6.42 provides a 

comparison of 60-slice computation times for NSpins=1, 3, and 5. It is clear that the gain in 

image quality is very little relative to the very long computation time. 
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Figure 6.41 – Case 1: Motion-corrupted with NSpins=3 (left), Motion-corrupted with NSpins=5 (right) 

 

 

Figure 6.42 – Computation times for Case 1: Motion-corrupted with NSpins=1 (left), Motion-corrupted with 

NSpins=3 (middle), Motion-corrupted with NSpins=5 (right) 
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Tables 6.2, 6.3, 6.4, 6.5, and 6.6 show the result of repeated measurements together 

with the results of spin tracking and sub-voxel smoothing. Subject 4 did not have repeated 

measurements. It can be seen that the results in the case of motion are quite reasonable. 

 

 

Table 6.2 – T1 measurements in white matter 

 

Table 6.3 – T1 measurements in putamen 

 

Table 6.4 – T1 measurements in thalamus 
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Table 6.5 – T1 measurements in caudate 

 

Table 6.6 – T1 measurements in cerebrospinal fluid 
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CHAPTER 7: SUMMARY AND CONCLUSION  

7.1 Major contributions 

In this study, we proposed a new sequence for whole-brain T1 mapping. The sequence 

inherits from the recently-proposed slice reordering methods in order to speed up acquisition. 

Although speed was one of the objectives, we also put emphasis on accuracy and robustness 

to motion because, without these two in place, speed by itself has very little to offer.  

The slice reordering methods proposed so far depended only on inversion recovery 

(IR). However, high speed acquisition inherently puts a constraint on how far longitudinal 

relaxation can take place, and this limits the dynamic range of the experiment, and hence the 

accuracy. In our sequence, we also included saturation recovery (SR) samples to alleviate 

this limitation. Phantom data with and without the SR samples justified the usefulness of this 

addition. 

The first thing we did for robustness to motion was introducing a segmented structure 

so that if the subject moved in one segment, the other segment could still be useful together 

with what could be salvaged from the motion corrupted segment. The problem was that the 

reconstruction parameters had to be updated with respect to the new position of the patient; 

otherwise, if the motion was early in the scan, even the segmented structure could provide no 

help. As a solution to this problem, SR samples were placed at the beginning of each segment 

together with calibration scans that updated the reconstruction parameters before each SR 
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sample. Nevertheless, even this was not enough. Yes, the beginning portion of each segment 

was being reconstructed properly, but, if the subject moved in the middle of a segment, the 

portion of the segment after the motion still had to be discarded. This is where the 

retrospective application of the reconstruction parameters proved useful. The user could now 

apply the parameters obtained by a calibration scan to the repetitions before that scan. This 

could salvage the post-motion data within the first segment, but the post-motion data within 

the second segment still had to be discarded. At this point, a third calibration scan placed at 

the end of the second segment provided the healthy parameters for the repetitions that would 

otherwise be discarded. The SR repetitions preceded by the calibration scans and the 

retrospective application of the reconstruction parameters make our sequence unique. 

Mitigating the effects of motion on the reconstructed images was one issue. However, 

the ultimate goal was to obtain reliable estimates of T1, even in the case of motion. Simple 

rigid registration of the images was not a solution because the spin history was being altered 

as a result of motion. At this point, it was more prudent to track the changes in the 

magnetization pathway of each spin and to do the estimation accordingly. An in-house 

program was developed to find the new coordinates of each voxel after motion, and a 

composite model function was used to match the measurements collected through different 

magnetization pathways. The results were promising; however, since the voxels were being 

quantized by slices, the effects of this quantization were visible in the resulting images. 

Visualizing a voxel as a lattice of subvoxels, or spins, was the remedy for this issue. This 

would cause some blurring in the images, but would also fix quantization errors. This 

postprocessing scheme is another thing that adds to the uniqueness of our method. 
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7.2 Clinical applications 

Many things can be done with a good quality T1 map. Among numerous clinical 

applications, brain tissue segmentation is an immediate one. 

T1-weighted images are routinely used in order to do tissue segmentation. Typically, 

these images are acquired with high resolution – 1 mm × 1 mm × 1 mm. However, when 

automatic segmentation is performed, subcortical structures such as the putamen and the 

thalamus are not very well discriminated from the white matter, due to noise and intensity 

variations that exist even after bias field removal. At this point, the proposed T1-mapping 

technique provides an improvement over the T1-weighted images. This is perhaps because 

the intensity variations are mostly absorbed into the second parameter in the fitting, namely 

Mo, leaving behind a purified T1 map. 

Before presenting an example, it would be very useful to state the difference between 

a T1-weighted image and a T1 map. A T1-weighted image is only a snapshot taken at a single 

point along the recovery process. Therefore, depending on the sampling time, or more 

formally, the inversion time, the relative tissue contrast can be very different. A T1 map, on 

the other hand, is obtained by making use of many T1-weighted images. For instance, the 

default parameter set for the proposed method yields 33 T1-weighted images per slice to 

arrive at a single T1 map. In this regard, the multi-point T1-mapping procedure, perhaps, 

more successfully captures the underlying recovery process than a single-point T1-weighted 

procedure. However, the main disadvantage with the T1-mapping procedure is that a large 

number of images need to be collected in a short time, which places a constraint on how high 
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the resolution can be. Nevertheless, for some applications such as dynamic imaging, 

resolution may not possess the highest priority. 

Figure 7.1 demonstrates the superiority of the T1 map in segmenting out a number of 

anatomical regions. (The segmentation was performed using FSL’s segmentation program 

FAST (51)). Making use of both T1 weighted images and T1 maps would perhaps yield a 

better segmentation result. 

 

Figure 7.1 – Comparison of segmentation results. Red arrows: Putamen, Cyan arrows: Thalamus 
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T1 depends on temperature (13). In this respect, temperature mapping is another 

clinical application. For instance, T1 mapping can be performed before and after high-SAR 

MR pulse sequences to monitor the changes in temperature. In order to capture a good 

quality temperature map, T1 mapping has to be rapid, and our sequence is therefore a good 

match for this application. 

 Finally, motion is always an issue in clinical applications, especially in the case of 

uncooperative subjects. Thus, our sequence provides a rapid and robust remedy. 

7.3 Limitations 

 One important problem with the current sequence is that, although retrospective 

reconstruction is useful, the benefits are limited. This is because, for EPI sequences, the 

sampling bandwidth along the phase encoding axis, typically the anterior-posterior axis, is 

low, and this leads to geometric distortion. If the subject moves, say, rotates his head by 45 

degrees, phase encoding will now take place along an axis that is 45 degrees away from the 

anterior-posterior axis, which, in turn, changes the direction along which geometric distortion 

will occur. Some voxels may be relocated, and some of them may split into two or more 

voxels, affecting intensity, and hence the very measurements used for curve fitting. The 

images of Subject 4 introduced in Chapter 6 constitute a beautiful example. Figure 7.2 shows 

what happens when the second saturation recovery volume is rigidly registered onto the first 

one. It can be clearly seen that the shape of the brain got significantly altered. A better way to 

deal with motion is, therefore, a prospective correction scheme where the acquisition frame 

of reference follows the patient frame of reference, keeping the phase encoding direction the 

same. Siemens has already implemented a prospective acquisition correction scheme that was 
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previously proposed (52). It may need to be modified to take into account the intensity 

variations within inversion recovery repetitions to be applicable to our sequence.  

Another problem is that, when the subject moves, the relative position of his head 

changes with respect to the individual elements of the multichannel head coil, introducing a 

different pattern of receive field inhomogeneity. Figure 7.2 demonstrates this effect very 

clearly – the anterior portion of the brain appears brighter after motion. The remedy for this 

issue is bias field removal. The saturation recovery volumes can be used for estimating the 

bias field at each position, and these estimates can then be utilized for removing the bias 

from all of the remaining repetitions, taking into account which inversion recovery repetition 

is assigned to which saturation recovery repetition.  

 

Figure 7.2 – Computation times for Case 1: Motion-corrupted with NSpins=1 (left), Motion-corrupted 

One final problem is that the sequence can currently handle, at most, three different 

positions, because GRAPPA calibration is performed only at three predefined locations. This 

can be overcome by performing calibration whenever there is motion. The calibration 
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module should work in cooperation with the prospective acquisition scheme mentioned 

above. 

7.4 Future work 

Future work includes implementing the prospective acquisition correction scheme 

mentioned in the previous section, performing the calibration scans whenever there is 

motion, removing the bias field from the images to avoid the negative effects of motion-

related changes in the receive field inhomogeneity pattern, and taking under control the 

random errors occurring during retrospective reconstruction.  
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