114 research outputs found

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Domain-independent exception handling services that increase robustness in open multi-agent systems

    Get PDF
    Title from cover. "May 2000."Includes bibliographical references (p. 17-23).Mark Klein and Chrysanthos Dellarocas

    Combination of self-organization mechanisms to enhance service discovery in open systems

    Full text link
    Decentralized systems have emerged as an alternative to centralized approaches for dealing with dynamic requirements in new business models. These systems should provide mechanisms that contribute to flexibility and facilitate adaptation to changes in the environment. In this paper, we present two self-organization mechanisms for a decentralized service discovery system in order to improve its performance. These mechanisms are based on local actions of agents that only consider local information about queries they forward during the discovery process. The self-organization actions are chosen by each agent individually when the agent considers them to be appropriate. The actions are: remaining in the system, leaving the system, cloning, and changing structural relations with other agents. We have evaluated each self-organization mechanism separately but also the combination of the two as the environmental conditions in the service demand change. The results show that the proposed self-organization mechanisms considerably improve the performance of the service discovery systemDel Val Noguera, E.; Rebollo Pedruelo, M.; Botti Navarro, VJ. (2014). Combination of self-organization mechanisms to enhance service discovery in open systems. Information Sciences. 279:138-162. doi:10.1016/j.ins.2014.03.109S13816227

    Stigmergy-based Load Scheduling in a Demand Side Management Context

    Get PDF
    This work proposes an approach, based on a fundamental coordination mechanism from nature, namely stigmergy. The proposed meta-heuristic is utilized to distributively calculate global schedules for a population of customers provided with intelligent devices. These schedules maximize renewable energy sources utilization. Furthermore, this approach is adapted and utilized as a coordination mechanism of autonomous customers to modify their consumption behavior in a real-time optimization context

    Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering

    Get PDF
    Systems engineering is an ubiquitous discipline of Engineering overlapping industrial, chemical, mechanical, manufacturing, control, software, electrical, and civil engineering. It provides tools for dealing with the complexity and dynamics related to the optimisation of physical, natural, and virtual systems management. This paper presents a review of how multi-agent systems and complex networks theory are brought together to address systems engineering and management problems. The review also encompasses current and future research directions both for theoretical fundamentals and applications in the industry. This is made by considering trends such as mesoscale, multiscale, and multilayer networks along with the state-of-art analysis on network dynamics and intelligent networks. Critical and smart infrastructure, manufacturing processes, and supply chain networks are instances of research topics for which this literature review is highly relevant

    The Neglected Pieces of Designing Collective Decision-Making Processes

    Get PDF
    Autonomous decision-making is a fundamental requirement for the intelligent behavior of individual agents and systems. For artificial systems, one of the key design prerequisites is providing the system with the ability to make proper decisions. Current literature on collective artificial systems designs decision-making mechanisms inspired mostly by the successful natural systems. Nevertheless, most of the approaches focus on voting mechanisms and miss other fundamental aspects. In this paper, we aim to draw attention to the missed pieces for the design of efficient collective decision-making, mainly information processes in its two types of stimuli and options set

    Bioinspired Computing: Swarm Intelligence

    Get PDF

    Inspired Design: Using Interdisciplinarity And Biomimicry For Software Innovation

    Get PDF
    This thesis presents research and proposes a framework for increasing the breadth and depth of interdisciplinary knowledge in the field of computer science. The intent is to address an increasing problem of complexity in software and computing systems. The approach is to equip software developers and computer scientists with a contextual perspective and a set of strategies for injecting innovation and creativity into the solutions they design by leveraging knowledge and models outside the traditional realm of computer science. A review of current and historical forms of interdisciplinarity and biomimicry are presented to build that context. The strategies presented include interdisciplinary education, interdisciplinary collaboration, interdisciplinary tools, biomimetic design, and the creation of new pattern languages based on nature\u27s design solutions. Each of these strategies stems from and leads to an open exchange of knowledge across disciplinary boundaries. When taken together, the knowledge and strategies presented are intended to inspire and foster a paradigm that recognizes the value of human and natural diversity as a source of innovation
    • …
    corecore