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Abstract

The power grid is composed of thousands of autonomous entities, which form
intricate networks and feedback loops. In addition, the power grid is robust to
perturbations and failure of some of its components. It is adaptable, being able
to increase or decrease generation to maintain load balance and cope with sud-
den changes in the consumption of customers. Furthermore, it is in continuous
evolution, through the incorporation of new technologies, both on the supply
and demand side. These features are characteristic of self-organized systems.

Nevertheless, the future context of the power grid may push these features to
their limits. For political and environmental reasons, most industrialized coun-
tries aim to increase the shares of renewable energy sources (RES), such as wind
and solar power, in their power grids. RES have fundamental differences with
traditional forms of electricity generation. RES depend on weather conditions,
therefore, the supply is intermittent and hard-to-predict. Since power gener-
ation from these technologies cannot be fully controlled, increasing shares of
RES may drastically increase the risks of load imbalances within the power
grid, endangering the system operation and power supply.

In this context, the demand could be influenced to match the RES supply, such
that the balance in the power grid can be maintained by increasing RES uti-
lization. To this end, intelligent devices are introduced. These devices have
the ability to autonomously select their operating times, within a user defined
flexibility interval. Hence, these devices may be influenced to select operation
times, which maximize RES usage and, therefore, reduce load imbalances. Nev-
ertheless, incentives should be carefully designed, such that a desired global
consumption behavior is obtained without generating avalanche effects of un-
coordinated response to stimuli.

This work proposes an approach, based on a fundamental coordination mech-
anism from nature, namely stigmergy. Stigmergic systems are characterized by
exhibiting coordination and cooperation in the process of achieving global ob-
jectives. This state of coordination emerges spontaneously as participants indi-
rectly communicate through untraceable alterations on a shared environment.
Stigmergic systems are inherently self-organized, therefore they exhibit the pre-
viously mentioned features of these systems. The proposed meta-heuristic is
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utilized to distributively calculate global schedules for a population of cus-
tomers provided with intelligent devices. These schedules maximize RES uti-
lization, allowing the power grid to maintain a balance between supply and
consumption. Results show that the approach is able to produce global sched-
ules, which derives into a micro-grid load profile that closely resembles a given
RES output.

Furthermore, this approach is adapted and utilized as a coordination mecha-
nism in a real-time optimization context. In this case, participants correspond
to individual autonomous customers, which are influenced by a control signal
to modify their consumption behavior. Results show that the approach is able
to guide the global consumption behavior of a simulated micro-grid in real-
time to increase RES usage. Moreover, desirable features of the future power
grid are enhanced, such as privacy of customers, autonomy and anonymity of
participants, among others.

This work contributes to the field of energy informatics by providing a meta-
heuristic for calculating schedules that increase usage of a given RES output.
In addition, this meta-heuristic is adapted for real-time coordination of au-
tonomous consumers. Further contributions regard the field of self-organizing
systems, by providing additional insights for the study of stigmergy.
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1. Introduction

“ The story of civilization is, in a sense, the story of engineering - that
long and arduous struggle to make the forces of nature work for man’s
good. ”

Lyon Sprague DeCamp, The Ancient Engineers, 1963

Since it was discovered that electric current produces a magnetic field and vice
versa, to contemporary times, where we are surrounded by an endless sea of
technology and information, electricity has shaped every single aspect of our
lives. Today, electricity is the primary fuel of every thriving and competitive
economy. In the age of information and communication technologies, a reliable
and abundant power supply enables innovation to flourish, and new markets
to establish and develop. Furthermore, the power supply, which is usually
taken for granted, enables end-customers to enjoy new devices that allow ac-
cess to knowledge and discoveries in every corner of the world.

The power grid has grown relentlessly to cope with the increasing energy re-
quirements of industries, commerce and residential customers. As a conse-
quence of this growth, its complexity has drastically increased [BMM14]. Par-
ticipants, which are counted by millions, influence each other, forming con-
voluted relations and feedback loops, while system operators aim to achieve
system stability and provide electrical services [Blu07]. This stability is deter-
mined by the permanent balance between supply and demand. This means,
power generation has to match the demand at any time [Str08, Got15]. If this
requirement is not met, the power system stability can be compromised, elec-
tric supply could be interrupted, large economic losses might be experienced
and even lives may be put to risk.

Considering this context, during the last few decades the power grid has been
experiencing dramatic changes. The dependency on fossil fuels is promoted
to be reduced due to their diminishing availability, to achieve security of en-
ergy supply, and for environmental reasons [BMM14, Got15]. To this end, dis-
tributed generation and renewable energy sources (RES), such as wind and so-
lar power, arise as an alternative to complement and eventually replace large
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centralized fossil fuel-based power generation. From a state and government
perspective RES are highly desirable, since their utilization implies increasing
the security of the energy supply [BMM14, USD+13]. From an environmen-
tal perspective, RES usage does not only reduce dangerous emissions but pre-
vents highly contaminant processes like fuel refinement and waste disposal
[Got15, Blu07]. From an energy efficiency perspective, utilizing RES to gen-
erate electricity implies increasing utilization of resources that, otherwise, are
stationary and which can promote local growth and economic development. In
addition, increasing distributiveness of the power grid brings customers closer
to the RES generation, reducing power transportation costs and energy losses
[BMM14].

Nevertheless, RES power generation imposes serious challenges. RES energy
output is intermittent and uncertain, since, particularly in the case of wind and
solar power generation, it depends on weather conditions. Therefore, we can-
not rely on a permanent supply [RKS16, SGC+13]. Furthermore, RES output
is not dispatchable, this is, it cannot be controlled on demand [SGDG+12]. As
a consequence, this power output should ideally be utilized immediately af-
ter its generation, otherwise, the power is lost or the system might reach an
imbalanced state, endangering its operation.

In addition to this type of generation, from the demand side perspective, cus-
tomers increasingly change their load composition. The introduction of intelli-
gent devices has drastically increased the flexibility of customers, by enabling
the autonomous selection of their own operation times [BF12, IA09]. To fur-
ther reduce the dependency on fossil fuels, electric vechiles (EV) are promoted
to play a major role in future transportation systems and, as a consequence,
in the electric system. This will connect two traditionally separated sectors
[Got15]. EVs, however, are intensive power consumers and their connection
to the power grid implies an important change in the consumption profile of
customers [GZA10, MAS12].

These new conditions increase the complexity and fragility of the power sys-
tem functioning [GKB+11, FIG+13]. The power grid has not been designed
to include large amounts of intermittent RES supply nor highly flexible cus-
tomers. In the past, the introduction of load-intensive applications and el-
ements which produced large load peaks has led to outages and overloads,
which have propagated throughout the system, resulting in partial or total
blackouts [BMM14, Gla09, Dob14]. Hence, in the future power grid the re-
quirements for techniques and approaches to achieve system stability will be
an essential issue.

Nevertheless, although in this new scenario the demand and the supply side
might compromise the operation of the power system, they can also comple-
ment each other to bring load balance and system stability. To this end, utilities
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can implement different demand response (DR) programs. DR corresponds to
technologies that enable interaction between end-customers and utilities, such
that the consumption of the former can be modified to achieve specific load
objectives of the latter [BMM14, Str08]. On the one hand, these programs can
consider the implementation of incentives, such that customers autonomously
modify their consumption. On the other hand, utilities can achieve contracts
with customers, which implies that the former will have full control over the
appliances within the domain of a customer. DR programs have pros and cons,
from the perspective of computational complexity, privacy preservation, ro-
bustness and flexibility, among others [Got15].

Hence, given the future context of the power grid: How can we efficiently com-
plement the increasing shares of intermittent generation with the additional
flexibility of consumers, such that the power grid remains flexible, robust, and
safe for its users, while providing a reliable electrical service? Furthermore,
how can we guide or control the global behavior of autonomous customers, such
that their aggregated consumption fulfills specific load objectives?

1.1. Motivation

Many man-made systems, such as world wide web, stock exchange markets, or
traffic systems, both require and establish complex networks. In these systems,
self-organizing behavior arises as a consequence of the interaction and rela-
tions between participants, formed in the process of providing and receiving a
service [Ger07, Ric09, SMSc+11]. These systems tend to be highly distributed,
respond in real-time to cope with the necessities of customers and adapt to dis-
turbances [MSS10, BMMS+06]. Their operation adapts and evolves to serve
their respective purposes. From a global perspective, these adaptations, their
overall organized state and their stability is achieved in an autonomous manner
[PB11, Ger07].

The power system can also be considered to self-organize. It adapts its network
range and installed generation capacity to provide electricity services to an in-
creasing number of customers [BMM14]. It is able to cope with uncertainty of
demand and adapt its generation in real-time to maintain load balance in the
power grid [Blu07]. The power system is also able to tolerate perturbations,
such as failure of some of its components [USD+13]. Furthermore, from an
overall perspective it depicts emergent behavior [Got15, Blu07, Dob14].

From the study of self-organizing systems several questions arise: What en-
ables these systems to adapt to uncertain circumstances? How do specific prop-
erties of self-organized systems emerge? Where are the limits of self-organization?
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Furthermore, can specific features of self-organizing systems be provided or en-
forced in other systems? Finally, can the behavior of self-organizing system be
guided to achieve specific objectives?

Stigmergic systems are a special type of these systems [Ger07]. In conjunction
with other features from self-organizing systems, they achieve remarkable co-
ordination and cooperation from a global perspective. This state is reached as
a consequence of the indirect interaction between participants, through non-
traceable alterations in a shared environment [TB99]. On the one hand, these
systems show typical self-organizing features, such as flexibility, adaptability,
or robustness. On the other hand, in stigmergy, a single participant can trig-
ger the auto-catalytic process which gives rise to coordination and cooperation,
and the achievement of self-organized behavior. Participants do not interact
directly, reducing the complexity of the network and increasing flexibility to
include additional individuals. Moreover, as a consequence of this feature, the
identity of participants is not a requirement to achieve coordination. Hence,
autonomy is enhanced.

Many of these features are desirable for the power grid. From the perspective
of utility companies, achieving load balance between supply and demand, in
an autonomous manner, through cooperative behavior, can drastically reduce
operating costs [Blu07, VST13]. From the perspective of end-customers, the
enhancement of privacy and preservation of autonomy might by a deciding
factor in the selection of electricity providers, in the future power grid. Hence,
considering the relation between the power grid, self-organizing systems and
stigmergy, a question arises: Is it possible to utilize stigmergy in some form or
capacity to achieve the balancing objectives of the power grid?

1.2. Scope and Objectives

As previously outlined, the first motivation of this work, regards understand-
ing special features of self-organizing systems to address the described prob-
lems of the future power grid. Specifically, the spontaneous emergence of
global behavior, which achieves specific high level objectives. In this context,
the investigation of stigmergy corresponds to a step in that direction, given
that stigmergic systems are a type of self-organizing systems. Moreover, the
interest in researching stigmergy, comes from the desire in understanding how
autonomous participants which do not interact directly, can coordinate and co-
operate to perform global actions which are beyond their individual abilities.

The second motivator of this thesis, regards the applicability of concepts from
self-organizing systems to the power grid scenario. More specifically, how can
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traditional features of self-organization, some of which may be traditionally
present in the power system, be utilized to provide stability to the future power
grid. In this context, the main objective would be to promote self-organized
behavior to maximize the utilization of RES generation and reduce load im-
balances. The challenges of this objective have been previously mentioned.
Hence, features such as flexibility, adaptability and robustness might be en-
hanced through the incorporation of concepts related to self-organizing sys-
tems. In addition, issues which might become relevant, such as privacy and
autonomy of customers, may also be addressed through the implementation of
these ideas.

To address these inquires, the following research questions are stated:

Research Question 1: How can the global behavior of a stigmergic sys-
tem be guided?

In stigmergy, coordination and cooperation naturally arise as a consequence of
indirect interactions between participants. Hence, the means in which global
behavior can be guided, while respecting the autonomy of individual partic-
ipants, will allow the understanding of the boundaries of self-organization in
this context. To answer this question, a comprehensive analysis is performed
on the meaning of guiding and controlling behavior in the context of self-
organization [SD97, Joh00, SMSc+10]. Furthermore, the main features of stig-
mergy in natural and artificial systems are investigated [TB99]. In addition, the
different elements and stages that define the raising and diffusion of coopera-
tion and coordination in these systems are investigated.

Research Question 2: How can artificial stigmergic systems be utilized
to distributively generate schedules which can maximize a given RES out-
put utilization?

The most well-known artificial stigmergic system corresponds to ant colony
optimization (ACO - [DBT00]). This meta-heuristic requires a special represen-
tation of the load scheduling problem, in the form of a graph, before it can be
used to solve it [FH13, SMCO15]. This certainly carries some disadvantages in
terms of scalability, flexibility and efficiency. In this context, other stigmergy-
based approaches may be able to represent the optimization problem in more
intuitive manners, which improve flexibility in the inclusion of additional loads
and do not reduce the performance when the network size increases. To answer
this question, a meta-heuristic for stigmergy-based load control is proposed.
This meta-heuristic is experimentally evaluated to assess the problem of gener-
ating global schedules which maximize usage of a given RES output.
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Research Question 3: How can artificial stigmergic systems be utilized
to guide the global consumption behavior of autonomous customers in real-
time and in a dynamic environment, such that RES usage is increased?

A major challenge of the DR programs is the compliance of customer restric-
tions, while achieving a specific global behavior and load objectives [Got15].
Additionally, they should be able to influence the system to respond adequately
to unforeseen events and reduce the impact of potentially dangerous load os-
cillations [BMM14, SMSc+11]. In this context, considering the inherent prop-
erties of stigmergy in natural systems and multi-agent coordination contexts
[TB99, DBT00], the assessment of its ability to manage a system composed of
many autonomous customers is of relevance. For this, the proposed meta-
heuristic is adapted and utilized as a mechanism for guiding the global be-
havior of autonomous customers in compliance with the requirements of stig-
mergy. This approach is experimentally evaluated in a dynamic environment,
represented by a changing RES forecast.

1.3. Major Contributions

The main contributions of this thesis refer to the extension of the current body
of science on the research fields of artificial stigmergic systems, nature inspired
algorithms and energy informatics.

An adequate understanding of the opportunities and limitations of stigmergy,
as a mechanism for managing the global consumption behavior of a micro-grid
is required. To this end, a literature review provides insights on the fundamen-
tal features of stigmergic systems in nature. This overview serves to provide the
first contributions of this thesis (Chapter 3 and 7). Firstly, an improvement of
the current taxonomy for stigmergic systems is proposed. Moreover, the stages
in the stigmergic coordination process are defined in detail. Furthermore, a set
of requirements that systems should comply with, in order to be called stigmer-
gic, and therefore, depict the features of this type of self-organizing systems, is
proposed.

The comprehensive analysis of stigmergy enabled the design of a stigmergy-
based load control approach for distributively calculating global schedules for
a population, such that the usage of a given RES is maximized. The approach,
considers the utilization of sematectonic stimuli to guide the behavior of simu-
lated households. These households perform a probabilistic scheduling process
of their appliances in consideration of the received stimuli. A formal model for
this meta-heuristic is presented and the algorithm is experimentally evaluated
in Chapter 4 and 5, respectively. The evaluation scenario considers a simulation
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of an isolated subsection of a balancing group, populated with households with
different types of flexible loads. The RES supply is scaled from real generation
from two balancing zones in Germany. The analysis provides information re-
garding the limits and possibilities of the meta-heuristic to be applied to other
optimization problems.

As previously outlined, the power grid operates in an uncertain scenario under
dynamic conditions. In this context, the proposed meta-heuristic is adapted,
such that it can be utilized as a multi-agent coordination mechanism for real-
time optimization (Chapter 4). RES forecasts which deviate from the final RES
outputs are considered as a source of uncertainty and dynamism. The ability of
the approach to reschedule flexible loads in real-time, such that the utilization
of the RES output is increased, without generating imbalances, is evaluated in
simulations (Chapter 6). Furthermore, different shares of load coverage from
the demand side are considered in conjunction with different shares of flexibil-
ity of the end-customers loads.

1.4. Structure and Overview

To begin the reading of this thesis and obtain an overall perspective of the issues
to be addressed, a description of the content of each chapter is provided. This
description should guide the reader to his or her main points of interest and
enhance the enjoyment of reading this work.

• Chapter 2 describes the traditional power grid operation and the impor-
tance of maintaining a balance between power supply and consumption
for the stability of the power system. Furthermore, the challenges of in-
creasing the shares of RES and including new technologies (such as in-
telligent appliances or electric vehicles) for the future power grid opera-
tion, are discussed. In this context, the importance of demand side man-
agement and demand response is mentioned, and some approaches for
maintaining load balance in this new scenario are reviewed.

• In Chapter 3, argumentation is provided to support the consideration of
the power grid as a complex and self-organizing system. Furthermore,
through the revision of examples from nature, the implications of guid-
ing the behavior in self-organizing systems are discussed. In addition,
the concept of stigmergy is comprehensively analyzed. Results from this
analysis are used to enhance the existing taxonomy for stigmergy systems
and specify a set of requirements for constructing artificial stigmergic sys-
tems.
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• Chapter 4 provides an argument for supporting the utilization of stig-
mergy as a coordination mechanism for load balancing in the power grid.
In this context, the optimization problem to be addressed is described. An
architecture for the proposed stigmergy-based management mechanism,
in conjunction with its formal description applied to static optimization
and real-time optimization, is presented.

• Chapter 5 provides the results of the stigmergy-based meta-heuristic pro-
posed in Chapter 4, for distributively generating global schedules maxi-
mizing the usage of RES generation. For this, an isolated idealized micro-
grid is simulated, which is considered to be powered by solar and wind
generation. From the demand side, different flexible devices are consid-
ered, such as intelligent washing machines and electric vehicles. The in-
ternal functioning and solution construction process is analyzed in depth
and improvements to the original approach are proposed and implemented.
The approach is further compared to a synchronized closed-loop pricing
approach. Results from this chapter are also utilized for argumentation
about the possibilities of extending the approach to solve other combina-
torial optimization problems.

• In consideration of the dynamic and uncertain nature of the power grid
operation and RES power generation, in Chapter 6 the proposed meta-
heuristic is also experimentally evaluated in a real-time optimization con-
text. For this, a similar scenario, from the supply and demand perspec-
tive, as in Chapter 5 is considered. Nevertheless, RES forecasts are also
considered, which represent the dynamic factor in the scheduling process
of autonomous participants. The approach is compared with a synchro-
nized closed-loop pricing approach, and relevant issues, such as robust-
ness, simplicity of implementation and privacy of customers are empha-
sized.

• The obtained results are comprehensively discussed in Chapter 7. Fur-
thermore, an extensive comparison with another well-known stigmergy-
based meta-heuristic, namely ACO, is performed. Additional conceptual
issues regarding stigmergy are discussed, emphasizing on the importance
of the design of incentives to obtain desirable and stable emergent behav-
ior. Furthermore, limitations and future opportunities for the proposed
meta-heuristic are presented and discussed.

• Finally, Chapter 8 summarizes the main findings of this thesis and ad-
dresses the fulfillment of the stated research questions.

Some paragraphs and sections in this thesis are extensions or reproductions of
own publications or working papers. Their use is mentioned explicitly at the
beginning of the corresponding chapter, section or subsection.
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2. Power Systems and the Power
Grid

“ Why, sir, there is every probability that you will soon be able to tax it! ”
Michael Faraday to William Gladstone, Chancellor of

the Exchequer, when the latter asked about the practical worth
of electricity, quoted by R. A. Gregory, Discovery, Or The Spirit
and Service of Science, 1916

The primary engine of a thriving and competitive economy is energy. This
has been true throughout history. In ancient times, the efficient utilization of
energy from the wind was essential in the exploration, establishment and ex-
ploitation of commercial routes. Further in the future, the same occurred with
steam engines, powering trains and ships that connected different parts of the
world faster than ever. Currently, that role is mostly fulfilled by fossil fuels.
Nevertheless, in the age of information, when the exchange of physical goods
conforms only one aspect of the economic activity, another type of fuel is es-
sential. This is obviously electricity.

In the same ways as different fuels and their uses have evolved, currently
the way electricity is supplied and consumed is also evolving. As a conse-
quence of political and environmental decisions, the relevance of renewable en-
ergy sources (RES) in the power grid is promoted to be dramatically increased
[BF12, GKB+11]. In conjunction with this tendency, customers continuously
increase their flexibility and autonomy, through residential generation and in-
telligent appliances [AMS14, VST13, GlBK11]. This enables the development of
new market models and innovation opportunities, in which information and
communication technologies (ICT) should have a preponderant role for the ef-
ficient management of the different components that compose these futuristic
power system, namely the smart grid. In this context, the European Technology
Platform (ETP) defines the smart grid as [USD+13]:

[...] an electricity network that can intelligently integrate the actions of
all users connected to it (generators, consumers, and those that do both),
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in order to efficiently deliver sustainable, economic and secure electricity
supplies.

From this definition, it can be drawn that the future of the power grid lies in
how the new features of the participants can be complemented with each other,
such that new forms of power supply can be efficiently utilized while enabling
and promoting the incorporation of new technologies.

In this chapter, the operation of the power grid and the current and future chal-
lenges it undergoes, are described. Afterwards, the problem of load balancing
between supply and demand is described. Then, the challenges of the future
power grid are mentioned, emphasizing the impact of increasing shares of RES
and flexibility of customers. In this context, different strategies for managing
flexible loads to increase RES usage are discussed. Moreover, a short revision
of algorithms and specific approaches for load balancing is performed. Finally,
a short summary and conclusion regarding the presented scenario is provided.
At the end of the chapter, the reader should have a general understanding of
the problem to be addressed in this thesis. This is, the coordination of flexible
loads to increase RES usage and load imbalances reduction in the power grid.

2.1. Current Power Grid Operation

In this section, an overall description of the traditional operation of the power
grid is provided. The case of the German power grid is used as a model of
reference. Afterwards, the problem of balancing the supply and the demand in
the power system is described.

2.1.1. An Overview

The physical structure and the operation of the power grid have been experi-
encing a dramatic evolution, specially in the last decades. A simplified repre-
sentation of the different levels of the power system can be observed in Fig.
2.1.

Originally, the electric system was designed for deploying energy from large
centralized power plants in a unidirectional manner [BMM14]. These power
stations have been located far away from the consumption centers. In this con-
figuration, an extra high voltage transmission system is utilized for transporting
power from large scale power stations, such as nuclear power plants, hydro-
electric power plants, or off-shore wind power stations, through long distances
to the main consumption center [Blu07, Got15]. In the German scenario, this
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Medium 
Voltage 

Extra High Voltage Grid 

High Voltage Grid 

Low 
Voltage 

Figure 2.1.: Simplified power grid diagram. Levels above the dotted line corre-
spond to the transmission system, whereas levels below correspond
to the distribution system. Based on [Blu07] and [Got15].

grid operates at 220 kV or 380 kV. Medium dispatch power plants operate at
a high voltage grid level, with voltage usage ranging from 60 kV to 220 kV. At
this level, supply from large-scale PV power plants and on-shore wind power
generation is fed to the network. From a demand side perspective, very large
electrical consumers, such as steel factories, mining industries or oil refineries,
are directly connected to this level and provided with electric services. These
customers usually establish contractual agreements regarding their supply di-
rectly with the transmission system operators (TSO) due to the volume of their
power consumption, and have their own infrastructure to reduce power volt-
age, such that it can be safely utilized [Blu07]. The high voltage distribution
grid also transports energy to substations in population centers. At a medium
voltage grid level (from 6 kV to 60 kV), small power plants can provide their sup-
ply and, if necessary, balancing power for achieving load balance in the power
grid (this issue is further discussed in the following subsection). This grid level
includes small wind and solar farms. Moreover, industries and commercial
enterprises usually connect directly to this network. The medium voltage dis-
tribution grid is also traditionally utilized to illuminate rural areas or isolated
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customers. Finally, the low voltage power grid distributes power to residential
customers, commerce, service-based enterprises and small industries. At this
level (230 V to 400 V), combined-heat and power plants, district heating and
residential PV also operate [Blu07, Got15, Sta08].

Different technologies are utilized for power generation. Their implementation
depends on operational features, costs, scalibility, power grid requirements, ge-
ographical features and internal policies. As a consequence, power grids can
have a heterogeneous composition of the fuels utilized, e.g. the German sce-
nario, or power generation highly concentrated on a single type of technology,
e.g. the French power grid, in which roughly 75% of the total domestic genera-
tion comes from nuclear power [IEA09].

The power grid is designed to function as a real-time energy delivery system
[Blu07]. This means that power is generated, transported and supplied the mo-
ment the consumer desires to make use of it, e.g., to turn on the light of a room.
Hence, it can be said that generators produce energy to satisfy an immediate
demand. This is very different from what occurs on other systems, such as the
water utility network [Blu07]. If a continuous flow of power between genera-
tion and consumption is not met at every instant, the system stability might be
compromised and supply can be disrupted [Got15].

2.1.2. Power Balancing

As outlined, in the power system generation must be constantly adapted to fol-
low the electricity demand. This implies that a permanent balance between
power generation and consumption needs to be met, to prevent the power
system from suffering instability and failure, including damaged equipment.
Transmission system operators (TSOs) are responsible for the secure and reliable
operation of the electricity network. This considers the management of the bal-
ance between generation and consumption at every moment and power trad-
ing within the underlying networks. This way, each TSO is in charge of an
established control zone [BS14].

In this context, balancing groups (BGs) correspond to a structure which joins op-
erators from the energy market in order to achieve economic and accountable
objectives. BGs consolidate consumers and providers in a virtual group where
demand and supply are balanced [KML+15, MOP14, DE13]. Achieving this
balanced state implies costs to the entity responsible of managing the BG. This
way, TSOs and balancing responsible parties (BRPs) achieve contracts to guaran-
tee power balance within a control zone [BS14].

Control zones of a TSO can consist of an arbitrary number of BGs. These con-
trol zones contain power injection nodes, for supplying power to the BGs, and
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Figure 2.2.: Virtual and physical structures for the power management in the
power grid. Based on [BS14, USD+13].

withdrawal nodes, which represent the demand. In the context of a liberal-
ized market, customers are not geographically restricted to a specific power
supplier. Hence, supply companies can serve customers in different territories.
Furthermore, balancing groups are not restricted by the distribution network
[BS14], and injection points can supply power to many BGs. A simplified di-
agram of the structures for power grid management can be observed in Fig.
2.2.

From a BRP perspective, typical responsibilities include providing a balanced
planned schedule, with a specific time resolution [MOP14]. The required gen-
eration and consumption are estimated through probabilistic methods. In this
context, the use of balancing energy to cover loads should only take place in
order to compensate unpredictable deviations [DE13, MOP14]. As a conse-
quence, BRPs invest to manage the deviations in energy load, both from the
supply and demand side, in order to avoid fines and economical repercussions
when unforeseen events occur [MOP14].

To face potential deviations from the generated schedules, balancing power
products are considered and traded in the market. These products are catego-
rized into primary control, secondary control, and tertiary reserve (Fig. 2.3).
Each system operator must guarantee a certain amount of balancing capacity
of each of these products [MOP14]. Primary reserves are activated to face small
imbalances, drops or increases of frequency, and prevent large errors. Sec-
ondary reserves are utilized to control the zones where the imbalances have
occurred. They are able to balance large errors, such as ramping, demand
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These are discussed in the following.
Transmission and distribution networks/infrastructure are

investment intensive and there is no benefit for society in
building several parallel and competing networks. Hence, the
concept of natural monopolies is commonly accepted in this
domain, resulting in one transmission system and several
distribution systems, each of the latter serving a limited area.
Fig. 1 illustrates the organizational structure of typical power
systems in the ENTSO-E area of continental Europe and displays
the roles and actors within it. One actor might incorporate several
roles. Deviations from this structure can occur.

The regulator avoids unfair exploitation of the natural
monopoly possibly resulting in unjustified high prices for network
usage. It monitors and approves prices for transmission and
distribution of energy but allowing network owners to achieve
profit. Furthermore, the regulator implements incentives for an
economic operation of the system as well as transparent and fair
access to the network for all market players. However, the entity
does not directly determine electricity prices.

The Transmission System Operator (TSO), Independent System
Operator (ISO) and distribution system companies (DISCOs)
operate the respective systems under rules approved by the
regulator. Contrary to the ISO, the TSO not only operates but also
owns the transmission assets in his are of supervision, which is
called control zone. The control zone does not necessarily have to
relate to country borders but usually it does. The operation
responsibility of the TSO/ISO is not limited to the transmission
network, but rather the entire power system. The TSO controls the
voltages and ensures system security through contracting
ancillary services for its control zone. These are used to balance
differences between generation and consumption in real time,
which stabilizes the frequency.

Ancillary services are contracted by the TSO via a separate
market (Verhaegen et al., 2006) usually with relatively high prices
(Rebours et al., 2007b). The services are provided by the
contracted primary-, secondary- and tertiary reserves (UCTE,
2004). The costs incurred by the TSO for maintaining and
operating the network and for keeping the network secure by
using ancillary services are passed to the consumers through
network usage fees and through the concept of Balance Groups
(BG), respectively. The concept of BG is explained later.

Primary and secondary frequency controls are constantly
active in order to keep the frequency stable within a small band
around nominal frequency (50 Hz in the ENTSO-E). Primary
reserves are activated locally at the contracted generators in the

area of ENTSO-E. The activation is based on a frequency
measurement and a control loop. The reserves balance small
and counteract large errors. In the latter case, primary reserves
are only able to stabilize the frequency at another value than
nominal frequency. Secondary reserves are employed only by the
TSO of the control zone in which the imbalance occured. The
reserves recover the frequency to the set value, releasing primary
reserves. They are activated via an Automatic Generation Control
(AGC) signal sent by the TSO (Galus et al., submitted; Ulbig et al.,
2010). Secondary reserves typically balance larger errors (e.g.
errors from ramping, load forecasts, renewable energy infeed
forecasts) and reestablish the planned cross border power flows.
Tertiary reserves are activated manually, rather rarely and are
used during unforeseen, large, long lasting disturbances. Fig. 2
gives an overview of different control reserves and their
activation times in most ENTSO-E systems (Rebours et al., 2007a).

Generators and consumers participate in a power market,
competing to sell and acquire power economically. Only large
consumers act directly on electricity markets. The majority of
consumers receive power from their suppliers, also called Energy
Service Providers (ESPs) which aggregate consumer load. This
aggregation leads to the minimization of fluctuating load
behavior, a flattening of the load curve shapes and increased load
prediction reliability (Bunn, 2000). ESPs, and other wholesalers,
frequently do not posses any generation assets. ESPs acquire
electrical energy either directly from the market or from whole-
salers. The latter ones can also be active on financial markets, not
necessarily focusing on energy.

Distribution system companies (DISCOs) plan, operate and
maintain the distribution networks. The DISCOs are responsible
for a good power quality and security of supply in their region.
Furthermore, they are legally bound to procure all information
and data necessary for energy accounting tasks of ESPs and
within BGs. The information procurement also includes the data
in the case when consumers change their suppliers. Furthermore,
the DISCOs determine costs for distribution network usage which
are included in the network usage fees and passed to the ESPs
which further distribute them to their consumers.

Customers are charged for the consumed electricity which is
measured through metering services (see Fig. 1). The costs include
the price of electrical energy, the network usage fee, the metering
costs and balancing energy costs. The network usage fee covers
investment and maintenance costs for electricity networks and
the costs for ancillary service power procurement.

The balancing energy and the cost for it are derived from
the BG. Consumers (also ESP), producers as well as traders of
electricity may group themselves in BG which are not necessarily
affiliated to a specific geographical area or DISCO within the
control zone. A BG is managed by an entity, often called ‘‘Balance
Group Responsible’’ (BGR), who takes over the administrative
tasks of collecting information from loads, generators and traders.
This information includes consumption and generation forecasts

Fig. 1. Electricity roles and actors in liberalized electricity markets (Crastan,

2004).
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Fig. 2. Timescales of frequency regulation control in most European countries

(Rebours et al., 2007a).

M.D. Galus et al. / Energy Policy 38 (2010) 6736–67456738

Figure 2.3.: Timescales of frequency regulation control. From [GZA10].

forecast or renewable energy in-feed forecast inaccuracies. Both, primary and
secondary reserves are triggered automatically. Tertiary reserves, are rarely
used, and are manually activated to face large and long lasting disturbances
[GZA10]1.

Currently, the stability of the system and load balance within BGs mainly de-
pends on the accuracy of the consumption and generation schedules. Nev-
ertheless, issues will be accentuated by the generalized demand of increasing
penetration of RES in current power grids. Fluctuations on the declared sched-
ules from solar and wind power generation require special consideration, due
to the stochastic nature of their generation profiles. Moreover, load flexibility in
the demand side will increase unpredictability of the consumption schedules.
Hence, the relevance of mechanisms for addressing unbalances generated from
the supply side is justified.

2.2. Challenges of the Future Power Grid

The future power grid is expected to dramatically change the traditional struc-
ture and operation of the power grid. The main drivers of this change are,
from the supply side, the increasing shares of RES and, from the demand side,
the increasing flexibility of end-customers. In this section, these challenges are
described and strategies to maintain load balance in the power grid, in consid-
eration of the new scenario, are discussed.

1In the German scenario, the balancing control products are referred to as primary control, sec-
ondary control, and minutes reserve [MOP14].
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2.2.1. Renewable Energy and Autonomy of Customers

An exemplary case of and increase in the utilization of RES in the last decade
is Germany. After the environmental disaster of the Fukushima nuclear power
station, the country has stepped up its efforts to reduce the dependency on this
type of fuel [GKB+11]. The Federal Government aims to achieve a share of 18 %
of renewables in the gross final energy consumption by 2020, going up to 40%
in 2025 and at least 80% in 2050 [Gov14]. Moreover, according to the Federal
Statistical Office ([Bun]), 30 % of the gross electricity production in Germany
in 2015 corresponded to RES, representing an increase of almost 7 percentage
points from 2013. In addition, wind and solar power represent roughly 20%
from the total generation.

Although these numbers are positive for achieving the objectives of the country,
regarding the reduction of CO2 emissions and dependency on nuclear power,
they certainly present a major challenge to the power grid operation. RES, such
as wind and solar power, are characterized by being: (i) hard-to-predict, it can-
not be known exactly how much power is generated at any given moment, (ii)
intermittent, meaning that one cannot rely on a constant supply generated by
these means, and (iii) not dispatchable, specifically, one cannot intentionally in-
crease the supply to fulfill the demand ([SGDG+12]). An example of this can
be observed in Fig. 2.4, which depicts the large variations between three con-
secutive days for wind and PV generation. Moreover, large differences can be
recognized between the predicted generation and the real generation for the
same days.

As explained, the power grid has not been designed to include large amounts of
non-controlled generation. From the BGs perspective, increasing levels of RES
will lead to deviations from the scheduled power supply. As a consequence,
BRPs will require to adopt measures to continue procuring the balancing of
supply and demand, such as repeatedly shutting and starting power plants,
accelerating technical wear. From an operational perspective, it is reasonable
to assume that increasing PV and wind penetration will increase the costs of
purchasing balancing energy [DE13]. Moreover, the consequences of insuffi-
cient balancing supply will eventually be suffered by all grid users.

An alternative to improve the ability of the power grid to maintain load balance
comes from the demand side, in the form of the so-called intelligent appliances
and electric vehicles [Sta08, GKB+11, VST13]. These devices have the ability to
autonomously select, within a user-defined flexibility interval, their operation
time according to some external or internal criteria. Then, from a load balancing
perspective, it would be desirable that these appliances begin their operation
when forecasts predict larger RES generation, which otherwise would gener-
ate load imbalances. On the contrary, if forecasts predict that RES supply will
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Figure 2.4.: Differences between forecast and RES output of three consecutive
days of January, 2014. The balancing zones correspond to 50Hertzs
for wind generation and TransnetBW for PV generation.

be reduced or non-existent, it would be desirable that these devices shift their
operation times to other hours. This way, the shape of balancing group de-
mand curve would flatten, reducing the requirement of balancing power and
increasing the efficiency of power usage [SYH12].

Additional actors in the future power grid are battery electric vehicles (BEVs),
in vehicle-to-grid configurations (i.e., the feed-in to the grid from the batter-
ies of vehicles) and micro-combined heat and power plants (µCHP) [MAS12,
AMS14]. These technologies are characterized by being able to consume and
produce energy. Hence, they can absorb imbalances from too much generation,
by charging in the case BEVs, or negative imbalances from shortage of supply,
by feeding-in power to the electric system or beginning operation in the case
of the µCHP. Nevertheless, these technologies also increase complexity of the
operation of the power grid and its management2.

In this context, the main challenges for the future power grid come from the
features of the new elements within it and the increasing complexity they im-
pose on system operation. On the supply side, the main challenge corresponds
to the absorption of inevitable imbalances generated by RES. On the demand
side, the main challenges come from the increasing flexibility and autonomy of

2Although these technologies are promising, they are not addressed in the present work. Nev-
ertheless, an outlook on the integration of them into the approach presented in this thesis is
presented in Chapter 7, Section 7.3.
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customers, which will make the predictability of global schedules and aggre-
gated load profiles much more difficult. Furthermore, customers will be able
to supply themselves or exchange electricity products, dramatically increasing
the complexity of the system operation. In this sense, both sides of the power
grid can operate to compensate each other weaknesses and increase power grid
efficiency. If this is not the case, objectives, such as increasing RES penetration,
reducing dependence on fossil fuels, or achieving energy security, will not be
met and the power grid stability might be compromised.

2.2.2. Demand Response and Load Balancing

Although intelligent appliances might help in reducing load imbalances in BGs,
their autonomy represents a challenge for the power grid operation. Let’s as-
sume an intelligent washing machine is given a user-defined flexibility interval
of six hours, after being charged with a load. Now let’s assume that the wash-
ing machine operates within a BG with 10, 000 additional intelligent washing
machines, with similar flexibility interval. Theoretically, a wrongly designed
incentive mechanism might influence all washing machines to select the same
operation time, generating large imbalances in the BG and threatening power
grid stability3. Hence, the utilization of intelligent devices to absorb RES gen-
eration, would further increase imbalances in the power grid. Therefore, some
mechanism is required to organize the operation times of these devices, such
that they do not generate additional imbalances.

To coordinate the demand of flexible loads, such that the load balance in the
BGs is achieved, different mechanisms or measures can be utilized. In the con-
text of the energy market, the planning and implementation of the activities
of utilities to modify the consumption of customers, such that specific global
load profiles are achieved, is referred to as demand side management (DSM -
[Gel85]). These mechanisms can range from different types of incentives, to di-
rectly controlling the load shifting process of individual devices. The active co-
ordination of loads to achieve specific consumption objectives, is referred to as
demand response (DR) and specific measures are referred to as DR programs.
DR programs consider advanced forms of interaction between utilities and cus-
tomers to achieve the desired global consumption behavior. Hence, means that
enable these forms of communication are required [BMM14]. In this thesis, in
concordance with [Got15], DR programs are categorized into two groups:

• In centralized load control, strategies are characterized by customers ced-
ing control to an external entity, which calculates adequate operation times

3It has to be noticed that this situation could also occur with the current power grid operation.
Nevertheless, the stability of the power grid is maintained due to the randomized execution
times of these appliances, when no incentives are performed on costumers.
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for the appliances of customers, such that balance within a BG is achieved
and RES usage is maximized [TAMU14]. Under this paradigm, approaches
such as direct load control and optimal schedulers can be found [SYH12,
SGC+13, TAMU14]. Nevertheless, if the size of the network is too large,
this type of approach may not be computationally affordable [TAMU14].
Moreover, to achieve optimal results, centralized schedulers usually re-
quire full information of the load composition of customers and full con-
trol over loads defined as flexible. This certainly implies major privacy
concerns for end-customers and for some users, such an approach might
be considered unacceptable. In connection to this issue, centralized ap-
proaches might not be adaptable when new devices are incorporated,
requiring a permanent update regarding the load composition of cus-
tomers.

• In decentralized load control, incentives are given to customers, such
that they modify their consumption behavior. In this case, computational
complexity is dramatically reduced, since the decisions involved in the
scheduling of appliances are performed in a distributed manner, among
participants. Privacy concerns are also reduced, since no external entity
has control over what occurs within the domain of the customer. Typi-
cally, pricing approaches (such as real-time pricing or time-of-use pricing
[Str08]) fall into this category. In this case however, since the behavior
is guided, not commanded, misplaced incentives can trigger avalanche ef-
fects [GKB+11]. If all customers respond in the same way to pricing in-
centives large imbalances will be obtained. To mitigate this effect, some
authors have proposed different forms of randomization [Got15, VST13,
GWT+13]. Additionally, some approaches propose communication be-
tween participants, such that their aggregated actions minimize individ-
ual costs while achieving balance within BGs [HVS11, MRWJ+10]. In
the latter, however, privacy concerns might increase far more than with
centralized approaches, since communication channels to achieve the re-
quired coordination might be utilized to corrupt the behavior of partici-
pants. On the other hand, the decision making process to achieve consen-
sus through communication and negotiation in larger networks, might be
unacceptably long.

This way, the challenge of any load management mechanism is how to maxi-
mize RES usage in a computationally affordable manner, while respecting cus-
tomers autonomy and privacy, and without increasing load imbalances in the
power grid.
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2.2.3. Some Load Balancing Strategies

Many alternatives have been proposed for load balancing. In [MRWJ+10], an
autonomous distributed algorithm, based on pricing incentives for energy con-
sumption scheduling, is proposed. This approach minimizes costs and bal-
ances the total residential load of customers sharing a common energy source.
The algorithm focuses on small interactions between participants, where each
one tries to maximize their own benefit in a game-theoretical setting, which
leads to a Nash equilibrium. This approach is proven to converge and reach
an optimum. Nevertheless, the requirement for direct interaction implies se-
curity risks. Furthermore, in larger networks, achieving the Nash equilibrium
might not be possible in a reasonable amount of time and might lead to a high
communication overhead.

A distributed approach for scheduling smart appliances, named randomized
load control, is presented in [VST13]. In this case, a utility transmits the ideal
shiftable load to each smart meter in a micro-grid. This device derives a prob-
ability distribution from the profile and randomly reschedules the household
appliances execution times. They conclude that quality solutions depend on the
coincidence between micro-grid load composition and RES output. In this ap-
proach, however, a feedback mechanism between smart meters and the utility
is not considered and the utilization of RES forecasts is not mentioned. Addi-
tionally, this alternative is mostly reactive and it does not consider the impact
of imprecise of RES forecasts and uncertainty.

Another probability-based scheduling alternative is proposed in [SYH12]. In
this case, a water-filling approach is utilized to distributively schedule the ex-
ecution time of appliances. The main objective is to obtain a flat micro-grid
load profile, such that the efficiency in the utilization of conventional gener-
ation is maximized. Participants reschedule probabilistically their appliances,
according to a centrally computed distribution. Hence, no direct communica-
tion occurs between participants. In this case, however, the increase of RES,
whose shape is irregular, is not addressed and the utilization of RES forecasts
is not considered.

A real-time algorithm for decentralized deferrable load control under uncertain
RES is proposed in [GWT+13]. In this case, each individual appliance, such
as a washing machine, receives an average aggregated load, which considers
all participants. Then, according to the authors, each individual load solves a
convex optimization problem and calculates its own schedule. The schedules of
all participants are aggregated by a central entity. In this algorithm, the central
entity requires knowledge regarding the total number of deferrable loads and
their schedules, once generated. As explained, this can imply security risks for
individual participants.
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In [SGDG+12], three policy designs are proposed for real-time load schedul-
ing, with a receding horizon control approach outperforming the other poli-
cies. The main proposal of the approach is a new evaluation function, which
incorporates prices and RES forecasts, for the centralized scheduling operation
times of multiple EVs. In this approach, a centralized scheduler has full control
over the devices. Furthermore, the validity of this approach with less flexible
devices is not empirically demonstrated.

[HVS11] proposes a so-called stigmergy-based approach for load balancing.
Here, a coordination mechanism to address the supply and demand match-
ing large numbers of distributed actors, is presented. This approach considers
achieving an equilibrium state through alterations on a definition of a shared
environment space. Nevertheless, in this approach, the identity of partici-
pants is required for coordination to occur. Moreover, a direct communication
channel between actors is necessary to cooperatively construct solutions. As
mentioned, this implies potential privacy and security risks for end-customers.
From a conceptual perspective, this approach does not qualify as stigmergy, in
the strict sense of the concept, since requirements like anonymity and indirect
communication are not met. These issues are further discussed in Chapter 3.

Approaches for demand side management based on ant colony optimization
(ACO) have also been developed. On the one hand, [SMCO15] proposes an al-
gorithm to calculate efficient schedules for flexible appliances within a house-
hold. The approach considers a graph representation of the load scheduling
problem. The objective is the minimization of the electricity costs of a house-
hold while complying with load restrictions. This approach obtained com-
petitive results when compared with a genetic algorithm. On the other hand,
[DPR14] presents an architecture for distributed load scheduling in an isolated
population of the power grid powered by wind turbines. The scheduling prob-
lem is also modeled as a graph, in which the arcs represent the operational
prices of the loads to schedule. The objective of the problem is to minimize the
costs of the whole system by increasing wind power usage. An ACO-based
algorithm is used to generate schedules for all participants. Results show that,
with this approach, customers are able to direct their demand such that wind
power usage is increased. Although both approaches present a novel perspec-
tive of the problem, some elements undermine their real applicability. Firstly,
the required graph representation of the problem is constructed through the
combination of possible load schedules. Hence, with larger networks, the size
of the graph to be constructed, before the solution construction process begins,
will grow exponentially. Secondly, both approaches require detail knowledge
of the load composition of consumers to construct this graph. As discussed,
this represents a major privacy issue for end-customers.

These are some of the many approaches to face load balancing in the power
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grid. As it can be observed, the focus in each scenario is quite clear and defines
the strengths and weaknesses of each alternative, regarding user autonomy,
privacy, flexibility and optimality of the performance, among others. Hence,
in the described scenario for the future power grid, a BG manager must be
aware of the trade offs and benefits of each alternative, in order to decide which
approach is more suitable in each scenario.

The load balancing approach proposed in the present thesis puts the emphasis
on autonomy, simplicity and privacy of customers. Additional issues empha-
sized are robustness of the global behavior, flexibility for the inclusion of new
loads and customers, and coordinated behavior for achieving load balancing
and increasing RES usage.

2.3. The Power Grid as a Complex System

Throughout this chapter, some of the many components of the power system
have been discussed. These components connect and interact in non-linear
ways, forming intricate networks and feedback loops. The power grid is in
continuous adaption to provide electrical services to thousands of autonomous
customers. The system is robust to perturbations, being able to, within reason-
able boundaries, increase or decrease generation in order to maintain balance of
the load. The power grid is also in permanent evolution through the incorpora-
tion of new technologies. These features are characteristic of complex systems
[BMMS+06, MSS10].

The increase in RES shares in conjunction with the implementation of EVs and
intelligent appliances, although increases flexibility, implies a major change in
the way the power grid operates. Unpredictability of the supply and demand
schedules increases, due to the new features of the participants. Nevertheless,
this opens the alternative for the development of new business models in which
BRPs can cooperate with residential customers to guarantee local stability of the
power grid. Hence, the main challenge for managing such a complex system
is: How to guide a system composed of potentially thousands of autonomous
entities such that a coherent global behavior is achieved, which complies with
restrictions of customers while balancing the power grid and increasing RES
usage?
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2.4. Discussion and Summary

The power grid is experiencing a dramatic change from its traditional design,
based on centralized large power plants transporting power through long dis-
tances in a unidirectional manner, to a highly distributed system with large
flexibility of customer and RES penetration. In this new scenario, access to
the internal architecture of participants should be limited in order to reduce
privacy risks. Moreover, there will be no guarantee of benevolent behavior of
end-customers, regardless of their potential flexibility. Furthermore, the behav-
ior and interactions between customers will be less predictable. Hence, load
management mechanisms should consider these restrictions when assessing
load balancing and increasing RES usage.

From a load balancing perspective, the increasing shares of RES represent a
major challenge for maintaining balance between power supply and demand.
Since supply cannot anymore be freely adapted to the demand, the increas-
ing flexibility of customers could be utilized to cover the supply and achieve
load balance. Traditionally, only large consumers participate in DR programs.
Hence, market models which promote residential customers participation in
DR programs should be designed and implemented [Got15].

Once the participation of customers is achieved, the challenge becomes the uti-
lization of the residential flexible loads to achieve load balancing. In this case,
load management mechanisms should aim to achieve robust behavior, adapt-
ability to perturbations and deviation from RES, effective utilization of the dis-
tributed nature of the future power grid, and cooperation and coordination in
the achievement of balancing objectives.

These features may be conflicting with basic requirements of customer. From
this perspective, traditionally end-customers are anonymous within a popula-
tion. In the future scenario, communication channels will open, which might
be utilized for malicious activities and could threaten privacy and autonomy
of customers. Hence, load management mechanisms must take account of the
global and individual perspectives.

In the following chapter, a detailed description of a coordination and coop-
eration mechanism from nature, which depicts many of these features, is pre-
sented. This mechanism is characterized by indirect and anonymous communi-
cation between participants of a system, which depicts self-organized behavior
and is called stigmergy.
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Self-Organization

“ What are you bitching about? In case you haven’t noticed, we ants
are running the show. We’re the Lords of the Earth. ”

Weaver, Antz, 1998

The intricate relationships and feedback loops between the different elements
within complex systems make them hard to manage. In case of the power
grid, the growing autonomy of customers and the requirement of expanding
the penetration of hard-to-predict supply from renewable energy sources such
as wind and solar power, are increasing the complexity of its operation and its
efficient management.

Nevertheless, it is quite interesting to observe that the power grid has self-
organizing features. It is resilient to the failure of single components, as long
as they are not essential, such as individual consumers or small power plants.
Moreover, it has the ability to moderately adapt its generation, in order to sup-
ply energy to large amounts of autonomous customers. Additionally, it is in
permanent evolution, incorporating new technologies both on the demand and
supply side, changing its features and limitations. In this context, it is reason-
able to consider that the power grid behaves similarly as a living organism with
a defined purpose which can improve the efficiency of its operation.

To understand how to manage this complex system, first, some fundamental
issues regarding self-organization and life-alike systems need to be discussed.
Furthermore, the relation between stigmergy and self-organization needs to be
understood, since the approach for managing autonomous customers in the
power grid presented in this thesis, is based on the former one.

In this chapter a discussion of the relation between organic systems and self-
organization is presented. Furthermore, different strategies for managing self-
organizing systems while preserving desirable self-organizing features are dis-
cussed. This discussion is essential for justifying the power grid as a life-alike
system and understand how it can be efficiently guided, given its features. In
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the context of managing self-organizing systems, a comprehensive analysis of
stigmergy is performed. Results of this analysis are utilized for supporting
stigmergy as a valuable alternative for managing the power grid, given the re-
quirements and characteristics of the future power system (Chapter 2). Further-
more, this analysis is utilized in Chapter 4, for the design of a stigmergy-based
management mechanism for the power grid.

Contributions in this chapter regard the enhancement of the taxonomy for stig-
mergy, the specification of the stigmergic coordination process, and the defini-
tion of the requirements for artificial stigmergic systems.

3.1. Organic Systems and Self-Organization

Which features do organic systems have that make them capable to cope with un-
certainty? How do these features relate self-organization and organic systems?
Can artificial systems be called organic ? Which are the conceptual implications
of designing management mechanisms for self-organized systems?

In this section, some of the features that allow to reference some artificial sys-
tems as organic are discussed. Furthermore, the relation between organic sys-
tems and the concept of self-organization is studied. Through the revision of
two definitions of self-organized systems, the importance of autonomy and the
relation between individuals for the spontaneous rise of global coherent behav-
ior is emphasized. Finally, the boundaries of the management mechanisms for
self-organized systems are discussed.

3.1.1. An Overview of Organic Systems

Increasingly, the presence of autonomous devices which are able to exchange
information, build intricate networks and influence each other, becomes ubiq-
uitous [MSS10]. Systems composed of these kinds of devices are complex, in
the sense that minor alterations in the way local interactions take place might
trigger large changes from a global perspective. These devices should be able to
organize themselves in order to achieve objectives and provide services spec-
ified by the users. This implies that users will define an acceptable behavior
for these devices, and they autonomously will have to find solutions that ful-
fill those requirements in the best possible manner. Then: How can a system
composed of autonomous entities which can influence each other be managed,
in order to coherently achieve clear objectives defined by a user? To answer
this question first these systems should be acknowledged as life-like entities, or
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organic systems, and the notion that full control over them cannot be obtained,
should be understood.

This notion implies that the performance of individual components of the sys-
tem is not required to be perfect, and that the system itself is not required to
perform as an orary, where every state and result are completely predictable.
On the contrary, what matters in organic systems is that the final global objec-
tive is achieved within acceptable boundaries, acknowledging the possibility
that some final results within these boundaries might be better than others.
Therefore, in this context the failure of specific components of the system is
acceptable as long as this does not prevents it from achieving its global objec-
tives.

These features can be observed in living systems. The human brain is com-
posed of billions of neurons interacting and coordinating automatic behavior,
such as breathing, and voluntary behavior, such as walking. The brain au-
tonomously directs attention to objects that are relevant for the current task,
and neglects others that are not [MCS11]. Additionally, if one suffers an acci-
dent (especially in early stages of its development) the brain is able to recon-
figure the connections between neurons in order to perform these tasks in the
best possible way, given the new context. However, there is a breaking point
where the brain cannot reconfigure or repair itself anymore. This can be ob-
served with individuals that have suffered dramatic accidents or are afflicted
by degenerative illnesses, which are never able to fully recover their autonomy
and, in many cases, loose consistency of their own personalities.

Other type of complex living systems are schools of fish. These systems can
be composed of thousands of elements. It can be assumed that the school has
a unique systemic objective, e. g., to move from one place to another. How-
ever, all elements in the school are autonomous, interact and can influence one
another, since the route of each fish depends on its distance to other fish and
the proximity to predators such as a shark. If a shark attacks a single fish, the
escaping individual will influence its neighbors and change the shape of the
school, making it impossible for the shark to focus on a single prey to hunt.
As a consequence, it can be observed that the school behaves in a similar way
as a single organism which has the ability to avoid obstacles and reorganize
itself in order to continue its journey. Interestingly though, this system can be
managed to perform in a certain way, while still depicting self-organizing fea-
tures and respecting the autonomy of individual fish. A strategy of orca whales
when hunting schools of herring is building, through cooperative work, a wall
of bursting bubbles in order to guide the position of the school to the surface.
Individual fish escape from the bubbles, identifying them as threats and, as a
consequence, influence the position of their neighbors modifying the global be-
havior of the school. Once the school is forced into a tight sphere by an ever
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smaller wall of bubbles, the whales slap the school with their tail flukes, killing
or stunning small numbers of herring. Then, the herring are devoured one at a
time by the whales, which take turns to maintain the wall of bubbles. The pro-
cess continues until all whales have fed, which usually implies that the school
exists no more [SD97, Sim97].

Given these examples, some essential features of these systems that can be ob-
served, either natural or artificial, are adaptability to uncertainty, tolerance to
failure of individual components, interaction between components, autonomy
and emergent global behavior. Hence, organic systems are systems which dy-
namically adapt, through the interaction between their components, to alter-
ations on their environment while aiming to achieve an objective [MSS10].

Furthermore, it can be observed that given the correct stimulus, organic self-
organized systems can be influenced to achieve a specific global behavior or
perform in a certain way, which serves a clearly defined purpose. In the case
of the herring school, the purpose is defined externally, incidentally implying
the destruction of the system, and the stimuli is the wall of bubbles. Moreover,
the process of influencing this system is only possible because whales exploit
the global behavior of the school, unlike the shark, which focuses on individ-
ual components. Something similar occurs with patients in physiotherapy re-
covering from limbs amputation. In early stages, they are influenced through
massages and electric impulses in order to recover sensibility on severed limbs.
Afterwards, patients are provided with prosthetics which they have to learn
how to utilize. During the whole process, the brain autonomously creates and
enforces new neuronal connections in order to achieve high level objectives
[CYKD13, Joh00]. The stimuli correspond to the training process that the pa-
tient undergoes.

3.1.2. A Brief Discussion of Self-Organization

A central topic in the discussion is that artificial systems which behave organ-
ically also exhibit self-organizing features. From a global perspective, they re-
organize their individual components and the way they perform, to protect,
heal and even improve themselves in order to cope with uncertainty. Ab-
stracted from the philosophical discussion and referred exclusively to the prac-
tical applications of self-organization, these features can be regarded as the so-
called self-x properties: self-configuration, self-optimization, self-healing, self-
protection, and self-explanation, among others. A system provided with self-
healing properties is able to detect malfunction in its operation and to cor-
rect it autonomously, without external assistance. A self-protecting network
is able to proactively detect and defend itself against attacks or cascading fail-
ure, while autonomously improving the knowledge of potentially dangerous
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activities that might impair its operation. These features allow self-organizing
systems to learn from their environments and respond intelligently to unex-
pected scenarios. For complementary insights and extended discussion on the
self-x properties, cf. [SMSc+11, BMMS+06, MSS10].

These features might raise the perception that self-organized systems are too
complicated and not the adequate alternative for specific tasks, which might
permanently require optimal responses1. Self-organized systems, like organic
systems, are designed to operate in changing environments, which require flex-
ibility. Moreover, they are designed for situations where achieving the optimal
solution might not be as important as achieving any solution which will allow
the system to survive and improve in future stages.

In this context, and in order to understand essential issues of self-organization
in practical scenarios, two definitions are reviewed. The first definition, from
[Ger07], goes as follows:

A system described as self-organizing is one, in which elements interact in
order to dynamically achieve a global function or behavior.

The main idea behind this definition is clear. Nevertheless, in the context of
this thesis a more precise definition of the term interaction is required, together
with a clear perspective on the importance of individual autonomy. Indeed,
a centralized controller could interact with subordinated entities and still have
full control over the system. Certainly, this is not the case in self-organization
as it was observed in the previous examples. Self-organized systems should be
guided to move into or within a target space [SMSc+11].

Moreover, a question rises regarding the self-x properties: Can these properties
individually be provided to a system or do they spontaneously emerge as a
consequence of the interaction and feedback between the components of the
system? This issue is addressed in the definition from [EdM08]:

A self-organizing system (SOS) consists of a set of entities that obtains an
emerging global system behavior via local interactions without centralized
control.

The importance of this definition is that it explicitly recognizes the importance
of a non-existent centralized control. Furthermore, it clearly connects the spon-
taneous emergence of global behavior to the local interaction of individual com-
ponents. These are relevant distinctions to be made. From this definition it can
be concluded that the self-x properties emerge spontaneously from the interac-
tion between components and that they are a sub-product of the system behav-
ing in an organic manner. This unveils a relevant requirement for designing

1In this specific case a difference is stated between optimal and acceptable behavior or performance.
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self-organized systems. The system design should promote or disrupt the in-
teraction between individual entities such that a desired global behavior arises.
Hence, specific systemic properties should emerge and be visible from a global
perspective as a consequence of specific design features.

The previous conclusions bring to light the importance of the micro-macro effect
for self-organized systems. The relevance of the link between micro-levels and
macro-levels is obvious when it is understood that the relations, interactions
and behaviors at a micro-level define the global properties and behavior of the
system. Therefore, in self-organized systems, the way behavior is designed at
a micro-level is vital. A wrong design might not only prevent the system from
achieving a desired global behavior, but might also trigger avalanche-effects or
uncontrolled chaotic behavior in a negative feedback spiral.

Nevertheless, at this stage, the role of the user continues to be vague. In the
context of artificial stigmergic systems, the system should autonomously re-
configure and operate to achieve user-defined objectives which might change
in real-time. This is fundamentally different for natural stigmergic systems.
Hence, in consideration of the previous ideas, for the remainder of this thesis
the following tentative definition of self-organization for artificial systems is
considered:

A system is described as self-organizing if it consists of a set of autonomous
entities that proactively interact giving rise to and modifying the global
systemic behavior in order to fulfill user requirements regarding the system
operation and its output.

With this definition, a final piece in the puzzle of artificial self-organizing sys-
tems can be recognized. These systems should serve a purpose. Therefore, the
local interactions should be oriented such that the emerging global behavior
can fulfill the desired objectives. Furthermore, this definition recognizes that
self-organizing systems can face dynamic and uncertain scenarios. Hence, the
requirement of modifying the global behavior to move the performance of the
system into a desired target space becomes essential. This is the final chal-
lenge for artificial self-organizing systems: Designing individual autonomous
components such that through their interaction, which cannot be explicitly con-
trolled, a global behavior can emerge that fulfills the objectives of the system.

3.1.3. Guiding Behavior in Self-Organized Systems

A relevant issue in artificial self-organized systems is that individual behavior
at micro-levels of the system should not be directly controlled but only induced,
so that the user-defined objectives are achieved autonomously by the system as
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a whole [Ger07]. However, in real world applications it might be required that
some form of control over the performance of these systems is available. Then,
it is important to identify how control over a self-organizing system can be
increased, without depriving it of its desired features.

From literature ([SMSc+11]), two main strategies can be identified for guiding
the global behavior of these systems in order to increase control without affect-
ing the self-organizing features.

In the first strategy, the guidance mechanism can be distributed among the dif-
ferent components of the system. The objective is to modify the interactions
and feedback loops that give rise to global behavior. No explicit control is per-
formed over the system, nor explicit commands sent to individuals. On the
contrary, the global behavior is influenced through the alteration of the rules
and mechanisms that define the interaction between individuals. Hence, since
the interactions which give rise to a global behavior are modified, a different
global behavior will be achieved [SMSc+11, Ger07]. This strategy can be illus-
trated by a cellular automaton. Cellular automata are mathematical idealiza-
tions of physical systems which consist of a grid of cells, each having one out of
a finite number of states, such as on or off [Wol83]. At each point t in time, the
state of each cell is determined according to rules which consider the state of
the neighboring cells at the previous point in time t − 1. In this case, the mod-
ification of the rules that define the change of state of the cells, will change the
way they interact among themselves, and therefore the global behavior. This
strategy is referred to as strong self-organization, since no central entity is actively
modifying the behavior of the system. On the contrary, control is distributed
among all entities and the rules that define emergent behavior are modified,
giving rise to different global behavior.

In the other basic strategy, a central entity performs controlling actions that
drive the system behavior into a desired target zone [DBT00, SMSc+11]. These
actions influence the system, or sub-groups of it, directly to perform their tasks
in a different way or at a different location, while complying with the autonomy
requirements of the individual components. Ant Systems (AS )[DBT00] can be
considered as a typical example of this strategy. Specifically, regarding an AS
solving a Traveling Salesman Problem (TSP) instance, a central entity enforces
a specific route at the end of each iteration with extra pheromone deposition,
directing the search to specific sections of the search space (Details of this exam-
ple are discussed in Subsection 3.2.4). Nevertheless, the solution construction
process continues to be performed in a distributed and self-organized manner.
This approach is referred to as weak self-organization, since controlling actions
are performed by a central entity [FD11].

Variations and combinations of these strategies are possible in order to comply
with specific problem instances. Hence, these two strategies define the bound-
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aries in the range of alternatives, which can be utilized to include controlling
actions over self-organized systems. Nevertheless, the common denominator is
that no direct command is performed over individual elements of the system.
Conversely, they are only influenced to perform in a different way.

It can be seen that the key feature in self-organization is autonomy of individ-
uals, since it is this autonomy which enables emergent behavior to arise and
fulfill the objectives defined for the system. Therefore, once the autonomy of
individuals is acknowledged, the existence of a centralized controller, as an
entity which has full control over the system, becomes a conceptual contra-
diction. Then, in this context, the objective of a management mechanism is to
modify and guide the global behavior, which is a consequence of individual
autonomous actions, in a coherent and consistent way.

3.2. The Stigmergy Mechanism

The concept of stigmergy was introduced by the French entomologist Pierre
Paul Grassé in 1959 and it explains how large collections of insects coordinate,
giving rise to global behavior that largely exceeds in complexity the abilities
and scope of individual insects. Stigmergy enabled researchers to understand
the paradox of coordination in social insects (like ants, wasps or termites) which
from a system perspective look surprisingly organized and well coordinated to
achieve clear systemic objectives. However from an individual perspective, it
seems as if each insect pursues its own agenda, without much awareness of
the activities of other nestmates ([TB99, ROV+07]). Furthermore, the stigmergy
mechanism explains how self-organization emerges, maintains and dissolves
in insects societies.

From a self-organizing systems perspective, stigmergy conforms a viable alter-
native for the coherent guidance of emergent global behavior. For the remain-
der of this thesis the following definition of the concept will be utilized, which
comprises the main ideas and perspectives in literature ([TB99, HRJ08, MO08,
Hey11]):

The concept of stigmergy explains the processes and self-organized behav-
ior which results from the indirect communication between individuals
through anonymous alterations on the environment. As a consequence
of these alterations cooperation and coordination emerge spontaneously
which enables the system to achieve global objectives in a self-organized
manner.
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To understand the internal functioning of this mechanism and the different as-
pects of it, in this section different examples of stigmergy in nature are ana-
lyzed. Then, a taxonomy of the so-called stigmergic variables, which enable in-
direct communication in these systems, is provided. Afterwards, a discussion
regarding the best known artificial stigmergic system is performed. Finally, the
cycle of the stigmergic coordination process and the requirements for a system
to be classified as stigmergic are provided.

3.2.1. Stigmergy in Nature

Stigmergy presents itself in nature in many forms. Each form implies different
types of responses from the engaged individuals, different features of the coor-
dination process and different global behavior. The following examples enable
the identification of the common features in stigmergic systems and determine
the requirements of this coordination mechanism.

Foraging Ants

The typical example of stigmergy in nature is ants foraging. Ants are able to,
incrementally, reveal the most adequate path between each food source and the
nest, in terms of distance, food source quality, and accessibility, among others.
Given that there are millions of possible paths and that each individual ant is an
extremely simple organism unable to find the path by itself, how are they able
to reveal a fairly optimal one? Ants randomly explore the area surrounding the
nest, and while moving they leave a chemical pheromone trail on the ground,
which all ants can perceive and evaporates at a certain rate. When an ant finds
a food source, the ant evaluates the quality and quantity of it. While the ant
returns to the nest, it deposits additional pheromone on the path according to
the quality of the food source. Ants select probabilistically their path, tending
to follow the path with the largest pheromone concentration [BL08, DBT00].
Additionally, considering that pheromones evaporate over time, the shortest
or most visited path will achieve a larger probability of being visited, thus in
turn raising it’s pheromone concentration and becoming more attractive for
ants to follow. The evolution of the search can be seen in Fig. 3.1. The stim-
ulus that triggers this auto-catalytic process ([TB99, DBT00]) which gives rise
to coordination in solving the problem is called stigmergic stimulus. In the ac-
cording terminology, ants coordinate through a signal or mark embedded in
the environment, with a continuous value.
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Figure 3.1.: Idealized setting explaining the foraging behavior of ants.
Pheromone is characterized as a red line which increases or reduces
its width according to the level of pheromone concentration. (a)
foraging starts. 50% of the ants take the short path (circles), and
50% the long path (rhombus). (b) ants which have taken the short
path arrive earlier. Pheromones evaporate in the first sections of the
routes. (c) Pheromone has less time to evaporate on the short path.
Hence, it has more pheromone concentration and is more likely to
be visited. On the long path, pheromone has more time to evap-
orate. Therefore, the path becomes less attractive as pheromone
concentration diminishes. (d), (e) and (f) the shortest path is vis-
ited regularly receiving constant pheromone deposition. The search
converges.

Wasps Funnel

The experiments performed by Dr. Andrew P. Smith ([Smi78]) unfold other
aspects of stigmergy. He examined the construction of a solitary wasp shed,
specifically of a funnel above the entrance made from mud pellets. The process
corresponds to a stimulus-response sequence, on which the completion of each
well characterized stage constitutes a stimulus to perform the next stage of con-
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Figure 2. Stimulus-response sequence leading to the construction of the mud funnel in the nest of the Eumenid wasp
Paralastor sp. Each new building stage n is completed after a stimulus Sn triggers a new ensemble of building actions
Rn. The completion of each building stage n gives rise to a new stimulus SnC 1 that triggers new building actions RnC 1
leading to the construction of the next building stage n C 1. When the � fth stage has been completed, there exists
no more stimulus on the funnel to trigger new building actions and the construction stops.

als. This mechanism opens the way for an indirect coordination of individual activities.
The processes that regulate such interactions are not limited to the direct in�uence of
the stimuli produced by individuals. Indeed, each animal’s activity is organizing the
environment in such a way that stimulating structures are created; these structures can
in turn direct and trigger a speci�c action from any other individual from the same
species that comes into contact with them. Chemical trails that are produced by some
ants species [10, 23], muleteer trail networks, and even dirt tracks and trail systems in
man [31, 32] result from interactions of this kind.

One of the most interesting examples studied by Grassé is the building behavior
of termites. Stigmergy (from the Greek stigma: sting and ergon: work) was initially
introduced to explain indirect task coordination and regulation in the context of nest
reconstruction in termites of the genus Bellicositermes [26, 28]. Grassé showed that
the coordination and regulation of building activities do not depend on the workers
themselves but are mainly achieved by the nest structure: A stimulating con�gura-
tion triggers a building action of a termite worker, transforming the con�guration into
another con�guration that may trigger in turn another (possibly different) action per-
formed by the same termite or any other worker in the colony. Stigmergy offers an
elegant and stimulating framework to understand the coordination and regulation of
collective activities. The main problem is then to determine how stimuli are organized
(in space and time) to generate robust and coherent patterns: Colonies of a given
species produce qualitatively similar patterns, be they nest architectures or networks of
foraging trails and galleries.

2.4 From Sequential to Stigmergic Activity
To better understand how multiple, “independent” building actions can be coordinated
through a stigmergic behavioral algorithm, it is instructive to look at nest construc-
tion in solitary species. The experiments performed by Smith in 1978 on a solitary
wasp shed some light on the origin of coordination of building activities and on the
preadaptation (to sociality) of this behavior [41]. Nest construction in the Eumenid
wasp Paralastor sp. occurs as a stimulus-response sequence in which the completion
of one stage provides the stimulus for commencement of the next (see Figure 2). A
wasp begins with the excavation of a narrow hole, approximately 8 cm in length and
8 mm in width. When the nest hole has been completely lined with mud, the wasp
begins the construction of a large and elaborate mud funnel above its entrance. The
funnel is built in �ve distinct stages from a series of mud pellets that are applied in a
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Figure 3.2.: Stimuli-response sequence in the funnel construction process of the
Eumenid wasp Paralastor sp. Each stage in the process is triggered
by an stimulus Sn, n ∈ [1, 5], which stimulates the wasps to begin
a new set of actions Rn. The completion of each stage conforms the
stimuli which triggers the beginning of the next stage. When the
last stage is finished, there are no more stimuli triggering additional
actions. Therefore, the construction process stops ([TB99]).

struction process. This way, the funnel is built in five distinct stages, which can
be observed in Fig. 3.2. Stage 1 considers building the stem of the shed up to a
specific height. In Stage 2, the wasps cease to construct uniformly upwards and
begin to build a uniform mud curve on one side of the stem. In Stage 3, when
the mud curve is finished, the construction of a bell begins by splaying the stem
to create a flange. In Stage 4, the flange is widened in the direction of the stem,
giving it a characteristic asymmetry in one direction. Finally in Stage 5 the bell
is completed by building downward from the edge of the flange [TB99, Smi78].
After identifying each stage, Dr. Smith made holes in the funnels at different
stages of the construction, specifically when the funnel was almost completed.
When wasps returned to their nests they soon discovered the holes. After some
minutes of careful examination, one wasp began to work: A second funnel
was built on top of the first one [Smi78] (see Fig. 3.3). These results reveal
that in solitary circumstances, the process of indirect coordination of behavior
through previous consequences or stimuli, results in sequential-like behavior
[TB99]. Furthermore, if the stimuli are conflicting or incoherent redundant be-
havior can be obtained and in larger populations, avalanche effects may appear
([Fro05, GKB+11]). However, the most interesting conclusion of these experi-
ments is that if individuals are not able to distinguish the results of their own
labor from those of others, then indirect cooperation between individuals can
occur. Moreover, in this case the behavior of individuals could be influenced
without directly commanding them to perform any task, as it was shown by
the previous experiments. This is a fundamental concept in stigmergy (See dis-
cussion in Section 3.2.5). Finally, the stigmergic stimulus corresponds to the
level of completion of the funnel, this is, the level of completion of the task
that the wasp performs. This way, wasps would coordinate through a physical
alteration of the environment with a discrete value.
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Figure 3. The construction of an abnormal mud funnel in the nest of the Eumenid wasp Paralastor sp. When the
funnel is almost completed, a spherical hole (indicated by the arrow) is made. This hole is equivalent to stimulus S1 ,
which triggers funnel construction. As a consequence, the wasp builds a second funnel, over the hole and on top of
the � rst one already built.

highly stereotyped sequence. Stage 1 involves the building up of the funnel stem by
application of a series of mud pellets until it reaches a length of 3 cm. At Stage 2 the
wasp ceases to build uniformly upward, and by adding more mud to one side begins
the construction of a uniform curve in the stem of the funnel. Once the curve has been
completed, Stage 3 begins with the formation of a bell with the splaying of the stem to
form a uniform �ange of approximately 2 cm diameter. At Stage 4, the �ange is next
widened more on the side nearest to the stem than elsewhere, thus giving the bell a
characteristic asymmetry in one direction. Finally at Stage 5, the sides of the bell are
formed by building uniformly downward from the edge of the �ange. At the end of
each stage of building, the stimuli for the responses that lead to the completion of the
next stage are those that the animal encounters as a consequence of its earlier behavior.
What happens when the stimuli that trigger the beginning of a previous building stage
are encountered by the wasp just as it �nishes the end of a particular stage? Smith
examined this question in one of his experiments. A spherical hole located in the
neck of a funnel is made just after Stage 3 has been completed (see Figure 3). After
examining the damage several times, the wasp begins the construction of a second
funnel, over the hole and on top of its �rst funnel. This result is extremely important
for anyone who wants to understand the coordination of building activities in social
wasps and more generally in social insects. In a solitary species such as Paralastor
sp., the indirect coordination of its behavior through the previous consequences of its
building actions results in a sequential-like behavior. There are two consequences to
this behavior.

First, the order in which stimuli arise in the course of the construction must follow a
precise sequence. If by chance a stimulus triggering a set of building actions that gives
rise to a previous subelement of the architecture is present at a later stage, this will
automatically lead to a redundant structure and an abnormal nest architecture. This
observation, as we will see in the next section, has important consequences in the
coordination of building activity in social wasps.

Second, if one wasp does not distinguish the product of its own activity from that of
another wasp, the two wasps can in principle work at completing the same nest struc-
ture. One wasp could continue the work of the other at whatever stage of construction
of the nest. Such a mechanism may then in turn be a step toward indirect cooperation
between individuals. This is precisely the mechanism that Grassé had in mind when
he introduced the concept of stigmergy.
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Figure 3.3.: Construction of an abnormal funnel of the Eumenid wasp Paralas-
tor sp. When the funnel is almost finished (end of Stage 5), a spher-
ical hole is made. This hole emulates stimulus S1, which triggers
a new funnel construction. The wasp identifies this stimulus and
begins the construction of a new funnel on top of the previous one
([TB99].

Another conclusion that can be drawn from this example, is that a fundamen-
tal concept of stigmergy is the role of identity of participants. According to
[TB99], if a wasp is not able to distinguish the product of its own labor from
that of another, then two wasps can in principle work at completing the same
nest structure, without awareness that other workers perform the task cooper-
atively. Furthermore, it is elaborated that this is precisely the mechanism that
Grassé had in mind when he presented stigmergy. This implies that the iden-
tity of the author of the alterations is not relevant for the coordination process.
Individuals do not trace the origin of the alterations, they are only guided by
them, never mind their origin. As a consequence, the coordination mechanism
allows anonymity of its participants.

Ants Cemetery Formation and Clustering Behavior

Another example of stigmergy corresponds to the process in which some species
of ants, and other insects, collect and sort their corpses (from now on items),
spontaneously building cemeteries without previous knowledge of their final
location. When a large number of items is located over a surface, ants begin to
relocate them such that a single cemetery eventually forms in what appears
to be a collective well coordinated effort. Nevertheless, each ant seems to
perform as if it was not aware of other individuals, ignoring their strategies
or behavior [MCA02]. To understand the process the model proposed by J.
L. Deneubourg is utilized, which relies on biologically plausible assumptions
([DGF+91]). Here, a single ant is located in a bounded surface with a large
number of items randomly located over the surface. The only task of this ant is
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eventually perform the task. It is certainly possible to
design a scheme in whichd can vary depending on
the efficiency ofi in performing taskj .

4. Cemetery formation and exploratory data
analysis

4.1. Cemetery organization

Chrétien [11] has performed intensive experiments
on the antLasius nigerto study the organization of
cemeteries. Other experiments on the antPheidole
pallidula are also reported in [18], and it is now known
that many species actually organize a cemetery. The
phenomenon that is observed in these experiments is
the aggregation of dead bodies by workers. If dead
bodies, or more precisely items belonging to dead
bodies, are randomly distributed in space at the begin-
ning of the experiment, the workers will form clusters
within a few hours (see Fig. 9). If the experimental
arena is not sufficiently large, or if it contains spatial
heterogeneities, the clusters will be formed along
the borders of the arena or more generally along the
heterogeneities. The basic mechanism underlying this
type of aggregation phenomenon is an attraction be-
tween dead items mediated by the ant workers: small
clusters of items grow by attracting workers to deposit
more items. It is this positive feedback that leads to

Fig. 9. Real ants clustering behavior. The figures show four suc-
cessive pictures of the circular arena. From left to right and from
up to down: the initial state, after 3, 6 and 36 h, respectively.

the formation of larger and larger clusters. In this case
it is therefore the distribution of the clusters in the
environment that plays the role of stigmergic variable.

Deneubourg et al. [18] have proposed a model rely-
ing on biologically plausible assumptions to account
for the above-mentioned phenomenon of dead body
clustering in ants. The model, called in the follow-
ing basic model(BM), relies on the general idea that
isolated items should be picked-up and dropped at
some other location where more items of that type are
present. Let us assume that there is only one type of
item in the environment. The probability for a ran-
domly moving ant that is currently not carrying an
item to pick-up an item is given by

pp =
(

k1

k1+ f
)2

, (12)

wheref is the perceived fraction of items in the neigh-
borhood of the ant andk1 is the threshold constant:
for f � k1, pp is close to 1 (i.e., the probability of
picking-up an item is high when there are not many
items in the neighborhood), andpp is close to 0 if
f � k1 (i.e., items are unlikely to be removed from
dense clusters). The probabilitypd for a randomly
moving loaded ant to deposit an item is given by

pd =
(

f

k2+ f
)2

, (13)

wherek2 is another threshold constant: forf � k2,
pd is close to 0, whereas forf � k2, pd is close to 1.
As expected, the pick-up and deposit behaviors obey
roughly opposite rules. The question is now to define
how f is evaluated. Deneubourg et al. [18], having
in mind a robotic implementation, moved away from
biological plausibility and assumed thatf is computed
using a short-term memory that each ant possesses: an
ant keeps track of the lastT time units, andf is simply
the numberN of items encountered during these last
T time units divided by the largest possible number
of items that can be encountered duringT time units.
If one assumes that only zero or one object can be
found within a time unit, thenf = N/T . Fig. 10
shows a simulation of this model: small evenly spaced
clusters emerge within a relatively short time and then
merge into fewer larger clusters. BM can be easily
extended to the case in which there are more than one
type of items. Consider, e.g., the case with two types

Figure 3.4.: Clustering behavior of real ants. The figure shows spontaneous
raise of clusters throughout several hours ([DGF+91, DBT00]).
Small, evenly spaced clusters form, which eventually merge into
larger clusters.

to transport the items from one location to another. Then, how does a unique
cemetery raises? The process of transporting an item is framed within two de-
cisions: which item to pick up, and where to deposit it. The key is that both
decisions are performed based on a probability, and the definition of the prob-
abilities depends on environmental information which is modified every time the
ant relocates an item. Deciding which item to pick up depends on how many
items have been observed in the close vicinity (also referred to as immediate
environment in [DGF+91]). Deciding on which pile of items (or cemetery in for-
mation) to deposit the one being transported depends on the size of the pile,
which the ant is able to estimate [MCA02]. The larger the pile, the larger the
probability for the ant to deposit an additional item on it. Following this deci-
sion process, the ant is able to, incrementally, group the items and eventually
form a unique cemetery, as depicted in Fig. 3.4. This example, as well as the
wasp funnel example, shows that a stigmergic system composed by one single
individual stimulating itself and achieving complex global behavior can exists.
In this case, the stigmergic stimuli correspond to the size of the pile of items,
and the location of the items over the surface. This stimulus constitutes a phys-
ical alteration of the environment interpreted as a continuous value.

Other remarkable examples of stigmergy in nature are termites utilizing soil
pellets impregnated with pheromones to build their nests and wasps building
combs in successive stages ([TB99]).
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3.2.2. Features of Stigmergic Systems

The analyzed natural systems help to understand some characteristics of stig-
mergy. Firstly, it is clear that stigmergic systems are self-organized. Global be-
havior arises spontaneously as a consequence of the interaction (indirect com-
munication) between individual components, and the global results obtained
through this aggregated behavior clearly overcomes the isolated abilities of
those individuals. Hence, stigmergic systems depict desirable properties of
self-organizing systems such as robustness, adaptability to uncertain scenar-
ios, flexibility, etc. In addition, the coordination and cooperation process is
framed within an exceptionally simple interaction process. This simplicity en-
ables many of the positive features of the approach.

From a conceptual perspective these features provide stigmergy with some ad-
vantages for the management of the behavior of groups of agents, in compari-
son to traditional coordination mechanisms for multi-agent systems (MAS):

• It is a light weighted mechanism, unlike others like direct negotiation
between agents, which imply the definition of complex rules, settlement
of priorities and extremely specific guidelines to each individual situation
([VKV04]).

• Since participants are not required to engage into direct forms of inter-
action, their identity is not a requirement for the coordination and coop-
eration to arise in the system. Moreover, as it was previously discussed
it is this very property which enables stigmergic systems to depict self-
organizing features.

• The information encapsulated within the stigmergic variables is deter-
mined by the designer. This enables flexibility to explore a wide range of
design alternatives for the stigmergic variables, and implicitly, for induc-
ing agent behavior ([VKV04]).

• Participants are not exposed to the overall model. They do not need to
be conscious of the complexity and dynamics of the global perspective,
as their behavior is guided by local modifications. Moreover, individuals
only need to address their inherent labor, while the global objectives are
being accomplished without them being obvious to individuals.

• Stigmergic systems do not have a single point of failure. Nevertheless,
a minimum number of participants is required for the coordination pro-
cess to occur (one single participant stimulating itself). In general, mal-
function of individuals does not affect the coordination and cooperation
process. Furthermore, these systems are dynamically opened ([She01,
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WM15]), in the sense that they do not require special stages to incorporate
or remove individual participants from the process.

• Stigmergy provides a frame which enhances modularity and separation
of responsibilities within the model ([VKV04]). This way, it is easy to opti-
mize independent elements and assess separately matters like robustness,
feasibility, etc.

On the other hand, the concept of stigmergy also carries disadvantages. Specif-
ically:

• Cooperation emerges as a natural consequence of the continuous modifi-
cations of stigmergic variables and the behavior they induce. Neverthe-
less, in the case of occasional decisions with profound implications the
stigmergic process may fail in providing an acceptable solution [VKV04].
This is particularly true when agents perform a probabilistic response to
stimuli. In this case, combination of stimuli could be implemented in or-
der to deal with specific situations.

• Depending on the type of the stigmergic variables, the observable con-
sequences and dynamics of agent behavior might be exposed with delay
[VKV04]. As a consequence, in some scenarios, drastic reorganization or
redirection of the system, may not be achieved within the require time
limits to prevent system failure.

• Stigmergic systems fully depend on the stigmergic variable. If the de-
sign of the variable is not appropriate the system might not achieve co-
ordination (This issue is later discussed in Subsection 3.2.3). Moreover,
corruption of the stimuli may redirect the coordination process towards
irrelevant tasks, compromising the achievement of objectives.

Limits of the approach could be palliated by combining techniques and tools
from MAS. In this case, however, the desirable features of stigmergy should
remain when combining it with other approaches. This way, the importance of
identifying a system as stigmergic is that this system should depict the previ-
ously mentioned features. Furthermore, as discussed in Chapter 2, these fea-
tures are desirable for the power grid.

3.2.3. The Stigmergic Variable and Enhanced Taxonomy

As discussed, in stigmergy the achievement of system objectives is performed
without an entity delivering commands of explicit action. In general, the indi-
vidual behavior and abilities are quite simple. In the absence of any stimulus,
individuals perform their inherent behavior in a randomized manner. Once the

37



3. Stigmergy and Self-Organization

stimuli take effect, individuals are influenced to perform their inherent behav-
ior in some specific way, e. g., choosing a concrete path to follow or deposit
items on a precise location. They do not have detailed knowledge of the fi-
nal results of their actions and how their actions will contribute to the system
objective, although they might have a notion of it (wasps building a funnel
example).

Since the origin of the alterations is irrelevant, a single individual can be the
source of stimuli of itself, which implies that it collaborates with itself. Then, it
can be said that it is not required that individuals are aware of others in order
to cooperate, coordinate, and achieve global objectives. This makes stigmergic
systems tolerant to failure of some components. For example, if a foraging
ant suffers an accident and it is not able to smell pheromones anymore, the
process will continue without that ant. Obviously, as it happens in organic
systems, there is a breaking point: At least one individual is required to trigger
the process of coordination. This raises the question: If it is not a requirement
that individuals are aware of each other, even more, if it is not required that
many individuals exist (as it was shown by the wasp funnel and ant cemetery
examples), how can they coordinate and cooperate? They may not be aware of
others, however, they are aware of the alterations on the stigmergic stimuli.

Hence, a fundamental element in stigmergic systems is the existence of a stig-
mergic variable, which is printed or embedded in the environment. The alter-
ations on this variable trigger the auto-catalytic effect which gives rise to coor-
dination and cooperation in the system. Therefore, coordination process and
activities are defined by the stigmergic variable, and with it, the relation be-
tween the environment and the individuals. Stigmergic variables can be of dif-
ferent forms, relating the components of the system in different manners and
triggering different forms of stigmergic coordination. Two types of stigmergic
variables can be defined ([HRJ08, MO08, Hey11]) according to how they are
embedded into the environment:

• Sign or Marker-Based Variable: Refers to indirect communication through
a signal mechanism. An element external to the environment (a sign) is
located on it, and the alterations of this element guide the coordination of
individuals. The signs correspond to special markers that agents deposit
in the environment, guiding the system behavior. From the previous ex-
amples, pheromones utilized by ants foraging correspond to this variant
of stigmergic variable.

• Sematectonic Variable: Corresponds to indirect communication through
physical modifications of the environment. Unlike marker-based stig-
mergy, the modification of the variable implies a contribution to the given
task, expressing the current progress or state in the fulfillment of the
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global objective. Hence the variable becomes an active part of the prob-
lem and its modification does not only determine how solutions are con-
structed, but also imply an alteration of the solution itself. Ants cemetery
construction process and wasps building a funnel, which utilize the level
of fulfillment of the system objective as an incitement of action, corre-
spond to this variant of variable.

In order to clearly understand the difference between marker-based and sema-
tectonic variables lets assume a hypothetical scenario: An agent is situated in a
room which has a number of tables. The agent calculates its trajectory through
the room based on information embedded in the tables, which in this scenario is
considered the environment. If a bottle is left on a table and the agent utilizes it
as an indicator of its future trajectory, this would correspond to a marker-based
variable, since the stimulus is something external to the environment. On the
other hand, if the table is destroyed, or its shape is modified, and the agent
utilizes this information (the shape of the table) to calculate its trajectory, this
would correspond to a sematectonic variable, since the stimulus is a physical
alteration of the environment.

In addition, the definition of the stigmergic variable and how it is interpreted
has repercussions on the kind of stigmergic process that takes place. Accord-
ingly, two kinds of stigmergic mechanisms corresponding to the variable and
the response it triggers from individuals ([TB99, Van06]) can be defined:

• Qualitative Stigmergy: The interaction between individuals is determined
through alterations on discrete stimuli. Hence, a qualitative stimulus gen-
erally generates qualitatively different responses. For example, an indi-
vidual I1 responds to a stimulus type-1 with an action-A, and action-
A transforms stimulus type-1 into a stimulus type-2, which triggers an
action-B from individual I2 ([TB99]). From previous examples, wasps
building a funnel correspond to qualitative stigmergy.

• Quantitative Stigmergy: The stimuli response does not vary qualitatively.
Conversely, modifications on the value of the stimuli imply that the prob-
ability to react to it, is modified. Regarding the previous examples, ants
foraging and ants cemetery construction correspond to quantitative stig-
mergy. In the former, the stronger the pheromone trail, the larger the
probability of an specific response.

Considering how the stigmergic variable is imprinted on the environment (va-
riety of the variable), how it is modified, and which stigmergic process it trig-
gers (stigmergic mechanism) a taxonomy was defined by [Van06]. Neverthe-
less, this taxonomy might not be precise enough for the specific design and
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Table 3.1.: Improved taxonomy of stigmergy, based on [Van06]. Values in the
cells describe agent responses to the correspondent stimuli.

Marker-Based Sematectonic Mixed-Variety

Quantitative Stochastic response to Stochastic response to Stochastic responses to
signs embedded in the physical alterations of the combinations of

environment environment physical alterations and signs

Qualitative Deterministic decision Deterministic decision Deterministic decisions
based on a combination based on physical alterations based on combinations of

of signs of the environment physical alterations and signs

Mixed-
Responses

Deterministic and Deterministic and Combinations of
stochastic responses stochastic responses responses to

to combinations of signs to physical alterations combinations of stimuli

implementation of artificial stigmergic systems. Therefore, in this thesis an im-
proved version of the taxonomy for applied scenarios is provided. This im-
proved version clearly specifies the type of response of the individuals to the
different kinds of stigmergic variables. Moreover, the range of possible alterna-
tives has been extended to include additional responses to different combina-
tions of stimuli. This increases the possibilities and versatility of the approach
for its implementation as a multi-agent coordination mechanism for applied
problems. The improved taxonomy is listed in Table 3.1.

The discovery of stigmergy was an important step forward for entomology in
improving the understanding of how social insects achieve their complex social
structure and coordinate to perform complex tasks which require collaboration.
However, it also inspired the study and development of a whole new line of
research in problem optimization and MAS.

3.2.4. Artificial Stigmergic Systems: Ant Colony
Optimization

The best known implementation of stigmergy in artificial systems is Ant Colony
Optimization (ACO), which corresponds to an improved version of the Ant Sys-
tem (AS) algorithm ([DMC91]). Its implementation will be described for solv-
ing the Traveling Salesperson Problem (TSP). This problem is a combinatorial
optimization problem (COP), and in its most simple version it can be informally
described as follows: a salesperson needs to find the shortest possible route
through a given set of cities, beginning and ending the trip in his or her home-
town.

In its most basic form, the TSP can be formally defined to be a fully connected
weighted graph G = (C,E), along with the optimization criterion to find a
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closed path in G which contains each node exactly once and whose summed-
up weights are not higher than for any other closed path. The cities correspond
to the nodes (C) and the edges to the connections between cities (E). The search
space S corresponds to all possible tours (i.e., closed paths as described) in G.
In COP terms, a function f evaluates each solution s ∈ S by adding the weight
of all edges in s, this is, the distance between cities, hence calculating the length
of each tour. Thus, a solution s would be a tour connecting all nodes in G and
back to the starting node. The evaluation of this solution will be length of that
route. Furthermore, each edge eij ∈ E, which connects cities i and j with
i, j ∈ C is a component of solution s.

ACO is an approach to approximately solve the TSP for a given graph by uti-
lizing basic mechanisms known from ant behavior in nature. Solutions are in-
crementally improved over time in a concurrent and asynchronous manner by
simulating a population of artificial agents with ant-like behavioral patterns.
The algorithm is iterative and in each iteration, each artificial ant a builds a so-
lution s to the problem. For each solution component eij a pheromone value τij
(emulating the artificial pheromones utilized by ants foraging) is introduced.
Furthermore, each ant has a small memory Ja (i) that allows it to know which
nodes remain to be visited when a is at node i. Then, the solution construction
process in each iteration for an ant a goes as follows:

1. The ant is located on a randomly selected node.

2. The ant selects the node to visit from set Ja (i) according to a probability.
This probability is defined as:

paij (t) =


ταij ·η

β
ij∑

l∈Ja(i) τ
α
il ·η

β
il

if j ∈ Ja (i)

0 if j 6∈ Ja (i) ,
(3.1)

where τij is the pheromone concentration on the arc that connects i and
j, ηij is a heuristic value which corresponds to the inverse of the distance
or weight of the arc that connects i and j, α and β are parameters that
define the relative weight between the pheromone concentration and the
heuristic value. Then, a has a larger probability to visit cities following
edges that have lower weight and with a larger pheromone concentration.

3. The ant moves to the selected node and removes it from Ja. If Ja is empty,
the ant has constructed a solution. If not, step 2 is repeated. It is worth
to notice, that artificial ants are able to construct feasible solutions only.
The utilization of a memory by each ants has this purpose: Prevent the
construction of sub-tours.
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At the end of each iteration t, when all ants have finished their solution con-
struction process, each ant a deposits a quantity of pheromone ∆τa (t) = 1/JaΨ (t)

on each arc of the tour Ψa (t), of length JaΨ (t), they have constructed2. The rule
for this local pheromone deposition is:

τij (t+ 1) = τij (t) + ∆τk (t) , ∀eij ∈ Ψk (t) , k = 1, . . . ,m (3.2)

wherem is the number of ants. The deposition of pheromones of ant a, ∆τa (t),
depends on the performance of the ant in the following way: The shorter the
route, the greater the amount of deposited pheromone.

After each individual ant has deposited pheromones over their tours, evapora-
tion of the pheromones is triggered according to:

τij (t+ 1) = (1− δ) · τij (t) (3.3)

where δ ∈ (0, 1] is a parameter called pheromone decay coefficient, which regulates
the evaporation rate of the pheromones ([DD99, BL08, DBT00]).

Variations of this approach usually modify the pheromone updating rules in or-
der to balance exploration and exploitation of the search. However, the general
concept remains: pheromone evaporation and deposition is performed in order
to efficiently direct the collective search of good candidate solutions throughout
a number of iterations.

As it occurs with ants in nature, the global behavior arises spontaneously as a
consequence of the indirect communication through the anonymous alterations
on the environment (Graph G). The system is tolerant to failure of some of its
components (diminished number of ants in between iterations) and it can adapt
when the problem definition changes ([DBT00, Blu05]).

Since individual ants decide according to a probability, they can still choose
different paths from the one with the largest pheromone concentration. This
enables the algorithm to explore additional alternatives to the currently best
solution. This is a relevant aspect of the algorithm, and directly connects with
what was previously discussed in Subsection 3.1.3. From a self-organizing
and organic systems perspective, a similar situation can be observed with the
orca whales hunting herring. In both situations, individuals are guided in
a way such that a desired global behavior emerges. This guidance is per-
formed through a stimuli (wall of bubbles in the case of the whales, and ar-
tificial pheromones, in the case of ACO) to which individuals respond. Hence,

2It has to be mentioned, that in many versions ACO, only the ant which finds the best route in the
current iteration is allowed to deposit pheromone.

42



3.2. The Stigmergy Mechanism

Non-
Coordinated 

Stage 

Coordination 
Outbreak 

Coordination 
Consolidation 

Dissolution of 
Coordination 

1 

2 

3 

4 

Figure 3.5.: Stages in the stigmergic coordination process. Dotted arrows repre-
sent a possible return to a previous stage.

it can be said that the global behavior is guided and no explicit command is
sent to individuals.

Other examples of artificial stigmergy utilize the concept to coordinate swarms
of robots to perform complex tasks which require collaboration and team work.
For a detailed explanation of those implementations, cf. [WN06, PR10, VGVV07].

3.2.5. Stigmergic Process and Requirements for Stigmergy

After discussing the previous examples from nature and artificial systems, the
stigmergic coordination process can be considered to be comprised of a series
of loops of actions, composed by some general steps. These steps are the result
of the aggregated behavior of the individuals within the system, which are the
entities that actually engage in the coordination and cooperation process. In
order to provide a generalized description for artificial systems, these entities
are referred to as agents.

Stigmergic Coordination Process

The stages in the stigmergic coordination process can be found dispersed through-
out literature, usually described in an informal manner, and, to the knowledge
of the author, not specified in detail. Therefore, in the following, a general de-
scription of the stigmergic coordination process is proposed:

1. Agents perform or are beginning to perform an activity. This activity
could correspond to the inherent behavior of the agent. A global objective
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exists but no collaboration between agent’s to fulfill it. This could be con-
sidered a non-coordinated stage, as described by [TB99], where agents
operate in a random uncoordinated manner, fulfilling their inherent tasks
and modifying the environment. However, the stigmergic stimuli concen-
tration is not enough to enforce a coherent global behavior. Considering
an ACO solving an instance of a TSP, this stage corresponds to the first
iterations. Ants select their routes in a randomized way based only on
the heuristic value, since the pheromone concentration on every arc is the
same and does not influence the selection process. Regarding cemetery
construction by ants, this stage corresponds to ants moving and deposit-
ing items without clearly identifiable piles/cemeteries.

2. The concentration of stimuli surpasses a certain threshold or manifests
itself in a clear and observable manner becoming relevant in the deci-
sion making process of the ants. As a consequence, the coordination has
an outbreak. Agents continue to perform their inherent tasks, but now
they do it while being guided by the stimuli. Moreover, the execution of
their tasks implies additional alterations on the stimuli value enforcing
the process. Nevertheless, at this stage the coordination is still vulnerable
and can be broken by some event or circumstance. In the context of ACO
and TSP, this corresponds to the stage in which many good candidate so-
lutions have a relevant amount of pheromone concentration.

3. Agents operate in a fully coordinated manner guided by the stimuli con-
centration. Exploration of alternative solutions has been reduced. While
they operate, they further increase the stimuli concentration providing
consistency and cohesion to the coordination. At this stage, the system
and its level of coordination is resilient to events which could disrupt it
from its current behavior, exhibiting self-x properties. Moreover, the ef-
fect of stimuli diffusion, such as evaporation, becomes minimal. In the
context of ACO and TSP, this would correspond to the stage where the
algorithm has converged to a solution. In the context of ants constructing
cemeteries, this corresponds to the stage in which a single pile is clearly
bigger than competing piles.

4. The global objective has been fulfilled. Hence, agents cannot execute their
tasks in the current form or location. Individuals can be attracted by resid-
ual stimuli. However, they cannot increase the stimuli concentration sig-
nificantly since there is no more labor to be done in that location or it is
physically impossible to perform anymore. Hence, they continue to work
on other locations. As a consequence, the stimuli concentration decreases
until it becomes irrelevant, dissolving coordination. With foraging ants,
this corresponds to the stage in which the food source is consumed. Ants
will continue to visit the route due to the residual stimuli. Eventually,
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however, evaporation will diffuse the pheromones and ants will not fol-
low that path anymore. In the case of cemetery construction by ants, this
stage corresponds to the achievement of a single pile of items. Ants may
continue relocating items. However, since there is only one single pile,
items will be relocated on different places of the perimeter of that ceme-
tery.

It has to be noted that, depending on the type (marker-based or sematectonic)
and mechanism (qualitative or quantitative stigmergy) the separation between
stages can be less clear. For instance, regarding the wasp funnel construction,
the rise of coordination is much more direct, almost omitting Stage 2. This is
generally the case when structures are built through quantitative stigmergy.
Moreover, in artificial systems Stage 4 does not occur unless the system oper-
ates in dynamic environments. In this case a feedback loop from Stage 4 to
Stage 1 or 2 would be present, depending on the level of disruption. Addi-
tionally, in COPs fast convergence to solutions is a desirable feature. Therefore,
Stage 2 becomes harder to identify.

Requirements for Stigmergy

Now that the stigmergic process has been identified, the requirements that each
stigmergic system should fulfill in order to depict the previously defined fea-
tures (Subsection 3.2.2) can be specified as:

• A stigmergic variable that can be imprinted on the environment by means
of a sign or a physical alteration of it. The stigmergic variables should be
perceivable by the agents of the system and the origins of the alterations
of these variables are not traceable.

• An environment to be used as a means to transmit information through
signals embedded in it, or by its actual physical alteration. The envi-
ronment corresponds to an abstraction within the context of the global
objective that is being faced. In ACO, the environment is modeled as a
graph on which the stigmergic variables (pheromones) can be deposited
as an external entity. In ants cemetery construction, the environment cor-
responds to a surface on which a specific amount of items (dead ants)
are located, and where the alteration of the size of these piles implies an
alteration of the physical description of the environment.

• A population of autonomous agents which are not capable of exchang-
ing information directly. The only way they can share their knowledge
is through the stigmergic variable. In stigmergy, a fundamental issue for
the spontaneous rise of coordination is the inability of agents to identify
labor of other agents from their own ([TB99]). Therefore, if it is known
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who modified the stigmergic variable, and this information is utilized
in the decision making process, we do not call it stigmergy. The way
flocks of birds or schools of fishes coordinate to migrate does not qualify
as stigmergy. In those cases, individuals calculate and adjust their trajec-
tories considering the position of neighboring entities. As a consequence,
communication can be traced to specific individuals, violating the rule of
anonymity.

• Each stimulus corresponds to an action performed by another individual
and the response corresponds to an action triggered by a previous one,
making each individual a source of stimuli for another. Therefore, the
design of the system should allow the response-stimuli sequence to take
place. Furthermore, the message being transmitted through the alteration
of the environment must be modifiable by other agents. With ants forag-
ing, this happens through the updating of the pheromone trail by each
ant when they move from one place to another. In the construction pro-
cess of an ants cemetery, this occurs by relocating items and increasing
or reducing the size of the piles. On the other hand, orca whales hunt-
ing school of herring does not qualify as stigmergy. Although there are
similarities (self-organization, emergent behavior as a consequence of in-
dividual interactions, and reaction to stimuli, among others), herring do
not have the ability to modify the wall of bubbles. Hence, the response-
stimuli sequence does not take place, and the bubbles do not conform to
a valid stigmergic variable.

• Agents should have an inherent behavior. This behavior is guided by
the stigmergic stimuli, such that the agent performs it in a different way
or a different location. In the case of ACO, the inherent behavior or labor
of the artificial ants is to travel from one node of the graph to another,
which has not yet been visited, until a solution has been built. In ants
cemetery construction, the inherent behavior is to move items from one
location to another. In both cases, the stimuli guides the way these tasks
are performed.

• Modifications can only be done on the local environment. Agents should
not have the capabilities to modify the global values of the variables, just
their local neighborhood. Hence, the behavior of agents that get into con-
tact with this local environment is guided. This raises an interesting issue.
In the context of ACO a global pheromone update rule is performed. This
task does not correspond to the inherent behavior of any agent. It rather
aims to emulate the natural process of pheromone evaporation and direct
the search of solutions. In any case, if an agent has the ability to mod-
ify the global values of the stigmergic stimuli, the system should be able
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to respond intelligently. However, this specific agent could not be con-
sidered as part of the production system within the stigmergy paradigm.
Instead, this agent would correspond to an external entity to the system,
which can coexist with the agent population but is not in the same do-
main. In this sense, stigmergy describes the coordination process between
agents in the same domain.

• The stigmergic system is characterized by not having a single point of
failure. This means that the system is able to continue performing in
a cooperative and cohesive manner even when individual agents break
down or leave the ensemble. Moreover, if additional participants join the
process, the system should be able to incorporate them without requiring
special stages or a restart of the system, in conjunction with the stigmergic
coordination process (Fig. 3.5). In literature, this is referred to as dynamic
openness [WM15, She01].

With these requirements, stigmergy can be distinguished from other coordina-
tion mechanisms. Finally, stigmergy constitutes a light weighted mechanism
for coordinating autonomous entities and achieving self-organized behavior
through indirect communication. Individuals coordinate themselves as a re-
sponse to stimuli variations, and perform their tasks induced by these stimuli.
As a consequence, there is no need for developing complex structures to sup-
port negotiation, argumentation, or other communication tools usually found
for managing complex autonomous systems.

3.3. Summary

In this chapter, relevant features of organic systems are discussed, including
their relation to self-organization. Through the review of examples in nature
and their relation to artificial systems, the importance of individuals autonomy,
influence between individuals, emergent global behavior, and guidance of this
global behavior has been emphasized. In this context, conceptual implications
and strategies for managing self-organizing systems have been discussed. The
results of this first discussion, in conjunction with the arguments exposed in
Chapter 2, further justify the characterization of the power grid as an organic
system, and the requirement of advanced techniques for its management. In
the context of management mechanisms for self-organized systems, a compre-
hensive analysis of stigmergy is performed. Typical examples of stigmergy in
nature are analyzed, with the purpose of understanding the extension and dif-
ferent forms of this coordination mechanism. Moreover, desirable features of
stigmergy, as a multi-agent coordination mechanism, have been identified. The
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results and discussion of this analysis are utilized in Chapter 4, for argumen-
tation of stigmergy as an adequate alternative for managing the power grid.
Additionally, a classification of the different kinds of stigmergic variables is
provided. Moreover, the stigmergic coordination cycle was identified, and re-
quirements for stigmergy are specified. Results of this second analysis will be
utilized in Chapter 4, for the design of a management mechanism based on
stigmergy for the management of a simulated power grid. Stigmergy is later
revisited in Chapter 7 to discuss general aspects of the concept after the pro-
posed coordination mechanism is evaluated.

Novel scientific results included in this chapter correspond to the improvement
of the taxonomy of stigmergy for practical scenarios (3.2.3), the description of
the stigmergic coordination process, and the specifications of the requirements
for stigmergy (3.2.5).
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“ We are continually faced by great opportunities brilliantly disguised
as insoluble problems. ”

John W. Gardner, US Administrator, 1912 - 2002

The main challenges of the future power grid relate to the increasing penetra-
tion of renewable energy sources (RES) in the power supply. Due to its charac-
teristics, it is desirable that RES generation is consumed as soon as it is gener-
ated (Chapter 2).

Traditionally, the power grid depicts properties such as tolerance to failure and
perturbations, adaptability to real-time requirements, flexibility to include new
technologies and emergent behavior. Such features, as discussed in Chapter 2,
are typically found in organic and self-organized systems. In the power grid,
these properties emerge in the process of fulfilling the requirement of perma-
nent balance between supply and demand. Nevertheless, larger shares of RES
might overcome the ability of the power grid to maintain this balance and, as a
consequence, reliable supply. Therefore, it can be said that the adaptability of
this organic system would be exceeded.

To enhance the self-organizing properties of the power grid such that the bal-
ance between supply and demand is maintained, new approaches and tech-
niques will be required (Chapter 2). In this sense, RES usage can be increased
by integrating intelligent devices ([Sta08, GKB+11, VST13]). For example, these
devices may be able to autonomously select their operation times on hours of
the day with less RES usage1. Nevertheless, these devices need to be man-
aged, such that balancing objectives are achieved and avalanche effects of unco-
ordinated response to incentives do not occur. Meanwhile, the management
of these flexible loads should also comply with scalability requirements, adapt-
ability and preservation of the privacy of customers. In this context, the increas-
ing flexibility of end-customers and RES penetration will drastically increase
the complexity the future power grid operation.

1This issue was previously discussed in Chapter 2, Section 2.2.
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From the perspective of a load management mechanism, the challenge is to
increase RES usage, either through incentives or direct control of intelligent de-
vices, in a computationally affordable manner, while preserving the privacy
of customers and preventing appearance of additional load imbalances. In
this context, stigmergy has been described as a coordination mechanism of au-
tonomous agents characterized for providing systems with robustness, adapt-
ability to uncertainty and self-organizing features in the achievement of global
objectives (Chapter 3). Moreover, in stigmergic systems, the communication
process is indirect and anonymous. Therefore, privacy of participants is pre-
served while global coherent behavior naturally emerges. These features sup-
port the selection of stigmergy as a potential candidate for managing the schedul-
ing of flexible loads in the power grid. This way, through a stigmergy-based
mechanism, load balancing objectives may be achieved in a flexible and adapt-
able manner, while privacy and autonomy of participants is preserved.

In this chapter, a load management approach, inspired by nature’s fundamen-
tal cooperation mechanism named stigmergy, is presented. This approach is re-
ferred to as stigmergy-based load control. The approach corresponds to a meta-
heuristic for generating schedules for the load balancing problem in the power
grid (Chapter 5). Moreover, this approach can also be utilized in a real-time op-
timization scenario, for coordinating consumption of distributed flexible loads
and increase RES usage (Chapter 6). In Section 4.1, an overall description of
the load balancing problem is provided. In Section 4.2, a basic architecture for
implementing the approach is proposed. Afterwards, in Section 4.3 the for-
mal models for the approach are presented, including the required adaptations
for real-time optimization. Later, this formalization is generalized to extend
the range of possible applications for stigmergy-based load control. Moreover,
the pseudo-code of the algorithm is presented. Section 4.4 presents the model
utilized to artificially generate forecasts. These forecasts are considered in a
real-time optimization context and, from a conceptual perspective, as a source
of dynamism of the problem. In Section 4.5, the fulfillment of the requirements
for artificial stigmergic systems (Chapter 3, Section 3.2.5) by the approach is
assessed. This section provides a theoretical ground for stigmergy-based load
control to exhibit the desirable features of stigmergy. The models from this
chapter are later utilized for evaluating the approach in a simulated scenario in
Chapter 5 and 6, and later for conceptual discussion in Chapter 7. From now
on, the approach in the context of real-time optimization will be referred to as
SLC, while in the context of static optimization, as SLC-FK.

Core sections of this chapter have been submitted for publication. The architec-
ture for SLC (Section 4.2) is a refinement of the work presented [RS15]. On the
other hand, the formal model for static optimization is the basis for the paper
[RKS16].
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4.1. Problem Description

In the load scheduling problem presented in this thesis, a balancing group,
which represents an isolated sub-section of the distribution grid, is assumed.
From now on, this balancing group is referred to as the micro-grid. The micro-
grid is populated with buildings which will be referred to as prosumers, for
their ability to consume and shift their load according to different incentives
or criteria. Prosumers are provided with intelligent devices, such as washing
machines, dishwashers or electric vehicles (EV). With the exception of the EV,
which is only power and energy restricted, once devices have begun their exe-
cution they cannot interrupt it. These devices have specific load profiles, there-
fore, their aggregated load profiles in conjunction with their times of execution
shape the load profile of the prosumer. The load profile of every prosumer is
aggregated, and together they constitute the micro-grid load profile.

The micro-grid is considered to be powered by wind and solar power genera-
tion. The distribution throughout the day of this generation is irregular. There-
fore, there might be hours of the day when much RES generation is supplied,
and hours of the day when no RES generation is supplied to the micro-grid. In
addition, it might occur that the RES generation does not cover the totality of
the micro-grid power demands. This means that the amount of RES generation
fed to the micro-grid is less than its actual energy requirements. In those cases,
it is assumed that the required extra power is supplied by conventional gen-
eration, through the delivery of the corresponding balancing product (Chapter
2, Subsection 2.1.2). In addition, depending on the scenario, RES forecasts can
be considered. These forecasts provide information regarding possible future
availability of RES generation. Nevertheless, it is possible that these forecasts
diverge from the real RES generation which will be produced.

Hence, the objective of the problem, is to calculate the execution time for each
intelligent device, such that the aggregated load profiles of the prosumers, the
micro-grid load profile, matches a given RES output as closely as possible,
therefore maximizing RES utilization. Two main optimization scenarios are
identified: (i) The optimization of the schedules such that the RES generation
usage is maximized considering full-knowledge of the future generation. (ii)
The optimization of the schedules is performed in consideration of RES fore-
casts, which, as hours pass by, increasingly resemble the real RES generation.
Scenario (i) implies a static optimization problem and corresponds to an ideal-
ized scenario which serves as a proof of concept for the approach. Scenario (ii)
implies the adaptation of the scheduling process in execution time to achieve a
desired and dynamic target performance, as a consequence of the modification
of the RES forecast. In this context, the concept is utilized as a MAS coordina-
tion mechanism.
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4.2. An Architecture for Stigmergy-Based Load
Control

In SLC, a centralized entity called the micro grid manager (MGM) influences flex-
ible intelligent devices within a balancing group (Chapter 2, Subsection 2.1.2),
to shift their loads and make use of available RES generation. These devices
belong to buildings which can be commercial or residential. These buildings
have been previously referred to as prosumers, and the balancing group as the
micro-grid.

The overall functioning of the SLC in real-time optimization is informally de-
scribed as follows: The optimization period is discretized into timeslots. For
the ease of exposition, this period will be considered to be a single day. Never-
theless, it can be extended indefinitely. In every timeslot a rescheduling round
takes place. Additionally, in every round the MGM receives an RES forecast
with more accurate information regarding future RES availability. In the first
rescheduling round, the MGM transforms the RES forecast into a control signal
and broadcasts it asynchronously to each prosumer within the micro-grid. This
signal represents RES availability for future timeslots.

The control signal is considered by prosumers as an indicator of desirability,
regarding which timeslots are preferred for them to reschedule their intelligent
devices, from a global perspective. These devices run within a user-defined
flexibility interval. Prosumers include the signal into a probabilistic decision
process for the selection of new operation times for their devices. As a conse-
quence, the load profile of each prosumer is modified for the remaining of the
day. Then, the updated profile is then sent to the MGM.

The MGM aggregates all profiles and builds a micro-grid load profile for the
current rescheduling round. In every following round after the first one, the
MGM considers the last broadcast signal, the micro-grid load profile, and the
updated RES forecast to build a new control signal. This updated signal reflects
the distance between the current state of the micro-grid and the desired state.
Once again the signal is broadcast and the process repeats.

Thus, the micro-grid is influenced, such that participants shift their loads and,
as a consequence, the load profile of the micro-grid resembles the current RES
forecast. In addition, the control signal is a function of the actions of the pro-
sumers. Hence, prosumers influence and are influenced by the activities of
other participants indirectly through this signal and without the ability to iden-
tify individual participants.

A consequence of optimizing in real-time is that only the future is available for
optimization. Therefore, devices which have already begun their operation in
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Prosumer 

Micro Grid Manager 
Control Signal 

Balancing Group or Micro-Grid 

RES Forecast 

Individual Load Profiles 

Prosumer Prosumer Prosumer 

Figure 4.1.: Information flow in SLC and SLC-FK, between the MGM and the
prosumers within an idealized micro-grid. The MGM broadcasts
a signal to all prosumers, which asynchronously return their load
profiles. The RES forecast is not considered for SLC-FK.

the current timeslot in evaluation are not available for rescheduling anymore.
The information flow for SLC can be observed in Fig. 4.1.

In the case of SLC-FK, full knowledge of the RES output is assumed. This is
expressed in Fig. 4.1 by the red dotted arrow on the received forecast. As
a consequence, instead of calculating the new signal with an ever updating
forecast, the final RES output is directly utilized. Moreover, in SLC-FK the
algorithm remains static in the first timeslot and continuously optimizes the
current global schedule for the whole day. In this scenario, the MGM evaluates
the quality of the generated global schedule in each rescheduling round and
preserves the best performing one, while the process continues until a stopping
criteria is met. This way, SLC-FK functions as a decentralized meta-heuristic
to generate a good quality schedule for all participants. In the following, the
essential components for the implementation of SLC are described.

4.2.1. Components of the Architecture

The approach considers the existence of a bi-directional communication chan-
nel between prosumers and the MGM. For this, prosumers can utilize smart
meters with the ability to receive a signal from the MGM and deliver load pro-
files to the same entity [BMM14, FB14, Jin11]. The architecture remains constant
for both, SLC and SLC-FK.

In Figure 4.2 the internal architecture of a generic prosumer and the compo-
nents required to respond to the control signal within the SLC paradigm can

53



4. The Power Grid and Stigmergy
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Figure 4.2.: Generic prosumer architecture in SLC and SLC-FK. The decision
process takes place in the Rescheduler module.

be observed. The Repository stores all relevant information to the prosumer,
including the currently active schedule and the last received signal. Addition-
ally, details related to the appliances, like their load profiles and user-defined
flexibility intervals are stored. Once the control signal is received (signal up-
date request), the module Signal Receiver, which corresponds to a smart meter,
stores it in the Repository. Then, the Signal Receiver requests the processing of
this signal to the Signal Processor module. The latter module reads the updated
signal and transforms it into a vector. Afterwards, this module requests the
update of the current schedule to the Rescheduler module, in consideration of
the current state of the micro-grid, expressed in the signal vector. This module
proceeds to calculate a new time of execution (ToE) for each appliance which
is available to be rescheduled, ergo, has not begun its execution. To calculate
this new ToE, the Rescheduler considers the user defined flexibility intervals and
the load profiles of the appliances, stored in the Repository, in conjunction with
the processed signal from the Signal Processor module. With this information,
the Rescheduler constructs a probability distribution for available timeslots for
rescheduling of each device. From this distribution, the Rescheduler obtains a
new ToE for every appliance. Finally, the Rescheduler stores the updated sched-
ule in the Repository and requests the Profile Sender module to send the updated
load profile of the prosumer to the MGM. This module would also correspond
to the smart meter.

The internal architecture of the MGM for SLC is shown in Figure 4.3. The
MGM also utilizes a Repository. In this case, it stores the historic information of
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Figure 4.3.: Generic architecture for an MGM in SLC and SLC-FK. The control
signal construction process occurs in the Signal Calculator module.

the broadcast signals, the current RES forecast and the current micro-grid load
profile. As mentioned, the MGM continuously receives RES forecasts from the
Forecast Updater module, which are stored in the Repository. At the same time,
the MGM also receives the updated load profiles of the prosumers through the
Profile Receiver module. These profiles are aggregated through the Aggregator
module to build the current micro-grid load profile. Then, the Signal Calculator
module utilizes a function to construct an updated control signal considering
the current RES forecast, the micro-grid load profile, and the last broadcast sig-
nal. Then, the updated control signal is broadcast to every prosumer in the
micro-grid through the Signal Broadcaster module and the process repeats in
the following rescheduling round.

It can be observed that both, prosumer and MGM, perform as a signal receiver-
processor. The elements which allow the system to perform in a self-organized
manner are, in the case of prosumers, the decision making process of prosumers
which takes place in the Rescheduler module, and in the case of the MGM, the
construction process of the control signal that influences the system, which is
performed in the Signal Calculator module.

The iterative feedback loop that takes place between prosumers and MGM al-
lows the system to search for individual load schedules which, once aggre-
gated, will achieve the global load objectives of the system. Additionally, this
feedback enables the system to make use of new information, the updated RES
forecasts, and adapt its behavior to the new scenario. Hence, SLC should have
the ability to respond reasonably to a changing objective, represented by the
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changing RES forecast.

4.2.2. Communication with End-Customers

The current communication infrastructure in the power grid is not designed to
support advanced demand response (DR) programs for increasing the usage
of RES. Currently, the communication between customers and utilities refers
mostly to the transmission, either manual or automatic, of the aggregated con-
sumption of consumers [BMM14]. This does not allow end-customers to obtain
advanced information regarding potential incentives to change their behavior
or details of their own consumption. In this sense, future technologies require
advanced forms of monitoring and communication, such that new load balanc-
ing techniques can be utilized in the future energy market [Jin11, DRWA11].

The future of metering envisions the implementation of Advanced Metering In-
frastructure (AMI), typically represented by smart meter [BMM14, FB14, Jin11].
These technologies enable a two way communication channel between cus-
tomers and utilities. Therefore, incentives can be designed and broadcast to
users, while end-customers can access detailed information regarding their own
consumption and automatically deliver it to utilities.

In the case of stigmergy-based load control, such AMI would be essential for
the functioning of the approach. From the perspective of the broadcast stim-
uli, the control signal would not be different from a pricing signal in a real-
time pricing scheme. In this context, the communication infrastructure would
require the means to broadcast a signal in 15-minute intervals to, potentially,
thousands of customers. Nevertheless, the main challenge would be the asyn-
chronous response from customers. In this case, the MGM corresponds to a
bottleneck for the reception of thousands of load profiles, where each load pro-
file is a vector of real numbers, within a restricted time frame. Approaches to
reduce the communication overheads and enhance its reliability include the im-
plementation of Neighbor Area Networks (NAN). Such networks are formed
around data collectors for groups of smart meters and allow the reliable de-
ployment and reception of information to and from electric utilities2.

These communication requirements for stigmergy-based load control are shared
with other DR programs, which consider a close-loop communication between
utilities and customers [Got15]. In this sense, DR programs where customers
are only reactive reduce complexity of the communication. Nevertheless, it has
to be mentioned that many of the required technologies for assessing these is-
sues have experienced a fast recent development [Jin11, KP11, BMM14].

2For a detailed explanation of such approaches to improve efficiency and reliability of communi-
cation between utilities and customers, the interested reader is referred to [BMM14].
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4.3. Formalization of Stigmergy-Based Load
Control

In this section, stigmergy-based load control is formally described for two ap-
plication scenarios. The first scenario, considers the formalization of the ap-
proach as a load scheduling mechanism for decentrally calculating global sched-
ules for all participants to maximize RES usage in a micro-grid. This scenario
is referred to as SLC-FK, standing for Stigmergy-based Load Control (SLC)
with Full-Knowledge of the RES output. The second scenario corresponds to
the utilization of the approach for real-time optimization, in order to guide
the consumption behavior of autonomous agents to a desired target zone in
a dynamic environment. This target zone is characterized by the increase in
the utilization of an RES forecast by the aggregated loads of the autonomous
agents. The dynamism in the environment is given by the permanent update
of the forecast. The approach in this context is referred to as SLC. In addition,
the pseudo-code of the algorithm for both scenarios, is presented (Subsection
4.3.5). Furthermore, the formal model of SLC is generalized in order to include
additional stimuli, external and internal, in the decision making process (Sub-
section 4.3.4). These formal models are later utilized to evaluate the approach
in Chapter 5 and 6. The formal model for SLC-FK is a direct transcription from
[RKS16], which has been previously submitted for publication.

4.3.1. Control Signal Determination

In this Subsection, the formalization of the signal construction process is de-
scribed. Firstly, the formal model for the meta-heuristic in a static context is
presented. Then, the required adaptations for the implementation of the ap-
proach in real-time optimization are described.

Decentralized Optimization of Schedules

In SLC-FK, full-knowledge is considered. Hence, the RES forecast reception
from Fig. 4.1 does not occur in this scenario, since the RES output is known
from the beginning. Moreover, a discrete time horizon is assumed, indexed
by t ∈ [T ], with [T ] = {0, . . . , T}. An RES output vector g = (g0, . . . , gT ) is
considered, where gt ≥ 0 for all t ∈ [T ]. The signal in each rescheduling round
i is given by the vector si =

(
si0, . . . , s

i
T

)
, with sit ∈ [0, 1]. In the first round

(i = 0) the values in si are given by s0
t = gt

max g .

In the following rounds, the MGM receives the schedules that the prosumers
generated in the previous round. These schedules are derived into load profiles
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and aggregated to obtain the overall system load, which corresponds to vector
li =

(
li0, . . . , l

i
T

)
with lit ≥ 0. This way, the control signal (stigmergic stimulus)

is updated in each rescheduling round i > 0. The values of the updated signal
s̃i are given by:

s̃it = si−1
t + α · bit, i > 0, t ∈ [T ] (4.1)

where bi =
(
bi0, . . . , b

i
T

)
is the vector that defines the adaptation of the signal.

The value α ∈ [0, 1] specifies the weight of this vector for signal updating. The
larger the value of α the larger the effect of bi and vice versa. It can be said that
α regulates the level of exploration and exploitation in the search for an ade-
quate global schedule. As previously mentioned, the values in bi are calculated
considering the micro-grid load and the RES output:

bit =
gt − lit

max {maxg,max li}
(4.2)

Since the signal which guides the rescheduling process of the prosumers re-
quires values in the interval [0, 1], the updated control signal s̃i has to be nor-
malized:

ŝit =
s̃it +

∣∣min s̃i
∣∣

max s̃i + |min s̃i|
(4.3)

To prevent step responses and oscillating behavior, a final filtering of the stimuli
is performed. Hence, the broadcast signal is defined as:

sit =

{
si−1
t +ŝit

2 if i < 2,
si−2
t +si−1

t +ŝit
3 if i ≥ 2.

(4.4)

A schedule for each appliance in the micro-grid at the end of each rescheduling
round is received. The performance of this global schedule is evaluated accord-
ing to the difference of the areas between the RES output and the micro-grid
load profile. Hence, at the end of each round, the new schedule is compared
with the current best performing schedule. If the new schedule has a better
performance, it replaces the old one as the new current best.

Therefore, the evaluation function, which assesses the optimization objective
of the system, is the minimization of the difference between RES output and
micro-grid load profile. By utilizing a function of the distance between current
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load profile and desired load profile as a mean to stimulate individual behav-
ior, SLC is able to search for solutions that increase RES utilization in a static
optimization context.

Real-Time Optimization

Some modifications are required to the data structures in order to adapt the
approach for real-time optimization. Nevertheless, the overall definition of the
signal remains the same.

To model the passing of timeslots, SLC considers a receding horizon approach.
In this approach, at each rescheduling round an optimization problem with
a finite horizon is solved [SGC+13]. The size of the optimization horizon is
reduced in each progressive round, until the last timeslot of the simulated day
passes by. Hence, rescheduling takes place once per timeslot. The reduction of
the optimization horizon in every rescheduling round i, is given by T − i.

Instead of a fixed RES output, a RES generation forecast is required in this con-
text. Moreover, the reduction of the optimization horizon needs to be consid-
ered in the definition of the utilized vectors. Hence, the definition of vector g
now includes a sub-index which specifies the current rescheduling round, and
implicitly, the current size of the optimization horizon. Therefore, g becomes
gi =

(
gii , . . . , g

i
T

)
, where git ≥ 0. This forecast is updated in every reschedul-

ing round i, as more accurate RES information becomes available. A similar
redefinition is required for the control signal to represent the reduction of the
horizon. Hence, si becomes si =

(
sii, . . . , s

i
T

)
. In the same way, the vector that

contains the micro-grid load profile li becomes li =
(
lii, . . . , l

i
T

)
with lit ≥ 0,

and bi becomes bi =
(
bii, . . . , b

i
T

)
. Moreover, the calculation of this vector is

adapted to:

bit =
git − lit

max {maxgi,max li}
(4.5)

4.3.2. Prosumer Response

In SLC-FK, after receiving the signal, each prosumer decides where to sched-
ule its devices in compliance with the user-defined flexibility intervals. For
this, each prosumer processes the signal and obtains a vector ri =

(
ri0, . . . , r

i
T

)
.

The values in ri are interpreted as an indicator of where it is more desirable to
schedule the execution times of its devices in rescheduling round i.
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In principle, the additional hierarchical level conformed by the prosumer could
be omitted by directly delivering the signal to the intelligent devices. However,
the detour of the signal over this abstract concept called prosumer has a direct
correlation with reality. Prosumers can be categorized according to their de-
vice composition, allowing more advanced forms of interpretation of the sig-
nal. Nevertheless, in this thesis all prosumers utilize the same transformation
function ri = si.

In the following, the scheduling process is described for one exemplary appli-
ance. Given an appliance a which runs once a day, we want to schedule this
run. Let tas be the time where the appliance is ready for operation and tae the lat-
est possible starting time. In real world applications both values can either be
defined by the user or automatically derived to meet appliance constraints. For
ease of exposition in the following we drop the appliance index a. The flexibil-
ity interval for appliance a is defined as F = [ts, te], with ts, te ∈ T and ts ≤ te.
Additionally, let δ be the duration of one execution of a. The load profile of
this appliance is a static vector defined as: τ = (τ0, . . . , τδ) where τj ≥ 0 for all
j ∈ [δ].

The process of selecting a time of execution for the appliances is performed
sequentially within each prosumer. For this, the control signal ri is utilized to
build a vector which defines a probability distribution for the execution time of a:
pi =

(
pi0, . . . , p

i
T

)
. For the construction of pi, the consumption profile τ and the

flexibility interval F are considered. Through this distribution a new starting
time for a is probabilistically selected. Values in pi are given by:

pit =


∑δ
m=0 r

i
t+m·τm∑te

k=ts

∑δ
m=0 r

i
k+m·τm

if t ∈ F,

0 otherwise.
(4.6)

Vector pi can be different for each appliance. Furthermore, pi can change in
each rescheduling round for the same appliance, as the processed signal ri

changes. Devices such as electric-vehicles are only power and energy con-
strained, and require a specific energy level during their flexibility interval.
In this case, the consumption on each individual time slot is rescheduled as an
appliance with a load profile with one timeslot of length (δ = 1) by Eq. 4.6. As
a consequence, the load profile of an EV does not need to have a fixed shape,
and can change in the progressive rounds. After all devices in the prosumer
have been rescheduled through this process, a new schedule is obtained and,
implicitly, a new load profile for the prosumer as well.

Small adaptations are required for implementing the prosumer to a real-time
optimization scenario. Firstly, vector ri =

(
rii, . . . , r

i
T

)
reduces its size in pro-

gressive rounds, in concordance with the reduction of the optimization hori-
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zon. Additionally, the user-defined flexibility interval changes its size through-
out the execution of SLC. At the first rescheduling round the entire flexibility
interval F 0 = [ts, te] is available for scheduling. For later rounds, if i > ts the
interval may decrease its size, according to F i = [i, te].

At the end of each round i, each prosumer sends its updated schedule to the
MGM. The schedules are aggregated and derived into a new micro-grid load
profile li. With this information the MGM calculates the updated control signal
for the next round and the process repeats.

4.3.3. Summary of Static and Real-Time Optimization

In the scenario presented for SLC-FK, which throughout this thesis is also re-
ferred to as static optimization, the objective is to generate an individual sched-
ule for each participant, such that the aggregated loads maximize the usage of a
given RES output. This combinatorial optimization problem can be solved with
meta-heuristics, such as evolutionary algorithms or ant colony optimization3.
In the case of SLC-FK, as discussed, in each rescheduling round the generated
global schedule is compared with the currently best solution, and the best per-
forming one is selected as current best for the following rounds. The level of
exploration and exploitation in the solution searching process is regulated by
parameter α. Finally, good quality schedules for every participant are obtained,
which derives into a micro-grid load profile that increases the usage of a given
RES output.

On the other hand, SLC requires to adapt the consumption behavior of the
micro-grid from one rescheduling round to the next one, while the optimiza-
tion horizon reduces. The reason for this is that, in each rescheduling round,
a new RES forecast is received. Hence, the problem objective is continuously
modified. As a consequence, the global behavior of the swarm needs to be
adapted to the new problem and the best solutions cannot be preserved for im-
provement. Therefore, this scenario is referred to as real-time coordination of
the consumption of prosumers. The control signal contains historic information
regarding the previous state of the system. The balance between new informa-
tion in the adaptation process of SLC to the changing RES forecasts is regulated
through parameter α. Hence, conceptually α has different functions according
to the application scenario. Global behavior, which in this case corresponds
to the micro-grid load profile, emerges as a consequence of the aggregated in-
dividual behavior of the participants. Moreover, prosumers correspond to real
autonomous entities in the real world. As such, throughout different reschedul-
ing rounds they might reschedule deviating from an optimal into a sub-optimal

3For the latter, additional discussion is presented in Chapter 7, Section 7.1.1.
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micro-grid profile, and vice-versa. Hence, the objective of the mechanism is
to guide individual behavior such that the aggregated behavior of individual
prosumers remains within a desired target space and results in increased RES
usage.

A relevant point of difference is that, in real-time coordination, to create the
micro-grid load profile, the MGM only requires the aggregated load profile of
participants. Hence, personal information regarding their individual sched-
ules, load profiles and even identities remain private. In addition, in SLC-FK
schedules are generated for each prosumer. These schedules are received by
them and have to be followed in order to increase the usage of the RES out-
put. Therefore, conceptually SLC-FK corresponds to a centralized demand re-
sponse program. In SLC, prosumers are only guided by the control signal.
Their scheduling decisions are completely autonomous. As a consequence, SLC
operates as a decentralized demand response program (Subsection 2.2.2).

4.3.4. Generalization of Algorithmic Approach

The formalization of stigmergy-based load scheduling can be considered as a
specific instance of a more general model. From the perspective of the MGM,
many signals could be broadcast, each referencing different behavioral require-
ments of the problem. This multi-leveled signal could trigger localized self-
organized behavior of prosumers with specific features. Formally, the general-
ized form of the signal corresponds to: Si =

{(
s1,i, . . . , sJ,i

)
| sj,i ∈ RT , 1 ≤ j ≤ J

}
,

where J is the number of sub-signals comprised in the message.

From a prosumers perspective, the decision making process described in Eq.
4.6 can be generalized and the signal interpretation mechanism enhanced. Re-
garding the later, the received message, now signal Si, could be filtered such
that only useful information to the individual customer is utilized in deci-
sion making process. This means Ri = h

(
Si
)
, where h : Si 7→ Ri, Ri ={(

r1,i, . . . , rN,i
)
| rn,i ∈ RT , 1 ≤ n ≤ N

}
and N ≤ J .

Regarding the former, the only internal features of prosumers which are cur-
rently considered for building new schedules are the user-defined flexibility
intervals and the load profile of each appliance. This way, for constructing
the probability distribution, additional specific internal preferences and restric-
tions, relative to individual customers, could be considered in conjunction with
the interpreted signal. Hence, devices with different features, like feed-in power,
could be included. Therefore, the set of vectors which express the internal state
of the prosumer utilized for rescheduling a single appliance a in rescheduling
round i, is described as: βi =

{(
τ1,i, . . . , τD,i

)
| τ1,i ∈ RT1 , . . . , τD,i ∈ RTD

}
with T1, . . . , TD ⊆ T and D ≤ J . Hence, the generalized form of Eq. 4.6 for
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calculating each element in the probability distribution for a single appliance
corresponds to:

pit =

{
f(Ri,βi)∑
k f(Ri,βi) if t ∈ F i,

0 otherwise.
(4.7)

where f : Ri × βi 7→ R+ and F i is a vector which conditions the timeslots on
which appliance a can be scheduled in rescheduling round i. This way, through
Eq. 4.7 different kinds of stimuli can be considered, either external or internal
to the prosumer, which influence the rescheduling of devices. Furthermore,
some stimuli might be specific and unique to each prosumer depending on the
features of the intelligent devices. In this context, the micro-grid would be fully
heterogeneous in regard to the prosumers load composition and their range of
responses.

This generalization clearly enhanced the flexibility of the approach and allows
the consideration of a number of additional scenarios for evaluation. Moreover,
this generalization facilitates the application of stigmergy-based load schedul-
ing for other COPs. Additional implications of this generalization are further
discussed in Chapter 7, Section 7.3.

4.3.5. Pseudo Code and Complexity of the Approach

In the following the pseudo-code for the operation of the MGM and the pro-
sumer, in real-time coordination and static optimization, is described.

In Algorithm 1 the elements and processes previously described which regard
the MGM in a real-time coordination context (SLC) can be found. At line 5, the
RES forecast for the current rescheduling round i is stored in vector forecast.
This update occurs in every rescheduling round. At line 9, the control signal s
in the current round is built according to Eq. 4.1, 4.5, 4.3 and 4.4. Additionally,
at line 12 the MGM waits until all prosumers profiles have been received, or a
user defined time limit is reached (the later is not considered in a simulation
scenario for obvious reasons). The profiles are aggregated at line 13.

In the case of the prosumer (Algorithm 2), aspects to stand out consider the
initial schedule for each prosumer. As mentioned, appliances perform within
a user-defined flexibility interval. Hence, an initial schedule is constructed by
uniformly distributing the execution times of the appliances within this inter-
val. This operation takes place in line 2. Lines 4 and 5 refer to the reception and
processing of the control signal. As mentioned, in the current thesis, the val-
ues within the signal are directly utilized for the rescheduling process without
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Algorithm 1 Pseudo-code for MGM operation in real-time optimization.

1: i← 0
2: mgProfile← null
3: s← null
4: while i < T do
5: forecast← getForecast (i)
6: if i = 0 then
7: s← buildControlSignal(forecast, null, null, i)
8: else
9: s← buildControlSignal(forecast,mgProfile, s, i)

10: end if
11: broadcastSignal(s)
12: waitForProfiles()
13: mgProfile← aggregateReceivedProfiles()
14: i← i+ 1
15: end while

any processing. At line 6, a list containing all devices available to be sched-
uled in the current rescheduling round i is constructed. Devices which have
begun their operation are not considered. Only the appliances in this list go
through the rescheduling process. Rescheduling of devices is performed for
each individual appliance between lines 8 and 12. Here, the construction of
the probability distribution is performed at line 9, according to Eq. 4.6. More-
over, the probabilistic selection of the new operation time for the correspon-
dent appliance is performed at line 10. The active schedule is updated with the
rescheduled device. Finally, the new schedule is derived into a load profile and
delivered to the MGM at line 14.

For both, Algorithm 1 and 2, the number of rescheduling rounds is limited by
the number of timeslots into which the day is discretized (Line 4 in Algorithm
1, and line 3 in 2).

Regarding SLC-FK, minor differences exist regarding the operation of the MGM,
in order to select and preserve the current best performing solution (Algorithm
3). A vector with the current best micro-grid load profile and a list with the cur-
rent best global schedule are defined (Line 3 and 4 correspondingly). In addi-
tion, the termination time is not defined by the number of timeslots in the sim-
ulation, but by a user-defined parameter R. Instead of receiving only the load
profile of prosumers, the MGM receives the actual schedule, since the objective
is to generate a global schedule that maximizes RES usage. This is performed
at line 15. Then, the performance of the constructed solution is compared with
the current best performing schedule, between lines 16 and 23.
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Algorithm 2 Pseudo-code for prosumer operation

1: i← 0
2: schedule← getRandomSchedule()
3: while i < T do
4: s← receiveSignal (i)
5: r ← processSignal (s)
6: availableDevices← getAvailableDevices (i)
7: if availableDevices 6= null then
8: for each device in availableDevices do
9: p← getProbabilityDist(r, device, i)

10: opT ime← selectOperationT ime(p)
11: schedule← updateSchedule(device, opT ime)
12: end for
13: end if
14: sendLoadProfile(schedule)
15: i← i+ 1
16: end while

In addition to these alterations of the MGM, minor adjustments have to be
made to the pseudo-code of the prosumer when utilizing SLC-FK. Specifically,
at line 3, instead of T the limit is defined by a user-defined parameter R, and at
line 14, instead of delivering the profile, the actual schedule of the prosumer is
sent. Both alteration regard Algorithm 2.

With this information, the complexity of the algorithm can be addressed. The
complexity of the approach in real-time optimization and static optimization is
the same. Regarding the MGM, the complexity is O (T ). In the signal construc-
tion process (Line 7 and 9, Algorithm 1), the execution time increases linearly
with the number of timeslots in which the day is discretized. For the control
signal broadcast and the reception of the load profiles from the prosumers (Line
11, Algorithm 1), the execution time increases linearly with the number of pro-
sumers in the micro-grid.

Regarding the response of the prosumer to the stimuli, the most computation-
ally expensive procedure is the rescheduling of the appliances (Line 11, Algo-
rithm 2). In this case, the execution time increases linearly with the number
of appliances in the corresponding prosumer, and to the square of the num-
ber of timeslots in which the day is discretized. Hence, the complexity of the
prosumer is O

(
T 2
)

and, implicitly, the complexity of stigmergy-based load
scheduling is also O

(
T 2
)
.
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Algorithm 3 Pseudo-code for MGM operation in static optimization.

1: i← 0
2: currentSchedule← null
3: bestProfile← null
4: bestSchedule← null
5: s← null
6: while i < R do
7: forecast← getForecast (i)
8: if i = 0 then
9: s← buildControlSignal(forecast, null, null, i)

10: else
11: s← buildControlSignal(forecast,mgProfile, s, i)
12: end if
13: broadcastSignal(s)
14: waitForSchedules()
15: currentSchedule← aggregateReceivedSchedules()
16: if bestProfile = null then
17: bestSchedule← currentSchedule
18: bestProfile← unusedRES(bestSchedule)
19: end if
20: if unusedRES(currentSchedule) < unusedRES(bestSchedule) then
21: bestSchedule← currentSchedule
22: bestProfile← unusedRES(bestSchedule)
23: end if
24: i← i+ 1
25: end while

4.4. Artificial Forecasts Generation

In real-time coordination, RES forecasts are updated in every rescheduling round.
This implies that at the initial timeslot of every rescheduling round, the genera-
tion of the forecast matches the RES output, while a divergence occurs in future
timeslots.

This feature is modeled by generating artificial forecasts. An artificial forecast
is constructed utilizing an RES output as a reference. This way, inspired by the
approach from [SGDG+12], the standard deviation is utilized to create a vector
n (t) in which Gaussian noise is stored: n (t) = εt ∼ N

(
0, σ2

t

)
. This vector is

utilized to add cumulative noise to the RES output, and as a result, generating
an increasingly divergent forecast in progressive timeslots.

Nevertheless, when adding the cumulative noise, step responses might be ob-
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Figure 4.4.: RES output against a treated forecast by a three-five point smooth-
ing and an untreated forecast, obtained through Eq. 4.8.

tained in the artificial forecasts. Hence, to prevent extreme peaks and create
reasonable deviations from the RES output, a three and five-point signal smooth-
ing technique is performed. This way, the forecast vector g0 is built through:

g0
t (t) =



g0
t = ĝt if t = 0,
g0
t−1+ĝt+ĝt+1+

t∑
k=0

nk

3 if t = 1 & t = T − 1,
g0
t−2+2g0

t−1+3ĝt+2ĝt+1+ĝt+2+
t∑

k=0

nk

9 if t ≥ 2 & t ≤ T − 2.

(4.8)

Where ĝ = (ĝ0, . . . , ĝT ) corresponds to the real RES output. Additionally,
g0
t (t) ≥ 0 ∀ t ∈ T . An example of an artificial forecast with and without

smoothing can be observed in Fig. 4.4. It has to be noted that the total load of
the generated forecast and RES output can differ. This issue is later discussed
after experimental results are analyzed in Subsection 6.2.2.

At this point it is important to mention that an ideal mechanism for generating
artificial forecasts is out of the scope of this thesis. On the other hand, the aim
is to generate acceptable forecasts to enable experimentation and evaluate SLC.
Finally, as it was mentioned, gi is adapted for i > 0. Therefore, the forecast
gradually resembles the RES output. For the current timeslot full knowledge
on generation is assumed, and thus git = ĝt for all t ≤ i.
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4.5. Fulfillment of Stigmergy Requirements

In Chapter 3, stigmergic systems were characterized as robust, able to cope
with uncertainty and to adapt to changing environments. Moreover, the pro-
cess of achieving of coherent and cooperative behavior does not disturbs the
autonomy of individual nor requires their identities.

These features are certainly desirable for a decentralized load management
mechanism. Hence, classifying SLC and SLC-FK as stigmergy implies that,
conceptually, the desirable features of stigmergy should be depicted by the ap-
proach. To answer if SLC and SLC-FK qualify as stigmergy, the requirements
described in Chapter 3 are discussed:

• The element that enables coordination and cooperation in stigmergic sys-
tems is the stigmergic variable. In the case of stigmergy-based load con-
trol, this corresponds to the control signal broadcast to the prosumers by
the MGM. Firstly, the signal influences the prosumers, since they do not
only begin a rescheduling process once they receive it, but also, utilize the
information in the signal to decide upon an updated schedule (Eq. 4.6).
Secondly, the information contained in the signal depends on the actions
of prosumers. When prosumers modify their load profile, the aggregated
micro-grid load profile changes. Since, the control signal considers the
current micro-grid load profile for its updating, the values depend on the
rescheduling decisions of prosumers (Eq. 4.5 and 4.2). This is a key factor
in stigmergy, as explained throughout Section 3.2. Thirdly, the modifica-
tions on the value of the signal are not traceable. Once the individual
load profiles are aggregated, their origin is lost. Therefore, once the sig-
nal is constructed and broadcast, it is not possible to unveil the effect
of each participant on the signal. In this context, one might argue that
the MGM corresponds to a single point of failure and that every partici-
pant knows that this entity is modifying the signal. Nevertheless, the role
of the MGM is to facilitate the environment to the participants, and it is
not part of the production system. Furthermore, the system can continue
its operation, with a sub-optimal performance, without any signal being
broadcast. Hence, the existence of the MGM does not imply a failure
the compliance with the requirements for stigmergic systems. Finally, in
stigmergy-based load control, the signal reflects the progress in the level
of achievement of the global objective.

• In Subsection 3.2.5, the environment, in the domain of stigmergy, was
specified as an abstraction within the context of the global objective being
faced by the system. Furthermore, its function is to transmit information
through signs embedded in it or through its physical alteration. There-
fore, the environment in stigmergy corresponds to a tool which enables
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coordination and cooperation. In stigmergy-based load control the en-
vironment corresponds to the micro-grid load profile, since it is through
its actual physical alteration that information is transmitted to the par-
ticipants. In real-time optimization, this environment is dynamic and in
the absence of any prosumer, the profile continues to change as a conse-
quence of the updating RES forecast. Moreover, this definition of envi-
ronment implies that, within the taxonomy described in Subsection 3.2.3,
the signal corresponds to a sematectonic variable.

• In stigmergy-based load control, the population of agents corresponds
to the prosumers. Clearly they are not able to exchange information be-
tween each other. Moreover, they do not differentiate if the changes on
the signal values are a consequence of the rescheduling process of other
participants or their own. The signal only influences the probabilistic
rescheduling process (Eq. 4.6), and its weight on the decision making
process for rescheduling is decided by the prosumers. Furthermore, the
stochastic response of prosumers to the signal implies that stigmergy-
based load control is a qualitative stigmergic system (Subsection 3.2.3).

• The overall design, observable in Fig. 4.1, considers a feedback loop in
which the alterations of the load profile of a prosumer, implies that the
micro-grid load profile will change, and, as a consequence, in the next
rescheduling round the signal utilized for influencing the behavior of the
micro-grid will also be modified. Therefore, it can be said that agents are a
source of stimuli of other agents, allowing the response-stimuli sequence
to occur.

• The inherent behavior of the prosumers is to reschedule their devices
operation times, and begin their execution according to their schedule.
The control signal, stigmergic stimulus, only guides the decision process
for rescheduling these devices.

• Prosumers have a limited effect on the modification of the micro-grid load
profile. Their ability to alter the global profile is limited to the load profile
of the devices under their domain in conjunction with the user-defined
flexibility intervals for each device. These elements, define the local en-
vironment of each prosumer, and their impact on the environment.

• In stigmergy-based load control, prosumers can freely participate in the
rescheduling process by ignoring or responding to the control signal. Re-
sponsive prosumers will try to absorb load imbalances generated by non-
responsive prosumers. This would obviously have an impact on the per-
formance. Nevertheless, the overall functioning of the approach would
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not be disturbed, nor it would be required the restart of the system to in-
clude additional participants. Hence, stigmergy-based load control can
be considered exhibit dynamic openness [She01, WM15].

Since stigmergy-based load control fulfills the requirements of stigmergy, the
approach qualifies as an artificial stigmergic system. Therefore, an implemen-
tation of the approach should depict the previously specified features of these
systems. In addition, stigmergy-based load control has been categorized as a
sematectonic-quantitative stigmergic system, within the taxonomy provided in
Subsection 3.2.3.

An important feature of stigmergy-based load control, is that the system is in-
herently asynchronous. In order to build the control signal, the MGM requires
the profiles, or schedules, of the prosumers. Nevertheless, the sorting in which
it receives them or the identity of the sender is irrelevant for the signal construc-
tion process. This feature enables anonymity of participants, which is a desired
asset for customers in the context of energy system management, as discussed
in Section 2.2.

Although it is preferable that all prosumers respond to the signal, the system
can survive if some participants are unable to perform the rescheduling process
during a given number of timeslots. Furthermore, if the MGM does not broad-
cast the signal, the prosumers continue with their scheduled execution plan,
until they receive the stigmergic stimuli once more. In this sense, it can be said
that SLC is tolerant to failure of some of its components. As discussed in Chap-
ter 3, this is a standard feature of stigmergic system and a desired characteristic
of power systems.

4.6. Summary

In this chapter a load management mechanism for autonomous flexible loads
has been presented, named stigmergy-based load control. This approach is in-
spired by the fundamental coordination mechanism from nature, namely stig-
mergy.

Stigmergy-based load control is meant to be utilized for both, real-time coor-
dination of prosumers flexible loads to increase RES utilization, and to cen-
trally generate global schedules for all participants as a meta-heuristic. The
formal model for real-time optimization is implemented in Chapter 6 for ex-
perimental evaluation of the approach in this context. The formal model for
static optimization is implemented in Chapter 5 for the same purposes and
the pseudo-code of the algorithm for both scenarios was provided. Moreover,
stigmergy-based load control was classified as an artificial stigmergic system,
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since it fulfilled the requirements for stigmergic systems. Hence, from a con-
ceptual perspective it is expected that stigmergy-based load control depicts the
desirable properties of stigmergy when utilized for managing the power grid.
These elements are later considered for a conceptual discussion in Chapter 7.

Contributions in this chapter regard the presentation of the formal model for
stigmergy-based load control, its generalized form, the pseudo-code for real-
time and static optimization, and the assessment of stigmergy-based load con-
trol as an artificial stigmergic system. Additional contributions correspond to
the presented model for generating artificial forecasts for real-time coordina-
tion.
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5. Combinatorial Optimization with
Stigmergy-Based Scheduling

“ Bad results are bad... But amazing results which you can’t explain,
those are the worst! ”

Sebastian Gottwalt, Informal discussions, 2015

Flexible appliances provide a great opportunity to achieve the required perma-
nent balance between power supply and demand in the power grid. These
devices may be scheduled to times of the day where RES output is larger.
Hence, imbalances generated as a consequence of larger supply than demand
would be reduced, while the operation of power system efficiency would be
increased. Nevertheless, the selection of their operation times to maximize
the RES usage corresponds to a complex combinatorial optimization problem
(COP). Rescheduling appliances to increase usage of RES might generate imbal-
ances at other times of the day. Furthermore, scheduling should also comply
with user-defined flexibility intervals.

In this chapter, a meta-heuristic based on the concept of stigmergy is evaluated
to assess its ability to achieve global schedules which maximize usage of a given
RES output. The formal model for this approach was presented in Chapter 4,
Section 4.3. Solutions are decentrally constructed and centrally evaluated, in an
iterative process which produces good quality global schedules that increase
utilization of intermittent generation in a simulated day. This meta-heuristic is
referred to as SLC-FK, standing for Stigmergy-based Load Control (SLC) with
Full-Knowledge of the RES output. The assessment of the performance of this
approach will also investigate the possibility of extending its applicability to
other COPs.

In Section 5.1, the experimental setup for the evaluation of SLC-FK is presented,
including the approach to data analysis. In Section 5.2 the performance and sta-
bility of the meta-heuristic is evaluated under different conditions and parame-
ter configurations. In addition, the possibility of implementing a deterministic
or adaptive parameter control approach for SLC-FK is discussed. In Section 5.3,
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SLC-FK is compared to a price-based heuristic in different scenarios. Finally, a
discussion and a summary are provided in Section 5.4.

Conceptual implications from the results and conclusions of this chapter, are
source of further discussion in Chapter 7. Core sections of this chapter have
been submitted for publication. Specifically, the internal analysis of SLC-FK
(Section 5.2) is an extension of the working paper [RKS16].

5.1. Experimental Setup

In this section, the factors utilized for experimentation and the empirical eval-
uation of SLC-FK are described. Moreover, the strategy for the data analysis is
presented. The analysis of SLC-FK under these different scenarios will provide
a detail of the perspective of the internal process for constructing solutions.

5.1.1. Residential Flexible Loads

In Chapter 4, buildings provided with flexible loads were referred to as pro-
sumers. In an applied scenario, these buildings can correspond to small in-
dustries or commercial facilities. In this thesis, residential households are con-
sidered as the prosumers populating the idealized isolated micro-grid. Further-
more, flexible loads can correspond to different types of devices, provided with
a user-defined flexibility interval and/or the ability to modify their operation
according to some incentive. Typical examples are washing machines, dryers,
fridges, freezers, micro combined heat and power plants (micro-CHP) or heat-
ing, ventilation and air conditioning systems (HVAC), among many others. In
this thesis, and in order to assess the validity of SLC-FK, flexible loads are rep-
resented by three shiftable appliances which operate once per day: dryer, dish-
washer and washing machine. A unique load profile for each type of appliance
has been considered, based on [Sta08] (Fig. 5.1a, for details cf. Appendix A:
Tables A.1).

At the moment of writing this thesis, no reliable statistic was found regarding
user-defined flexibility intervals. Therefore, artificial intervals have been con-
structed considering the distribution of the starting times of the appliances in
[Sta08] (Fig. 5.1b). After the intervals are constructed, the initial time of ex-
ecution for the appliances is uniformly distributed within the corresponding
interval. This strategy is based on the approach from [VST13]. In a real-world
application, this information would be programmed by the user and stored in
a household management device (HMD - [AS11]). Afterwards, the flexibility
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(a) Load profiles of a washing machine (WaMa), dishwasher (DiWa), and dryer (Dryer).
Each timeslot corresponds to a single 15-minutes interval.
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(b) Distribution of the execution times for a generic washing machine (WaMa), dish-
washer (DiWa), and dryer (Dryer) [Sta08].

Figure 5.1.: Load profiles and distribution of the execution times of the appli-
ances.

intervals and the proposed execution times of the appliances would be sent to
the MGM by the smart meter 1.

In addition to shiftable appliances, the existence of electric vehicles (EV) in the
micro-grid is assumed. Different standards for EV charging may be considered
in concordance to the specifications of current available EVs [FIG+13]. The
same applies to the utilized charging profiles, which can be negotiated based
on standard protocols, such as the ISO/IEC 15118 [USD+13]. In this thesis,

1It has to be noticed that the requirement of transmitting flexibility information to the MGM only
applies to SLC-FK and, as it will be later discussed in this chapter, can be avoided in order
to prevent privacy issues. Regarding real-time coordination (Chapter 6) the transmission of
flexibility information to the MGM does not occur at all.
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Table 5.1.: Flexiblity intervals and daily consumption for appliances.

Device Daily
Consumption

Micro-Grid
Penetration Interval Share

Washing
Machine

0.89 kWh 100%

00:00-06:30 20%
06:30-12:00 32%
12:00-20:00 46%
20:00-00:00 2%

Dryer 2.45 kWh 25%

00:00-08:00 20%
08:00-13:30 35%
13:30-20:00 40%
20:00-00:00 5%

Dish
Washer

1.2 kWh 80%

00:00-06:30 20%
06:30-12:00 30%
12:00-17:30 40%
17:30-00:00 10%

Battery
Electric
Vehicle

4.8 kWh 25%

00:00-13:45 30%
00:00-07:15 30%
15:00-00:00 20%
16:15-00:00 20%

in order to evaluate the ability of the approach to shift highly flexible loads,
such as EVs, a simplified scenario is considered. This way, each EV can charge
with 3.7 kW and their flexibility intervals have been artificially generated fol-
lowing the previous approach. The EV is only power and energy restricted.
Therefore, its load profile can be separated in different timeslots throughout its
corresponding user-defined flexibility interval.

Different intelligent devices have different occurrence frequencies within the
micro-grid population. Table 5.1 summarizes these frequencies, the share of
the corresponding appliances per interval, the user-defined flexibility intervals
and the daily consumption of the four flexible devices. These values are based
on real information, [Sta08], and artificial data utilized in comparable simulated
scenarios [VST13, SGC+13, GSF+13].

5.1.2. Renewable Generation Supply and Coverage

German Transmission System Operators provide data on wind and solar power
(PV) generation in their balancing areas in 15-minute time resolution. For wind
generation, data is obtained from the balancing zone of 50Hertz2. For PV gen-

2http://www.50hertz.com/de/Kennzahlen
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Figure 5.2.: Types of RES output selected for experimentation.

eration, data is obtained from the balancing zone from Transnet BW3. These
zones have been selected as they have a high share of intermittent generation.
Moreover, 360 days of the year 2014 of each transmission company have been
selected for experimentation.

Wind and PV generation data is added such that a unique RES output for each
day is obtained, with mixed shares of generation. The historical generation
time series are scaled to cover 100% of the total energy demand of the house-
holds during the single day simulation period.

5.1.3. The RES Output Shape

The shape of the RES output has a relevant impact on the performance of any
approach for load scheduling. The micro-grid load and the RES output can
match by coincidence. On the other hand, RES generation can concentrate at
times where load flexibility is not available. Hence, the performance might be
reduced for reasons beyond the abilities of any load management mechanism.
This situation generates nuisance and disturbs the analysis of the approach,
since the global optima can largely differ from one RES output to another.
Therefore, to reach conclusions the analysis should focus on the observed ten-
dencies of the behavior, rather than the absolute performance of the approach
under a specific RES output.

To address this issue, twelve RES outputs with different shapes have been se-
lected from the pool. Each output corresponds to a different day in 2014. These
outputs are exemplary of three types of days (Fig. 5.2): (i) PV Intensive, which
corresponds to large PV generation and marginal wind generation. (ii) Wind

3http://www.transnetbw.de/de/kennzahlen
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Intensive, days with large wind power generation and marginal PV generation.
(iii) Balanced, with a similar PV and wind generation. These types of outputs
impose specific challenges on the scheduling mechanism.

5.1.4. Summary of Input Parameters and Factors

For assessing the performance of SLC-FK and comparing it with other ap-
proaches, three different load compositions for the households are considered:
(i) Three intelligent devices, washing machine, dishwasher and dryer, each
with a unique load profile, and an electric vehicle (EV), which is only power
and energy restricted4. (ii) Three intelligent devices without the EVs in the
micro-grid. (iii) Washing machines represent the only flexible load in the power
grid.

Twelve RES outputs are selected for experimentation, which are categorized ac-
cording to their load distribution throughout the simulated day into PV inten-
sive, wind intensive and balanced5. The population of the micro-grid increases
in a logarithmic scale from 40 to 40, 000 households. As explained in Chap-
ter 4, parameter α balances the relation between historic information, given by
the previous values of the control signal, and current information, given by the
difference between the current micro-grid load profile and the RES forecast,
in the signal updating process. Defining α = 1.0 means that historic infor-
mation and current information have the same weight in the signal updating
process. Whereas smaller values mean that historic information has larger rel-
ative weight in this process. Moreover, this parameter regulates the level of
exploration/exploitation in the solution construction process. Hence, different
values for the parameter are considered to assess the effect of α. In a real appli-
cation, parameter α would be the only controllable factor. All other factors are
defined by the application context. A summary of the different values of the
factors utilized for experimentation is provided in Table 5.2. Additionally, each
run of SLC-FK considers 10, 000 rescheduling rounds and ten runs are perform
in each evaluation.

Individual observations which provided unexpected results are discussed in
Section 6.3.6. In addition, unless explicitly stated otherwise, the performance
measure is the percentage of unused RES and every device is considered as part
of the micro-grid load composition (first level of the factor Load Composition, in
Table 5.2). Finally, for the remainder of this thesis, the term problem instance is
utilized to address specific combinations of the factors. Hence, an exemplary

4For details of the load profile of each device, cf. Appendix A, Table A.1.
5For each individual RES output shape, cf. Appendix A, Fig. A.1.
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Table 5.2.: Summary of factors and values utilized for experimentation in the
load scheduling problem. Different combinations of the factors cor-
respond to different problem instances.

Factor Levels Values

RES Output 12 RES outputs 1, 5, 7, 11, 12 (Balanced),
4, 6, 8 (PV Intensive),

2, 3, 9, and 10 (Wind intensive)
Population Size 4 40, 400, 4, 000, and 40, 000 households
α 6 1.0, 0.5, 0.1, 0.05, 0.01 and 0.0

Load Composition 3 All appliances, No EV,
Only washing machines

problem instance can consider RES output number six, a population size of 400
households, No EV in the simulated micro-grid and and α = 1.0.

5.1.5. Approach to Data Analysis

The observations and significance of the results from this chapter are assessed
through statistical analyses which are performed for each set of experiments
in the corresponding subsections. These analyses follow the same structure in
each evaluation.

To test the proposed hypotheses in each presented scenario, the statistical anal-
ysis is conducted as follows: The compliance of the data to be normally dis-
tributed is assessed through a one-sample Kolmogorov-Smirnov test. Consis-
tently, for every scenario the results from the normality tests rejected the hy-
pothesis that the data is normally distributed. Afterwards, a summary of the
main statistics is constructed for the corresponding evaluation. Since the data is
not normally distributed, the summaries focus on medians rather than means.
Once the summaries are constructed, the different evaluations to be compared
are grouped. To assess the significance of the differences between evaluations,
a Kruskal-Wallis rank-sum test is selected. Once more, this test is chosen due
to the data not being normally distributed. Finally, a post-hoc analysis per-
formed. The selected test corresponds to an unpaired Wilcoxon rank-sum test
for pairwise comparisons.

The detailed analysis of each scenario is provided in the appendix. Details of
each normality test are available in Appendix B. The detailed Kruskal-Wallis
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rank-sum tests are presented in Appendix C. The post-hoc analyses are pre-
sented in Appendix D. Finally, the summaries of each evaluation are available
in Appendix E.

These specific tests are referenced throughout this chapter, in order to support
statements regarding the performance under different parameter configura-
tions and in comparison to other load scheduling approaches.

5.2. Analysis of SLC-FK

In the following, SLC-FK is analyzed to obtain profound insights on its func-
tioning. Firstly, the scalability of the approach is assessed. This is an essential
issue to understand the potential of SLC-FK as a meta-heuristic. In addition, the
effect of modifying parameter α is investigated. Afterwards, the convergence
of SLC-FK is analyzed and potential improvements are proposed.

5.2.1. Exemplary Run

To calculate global schedules with SLC-FK, each household is represented by
an agent in charge of a solution component: The household schedule. The RES
output is assumed to be known from the beginning6 and its utilization is de-
sired to be maximized.

Fig. 5.3 shows an exemplary run of SLC with 4, 000 households and α = 0.5,
throughout 100 rescheduling rounds. Each curve represents the aggregated
load, or micro-grid load profile, at the end of a single rescheduling round. An
increasing resemblance of the micro-grid load profile with the RES output can
be observed in progressive rounds. Moreover, no step responses or oscillations
are obtained as the algorithm gradually converges, achieving good solutions
(Fig. 5.3a).

In Fig. 5.3b, the behavior of the signal in the solution searching process is de-
picted. Each curve corresponds to the stigmergic stimulus broadcast to every
household, which references the requirement to shift load to specific timeslots
in the day, from a global perspective. Agents, representing households, are
influenced by these values. Moreover, agents also modify the stimuli for fu-
ture rescheduling rounds by modifying the operation times of their appliances.
Then, the shape of the stimuli changes between rounds, as a function of the

6In a real-world application, this output would correspond to a forecast of the daily generation.
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(b) Signal evolution of SLC-FK.

Figure 5.3.: Example run of SLC-FK throughout 100 rescheduling rounds. Rd.
stands for rescheduling round.

distance between the target behavior and the real behavior. This change in-
creases the desirability to shift load to timeslots where RES output has not been
matched, and reduces the desirability on timeslots where overload exists7.

The signal always has values in [0, 1], with value 1.0 representing the largest
load imbalance in a given timeslot for the corresponding rescheduling round.
Hence, SLC-FK constantly promotes load shifting with more intensity to po-
sitions were imbalances are larger. This process guides the search towards
solutions which increase RES usage reducing additional load imbalances. A
large steep in the values of the signal can be observed at the end of the plot
for every rescheduling round after the first one. This occurs because the largest
imbalances consistently concentrate in that part of the day, due load restrictions
imposed by the user-defined flexibility intervals.

In the following sections, the scalability of SLC-FK and the effect of modifying
parameter α on the performance are evaluated. Later, these results are utilized
to propose and implement improvements on the approach and to compare the
SLC-FK with a price-based alternative.

5.2.2. Scalability of SLC-FK

To assess the scalability of SLC-FK, the performance of the algorithm is evalu-
ated under different population sizes. For this, the tested hypothesis is formally

7The signal construction process can be found in Subsection 4.3.1.
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Figure 5.4.: Example performances of SLC-FK with different population sizes
and RES output type.

defined as: H0 : Data in x and y are samples from continuous distributions
with equal medians, against the alternative that they are not. Both, x and y, are
the performance of SLC-FK, generated with the same RES output and α con-
figuration, but varying the population size. Hence, the rejection of H0 implies
that differences in performance between two samples with different population
size, are significant.

Results of the analysis show that there is a clear tendency to improve in per-
formance as a consequence of the increase in the network size. Therefore, evi-
dence exists to reject H0

8. This tendency can be observed in Fig. 5.4. Moreover,
the performance becomes more robust, which is appreciated through the dras-
tic reduction of outliers when the population size increases. The tendencies
described are constant for each type of RES outputs, regardless of the α config-
uration. Therefore, for the ease of exposition, the following analysis considers
RES output 3, 6, and 12, which are wind intensive, PV intensive and balanced,
respectively, and α = 0.05.

As observed in Fig. 5.4, with a balanced output the performance improves each
time the population size increases. Performances with a population of 40, 000
households dominated all of those with smaller network sizes9. Nevertheless,
the absolute performance improvement is also smaller in each test. Hence, it
is reasonable to assume that a performance threshold, related to the size of
the network, exists. After this threshold is crossed, the absolute performance
improves no more.

The reason for this is that with smaller population sizes, there are fewer al-
ternatives to reschedule the appliances within their flexibility intervals, such

8For the Kruskal-Wallis rank-sum tests, cf. Appendix C, Table C.13.
9For the post-hoc analysis of these cases, cf. RES Outputs 1, 5, 7, 11, and 12 at Appendix D, Tables

D.20 and D.21.
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that RES usage is increased. This means, there is less potential for optimiza-
tion. Additionally, since the RES output is scaled to the total amount of energy
available (which depends on the number of devices), when the population is
smaller the impact of rescheduling a single device on the micro-grid load pro-
file is more relevant compared with larger populations. On the contrary, above
a certain population size, the effect of individual devices is reduced to the point
where only aggregated behavior has a relevant impact on the overall perfor-
mance. This way, when the population size is larger, SLC-FK is able to pro-
mote small differences to the current global schedule to increase RES usage.
Then, with larger population sizes, opportunities to promote these differences
increase. This corresponds to a traditional feature of natural stigmergic systems
[TB99].

When the RES output is wind intensive, this tendency is reduced and unex-
pected behavior can be observed. In this case, the best performance is obtained
with a population of 400 households, and it slightly deteriorates with larger
population sizes. A similar behavior is observed when the RES output is PV
intensive. Although it is possible that the value of the global optima of the two
example RES Outputs with a population size 400 is smaller than with 4, 000 or
40, 000, it is highly unlikely. When the relative weight of the load of individ-
ual devices with regard to the total micro-grid load is smaller, there are more
alternatives to reschedule them to timeslots where RES utilization is increased.
Hence, a probable reason for this performance is that, with these type of RES
output, SLC-FK tends to get trapped in a local optima when the population size
increases.

In conclusion, it can be said that when the RES output is balanced, performance
improves with larger size of the network. Moreover, a performance threshold
related to the population size might exist, which is located above 4, 000 house-
holds. When the RES output is wind or PV intensive, unexpected behavior is
observed, in which with smaller network sizes SLC-FK produced better perfor-
mances than with larger.

5.2.3. Configuration of Parameter α

Parameter α regulates the weight of the current micro-grid load profile in the
control signal construction process, with α ∈ [0, 1] (Chapter 4, Section 4.3). On
the one hand, α = 1.0 means that the current difference between RES output
and micro-grid schedule (derived into a load profile), has the same weight as
previous historic evaluations of the same difference. On the other hand, α = 0.0
means that the current micro-grid load profile is not included at all in the signal
construction process. Hence, α = 0.0 implies that the same scaled form of the
RES output is broadcast to the agents in every rescheduling round.
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(a) Performance of SLC-FK under different α configurations.
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(b) Performance of SLC-FK under different α configurations including α = 0.0.

Figure 5.5.: Performance of SLC-FK with different α values and RES outputs.

To assess the effect of α for the load scheduling problem, the value of the pa-
rameter is modified while other factors remain static. Formally, the hypothesis
to be tested goes as follows: H0 : Data in x and y are samples from continu-
ous distributions with equal medians, against the alternative that they are not.
Both, x and y, are the performances produced by SLC-FK, with the same RES
output and population size, but varying the value of α. Hence, the rejection of
H0 implies that differences in performance between two samples with different
α configurations, are significant.

The analysis provides evidence to rejectH0. Therefore, it can be said that signif-
icant differences in the performance of SLC-FK, as a consequence of different
α configurations10. Fig. 5.5a depicts the tendency of the performance when
the value of α is reduced, with three RES outputs, PV intensive, wind inten-
sive and balanced, and a population of 4, 000 households11. These results are

10For details of the Kruska-Wallis rank-sum tests, cf. Appendix C, Table C.14.
11For the post-hoc analysis of these specific examples, cf. RES Output 6, 9, and 12 at Appendix D,

Tables D.22 and D.23.
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Figure 5.6.: Micro-grid load profiles generated with different α configurations.

consistent for each RES output type. It can be observed that, the performance
improves with smaller α values. This tendency is strongest with balanced out-
puts (α = 0.01 outperforms every other configuration). Moreover, it can clearly
be observed that when no adaption of the signal is used, α = 0.0, performance
is by far the worst (Fig. 5.5b). Hence, it is empirically demonstrated that the sig-
nal adaptation is required to achieve quality performances, rather than broad-
casting the same signal all the time.

An additional aspect to analyze is the absence of step responses and oscillations
in the micro-grid load profile. In Fig. 5.6, different micro-grid load profiles gen-
erated with different α configurations, a population of 40, 000 households on a
balanced RES output (RES output 5), can be observed. Non of these profiles
depict imbalances nor step responses. In this case, the profile obtained with
α = 0.0 shows a vague resemblance with the RES output. Whereas α = 1.0 and
α = 0.01 follow the RES output almost exactly. The best performance is ob-
tained with α = 0.01, with a percentage of unused RES bellow 1%. In SLC-FK,
the evaluation function selects micro-grid schedules which derive into mini-
mized load imbalances with large RES usage. Hence, global schedules which
increase RES utilization on some timeslots but generate additional imbalances
are not selected as the current best solution. Furthermore, these results show
that the α configuration does not have an impact on the stability of the gener-
ated profile.

The best performing α configurations are presented in Table 5.3. It can be ob-
served that α = 0.01 produces the best performances in most scenarios. These
configurations are later utilized for comparing the performance of the approach
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Table 5.3.: Best performing α configurations for each RES output and each pop-
ulation size on the micro-grid.

Population Problem Instance
1 2 3 4 5 6 7 8 9 10 11 12

40 0.01 0.01 0.05 0.01 0.05 0.1 0.1 0.05 0.01 1.0 0.1 0.05
400 0.01 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
4, 000 0.01 0.01 0.1 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
40, 000 0.01 0.01 0.1 0.05 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01

against a price-based heuristic in Section 5.3.

5.2.4. Convergence and Deterministic Parameter Control

In some situations, it is desirable for an algorithm to provide a good solution
as soon as possible, rather than a better solution much later. In this case, the
speed of convergence towards quality solutions is a factor which determines
if an approach is appropriate for a given application. Previous results clearly
show that α = 0.01 produced better performance in the vast majority of the
evaluated problem instances. Nevertheless, a question remains regarding how
fast these results are achieved.

Analysis of the Convergence

To assess the convergence speed of SLC-FK, the last rescheduling round in
which the algorithm improves the current solution, is utilized. This value
can be considered as an indicator of convergence, since it describes how many
rounds are performed before the algorithm finds the final solution, regardless
of the quality of that solution.

Fig. 5.7 depicts the distribution of this indicator for different α configurations
and population sizes. It can be observed that a tendency exists, in which the
larger the population size, the fastest the convergence. Moreover, a tendency
can also be observed with regard to the RES output type. When the output is
PV intensive, convergence seems to occur quite fast, regardless of the α con-
figuration. In the case of balanced and wind intensive outputs, larger α values
tend to converge much faster than smaller ones. From an overall perspective,
this seems to be the general rule.

On the one hand, with larger α values, the last improvement on the current so-
lution tends to occur early into the run. On the other hand, for smaller values
the last improvement on the current solution, tends to occur later into the run.
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Figure 5.7.: Distribution of the last improve on the current best solution for dif-
ferent α values, population sizes and RES outputs. Population
size= 400 was deliberately left out since it showed the same ten-
dency as population= 40.

Hence, in general, even when α = 0.01 generates the best performances, it also
depicts slower convergence. Meanwhile, even when, in general, α = 1.0 gen-
erates the worst performances, these performances are achieved much faster
than with other configuration. These behaviors are representative of what is
observed in other RES outputs of the corresponding type.

Additional insights are obtained through the analysis of Fig. 5.8. Here, the
evolution of the performance of SLC-FK throughout single runs with different
α values on a balanced RES output (RES output 5), can be observed. In the
5, 000 rounds scenario, the previously described behavior is confirmed. A fast
convergence followed by stagnation of the performance, is observed with α =
1.0, whereas for α = 0.01 a slow but consistent improve of the performance
occurs. The difference between the two configurations, is initially quite large.
Nevertheless, the α = 0.01 configuration eventually outperforms α = 1.0 and
all other α value.
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Figure 5.8.: Improvement of the performance throughout rescheduling rounds
for different α configurations, throughout 5, 000 and 100 rounds.

When the algorithm is executed for 100 rounds (Fig. 5.8, 100 Rounds) a clear
outperform of larger α values is observed in comparison with smaller values.
α = 1.0 achieves its best performance within the first 25 rescheduling rounds,
while α = 0.5 within the first 50 rounds. α = 0.1 and α = 0.05 show a slow but
consistent performance improve. Nevertheless, within 100 rounds their perfor-
mance is not competitive with α = 1.0 and α = 0.5 configurations. Moreover,
α = 0.01 is vastly outperformed, achieving a small improvement in comparison
with the performance of SLC-FK without any signal adaptation (α = 0.0).

The previous observations are complemented with Fig. 5.9. Here, the perfor-
mance evolution of the current best solution and the generated solution in each
rescheduling round can be observed throughout 500 rescheduling rounds. For
α = 1.0, it can be observed that after a steep improvement of the performance
(roughly at round 25), the new solutions generated are clearly inferior to the
ones obtained at the beginning of the execution of the algorithm. A similar sit-
uation can be observed for α = 0.5. For α = 0.1, after mild improvements
throughout the first 200 rounds, SLC-FK performs consistent but small im-
provements on the current solution. Then, the situation repeats. This behavior
was observed for every α configuration: After a consistent improvement of so-
lutions, either fast or slow, new global schedules reduce their performance and
new found solutions are clearly inferior in comparison with the current best
solution. As a consequence, no more improvements occur and the search stag-
nates. In the case of α = 0.05 and 0.01, this threshold is usually crossed after
500 and 4, 000 rescheduling rounds, respectively. Specific values generally var-
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Figure 5.9.: Performance behavior of the current best solution and the generated
solution in each rescheduling round throughout 500 rounds for dif-
ferent α configurations.

ied depending on the type of RES output and the behavior was strongest with
larger population sizes.

To further understand this behavior, Fig. 5.10a depicts the performance and the
control signal in different rescheduling rounds with the previous RES output.
More specifically, in the immediate round before the best solution is found, in
the round when the best solution is found, and after the search stagnates. Indi-
vidual runs are performed with α = 1.0, and the best performance is achieved
at rescheduling round 19, after which the previous phenomenon is observed. It
can be seen, that large differences in performance between round 18 and 19 are
not obvious. Only by deriving the percentage of unused RES, the best profile
can be identified. At round 25, differences in the quality of the performance be-
gin to be visible. After this round, the behavior described in Fig. 5.9 occurs.

The behavior of the signal in the same rounds can be observed in Fig. 5.10b.
The value of the signal during the morning is close to zero. This means that
the weight of imbalances in those timeslots in comparison to other imbalances,
is minor. At the end of the day, the value is one. This timeslot concentrates
the largest imbalances of the day. In the middle of the day, the values reduce
in each progressive round, implying that the relative weight of imbalances in
those timeslots reduces. From an overall perspective, although the signal is
similar in each round is similar, it flattens. Hence, load scheduling eventually
will disperse throughout the day. This can be observed in Fig. 5.10a, at Round
25, where a bulge starts to be observable at roughly timeslot 15.

Hence, after a certain number of rescheduling rounds, the control signal is not
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rescheduling rounds.

Figure 5.10.: Micro-grid load profile and control signal behavior at different
rescheduling rounds 18, 19 and 25. The best solution is obtained
at round 19, while the deviation to a sub-optimal behavior occurs
at round 25 and thereafter.

able to effectively stimulate load relocation, due to the flattening of the curves
shape. As a consequence, the search moves to a region of the fitness landscape
in which only lower quality local optima are produced (Round Solution curve
in Fig. 5.9). This threshold round is different for each α configuration and it is
reached slower when alterations on the signal are smaller. As a consequence,
with α ≤ 0.05, the search of quality schedules in the close vicinity of the current
solution is performed more thoroughly before the signal redirects the search to
less optimal regions.

Fig. 5.11 provides additional evidence to support this explanation. In Fig.
5.11a, the best micro-grid load profile obtained with different α configurations
can be observed. The shapes are fairly similar to the RES output. The config-
uration which provided the best performance is α = 0.05. Fig. 5.11b depicts
the broadcast signals in the rounds when these results were obtained for each
run. As it can be observed, they are quite different. This way, with every α
configuration a scanning process occurs, in which, after a number reschedul-
ing round, the stimuli is not able to promote effective search. With smaller α
values, the shape of the signal is slightly modified from one round to the next
one, contrary to what occurs with α = 1.0. Hence, the process is more gradual.
As a consequence, minor modifications on the global schedule are promoted
and a thorough exploration of the fitness landscape is performed in the vicinity
of the current best solution. This way, the signal can reach a flattened shape and
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Figure 5.11.: Best micro-grid load profiles for individual runs with different α
configurations and the corresponding control signals which pro-
duced them. For α = 1.0 the profile is obtained at rescheduling
round 19.

still produce good quality results. From Fig. 5.11 it can assumed that for each
α configuration, a different threshold exists for the shape of the signal, after
which the search moves to a sub-optimal region.

To provide conclusive evidence regarding the existence of this threshold, 100
runs have been performed with different α configurations on a balanced RES
output (RES output 5) and a population of 40, 000 households. Afterwards, the
control signals which produced the best schedules are compared.

From Fig. 5.12 it can be observed that a tendency for a specific shape of the
signal exists. This shape is different between the two α configurations. In ad-
dition, it can be observed that deviations from the averaged shape of the signal
reduces with α = 0.1. This supports the proposal that with smaller α values a
thorougher exploration is performed, since the number of rounds dedicated to
promote small alterations of the global schedule, is larger.

In this context, the threshold signal is a sub-product of the individual solution
searching process performed in each run. As a consequence, storing a signal
which provides great results to directly utilize it in a different run later, would
not provide the same quality results. Therefore, it can be said that the shape
of the threshold signal is specific to each α configuration and, implicitly, each
problem instance.
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Figure 5.12.: Distributions of the control signal values in each timeslot for two
α configurations in 100 independent runs. Mean values are linked
to obtain the average shape of the control signal.

From the perspective of the internal functioning of SLC-FK,s results show that
the signal shape is related to the searching process, which is regulated by α.
Moreover, results imply that α does not regulate exploration and exploitation
in the same way as other stigmergy-based optimization algorithms, namely
ACO algorithms [SLIP+12]. This can be explained by the internal differences in
between both algorithms12. From a performance perspective, even when large
α values achieve fast convergence, they do not enable the algorithm to perform
a continuous and effective search. This is not the case with smaller values of
the parameter, where, better results are unveiled continuously and eventually
runs with higher α values are outperformed.

In conclusion, it can be said that the best solution obtained with α = 1.0 is
found rather fast, in comparison with α = 0.01. Meanwhile, when the number
of rounds is not a restriction the best performance is obtained with α = 0.01.

A Parameter Control Approach for SLC-FK

Previous results support that α values for SLC-FK could be modified in run-
time to promote fast convergence in the first stages of the search, to later con-
tinue with a thorough exploration of the fitness landscape. This way, the uti-
lization of a parameter control alternative becomes suitable. Two alternatives
found in literature might be appropriate in this case ([EHM99]). On the one
hand, a deterministic parameter control approach would allow the modification

12This issue is further discussed in Chapter 7, Subsection 7.1.2.
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Algorithm 4 Rule for determining α in SLC-FKd. An integer specifying the
rescheduling round (round) is received and a real value for α is returned.

1: function DETERMINISTICPARAMETERCONTROL(round)
2: if round ≥ 400 then
3: return 0.01
4: end if
5: if round ≥ 200 then
6: return 0.05
7: end if
8: if round ≥ 20 then
9: return 0.1

10: end if
11: return 1.0
12: end function

of parameter α according to a fixed function, such that the values of the pa-
rameter changes from larger values in the early stages of the search, to smaller
values during the run of SLC-FK. On the other hand, an adaptive parameter con-
trol approach would consider a feedback mechanism which, provides informa-
tion regarding the current state of the search. With this information, the MGM
would have to decide how to modify the value of α, in order to actively redi-
rect the search process. The latter alternative is further discussed in Chapter 7,
Section 7.3. The former alternative is considered for experimentation.

To implement a deterministic parameter control approach in SLC-FK, a fixed
rule is defined. According to this rule, the value of α is reduced after a specific
number of rescheduling rounds to improve convergence speed and efficiency
in the search. The objective is to rapidly obtain quality solutions. Once these
solutions are obtained, the strategy is gradually adapted to improve the current
solution with small adaptations and avoid stagnation in local optima. Hence,
the number of rescheduling rounds dedicated to performing a thorough search
is increased. This rule is depicted in Algorithm 4. From now on, the adaptation
of the original algorithm is referred to as SLC-FKd, standing for SLC-FK with
deterministic parameter control.

Fig. 5.13 depicts an exemplary run for SLC-FKd versus SLC-FK with different
α configurations. From the evolution of the Current Best solution scenario, it
can be observed that SLC-FKd achieves good results with fast convergence.
Moreover, contrary to what occurs with α = 1.0, the adapted algorithm does
stagnates after the initial rescheduling rounds. It can also be observed that
eventually, SLC-FK with α = 0.1 reaches competitive solutions against SLC-
FKd. This occurs because, after a certain point, it becomes harder to generate
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Figure 5.13.: Evolution of the performance for exemplary runs of SLC-FKd and
SLC-FK with different α values. Current Best depicts the evolution
of the best performance throughout the execution. Round Solution
depicts the solution produced in each rescheduling round.

major improvements over the current solution. Additionally, SLC-FK with α =
0.01 is not able to produce competitive solutions within the first 500 rounds.

Details of the search process can be obtained by observing the Round Solution
scenario. It can be seen that, with α = 1.0 and α = 0.1 the previously described
threshold is crossed, after which the search is performed in a sub-optimal posi-
tion of the fitness landscape. On the other hand, due to the modification of the
α value, SLC-FKd is able to rapidly improve the performance in the beginning
of the execution, to continue with a thorough search in the same vicinity of the
current best solution. This analysis shows that this version of the original algo-
rithm is able to avoid the described behavior during the search process. Hence,
SLC-FKd is able to increase execution time on a thorougher search of quality
solutions, by utilizing smaller values for α in more appropriate circumstances.
It has to be mentioned, however, that after certain execution time, SLC-FKd
will depict the same behavior as SLC-FK, since the redirection of the search
is a consequence of the adaption of the control signal, which continues to be
performed indefinitely for both approaches.

These results are complemented with Fig. 5.14. In this case, the distribution
of the round in which the best solution is found, is compared between SLC-
FK with α = 0.01 and α = 1.0, which produced the best performance and
fastest convergence respectively, and SLC-FKd. As mentioned, this measure-
ment can be considered as an indicator of the speed of convergence of the al-
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Figure 5.14.: Distribution of the last rescheduling round in which performance
is improved for SLC-FK, with α = 1.0 and α = 0.01, and SLC-FKd
for different population sizes and RES outputs.

gorithms. It can be observed that with a PV intensive output, the previously
described tendency maintains. This is, all approaches converge rapidly to a
solution during the first rescheduling rounds. Regarding balanced and unbal-
anced outputs, it can be observed that, for SLC-FKd, the distribution of the
final improvement of the solution is spread throughout the run. Therefore, al-
though a steep improvement of the performance of SLC-FKd is observed in
the beginning of the run, stagnation occurs much later. The contrary, can be
observed with α = 1.0, where stagnation occurs much earlier. Fig. 5.14, in
conjunction with Fig. 5.13, provide evidence to support that, although SLC-
FKd can achieve good results very fast, it also continues the search throughout
the 10, 000 rescheduling rounds. These tendencies are constant for each corre-
sponding RES output type.

These, results lead to the conclusion that SLC-FKd is able to find quality solu-
tions faster that SLC-FK with a fixed α configuration. Moreover, results also
show that the searching process depicts the desired behavior for SLC-FKd:
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A permanent search for good solutions while avoiding the redirection of the
search to sub-optimal regions of the fitness landscape in early stages. Never-
theless, since the rule described in Algorithm 4 is fixed, the performance might
be affected by specific RES outputs. Moreover, the search has a component of
randomness due to the probabilistic selection of operation times of the appli-
ances. Therefore, it might occur that the value of α is modified too early, before
a thorough search is required, or too late, after a long period of stagnation in
sub-optimal locations of the fitness landscape. The design of the rule, however,
is very simple and drastically improves the convergence speed of the perfor-
mance.

Finally, this analysis has concentrated on the convergence of both approached.
In the following, the performance is analyzed in detail in comparison with a
synchronized price-based approach.

5.3. Comparative Results

In this section, SLC-FK and SLC-FKd are compared with a synchronized closed-
loop pricing approach. This approach is referred to as CLP-FK, standing for
Closed-Loop Pricing with Full Knowledge of the RES output. CLP-FK utilizes
a greedy selection process to synchronously select the operation times of the
appliances. For the rescheduling of highly flexible loads, such as EVs, CLP-FK
has been shown to achieve close-to-optimal solutions ([Got15]). Therefore, it
is a reasonable candidate to compare the performance of SLC-FK. The detailed
functioning of its behavior and expected performance are described in Subsec-
tion 5.3.1.

To compare these load scheduling strategies, the population size and the RES
output are varied. Subsequently, the performance of the approaches is com-
pared with a different load composition in the micro-grid and RES outputs,
while considering a fixed population size. Afterwards, a discussion is per-
formed regarding the relevance of synchronization for CLP-FK is empirically
assessed.

Novel contributions in this section include the comparison of SLC-FKd with
CLP-FK and SLC-FK. Additional contributions are the analysis of the perfor-
mance of each approach in a micro-grid with different load compositions and
the assessment of the effect of sorting in the performance. Moreover, the com-
parisons regarding SLC-FK and CLP-FK, and a specific comparison of the effect
of sorting appliances (Subsection 5.3.3) have been submitted for publication
[RKS16].
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Figure 5.15.: Information flow for CLP and CLP-FK, between the micro-grid
price manager (MGPM) and households within an idealized
micro-grid.

5.3.1. Closed-Loop Pricing with Full Knowledge

Under a CLP-FK regime, a micro-grid price manager (MGPM) is given an RES
output13. The MGPM transforms the RES output into a pricing signal. This
signal expresses the electricity price for each timeslot in the simulated day, in
reference to RES availability according to the output. Hence, higher RES avail-
ability implies cheaper prices.

The MGPM proceeds to broadcast the signal to a single household. The house-
hold performs a greedy selection based on the signal. This is, it selects the
cheapest operation time for its devices. Then, it sends its updated load profile
to the MGPM. Once the MGPM has received this first household schedule, it
discounts the derived load profile from the RES output. Afterwards, it updates
the pricing signal according to the new RES availability. The updated pricing
signal is broadcast to the next household and the process is repeated. When all
households have rescheduled their appliances, a single rescheduling round is
finished. In the next rescheduling round, the price-based signal expresses once
again the prices according to the RES output. The process continues until the
end of the simulation. The best performing global schedules are selected from
each rescheduling round. The information flow in CLP-FK is described in Fig.
5.15.

The process of synchronously selecting the cheapest timeslots and adapting

13CLP-FK is later utilized in Chapter 6. In that scenario, an RES forecast is utilized and updated
in each rescheduling round, instead of the RES output. This difference is depicted in Fig. 5.15
with the red dotted arrow, to show that this step is not performed in CLP-FK.
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the price signal according to the new RES availability, allows CLP-FK to obtain
high quality solutions. Nevertheless, it has to be noted that this approach only
works if there is synchronization among participants. When this requirement
is not met, extreme load peaks can be obtained ([GKB+11, GSF+13]).

Disruption in CLP-FK comes from the sorting in which households are selected
for receiving the pricing signal. Different sorting will imply that households
with different load compositions will have the priority to select the best prices,
influencing the final micro-grid load profile. Hence, different high quality solu-
tions might be found. In the present thesis, households provided with devices
with the highest flexibility (BEVs) are scheduled at the end of the rescheduling
round. This sorting allows CLP to absorb breaches and deviations from RES
forecast. Additional discussion regarding conceptual implications of CLP in
the context of stigmergy, is presented in and Chapter 7.

5.3.2. Scalability and Overall Performances

To compare the performances of each approach regarding scalability and the ef-
fect of different types of RES outputs, both factors are modified simultaneously.
The analysis, is performed for each individual problem instance. Therefore,
formally the hypothesis to be tested is: H0 : Data in x and y are samples from
continuous distributions with equal medians, against the alternative that they
are not. x is performance generated with a load-scheduling algorithm (such as
SLC-FK) and y is performance generated with another load-scheduling regime
(such as CLP-FK). Both performances are generated with the same RES output
and population size. Hence, the rejection of H0 implies that differences in per-
formance between two samples with different load scheduling strategies, are
significant.

Results provide evidence to support the rejection of H0 for every RES output
and every population size14. Therefore, it can be said that significant differences
exist when the three approaches are compared. In this sense, Fig. 5.16 provides
a perspective of the performance of each approach. These specific examples
describe the overall behavior for each type of RES output and population size
analyzed.

It is observed that, the performance of CLP-FK is superior to SLC-FK and SLC-
FKd. Nevertheless, differences between both types of strategy tend to reduce
with larger population sizes. This tendency is stronger with balanced outputs,
where differences in performance are on the order of 1% of unused RES output.
In the case of PV intensive outputs, the opposite tendency is observed: With

14For a detail analysis of the Kruskal-Wallis rank-sum test, cf. Appendix C, Table C.15.
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Figure 5.16.: Performance of CLP-FK, SLC-FK and SLC-FKd under different
population sizes and RES outputs.

larger population size, the differences in performance between CLP-FK and
SLC-FK or SLC-FKd increase.

A reason for this is that the greedy selection of rescheduling hours in CLP-FK
is much more effective to exploit large single load peaks, than the probabilistic
selection process performed with the stigmergy-based approaches. Therefore,
with larger population sizes, these differences are intensified under these type
of outputs. This also explains the small dispersion observed for CLP-FK with
balanced outputs, and not with PV intensive outputs.

Due to its greedy selection process, intuition dictates that exactly the same
schedules would be obtained every time for CLP-FK. Nevertheless, a source
of variability is the breaking of ties in which the approach selects randomly
the operation times when prices are equal. As a consequence, small differences
between global schedules in different runs can be found. The impact of tie
breaking is reduced with PV intensive outputs. In those cases, all the load is
required to be allocated in a single peak. Hence, tie breaking does not disperse
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the loads. As a consequence, outliers are almost non-existent with CLP-FK15.

Regarding the comparative performance of SLC-FK versus SLC-FKd, it can be
said that SLC-FKd achieves competitive solutions when compared with SLC-
FK. Although with PV intensive outputs SLC-FK tends to outperform SLC-
FKd, with balanced and wind intensive outputs, most of the times, no signif-
icant differences are found between the performance of both approaches, re-
gardless of the population size16. These results show that SLC-FKd not only
converges to good results faster than SLC-FK utilizing a fixed α configura-
tion which produces good performances (Subsection 5.2.4), but also, that the
final performance of both approaches is similar. Therefore, regarding the solu-
tion construction process of SLC-FKd, the search does not get trapped in sub-
optimal regions of the fitness landscape, as it occurs with SLC-FK. As a con-
sequence, it can conclusively be stated that SLC-FKds performance describes
the desirable behavior for which it was designed. This is, fast convergence fol-
lowed by a thorough search which leads to quality solutions.

5.3.3. Load Composition and Synchronization

In [Got15], is mentioned that CLP-FK, is able to achieve close-to-optimal results
when solving the load scheduling problem with a micro-grid populated exclu-
sively with EVs. These devices are extremely flexible, since they are only power
and energy constrained. Therefore, they can separate their consumption to in-
dividual timeslots, in concordance with contextual requirements. In the case
of appliances such as a washing machine, once the device begins its operation,
it cannot stop until the execution finishes. As a consequence, its load cannot
be separated to cover specific breaches between the micro-grid load profile and
the RES output.

Therefore, for CLP-FK to achieve its best performances, households provided
with EVs should receive the signal and perform the rescheduling at the end of
the rescheduling round. This way, EVs will be able to cover the breaches gen-
erated by less flexible appliances. Moreover, it is reasonable to assume that, in
a scenario where the sorting of EVs is not adequate or where the micro-grid is
deprived of EVs, CLP might reduce its performance. In this subsection, two
scenarios are investigated to assess these inquires. Firstly, the effect of depriv-
ing the micro-grid of highly flexible devices (EVs) is assessed. Secondly, the
impact of sorting EVs at the beginning of the rescheduling round is assessed.

15For a summary of the results with each RES output and population size, cf. Appendix E, Tables
E.16 and E.17.

16For details of the post-hoc analysis with pairwise comparisons between both approaches, cf.
Appendix D, Tables D.24 and D.25.
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These analyses will also provide a perspective of the limitations of SLC-FK and
SLC-FKd as a meta-heuristic for solving the load scheduling problem.

Different Load Composition in the Micro-Grid

Two scenarios are considered for assessing the performance of these approaches
when the micro-grid is not provided with highly flexible devices such as EVs.
The first scenario considers the previous penetration of intelligent washing ma-
chines, dishwashers and dryers in the micro-grid remains the same, without
any penetration of EVs. The second scenario considers that households are
provided solely with intelligent washing machines.

The effect of different load compositions in the households, is evaluated by
comparing the percentage of unused RES in these scenarios with the original
load composition utilized throughout this chapter. Therefore, the hypothesis
tested is: H0 : Data in x and y are samples from continuous distributions with
equal medians, against the alternative that they are not. x is performance gener-
ated with a load-scheduling algorithm (such as SLC-FKd) and y is performance
generated with another load-scheduling regime (such as CLP-FK). Both perfor-
mances are generated with the same RES output and load composition in the
micro-grid. Hence, the rejection of H0 implies that differences in performance
between the two samples with different load scheduling strategies, are signifi-
cant. The population in the micro-grid is fixed, with 4, 000 households.

Example performances with three RES outputs of different type are depicted
in Fig. 5.17. It can be observed that differences in performance between strate-
gies reduce when EVs are not considered. Moreover, the performances seem to
become similar when only washing machines are considered as flexible loads.
This tendency maintains regardless of the type of RES output. An interesting
observation, is that, in general, the absolute performance of every approach
seems to improve when the RES output is PV intensive, and high flexibility
devices are not considered (Fig. 5.17, No EVs. and Only Washing Machine sce-
narios).

These observations are confirmed by a more profound analysis. The results
show that when washing machines are considered in the micro-grid as the only
flexible load, in almost every case, differences in performance between the ap-
proaches are not significant17. In addition, for every scenario, the differences in
performance between SLC-FK and SLC-FKd rarely are significant18, implying
that in these scenarios, the deterministic parameter control technique utilized
does not affect performance negatively.

17For details of Kruskal-Wallis analysis for each case, cf. Appendix C, Table C.16.
18For details of the post-hoc analysis, cf. Appendix D, Table D.26.
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Figure 5.17.: Performances generated CLP-FK, SLC-FK and SLC-FKd for differ-
ent RES outputs in a micro-grid with all four appliances described
in Table 5.1, without EVs and only with intelligent washing ma-
chines, respectively.

Reasons for these behaviors have been previously presented. Since EVs are re-
moved from the micro-grid, small gaps between micro-grid load profile and
RES output cannot be precisely filled with CLP-FK. This effect is further inten-
sified when only a single load shape is available for rescheduling (Only Wash-
ing Machine scenario). In this context, restrictions imposed by the problem in-
stance limit the abilities of the greedy synchronized selection process of CLP-
FK, reducing its relative performance with respect to scenarios with higher
load diversification, particularly with balanced and wind intensive RES out-
puts. Hence, without highly flexible devices and with limited diversification
of the load composition, stigmergy-based approaches increase competitiveness
and in some isolated cases, are superior to CLP-FK (Fig. 5.17, No EVs., Balanced
Output).
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Figure 5.18.: Example micro-grid load profiles generated by CLP-FKhff, SLC-
FK and SLC-FKd for different RES outputs.

The Impact of Sorting

One of the strengths of both stigmergy-based approaches, is that they do not
require synchronization of the participants to search and construct solutions.
To obtain a more precise perspective of the importance of this feature, in this
subsection, SLC-FK and SLC-FKd are compared with a variation of CLP-FK
which sends its pricing signal first to households provided with highly flexible
appliances (EVs). This variation is referred to as CLP-FKhff, standing for CLP-
FK with highly flexible devices first.

In Fig. 5.18, differences in the micro-grid load profile generated by each ap-
proach, can be observed. Regarding the balanced output, it is observed that,
the shape of micro-grid load profile generated with CLP-FKhff emulates that
of the corresponding RES output. Nevertheless, although the result has high
performance, a breach exists between the two curves. It seems, that CLP-FKhff
is not able to exploit alternatives which imply deviations from the RES output
shape [RKS16].

This occurs precisely because households with EVs are scheduled at the begin-
ning of the round. At the end of the round, the micro-grid has no flexible loads
which can be scheduled on single timeslots to absorb small imbalances. As a
consequence, the CLP-FKhff profile shape is almost identical to the RES output,
but with a gap which separates them. A similar situation is observed PV inten-
sive outputs. In this case, however, the performance of CLP-FKhff is clearly
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Figure 5.19.: Performances generated CLP-FK, CLP-FKhff, SLC-FK and SLC-
FKd for different RES outputs and population sizes.

superior to those of the stigmergy-based approaches. Therefore, the breach is
not visible.

A clearer perspective of the reduction in performance, as a consequence of an
inadequate sorting in the price-based alternatives, can be obtained from Fig.
5.19. Here, CLP-FK, in which households with EVs receive the pricing signal at
the end of the round, is also displayed. In this case, when the EVs are scheduled
at the end, the performance clearly improves. Moreover, this tendency is inten-
sified with larger population sizes and balanced outputs. In this case, CLP-FK,
SLC-FK and SLC-FKd achieve similar performances, while CLP-FKhff depicts
the worst performances. Nevertheless, an interesting behavior is observed in
Fig. 5.19, PV Intensive, population size 4,000. In these cases, CLP-FKhff out-
performs all other approaches. In regard to the stigmergy-based approaches,
reasons have been previously explained. In regards to CLP-FK, a likely rea-
son is that the approach gets trapped in a local optima. This issue is further
discussed in Chapter 6, Subsection 6.3.6.
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These results help to quantify the differences between the best performance
with an adequate and inadequate sorting for CLP-FK. Moreover, the results
show that to obtain its best possible performances, specially with balanced RES
outputs, CLP-FK requires that households are sorted according to their flexibil-
ity. This implies that, to obtain the best performances with CLP-FK, the internal
load composition of households has to be known, in order to sort them prop-
erly. As a consequence, the privacy of customers is reduced, since individual
information is utilized by an external entity.

In addition, the implementation of a sorting mechanism increases the complex-
ity of the approach. This is certainly a strength of SLC-FK and SLC-FKd, since
in both approaches, communication is asynchronous. Moreover, agents that
simulate households can be considered as black boxes, from which a load pro-
file is obtained. Therefore, when the stigmergy-based approaches converge to
a good solution, the MGM can reference the desired load profile from each
agent, without knowledge of its internal composition nor their specific sched-
ule [RKS16]. In has to be noted, however, that in a realistic scenario, CLP-FK
would randomly broadcast the pricing signal, reducing privacy concerns. This
scenario was not evaluated. However, a slight reduction of the performance
would be expected.

This analysis reveals strengths and weaknesses of price-based and stigmergy-
based approaches. Both, SLC-FK and SLC-FKd, are able to extend the search to
different locations in the fitness landscape, and diverge from the shape of the
RES output to construct schedules which outperform CLP-FKhff. This is pos-
sible, because their rescheduling is based on a probabilistic decision process,
rather than a greedy selection, which might direct the search always trough
the same regions in the fitness landscape. Nevertheless, the very decision pro-
cess which enables SLC-FK and SLC-FKd to perform well with balanced RES
outputs, prevents them from exploiting large single load peaks (PV intensive
outputs). With all in consideration, the advantage of SLC-FK and SLC-FKd is
that it does not require synchronization, nor sorting of customers for broadcast-
ing the control signal. Moreover, since the stigmergy-based approaches do not
require private information of customers regarding appliances flexibility, the
risk of violating the privacy of customers is reduced [RKS16].

5.4. Discussion and Summary

In this chapter, the experimental analysis of the stigmergy-based load control
(SLC-FK) meta-heuristic is discussed. SLC-FK is designed to distributively gen-
erate global schedules in an iterative manner, which can maximize usage of a
given RES output. The formal model to this approach was presented in Chapter
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4. The evaluation of the performance provides insights regarding the possibil-
ity to extend the approach for solving other COPs.

Results from the analysis of the internal behavior of SLC-FK show that with
larger population sizes, the absolute performance of the approach improves.
Moreover, results show that a performance threshold related to the population
size might exist. This threshold should be located above a 4, 000 households
population. After this networks size is reached, the absolute performance of
the approach does not improve further. In this sense, unexpected behavior
was observed with PV intensive and wind intensive RES outputs. In these
scenarios, occasionally the performance of SLC-FK with smaller network sizes
was better than with larger populations. A proposed reason for this behavior, is
that the performance might get trapped in a local optima when the population
size increases. In this case, however, these issues are related to specific RES
outputs.

Regarding the configuration of the internal parameter α, it was found that
smaller values produce better performances. Nevertheless, smaller values for
α also imply slower convergence speed. Therefore, after a comprehensive anal-
ysis of the convergence of the performance, a deterministic parameter control
for SLC-FK was proposed, which considers a fixed rule to modify the value
of parameter α during execution. Through the implementation of this rule, an
adaptation to the original approach was developed, SLC-FKd, which increases
the convergence speed.

Both approaches were compared to a synchronized closed-loop pricing scheme
(CLP-FK). It was observed that when RES outputs are balanced, differences
in the performance of all approaches are minor, in the order of 3% of unused
RES. For PV intensive outputs, these differences increase. Afterwards, the effect
of reducing highly flexible appliances (EVs) in the micro-grid and altering the
sorting of households for CLP-FK was assessed. It was found that when EVs
are removed from the micro-grid, the competitiveness of the stigmergy-based
approaches increases largely. Moreover, with balanced RES outputs, when the
price signal is sent first to households with EVs, SLC-FK and SLC-FKd out-
perform CLP-FK. This implies that to achieve its best possible performance,
CLP-FK requires knowledge of the level of flexibility of households. These
results are in line with [FG16], and show that more complex power systems re-
quire more complex management mechanisms to further maximize RES usage.
However, the more complex the management mechanism, the more fragile can
it be, and larger customer concessions it might require.

This analysis shows strengths and weaknesses of stigmergy-based approaches.
On the one hand, SLC-FK and SLC-FKd are asynchronous. From an appli-
cation perspective, this implies more robustness and simplicity. On the other
hand, even when CLP-FK achieved better performances, the requirement of
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synchronization implies that the approach is more complex in its implementa-
tion, operation and management.

For complementing stigmergy-based approaches and reduce privacy concerns,
agents can be considered as black boxes, from which only the load profile is
obtained. The individual load profiles which produced the best global per-
formance can be referenced, and agents which own those profiles will execute
the concordant schedule. Therefore, anonymity of participants is preserved.
Moreover, in this scenario SLC-FK and SLC-FKd can be complemented with
approaches to conceal details of the shape of households profiles ([FB14]), fur-
ther enhancing privacy. An additional implementation strategy for SLC-FK
considers performing the scheduling process directly with the households, in-
stead of an agent representation of them. In this case, privacy issues would
be drastically reduced, since households would be anonymous from the per-
spective of the network structure19. Nevertheless, communication overheads
should be considered due to the requirement of many rescheduling rounds to
achieve quality results. In this sense, SLC-FKd would be preferable due to its
fastest convergence.

Regarding the performance of SLC-FK in comparison with SLC-FKd, results
obtained with SLC-FKd are easy to generalize. Although SLC-FK outperformed
SLC-FKd in some isolated cases, the fast achievement of quality results with
the latter might privilege the selection of SLC-FKd. This leads to the question:
Do the benefits of the stigmergy-based approaches compensate for the gap in
performance with CLP-FK? This conclusion is finally related to the application
scenario. In cases where a small reduction in the performance is acceptable,
and privacy, scalability and simplicity are relevant issues, stigmergy-based ap-
proaches conform a better alternative. Within these scenarios, if fast conver-
gence to good results is relevant, SLC-FKd should be selected over SLC-FK.

Finally, these results support the enhancing and adaptation of SLC-FK to be ap-
plied to other COPs. In this sense, the presented scenario can be considered as
the first example of the applicability of the meta-heuristic. Future steps in this
direction consider adapting the approach to solve other scheduling problems,
cutting stock problems, and two-dimensional bin packing problems, among
others.

19This configuration is later considered in Chapter 6, for real-time coordination.

107
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Stigmergy-Based Load Control

“ Extraordinary claims require extraordinary evidence. ”
Carl Sagan, Cosmos, Encyclopedia Galactica, 1980

Real-time optimization presents many challenges for decentralized manage-
ment and load scheduling of autonomous devices. To increase RES utilization
in the power grid, a specific global behavior has to be promoted, without gen-
erating load imbalances. This implies that each participant should coherently
and cooperatively schedule its appliances, such that the aggregated behavior
of individuals coincides with the desired global behavior. If deviations occur
during the execution, the power grid should be able to reduce these deviations
and guide the performance of the system within acceptable boundaries. As a
consequence, when participants select inadequate operation times for their de-
vices, which increase imbalances, other participants should reschedule in order
to absorb these imbalances.

In addition, the load management mechanism needs to be able to react to a
changing environment. The utilization of RES forecasts allows the reschedul-
ing of loads in consideration of possible RES availability in the future. Never-
theless, differences (either large or small) between a forecast and an RES out-
put imply dynamism in the load scheduling problem. Hence, a real-time load
scheduling mechanism needs to be able to adapt the scheduling process dur-
ing run time, such that new and more accurate information can be included.
In this context, the larger the differences between forecasts and RES output,
the more dynamic the environment will be, as a consequence of the alterations
in the problem definition. In this context, intuition dictates that, on the one
hand, when a load management mechanism utilizes better quality forecasts its
performance should improve. On the other hand, when the forecast quality
becomes worse, flexible loads might be shifted to sub-optimal timeslots with
regard to RES output, generating load imbalances in the micro-grid. Therefore,
if dynamism in the problem is large, the importance of new information should
increase, as it helps to correct inaccurate RES forecasts.
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In this chapter, the ability of stigmergy-based load control to reschedule au-
tonomous flexible loads in real-time, is assessed. In this context, the approach
is referred to as SLC. Three aspects of SLC are investigated in detail: Firstly, the
potential of SLC to increase RES utilization by guiding the scheduling of oper-
ation times of households appliances. This means, promoting a specific global
behavior of autonomous entities. The second aspect investigated, regards the
correlation of the performance of SLC with increasing forecast quality. The
third aspect, assesses the relevance of past versus current information, balanced
by an internal parameter, with regard to the level of dynamism in the problem
definition. After a detailed analysis of SLC is performed, the approach is com-
pared against a synchronized price-signal alternative. This reference approach
is an adaptation of the close-loop pricing scheduling mechanism described in
Chapter 5. In consideration of the performance and abilities of each approach
to guide global autonomous behavior, weaknesses and strengths of SLC against
the alternative are discussed.

6.1. Experimental Setup and Data Preparation

In the context of load balancing, the availability of flexible loads reduces during
the scheduling process, since some devices will have initiated their execution.
Hence, one can only optimize for the future, while past and present cannot
be modified. If autonomous participants are considered, the obtained power
grid load profile might be of lower quality than previously generated profiles.
Moreover, potentially optimal solutions cannot be saved and utilized in the
future unless specific schedules are imposed on customers, therefore reducing
their autonomy.

For implementing SLC in a real-time scenario, as mentioned in Chapter 4, a
receding horizon is utilized [SGC+13], which enables the modeling of the pre-
vious scenario. An idealized isolated subsection of the power grid (micro-
grid) and a day discretized in timeslots of 15-minutes resolution are considered
within a simulation environment. In each timeslot a rescheduling round is per-
formed. When moving from one round to the following, the loads scheduled
to begin operation in the current timeslot become unavailable for reschedul-
ing. A specific challenge of this approach is that the optimization horizon is
continuously reducing, as the simulation gets closer to the end of the day.

This section presents the factors for performing the evaluation of the SLC co-
ordination approach in the micro-grid scenario described in Chapter 4. Some
of these factors are not parameters controllable by the approach. Nevertheless,
it is relevant to evaluate their effect on the performance to assess relevant is-
sues such as scalability, adaptability to dynamism, and robustness of SLC. In
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this sense, the simulation scenario from Chapter 5 is considered for experimen-
tation, with minor adjustments to address the real-time optimization context.
Furthermore, additional features relevant to the evaluation of the approach are
specified when it corresponds.

6.1.1. Household Consumption

Flexible load is represented by three shiftable appliances and electric vehicles
(EV), as in Chapter 5. The penetrations, user-defined flexibility intervals, share
of each corresponding device per interval and the daily consumption of each
device is specified in Table 5.1.

The Federal Association of Energy and Water Industries of Germany (BDEW)
provides the so called H0 standard load profile for the electricity consumption
of a standardized German household in a 15-minutes resolution1. This pro-
file varies between working day, Saturday and Sunday, and between winter,
summer, and transition time. For experimentation, only working days of a
transition time are considered.

Each household has a fixed base load represented by the H0 profile. Two sce-
narios are studied: (i) All load is flexible, and the base load is not considered. (ii)
Flexible loads represent between 10% and 40% of the micro-grid load composi-
tion. Even though scenario (i) is unrealistic for the current context of the power
grid, it allows to study the maximum potential to exploit load rescheduling. On
the other hand, scenario (ii) is consistent with estimations regarding current
load flexibility within the power grid [Hil14, QH99]. Hence, to some extent,
scenario (ii) allows the study of the current potential for intelligent reschedul-
ing to increase RES utilization in the power grid.

These scenarios are depicted in Fig. 6.1. Cases 10% Flexibility and 40% Flexibil-
ity, depict the scaling of the micro-grid base load and the total micro-grid load
for different shares of load flexibility. When load flexibility is less, the shape of
the H0 profile, which is not flexible, becomes clearer. On the other hand, the
shape of the micro-grid profile changes as a consequence of the increase in load
flexibility. The increasing load peak in the beginning of the the day is explained
by the EVs parked and charging. Fig. 6.1, 100% Flexibility, depicts the total load
of the micro-grid when all the load is flexible. It can be observed that the effect
of the base load is nullified and the shape of the profile depends exclusively on
the distribution of the appliances according to Table 5.1.

1http://www.kommenergie.de/netz/standardlastprofil/standardlastprofile-slp/
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Figure 6.1.: Base load and micro-grid total load under different shares of load
flexibility in the micro-grid. Flexible loads are distributed uni-
formly within their user-defined flexibility intervals (Table 5.1).

6.1.2. Renewable Generation Supply and Coverage

The selected RES outputs in Chapter 6 are also utilized for experimentation in
this chapter. In addition to these outputs, the German Transmission System
Operators also provide data on wind and PV forecasts for the corresponding
outputs with the same 15-minutes resolution.

For analyzing the internal behavior of SLC, a base scenario is considered with
a share of 100% load coverage. This means that the total electricity demand
equals the total generation from RES. For comparing SLC with other strategies,
different shares of load coverage are also considered, namely 25%, 50%, and
75% of the micro-grid load requirements are supplied by RES. In these cases,
the difference between the coverage capacity and the micro-grid load require-
ments are assumed to be supplied by conventional generation.

6.1.3. Artificial Forecasts Classification

Artificial forecasts for the RES outputs are generated through the process de-
scribed in Subsection 4.4. For each day, the forecast and RES output are scaled
to the total output load of the day. Therefore, final values for the RES output
will vary in [0, 1], representing the share of the total load of the day in each time
series. However, since the scaling is done according to the total output of the
day, values larger than one are possible for the forecast.
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Figure 6.2.: Exemplary RES output with three artificially generated forecasts.
The forecasts are classified according to the RMSE.

For each RES output, 50 artificial forecasts are generated, resulting in a pool of
18, 000 output-forecast combinations available for experimentation. These fore-
casts were classified into three categories: high quality, medium quality, and low
quality forecasts. The category of each forecast is determined according to the
Root Mean Squared Error (RMSE) between the forecasts and their correspond-
ing RES output. A forecast g0 is of high quality ifRMSE

(
g0
)
< 0.002, medium

quality if 0.002 ≤ RMSE
(
g0
)
< 0.004, and low quality if 0.004 ≤ RMSE

(
g0
)
.

An example of a RES output with a forecast of each category can be observed
in Fig. 6.2.

6.1.4. Summary of the Experimental Design

Three experimental designs for evaluating SLC are considered. A summary
of the different values of the factors utilized for experimentation is provided in
Table 6.1. In all experiments, ten runs are considered for each problem instance,
e. g. combination of the factors.

The first experimental design is utilized for evaluating the internal behavior of
SLC. Factors to be modified are the RES output, forecast quality, population
size and the configurations of α. As mentioned, twelve RES outputs have been
selected for experimentation2. Since RES forecasts are relative to each RES out-
put and can differ between each other, to avoid nuisance generated by specific
forecasts, ten samples of each category have been selected. The population size

2For each individual RES output shape, cf. Appendix A, Fig. A.1.
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Table 6.1.: Summary of factors and values utilized for experimentation in real-
time coordination. Different combinations of the factors correspond
to different problem instances.

Factor Levels Values

RES Output 12 RES outputs 1, 5, 7, 11, 12 (Balanced),
4, 6, 8 (PV Intensive),

2, 3, 9, and 10 (Wind Intensive)
Forecast Category 3 Low, Medium, and High quality

with ten samples of each
Population Size 4 40, 400, 4, 000, and 40, 000 households
Micro-Grid Load Flexibility 4 25%, 50%, 75%, and 100%
Load Coverage 5 10%, 20%, 30%, 40% and 100%
α 5 1.0, 0.5, 0.1, 0.05, and 0.01

increases in a logarithmic scale from 40 to 40, 000 households. Finally, for pa-
rameter α different values have been considered, expressing different weights
of current and historic information in the control signal construction process.
Hence, for analyzing the internal behavior of SLC (Section 6.2), RES output has
twelve levels, forecasts have three levels, population size has four levels and α
has five levels. In a real application, only α would be a controllable factor. All
other factors are defined by the application context.

The second experimental design is utilized for the first set of comparisons be-
tween SLC and other load scheduling strategies (Subsections 6.3.2, 6.3.3 and
6.3.4). In this case, α values are fixed to the best performing configurations.
These configurations are obtained from the analysis of SLC. Therefore, factors
to be modified are the RES output, population size and forecast category. All
factors are varied considering the previously described levels.

The third experimental design is utilized for analyzing and comparing the per-
formance of SLC in a more realistic scenario (Subsection 6.3.5). This scenario
considers different shares of load flexibility and RES coverage over the micro-
grid load requirements. A mixed-level factorial design is utilized. RES output
and forecast are once more considered factors in the experiment. Moreover, the
share of flexibility in the power grid, with four levels, and the RES coverage,
with three levels, are included as additional factors. These factors are defined
by the context application, and are not controllable by the load management
approaches. Moreover, in this specific experimental design, the population size
is fixed, with 4, 000 households.

Finally, the performance measure of every following experiment is the percent-
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age of unused RES at the end of each simulated day. Moreover, the optimiza-
tion objective is to minimize the amount of unused RES, this is, the area under
the curve of the corresponding RES output.

6.1.5. Approach to Data Analysis

To support observations and assess the significance of the obtained results in
this chapter, an statistical analysis is performed for each set of experiments in
the corresponding subsections.

The approach is similar as the one described in Chapter 5. As a remainder,
the statistical analysis is conducted as follows: The normality of the data is as-
sessed through a one-sample Kolmogorov-Smirnov test. Once more, evidence
supported the rejection of data being normally distributed. Afterwards, a sum-
mary of the main statistics is constructed for the corresponding evaluation, fo-
cused on medians. To assess the significance of the differences between eval-
uations, a Kruskal-Wallis rank-sum test is utilized. Finally, a post-hoc analysis
is applied, which corresponds to an unpaired Wilcoxon rank-sum test for pair-
wise comparisons.

The detailed analysis of each scenario is provided in the appendix. Details of
each normality test are available at Appendix B. The detailed Kruskal-Wallis
rank-sum tests are presented in Appendix C. The post-hoc analyses are pre-
sented in Appendix D. Finally, the summaries of each evaluation are available
at Appendix E.

Specific tests are referenced throughout this chapter, to support statements re-
garding the performance under different parameter configurations and in com-
parison to other scheduling approaches.

6.2. SLC Analysis

In this section, the behavior of SLC is assessed. The algorithm is analyzed
under different population sizes, in order to evaluate scalablity on the perfor-
mance. Afterwards, SLC is evaluated under the previously defined forecast
categories (Subsec 6.1.3) to asses if better forecasts translate into better perfor-
mances. In conjunction with the forecast quality evaluation, different values
for the α parameter, from Eq. 4.1, are considered. Parameter α balances the
weight of new information in the control signal construction process. Hence,
the objective is to discover if different α configurations can improve the perfor-
mance of SLC under different levels of dynamism on the problem definition.
For this, selected values for the parameter range from α = 1.0, same weight
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Table 6.2.: Extract of the summary of the performances of the analysis of the
scalability of SLC, with different RES output types.

Statistic
Balanced PV Intensive Wind Intensive

Population Population Population
40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000

Min. 18.1% 7.5% 6.6% 6.9% 20.4% 15.5% 17.9% 18.6% 18.9% 8.6% 8.0% 8.0%
1st Qu. 21.1% 10.2% 8.1% 7.8% 26.5% 20.0% 19.7% 19.7% 21.6% 11.4% 10.2% 10.1%
Median 22.2% 10.8% 8.7% 8.4% 28.6% 20.9% 20.2% 20.2% 22.8% 12.1% 10.6% 10.4%
3rd Qu. 23.6% 11.4% 9.2% 8.9% 31.0% 22.0% 20.8% 20.6% 24.3% 12.8% 11.0% 10.7%

Max. 27.5% 13.5% 11.1% 10.9% 40.1% 24.8% 22.6% 21.8% 28.3% 14.4% 12.7% 12.3%

of historic information with current information, to α = 0.01. As mentioned
in Subsection 6.1.1, the initial schedules are obtained by uniformly distributing
the execution times of the devices within their corresponding flexibility interval
(Table 5.1). Moreover, a 100% flexibility and a 100% micro-grid load coverage
are considered.

6.2.1. Effects of Different Population Sizes

To evaluate the scalability of SLC, a population size of 40 households is consid-
ered, and a logarithmic scale is utilized for selecting additional population sizes
for evaluation. Hence, the idealized micro-grid is populated by 40, 400, 4, 000,
and 40, 000 households for each set of experiments. The two former correspond
to a low-voltage grid scenario, whereas the two later imply managing a subsec-
tion of a distribution power grid. In this set of experiments, factors modified
are the RES output, population size and α. Hence, 300 runs are considered in
each evaluation. An extract of the summary of the performances, comprising
three exemplary RES outputs of each type, are depicted in Table 6.23.

Results show that, regardless of the α configurations and the RES output, per-
formance seems to improve as the population size increases. Similarly as with
static optimization (Chapter 5), a performance threshold seems to exist, which
is related to the population size. After this threshold is surpassed performance
does not seem to improve. This threshold seems to be located between a pop-
ulation of 400 and 4, 000 households. This behavior was observed in every
problem instance when modifying the population size while keeping the other
factors unchanged. An exemplary case can be observed in Fig. 6.3 which de-
scribed the behavior for a balanced RES output and α = 0.5 (for the detailed
data, cf. Table 6.2).

3For the full summary of the performances of this experiment, the interested reader is referred to
Appendix E, Tables E.1 and E.1.
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Figure 6.3.: Exemplary evaluation for assessing the effect of the population size
on the performance of SLC.

Results of the post-hoc analysis confirmed previous observations in every case.
Not only the absolute performance improves with increasing population sizes,
but above a certain population size is reached (at least 4, 000 households), dif-
ferences in performance are not significant4. Hence, one is led to the conclusion
that a performance threshold exists, in regard to the size of the network. In ad-
dition, outliers are drastically reduced in conjunction with this tendency. There-
fore, the performance does not only improves, but becomes more robust.

Reason for this have been previously explained. With smaller population sizes,
there are fewer alternatives to reschedule the appliances within their flexibility
intervals such that RES usage is increased. This means, there is less potential
for optimization.

6.2.2. Forecasts Accuracy and Problem Dynamism

Intuition dictates that when dynamism in the problem is large, the importance
of new information should increase, as it helps to correct inaccurate RES fore-
casts. Higher dynamism is related to lower forecast quality, since the difference
between the real RES output and the predicted output is larger.

In Section 4.3.1, it is discussed that parameter α regulates the weight of new
information in the signal construction process. Therefore, it is proposed that

4For a detailed view of the post-hoc analysis, the interested reader is referred to Appendix D,
Tables D.1 and D.2.
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when the problem is less dynamic, the weight of new information should be
reduced (smaller values for α), in order to have a more directed search. On
the other hand, when the problem is more dynamic (low quality forecasts), the
weight of new information should be increased (larger values for α) to cope
with variability and promote rapid adaptation to a new scenario. To assess the
performance of SLC in dynamic scenarios, the evaluation is divided in three
subsections and is conducted as follows:

• Firstly, the three forecast categories are evaluated for different α configu-
ration. This evaluation assesses if SLC improves its performance in con-
cordance with the forecast qualities.

• Secondly, all α configurations are compared within each forecast category.
Results provide information about the absolute performance of each α
configuration. Moreover, a conclusion is drawn regarding the role of new
information on the performance of SLC in a receding horizon scenario.

• Finally, the effect of modeling the problem as a receding horizon and con-
vergence of SLC throughout rescheduling rounds is assessed.

Identifying the Effect of Forecast Quality

The proposed hypothesis states that with better forecast qualities, the perfor-
mance of SLC should improve. Formally: H0 : Data in x and y are samples from
continuous distributions with equal medians, against the alternative that they
are not, where x and y are the performance of SLC, generated with different
forecast quality but the same RES output, population size and α configuration.
In addition, each evaluation of the problem instances considers 100 runs. If H0

is rejected, it can be stated that differences exist in the performance of SLC as a
consequence of the quality of the forecast.

The analysis reveals that for the smallest population size (40 households), dif-
ferent forecasts do not seem to have a clear impact on improving or reduc-
ing performance5. These results complement the observations from Subsec-
tion 6.2.1. Since the performance becomes more robust with larger popula-
tion sizes (400 − 40, 000 households), the effect of different forecast qualities
becomes clearer. Hence, a more detailed analysis of the performance is pos-
sible. Therefore, the following analysis describes the behavior observed for
population sizes 400, 4, 000, and 40, 000.

Results show that the hypothesis is falsified with larger values for the α pa-
rameter, e. g., α = 1.0 and α = 0.5, this is, there was not enough evidence

5The interested reader is referred to Appendix C, Tables C.2 for the Kruskal-Wallis analysis with
a 40 households population.
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Figure 6.4.: Example performance of SLC with regard to different forecast qual-
ities. The three RES output types are considered with α = 1.0 and
4, 000 households.

reject H0 in these scenarios. In general, for these parameter configurations the
performance is not greatly affected by different forecast qualities. The analy-
sis reveals that often no specific forecast quality produced a performance that
outperformed with confidence the others6. Fig. 6.4 depicts an example case of
this behavior for the three types of output: balanced, wind and PV intensive.
Hence, it can be said that, in a receding horizon context, with larger values for
α ({0.5, 1.0}) different forecast qualities do not have a clear effect on the perfor-
mance of SLC.

For smaller α values ({0.01, 0.05, 0.1}), evidence supported the rejection of H0,
implying that differences exist in the performance as a consequence of forecat
quality for these parameter configurations. However, different tendencies on
the performance are observed, which do not always concord with the predic-
tion of the hypothesis. In scenarios with balanced RES outputs, the hypothesis
was confirmed (Fig. 6.5, Balanced). In this case, an improvement in performance
can be observed as the forecast quality increases. In scenarios with wind inten-
sive RES outputs, the performance behaved unexpectedly: It remained roughly
constant or deteriorated as the forecast quality improved (Fig. 6.5, Wind Inten-
sive). Hence, the hypothesis is falsified. These outputs are characterized by
having more generation by timeslot in the morning and/or afternoon than in
the middle of the day. Whenever the RES output is PV intensive, the perfor-
mance tends to either oscillate or remain constant (Fig. 6.5, PV Intensive). In
these cases, the impact of using more accurate information in the rescheduling
process was not clear.

6For specific examples, the interested reader is referred to Appendix D, Tables D.8 and D.9 which
includes the post-hoc analysis of the scenarios presented in Fig. 6.4.
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(a) Performances with different forecast qualities and different RES outputs. The popu-
lation size is 4, 000 households and α = 0.1.
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Figure 6.5.: Example performance of SLC under a balanced, wind and PV in-
tensive outputs.

These results show the relevance of the RES output in the process of shifting
loads intelligently7. When the RES output does not match the micro-grid load
composition in conjunction with the user-defined flexibility intervals (PV and
wind intensive RES outputs), imbalances will be obtained regardless of the load
management mechanism. In those cases, lower quality forecasts may unveil
better solutions by redirecting the search and allowing SLC to escape local op-
tima (Fig. 6.5a, PV and Wind Intensive). Similar strategies have been proposed
in combinatorial optimization problems (COPs) for allowing meta-heuristics to
escape local optima by increasing exploration to other zones of the search space
[SLIP+12, vLM13, ES03]. In SLC, as a consequence of variability introduced by
a low quality forecast, the algorithm is able to extend the exploration and es-
cape local optima. Additionally, in PV intensive scenarios, SLC is not able to

7The interested reader is referred to Appendix E, Table E.9 and E.10 for a full summary of all re-
sults with a population of 4, 000. Furthermore, for details of the post-hoc analysis, cf. Appendix
D, Tables D.8, D.9, D.10 andD.11.
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exploit large unique load peaks, due to its probabilistic decision making pro-
cess. Hence, in those cases, the effects of the forecasts quality are blurred by the
obstacles imposed by these specific RES outputs on SLC. This issue is further
discussed in Subsection 6.3.6.

This unexpected behavior is problem-related, rather than an issue of SLC. There-
fore, it can be stated that when the RES output and the micro-grid load compo-
sition in conjunction with the flexibility intervals of the shiftable loads, match,
the effect of forecast quality followes the hypothesized behavior. On the other
hand, when much of the RES output is not accessible due to user-defined re-
striction on the flexibility of appliances, the effect of different forecast quali-
ties is hindered. Additionally, the effect of different forecast qualities is clearly
smaller with larger values for parameter α.

Weight of New Information in the Control Signal Construction

The second hypothesis states that, as the scenario becomes more dynamic (low
quality forecasts) larger values for α should be selected, and vice-versa. The
first implication of this hypothesis is that with higher α values SLC should
be less vulnerable to changes in the forecast quality and no large reduction in
performance should be obtained. The second implication is that lower α values
should be more vulnerable to low quality forecasts, whereas the performance
should clearly increase with high quality forecasts.

This expected behavior is based on the idea that when the dynamism of the
problem is smaller a more directed search is required (promoted by smaller α
values), rather than an exploratory one (promoted by higher α values). In those
scenarios, if α values are high the algorithm will not be able to direct the search
to globally good schedules and might get trapped in a randomly oscillating
search process. On the other hand, with higher α values the relevance of newer
information in the signal construction process increases. Hence, the ability of
SLC to cope with a dynamic environment should increase.

This way, the hypothesis if formulated as follows: H0 : The data in x and y
is sampled from continuous distributions with equal medians, against the al-
ternative that they are not sampled from those distributions. x and y are are
the performance of SLC, generated with different α configurations, but with
the same RES output, population size and forecast quality. Hence, the rejec-
tion of H0 implies that significant differences in the performance exist between
different α values with the same forecast quality.

Similarly to the last analysis, when the population size is small ({40, 400} house-
holds), differences in the performances with different α configurations were
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Figure 6.6.: Example performance of SLC with different α configurations and
different forecast quality, for balanced, PV and wind intensive RES
outputs.

consistently less significant8. Hence, with smaller population sizes, the impact
of α is hindered. On the contrary, differences in performance with larger popu-
lations are quite clear, implying the rejection ofH0. For the ease of exposition, in
the following the depicted analysis considers a micro-grid population of 4, 000
households.

The first observation is that the performance depicts a U-shape, were best per-
forming configurations tend to be around α = 0.1 and the extremes are clearly
outperformed (Fig. 6.6). Therefore, it cannot be said that with high quality fore-
casts, the best performances are achieved with smaller α values, neither that for
low quality forecasts large α values are required. The statistical analysis fur-
ther supports these observations. Significant differences in performance exist
which often favor intermediate α values ({0.1, 0.05}) regardless of the forecast

8The interested reader can find the post-hoc analysis for 40 and 400 population at Appendix D,
Tables D.12 and D.13, respectively.
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Figure 6.7.: Micro-grid load profiles for two single runs with α = 1.0 and α =
0.01, on low and high quality forecasts for a balanced RES output.

category9. Hence, in a receding horizon context, the hypothesis is falsified and
it cannot be stated that with more dynamism in the problem, larger α values
should be utilized10.

Reasons for this behavior and more detailed information can be obtained by
analyzing Fig. 6.7. For a low quality forecasts (Fig. 6.7, Low Quality) and α =
1.0, load shifting in the initial timeslots of the simulated day, generates a micro-
grid load profile reasonably similar to the RES output. Nevertheless, at the
end of the simulated day, the performance depicts an oscillating behavior. Fig.
6.7, High Quality shows this oscillating behavior both in the afternoon and the
morning (timelots [10− 30]).

For both figures, with α = 1.0, the oscillation in the afternoon can be explained
by the reduction in the size of the optimization horizon. This reduction forces
the signal construction process (Fig. 6.8), exacerbating minor differences be-
tween old and new information during the signal construction process. Cor-
respondingly, the micro-grid tries to absorb these exaggerated imbalances ex-
pressed through the control signal. As a consequence, it generates additional
load peaks. In the following rescheduling round, the signal construction pro-
cess addresses these new load peaks by promoting load shifting to cover the
new imbalances. This way, a step response is obtained, as a consequence of

9For the post-hoc analysis of the data depicted in Fig. 6.6, the interested reader is referred to
Appendix D, Table D.14.

10A summary of the results is available in Appendix E, Table E.9 and E.10.
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Figure 6.8.: Signal evolution corresponding to the High Quality forecast scenar-
ios from Fig. 6.7 with α = 1.0.

the optimization horizon size reduction. The oscillating behavior observed in
the morning occurs when the RES forecast is constant, without peaks or valleys
(Fig. 6.7, High Quality). As a consequence, small differences are again exag-
gerated. Nevertheless, in this case the reason is exclusively the high weight
of new information in the signal construction process. Once the load hill be-
gins (around timeslot 30), the households are not required to choose between
equally desirable alternatives, which would trigger step responses. Hence, this
oscillating behavior is not found when a load peak on the RES output appears.
This shows that in a real-time optimization context, the effect of the RES output
shape for larger α values is relevant.

In the case of small values for α and with a low quality forecast, adaptation of
the control signal is not enough to produce good quality performances while
the optimization horizon is reduced. Therefore, although no oscillations are
generated, the micro-grid tends to adapt its load to an outdated forecast (Fig.
6.7, Low Quality Forecast). With high quality forecasts, the obtained micro-grid
load profile is of better performance (Fig. 6.7, High Quality). Since the fore-
cast resembles the RES output, SLC is able to exploit current solutions to im-
prove the overall performance in future rescheduling rounds, without generat-
ing large imbalances. Nevertheless, α = 0.01 continues to be outperformed by
α = 0.1 (Fig. 6.6).

Hence, in a receding horizon optimization context, too much or too less weight
of new information in the signal updating process has a negative impact on the
performance. Therefore, a precise balance between new and old information is
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Table 6.3.: Detailed performance of single runs of SLC with different α values
and forecast quality. Final Performance refers to the performance at
the end of the run. Best Performance refers to the best performance
throughout the run. Values correspond to percentage of unused RES.

Low Quality Forecast High Quality Forecast

α
Final Best Best Final Best Best

Performance Performance Round Performance Performance Round
0.01 11.001 10.875 71 8.374 7.795 52
0.1 7.515 7.042 43 5.578 5.332 62
1.0 10.177 7.060 5 8.877 5.047 8

required for SLC to achieve its best performances. Moreover, this balance does
not depend on the forecast quality.

Convergence and Internal Behavior of SLC

In general, α = 0.1 provided the best performances for most scenarios. This
regards the micro-grid load obtained once the simulation has terminated. Nev-
ertheless, during the course of the simulation, as previously explained, better
performances might be achieved. As the micro-grid moves from one reschedul-
ing round to the next, good solutions might be lost as a consequence of the au-
tonomous rescheduling of appliances. Table 6.3 depicts that with a low quality
forecast, the best performance for α = 1.0 is competitive against the best perfor-
mance for α = 0.1. Whereas with a high quality forecast, the best performance
for α = 1.0 is superior to all other alternatives. Moreover, the performance
largely deteriorates between the best and final performances with α = 1.0 in
both scenarios. This provides evidence that during run-time, better perfor-
mances are obtained, than the one produced at the end of the simulation.

Fig. 6.9 clearly explains the situation. With α = 1.0 the performance converges
rapidly to good solutions, but as the rescheduling rounds are performed and
the optimization horizon gets reduced, performance deteriorates. Moreover,
not only the absolute performance is better for α = 1.0 during the first rounds,
but step responses are not present in the micro-grid load profile. This can be
observed in Fig. 6.10, were the best performing micro-grid load and final micro-
grid load for this example run are compared. On the contrary, with α = 0.1
and α = 0.01 the performance exhibits a slower but consistent improvement
towards good quality solutions.

These individual observations complement previous results, regarding differ-
ent α configurations. During the first rounds, high values for the parameter
promote fast convergence to good results (Table 6.3, column Best Round and

125



6. Real-Time Load Balancing with Stigmergy-Based Load Control

Low Quality High Quality

5

10

15

20

Rescheduling Round

U
nu

se
d 

R
E

S
 [%

]

α = 1 α = 0.1 α = 0.01

Figure 6.9.: Performance evolution throughout rescheduling rounds for the sin-
gle runs described in Table 6.3.

Fig. 6.9). Nevertheless, after some rescheduling rounds the performance re-
duces as a consequence of the receding horizon. Moreover, the high sensibility
of SLC to specific RES output features when α = 1.0, generates step responses
in the final micro-grid load profile. In this case, it can be said that after achiev-
ing good quality solutions, SLC jumps from one local optima to another, unable
to promote small differences in the micro-grid load profile such that other areas
of the search space are explored.

Therefore, results support that higher values for α should be utilized in the be-
ginning of the simulation, while they are gradually reduced in the following
rescheduling rounds. In that scenario, a fast convergence to good results with-
out large imbalances would be obtained. Then, after a few round and according
to some criteria, smaller α values would promote small differences in the cur-
rent micro-grid load profile, such that the search space is effectively explored
as the optimization horizon deteriorates. Therefore, a deterministic or adap-
tive parameter control alternative for SLC could be implemented to improve
convergence and further increase RES utilization ([EHM99]).

6.2.3. Internal Functioning of SLC and Best Performances

The previous analysis assessed two hypotheses regarding the performance of
SLC. Firstly, that with better forecast qualities the performance of SLC should
improve. Secondly, that with low quality forecasts, higher values for α should
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Figure 6.10.: Micro-grid load profile of the final and best performances obtained
throughout a single SLC run for the High Quality Forecast scenario
described in Table 6.3 with α = 1.0.

be utilized, and with better quality forecasts, smaller values should be utilized.
Furthermore, the effect of different populations sizes on the performance has
been also evaluated.

Results show that larger population sizes improved the performance and ro-
bustness of SLC. Above a certain threshold, only aggregated behavior can mod-
ify the global tendencies in the performance of the approach. The effect of the
population size was also observed in every following experiment, where the
impact of different forecasts qualities and α configurations was hindered when
the micro-grid was composed by smaller populations.

The effect of different forecast qualities is subjected to the micro-grid load com-
position, in conjunction with the user-defined degrees of freedom, in compari-
son with the RES output. When the micro-grid load composition and the RES
output match, the performance improves with more accurate forecasts. On the
other hand, when this condition is not met, a detriment of performance as the
forecast quality increases may be obtained. Therefore, validated the first hy-
pothesis only when micro-grid load composition and the RES output match.

The analysis of different α configurations revealed that best performances con-
centrated on α = 0.1. These results lead to the conclusion that a precise balance
between old and new information in the control signal updating process, which
is regulated by α, is required in order to obtain good performances. Therefore,
the second hypothesis was falsified.
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This last analysis revealed the effect of the receding horizon in the reschedul-
ing process. In a receding horizon context, the schedule of devices is updated in
each rescheduling round. This process takes place in every rescheduling round,
but only loads on the future timeslots are considered available for rescheduling.
Appliances scheduled for the previous or current timeslot are not available for
rescheduling. Hence, the optimization horizon is continuously reduced. More-
over, SLC needs to optimize considering the previous state of the micro-grid.
Since the process of rescheduling is distributed and households perform au-
tonomous decisions, the performance might decreases from one rescheduling
round to the next one. This is a fundamental difference compared with other
approaches, specially centralized ones. SLC is not able to keep a current opti-
mal solution, since households respond autonomously to the control signal in
each rescheduling timeslot. Hence, the global behavior needs to constantly and
consistently be guided such that RES utilization increases. If the performance
decreases as a consequence of the autonomous decisions, SLC must be able to
be able to guide the global behavior in real-time, correcting the current per-
formance such that it remains within acceptable boundaries and, potentially,
improve.

In addition, results show that larger α values (α = 1.0) make the approach sus-
ceptible to the reduction of the optimization horizon. As a consequence, the
correction of sub-optimal behavior SLC tends to generate step responses and
performance deteriorates. With smaller values (α = 0.01), step responses were
not observed, but the global behavior could not be guided as effectively. Hence,
a precise balance between old and new information for the control signal con-
struction process is required, in order to increase RES usage.

This analysis provides strong evidence supporting that SLC is able to coher-
ently guide the global behavior of autonomous entities such that RES utiliza-
tion is increased. Moreover, this behavior is achieved without direct commu-
nication between individuals in a decentralized manner. Additionally, results
show that SLC is able to adapt to a changing environment, represented by the
changing RES forecast. From a conceptual perspective, the design of the dif-
ferent system components, such as MGM, micro-grid, and households, and the
processes within the system, such as signal construction process and its inter-
pretation, enable the micro-grid to depict the stigmergic coordination process
(Section 3.2.5). This implies that SLC is able to depict desirable features of stig-
mergic systems (Section 3.2.2). In the following section, SLC is compared to
two approaches in order to assess its competitiveness.
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6.3. Comparative Results

In this section, SLC is compared with two alternatives for loads management.
The first is Non-Load Control (NLC). In this approach the consumption of res-
idential households cannot be influenced. Moreover, residential load is dis-
tributed and executed according to Table 5.1. This provides a perspective of
the ability of each approach to reschedule load in comparison to the initial load
distribution in the micro-grid.

The second approach corresponds to an adapted version of the synchronized
closed-loop pricing approach presented in Chapter 5 (CLP-FK). As a reminder,
under a CLP-FK regime a centralized entity broadcasts a pricing signal to each
participant in a synchronous manner, one after the other. This signal expresses
the electricity price for each timeslot in the simulated day, in reference to a
given RES output. Each individual household selects the cheapest operation
time for its devices. Then, it sends its updated load profile to the central con-
troller, which discounts the profile from the RES output. Afterwards, the con-
troller updates the pricing signal according to the new RES availability and
broadcasts the price signal to the next agent and the process is repeated. When
all households have rescheduled their appliances, a single rescheduling round
is finished. In this chapter, however, full knowledge is not considered, but
an RES forecast. Hence, the forecast is updated in every rescheduling round.
Moreover, the optimization horizon also reduces. Therefore, similarly to SLC,
in the context of real-time optimization is referred to as CLP.

The evolution of the micro-grid load profile and the price signal broadcast to
different households within a single rescheduling round in CLP can be ob-
served in Fig. 6.11. In Fig. 6.11a, it is observed that the load increasingly
resembles the RES forecast, as households receive a new pricing signal in a syn-
chronous manner and reschedule their appliances selecting the cheapest oper-
ation times. Fig. 6.11b depicts how the pricing signal shape is modified and
adapted to match the new RES availability, after a given number of households
have rescheduled their appliances. Each signal is valid for only one house-
hold. The whole process occurs within a single CLP rescheduling round. Ad-
ditional discussion regarding conceptual implications of CLP in the context of
stigmergy, is presented in and Chapter 7.

The experimental setup considers varying the RES output, forecast quality,
population size, load flexibility and load coverage (Table 6.1). α configura-
tions for SLC in each scenario, correspond to those which produced the best
performances in the internal analysis of SLC (Table 6.4). In the first set of exper-
iments, all approaches are evaluated considering all the load in the micro-grid
to be flexible and that the RES output covers the total load of the micro-grid.
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Figure 6.11.: Micro-grid load profile and price-based signal evolution for CLP.

This means, full-flexibility and full load coverage. In the second set of exper-
iments, different shares of load flexibility are considered in conjunction with
different levels of RES coverage over the micro-grid load requirements, while
a fixed population size. Through these analyses a perspective is obtained re-
garding the ability of all approaches to exploit the maximum potential of load
rescheduling (100% flexibility) for increasing RES usage, and their performance
in more realistic scenarios (reduced load flexibility and different load cover-
age). Additionally, an analysis of the convergence of the performance of SLC
and CLP is performed. Through this analysis, the ability of each approach to
direct the search, while the definition of the problem changes, is assessed.

Contributions in this section regard the discussion and conclusions from the
comparative analysis between SLC and the other approaches in a receding hori-
zon scenario. Additional contributions are the comparative analysis of SLC in
scenarios with low flexibility and different RES coverage.

6.3.1. Explanatory Example

In Fig. 6.12, an exemplary run can be observed for each load scheduling ap-
proach. Runs were performed on a 4, 000 households micro-grid, with a high
quality forecast. The performance of each load scheduling mechanism can be
visualized through the resemblance between the achieved micro-grid load pro-
file and the RES output.
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Table 6.4.: Best performing α configurations for each problem instance.

(a) Population of 40 households.
Forecast
Quality

RES Output
1 2 3 4 5 6 7 8 9 10 11 12

Low 1.0 0.5 0.1 0.05 1.0 0.1 0.1 0.01 0.1 1.0 1.0 0.1
Medium 0.5 0.5 0.05 0.05 0.1 0.1 1.0 0.05 0.5 0.5 1.0 0.1
High 1.0 1.0 0.1 0.1 1.0 0.1 0.5 0.1 0.1 1.0 1.0 0.1

(b) Population of 400 households.
Forecast
Quality

RES Output
1 2 3 4 5 6 7 8 9 10 11 12

Low 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.05 0.1 0.1 0.1 0.1
Medium 0.5 0.1 0.1 0.1 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.1
High 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1

(c) Population of 4, 000 households.
Forecast
Quality

RES Output
1 2 3 4 5 6 7 8 9 10 11 12

Low 0.5 0.1 0.1 0.05 0.5 0.5 0.1 0.05 0.1 0.1 0.1 0.1
Medium 0.5 0.1 0.05 0.1 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.1
High 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

(d) Population of 40, 000 households.
Forecast
Quality

RES Output
1 2 3 4 5 6 7 8 9 10 11 12

Low 0.5 0.1 0.1 0.05 0.5 0.5 0.1 0.05 0.1 0.1 0.1 0.1
Medium 0.5 0.1 0.05 0.1 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.1
High 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

In NLC, the load of the participants cannot be influenced and renewable gener-
ation can be used only when load and generation are matched by coincidence.
Hence, different RES peaks and valleys cannot be exploited. Therefore, much
of the RES generation is lost, since the load flexibility of customers is not used.
As mentioned, the residential load is distributed according to Table 5.1. This
can be considered a base scenario, since it resembles what occurs in households
without any demand side management mechanism. In the case of CLP, the syn-
chronized deterministic decision process allows to schedule load one at-a-time,
clearly increasing RES utilization and making efficient use of the flexibility of
customers. Nevertheless, small deviations can be observed, as a consequence
of the forecasts. In this case, load which has already begun execution in a sub-
optimal position, is not available to be rescheduled once the forecast accuracy
increases.
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Figure 6.12.: Exemplary runs of NLC, CLP and SLC with a high quality forecast
in a 4, 000 households micro-grid.

In the following, the performance of all approaches is compared. Firstly, scal-
ability is assessed by analyzing the approaches performance under different
population sizes. Then, the effect of different forecast qualities on of each ap-
proach, is evaluated. This analysis will allow to conclude which approach is
more robust to dynamic environments. Finally, all approaches are evaluated
with different levels of RES coverage and load flexibility, in order to assess a
more realistic scenario.

6.3.2. Different Population Sizes

To assess the scalability of each load scheduling alternative, the population size
of the micro-grid is increased from 40 to 40, 000 in a logarithmic scale. Different
RES output types are considered, while forecast categories are considered as
part of the same sample. Moreover, each evaluation considers 300 runs. For-
mally, the hypothesis to be tested is: H0 : The data in x and y are samples
from continuous distributions with equal medians, against the alternative that
they are not, where x is the performance of one load scheduling strategy (such
as SLC), and y the performance of another (such as CLP), generated with the
same RES output and population. Hence, if H0 is rejected, it can be stated that
significant differences exist between the performance of the two strategies be-
ing compared under a specific population size.

Results of the analysis show that CLP outperforms with significance11 the other

11For the post-hoc analysis of the evaluation of scalability, cf. Appendix D, Tables D.16 and D.17.
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Figure 6.13.: Example performance of SLC, NLC, and CLP with different pop-
ulation sizes and RES outputs.

approaches for every population size within the power grid, in every problem
instance evaluated12. This is expected due to the rescheduling process utilized
by CLP. In addition, results reveal that as the population size increases all ap-
proaches improve their performances (Fig. 6.13). Nevertheless, the improve-
ment in performance is larger with SLC. Hence, the delta in performance be-
tween SLC and CLP becomes smaller when the population size increases. This
tendency is stronger in with balanced RES outputs. When the RES output is PV
or wind intensive, SLC rarely catches up with CLP. This can be observed in Fig.
6.13 for the corresponding scenarios.

Reasons for these performances are that the sequential load allocation process
of CLP enables a precise scheduling of the operation times. In the case of SLC,
the calculation of the new times is asynchronous and probabilistic. Therefore,
with smaller population sizes individual behavior can misguide the group,
since small differences have a larger relative significance. Above a certain pop-

12A summary of all the performances is available at Appendix E, Table E.11.
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ulation size the global performance can only be guided and significantly altered
by aggregated behavior. This was previously discussed in Subsection 6.2.1.
Hence, it can be said that when this population size threshold is surpassed,
SLC increases its competitiveness against CLP.

6.3.3. Adaptability to Dynamic Scenarios

To compare the ability of each strategy to adapt to dynamic scenarios, repre-
sented by the updating forecasts, the performance is compared under the three
different forecast categories. As a remainder, lower quality forecast scenarios
imply larger dynamism in the problem, whereas high quality forecast scenarios
imply smaller dynamism. The evaluation is performed on every type of RES
output. Moreover, the analysis concentrates on the behavior of each approach
considering a 4, 000 households population.

Formally, the hypothesis to be tested is: H0 : The data in x and y are samples
from continuous distributions with equal medians, against the alternative that
they are not, where x is the performance of one load scheduling strategy (such
as SLC), and y the performance of another (such as CLP), generated with the
same RES output and forecast quality. Hence, if H0 is rejected, it can be stated
that significant differences exist between the performance of the two strategies
being compared under a specific forecast quality. Furthermore, it can be stated
that the two strategies react differently to different levels of dynamism.

Results show that the best performances are produced by CLP13. The differ-
ences in performance are significant and provide evidence to reject H0

14. Nev-
ertheless, in cases where the RES output is balanced, the performance of SLC
becomes more competitive when the problem dynamism increases, this is, with
low quality forecasts. In addition, robustness of the performance does not seem
to be greatly affected in SLC. This can be observed in Fig. 6.14, Balanced, where
the 1st and 3rd quartiles are roughly at the same distance regardless of the fore-
cast category for SLC. This does not occur with CLP, where performance dra-
matically improves its robustness with higher forecast qualities.

When the RES output is wind intensive no conclusive tendency is observed. In
this case, Fig. 6.14 shows oscillating behavior from both, CLP and SLC, when
the forecast quality changes. Moreover, robustness of the performance with
CLP was not consistent nor related to specific wind intensive outputs. On the
contrary, differences in the robustness of the performance of SLC are usually

13A summary of the results is available at Appendix E, Tables E.12 and E.13.
14For the post-hoc analysis, cf. Appendix D, Tables D.18 and D.19.
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Figure 6.14.: Example performances of SLC, NLC, and CLP, under different
forecast categories and RES outputs.

minor and do not depend on the RES output15. In cases where the RES output is
PV intensive, CLP clearly outperforms SLC. Moreover, in these scenarios, CLP
performance is remarkably robust depicting minor outliers (6.14, PV Intensive).
Hence, CLP is highly effective in exploiting large unique load peaks. Moreover,
with these type of RES outputs the effect of the forecast quality is marginal in
the performance of the price-based approach.

The reason for these performances is that CLP performs a greedy selection pro-
cess of the operation times. Specially with balanced RES outputs and higher
forecast qualities, CLP is able to effectively schedule the appliances to close-to-
optimal operation times. Since the forecasts closely resemble the RES output,
the profile does not require major modifications throughout the execution. As
a consequence, the performance tightly surrounds the median (Fig. 6.14, High
Quality, Balanced). On the other hand, when the forecast has low quality, devi-
ations imply more or less generation on any given timeslot with respect to the

15The interested reader is referred to Appendix E, Tables E.12 and E.13, specifically to the unbal-
anced RES outputs 2, 3, 9 and 10.
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RES output. In those cases, CLP effectively reschedules the appliances accord-
ing to the given forecast. Nevertheless, since the deviations between forecasts
and RES output are larger, many loads are executed in sub-optimal timeslots.
Moreover, these sub-optimal timeslots are specific to each forecast. This in-
creases the dispersion of the performances obtained by CLP with low quality
forecasts.

Therefore, results suggest that the performance of SLC is more robust than CLP.
Moreover, that SLC is less vulnerable to dynamic environments, since its per-
formance is more competitive with lower quality forecasts, particularly in bal-
anced RES output scenarios.

6.3.4. Convergence of the Approaches

Previous results have shown the effect of different qualities of forecast on the
performance of SLC and CLP. This performance expresses the quality of the fi-
nal micro-grid profile obtained by each strategy. Nevertheless, the effect of dif-
ferent forecasts during the simulation is also relevant, since it provides details of
the ability and behavior of the approaches when facing dynamism. To under-
stand how each strategy performance is affected by dynamism in the problem
during the execution, single runs of SLC and CLP are analyzed (Fig. 6.15) under
different forecast qualities with a micro-grid population of 4, 000 households.
This way, the performance obtained in reach rescheduling round provides in-
formation regarding the adaptability of each approach.

When the forecast closely resembles the RES output (Fig. 6.15, High Quality) a
fast convergence in the first rescheduling round can be observed for CLP. This
is followed by a rather constant but small improve throughout the following
rounds. A similar behavior can be observed for SLC. Nevertheless, conver-
gence is more gradual and a clear breach between performances exist, which is
favorable to CLP.

In the case of a Medium Quality forecast, CLP again shows a fast convergence.
However, its performance does not improve in the following rounds, but it ag-
gravates. Reasons for this behavior have been previously discussed. CLP effec-
tively schedules loads according to the forecasts. When the forecast is updated,
some flexible loads are not available anymore for rescheduling. Therefore, the
ability of CLP to absorb unpredictable imbalances is reduced. Regarding SLC,
the performance maintains its tendency. This is, it exhibits a permanent im-
provement throughout the rescheduling rounds. As a consequence, in this spe-
cific run (Fig. 6.15, Medium Quality) SLC is competitive against CLP.

The performance of CLP is clearly affected when the forecast has low qual-
ity. Again CLP quickly converges in the first round. However, directly after
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Figure 6.15.: Convergence of single runs of SLC and CLP with different forecast
qualities and a balanced RES output.

performance consistently aggravates. This tendency continues roughly until
the middle of the simulated day (rescheduling round 50), after which perfor-
mance becomes stable. Since the differences between forecast and RES output
are large, the effect of scheduling flexible devices in sub-optimal timeslots is
increased. On the other hand, the overall tendency of the behavior of SLC does
not seem to be greatly affected. Again, a consistent improvement of the per-
formance is depicted throughout the rescheduling rounds until final stages of
the simulation. As a consequence, SLC catches up CLP, and eventually outper-
forms it in this specific RES output.

These results complement those of Subsection 6.3.3 and provide evidence that
SLC is more robust than CLP regarding the level of dynamism of the environ-
ment, since the impact of low quality forecasts over SLC is less than over CLP.
Nevertheless, it has to be noted that, although the described tendency contin-
ues, when the RES output and the micro-grid load composition do not match,
SLC is not able outperform nor catch up CLP. In these cases, the gap of perfor-
mance between both approached does not reduce even in low quality forecast
scenarios. This can be observed in Table 6.6, RES outputs 4, which corresponds
to PV intensive RES output. On the contrary, in Table 6.6, RES outputs 5 (bal-
anced output) a clear improve on the performance can be observed for CLP
with less dynamism (High Quality). Whereas performance maintains roughly
constant, describing a minor improvement with better forecasts.
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Table 6.6.: Extract of the summary of the performance regarding tolerance to
dynamism between SLC and CLP. For the full summary, cf. Ap-
pendix E, Tables E.12 and E.13.

RES
Output Statistic

SLC CLP

Low Medium High Low Medium High

4

Min. 19.0% 19.3% 19.5% 7.3% 7.4% 7.2%
1st Qu. 20.5% 20.7% 20.7% 8.0% 8.3% 8.2%
Median 21.4% 21.1% 21.3% 8.5% 8.8% 9.0%
3rd Qu. 22.8% 21.9% 23.8% 10.4% 9.3% 9.7%

Max. 26.9% 23.5% 25.4% 12.3% 12.2% 11.7%

5

Min. 6.9% 5.7% 5.5% 5.5% 3.5% 1.5%
1st Qu. 7.5% 7.2% 6.9% 6.5% 4.6% 1.7%
Median 7.9% 7.7% 7.2% 7.8% 5.6% 2.3%
3rd Qu. 8.5% 8.6% 7.7% 8.6% 7.2% 2.9%

Max. 12.6% 10.2% 9.1% 11.0% 8.4% 3.5%

6.3.5. Different Coverage and Load Flexibility

Acknowledging the potential of SLC, an analysis on a more general model
setting is utilized to provide insights of the possibilities of the approach on
real-world power systems. Therefore, different shares of flexible loads are in-
vestigated. More specifically, the share of flexible load in the micro-grid load
composition has been scaled to 10%, 20%, 30% and 40%. The rest of the micro-
grid load requirement are assumed to be supplied by conventional generation.
These shares coincide with estimations regarding current load flexibility within
the power grid ([Hil14, QH99]). Moreover, different shares of coverage of the
RES output over the micro-grid load requirements have been considered. More
specifically, 25%, 50% and 75% shares of RES generation on the total load are
analyzed. This way, tendencies are unveiled regarding the ability of the ap-
proaches to reschedule load when the RES output and the total micro-grid load
do not match.

RES Output Coverage

To assess the impact of different load coverage on the performance of each strat-
egy, different levels of this factor are considered: 25%, 50% and 75% shares of
RES generation on the total load, respectively. The evaluation is performed
for each RES output with a 4, 000 households population, while the share of
load flexibility in the power grid is considered at 40%. Additionally, all forecast
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categories are grouped in the same sample and each evaluation considers 300
runs. Therefore, the hypothesis tested is: H0 : The data in x and y are samples
from continuous distributions with equal medians, against the alternative that
they are not, where x is the performance of one load scheduling strategy (such
as SLC), and y the performance of another (such as CLP), generated with the
same RES output, load coverage and flexibility. Hence, if H0 is rejected, it can
be stated that significant differences exist between the performance of the two
strategies being compared under a specific RES load coverage share.

The analysis revealed that increasing the RES output coverage, leads to an in-
crease of unused RES. When the RES output covered 25% of the micro-grid load
requirements the unused RES was never above 1% and rarely above 0%. In this
case, there was not enough evidence to reject H0

16. Therefore, it is concluded
that the performance of all strategies in the same in this scenario. The reason
for this performance is that unless the RES output depicts large load peaks, this
output is easily absorbed without any load shifting (Fig. 6.16, 25% Coverage).

Differences start to become visible when the RES output covers 50% of the to-
tal micro-grid load. NLC stays behind against the other approaches in most
problem instances. Contrary to the previous situation, the share of RES is large
enough to surpass the micro-grid load profile. Therefore, some form of load
rescheduling is required in order to maximize RES utilization. In this situa-
tion, SLC continues to be competitive in comparison to CPL in most problem
instances, since usually performances of SLC are not dominated by CLP. Ad-
ditionally, forecasts begin to have an effect on the performance, which is illus-
trated by the increase in the dispersion of data (Fig. 6.16, 50% Coverage).

When the output covers 75% of the micro-grid, imbalances due to unused RES
generation begin to appear throughout the day in every problem instance. In
this case, there is evidence to reject H0 in every evaluation. NLC is clearly
outperformed by the other approaches, since it cannot reschedule load to ab-
sorb the imbalances. Moreover, CLP outperforms SLC in a similar fashion as
described in previous subsections. Nevertheless, SLC manages to remain com-
petitive in some problem. Additionally, forecasts have a clear effect on the per-
formance, expressed through on the increase in data dispersion (Fig. 6.16, 75%
Coverage). Moreover, these tendencies are consistent throughout each type of
RES output17.

With a 75% coverage level of the micro-grid load requirements by the RES out-
put, intuition dictates that the share of flexibility on the micro-grid should have

16For the Kruskal-Wallis rank-sum tests, cf. Appendix C, Table C.12.
17For a summary of the results, cf. Appendix E, Table E.14. For the post-hoc analysis, cf. Appendix

D, Table D.3.
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Figure 6.16.: Example performance of SLC, CLP and NLC with different shares
of RES output coverage on a balanced RES output. Load flexibility
represents 40% of the total load and different forecast categories
are part of the same sample.

a clear effect on increasing or reducing the performance. More flexibility trans-
lates into increased RES utilization. With smaller coverage, the differences be-
tween RES output and micro-grid load profile are small enough to be absorbed
by rescheduling a reduced number of appliances. On the contrary, when RES
coverage is larger, the imbalances between RES output and micro-grid load
profile increase. Therefore, the requirement for flexibility to absorb these im-
balances should increase. To address this issue, in the following, the effect and
comparative behavior of different shares of flexibility in the micro-grid load is
further analyzed.

Micro-Grid Load Flexibility

Previous results led to the conclusion that with 25% and 50% of micro-grid load
coverage by the RES output, the effect of different shares of flexibility was hin-
dered. Therefore, to understand the effect of different flexibility levels, the fol-
lowing analysis considers 75% of micro-grid load coverage. The analysis is per-
formed for each RES output separately and all forecast categories are grouped
in the same sample. Moreover, each evaluation considers 300 runs.

In line with the results from previous experiments, a tendency can be observed
when load flexibility is increased in the micro-grid. An example case for a
balanced RES output is observed in Fig. 6.17. As flexibility increases, NLC
becomes less competitive in comparison to the other approaches. This occurs
because imbalances generated by the RES output are not absorbed by NLC,
since this approach does not provide any load shifting feature. Circumstan-
tial increases in RES utilization are explained by the shape the micro-grid load
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Figure 6.17.: Example performance of SLC, CLP and NLC with different shares
of flexible load on the micro-grid on a balanced RES output.

profile adopts when load flexibility shares are larger, which depend on the
initial execution times of the devices, cf. Fig. 6.1 and Table 5.1. Regarding
CLP and SLC, robustness of the performance also decreases when the flexibil-
ity increases. The reason for this behavior is that with larger shares of flexible
load, the effect of different forecasts on the rescheduling process also increases.
Hence, the relative impact of scheduling devices in optimal, or sub-optimal
timeslots depending on the RES forecast, is magnified.

Both, CLP and SLC, show a clear tendency to improve performance when load
flexibility increases. Nevertheless, a performance delta exists, which is favor-
able to CLP. In some cases, however, SLC is competitive against CLP. Reasons
for this have been previously described, e. g., influence of different quality fore-
casts. Hence, the effect of earlier discussed factors is submitted to the share of
load flexibility in the micro-grid. Moreover, the increasing delta between NLC
and the load management approaches suggest that as more RES generation is
available, the flexibility on the demand side increases its relevance. The utiliza-
tion of the RES output capacity is larger (Fig. 6.17, 40% Flexibility) when the
micro-grid is able to adapt its consumption (SLC and CLP) to fit the available
RES generation. Hence, with increasing penetration of RES, larger flexibility is
required in order to absorb imbalances generated by intermittent generation.
Therefore, it is reasonable to conclude that with higher demand side flexibility,
the unused RES generation can be reduced.

This is relevant, since it points out that to increase the share of intermittent
generation fed to the system, the share of load flexibility in the power grid has
to be considered. In addition, this observations are consistent throughout each
type of RES output18.

18For summary of the results of these experiments, cf. Appendix E, Table E.15.
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Figure 6.18.: Controversial results between a real-time and static optimization.
4, 000 households are considered.

6.3.6. Controversial Results

During the course of the analysis in static and real-time optimization, indi-
vidual observations provided findings which might look contradictory to the
conclusions of the analysis. Intuition dictates that, since CLP-FK, SLC-FK and
SLC-FKd have full knowledge regarding the RES output and do not operate
within a receding horizon context, they should consistently achieve better per-
formances than under a real-time optimization context. Fig. 6.18 compares
the performance of CLP and SLC with CLP-FK, SLC-FK and SLC-FKd from
Chapter 5, which correspond to a static optimization context, in cases which
provided contradictory results.

Contrary to what is expected, in these problem instances CLP outperforms the
full-knowledge alternatives. A likely reason for this behavior, is the shape of
the fitness landscape. As a consequence of the utilization of RES forecasts, real-
time coordination alternatives are forced to generate imbalances with respect
to the final RES output. Hence, their search is redirected to a different zone
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from the fitness landscape where they are able to search for solutions which
outperform the full-knowledge scenario.

A conclusion which can be drawn, is that the fitness landscape in these type of
load scheduling problems depicts steep hills separated by deep valleys. There-
fore, once an approach begins the hill-climb to a local optima, it is highly un-
likely that it can travel down to a new deep valley and find a better hill. This
way, the forecasts force the travel through these valleys and enable the finding
of these better solutions.

This behavior is observed with wind and PV intensive RES outputs, and tends
to be stronger when the population size is smaller. In addition, these results
reveal other complexities of the problem and the importance of variability in
the solution construction process.

6.4. Discussion and Summary

In this chapter, the ability of stigmergy-based load control (SLC) to balance
load in the power grid in real-time is assessed. For this purpose the internal
behavior of the approach is analyzed in depth through a series of experiments
and then compared with other approaches.

Firstly, results have empirically shown that SLC, is able to coherently guide
the global behavior of a simulated micro-grid and increase RES usage in a
real-time scenario. This performance is achieved without participants engag-
ing in direct communication and in compliance with the requirements defined
for artificial stgimergic systems (Chapter 3). As a consequence, it is expected
that SLC depicts properties of these systems, such as robustness, adaptability,
anonymity and autonomy of its participants, among others. These features are
desirable for the power grid and particularly for decentralized management of
flexible autonomous devices. Regarding scalability, results show that a popula-
tion threshold exists, above which, only aggregated behavior can change global
tendencies in performance. This feature is usually found in natural stigmergic
systems and provides tolerance to disturbances to the global behavior.

Secondly, the performance of SLC is assessed under different forecast qualities.
Better forecasts imply less dynamism in the problem definition, since differ-
ences between the initial forecast and RES output are small. Hence, updat-
ing the forecasts imply minor changes to problem definition, in comparison to
lower forecast qualities. As a consequence, a load management mechanism re-
quires only small corrections on its generated micro-grid load profile through-
out execution. It has been shown, that the performance of SLC tends to im-
prove with better forecast qualities. Nevertheless, these results also depend on
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the RES output. If the RES output does not match the micro-grid load composi-
tion and user-defined restrictions, oscillating behavior can be obtained. Hence,
the RES output is identified as the main factor in limiting the ability of SLC to
increase RES usage.

Thirdly, it is shown that a precise balance between historic and current infor-
mation in the signal construction process is required, to achieve the best per-
formances. This balance is regulated by parameter α. Results show that when
the weight of new information on the signal construction process is too large
(α = 1.0) or too small (α = 0.01), performance deteriorates.

A relevant aspect to notice is the effect of modeling the problem as a receding
horizon. It is observed that, under this modeling approach, SLC depicts step
responses at the end of the simulated day, especially when the weight of new
information is larger. This occurs because the approach has to comply with the
restriction of scheduling every appliance within the simulated day, while the
optimization horizon reduces. Alternatives to face this issue in future research
consider modeling the problem with a rolling window approach, or modeling
three days with a rolling horizon. In the latter, only the middle day would be
evaluated and nuisance as a consequence of the reduction of the optimization
horizon, would be minimized.

Two scenarios are considered to compare SLC with other alternatives. In the
first one, the totality of the load within the power grid is considered to be flexi-
ble. This allows to analyze the full potential for optimization of each approach.
The second one considers more realistic scenarios, with different shares of load
flexibility and RES coverage capacity over the simulated micro-grid load re-
quirements. It is observed that even when a price-based alternative (CLP)
clearly outperforms SLC, the latter achieves reasonable performances and can
be competitive against the price-based approach. This is mainly observed in
scenarios with larger populations and high dynamism in the problem defi-
nition (low quality forecasts). Moreover, in these scenarios the performance
throughout the simulation is shown to be more robust for SLC, depicting a
continuous improvement.

These results are quite promising. CLP performs a deterministic selection pro-
cess, based on a greedy approach (selection of the cheapest electricity price)
which requires synchronization. If the requirement of synchronization is not
met, the approach generates large imbalances, as all customers select the same
operation times. On the other hand, SLC is fully asynchronous. This conforms
a strength of the approach, since synchronization in a real-time optimization
scenario, with thousand of autonomous customers increases complexity and
implementation costs. In this sense, SLC is more simple, affordable and robust
than CLP. Under these considerations, the investment in a decentralized load
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management mechanism could lead to the selection of SLC, especially in the
presented scenarios.

Contributions in this chapter regard the empirical analysis of the internal func-
tioning of SLC and the assessment of its ability to shift flexible loads and in-
crease RES utilization, in a receding horizon context (Section 6.2). Additional
contributions regard the comparison of SLC with other approaches, in differ-
ent scenarios (Section 6.3). Moreover, results and conclusions from this chapter
are later addressed in Chapter 7, to discuss conceptual implications of artificial
stigmergic systems in real-time optimization scenarios.
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“ Discussion is impossible with someone who claims not to seek the
truth, but already to possess it. ”

Romain Rolland, Above the Battle, 1916

In this chapter, different aspects of stigmergy-based load scheduling are dis-
cussed. Firstly, implications of the results obtained from the experimental eval-
uations of the approach in real-time coordination (Chapter 6) and as a dis-
tributed load scheduler (Chapter 5), are analyzed. Additionally, a conceptual
comparison is made with ant colony optimization (ACO), regarding the func-
tioning of both approaches. Then, in consideration of the obtained results,
the concept of stigmergy is once more visited. Afterwards, limitations of the
approach and future possibilities of stigmergy-based load scheduling are dis-
cussed. Finally, a short summary is presented.

Sections of this chapter have been submitted for publication. Specifically, the
comparison between stigmergy-based load scheduling (Subsection 7.1.2) is an
extension of concepts described in [RKS16].

7.1. Stigmergy-Based Load Control Evaluation

In this section, the applied and conceptual implications of the evaluation of
stigmergy-based load scheduling are discussed. SLC-FK/d is utilized to refer-
ence SLC-FK and SLC-FKd in conjunction.

7.1.1. Summary of the Experimental Results and Discussion

The performance of stigmergy-based load control was assessed in two scenar-
ios. Firstly, the approach was implemented to distributively calculate global
schedules (SLC-FK/d - Chapter 5). Afterwards, the approach was implemented

147



7. Extended Discussion

for the real-time coordination of the load consumption of autonomous house-
holds in a rolling horizon context (SLC - Chapter 6). In both cases, the objective
is to maximize RES usage.

Load Balancing in a Static Scenario

In the case of SLC-FK, the objective is to distributively generate the best sched-
ule for each appliance within a simulated micro-grid, such that the usage of
RES is maximized. The schedules generated are evaluated centrally to select
the best performing alternative.

The internal analysis of SLC-FK showed that, a specific parameter configura-
tion provided the best performances. This configuration promotes a gradual
updating of the control signal utilized to guide the solution construction pro-
cess. Nevertheless, this same parameter configuration reduces the convergence
speed of the algorithm. As a consequence, a deterministic parameter control
approach was developed, namely SLC-FKd. This approach increases the con-
vergence speed of the original algorithm, while enabling a thorough search to
unveil close-to-optimal solutions.

Both approaches were compared with an adaptation of CLP for this scenario,
named CLP-FK. Results provided evidence to support that SLC-FK/d are com-
petitive with CLP-FK, specially in balanced RES output scenarios. Moreover,
when highly flexible devices (EVs) are removed from the micro-grid or a single
type of flexible load is considered (such as an intelligent washing machine), dif-
ferences between CLP-FK and stigmergy-based approaches are often not signif-
icant, and occasionally SLC-FK/d outperforms CLP-FK. Additionally, for CLP-
FK it was empirically shown that, if households receive the pricing signal in
the wrong order, performance deteriorates. As a consequence, in this scenario
SLC-FK/d is able to outperform CLP-FK. This reveals an important strength
of SLC-FK/d: It does not require knowledge of the flexibility of customers to
achieve good performances.

These results reveal important aspects of SLC-FK/d. From a conceptual per-
spective, they show that the approach provides quality solutions for COPs,
such as load scheduling. Hence, evidence supports additional research for as-
sessing the performance of these approaches with other COPs. Additionally,
the adaptation to SLC-FKd improves convergence speed of the approach, in-
creasing its competitiveness in scenarios where the execution time is a limita-
tion.

From a case application perspective, it can be concluded that privacy preser-
vation, scalability and simplicity of implementation are strengths of SL-FK/d.
Although in some cases CLP-FK outperformed SLC-FK/d, differences are not
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large, especially with balanced and wind intensive RES outputs. In this sense,
privacy issues related to centralized load management approaches could be re-
duced with SLC-FK/d, due to its asynchronous solution construction process.
Individual agents, representing households, can be considered as black boxes,
from which only their load profile is utilized to evaluate the current solution.
Then, the MGM would reference the load profiles, which generated the best
solutions, without knowledge of the internal load composition of participants
(Subsection 5.3.3). An additional implementation scenario considers perform-
ing the scheduling directly with the households, instead of an agent represen-
tation of them. This would clearly increase privacy, as communication would
be completely anonymous. Nevertheless, potential communication overheads
should be considered.

Real-Time Load Balancing

In the context of real-time load balancing with uncertain RES forecasts, the
main hypothesis evaluated was whether SLC is able to guide the global behav-
ior of autonomous consumers in an asynchronous manner, following the req-
uisites of stigmergic systems (Chapter 3), such that unused RES is minimized.
Experimental results provided conclusive evidence to support the truthfulness
of this hypothesis.

Additionally, SLC was compared with a synchronous close-loop pricing ap-
proach (CLP), which generates close-to-optimal performances [Got15]. The
evaluation considered different levels of dynamism (given by quality of the
RES forecasts), different shares of load coverage of the micro-grid load require-
ments, and different shares of load flexibility of the micro-grid’s load. Results
are clear: CLP outperformed SLC in most evaluated instances. Nevertheless,
the absolute difference between the performance of each approach is often not
large, especially with balanced and wind intensive RES outputs.

Results also suggest that the performance of SLC is more robust. The impact
of lower quality forecasts on the quality of solutions and on the solution con-
struction process itself is minor, in comparison with CLP (Subsection 6.3.5). In
addition, when the RES output covers up to 50% of the micro-grid load require-
ments, differences in the performance between SLC and CLP are often not sig-
nificant. Whereas with a micro-grid load flexibility of 40%, absolute differences
between both load shifting strategies are not large.

From an overall perspective, the implications of these results for SLC are clear.
Firstly, it was shown that SLC can guide the global behavior of an autonomous
system to a desired target zone. Regarding the comparison of the approach
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with CLP, it has to be noticed that better performances of the price-based ap-
proach are possible due to its synchronized allocation of resources. If this re-
quirement is not met, CLP results in extreme load peaks and imbalances. The
requirement of real-time synchronization for CLP also implies a privacy vul-
nerability and increases complexity in the implementation of this approach.
On the contrary, SLC is fully asynchronous. Furthermore, due to its indirect
communication process, participants are anonymous and their autonomy is re-
spected. As a consequence, robustness in the operation of the micro-grid and
the privacy of customers is enhanced. In this sense, the main advantages of
SLC are: Robustness of its operation, improved privacy due its participants
anonymity, tolerance to failure and adaptability due to its asynchronous in-
direct communication, simplicity of the required network for the interactions
between participants, and cooperation and coordination in the achievement of
high level objectives.

Regarding both scenarios, SLC and SLC-FK/d, results show the importance
of increasing load flexibility as the input of intermittent hard-to-predict gen-
eration to the power grid increases. In this context, approaches like the one
presented in this thesis can help utility companies to increase efficiency in en-
ergy usage. Hence, incentives for customers to participate and provide larger
flexibility intervals for their appliances, should be encouraged by these utili-
ties. Alternatives can be to provide discount rates to customers according to
their reported flexibility. Nevertheless, this specific issue escapes the domain
of stigmergy-based load scheduling.

7.1.2. Stigmergy-Based Load Control and Ant Systems

In Chapter 3, Subsection 3.2.4, ant colony optimization (ACO - [BL08]) was
presented as the most well-known artificial stigmergic system. In this sense, al-
though stigmergy-based load scheduling and ACO are inspired by the same co-
ordination mechanism, fundamental differences exist between both approaches.

Firstly, differences exist in the solution construction process by the swarm of
agents. In the case of a Traveling Salesperson Problem (TSP) application of
ACO, a colony of agents (ants) is selected to progressively create solutions.
These solutions correspond to routes in a graph representation of the prob-
lem. In each iteration, each agent constructs a solution, guided by a heuristic
value and an artificial pheromone. Hence, at the end of the iteration the colony
has a set solutions. From this set, the best solution is selected and compared
with the current best solution found so far. If the best solution of a given itera-
tion performs better than the current best, the former replaces the latter as the
current best solution. Before moving to the next iteration, the components of
the current best solution are enforced with additional artificial pheromones to
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guide the search in the vicinity of that solution. In the next iteration, the pro-
cess is repeated. Hence, the decision process of the ants is guided by this new
pheromone concentration. Since in each iteration, there is only one currently
best solution, low quality solutions are discarded [DBT00].

On the contrary, in SLC and SLC-FK/d each agent, which corresponds to a
household, is in charge of a single component of the solution, this is, the sched-
ule of the household or load profile depending on the application. Every com-
ponent is required to create a solution, therefore, results obtained from individ-
ual agents cannot be voluntarily neglected. Additionally, in each rescheduling
round, a single solution is generated, rather than a set of solutions. Moreover,
the concept of population also differs. A micro-grid with 40, 000 households
requires that 40, 000 agents represent them in the simulation. Hence, it is the
problem instance that determines the size of the swarm to be utilized. In ACO,
the size of the swarm is a modifiable parameter in the algorithm.

A relevant difference is the stimuli definition. In ant systems, the auto-catalytic
effect, which enables the incremental construction of solutions, is traditionally
triggered by artificial pheromones. These pheromones reference individual so-
lution components (arcs in a TSP context) and are modified by any agent, which
utilizes these components in their solution. In SLC and SLC-FK/d, the con-
trol signal broadcast to every agent corresponds to the stimuli. Agents react
to this signal and reschedule their appliances, modify its definition for future
rescheduling rounds. The signal received is the same for the whole popula-
tion. However, each agent is able to modify only specific portions of it, due
to the user-defined flexibility intervals. From a conceptual perspective, stim-
uli in SLC and SLC-FK/d represent the distance between the desired state and
the current state of the system (Chapter 4, Section 4.3). In the case of ACO,
pheromones express the quality of individual components by means of how
much they have been previously utilized ([RKS16]). They are not considered as
an indicator of the distance to the desired objective.

Additionally, an explicit parameter is utilized in ACO to regulate exploration
and exploitation. An increase in the value of this parameter implies more explo-
ration and less exploitation1. On the contrary, stigmergy-based load scheduling
does not utilize an explicit mechanism to regulate these aspects of the search.
Exploration and exploitation are managed by the same parameter, namely α
(Chapter 4). On the one hand, with larger values for α faster convergence is
achieved, but the algorithm is not able to perform a continuous and effective
search, nor the escaping from stagnation. This sounds contradictory, since this
behavior is usually related to exploitation. Nevertheless, as discussed in Chap-
ter 6 and 5, larger α values promote much rescheduling in the population of
appliances, which can be considered exploration in the context COPs. On the

1It has to be noticed that initial versions of Ant Systems did not use this mechanism [DBT00].
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other hand, smaller values for α unveil good solutions continuously and enable
the algorithm to escape from stagnation, however, with much slower conver-
gence speed (Subsections 6.2.2, 6.3.4 and 5.6). This features are usually related
to exploration. Nevertheless, this parameter configuration promotes only grad-
ual and located rescheduling of appliances within the micro-grid, which can be
consider as exploitation.

In this context, two approaches considered the utilization of an ACO-based al-
gorithm for demand side management and load balancing ([DPR14, SMCO15]).
In both cases, a graph structure, representing the possible combination of the
tasks to be scheduled is required. The edges in this graph, represent the op-
erational costs of scheduling a specific task to a specific timeslot. This graph
is utilized to solve a shortest route problem, in which all tasks are connected,
with a colony of artificial ants. The issues with this approaches are evident
from two perspectives, in the context of future power systems. Firstly, larger
networks will dramatically increase execution time, since not only the prob-
lem of the shortest route has to be solved, but the graph has to be constructed.
Secondly, privacy of customers is affected, since precise knowledge of the load
composition of each participant is required. In this case, it can be observed
that ACO might not be adequate for load balancing in the power grid, due to
the requirement of graph representations of the problem. This occurs, because
ACO is based on the foraging behavior of ants, rather than their cooperation
and coordination mechanism [MMS02, FH13, ABPV08].

On the contrary, the described features of stigmergy-based load scheduling al-
low the modeling and facing of combinatorial optimization problems, such as
load scheduling, in a direct manner [RKS16]. In the case of load balancing, these
features enable scalability, simplicity of the implementation, and preservation
of the privacy of customers.

7.2. Stigmergy Revisited

The keen reader might have noticed that CLP and CLP-FK share some concep-
tual similarities with stigmergy-based load scheduling (Subsection 5.3.1). Then,
a reasonable question is: Does CLP also qualifies as form of stigmergy?

To answer this question, the fulfillment of requirements for artificial stigmergic
systems can be considered (Chapter 3, Subsection 3.2.5): Firstly, the pricing-
signal stimulates behavior from agents and is also modified after each house-
hold reschedules its appliances. Therefore, it can qualify as a stigmergic vari-
able. The environment is the same as in SLC, which was also shown to comply
with the requirements of stigmergy. Households have an inherent behavior, and
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off and allowed to be rebuilt . The funnels were
rebuilt to the following heights : 26 mm, 30 mm,
36 mm and 42 mm respectively . These funnels
were then broken off once more and were again
rebuilt to the following heights : 23 mm, 30 mm,
32 mm and 43 mm respectively . No funnel
was rebuilt to more or less than 4 mm of its
original height .

Experiment 4. Effect of Altering Funnel Stem
Length During Stage II of Construction

In this experiment the soil level around four
funnels under construction was raised, but not
until Stage II of construction, or formation of
the stem curve, had commenced. The first
wasp had 15 mm of soil placed around the
base of its funnel almost immediately after it
had commenced stage II of construction (Fig .
8A). The second and third wasps treated
similarly had 2 cm of soil added when the funnel
curve, or Stage II of construction, was half
completed (Fig. 8B). The fourth wasp had 3 cm
of soil added when formation of the curve
was almost completed and stage III about to
commence (Fig. 8C). All wasps continued
building without hesitation after this treatment
and all responded in the same way by construct-
ing the funnel in the same position that they
would have done had the ground around the
nest not been raised at all . This meant that the
bell of the funnel reached the ground before it
could be completed. Once stage II of construc-
tion has commenced it seems that the wasp's
behaviour is no longer affected by funnel stem
length but that funnel construction simply
continues in response to the stimulus received
from the funnel curve .

Fig. 7. Experiment 3 with Paralastor sp. showing the
effect of altering funnel stem length during stage I of
construction . Broken arrows indicate experimental
manipulations carried out by the author. Unbroken
arrows indicate the subsequent responses by wasps .
Numbers indicate the number of replicates of each
experiment and the relative responses by the affected
wasps .

Experiment 5. Determination of the Stimulus
which Initiates Stage M of Construction

For this experiment three wasps which had
just commenced stage III of construction were
selected. Each had the funnel broken back to
the end of stage II of construction or the point
where formation of the curve ceased and
formation of the bell commenced . The funnels
were then broken off at the base, tilted back-
wards, and reaffixed with mud so that the angle
of the plane of cross-section at the end of the
funnel was approximately vertical, instead of
the original 20° to the horizontal (Fig . 9) .
In each instance the wasps continued building
and extended the funnel curve until the angle of
the plane of cross-section had returned to
approximately 20° to the horizontal, after
which stage III of construction was recom-
menced. These results suggest that a plane of
cross-section at the end of approximately 20°
to the horizontal is the stimulus which brings
about change in constructional behaviour from
stage II to stage III . This would also explain
the observed phenomenon that funnels arising
horizontally from sloping ground have much
shorter curves than those arising from level
ground (Fig. 4) .

1CM

Fig. 8. Experiment 4 with Paralastor sp . showing the
effect of altering funnel stem length during stage II of
construction .

(a) Experiment 4: Altering the funnel stem
length during stage II.

Experiment 6 . Effects of Diagonally Excising
Funnel Stems

Eleven almost complete funnels were diagon-
ally excised about half-way up their stems (Fig .
10). These diagonally cut funnel stems repres-
ented a structure not previously experienced in
the normal nesting sequence. The response was
not clear, but most of the resulting structures
could easily be designated to one of the three
types illustrated in Fig . 10.

Experiment 7. Presentation of Conflicting Stimuli
During Stage I of Construction
Five individual wasps which had almost

completed stage V of construction had their
funnels diagonally excised as in the previous
experiment, but instead of leaving the funnel
stems in this state the ends were moistened then
carefully moulded into the form illustrated in
Fig. 11 . This was simply an attempt to create
an artificial curve in the funnel, similar to
that which would normally have been built
during stage II of construction but at a level
much lower down the funnel stem . All five
wasps treated in this way continued building
without any apparent hesitation or disturbance,

icm

SMITH : NEST CONSTRUCTION IN THE MUD WASP

Fig. 9. Experiment 5 with Paralastor sp. to determine
the stimulus which initiates stage III of construction .

and the resultant structures fell into the two
alternative forms illustrated in Fig . 11 .
Experiment 8 . The Repair of Damaged Funnels
Various holes were made in funnels at

different stages of construction. This is a
situation not normally encountered during nest
construction and was designed to investigate
the nest repair abilities of the wasps . The first
four wasps to be treated had hemispherical
pieces of mud removed from the bells of their
funnels. The pieces were removed from the front
of the nests just before funnel construction would
have been completed . In all four instances the
damage was detected immediately and repair
work commenced without hesitation . The
damaged area was built up with horizontal
strips of mud until the funnel assumed its
previous form.

The next four wasps to be treated had spherical
holes placed in the necks of their funnels just
after the flange or stage III of construction had
been completed . The wasps returned and
examined the holes thoroughly with their

1CM
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Fig . 11 . Experiment 7 with Paralastor sp. showing the
effect of presenting conflicting stimuli during stage I
construction .

1CM

Fig. 10 . Experiment 6 with Paralastor sp. showing the
effects of diagonally excising funnel stems .
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(b) Experiment 7: Effect of presenting con-
flicting stimuli during stage II.

Figure 7.1.: Effect of misguidance, through the alteration of the stigmergic stim-
uli, in the Paralastor sp. funnel construction process [Smi78].

perform their rescheduling autonomously. Since the signal triggers behavior of
agents, and their actions modify the value of the signal, it can be said that the
response-stimuli sequence takes place in CLP. Finally, households are not required
to interact directly and they do not reveal their identity to one another. Hence,
it seems that CLP does qualifies as stigmergy.

Nevertheless, from a conceptual perspective, an important difference between
CLP and SLC remains. This is, that CLP requires synchronization to achieve
quality performances, otherwise, chaotic behavior is obtained. Therefore, the
following question is stated: Can a system which requires synchronization to
be stable, also be stigmergic? To answer this question, an example from nature
is revisited.

In Chapter 3, Subsection 3.2.1, the experiments performed by Dr. Andrew P.
Smith were discussed as a form of guiding behavior in stigmergic systems
[Smi78], specifically, the construction of a wasp funnel. In this example, the
stigmergic stimuli triggered well defined sequential responses from partici-
pants. The described experiment refers to Dr. Smith making holes above a
finished funnel, which triggers the construction of an additional funnel on top
of the first one. Nevertheless, this was only one of a set of experiments per-
formed by Dr. Smith. Additional experiments considered the effect of present-
ing conflicting stimuli or misguidance during the funnel construction process.
This can be observed in Figs. 7.1a and 7.1b. Here, it can be observed that, al-
though a stigmergic process occurs, since the communication and coordination
process fulfills all requirements of stigmergic systems, the end result is unde-
sired from a global perspective. This occurs because, at key stages, the process
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(a) Ant vortex phenomena.
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Figure 2. Circular milling. (a) Drawing of ants forming a
circular mill in the laboratory (adapted from Schneirla 1971
by I.D.C.). (b) The flow of ants is dependent on their ability
to detect others and the rate at which they turn during
avoidance manoeuvres (N = 50, up = 500° s21, s = 0.01,
Q = 1.2 ´ 1026 g cm23, Cmax = 1.2 ´ 1026 g cm23, t = 300 s.
F was calculated at t = 5000, and the results shown are the
means of 100 runs per parameter combination). (c) Ants
begin the simulation at random positions and with
orientations along the trail. Snapshot near the start of a
simulation (t = 50) with a = 90° and ua = 1000° s21. Ants are
depicted as arrows representing their instantaneous velocity
(units: cm). (d ) Simulated ants have selected a direction
collectively (t = 3000).

which is an increasing sigmoid function when C is on a
log scale (Boeckh et al. 1984; Andryazak et al. 1990; Mas-
son & Mustaparta 1990). Cm ax is the concentration at
which the antennal receptors are completely saturated,

Proc. R. Soc. Lond. B (2003)

and k is a constant that controls the rate at which the
concentration approaches its maximal value (k = 100). S
is limited to 0 < S < 1. Ants turn in the direction of the
highest perceived pheromone concentration by upDt. If no
concentration difference is detected, then up = 0. All turn-
ing is assumed to be subject to error. This is simulated by
rotating vi(t 1 Dt) by angle « (a Gaussian-distributed ran-
dom deviate centred on 0 with a standard deviation of
0.5 radians).

(d) Directional preference
In simulations where we investigate directional prefer-

ence (see § 4(b(ii)), we simulate it using a supplementary
internal unit vector g i(t 1 Dt) with weighting v, and
replacing di(t 1 Dt) by d9

i(t 1 Dt), where

d9
i(t 1 Dt) =

di(t 1 Dt) 1 v g i(t 1 Dt)
|di(t 1 Dt) 1 v g i(t 1 Dt)|

. (2.4)

This completes the description of the new direction vec-
tors. The new position vector of ant i is then given by
ci(t 1 Dt) = ci(t) 1 vi(t 1 Dt)Dt ui, where ui is the current
speed of ant i.

We used our video analysis of the army ant E. burchelli
(see § 3) to parameterize the model such that: rd = 0.4 cm,
rp = 1.2 cm, b = 0.8 cm, f = 0.4 cm, udes = 13 cm s21,
um in = 2 cm s21 and m = 50 cm s22.

3. MATERIAL AND METHODS

Eciton burchelli raids were filmed in Panama (Soberania
National Park). A section of the principal trail (11 cm long) was
filmed from above using a digital video camcorder (Sony
DVCAM). Owing to the high speed of these ants, we doubled
the frame rate (from 25 to 50 Hz) by isolating both fields from
each frame and interpolating the missing pixels from those above
and below. This also sharpens the images, increasing spatial
accuracy. The centre of each ant was then recorded, to allow
reconstruction of trajectories. The acceleration and the mini-
mum and maximum speeds of ants were calculated from the
trajectories of 226 individuals. Owing to artefacts associated
with analysis of trajectory data when using time to discretize tra-
jectories (Tourtellot et al. 1991), the calculation of angular devi-
ation as a result of interactions was standardized by recording
the position of a focal ant in the first frame when it contacted
another ant (usually antennal contact with the antennae, legs
and/or body). Analysing the distance between ants during such
initial contacts allowed us to estimate the interaction range, rp.
Using this as a reference point, a minimum distance interval
(1.2 cm, approximately 1.5 body lengths) was specified. The
position (centre) of the ant greater than, but closest to, this dis-
tance from the focal point before interaction was found. The
line segment between these points (the point before interaction,
the point where the focal ant interacts with another ant and the
point after the interaction) gave the direction of the ant before
interaction. The position of the ant after interaction was found
using the same technique to determine the direction after inter-
action. The change in direction before and after interaction is
the angular deviation. Similarly, this rule was used to calculate
the angular deviation of simulated ants. For simplicity, we ana-
lysed only medium workers because these comprise 75% of all
the ants in the raid (Franks 1985).

(b) Laboratory simulation of the ant vortex
or ant mill phenomena [CF02].

Figure 7.2.: Chaotic behavior in army ants due to pheromonal communication
perturbations.

was guided in the wrong direction. More specifically, the correct completion of
each stage was not respected, hence, abnormal funnels are constructed. These
examples reveal that to finish the project properly, each stage has to be cor-
rectly terminated, before the next stage occurs. In other words, some level of
synchronization, determined by the level of fulfillment of the stages, is required
to obtain a stable result from the stigmergic system.

This example clearly shows that specific instances of stigmergic systems can
require synchronization to prevent chaotic behavior. However, this is not an
inherent requirement of the mechanism itself. Therefore, given the previous ex-
amples, the requirement of synchronization in CLP to achieve high quality re-
sults, is not a impediment to classify it as an artificial stigmergic system. Hence,
in can be categorized as one. In this sense, qualitative stigmergic systems, such
as this one, might be rather vulnerable to chaotic behavior, if the stimuli are
not embedded appropriately in the environment. Nevertheless, they also en-
able the cooperative achievement of specific, well defined tasks, such as the
construction of a precise type of funnel.

This type of chaotic behavior is not exclusive of qualitative stigmergic systems,
though. Army ants are characterized by being nomadic and blind, among oth-
ers. Hence, they fully depend on pheromones, which corresponds to a marker-
based stimuli in quantitative stigmergy context, to find their path. It has been
observed that sometimes, when the colony is moving to a new nest, isolated
groups of foragers are separated from the main column, due to perturbations
in their pheromone field, which affects their communication [Del03, CF02]. As
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a consequence, the isolated ants begin to follow their own pheromone trail,
stimulating themselves, in a deadlock-kind of behavior (Fig. 7.2). Eventually,
the ants form a densely packed circle until, increasing its pheromone deposi-
tion and getting trapped in a vortex of ants. The ants are not able to escape
this vortex, since being blind they can only decide their future position based
on the pheromones, and, as a consequence, they eventually die of exhaustion.
In this case, ants follow the pheromones according to the rules defined by
the paradigm. Nevertheless, misplaced stimuli triggers chaotic behavior and
threatens the final objective of the system.

These examples reveal a fragile aspect of the mechanism. This is, corrupt stim-
uli can guide the system to a spiral of coordinated behavior which can lead to
its destruction. In this case, participants cannot prevent this final results, since
they function and perform within the rules defined by the mechanism. More-
over, the final result might not even be relevant to them. Hence, the corruption
of the stimuli can be considered a major threat for the correct functioning of
these systems. Therefore, in the context of artificial stigmergy, the utilization
of an entity to guide the global behavior to a target zone, such as the MGM in
stigmergy-based load scheduling, becomes justified.

7.3. Future Opportunities and Limitations

In this section, limitations of the approach, both for the real-time coordination
and the load scheduling problem scenario, are discussed. Afterwards, possible
approaches to face these limitations including future possibilities and perspec-
tives of the approach are debated.

7.3.1. Limitations and Weaknesses

Although the results obtained throughout this thesis show the strengths of
stigmergy-based load scheduling, some limitations have been identified.

In real-time coordination, it was shown that SLC was usually not able to out-
perform CLP. Moreover, it was observed that under certain internal parameter
configurations, SLC tended to generate step responses in the final micro-grid
load profile. In this sense, it was observed that the utilization of a receding-
horizon to model the effect of real-time was a relevant driver in the increase of
step-responses from the SLC. Reasons for this are that the approach has to com-
ply with the restriction of scheduling all appliances within the simulated day,
while the optimization horizon is reduced. From a simulation scenario per-
spective, only a single day has been simulated. Hence, additional information
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regarding the ability of the approach to operate through an extended period of
time, e. g., a week or a month, is not currently available.

Regarding the load scheduling problem, it was observed that SLC-FK/d is
competitive and in some isolated scenarios outperforms CLP-FK. Considering
the specific application, this is certainly positive. Nevertheless, from a meta-
heuristic perspective one might be drawn to select CLP-FK, since its perfor-
mance was consistently better than the other approaches.

Additionally, in each optimization scenario, when the RES output was PV in-
tensive the stigmergy-based load scheduling approach achieved clearly inferior
performances than the synchronized closed-loop pricing. This is a consequence
of the rescheduling process, which is based on autonomous probabilistic deci-
sions of agents. In this case, rescheduled appliances concentrate on a unique
position only up to a certain amount. Moreover, since schedules cannot be im-
posed on participants, some load is left unused. As a consequence, with large
unique load peaks, both, SLC-FK and SLC-FK/d, are not able to relocate load
to maximize utilization with these outputs.

7.3.2. Future Opportunities

There are ample opportunities to extend stigmergy-based load scheduling, in
both scenarios. From a simulation scenario perspective, to prevent step re-
sponses as a consequence of the receding horizon, the problem can be modeled
with a rolling window approach [CMB10]. Another alternative is to simulate
three days with the current model and evaluate only the middle one. In both
cases, strange behavior, as a consequence of the reduction of the optimization
horizon and the obligation to reschedule all flexible loads within a specific sim-
ulated day in real-time coordination, would be reduced.

From the demand side perspective, RES usage with PV intensive scenarios
might be increased by processing the signal by the households (Chapter 4,
Subsection 4.3.2), such that the desirability to increase load remains high un-
til the RES is utilized. Nevertheless, this alternative has to be carefully studied,
since modifying the interpretation mechanism might trigger chaotic behavior
[RKS16].

Additional enhancements on the demand side are the inclusion of residential
generation through micro-PV. This type of generation shares similar features
as large scale PV generation, it is intermittent, hard to predict, and not dis-
patchable. In addition, generation is local and unique to the building, which
generates it. From a customer perspective, the utilization of this locally gen-
erated RES should be a priority. This scenario could be addressed in SLC and
SLC-FK/d through the inclusion of an additional term in the decision making
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process of households (Chapter 4, Eq. 4.6). The value of this term would be
different for each household since it would depend on its physical location and
the amount of micro-PV generation on any given moment.

In this context, the control signal could also account for residential generation.
In the current interpretation scheme, the signal only references timeslots where
it would be desirable to increase load consumption. Nevertheless, additional
interpretations could give information regarding the timeslots for which it is
required to have power input from households, in vehicle-to-grid or residential
generation scenarios [MAS12]. This way, households would not only be able
to reschedule their devices and increase utilization of an RES output, but also,
they would be able to reduce load peaks in the micro-grid by supplying their
own residential generation, if appliances cannot be rescheduled.

Even though SLC and SLC-FK/d are oriented to fulfill load objectives, pricing
signals or additional objectives, can be included. An alternative to address this
scenario is for the MGM to deliver two signals. Each signal would correspond
to a different stigmergic stimulus, the load objective and the pricing objective.
To react to this additional stimulus, households would need to include it in its
decision process through an additional term with a specification of the relative
weight of each signal (Chapter 4, Eq. 4.6).

Many of these enhancements consider increasing the complexity of the signal,
to cope with more advanced scenarios. In this context, other definitions for
the control signal might be evaluated, such as a percentage of utilization of the
current available load, instead of the difference between used and unused RES.
Regarding real-time coordination, the MGM could be improved such that it can
include features to analyze and evaluate the current behavior of the system,
predict future consumption and calculate the accuracy of the utilized forecasts.
Then, the MGM would operate the control signal to guide the behavior more
accurately and prevent potential step responses, while allowing the micro-grid
to self-organize and increase RES usage autonomously, as it has been shown.
This would imply the usage of an advanced adaptive parameter control technique,
through the utilization of feedback and inferences for updating of control signal
[EHM99]. An adequate architecture to this purpose might be the Observer/-
Controller architecture, which provides these type of features and is oriented
to guide the behavior of autonomous self-organized systems in dynamic envi-
ronments [SPB+11]. In the case of SLC-FK, the effectiveness of a deterministic
parameter control technique has already been demonstrated. Hence, evidence
supports the implementation of an adaptive parameter control for this scenario.
This implementation, however, should not increase the complexity in the oper-
ation of the algorithm.

From the perspective of stigmergy-based load scheduling as a meta-heuristic,
the next step is to adapt the algorithm such that the range of applicable prob-
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lems can be extended. For this, the generalization of the stimuli definition and
probabilistic decision making process of the agents, described in Chapter 4,
Subsection 4.3.4 will be of great use. In this sense, natural candidates for ap-
plying the problem are other forms of the load scheduling problem, such as re-
source constrained project scheduling problem, job-shop scheduling problem,
followed by two-dimensional bin packing problems and cutting stock prob-
lems. This will allow to clearly compare the possibilities and performance of
the approach against standard well-known meta-heuristics.

In addition to the benefits that anonymity brings to the approach, SLC can
be complemented by other security mechanisms, e.g. SMART-ER protocol in
[FB14]. Through this means, the MGM would have access to the aggregated
micro-grid load profile, while the profiles of customers would be untraceable
for the receiver.

7.4. Summary

In connection with Chapter 2, techniques to balance load which can reliably
reduce imbalances through the increase in RES usage improve the power grid
stability and promote the development of new market and business models.
Under this new structure of distributed generation and high customer flexibil-
ity, managing entities, in charge of procuring load balance between supply and
demand, can cooperate with residential and commercial customer to guarantee
local stability of the power grid. Nevertheless, this cooperation should recog-
nize the requirements of customers, such as privacy and autonomy preserva-
tion.

In this chapter, stigmergy-based load scheduling has been discussed in con-
sideration of the results obtained throughout this thesis. Implications of the
approach, as a real-time coordination mechanism and as a distributed load
scheduler (Chapter 6 and 5 respectively), are discussed. Moreover, concep-
tual, design and operational differences between the approach and ACO, the
most well-known artificial stigmergic-system, are presented. The concept of
stigmergy is revisited once more to discuss the role of synchronization and the
circumstances, which trigger chaotic behavior in this paradigm. Finally, limi-
tations and future possibilities of stigmergy-based load control are discussed,
both from a real-time coordination mechanism for load balancing perspective,
and as a meta-heuristic for solving COPs.

Emphasis of stigmergy-based load control are customer privacy, both in SLC
as in SLC-FK/d, customer autonomy, simplicity, robustness of the global be-
havior, flexibility and openness to include different types of flexible devices or
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customers, and coordinated behavior for increasing RES usage. In this context,
and as it has been discussed throughout this work, the conceptual framework
provided by stigmergy and self-organization allows the approach to achieve
these objectives to great extent.

Novel contributions of this chapter are the discussion of the role of synchro-
nization in stigmergy and specific segments of the discussion regarding the
evaluation of stigmergy-based load scheduling.
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“ Some people say, How can you live without knowing? I do not know
what they mean. I always live without knowing. That is easy. How
you get to know is what I want to know. ”

Richard Feynman, The Meaning of It All, 1999

The main motivation of this thesis has been the exploration and understanding
of the relation between three research fields, namely self-organization, nature-
inspired algorithms and energy informatics. To comprehend this relation, firstly,
the conceptual and practical implications of guiding the global behavior of stig-
mergic systems, which are a type of self-organizing systems, are addressed
(Chapter 3). With the results of this investigation, an architecture and a for-
mal model for an stigmergy-based meta-heuristic and multi-agent coordina-
tion mechanism are proposed (Chapter 4). These two developments are imple-
mented as DR mechanisms to increase the utilization of RES generation. Details
of the experimental results for both implementation scenarios are presented in
Chapter 5 and 6. A detailed discussion regarding the conceptual and practical
implications of these results is provided in Chapter 7. Furthermore, limitations
and future work of the approach from the perspective of a meta-heuristic and
as multi-agent coordination mechanism for load balancing, are presented in the
same chapter.

8.1. Objectives and Achievements

To assess the connection between the previously mentioned research fields, this
thesis proposes the utilization of a fundamental coordination mechanism from
nature, namely stigmergy, for achieving load balance within a balancing group
(BG). For this, a comprehensive and detailed analysis of the mechanism is per-
formed. Based on this analysis, a formal model for a new meta-heuristic is
proposed. In this context, the scientific and experimental results, allowed the
assessment of the research questions stated in Chapter 1.
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Research Question 1: How can the global behavior of a stigmergic sys-
tem be guided?

The literature review on self-organizing systems provided evidence to support
that the global behavior of these systems, both in natural and artificial sce-
narios, can be guided, to achieve specific global behavior. Moreover, differ-
ent types of guidance were discussed, regarding the level of control performed
over individual participants.

In the case of stigmergy, it was concluded that the global behavior of these
system can also be guided. The element that gives raise and regulates coop-
eration and coordination is the stigmergic variable. Participants communicate
indirectly through untraceable alterations of these variables. This gives cohe-
sion, flexibility and robustness to the global behavior. Moreover, this form of
communication allows for participants to drastically limit the amount of infor-
mation they exchange, enhancing privacy and autonomy. Through the alter-
ation of these stimuli, stigmergic systems can be guided to perform in specific
manners.

Nevertheless, it was also observed that, although stimuli enable cooperation
and coordination to raise, corrupted stimuli can misguide the system towards
undesired global behavior. Furthermore, it was observed that in natural sys-
tems, misplaced stimuli could lead to a spiral of chaotic behavior, which could
result in the destruction of the system. Although the probability of this to oc-
cur is quite low, the observation of this phenomenon justifies the existence of
an entity, which monitors the global behavior and continuously guides it into a
desired target space in artificial systems.

Research Question 2: How can an artificial stigmergic system be uti-
lized to distributively generate schedules which can maximize a given RES
output utilization?

Different types of stigmergic stimuli and types of response from agents were
identified during the analysis of the mechanism. In sematectonic stigmergy,
the physical description of the environment is utilized to trigger behavior from
participants. An advantage of this type of stimuli is that the distance between
the current state of the system and the desired state to be achieved, can be easily
represented. This facilitates the assessment of a problem such as load schedul-
ing. In addition, quantitative responses to stimuli from participants or agents,
implies a probability-based response1. Hence, asynchronous behavior becomes
possible in the system, reducing the risk of large imbalances and avalanche ef-
fects, while all participants perform in a similar manner at the same time.

1As a reference, ant colony optimization (ACO) utilizes a sign-based stimulus, artificial
pheromones, with a quantitative response from participants (Chapter 3).
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A stigmergy-based load control approach to distributively calculate global sched-
ules for a population of simulated prosumers with flexible appliances, was pre-
sented (SLC-FK). The objective is to maximize the usage of a given RES output.
In SLC-FK an iterative scanning process is performed, in which gradually good
quality schedules are revealed. The role of the stimuli is played by a control
signal, which is modified in each rescheduling round. This signal is considered
in the rescheduling process of appliances.

Results show that SLC-FK is able to create schedules that increase RES usage,
achieving a micro-grid load profile that closely resembles that of the corre-
sponding RES output. Furthermore, it was found that the convergence speed of
the algorithm can be improved through the implementation of a deterministic
parameter control strategy.

From an application perspective, two implementation scenarios are considered.
The first one regards the utilization of the meta-heuristic on an agent represen-
tation of a population of prosumers. Then, the optimal schedule is distribu-
tively calculated for each participant, and later they are implemented such as
in direct load control. The second scenario considers implementing the ap-
proach directly over a population of prosumers, in a distributed computation-
like manner. In this sense, privacy of customers would be largely improved.

From an conceptual perspective, results show the value of SLC-FK as a meta-
heuristic for solving COPs. Hence, empirical evidence exists to support the
enhancing of the algorithm for solving other COPs. As a first step to this end, a
generalized form of the meta-heuristic to address other optimization problems
is presented. In this sense, adequate candidates in this direction are resource
constrained project scheduling problems, two dimensional bin-packing prob-
lems and cutting stock problems.

Research Question 3: How can artificial stigmergic systems be utilized
to guide the global consumption behavior of autonomous customers in real-
time and in a dynamic environment, such that RES usage is increased?

As outlined throughout this thesis, the power grid, as most self-organizing sys-
tems, functions within a dynamic environment. In its case, the system has to
be able to cope with uncertainty, both from the supply and the demand side,
in order to permanently maintain load balance. In this context, the proposed
meta-heuristic was adapted to be utilized as a real-time optimization mecha-
nism (SLC), to guide the consumption behavior of a group of consumers. Dy-
namism is represented by the utilization of an RES forecast which is in contin-
uous update. Real-time execution is modeled as a receding horizon, in which
the approach moves from one 15-minutes time interval to the next one, until
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a simulated day has passed by. Each time the approach moves to the follow-
ing time interval, the RES forecast is updated with more accurate information
regarding RES availability.

Results show that SLC is able to guide the global consumption behavior of
customers in real-time, and increase RES usage. Moreover, the approach is able
to guide the system and adapt the micro-grid load profile as the RES forecast
changes during execution time.

From the perspective of customers, SLC depicts many desirable features. Since
participants do not interact directly, possible security risks and attacks are re-
duced. In the same sense, the privacy and autonomy of the end-customer is
preserved.

From a utility perspective, the performance of SLC was robust against different
levels of dynamism, which is given by the deviation between the RES output
and the RES forecast. Moreover, the approach is flexible and adaptable due to
its asynchronous interaction process. As a consequence, the operation of SLC
was found to be rather simple, in comparison to other approaches. In the same
sense, the lack of direct interaction between participants implies that no com-
plex techniques from multi-agent systems, such as negotiation or argumenta-
tion, are required to achieve good solutions or stability of the system.

These features show the value of the approach as a coordination mechanism
to increase RES usage and achieve load balance within BGs. In this sense, the
results of this thesis and the presented architecture show that SLC might also
be applied for the load management of power networks which include com-
mercial buildings or small industries.

8.2. Outlook

In most industrialized countries, the power grid has been experiencing dras-
tic changes during the last decades. These changes are only expected to in-
crease in the future. On the one hand, the requirement of increasing the pres-
ence of RES in the power system arises many challenges for the power grid
operation and stability. These energy sources are characterized by being hard-
to-predict, intermittent, and not-dispatchable. As a consequence, the opera-
tional requirement of maintaining a permanent balance between supply and
demand in the power grid, might be compromised. On the other hand, cus-
tomers are increasingly changing their consumption profile, through the inclu-
sion of new technologies, such as flexible appliances, which can autonomously
select their operation times, or electric vehicles (EV). These devices will mod-
ify the load profile of end-customers while making them less predictable. As a
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consequence, maintaining load balance within BGs will become an increasingly
complex problem.

This thesis addresses the issue of complementing both sides of the power grid
operation, in order to bring stability by load matching consumption and sup-
ply. In this sense, it is proposed that flexible appliances and EVs can schedule
their operation times such that load peaks generated by RES generation can
be absorbed. In the context of the energy market, this concept is referred to
as demand side management. Furthermore, techniques which imply advanced
interactions between utilities and customers to actively change the global con-
sumption behavior, are referred to as demand response (DR) programs.

Results from the present work show that, in order to make DR programs effec-
tive in the efficient utilization of intermittent generation, increasing shares of
RES generation should be accompanied with increasing flexibility of customers.
In this context, managing distributed generation and flexible consumption, to
provide a meaningful support to the power grid, will be an essential issue in
a diversified power system. This should be achieved minimizing overloads or
flow inversion. In this future scenario, ICT should play a main role achieving
efficient resource management, specially since DR programs will heavily rely
on advanced technologies.

The physical layer of the power grid should also be a source of consideration.
The current equipment might not be prepared to handle the operation of the
hypothesized future power system. Consequently, new infrastructure might be
required to protect a highly distributed network. From a utility-customer in-
teraction perspective, relevant bottlenecks which prevent the implementation
of communication channels to implement such DRs programs are observed. If
these challenges can be overcome, new structures, such as virtual power plants
or community heating approaches, will further increase distribution of genera-
tion and security of energy supply. Furthermore, such approaches will promote
the development of new markets which will certainly make use of innovative
DR programs. Issues traditionally related to online network security, such as
privacy, security and autonomy of participants will be essential in this new
context.

8.3. Final Remarks

The approach for load balancing presented in this thesis is only one of many.
In this case, the emphasis of the presented work has two perspectives. From an
individual perspective, the main focus is the respect of participants’ autonomy
and privacy. From a global perspective, the main objectives are to achieve the
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emergence of robustness, flexibility, coordination and cooperation in the sys-
tem. These systems’ features are found in nature, and so, this work is heavily
inspired by natural systems. Our role as scientists is to observe these systems,
be inspired by them and implement their conceptual tools in the best possible
way, to improve our lives.
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A. Load Profiles and RES Outputs

Table A.1.: Load profiles of a washing machine (WaMa), dryer, dishwasher
(DiWa - [Sta08]) and electric vehicle (EV). EVs are only only power
constraint, therefore, their profile can be separated into different
timeslots.

Device Load [kW]

DiWa 2.0 0.125 0.125 0.125 2.0 0.3 0.15
WaMa 0.1 2.0 0.9 0.1 0.1 0.3 0.05
Dryer 2.0 2.0 2.0 1.6 1.0 0.6 0.6
EV 3.7 3.7 3.7 3.7 3.7 0.67
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A. Load Profiles and RES Outputs
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(a) RES outputs 1 to 4.
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(b) RES outputs 5 to 8.

RES Output 9 RES Output 10 RES Output 11 RES Output 12

0.00

0.01

0.02

0.03

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Timeslot

S
ca

le
d 

Lo
ad

(c) RES outputs 9 to 12.

Figure A.1.: RES outputs utilized for experimentation.

180



B. Assessment of Normality

B.1. Normality Test for Real-Time Optimization

Table B.1.: One-sample Kolmogorov-Smirnov normality test for the performance data with different population sizes
and different α values for each RES output. Forecast categories are grouped in the samples.

RES
Output

Test
Results

40 Households 400 Households 4, 000 Households 40, 000 Households
α Value α Value α Value α Value

1.0 0.5 0.1 0.05 0.01 1.0 0.5 0.1 0.05 0.01 1.0 0.5 0.1 0.05 0.01 1.0 0.5 0.1 0.05 0.01

1 Statistic 0.5694 0.5718 0.5705 0.5714 0.5735 0.5321 0.5301 0.5317 0.5330 0.5378 0.5273 0.5265 0.5254 0.5286 0.5324 0.5296 0.5276 0.5252 0.5289 0.5334
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

2 Statistic 0.5789 0.5761 0.5754 0.5728 0.5769 0.5479 0.5470 0.5423 0.5469 0.5504 0.5477 0.5439 0.5430 0.5472 0.5511 0.5492 0.5459 0.5444 0.5475 0.5524
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

3 Statistic 0.5819 0.5802 0.5819 0.5836 0.5817 0.5575 0.5574 0.5547 0.5590 0.5580 0.5655 0.5625 0.5591 0.5588 0.5587 0.5658 0.5656 0.5627 0.5598 0.5603
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.5815 0.5846 0.5784 0.5769 0.5803 0.5796 0.5736 0.5701 0.5639 0.5689 0.5866 0.5812 0.5762 0.5753 0.5751 0.5887 0.5845 0.5773 0.5772 0.5778
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

5 Statistic 0.5708 0.5665 0.5628 0.5710 0.5658 0.5323 0.5319 0.5275 0.5290 0.5328 0.5298 0.5275 0.5219 0.5256 0.5294 0.5303 0.5282 0.5238 0.5253 0.5306
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

6 Statistic 0.5863 0.5816 0.5764 0.5724 0.5807 0.5725 0.5641 0.5596 0.5576 0.5619 0.5751 0.5711 0.5616 0.5599 0.5656 0.5770 0.5736 0.5633 0.5629 0.5675
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5652 0.5685 0.5674 0.5683 0.5678 0.5366 0.5323 0.5294 0.5304 0.5329 0.5304 0.5267 0.5216 0.5245 0.5289 0.5312 0.5274 0.5214 0.5246 0.5291
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

8 Statistic 0.6082 0.5997 0.5930 0.5947 0.5901 0.6103 0.6022 0.5926 0.5920 0.5939 0.6177 0.6143 0.6055 0.6010 0.6021 0.6207 0.6172 0.6062 0.6032 0.6044
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

9 Statistic 0.5743 0.5749 0.5653 0.5715 0.5717 0.5393 0.5356 0.5329 0.5379 0.5396 0.5376 0.5320 0.5287 0.5324 0.5381 0.5372 0.5319 0.5294 0.5335 0.5389
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5751 0.5760 0.5731 0.5760 0.5802 0.5480 0.5510 0.5486 0.5504 0.5554 0.5496 0.5503 0.5510 0.5536 0.5561 0.5527 0.5520 0.5512 0.5543 0.5580
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

11 Statistic 0.5689 0.5666 0.5651 0.5679 0.5681 0.5336 0.5319 0.5308 0.5307 0.5322 0.5284 0.5274 0.5261 0.5259 0.5282 0.5300 0.5297 0.5272 0.5271 0.5312
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

12 Statistic 0.5695 0.5664 0.5667 0.5682 0.5667 0.5350 0.5354 0.5278 0.5284 0.5322 0.5305 0.5298 0.5222 0.5245 0.5273 0.5313 0.5310 0.5209 0.5237 0.5299
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16
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Table B.2.: One-sample Kolmogorov-Smirnov normality test for the performance data with different forecast qualities
and α values in each RES output. The simulated micro-grid has a population of 40 households.

RES
Output

Test
Results

0.01 0.05 0.1 0.5 1.0
Forecast Quality Forecast Quality Forecast Quality Forecast Quality Forecast Quality

Low Medium High Low Medium High Low Medium High Low Medium High Low Medium High

1 Statistic 0.5737 0.5740 0.5735 0.5730 0.5731 0.5714 0.5722 0.5722 0.5705 0.5723 0.5747 0.5718 0.5710 0.5744 0.5694
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 0.5816 0.5819 0.5769 0.5728 0.5750 0.5762 0.5754 0.5792 0.5798 0.5762 0.5783 0.5761 0.5828 0.5789 0.5795
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 0.5837 0.5882 0.5817 0.5836 0.5848 0.5891 0.5819 0.5819 0.5832 0.5838 0.5810 0.5802 0.5895 0.5880 0.5819
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 Statistic 0.5829 0.5803 0.5843 0.5803 0.5839 0.5714 0.5825 0.5784 0.5838 0.5866 0.5846 0.5856 0.5815 0.5843 0.5925
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 Statistic 0.5658 0.5734 0.5638 0.5715 0.5711 0.5710 0.5661 0.5687 0.5618 0.5718 0.5665 0.5671 0.5717 0.5708 0.5712
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

6 Statistic 0.5840 0.5757 0.5870 0.5799 0.5728 0.5757 0.5867 0.5803 0.5712 0.5865 0.5907 0.5808 0.5924 0.5941 0.5863
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 0.5741 0.5728 0.5678 0.5722 0.5712 0.5683 0.5702 0.5682 0.5674 0.5685 0.5763 0.5705 0.5605 0.5685 0.5698
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 0.5847 0.5954 0.5934 0.5947 0.5981 0.5997 0.5981 0.5963 0.6005 0.5997 0.6060 0.6026 0.6257 0.6015 0.6178
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

9 Statistic 0.5742 0.5791 0.5717 0.5715 0.5749 0.5742 0.5708 0.5617 0.5713 0.5750 0.5771 0.5749 0.5745 0.5780 0.5743
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 0.5802 0.5844 0.5823 0.5760 0.5777 0.5760 0.5731 0.5831 0.5771 0.5773 0.5760 0.5796 0.5785 0.5751 0.5758
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

11 Statistic 0.5705 0.5748 0.5681 0.5739 0.5688 0.5679 0.5771 0.5651 0.5710 0.5666 0.5687 0.5691 0.5691 0.5693 0.5689
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

12 Statistic 0.5667 0.5718 0.5674 0.5759 0.5749 0.5682 0.5723 0.5667 0.5689 0.5762 0.5673 0.5664 0.5695 0.5720 0.5739
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
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Table B.3.: One-sample Kolmogorov-Smirnov normality test for the performance data with different forecast qualities
and α values in each RES output. The simulated micro-grid has a population of 400 households.

RES
Output

Test
Results

0.01 0.05 0.1 0.5 1.0
Forecast Quality Forecast Quality Forecast Quality Forecast Quality Forecast Quality

Low Medium High Low Medium High Low Medium High Low Medium High Low Medium High

1 Statistic 0.5378 0.5409 0.5388 0.5345 0.5330 0.5360 0.5331 0.5317 0.5335 0.5312 0.5301 0.5342 0.5366 0.5321 0.5323
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 0.5529 0.5504 0.5568 0.5495 0.5469 0.5469 0.5428 0.5444 0.5423 0.5470 0.5493 0.5497 0.5489 0.5515 0.5479
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 0.5580 0.5657 0.5581 0.5590 0.5610 0.5596 0.5573 0.5602 0.5547 0.5639 0.5574 0.5603 0.5575 0.5607 0.5621
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 Statistic 0.5650 0.5764 0.5722 0.5731 0.5733 0.5635 0.5736 0.5701 0.5754 0.5787 0.5735 0.5770 0.5806 0.5800 0.5796
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 Statistic 0.5352 0.5328 0.5347 0.5334 0.5290 0.5313 0.5335 0.5275 0.5304 0.5319 0.5340 0.5329 0.5361 0.5323 0.5338
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

6 Statistic 0.5744 0.5597 0.5653 0.5702 0.5599 0.5576 0.5654 0.5596 0.5636 0.5617 0.5690 0.5674 0.5731 0.5732 0.5725
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 0.5347 0.5329 0.5366 0.5323 0.5332 0.5304 0.5294 0.5301 0.5306 0.5323 0.5355 0.5343 0.5366 0.5381 0.5376
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 0.5970 0.5939 0.5963 0.5990 0.5895 0.5987 0.5993 0.5979 0.5923 0.6082 0.6055 0.6023 0.6103 0.6148 0.6114
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

9 Statistic 0.5388 0.5429 0.5431 0.5379 0.5414 0.5379 0.5329 0.5357 0.5347 0.5344 0.5411 0.5395 0.5393 0.5410 0.5406
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 0.5555 0.5554 0.5594 0.5504 0.5538 0.5536 0.5496 0.5486 0.5547 0.5510 0.5524 0.5535 0.5488 0.5496 0.5480
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

11 Statistic 0.5376 0.5322 0.5327 0.5356 0.5307 0.5312 0.5337 0.5319 0.5308 0.5322 0.5324 0.5319 0.5353 0.5336 0.5346
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

12 Statistic 0.5322 0.5371 0.5324 0.5329 0.5316 0.5284 0.5342 0.5299 0.5278 0.5354 0.5357 0.5361 0.5367 0.5364 0.5350
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
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Table B.4.: One-sample Kolmogorov-Smirnov normality test for the performance data with different forecast qualities
and α values in each RES output. The simulated micro-grid has a population of 4, 000 households.

RES
Output

Test
Results

0.01 0.05 0.1 0.5 1.0
Forecast Quality Forecast Quality Forecast Quality Forecast Quality Forecast Quality

Low Medium High Low Medium High Low Medium High Low Medium High Low Medium High

1 Statistic 0.5349 0.5324 0.5343 0.5314 0.5286 0.5300 0.5288 0.5254 0.5278 0.5290 0.5265 0.5283 0.5288 0.5273 0.5307
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 0.5570 0.5511 0.5546 0.5484 0.5472 0.5475 0.5439 0.5431 0.5430 0.5439 0.5499 0.5487 0.5477 0.5517 0.5495
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 0.5619 0.5639 0.5587 0.5595 0.5608 0.5588 0.5591 0.5612 0.5618 0.5625 0.5644 0.5628 0.5656 0.5679 0.5655
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 Statistic 0.5751 0.5827 0.5797 0.5753 0.5780 0.5774 0.5781 0.5766 0.5762 0.5812 0.5832 0.5849 0.5866 0.5874 0.5870
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 Statistic 0.5351 0.5314 0.5294 0.5332 0.5256 0.5265 0.5309 0.5228 0.5219 0.5275 0.5296 0.5283 0.5301 0.5298 0.5313
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

6 Statistic 0.5775 0.5656 0.5755 0.5673 0.5599 0.5646 0.5685 0.5616 0.5639 0.5711 0.5727 0.5761 0.5751 0.5787 0.5781
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 0.5289 0.5299 0.5304 0.5245 0.5265 0.5245 0.5216 0.5235 0.5235 0.5270 0.5267 0.5290 0.5309 0.5304 0.5330
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 0.6021 0.6072 0.6085 0.6010 0.6036 0.6037 0.6061 0.6055 0.6056 0.6149 0.6143 0.6150 0.6180 0.6177 0.6177
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

9 Statistic 0.5393 0.5397 0.5381 0.5324 0.5347 0.5327 0.5300 0.5311 0.5287 0.5320 0.5377 0.5361 0.5381 0.5397 0.5376
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 0.5561 0.5575 0.5580 0.5540 0.5536 0.5566 0.5510 0.5526 0.5513 0.5516 0.5503 0.5536 0.5496 0.5503 0.5529
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

11 Statistic 0.5336 0.5282 0.5300 0.5307 0.5259 0.5260 0.5279 0.5261 0.5262 0.5300 0.5274 0.5293 0.5305 0.5284 0.5298
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

12 Statistic 0.5311 0.5320 0.5273 0.5264 0.5257 0.5245 0.5300 0.5240 0.5222 0.5298 0.5310 0.5310 0.5305 0.5326 0.5324
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
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Table B.5.: One-sample Kolmogorov-Smirnov normality test for the performance data with different forecast qualities
and α values in each RES output. The simulated micro-grid has a population of 40, 000 households.

RES
Output

Test
Results

0.01 0.05 0.1 0.5 1.0
Forecast Quality Forecast Quality Forecast Quality Forecast Quality Forecast Quality

Low Medium High Low Medium High Low High Low Medium High Low Medium High

1 Statistic 0.5352 0.5334 0.5349 0.5315 0.5289 0.5316 0.5280 0.5252 0.5276 0.5284 0.5276 0.5285 0.5296 0.5314 0.5301
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 0.5568 0.5524 0.5559 0.5496 0.5482 0.5475 0.5456 0.5445 0.5444 0.5459 0.5495 0.5511 0.5492 0.5533 0.5504
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 0.5614 0.5682 0.5603 0.5598 0.5637 0.5599 0.5631 0.5627 0.5633 0.5656 0.5660 0.5660 0.5658 0.5687 0.5678
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 Statistic 0.5778 0.5850 0.5818 0.5772 0.5800 0.5795 0.5798 0.5773 0.5792 0.5845 0.5858 0.5853 0.5894 0.5887 0.5890
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 Statistic 0.5368 0.5345 0.5306 0.5341 0.5253 0.5259 0.5310 0.5238 0.5241 0.5282 0.5295 0.5302 0.5310 0.5303 0.5327
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

6 Statistic 0.5789 0.5675 0.5766 0.5691 0.5629 0.5674 0.5715 0.5633 0.5658 0.5736 0.5761 0.5769 0.5770 0.5791 0.5787
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 0.5291 0.5314 0.5305 0.5246 0.5275 0.5265 0.5214 0.5247 0.5230 0.5274 0.5295 0.5302 0.5315 0.5312 0.5322
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 0.6044 0.6082 0.6098 0.6032 0.6054 0.6052 0.6062 0.6068 0.6082 0.6172 0.6172 0.6173 0.6207 0.6216 0.6207
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

9 Statistic 0.5399 0.5399 0.5389 0.5344 0.5367 0.5335 0.5306 0.5306 0.5294 0.5319 0.5385 0.5370 0.5372 0.5392 0.5381
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 0.5580 0.5598 0.5615 0.5543 0.5554 0.5582 0.5512 0.5542 0.5535 0.5526 0.5520 0.5541 0.5527 0.5529 0.5553
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

11 Statistic 0.5344 0.5314 0.5312 0.5321 0.5271 0.5275 0.5292 0.5274 0.5272 0.5307 0.5297 0.5297 0.5308 0.5300 0.5301
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

12 Statistic 0.5313 0.5334 0.5299 0.5283 0.5271 0.5237 0.5302 0.5247 0.5209 0.5312 0.5310 0.5311 0.5313 0.5340 0.5319
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
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population sizes for each RES output. Forecast categories are grouped in the samples.
NLC

RES Output Test Results 40 Households 400 Households 4, 000 Households 40, 000 Households RES Output Test Results 40 Households 400 Households 4, 000 Households 40, 000 Households RES Output Test Results 40 Households 400 Households 4, 000 Households 40, 000 Households

1 Statistic 0.5700 0.5464 0.5507 0.5540 2 Statistic 0.5856 0.5687 0.5759 0.5801 3 Statistic 0.5916 0.5797 0.5883 0.5923
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.6166 0.6348 0.6432 0.6465 5 Statistic 0.5672 0.5539 0.5626 0.5660 6 Statistic 0.6144 0.6220 0.6324 0.6344
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5799 0.5625 0.5711 0.5746 8 Statistic 0.6668 0.6809 0.6914 0.6940 9 Statistic 0.5779 0.5513 0.5502 0.5537
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5737 0.5605 0.5621 0.5645 11 Statistic 0.5730 0.5501 0.5546 0.5575 12 Statistic 0.5750 0.5643 0.5690 0.5733
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

CLP

RES Output Test Results 40 Households 400 Households 4, 000 Households 40, 000 Households RES Output Test Results 40 Households 400 Households 4, 000 Households 40, 000 Households RES Output Test Results 40 Households 400 Households 4, 000 Households 40, 000 Households

1 Statistic 0.5291 0.5095 0.5091 0.5095 2 Statistic 0.5313 0.5157 0.5221 0.5248 3 Statistic 0.5324 0.5274 0.5414 0.5466
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.5320 0.5212 0.5286 0.5304 5 Statistic 0.5259 0.5062 0.5060 0.5062 6 Statistic 0.5340 0.5366 0.5449 0.5490
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5279 0.5070 0.5066 0.5068 8 Statistic 0.5591 0.5723 0.5827 0.5862 9 Statistic 0.5271 0.5102 0.5100 0.5103
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5332 0.5220 0.5330 0.5358 11 Statistic 0.5291 0.5080 0.5080 0.5083 12 Statistic 0.5284 0.5066 0.5062 0.5062
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16
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Table B.7.: One-sample Kolmogorov-Smirnov normality test for the performance data of NLC and CLP under differ-
ent forecast categories. The micro-grid population size is 40.

NLC

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5732 0.5700 0.5767 2 Statistic 0.5865 0.5915 0.5856 3 Statistic 0.5949 0.5850 0.5978
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.6143 0.6266 0.6198 5 Statistic 0.5705 0.5714 0.5713 6 Statistic 0.6177 0.6200 0.6111
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5859 0.5833 0.5791 8 Statistic 0.6729 0.6601 0.6704 9 Statistic 0.5779 0.5838 0.5789
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5795 0.5770 0.5783 11 Statistic 0.5774 0.5763 0.5726 12 Statistic 0.5825 0.5708 0.5888
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

CLP

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5291 0.5294 0.5291 2 Statistic 0.5330 0.5313 0.5327 3 Statistic 0.5324 0.5336 0.5372
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.5353 0.5359 0.5313 5 Statistic 0.5313 0.5301 0.5259 6 Statistic 0.5346 0.5367 0.5340
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5297 0.5279 0.5290 8 Statistic 0.5591 0.5594 0.5592 9 Statistic 0.5289 0.5285 0.5271
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5370 0.5332 0.5347 11 Statistic 0.5339 0.5303 0.5291 12 Statistic 0.5303 0.5284 0.5295
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16
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Table B.8.: One-sample Kolmogorov-Smirnov normality test for the performance data of NLC and CLP under differ-
ent forecast categories. The micro-grid population size is 400.

NLC

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5502 0.5472 0.5464 2 Statistic 0.5687 0.5711 0.5755 3 Statistic 0.5826 0.5797 0.5861
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.6362 0.6348 0.6366 5 Statistic 0.5572 0.5512 0.5602 6 Statistic 0.6247 0.6220 0.6233
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5625 0.5653 0.5636 8 Statistic 0.6809 0.6818 0.6845 9 Statistic 0.5517 0.5513 0.5541
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5622 0.5627 0.5605 11 Statistic 0.5542 0.5501 0.5527 12 Statistic 0.5667 0.5643 0.5654
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

CLP

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5096 0.5097 0.5095 2 Statistic 0.5191 0.5157 0.5177 3 Statistic 0.5237 0.5364 0.5307
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.5212 0.5216 0.5220 5 Statistic 0.5185 0.5139 0.5062 6 Statistic 0.5434 0.5404 0.5366
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5075 0.5076 0.5070 8 Statistic 0.5761 0.5723 0.5725 9 Statistic 0.5121 0.5108 0.5102
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5220 0.5256 0.5220 11 Statistic 0.5230 0.5156 0.5080 12 Statistic 0.5237 0.5121 0.5066
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16
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Table B.9.: One-sample Kolmogorov-Smirnov normality test for the performance data of NLC and CLP under differ-
ent forecast categories. The micro-grid population size is 4, 000.

NLC

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5508 0.5509 0.5507 2 Statistic 0.5770 0.5759 0.5775 3 Statistic 0.5903 0.5883 0.5906
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.6432 0.6449 0.6439 5 Statistic 0.5642 0.5626 0.5646 6 Statistic 0.6326 0.6329 0.6324
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5712 0.5713 0.5711 8 Statistic 0.6919 0.6917 0.6914 9 Statistic 0.5525 0.5519 0.5502
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5626 0.5621 0.5625 11 Statistic 0.5546 0.5553 0.5552 12 Statistic 0.5705 0.5690 0.5711
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

CLP

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5091 0.5094 0.5111 2 Statistic 0.5247 0.5243 0.5221 3 Statistic 0.5438 0.5414 0.5444
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.5289 0.5297 0.5286 5 Statistic 0.5220 0.5139 0.5060 6 Statistic 0.5471 0.5477 0.5449
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5066 0.5070 0.5069 8 Statistic 0.5835 0.5838 0.5827 9 Statistic 0.5105 0.5100 0.5119
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5332 0.5330 0.5344 11 Statistic 0.5240 0.5148 0.5080 12 Statistic 0.5273 0.5113 0.5062
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16
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Table B.10.: One-sample Kolmogorov-Smirnov normality test for the performance data of NLC and CLP under differ-
ent forecast categories. The micro-grid population size is 40, 000.

NLC

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5545 0.5543 0.5540 2 Statistic 0.5804 0.5804 0.5801 3 Statistic 0.5924 0.5928 0.5923
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.6465 0.6469 0.6471 5 Statistic 0.5661 0.5663 0.5660 6 Statistic 0.6344 0.6352 0.6354
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5746 0.5749 0.5749 8 Statistic 0.6943 0.6940 0.6943 9 Statistic 0.5537 0.5539 0.5541
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5652 0.5650 0.5645 11 Statistic 0.5583 0.5575 0.5588 12 Statistic 0.5733 0.5736 0.5739
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

CLP

RES Output Test Results Low Medium High RES Output Test Results Low Medium High RES Output Test Results Low Medium High

1 Statistic 0.5095 0.5100 0.5118 2 Statistic 0.5252 0.5253 0.5248 3 Statistic 0.5470 0.5466 0.5472
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 0.5304 0.5314 0.5307 5 Statistic 0.5231 0.5143 0.5062 6 Statistic 0.5503 0.5501 0.5490
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5068 0.5076 0.5068 8 Statistic 0.5865 0.5862 0.5864 9 Statistic 0.5120 0.5103 0.5125
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 0.5360 0.5358 0.5370 11 Statistic 0.5248 0.5154 0.5083 12 Statistic 0.5283 0.5118 0.5062
p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16 p-value 2.2e− 16 2.2e− 16 2.2e− 16
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Table B.11.: One-sample Kolmogorov-Smirnov normality test for performance of SLC, NLC and CLP under different
load coverage and load flexibility. Population size is 4, 000 and forecasts are grouped in the samples.

SLC
RES
Output

Test
Results

50% Coverage 75% Coverage RES
Output

Test
Results

50% Coverage 75% Coverage
10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex.

1 Statistic 0.5207 0.5058 0.5041 0.5040 0.5527 0.5384 0.5259 0.5155 2 Statistic 0.5071 0.5039 0.5049 0.5057 0.5430 0.5317 0.5220 0.5171
p-value 1.9e− 13 1.1e− 12 1.4e− 12 1.4e− 12 3.4e− 15 2.2e− 14 1.0e− 13 3.6e− 13 p-value 9.7e− 13 1.4e− 12 8.5e− 12 7.9e− 12 1.2e− 14 5.1e− 14 1.7e− 13 3.0e− 13

3 Statistic 0.5504 0.5314 0.5166 0.5065 0.5895 0.5772 0.5670 0.5565 4 Statistic 0.5099 0.5017 0.5000 0.5001 0.5847 0.5717 0.5615 0.5506
p-value 4.7e− 15 5.2e− 14 3.2e− 13 1.0e− 12 2.2e− 16 2.2e− 16 5.6e− 16 2.1e− 15 p-value 7.0e− 13 1.8e− 12 2.2e− 12 2.2e− 12 2.2e− 16 2.2e− 16 1.1e− 15 4.6e− 15

5 Statistic 0.5000 0.5000 0.5000 0.5000 0.5209 0.5074 0.5003 0.5000 6 Statistic 0.5000 0.5004 0.5010 0.5017 0.5646 0.5542 0.5432 0.5321
p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 1.9e− 13 9.4e− 13 2.1e− 12 1.4e− 11 p-value 1.4e− 11 1.3e− 11 1.3e− 11 1.2e− 11 6.7e− 16 2.9e− 15 1.2e− 14 4.8e− 14

7 Statistic 0.5000 0.5000 0.5000 0.5000 0.5215 0.5069 0.5012 0.5010 8 Statistic 0.5562 0.5380 0.5221 0.5108 0.6364 0.6216 0.6057 0.5911
p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 1.8e− 13 9.9e− 13 1.9e− 12 2.0e− 12 p-value 2.2e− 15 2.3e− 14 1.6e− 13 6.3e− 13 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

9 Statistic 0.5025 0.5003 0.5011 0.5021 0.5350 0.5239 0.5131 0.5090 10 Statistic 0.5012 0.5020 0.5026 0.5033 0.5081 0.5076 0.5079 0.5081
p-value 1.6e− 12 2.1e− 12 1.2e− 11 1.7e− 12 3.3e− 14 1.3e− 13 4.8e− 13 7.8e− 13 p-value 1.2e− 11 1.1e− 11 1.1e− 11 1.0e− 11 8.6e− 13 9.1e− 13 8.8e− 13 8.6e− 13

11 Statistic 0.5183 0.5037 0.5002 0.5004 0.5521 0.5400 0.5288 0.5180 12 Statistic 0.5000 0.5001 0.5003 0.5005 0.5350 0.5167 0.5052 0.5028
p-value 2.6e− 13 1.4e− 12 2.1e− 12 2.1e− 12 3.8e− 15 1.8e− 14 7.2e− 14 2.7e− 13 p-value 1.4e− 11 2.2e− 12 1.3e− 11 1.3e− 11 3.3e− 14 3.1e− 13 1.2e− 12 1.6e− 12

CLP
RES
Output

Test
Results

50% Coverage 75% Coverage RES
Output

Test
Results

50% Coverage 75% Coverage
10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex.

1 Statistic 0.5141 0.5033 0.5037 0.5039 0.5499 0.5344 0.5196 0.5063 2 Statistic 0.5027 0.5038 0.5048 0.5057 0.5350 0.5188 0.5082 0.5081
p-value 4.3e− 13 1.5e− 12 9.6e− 12 9.4e− 12 5.0e− 15 3.6e− 14 2.2e− 13 1.1e− 12 p-value 1.6e− 12 9.5e− 12 1.3e− 12 7.8e− 12 3.3e− 14 2.4e− 13 8.5e− 13 6.2e− 12

3 Statistic 0.5442 0.5212 0.5035 0.5040 0.5847 0.5704 0.5568 0.5454 4 Statistic 0.5000 0.5000 0.5000 0.5001 0.5742 0.5544 0.5369 0.5198
p-value 1.0e− 14 1.8e− 13 1.5e− 12 1.4e− 12 2.2e− 16 3.3e− 16 2.0e− 15 8.9e− 15 p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 2.2e− 16 2.8e− 15 2.6e− 14 2.1e− 13

5 Statistic 0.5000 0.5000 0.5000 0.5000 0.5091 0.5004 0.5001 0.5000 6 Statistic 0.5000 0.5004 0.5010 0.5017 0.5529 0.5326 0.5186 0.5089
p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 7.7e− 13 2.1e− 12 2.2e− 12 1.4e− 11 p-value 1.4e− 11 1.3e− 11 1.3e− 11 1.2e− 11 3.3e− 15 4.5e− 14 2.5e− 13 7.9e− 13

7 Statistic 0.5000 0.5000 0.5000 0.5000 0.5088 0.5000 0.5003 0.5008 8 Statistic 0.5346 0.5006 0.5000 0.5000 0.6282 0.6060 0.5857 0.5677
p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 7.9e− 13 1.4e− 11 1.3e− 11 1.3e− 11 p-value 3.5e− 14 2.0e− 12 1.4e− 11 1.4e− 11 2.2e− 16 2.2e− 16 2.2e− 16 4.4e− 16

9 Statistic 0.5000 0.5004 0.5012 0.5021 0.5302 0.5153 0.5041 0.5044 10 Statistic 0.5012 0.5020 0.5026 0.5033 0.5046 0.5040 0.5045 0.5051
p-value 2.2e− 12 1.3e− 11 1.2e− 11 1.7e− 12 6.1e− 14 3.7e− 13 1.4e− 12 8.9e− 12 p-value 1.2e− 11 1.1e− 11 1.1e− 11 1.0e− 11 1.3e− 12 1.4e− 12 8.8e− 12 1.2e− 12

11 Statistic 0.5113 0.5000 0.5000 0.5003 0.5480 0.5330 0.5185 0.5065 12 Statistic 0.5000 0.5000 0.5003 0.5006 0.5235 0.5054 0.5020 0.5020
p-value 5.9e− 13 1.4e− 11 1.4e− 11 1.3e− 11 6.4e− 15 4.3e− 14 2.5e− 13 1.0e− 12 p-value 1.4e− 11 1.4e− 11 1.3e− 11 2.0e− 12 1.4e− 13 1.2e− 12 1.7e− 12 1.7e− 12

NLC
RES
Output

Test
Results

50% Coverage 75% Coverage RES
Output

Test
Results

50% Coverage 75% Coverage
10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex.

1 Statistic 0.5294 0.5205 0.5155 0.5115 0.5573 0.5476 0.5404 0.5335 2 Statistic 0.5125 0.5105 0.5136 0.5166 0.5485 0.5431 0.5394 0.5395
p-value 6.7e− 14 2.0e− 13 3.6e− 13 5.8e− 13 1.9e− 15 6.8e− 15 1.7e− 14 4.0e− 14 p-value 5.1e− 13 6.5e− 13 4.5e− 13 3.2e− 13 6.0e− 15 1.2e− 14 1.9e− 14 1.9e− 14

3 Statistic 0.5537 0.5391 0.5270 0.5174 0.5931 0.5852 0.5782 0.5730 4 Statistic 0.5235 0.5240 0.5246 0.5245 0.5997 0.5984 0.5978 0.5975
p-value 3.0e− 15 2.0e− 14 9.0e− 14 2.9e− 13 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 p-value 1.4e− 13 1.3e− 13 1.2e− 13 1.2e− 13 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

5 Statistic 0.5000 0.5000 0.5000 0.5000 0.5294 0.5219 0.5178 0.5154 6 Statistic 0.5017 0.5024 0.5031 0.5043 0.5746 0.5752 0.5763 0.5753
p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 6.7e− 14 1.7e− 13 2.7e− 13 3.6e− 13 p-value 1.8e− 12 1.7e− 12 1.5e− 12 1.3e− 12 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 0.5000 0.5000 0.5000 0.5000 0.5315 0.5227 0.5175 0.5183 8 Statistic 0.5758 0.5757 0.5748 0.5735 0.6511 0.6500 0.6494 0.6482
p-value 1.4e− 11 1.4e− 11 1.4e− 11 1.4e− 11 5.2e− 14 1.5e− 13 2.8e− 13 2.6e− 13 p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

9 Statistic 0.5063 0.5023 0.5026 0.5051 0.5385 0.5312 0.5240 0.5216 10 Statistic 0.5017 0.5042 0.5070 0.5103 0.5131 0.5148 0.5183 0.5221
p-value 1.1e− 12 1.7e− 12 1.6e− 12 1.2e− 12 2.1e− 14 5.4e− 14 1.3e− 13 1.7e− 13 p-value 1.2e− 11 9.1e− 12 9.8e− 13 6.7e− 13 4.8e− 13 3.9e− 13 2.6e− 13 1.6e− 13

11 Statistic 0.5225 0.5076 0.5014 0.5015 0.5545 0.5441 0.5344 0.5264 12 Statistic 0.5012 0.5005 0.5009 0.5013 0.5453 0.5364 0.5300 0.5272
p-value 1.6e− 13 9.1e− 13 1.9e− 12 1.8e− 12 2.8e− 15 1.1e− 14 3.6e− 14 9.6e− 14 p-value 1.9e− 12 2.1e− 12 2.0e− 12 1.9e− 12 9.0e− 15 2.8e− 14 6.3e− 14 8.8e− 14
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Table B.12.: One-sample Kolmogorov-Smirnov normality test for the performance data of SLC-FK with different pop-
ulation sizes and different α values for each RES output.

RES
Output

Test
Results

40 400 4.000 40.000

α α α α

1.0 0.5 0.1 0.05 0.01 0.0 1.0 0.5 0.1 0.05 0.01 0.0 1.0 0.5 0.1 0.05 0.01 0.0 1.0 0.5 0.1 0.05 0.01 0.0

1
Statistic 0.5574 0.5580 0.5541 0.5524 0.5545 0.5602 0.5212 0.5188 0.5178 0.5179 0.5171 0.5334 0.5102 0.5084 0.5066 0.5065 0.5060 0.5334 0.5100 0.5045 0.5029 0.5027 0.5025 0.5363

p-value 0.0009 0.0009 0.0010 0.0011 0.0010 0.0009 0.0024 0.0025 0.0026 0.0026 0.0026 0.0017 0.0031 0.0032 0.0033 0.0033 0.0034 0.0017 0.0031 0.0035 0.0036 0.0037 0.0037 0.0016

2
Statistic 0.5702 0.5689 0.5619 0.5605 0.5581 0.5614 0.5382 0.5339 0.5327 0.5306 0.5242 0.5494 0.5354 0.5325 0.5286 0.5294 0.5277 0.5537 0.5346 0.5324 0.5308 0.5298 0.5299 0.5559

p-value 0.0007 0.0007 0.0008 0.0009 0.0009 0.0008 0.0015 0.0017 0.0018 0.0019 0.0022 0.0012 0.0017 0.0018 0.0020 0.0019 0.0020 0.0010 0.0017 0.0018 0.0019 0.0019 0.0019 0.0010

3
Statistic 0.5800 0.5704 0.5761 0.5646 0.5661 0.5720 0.5552 0.5561 0.5573 0.5494 0.5533 0.5655 0.5602 0.5587 0.5556 0.5562 0.5573 0.5738 0.5644 0.5609 0.5596 0.5591 0.5593 0.5778

p-value 0.0005 0.0007 0.0006 0.0008 0.0007 0.0006 0.0010 0.0010 0.0009 0.0012 0.0010 0.0008 0.0009 0.0009 0.0010 0.0010 0.0009 0.0006 0.0008 0.0009 0.0009 0.0009 0.0009 0.0005

4
Statistic 0.5801 0.5726 0.5532 0.5742 0.5591 0.5689 0.5621 0.5553 0.5473 0.5510 0.5491 0.5654 0.5600 0.5593 0.5530 0.5506 0.5535 0.5808 0.5622 0.5590 0.5568 0.5555 0.5564 0.5833

p-value 0.0005 0.0006 0.0010 0.0006 0.0009 0.0007 0.0008 0.0010 0.0012 0.0011 0.0012 0.0008 0.0009 0.0009 0.0011 0.0011 0.0010 0.0005 0.0008 0.0009 0.0010 0.0010 0.0010 0.0005

5
Statistic 0.5609 0.5598 0.5551 0.5545 0.5561 0.5592 0.5242 0.5212 0.5191 0.5183 0.5173 0.5278 0.5094 0.5081 0.5070 0.5065 0.5066 0.5313 0.5058 0.5044 0.5033 0.5031 0.5029 0.5350

p-value 0.0009 0.0009 0.0010 0.0010 0.0010 0.0009 0.0022 0.0024 0.0025 0.0025 0.0026 0.0020 0.0031 0.0032 0.0033 0.0033 0.0033 0.0018 0.0034 0.0035 0.0036 0.0036 0.0036 0.0017

6
Statistic 0.5738 0.5711 0.5590 0.5716 0.5648 0.5653 0.5697 0.5580 0.5564 0.5568 0.5565 0.5645 0.5728 0.5676 0.5650 0.5623 0.5629 0.5776 0.5734 0.5706 0.5645 0.5644 0.5644 0.5806

p-value 0.0006 0.0006 0.0009 0.0006 0.0008 0.0008 0.0007 0.0009 0.0010 0.0010 0.0010 0.0008 0.0006 0.0007 0.0008 0.0008 0.0008 0.0005 0.0006 0.0007 0.0008 0.0008 0.0008 0.0005

7
Statistic 0.5617 0.5568 0.5536 0.5557 0.5550 0.5565 0.5225 0.5199 0.5196 0.5192 0.5191 0.5292 0.5120 0.5095 0.5082 0.5079 0.5071 0.5278 0.5083 0.5070 0.5049 0.5042 0.5036 0.5320

p-value 0.0008 0.0010 0.0010 0.0010 0.0010 0.0010 0.0023 0.0024 0.0024 0.0025 0.0025 0.0019 0.0029 0.0031 0.0032 0.0032 0.0033 0.0020 0.0032 0.0033 0.0035 0.0035 0.0036 0.0018

8
Statistic 0.6082 0.6126 0.5681 0.5866 0.5985 0.5799 0.6070 0.6064 0.5991 0.5948 0.6002 0.5942 0.6092 0.6106 0.6057 0.6065 0.6040 0.6073 0.6132 0.6105 0.6087 0.6080 0.6070 0.6096

p-value 0.0002 0.0002 0.0007 0.0004 0.0003 0.0005 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

9
Statistic 0.5583 0.5580 0.5540 0.5544 0.5534 0.5669 0.5251 0.5257 0.5213 0.5205 0.5176 0.5387 0.5185 0.5159 0.5118 0.5102 0.5100 0.5384 0.5147 0.5128 0.5093 0.5098 0.5090 0.5409

p-value 0.0009 0.0009 0.0010 0.0010 0.0010 0.0007 0.0021 0.0021 0.0023 0.0024 0.0026 0.0015 0.0025 0.0027 0.0029 0.0031 0.0031 0.0015 0.0028 0.0029 0.0031 0.0031 0.0032 0.0014

10
Statistic 0.5636 0.5685 0.5587 0.5624 0.5572 0.5654 0.5472 0.5505 0.5424 0.5336 0.5393 0.5510 0.5506 0.5478 0.5395 0.5424 0.5400 0.5569 0.5514 0.5501 0.5469 0.5454 0.5426 0.5592

p-value 0.0008 0.0007 0.0009 0.0008 0.0009 0.0008 0.0012 0.0011 0.0014 0.0017 0.0015 0.0011 0.0011 0.0012 0.0015 0.0014 0.0015 0.0010 0.0011 0.0011 0.0012 0.0013 0.0014 0.0009

11
Statistic 0.5576 0.5536 0.5550 0.5534 0.5530 0.5590 0.5238 0.5216 0.5199 0.5195 0.5176 0.5255 0.5176 0.5171 0.5111 0.5115 0.5096 0.5290 0.5192 0.5175 0.5133 0.5123 0.5089 0.5321

p-value 0.0009 0.0010 0.0010 0.0010 0.0011 0.0009 0.0022 0.0023 0.0024 0.0025 0.0026 0.0021 0.0026 0.0026 0.0030 0.0030 0.0031 0.0019 0.0025 0.0026 0.0029 0.0029 0.0032 0.0018

12
Statistic 0.5607 0.5569 0.5537 0.5533 0.5535 0.5583 0.5203 0.5183 0.5171 0.5168 0.5165 0.5259 0.5076 0.5067 0.5060 0.5054 0.5056 0.5254 0.5031 0.5025 0.5023 0.5023 0.5021 0.5292

p-value 0.0009 0.0010 0.0010 0.0010 0.0010 0.0009 0.0024 0.0025 0.0026 0.0026 0.0026 0.0021 0.0033 0.0033 0.0034 0.0034 0.0034 0.0021 0.0036 0.0037 0.0037 0.0037 0.0037 0.0019
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Table B.13.: One-sample Kolmogorov-Smirnov normality test for the perfor-
mance of SLC-FKd and CLP-FK data with different population
sizes and each RES output.

RES
Output

Test
Results

SLC-FKd CLP-FK

40 400 4,000 40,000 40 400 4,000 40,000

1
Statistic 5.5e− 01 5.2e− 01 5.1e− 01 5.0e− 01 5.4e− 01 5.1e− 01 5.0e− 01 5.0e− 01

p-value 1.1e− 03 2.6e− 03 3.4e− 03 3.7e− 03 3.0e− 03 5.7e− 03 6.4e− 03 6.5e− 03

2
Statistic 5.6e− 01 5.3e− 01 5.3e− 01 5.3e− 01 5.3e− 01 5.2e− 01 5.2e− 01 5.2e− 01

p-value 9.7e− 04 1.9e− 03 1.9e− 03 1.9e− 03 3.6e− 03 4.8e− 03 4.4e− 03 4.3e− 03

3
Statistic 5.6e− 01 5.5e− 01 5.6e− 01 5.6e− 01 5.8e− 01 5.6e− 01 5.5e− 01 5.5e− 01

p-value 7.8e− 04 1.1e− 03 9.9e− 04 9.0e− 04 1.2e− 03 1.8e− 03 2.3e− 03 2.4e− 03

4
Statistic 5.6e− 01 5.5e− 01 5.6e− 01 5.6e− 01 5.6e− 01 5.3e− 01 5.3e− 01 5.3e− 01

p-value 8.2e− 04 1.1e− 03 9.2e− 04 8.7e− 04 1.7e− 03 3.5e− 03 3.4e− 03 3.7e− 03

5
Statistic 5.5e− 01 5.2e− 01 5.1e− 01 5.0e− 01 5.3e− 01 5.0e− 01 5.0e− 01 5.0e− 01

p-value 1.0e− 03 2.6e− 03 3.3e− 03 3.6e− 03 3.3e− 03 6.2e− 03 6.5e− 03 6.5e− 03

6
Statistic 5.6e− 01 5.6e− 01 5.7e− 01 5.7e− 01 5.5e− 01 5.5e− 01 5.5e− 01 5.5e− 01

p-value 8.6e− 04 8.4e− 04 7.1e− 04 6.6e− 04 2.4e− 03 2.5e− 03 2.3e− 03 2.4e− 03

7
Statistic 5.5e− 01 5.2e− 01 5.1e− 01 5.0e− 01 5.3e− 01 5.0e− 01 5.0e− 01 5.0e− 01

p-value 1.0e− 03 2.6e− 03 3.3e− 03 3.6e− 03 3.5e− 03 6.3e− 03 6.4e− 03 6.4e− 03

8
Statistic 5.9e− 01 6.0e− 01 6.1e− 01 6.1e− 01 5.9e− 01 5.9e− 01 5.9e− 01 5.9e− 01

p-value 3.5e− 04 2.5e− 04 2.2e− 04 2.1e− 04 9.2e− 04 1.1e− 03 9.6e− 04 1.0e− 03

9
Statistic 5.6e− 01 5.2e− 01 5.1e− 01 5.1e− 01 5.3e− 01 5.0e− 01 5.0e− 01 5.1e− 01

p-value 9.9e− 04 2.4e− 03 3.2e− 03 3.1e− 03 3.7e− 03 6.2e− 03 6.2e− 03 6.0e− 03

10
Statistic 5.6e− 01 5.4e− 01 5.4e− 01 5.4e− 01 5.3e− 01 5.2e− 01 5.3e− 01 5.4e− 01

p-value 9.5e− 04 1.5e− 03 1.5e− 03 1.4e− 03 3.8e− 03 4.1e− 03 3.4e− 03 3.3e− 03

11
Statistic 5.5e− 01 5.2e− 01 5.1e− 01 5.1e− 01 5.3e− 01 5.0e− 01 5.0e− 01 5.1e− 01

p-value 1.0e− 03 2.4e− 03 3.2e− 03 3.0e− 03 2.0e− 03 3.6e− 03 3.5e− 03 3.3e− 03

12
Statistic 5.5e− 01 5.2e− 01 5.1e− 01 5.0e− 01 5.2e− 01 5.0e− 01 5.0e− 01 5.0e− 01

p-value 1.1e− 03 2.6e− 03 3.4e− 03 3.7e− 03 2.2e− 03 3.7e− 03 3.8e− 03 6.6e− 03
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Table C.1.: Kruskal-Wallis rank sum test for assessing if samples in Table B.1,
grouped by the same α while varying the population size, come
from identical populations.

RES α Configuration
Output 1.0 0.5 0.1 0.05 0.01

1 Statistic 935.1894 955.3973 925.2571 897.6334 851.8727
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

2 Statistic 790.7671 810.3262 769.6548 751.9770 754.2401
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

3 Statistic 740.6308 781.4195 763.3839 723.7414 683.3480
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 559.6602 553.9343 563.2296 512.4050 418.8540
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

5 Statistic 814.8346 852.1352 899.6874 859.5869 817.3561
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

6 Statistic 691.6809 709.7994 689.9401 643.3267 629.2582
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 893.5490 915.1562 920.4020 860.0012 791.8198
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

8 Statistic 546.4297 524.5367 380.4086 384.7694 265.1728
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

9 Statistic 898.6162 899.2813 930.3618 917.3063 874.9671
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 685.9563 709.0608 770.3421 761.4560 752.5864
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

11 Statistic 895.3614 948.4177 947.6549 914.8305 839.8583
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

12 Statistic 899.1447 923.5793 864.1878 874.3262 837.2353
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16
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Table C.2.: Kruskal-Wallis rank sum test for assessing if samples in Table B.2,
grouped by the same RES output and α configuration while varying
the forecast quality for a population of 40 households, come from
identical populations.

RES α Configuration
Output 0.01 0.05 0.1 0.5 1.0

1 Statistic 1.885087 1.566235 7.630190 4.131168 0.781589
p-value 0.389636 0.456979 0.022036 0.126744 0.676519

2 Statistic 1.042655 2.685643 1.770581 0.471806 1.091777
p-value 0.593732 0.261108 0.412594 0.789857 0.579327

3 Statistic 0.410185 5.164585 3.377321 1.651849 1.694674
p-value 0.814572 0.075601 0.184767 0.437830 0.428555

4 Statistic 0.002889 5.479689 1.710748 6.805358 1.266793
p-value 0.998557 0.064580 0.425124 0.033284 0.530786

5 Statistic 1.127864 1.724268 6.064021 6.723072 5.167912
p-value 0.568967 0.422260 0.048219 0.034682 0.075475

6 Statistic 13.293148 11.820409 10.183274 0.664348 0.404308
p-value 0.001298 0.002712 0.006148 0.717362 0.816969

7 Statistic 1.745581 7.508032 3.102530 2.616672 1.042336
p-value 0.417784 0.023423 0.211980 0.270269 0.593826

8 Statistic 6.020667 2.991085714 1.361860465 3.284845183 7.76535814
p-value 0.049275 0.224127 0.506146 0.193511 0.020596

9 Statistic 0.654827907 3.140356146 5.821238538 0.32127309 3.024927575
p-value 0.720785 0.208008 0.054442 0.851602 0.220366

10 Statistic 0.784233887 1.352986047 2.155776744 0.13067907 6.67704186
p-value 0.675625 0.508397 0.340313 0.936749 0.035489

11 Statistic 0.407250498 3.079314286 7.692233887 2.051596013 0.289626578
p-value 0.815768 0.214455 0.021363 0.358510 0.865184

12 Statistic 6.436967442 4.61494485 5.379795349 11.80435083 8.164369435
p-value 0.040016 0.099512 0.067888 0.002733 0.016871
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Table C.3.: Kruskal-Wallis rank sum test for assessing if samples in Table B.3,
grouped by the same RES output and α configuration while varying
the forecast quality for a population of 400 households, come from
identical populations.

RES α Configuration
Output 0.01 0.05 0.1 0.5 1.0

1 Statistic 1.386666 1.837629 2.488242 3.394559 2.762921
p-value 0.499907 0.398992 0.288194 0.183181 0.251211

2 Statistic 10.167293 3.857831 0.713023 4.208510 3.317414
p-value 0.006197 0.145306 0.700114 0.121936 0.190385

3 Statistic 15.468872 15.778533 15.756441 11.662902 9.480343
p-value 0.000437 0.000375 0.000379 0.002934 0.008737

4 Statistic 4.717850 0.011421 18.625191 0.510381 0.459437
p-value 0.094522 0.994306 0.000090 0.774769 0.794757

5 Statistic 27.755437 48.051288 51.453140 6.993531 0.855423
p-value 9.40e− 07 3.68e− 11 6.72e− 12 0.030295 0.651999

6 Statistic 52.881903 90.775912 56.086296 2.115750 3.400165
p-value 3.29e− 12 < 2e− 16 6.62e− 13 0.347193 0.182668

7 Statistic 10.110692 8.289850 7.505959 2.037060 3.075926
p-value 0.006375 0.015845 0.023448 0.361125 0.214818

8 Statistic 6.237132 5.930092 4.280061 2.880800 2.592330
p-value 0.044221 0.051558 0.117651 0.236833 0.273579

9 Statistic 20.753337 23.412975 15.656821 1.470509 9.206610
p-value 0.000031 0.000008 0.000398 0.479383 0.010019

10 Statistic 0.289013 18.092627 20.313507 13.732728 5.693504
p-value 0.865449 0.000118 0.000039 0.001042 0.058032

11 Statistic 37.111131 53.042793 41.911232 24.917175 39.658039
p-value 8.74e− 09 3.03e− 12 7.93e− 10 0.000004 2.45e− 09

12 Statistic 95.472003 80.288946 122.424454 24.645021 16.958586
p-value < 2e− 16 < 2e− 16 < 2e− 16 0.000004 0.000208
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Table C.4.: Kruskal-Wallis rank sum test for assessing if samples in Table B.4,
grouped by the same RES output and α configuration while varying
the forecast quality for a population of 4, 000 households, come from
identical populations.

RES α Configuration
Output 0.01 0.05 0.1 0.5 1.0

1 Statistic 0.9728 2.0564 15.0134 1.041 1.8604
p-value 0.6148 0.3577 0.0005494 0.5942 0.3945

2 Statistic 0.7871 3.4324 1.4177 17.0506 49.695
p-value 0.6746 0.1797 0.4922 0.0001984 1.618e− 11

3 Statistic 31.0601 21.7374 33.1259 17.8849 13.2108
p-value 1.8e− 07 1.905e− 05 6.409e− 08 0.0001307 0.001353

4 Statistic 5.9893 1.7211 39.3153 4.2508 2.0302
p-value 0.05005 0.4229 2.903e− 09 0.1194 0.3624

5 Statistic 75.7728 78.484 124.3926 45.2619 6.2125
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 1.484e− 10 0.04477

6 Statistic 105.7729 136.8052 144.5957 19.8117 15.0638
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 4.988e− 05 0.0005357

7 Statistic 17.1013 17.3218 22.9691 4.4025 2.135
p-value 0.0001934 0.0001732 1.029e− 05 0.1107 0.3439

8 Statistic 12.4125 8.2879 4.08 5.8071 8.762
p-value 0.002017 0.01586 0.13 0.05483 0.01251

9 Statistic 31.5509 31.207 29.6326 8.9117 12.3577
p-value 1.409e− 07 1.673e− 07 3.676e− 07 0.01161 0.002073

10 Statistic 21.3784 32.0625 33.5574 19.4081 22.072
p-value 2.279e− 05 1.091e− 07 5.165e− 08 6.104e− 05 1.611e− 05

11 Statistic 73.2987 95.8921 127.3367 65.5977 72.242
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 5.697e− 15 < 2.2e− 16

12 Statistic 146.1938 132.9511 205.7396 35.0108 35.5964
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 2.497e− 08 1.864e− 08
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Table C.5.: Kruskal-Wallis rank sum test for assessing if samples in Table B.5,
grouped by the same RES output and α configuration while vary-
ing the forecast quality for a population of 40, 000 households, come
from identical populations.

RES α Configuration
Output 0.01 0.05 0.1 0.5 1.0

1 Statistic 1.005483 5.120391 18.382328 4.066262 5.047665
p-value 0.604870 0.077290 0.000102 0.130925 0.080152

2 Statistic 0.183950 4.914849 1.030177 19.796447 37.575200
p-value 0.912128 0.085655 0.597448 0.000050 6.93e− 09

3 Statistic 32.453265 23.493643 44.540056 40.889337 42.545560
p-value 8.97e− 08 0.000008 2.13e− 10 1.32e− 09 5.77e− 10

4 Statistic 5.815274 1.267320 42.861786 2.553324 4.444516
p-value 0.054605 0.530646 4.93e− 10 0.278967 0.108364

5 Statistic 82.802435 85.494549 126.772165 60.675710 7.187211
p-value < 2e− 16 < 2e− 16 < 2e− 16 6.67e− 14 0.027499

6 Statistic 128.575312 140.487758 161.302400 40.766307 27.756393
p-value < 2e− 16 < 2e− 16 < 2e− 16 1.41e− 09 0.000001

7 Statistic 14.293611 24.298214 23.354682 4.284872 0.393507
p-value 0.000787 0.000005 0.000008 0.117369 0.821393

8 Statistic 13.601592 8.442780 9.923378 17.541706 19.555745
p-value 0.001113 0.014678 0.007001 0.000155 0.000057

9 Statistic 46.086517 42.923979 26.649217 10.679609 20.605845
p-value 9.83e− 11 4.78e− 10 0.000002 0.004797 0.000034

10 Statistic 38.299952 46.339902 36.984417 21.610440 23.302496
p-value 4.82e− 09 8.66e− 11 9.31e− 09 0.000020 0.000009

11 Statistic 92.492726 133.500457 146.264316 89.062836 71.692659
p-value < 2e− 16 < 2e− 16 < 2e− 16 < 2e− 16 < 2e− 16

12 Statistic 155.637935 147.775965 221.118753 31.946809 37.297467
p-value < 2e− 16 < 2e− 16 9.65e− 49 1.16e− 07 7.96e− 09

200



C.1. Kruskal-Wallis Analysis for Real-Time Optimization

Table C.6.: Kruskal-Wallis rank sum test for assessing if samples in Table B.2,
grouped by α configurations and RES output for different forecast
qualities, come from identical populations. Micro-grid population
size: 40 households.

RES Forecast Quality
Output Low Medium High

1 Statistic 28.04951952 28.40675353 27.99582946
p-value 1.22e− 05 1.03e− 05 1.25e− 05

2 Statistic 31.66044263 21.0744412 34.98752862
p-value 2.24e− 06 0.0003061 4.67e− 07

3 Statistic 37.93020838 18.7981279 17.79447952
p-value 1.16e− 07 0.0008611 0.0013536

4 Statistic 25.69254707 30.38378443 37.03769006
p-value 3.65e− 05 4.09e− 06 1.77e− 07

5 Statistic 6.583187545 17.00833246 22.07931018
p-value 0.1596238 0.0019258 0.0001933

6 Statistic 10.64787641 36.90940838 59.80865341
p-value 0.0308199 1.88e− 07 3.18e− 12

7 Statistic 28.12919856 15.39207377 13.48365892
p-value 1.17e− 05 0.0039534 0.0091391

8 Statistic 93.40832575 40.81583521 42.04625341
p-value 2.48e− 19 2.93e− 08 1.63e− 08

9 Statistic 26.10165365 30.46001437 41.2776709
p-value 3.02e− 05 3.94e− 06 2.35e− 08

10 Statistic 35.19092503 12.24314347 24.42725844
p-value 4.24e− 07 0.0156319 6.56e− 05

11 Statistic 17.08352862 18.01195305 12.18474826
p-value 0.0018620 0.0012275 0.0160290

12 Statistic 10.35679042 12.24825677 8.417883593
p-value 0.0348279 0.0155976 0.0774157
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Table C.7.: Kruskal-Wallis rank sum test for assessing if samples in Table B.3,
grouped by α configurations and RES output for different forecast
qualities, come from identical populations. Micro-grid population
size: 400 households.

RES Forecast Quality
Output Low Medium High

1 Statistic 109.092858 132.025485 89.051755
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 183.301577 92.247336 143.518300
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 69.669246 92.832261 85.974163
p-value 2.67e− 14 < 2.2e− 16 < 2.2e− 16

4 Statistic 48.473534 136.698949 54.735797
p-value 7.52e− 10 < 2.2e− 16 3.69e− 11

5 Statistic 66.980549 92.436812 139.415196
p-value 9.84e− 14 < 2.2e− 16 < 2.2e− 16

6 Statistic 80.531887 177.513842 191.706393
p-value 1.34e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 86.855577 77.972632 134.467438
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 149.920043 92.102773 60.787279
p-value < 2.2e− 16 < 2.2e− 16 1.98e− 12

9 Statistic 126.681806 124.490970 118.064735
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 62.043665 52.051042 20.512554
p-value 1.08e− 12 1.35e− 10 3.96e− 04

11 Statistic 63.765166 77.403824 63.761771
p-value 4.68e− 13 < 2.2e− 16 4.69e− 13

12 Statistic 47.350738 123.092493 204.833192
p-value 1.29e− 09 < 2.2e− 16 < 2.2e− 16

202



C.1. Kruskal-Wallis Analysis for Real-Time Optimization

Table C.8.: Kruskal-Wallis rank sum test for assessing if samples in Table B.4,
grouped by α configurations and RES output for different forecast
qualities, come from identical populations. Micro-grid population
size: 4, 000 households.

RES Forecast Quality
Output Low Medium High

1 Statistic 210.6034 190.9293 153.8189
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 265.6218 176.2064 164.4733
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 168.8529 225.3962 133.
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 Statistic 134.2839 254.375 113.4353
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 Statistic 200.4815 187.3983 272.3094
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

6 Statistic 169.7178 295.2094 360.3229
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 139.7026 113.889 241.2115
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 217.4953 170.7335 117.3857
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

9 Statistic 292.807 233.3089 184.9128
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 99.6933 80.9729 116.3309
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

11 Statistic 107.9386 175.6177 203.1686
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

12 Statistic 68.1969 266.5106 360.7499
p-value 5.451e− 14 < 2.2e− 16 < 2.2e− 16
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Table C.9.: Kruskal-Wallis rank sum test for assessing if samples in Table B.5,
grouped by α configurations and RES output for different forecast
qualities, come from identical populations. Micro-grid population
size: 40, 000 households.

RES Forecast Quality
Output Low Medium High

1 Statistic 217.966878 216.269430 156.573070
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

2 Statistic 287.407746 192.100155 178.052136
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

3 Statistic 168.711277 299.585798 134.122640
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

4 Statistic 131.598347 294.595334 119.836995
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

5 Statistic 217.510262 199.777634 283.071082
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

6 Statistic 200.328398 308.455687 375.452224
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

7 Statistic 151.798022 111.029423 242.949032
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

8 Statistic 233.111137 195.606604 129.633576
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

9 Statistic 312.023154 260.752396 207.411406
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

10 Statistic 99.633844 105.054253 136.036343
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

11 Statistic 130.408263 230.607395 283.352811
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

12 Statistic 75.123364 319.284734 381.590803
p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
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Table C.10.: Kruskal-Wallis rank sum test for assessing if the data of the per-
formances from SLC, CLP and NLC, grouped by population size,
come from identical populations.

RES Output Test Results 40 400 4.000 40.000

1 Statistic 673.5509721 767.8294199 708.8902677 699.8090585
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

2 Statistic 739.8598477 759.6944948 714.8964636 707.5766912
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

3 Statistic 671.5869071 789.1052016 799.1120977 799.1120977
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 792.0087738 799.1120977 799.1120977 799.1120977
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

5 Statistic 727.6129765 764.9939689 662.2981052 651.0159619
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

6 Statistic 767.8424589 794.3111048 798.9700586 799.1120977
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 755.9084115 747.8621385 669.4700278 664.115489
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

8 Statistic 752.773432 796.8102207 799.1120977 799.1120977
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

9 Statistic 694.886044 769.0947205 730.595494 723.3780423
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 592.2065351 579.4483028 637.9655353 665.0343536
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

11 Statistic 698.1512797 681.5959307 638.974013 638.4014233
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

12 Statistic 746.3189567 725.3800504 648.0169487 636.8825829
p-value 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16
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Table C.11.: Kruskal-Wallis rank sum test for assessing if the data of the per-
formances from SLC, CLP and NLC, grouped by forecast category
with population size of 4, 000, come from identical populations.

RES Output Test Results Low Medium High

1 Statistic 221.3804651 229.3947349 261.3906286
p-value 2.2e− 16 2.2e− 16 2.2e− 16

2 Statistic 264.9329542 240.6870645 220.4864877
p-value 2.2e− 16 2.2e− 16 2.2e− 16

3 Statistic 265.7807309 265.7807309 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16

4 Statistic 265.7807309 265.7807309 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16

5 Statistic 200.5501023 233.7042286 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16

6 Statistic 265.7807309 265.7807309 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16

7 Statistic 236.9305542 212.0361355 224.4177648
p-value 2.2e− 16 2.2e− 16 2.2e− 16

8 Statistic 265.7807309 265.7807309 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16

9 Statistic 241.4151256 263.0453581 225.9762286
p-value 2.2e− 16 2.2e− 16 2.2e− 16

10 Statistic 176.4936797 247.8954764 227.165297
p-value 2.2e− 16 2.2e− 16 2.2e− 16

11 Statistic 204.5353116 244.4721355 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16

12 Statistic 201.9299508 263.2276651 265.7807309
p-value 2.2e− 16 2.2e− 16 2.2e− 16
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Table C.12.: Kruskal-Wallis rank sum test for assessing if the data of the performances from SLC, CLP and NLC,
grouped by different levels of micro-grid load coverage and load flexibility with population size of 4, 000,
come from identical populations.

RES
Output

Test
Results

25% Coverage 50% Coverage 75% Coverage
10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex. 10% Flex. 20% Flex. 30% Flex. 40% Flex.

1 Statistic − − 0.416 0.216 399.113 398.900 394.105 366.099 399.078 399.113 399.113 398.4932052
p-value − − 8e− 01 9e− 01 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

2 Statistic − − − 209.020 375.890 342.401 301.481 299.983 397.242 391.222 390.430 397.0242566
p-value − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

3 Statistic − − − − 394.745 397.611 395.545 397.432 399.113 399.113 399.113 399.1131083
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

4 Statistic − − − − 401.454 407.642 400.122 353.169 399.113 399.113 399.113 399.113082
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

5 Statistic − − − − 374.414 − − − 399.113 399.301 341.638 333.2009044
p-value − − − − 2e− 16 − − − 2e− 16 2e− 16 2e− 16 2.2e− 16

6 Statistic − − − − 383.713 425.369 425.369 425.369 399.113 399.113 399.113 399.113082
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

7 Statistic − − − − 10.666 6.027 − − 399.113 398.523 391.958 348.4190441
p-value − − − − 5e− 03 5e− 02 − − 2e− 16 2e− 16 2e− 16 2.2e− 16

8 Statistic − − − − 399.113 399.113 406.632 413.835 399.113 399.113 399.113 399.113082
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

9 Statistic − − − − 378.707 317.545 299.652 299.346 398.670 399.024 399.024 398.7056481
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

10 Statistic − − − − 425.370 425.369 425.369 402.743 383.836 399.113 394.451 377.9043441
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

11 Statistic − − − − 383.608 372.670 296.134 302.605 384.917 386.767 381.711 376.8318636
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16

12 Statistic − − − − 299.063 300.673 299.657 299.413 399.113 393.449 365.947 356.7917363
p-value − − − − 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2e− 16 2.2e− 16
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C.2. Kruskal-Wallis Analysis for Static
Optimization

Table C.13.: Kruskal-Wallis rank sum test for assessing if samples in Table B.13,
grouped by the same α while varying the population size, come
from identical populations.

RES Output Test Results 1.0 0.5 0.1 0.05 0.01 0.0

1 Statistic 33.0732 36.5854 36.5854 36.5854 36.5854 28.3010
p-value 3.1e− 07 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 3.1e− 06

2 Statistic 32.6649 30.0746 32.4922 29.5566 28.4620 26.3766
p-value 3.8e− 07 1.3e− 06 4.1e− 07 1.7e− 06 2.9e− 06 8.0e− 06

3 Statistic 26.9868 21.8751 24.9907 22.2366 23.5376 17.1498
p-value 5.9e− 06 6.9e− 05 1.6e− 05 5.8e− 05 3.1e− 05 6.6e− 04

4 Statistic 26.7468 26.6107 14.5200 23.8888 21.0220 12.2093
p-value 6.7e− 06 7.1e− 06 2.3e− 03 2.6e− 05 1.0e− 04 6.7e− 03

5 Statistic 36.5854 36.5854 36.5854 36.5854 36.5854 29.3502
p-value 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 1.9e− 06

6 Statistic 16.6815 16.3712 6.5078 20.6473 14.0678 15.7595
p-value 8.2e− 04 9.5e− 04 8.9e− 02 1.2e− 04 2.8e− 03 1.3e− 03

7 Statistic 36.5854 36.5854 36.5854 36.5854 36.5854 24.4200
p-value 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 2.0e− 05

8 Statistic 15.5810 15.8693 9.9000 0.6498 6.2883 7.8307
p-value 1.4e− 03 1.2e− 03 1.9e− 02 8.8e− 01 9.8e− 02 5.0e− 02

9 Statistic 36.5854 36.5854 36.5854 35.6327 34.9302 30.5254
p-value 5.6e− 08 5.6e− 08 5.6e− 08 9.0e− 08 1.3e− 07 1.1e− 06

10 Statistic 22.4063 26.5010 23.9020 23.4541 23.4541 23.6473
p-value 5.4e− 05 7.5e− 06 2.6e− 05 3.2e− 05 3.2e− 05 3.0e− 05

11 Statistic 33.1376 33.0190 32.9283 34.3332 34.5205 22.7956
p-value 3.0e− 07 3.2e− 07 3.3e− 07 1.7e− 07 1.5e− 07 4.5e− 05

12 Statistic 36.5854 36.5854 36.5854 36.5854 36.5854 31.2688
p-value 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 5.6e− 08 7.5e− 07
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Table C.14.: Kruskal-Wallis rank sum test for assessing if samples in Table B.13,
grouped by the population size and RES output while varying α,
come from identical populations.

RES Output Test Results 40 400 4, 000 40, 000

1 Statistic 29.388 46.951 53.558 57.249
p-value 1.9e− 05 5.8e− 09 2.6e− 10 4.5e− 11

2 Statistic 27.252 42.567 48.853 52.600
p-value 5.1e− 05 4.5e− 08 2.4e− 09 4.1e− 10

3 Statistic 4.926 28.376 42.241 50.915
p-value 4.2e− 01 3.1e− 05 5.3e− 08 9.0e− 10

4 Statistic 16.463 37.426 48.036 51.368
p-value 5.6e− 03 4.9e− 07 3.5e− 09 7.3e− 10

5 Statistic 33.190 49.490 55.105 56.663
p-value 3.5e− 06 1.8e− 09 1.2e− 10 5.9e− 11

6 Statistic 14.073 25.024 52.157 51.324
p-value 1.5e− 02 1.4e− 04 5.0e− 10 7.4e− 10

7 Statistic 24.043 48.842 52.428 55.064
p-value 2.1e− 04 2.4e− 09 4.4e− 10 1.3e− 10

8 Statistic 17.129 24.355 33.755 50.376
p-value 4.3e− 03 1.9e− 04 2.7e− 06 1.2e− 09

9 Statistic 29.877 50.197 51.498 51.426
p-value 1.6e− 05 1.3e− 09 6.8e− 10 7.1e− 10

10 Statistic 9.039 27.943 50.722 57.121
p-value 1.1e− 01 3.7e− 05 9.9e− 10 4.8e− 11

11 Statistic 6.887 26.789 49.960 56.840
p-value 2.3e− 01 6.3e− 05 1.4e− 09 5.5e− 11

12 Statistic 34.760 52.239 54.369 55.770
p-value 1.7e− 06 4.8e− 10 1.8e− 10 9.1e− 11
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Table C.15.: Kruskal-Wallis rank sum test for assessing if samples in Table B.13,
grouped by the population size and RES output, come from identi-
cal populations.

RES Output Test Results 40 400 4, 000 40, 000

1 Statistic 33.5396 33.4683 33.6244 33.6244
p-value 2.5e− 07 2.6e− 07 2.4e− 07 2.4e− 07

2 Statistic 33.4504 33.4579 33.5173 33.9261
p-value 2.6e− 07 2.6e− 07 2.5e− 07 2.1e− 07

3 Statistic 22.2978 24.4145 33.4683 33.4445
p-value 5.7e− 05 2.0e− 05 2.6e− 07 2.6e− 07

4 Statistic 28.0503 33.4504 36.8692 37.1606
p-value 3.5e− 06 2.6e− 07 4.9e− 08 4.3e− 08

5 Statistic 33.5396 34.6946 35.2654 33.4504
p-value 2.5e− 07 1.4e− 07 1.1e− 07 2.6e− 07

6 Statistic 34.0391 34.6099 37.1606 37.1606
p-value 1.9e− 07 1.5e− 07 4.3e− 08 4.3e− 08

7 Statistic 33.6585 33.8741 33.4817 33.5396
p-value 2.3e− 07 2.1e− 07 2.5e− 07 2.5e− 07

8 Statistic 29.8607 34.2308 37.0134 37.1606
p-value 1.5e− 06 1.8e− 07 4.6e− 08 4.3e− 08

9 Statistic 33.5396 34.3007 33.7358 33.4980
p-value 2.5e− 07 1.7e− 07 2.3e− 07 2.5e− 07

10 Statistic 33.2171 34.3735 33.7789 34.0391
p-value 2.9e− 07 1.7e− 07 2.2e− 07 1.9e− 07

11 Statistic 32.9985 31.4620 29.0517 32.7907
p-value 3.2e− 07 6.8e− 07 2.2e− 06 3.6e− 07

12 Statistic 32.9985 33.1039 32.9634 33.6585
p-value 3.2e− 07 3.1e− 07 3.3e− 07 2.3e− 07
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Table C.16.: Kruskal-Wallis rank sum test for assessing if samples generated
by different load scheduling strategies with the same type of load
composition and RES output, come from identical populations.

RES Output Test Results Only Washing Machines No EVs. All Appliances

1 Statistic 0.021 22.165 20.417
p-value 0.98971 1.5e− 05 3.7e− 05

2 Statistic 3.785 19.791 20.224
p-value 0.15072 5.0e− 05 4.1e− 05

3 Statistic 3.223 20.101 20.135
p-value 0.19957 4.3e− 05 4.2e− 05

4 Statistic 8.230 23.081 26.265
p-value 0.01633 9.7e− 06 2.0e− 06

5 Statistic 9.262 7.628 23.374
p-value 0.00975 0.02206 8.4e− 06

6 Statistic 3.332 25.055 26.790
p-value 0.18904 3.6e− 06 1.5e− 06

7 Statistic 0.588 7.280 20.159
p-value 0.74513 0.02625 4.2e− 05

8 Statistic 2.341 22.516 26.525
p-value 0.31027 1.3e− 05 1.7e− 06

9 Statistic 2.140 20.015 20.617
p-value 0.34301 4.5e− 05 3.3e− 05

10 Statistic 2.883 19.520 20.695
p-value 0.23662 5.8e− 05 3.2e− 05

11 Statistic 1.350 19.357 12.521
p-value 0.50924 6.3e− 05 0.00191

12 Statistic 13.288 13.675 19.419
p-value 0.00130 0.00107 6.1e− 05
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Table D.1.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing significant
differences as a consequence of different population sizes within groups specified in Table C.1 for each RES output.
Continues in Table D.2.

RES Output 1

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 2.2e− 16 2.1e− 03 40.000 2.2e− 16 2.2e− 16 7.7e− 04 40.000 2.2e− 16 2.2e− 16 1.0e− 02 40.000 2.2e− 16 2.2e− 16 5.5e− 02 40.000 2.2e− 16 2.2e− 16 1.1e− 01

RES Output 2

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 1.9e− 14 − 4.000 2.2e− 16 5.0e− 11 − 4.000 2.2e− 16 3.9e− 13 −
40.000 2.2e− 16 2.2e− 16 9.7e− 01 40.000 2.2e− 16 2.2e− 16 3.9e− 01 40.000 2.2e− 16 2.2e− 16 6.6e− 01 40.000 2.2e− 16 2.2e− 16 5.2e− 01 40.000 2.2e− 16 2.2e− 16 1.0

RES Output 3

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 1.4e− 01 − 4.000 2.2e− 16 1.0e− 13 − 4.000 2.2e− 16 3.7e− 08 − 4.000 2.2e− 16 8.5e− 14 − 4.000 2.2e− 16 7.85045e− 06 −
40.000 2.2e− 16 3.1e− 09 1.1e− 03 40.000 2.2e− 16 2.2e− 16 8.6e− 02 40.000 2.2e− 16 8.3e− 16 1.8e− 02 40.000 2.2e− 16 2.2e− 16 1.0 40.000 2.2e− 16 2.4e− 07 1.0

RES Output 4

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 9.7e− 03 − 4.000 2.2e− 16 3.8e− 02 − 4.000 2.2e− 16 3.9e− 03 − 4.000 2.2e− 16 2.5e− 03 − 4.000 2.2e− 16 8.0e− 01 −
40.000 2.2e− 16 1.7e− 03 1.0 40.000 2.2e− 16 3.8e− 02 1.0 40.000 2.2e− 16 1.9e− 03 1.0 40.000 2.2e− 16 1.2e− 03 1.0 40.000 2.2e− 16 4.6e− 01 1.0

RES Output 5

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 2.2e− 16 2.9e− 01 40.000 2.2e− 16 2.2e− 16 7.9e− 01 40.000 2.2e− 16 2.2e− 16 5.2e− 01 40.000 2.2e− 16 2.2e− 16 4.6e− 01 40.000 2.2e− 16 2.2e− 16 9.8e− 01

RES Output 6

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 1.7e− 06 − 4.000 2.2e− 16 5.3e− 11 − 4.000 2.2e− 16 6.8e− 11 − 4.000 2.2e− 16 3.8e− 06 − 4.000 2.2e− 16 7.3e− 06 −
40.000 2.2e− 16 1.1e− 08 9.2e− 01 40.000 2.2e− 16 1.5e− 15 5.2e− 01 40.000 2.2e− 16 6.2e− 13 1.0 40.000 2.2e− 16 5.4e− 07 1.0 40.000 2.2e− 16 1.1e− 06 1.0
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Table D.2.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing significant
differences as a consequence of different population sizes within groups specified in Table C.1 for each RES output.
Continuation from Table D.1.

RES Output 7

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 2.2e− 16 4.1e− 01 40.000 2.2e− 16 2.2e− 16 1.6e− 01 40.000 2.2e− 16 2.2e− 16 4.1e− 02 40.000 2.2e− 16 2.2e− 16 1.3e− 01 40.000 2.2e− 16 2.2e− 16 4.3e− 01

RES Output 8

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 5.1e− 06 − 4.000 2.2e− 16 3.3e− 08 − 4.000 2.2e− 16 1.4e− 03 − 4.000 2.2e− 16 3.1e− 02 − 4.000 2.2e− 16 5.6e− 01 −
40.000 2.2e− 16 9.8e− 08 8.2e− 01 40.000 2.2e− 16 4.5e− 10 8.4e− 01 40.000 2.2e− 16 5.1e− 04 1.0 40.000 2.2e− 16 1.0e− 02 1.0 40.000 2.2e− 16 4.8e− 01 1.0

RES Output 9

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 2.2e− 16 2.7e− 02 40.000 2.2e− 16 2.2e− 16 1.7e− 04 40.000 2.2e− 16 2.2e− 16 9.3e− 04 40.000 2.2e− 16 2.2e− 16 1.7e− 02 40.000 2.2e− 16 2.2e− 16 8.8e− 03

RES Output 10

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.7e− 04 − 4.000 2.2e− 16 7.9e− 10 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 6.5e− 04 1.0 40.000 2.2e− 16 3.6e− 12 1.0 40.000 2.2e− 16 2.2e− 16 1.0 40.000 2.2e− 16 2.2e− 16 2.0e− 01 40.000 2.2e− 16 2.2e− 16 5.5e− 01

RES Output 11

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 2.2e− 16 7.0e− 03 40.000 2.2e− 16 2.2e− 16 5.6e− 04 40.000 2.2e− 16 2.2e− 16 6.7e− 05 40.000 2.2e− 16 2.2e− 16 1.4e− 02 40.000 2.2e− 16 2.2e− 16 3.7e− 01

RES Output 12

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − − 400 2.2e− 16 − −
4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 − 4.000 2.2e− 16 2.2e− 16 −
40.000 2.2e− 16 2.2e− 16 1.0 40.000 2.2e− 16 2.2e− 16 1.3e− 02 40.000 2.2e− 16 2.2e− 16 1.4e− 01 40.000 2.2e− 16 2.2e− 16 9.4e− 02 40.000 2.2e− 16 2.2e− 16 3.8e− 01
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Table D.3.: Pairwise comparison with unpaired Wilcoxon rank-sum test with Bonferroni. Post-hoc analysis for assessing significant
differences in performance of SLC, CLP and NLC, as a consequence of different shares of load coverage within groups
specified in Table C.12 for each RES output. 40% of load flexibility for the micro-grid is considered.

RES Output 1. 50% Coverage RES Output 1. 75% Coverage RES Output 2. 50% Coverage RES Output 2. 75% Coverage RES Output 3. 50% Coverage

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 −
SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16 SLC 7e− 01 2e− 16 SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16

RES Output 3. 75% Coverage RES Output 4. 50% Coverage RES Output 4. 75% Coverage RES Output 5. 75% Coverage RES Output 6. 50% Coverage

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 −
SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16 SLC 4e− 16 2e− 16 SLC 1 2e− 16

RES Output 6. 75% Coverage RES Output 7. 50% Coverage RES Output 8. 50% Coverage RES Output 8. 75% Coverage RES Output 9. 50% Coverage

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 −
SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16 SLC 2e− 16 2e− 16 SLC 1 2e− 16

RES Output 9. 75% Coverage RES Output 10. 50% Coverage RES Output 10. 75% Coverage RES Output 11. 50% Coverage RES Output 11. 75% Coverage

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 − NLC 2e− 16 −
SLC 2e− 16 2e− 16 SLC 1 2e− 16 SLC 2e− 16 2e− 16 SLC 1e− 03 2e− 16 SLC 2e− 16 2e− 16

RES Output 12. 50% Coverage RES Output 12. 75% Coverage

CLP NLC CLP NLC

NLC 2e− 16 − NLC 2e− 16 −
SLC 1 2e− 16 SLC 2e− 16 2e− 16
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Table D.4.: Pairwise comparison with unpaired Wilcoxon rank-sum test with Bonferroni. Post-hoc analysis for assessing significant
differences in performance of SLC, CLP and NLC as a consequence of different shares of load flexibility within groups
specified in Table C.12 for each RES output. 75% of load coverage by the RES output is considered. Continues in Table
D.5.

RES Output 1. 10% Flex. RES Output 1. 20% Flex. RES Output 1. 30% Flex. RES Output 1. 40% Flex. RES Output 2. 10% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 2. 20% Flex. RES Output 2. 30% Flex. RES Output 2. 40% Flex. RES Output 3. 10% Flex. RES Output 3. 20% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 3. 30% Flex. RES Output 3. 40% Flex. RES Output 4. 10% Flex. RES Output 4. 20% Flex. RES Output 4. 30% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 4. 40% Flex. RES Output 5. 10% Flex. RES Output 5. 20% Flex. RES Output 5. 30% Flex. RES Output 5. 40% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 3.7e− 16 2.2e− 16

RES Output 6. 10% Flex. RES Output 6. 20% Flex. RES Output 6. 30% Flex. RES Output 6. 40% Flex. RES Output 7. 10% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16
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Table D.5.: Pairwise comparison with unpaired Wilcoxon rank-sum test with Bonferroni. Post-hoc analysis for assessing significant
differences in performance of SLC, CLP and NLC as a consequence of different shares of load flexibility within groups
specified in Table C.12 for each RES output. 75% of load coverage by the RES output is considered. Continuation from
Table D.4.

RES Output 7. 20% Flex. RES Output 7. 30% Flex. RES Output 7. 40% Flex. RES Output 8. 10% Flex. RES Output 8. 20% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 8. 30% Flex. RES Output 8. 40% Flex. RES Output 9. 10% Flex. RES Output 9. 20% Flex. RES Output 9. 30% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 9. 40% Flex. RES Output 10. 10% Flex. RES Output 10. 20% Flex. RES Output 10. 30% Flex. RES Output 10. 40% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 11. 10% Flex. RES Output 11. 20% Flex. RES Output 11. 30% Flex. RES Output 11. 40% Flex. RES Output 12. 10% Flex.

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 12. 20% Flex. RES Output 12. 30% Flex. RES Output 12. 40% Flex.

CLP NLC CLP NLC CLP NLC

NLC 2.2e− 16 − NLC 2.2e− 16 − NLC 2.2e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

218



Table D.6.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correc-
tion for assessing differences in performance due to forecasts varia-
tions, with fixed RES outputs, α configurations and a population of
40. Evaluations correspond to those in Table C.2 where differences
between samples within groups where found were significant.

RES Output 1. α = 0.1 RES Output 4. α = 0.5 RES Output 5. α = 0.5

High Low High Low High Low

Low 3.72e− 02 − Low 1.11e− 01 − Low 9.09e− 02 −
Medium 1.00 7.73e− 02 Medium 5.14e− 02 1.00 Medium 1.00 6.22e− 02

RES Output 5. α = 0.1 RES Output 6. α = 0.1 RES Output 6. α = 0.05

High Low High Low High Low

Low 6.77e− 02 − Low 1.05e− 02 − Low 1.90e− 03 −
Medium 1.00 1.51e− 01 Medium 1.00 2.85e− 02 Medium 2.82e− 01 2.20e− 01

RES Output 6. α = 0.01 RES Output 7. α = 0.05 RES Output 8. α = 1.0

High Low High Low High Low

Low 4.79e− 01 − Low 1.00 − Low 1.67e− 02 −
Medium 8.76e− 02 8.59e− 04 Medium 7.35e− 02 3.93e− 02 Medium 1.00 2.25e− 01

RES Output 8. α = 0.01 RES Output 10. α = 1.0 RES Output 12. α = 1.0

High Low High Low High Low

Low 5.64e− 02 − Low 5.72e− 01 − Low 2.91e− 02 −
Medium 1.00 2.26e− 01 Medium 5.82e− 01 3.08e− 02 Medium 1.00 6.55e− 02

RES Output 12. α = 0.5 RES Output 12. α = 0.01

High Low High Low

Low 4.65e− 02 − Low 3.52e− 02 −
Medium 1.00 2.80e− 03 Medium 1.00 3.61e− 01
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Table D.7.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing differences in per-
formance due to forecasts variations, with fixed RES outputs, α configurations and a population of 400.
Evaluations correspond to those in Table C.3 where differences between samples within groups where
found were significant.

RES Output 2. α = 0.01 RES Output 3. α = 1.0 RES Output 3. α = 0.5 RES Output 3. α = 0.1 RES Output 3. α = 0.05

High Low High Low High Low High Low High Low

Low 3.88e− 01 − Low 1.11e− 01 − Low 1.48e− 02 − Low 2.76e− 04 − Low 2.90e− 04 −
Medium 1.18e− 02 8.44e− 02 Medium 9.73e− 01 8.72e− 03 Medium 1.00 6.69e− 03 Medium 5.01e− 02 3.29e− 01 Medium 3.62e− 02 4.39e− 01

RES Output 3. α = 0.01 RES Output 4. α = 0.1 RES Output 5. α = 0.5 RES Output 5. α = 0.1 RES Output 5. α = 0.05

High Low High Low High Low High Low High Low

Low 8.20e− 04 − Low 1.00 − Low 2.58e− 02 − Low 1.13e− 11 − Low 5.25e− 11 −
Medium 1.39e− 02 4.68e− 01 Medium 3.28e− 04 1.05e− 03 Medium 4.70e− 01 6.39e− 01 Medium 5.26e− 01 6.11e− 07 Medium 1.23e− 05 5.75e− 02

RES Output 5. α = 0.01 RES Output 6. α = 0.1 RES Output 6. α = 0.05 RES Output 6. α = 0.01 RES Output 7. α = 0.1

High Low High Low High Low High Low High Low

Low 1.16e− 06 − Low 2.18e− 11 − Low 6.08e− 14 − Low 9.91e− 06 − Low 9.48e− 01 −
Medium 2.55e− 04 1.00 Medium 1.00 3.28e− 09 Medium 2.83e− 02 2.20e− 16 Medium 8.12e− 03 9.04e− 12 Medium 1.66e− 02 3.34e− 01

RES Output 7. α = 0.05 RES Output 7. α = 0.01 RES Output 8. α = 0.01 RES Output 9. α = 1.0 RES Output 9. α = 0.1

High Low High Low High Low High Low High Low

Low 3.41e− 01 − Low 1.00 − Low 3.98e− 02 − Low 5.72e− 02 − Low 1.41e− 01 −
Medium 1.76e− 02 3.76e− 01 Medium 9.67e− 03 3.42e− 02 Medium 7.66e− 01 5.03e− 01 Medium 1.00 1.41e− 02 Medium 2.01e− 01 1.76e− 04

RES Output 9. α = 0.05 RES Output 9. α = 0.01 RES Output 10. α = 0.5 RES Output 10. α = 0.1 RES Output 10. α = 0.05

High Low High Low High Low High Low High Low

Low 3.15e− 01 − Low 3.62e− 04 − Low 1.75e− 03 − Low 1.41e− 05 − Low 3.25e− 03 −
Medium 2.33e− 02 1.31e− 06 Medium 1.00 1.64e− 04 Medium 1.00 1.53e− 02 Medium 3.69e− 02 2.20e− 01 Medium 1.00 2.25e− 04

RES Output 11. α = 1.0 RES Output 11. α = 0.5 RES Output 11. α = 0.1 RES Output 11. α = 0.05 RES Output 11. α = 0.01

High Low High Low High Low High Low High Low

Low 1.89e− 09 − Low 1.08e− 05 − Low 1.16e− 09 − Low 2.64e− 12 − Low 4.45e− 09 −
Medium 1.77e− 01 8.31e− 05 Medium 1.00 2.18e− 04 Medium 1.39e− 02 2.30e− 04 Medium 5.01e− 02 6.07e− 06 Medium 6.03e− 04 6.90e− 02

RES Output 12. α = 1.0 RES Output 12. α = 0.5 RES Output 12. α = 0.1 RES Output 12. α = 0.05 RES Output 12. α = 0.01

High Low High Low High Low High Low High Low

Low 1.64e− 04 − Low 6.68e− 06 − Low 2.20e− 16 − Low 2.20e− 16 − Low 2.20e− 16 −
Medium 6.94e− 02 1.41e− 01 Medium 1.03e− 01 4.38e− 03 Medium 1.09e− 10 3.04e− 09 Medium 1.07e− 06 2.29e− 06 Medium 1.68e− 08 5.62e− 08
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Table D.8.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing differences in perfor-
mance due to forecasts variations, with fixed RES outputs, α configurations and a population of 4, 000.
Evaluations correspond to those in Table C.4 where differences between samples within groups where
found were significant. Continues in Table D.9.

RES Output 1. α = 0.1 RES Output 2. α = 1.0 RES Output 2. α = 0.5 RES Output 3. α = 1.0 RES Output 3. α = 0.5

High Low High Low High Low High Low High Low

Low 5.53e− 04 − Low 6.99e− 09 − Low 1.78e− 04 − Low 4.94e− 01 − Low 1.47e− 02 −
Medium 4.86e− 01 3.17e− 02 Medium 1.00 1.57e− 09 Medium 1.55e− 02 6.31e− 01 Medium 1.20e− 01 6.64e− 04 Medium 4.56e− 01 1.25e− 04

RES Output 3. α = 0.1 RES Output 3. α = 0.05 RES Output 3. α = 0.01 RES Output 4. α = 0.1 RES Output 5. α = 1.0

High Low High Low High Low High Low High Low

Low 6.19e− 07 − Low 2.00e− 05 − Low 3.32e− 07 − Low 7.62e− 05 − Low 4.59e− 02 −
Medium 1.07e− 01 4.61e− 05 Medium 4.09e− 03 4.75e− 01 Medium 9.86e− 05 9.02e− 01 Medium 6.99e− 09 5.53e− 02 Medium 1.00 2.18e− 01

RES Output 5. α = 0.5 RES Output 5. α = 0.1 RES Output 5. α = 0.05 RES Output 5. α = 0.01 RES Output 6. α = 1.0

High Low High Low High Low High Low High Low

Low 1.93e− 07 − Low 2.20e− 16 − Low 2.20e− 16 − Low 1.36e− 14 − Low 3.85e− 01 −
Medium 6.95e− 01 3.23e− 09 Medium 9.25e− 05 1.83e− 11 Medium 3.04e− 05 5.58e− 03 Medium 3.10e− 12 2.02e− 01 Medium 8.52e− 03 1.87e− 03

RES Output 6. α = 0.5 RES Output 6. α = 0.1 RES Output 6. α = 0.05 RES Output 6. α = 0.01 RES Output 7. α = 0.1

High Low High Low High Low High Low High Low

Low 7.37e− 03 − Low 2.20e− 16 − Low 2.20e− 16 − Low 1.72e− 12 − Low 1.25e− 03 −
Medium 7.73e− 02 1.87e− 04 Medium 1.07e− 01 2.20e− 16 Medium 8.70e− 06 2.20e− 16 Medium 3.13e− 06 2.20e− 16 Medium 1.64e− 05 7.88e− 01

RES Output 7. α = 0.05 RES Output 7. α = 0.01 RES Output 8. α = 1.0 RES Output 8. α = 0.05 RES Output 8. α = 0.01

High Low High Low High Low High Low High Low

Low 7.54e− 02 − Low 4.66e− 01 − Low 1.31e− 02 − Low 1.39e− 02 − Low 1.26e− 03 −
Medium 5.74e− 05 3.04e− 01 Medium 2.50e− 04 1.31e− 02 Medium 1.70e− 01 7.24e− 01 Medium 8.99e− 01 2.07e− 01 Medium 8.03e− 01 7.98e− 02
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Table D.9.: Pairwise Wilcoxon rank sum test unpaired with Bonferroni correction for assessing differences in perfor-
mance due to forecasts variations, in different problem instances (Continuation from Table D.8). Evaluated
α values corresponds to those in Table C.4 where differences were significant.

RES Output 9. α = 1.0 RES Output 9. α = 0.5 RES Output 9. α = 0.1 RES Output 9. α = 0.05 RES Output 9. α = 0.01

High Low High Low High Low High Low High Low

Low 6.21e− 01 − Low 1.00 − Low 1.00 − Low 8.95e− 01 − Low 1.08e− 03 −
Medium 2.53e− 01 5.16e− 04 Medium 2.69e− 02 3.23e− 02 Medium 1.30e− 03 3.51e− 08 Medium 1.41e− 03 1.70e− 08 Medium 1.00 1.51e− 08

RES Output 10. α = 1.0 RES Output 10. α = 0.5 RES Output 10. α = 0.1 RES Output 10. α = 0.05 RES Output 10. α = 0.01

High Low High Low High Low High Low High Low

Low 7.06e− 05 − Low 1.44e− 04 − Low 2.40e− 07 − Low 8.56e− 08 − Low 1.27e− 05 −
Medium 8.59e− 04 3.96e− 01 Medium 1.26e− 02 9.43e− 02 Medium 1.17e− 01 9.05e− 05 Medium 4.43e− 01 3.05e− 04 Medium 5.22e− 03 8.89e− 01

RES Output 11. α = 1.0 RES Output 11. α = 0.5 RES Output 11. α = 0.1 RES Output 11. α = 0.05 RES Output 11. α = 0.01

High Low High Low High Low High Low High Low

Low 5.84e− 15 − Low 3.47e− 13 − Low 2.20e− 16 − Low 2.20e− 16 − Low 9.54e− 15 −
Medium 1.00 4.37e− 11 Medium 7.39e− 01 3.06e− 10 Medium 4.76e− 07 5.12e− 14 Medium 7.12e− 02 4.57e− 13 Medium 4.57e− 10 2.40e− 02

RES Output 12. α = 1.0 RES Output 12. α = 0.5 RES Output 12. α = 0.1 RES Output 12. α = 0.05 RES Output 12. α = 0.01

High Low High Low High Low High Low High Low

Low 4.82e− 06 − Low 1.03e− 07 − Low 2.20e− 16 − Low 2.20e− 16 − Low 2.20e− 16 −
Medium 1.30e− 07 6.87e− 01 Medium 6.72e− 01 1.80e− 05 Medium 2.20e− 16 2.20e− 16 Medium 4.18e− 12 1.17e− 11 Medium 4.34e− 15 7.21e− 14
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Table D.10.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing differences in perfor-
mance due to forecasts variations, with fixed RES outputs, α configurations and a population of 40, 000.
Evaluations correspond to those in Table C.5 where differences between samples within groups where
found were significant. Continues in Table D.11.

RES Output 1. α = 0.1 RES Output 2. α = 1.0 RES Output 2. α = 0.5 RES Output 3. α = 1.0 RES Output 3. α = 0.5

High Low High Low High Low High Low High Low

Low 3.34e− 04 − Low 1.25e− 06 − Low 4.61e− 05 − Low 2.29e− 03 − Low 1.18e− 04 −
Medium 1.00 1.77e− 03 Medium 1.00 1.01e− 07 Medium 2.83e− 03 1.00 Medium 1.01e− 02 1.09e− 10 Medium 2.44e− 01 3.77e− 10

RES Output 3. α = 0.1 RES Output 3. α = 0.05 RES Output 3. α = 0.01 RES Output 4. α = 0.1 RES Output 5. α = 1.0

High Low High Low High Low High Low High Low

Low 1.68e− 08 − Low 5.12e− 06 − Low 1.08e− 06 − Low 9.35e− 05 − Low 7.08e− 03 −
Medium 5.86e− 03 1.92e− 06 Medium 2.46e− 03 8.75e− 01 Medium 5.99e− 06 1.00 Medium 7.26e− 10 2.77e− 02 Medium 1.00 9.13e− 01

RES Output 5. α = 0.5 RES Output 5. α = 0.1 RES Output 5. α = 0.05 RES Output 5. α = 0.01 RES Output 6. α = 1.0

High Low High Low High Low High Low High Low

Low 2.69e− 10 − Low 2.20e− 16 − Low 2.20e− 16 − Low 3.22e− 16 − Low 3.60e− 03 −
Medium 1.00 1.15e− 11 Medium 6.52e− 06 4.51e− 11 Medium 3.08e− 05 3.31e− 03 Medium 1.34e− 12 1.87e− 02 Medium 1.26e− 03 1.97e− 05

RES Output 6. α = 0.5 RES Output 6. α = 0.1 RES Output 6. α = 0.05 RES Output 6. α = 0.01 RES Output 7. α = 0.1

High Low High Low High Low High Low High Low

Low 2.04e− 05 − Low 2.20e− 16 − Low 2.20e− 16 − Low 6.85e− 16 − Low 2.23e− 03 −
Medium 9.45e− 06 1.85e− 06 Medium 1.84e− 01 2.20e− 16 Medium 3.25e− 06 2.20e− 16 Medium 9.40e− 07 2.20e− 16 Medium 9.34e− 06 5.29e− 01

RES Output 7. α = 0.05 RES Output 7. α = 0.01 RES Output 8. α = 1.0 RES Output 8. α = 0.5 RES Output 8. α = 0.1

High Low High Low High Low High Low High Low

Low 2.36e− 02 − Low 4.56e− 01 − Low 7.86e− 03 − Low 3.99e− 03 − Low 2.46e− 03 −
Medium 5.50e− 07 3.56e− 01 Medium 3.62e− 04 9.73e− 02 Medium 1.91e− 05 1.00 Medium 1.76e− 04 1.00 Medium 1.00 1.45e− 01
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Table D.11.: Pairwise Wilcoxon rank sum test unpaired with Bonferroni correction for assessing differences in perfor-
mance due to forecasts variations, in different problem instances (Continuation from Table D.10). Evalu-
ated α values corresponds to those in Table C.5 where differences were significant.

RES Output 8. α = 0.05 RES Output 8. α = 0.01 RES Output 9. α = 1.0 RES Output 9. α = 0.5 RES Output 9. α = 0.1

High Low High Low High Low High Low High Low

Low 1.23e− 02 − Low 4.37e− 04 − Low 1.03e− 01 − Low 1.00 − Low 1.00 −
Medium 1.00 1.60e− 01 Medium 1.00 3.28e− 02 Medium 2.37e− 01 3.55e− 06 Medium 9.15e− 03 2.42e− 02 Medium 1.23e− 03 4.11e− 07

RES Output 9. α = 0.05 RES Output 9. α = 0.01 RES Output 10. α = 1.0 RES Output 10. α = 0.5 RES Output 10. α = 0.1

High Low High Low High Low High Low High Low

Low 3.26e− 01 − Low 1.70e− 05 − Low 5.87e− 05 − Low 3.77e− 05 − Low 4.41e− 08 −
Medium 2.18e− 04 2.81e− 11 Medium 1.00 7.08e− 12 Medium 4.59e− 04 2.88e− 01 Medium 1.38e− 02 5.87e− 02 Medium 1.45e− 01 2.94e− 05

RES Output 10. α = 0.05 RES Output 10. α = 0.01 RES Output 11. α = 1.0 RES Output 11. α = 0.5 RES Output 11. α = 0.1

High Low High Low High Low High Low High Low

Low 1.23e− 10 − Low 2.65e− 09 − Low 4.26e− 15 − Low 2.20e− 16 − Low 2.20e− 16 −
Medium 9.08e− 03 1.07e− 04 Medium 2.21e− 04 1.33e− 01 Medium 8.49e− 02 1.38e− 09 Medium 1.00 3.77e− 14 Medium 1.40e− 06 2.20e− 16

RES Output 11. α = 0.05 RES Output 11. α = 0.01 RES Output 12. α = 1.0 RES Output 12. α = 0.5 RES Output 12. α = 0.1

High Low High Low High Low High Low High Low

Low 2.20e− 16 − Low 2.20e− 16 − Low 2.40e− 04 − Low 3.80e− 07 − Low 2.20e− 16 −
Medium 1.30e− 04 1.07e− 14 Medium 5.85e− 14 1.44e− 02 Medium 2.91e− 10 1.00 Medium 3.98e− 02 5.32e− 04 Medium 2.20e− 16 2.20e− 16

RES Output 12. α = 0.05 RES Output 12. α = 0.01

High Low High Low

Low 2.20e− 16 − Low 2.20e− 16 −
Medium 5.61e− 15 1.66e− 12 Medium 2.20e− 16 2.52e− 14
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Table D.12.: Pairwise Wilcoxon rank sum test unpaired with Bonferroni correction for assessing differences in perfor-
mance due to different α configurations, with different RES outputs. Evaluations corresponds to those in
Table C.6 where differences were significant. Micro-grid population is 40.

RES Output 1. Low Quality RES Output 1. Medium Quality RES Output 1. High Quality RES Output 2. Low Quality RES Output 2. Medium Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 8.26e− 01 − − − 0.05 1.00 − − − 0.05 1.00 − − − 0.05 4.01e− 03 − − − 0.05 2.28e− 01 − − −
0.1 1.00 1.00 − − 0.1 1.77e− 01 1.00 − − 0.1 4.74e− 03 2.98e− 02 − − 0.1 6.28e− 05 1.00 − − 0.1 2.03e− 03 1.00 − −
0.5 1.93e− 04 7.65e− 02 3.10e− 02 − 0.5 6.07e− 05 3.62e− 03 1.26e− 01 − 0.5 2.66e− 03 1.77e− 02 1.00 − 0.5 6.97e− 05 1.00 1.00 − 0.5 5.07e− 04 1.00 1.00 −
1.0 8.84e− 04 8.84e− 02 2.68e− 02 1.00 1.0 2.63e− 03 7.49e− 02 1.00 1.00 1.0 1.32e− 03 1.24e− 02 1.00 1.00 1.0 1.97e− 05 1.00 1.00 1.00 1.0 2.32e− 03 1.00 1.00 1.00

RES Output 2. High Quality RES Output 3. Low Quality RES Output 3. Medium Quality RES Output 3. High Quality RES Output 4. Low Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 6.14e− 02 − − − 0.05 4.76e− 05 − − − 0.05 4.82e− 03 − − − 0.05 2.96e− 01 − − − 0.05 2.10e− 01 − − −
0.1 9.49e− 04 1.00 − − 0.1 7.38e− 07 1.00 − − 0.1 3.24e− 03 1.00 − − 0.1 1.86e− 03 6.60e− 01 − − 0.1 1.00 1.00 − −
0.5 8.77e− 06 2.37e− 01 1.00 − 0.5 1.30e− 01 6.01e− 01 3.95e− 02 − 0.5 2.94e− 01 1.00 1.00 − 0.5 6.98e− 03 1.00 1.00 − 0.5 1.00 3.24e− 03 1.37e− 01 −
1.0 2.51e− 06 1.71e− 01 1.00 1.00 1.0 3.11e− 01 7.06e− 02 2.68e− 03 1.00 1.0 1.00 2.37e− 01 1.77e− 01 1.00 1.0 1.94e− 01 1.00 1.00 1.00 1.0 3.28e− 01 1.91e− 04 6.80e− 03 1.00

RES Output 4. Medium Quality RES Output 4. High Quality RES Output 5. Medium Quality RES Output 5. High Quality RES Output 6. Low Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 8.34e− 01 − − − 0.05 1.00 − − − 0.05 8.47e− 01 − − − 0.05 1.00 − − − 0.05 8.83e− 01 − − −
0.1 3.07e− 01 1.00 − − 0.1 1.00 1.00 − − 0.1 9.34e− 03 7.39e− 01 − − 0.1 7.43e− 03 4.63e− 01 − − 0.1 6.47e− 02 1.00 − −
0.5 1.00 1.28e− 01 2.79e− 02 − 0.5 3.43e− 02 5.28e− 03 2.54e− 04 − 0.5 3.52e− 03 4.45e− 01 1.00 − 0.5 3.57e− 02 9.25e− 01 1.00 − 0.5 8.52e− 01 1.00 1.00 −
1.0 4.97e− 02 1.83e− 04 2.83e− 05 4.79e− 01 1.0 4.91e− 03 8.57e− 04 1.11e− 05 1.00 1.0 1.83e− 01 1.00 1.00 1.00 1.0 5.23e− 04 4.75e− 02 1.00 1.00 1.0 1.00 1.00 1.37e− 01 1.00

RES Output 6. Medium Quality RES Output 6. High Quality RES Output 7. Low Quality RES Output 7. Medium Quality RES Output 7. High Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.00 − − − 0.05 1.06e− 03 − − − 0.05 2.49e− 04 − − − 0.05 1.00 − − − 0.05 1.13e− 01 − − −
0.1 3.36e− 01 4.99e− 01 − − 0.1 6.81e− 05 1.00 − − 0.1 1.71e− 04 1.00 − − 0.1 4.63e− 01 1.00 − − 0.1 2.71e− 02 1.00 − −
0.5 2.51e− 01 2.69e− 01 2.60e− 04 − 0.5 1.00 8.86e− 05 4.98e− 06 − 0.5 1.09e− 04 1.00 1.00 − 0.5 4.97e− 02 1.00 1.00 − 0.5 3.33e− 02 1.00 1.00 −
1.0 2.84e− 03 3.76e− 03 1.12e− 06 1.00 1.0 1.00 8.92e− 07 2.40e− 08 1.00 1.0 8.26e− 03 1.00 1.00 1.00 1.0 1.92e− 03 1.78e− 01 1.00 1.00 1.0 3.98e− 02 1.00 1.00 1.00

RES Output 8. Low Quality RES Output 8. Medium Quality RES Output 8. High Quality RES Output 9. Low Quality RES Output 9. Medium Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.00 − − − 0.05 1.00 − − − 0.05 1.00 − − − 0.05 6.35e− 01 − − − 0.05 1.00 − − −
0.1 1.00 1.00 − − 0.1 1.00 1.00 − − 0.1 8.13e− 01 1.00 − − 0.1 3.72e− 05 4.61e− 02 − − 0.1 8.94e− 03 1.32e− 01 − −
0.5 1.59e− 04 1.24e− 03 2.03e− 03 − 0.5 1.66e− 01 1.22e− 02 2.01e− 01 − 0.5 1.55e− 02 2.17e− 03 1.03e− 06 − 0.5 3.66e− 03 1.00 1.00 − 0.5 1.06e− 04 2.05e− 03 1.00 −
1.0 6.17e− 14 1.07e− 12 6.05e− 12 3.29e− 04 1.0 4.76e− 05 8.12e− 07 2.31e− 05 8.72e− 02 1.0 2.09e− 02 4.65e− 03 3.61e− 06 1.00 1.0 1.31e− 01 1.00 6.47e− 02 1.00 1.0 1.77e− 03 3.54e− 02 1.00 1.00

RES Output 9. High Quality RES Output 10. Low Quality RES Output 10. Medium Quality RES Output 10. High Quality RES Output 11. Low Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.00 − − − 0.05 7.67e− 01 − − − 0.05 2.90e− 01 − − − 0.05 3.73e− 01 − − − 0.05 1.00 − − −
0.1 4.85e− 06 1.35e− 03 − − 0.1 4.33e− 04 1.34e− 01 − − 0.1 5.83e− 02 1.00 − − 0.1 3.89e− 02 1.00 − − 0.1 1.00 1.00 − −
0.5 5.04e− 05 8.12e− 03 1.00 − 0.5 6.24e− 04 1.26e− 01 1.00 − 0.5 1.32e− 02 1.00 1.00 − 0.5 3.43e− 04 2.45e− 01 1.00 − 0.5 8.41e− 02 1.00 9.98e− 01 −
1.0 1.87e− 04 1.74e− 02 1.00 1.00 1.0 4.79e− 06 5.48e− 03 1.00 1.00 1.0 3.01e− 01 1.00 1.00 1.00 1.0 3.02e− 04 2.59e− 01 1.00 1.00 1.0 2.09e− 03 1.01e− 01 8.53e− 02 1.00

RES Output 11. Medium Quality RES Output 11. High Quality RES Output 12. Low Quality RES Output 12. Medium Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 9.93e− 01 − − − 0.05 4.14e− 01 − − − 0.05 1.49e− 01 − − − 0.05 1.00 − − −
0.1 3.66e− 02 1.00 − − 0.1 1.33e− 01 1.00 − − 0.1 4.44e− 02 1.00 − − 0.1 1.12e− 01 3.40e− 01 − −
0.5 8.56e− 03 7.39e− 01 1.00 − 0.5 1.92e− 01 1.00 1.00 − 0.5 1.00 1.00 6.49e− 01 − 0.5 8.97e− 02 3.07e− 01 1.00 −
1.0 4.32e− 03 3.42e− 01 1.00 1.00 1.0 7.24e− 03 1.00 1.00 1.00 1.0 1.00 1.00 1.00 1.00 1.0 4.17e− 01 1.00 1.00 1.00
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Table D.13.: Pairwise Wilcoxon rank sum test unpaired with Bonferroni correction for assessing differences in performance due to
different α configurations, with different RES outputs. Evaluations corresponds to those in Table C.7 where differences
were significant. Micro-grid population is 400.

RES Output 1. Low Quality. RES Output 1. Medium Quality. RES Output 1. High Quality. RES Output 2. Low Quality. RES Output2. Medium Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 0.0325 − − − 0.05 0.00025 − − − 0.05 0.00048 − − − 0.05 7.50e− 13 − − − 0.05 0.00016 − − −
0.1 3.90e− 14 3.60e− 06 − − 0.1 < 2e− 16 8.10e− 07 − − 0.1 7.10e− 15 1.80e− 05 − − 0.1 < 2e− 16 3.20e− 08 − − 0.1 5.90e− 14 6.20e− 06 − −
0.5 < 2e− 16 4.30e− 08 1 − 0.5 < 2e− 16 8.30e− 08 1 − 0.5 4.70e− 12 0.00674 0.51052 − 0.5 < 2e− 16 0.33 9.80e− 06 − 0.5 1.60e− 10 0.20607 0.00213 −
1.0 7.50e− 09 0.0275 0.0561 0.0027 1.0 7.10e− 14 0.00123 0.41206 0.13364 1.0 7.00e− 08 0.9735 0.00841 0.82559 1.0 < 2e− 16 0.62 1.20e− 06 1 1.0 5.70e− 10 0.69269 0.00018 1

RES Output 2. High Quality. RES Output 3. Low Quality. RES Output 3. Medium Quality. RES Output 3. High Quality. RES Output 4. Low Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 3.20e− 14 − − − 0.05 1.20e− 08 − − − 0.05 7.50e− 12 − − − 0.05 3.40e− 10 − − − 0.05 0.01698 − − −
0.1 < 2e− 16 0.00039 − − 0.1 3.40e− 11 1 − − 0.1 4.40e− 16 1 − − 0.1 2.80e− 14 0.53 − − 0.1 0.00465 1 − −
0.5 < 2e− 16 1 4.40e− 05 − 0.5 5.10e− 06 0.56197 0.00487 − 0.5 6.70e− 06 0.0145 7.50e− 05 − 0.5 1.40e− 11 1 0.59 − 0.5 1 0.00424 0.00044 −
1.0 < 2e− 16 1 0.00101 1 1.0 0.00011 0.06277 0.00014 1 1.0 0.0014 0.0035 5.40e− 06 1 1.0 1.50e− 10 1 0.21 1 1.0 1 1.70e− 06 6.00e− 09 0.66327

RES Output 4. Medium Quality. RES Output 4. High Quality. RES Output 5. Low Quality. RES Output 5. Meidum Quality. RES Output 5. High Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 2.50e− 09 − − − 0.05 0.20474 − − − 0.05 0.00117 − − − 0.05 7.60e− 06 − − − 0.05 2.00e− 09 − − −
0.1 4.60e− 16 0.0025 − − 0.1 0.14999 1 − − 0.1 4.90e− 09 0.24349 − − 0.1 1.50e− 15 7.00e− 05 − − 0.1 8.70e− 14 0.5909 − −
0.5 1 9.90e− 06 2.80e− 12 − 0.5 0.96858 0.00066 2.00e− 05 − 0.5 2.90e− 11 0.00128 0.27788 − 0.5 8.80e− 07 1 0.00015 − 0.5 1 3.50e− 08 2.40e− 13 −
1.0 1 1.50e− 11 < 2e− 16 0.1832 1.0 0.01656 6.40e− 07 9.30e− 10 0.5942 1.0 0.00067 1 0.09979 0.00017 1.0 0.3466 0.03434 8.50e− 11 0.00894 1.0 0.3977 3.30e− 13 < 2e− 16 0.0043

RES Output 6. Low Quality. RES Output 6. Medium Quality. RES Output 6. High Quality. RES Output 7. Low Quality. RES Output 7. Medium Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 4.00e− 07 − − − 0.05 1.00e− 10 − − − 0.05 2.30e− 15 − − − 0.05 9.50e− 05 − − − 0.05 1.90e− 05 − − −
0.1 2.10e− 13 0.033 − − 0.1 5.10e− 10 1.00E + 00 − − 0.1 < 2e− 16 0.0817 − − 0.1 5.60e− 11 0.00339 − − 0.1 3.50e− 12 0.02105 − −
0.5 2.20e− 12 3.32e− 01 1.00E + 00 − 0.5 1.00E + 00 5.00e− 16 1.90e− 15 − 0.5 5.60e− 03 3.20e− 10 5.50e− 16 − 0.5 0.00306 1 1.30e− 05 − 0.5 2.60e− 06 1.00E + 00 1.90e− 04 −
1.0 1.00e− 06 1.00E + 00 0.013 0.16 1.0 0.00069 < 2e− 16 < 2e− 16 9.76e− 03 1.0 1 < 2e− 16 < 2e− 16 0.0063 1.0 1 1.10e− 05 1.10e− 13 0.00036 1.0 0.00219 1.12e− 01 3.30e− 09 0.03685

RES Output 7. High Quality. RES Output 8. Low Quality. RES Output 8. Medium Quality. RES Output 8. High Quality. RES Output 9. Low Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 2.30e− 08 − − − 0.05 0.19 − − − 0.05 0.3424 − − − 0.05 0.0817 − − − 0.05 2.4e− 09 − − −
0.1 < 2e− 16 0.00018 − − 0.1 1 1 − − 0.1 1 1 − − 0.1 5.05e− 01 1 − − 0.1 < 2e− 16 8.3e− 08 − −
0.5 1.67e− 03 0.03488 7.50e− 12 − 0.5 2.50e− 06 1.30e− 15 5.50e− 13 − 0.5 0.0082 9.20e− 07 2.70e− 07 − 0.5 1.00 6.30e− 06 0.0011 − 0.5 1.2e− 06 1 3.5e− 09 −
1.0 9.16e− 01 8.80e− 08 < 2e− 16 0.04204 1.0 3.40e− 10 < 2e− 16 < 2e− 16 0.11 1.0 3.30e− 07 3.50e− 12 4.70e− 14 0.0686 1.0 0.0087 7.30e− 11 7.80e− 08 0.0717 1.0 2.6e− 07 1.00 4.9e− 11 1.00

RES Output 9. Medium Quality. RES Output 9. High Quality. RES Output 10. Low Quality. RES Output 10. Medium Quality. RES Output 10. High Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.60e− 07 − − − 0.05 8.10e− 10 − − − 0.05 1.50e− 05 − − − 0.05 1 − − − 0.05 0.11482 − − −
0.1 < 2e− 16 4.70e− 09 − − 0.1 < 2e− 16 0.00018 − − 0.1 1.60e− 12 0.0618 − − 0.1 3.40e− 08 1.90e− 05 − − 0.1 0.00031 0.89248 − −
0.5 2.70e− 13 0.028 0.001 − 0.5 1.50e− 11 1 1.80e− 05 − 0.5 8.90e− 08 1 0.8518 − 0.5 0.0007 0.0841 0.0853 − 0.5 0.00543 1 1 −
1.0 2.40e− 10 1 1.10e− 06 0.86 1.0 7.90e− 10 1 4.90e− 08 1 1.0 0.0014 1 0.0032 0.4905 1.0 1.20e− 05 0.0025 1 1 1.0 0.02398 1 1 1

RES Output 11. Low Quality. RES Output 11. Medium Quality. RES Output 11. High Quality. RES Output 12. Low Quality. RES Output 12. Medium Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.20e− 03 − − − 0.05 5.80e− 08 − − − 0.05 3.00e− 05 − − − 0.05 2.20e− 05 − − − 0.05 1.70e− 10 − − −
0.1 1.60e− 11 9.90e− 04 − − 0.1 4.60e− 14 0.0984 − − 0.1 1.80e− 10 0.055 − − 0.1 7.30e− 09 1.00 − − 0.1 1.40e− 15 0.432 − −
0.5 1.50e− 07 0.57148 0.19056 − 0.5 4.10e− 09 1.00 0.0557 − 0.5 1.10e− 02 0.141 1.90e− 06 − 0.5 3.10e− 05 1 0.39 − 0.5 0.031 3.70e− 05 7.30e− 10 −
1.0 7.05e− 03 1 7.00e− 05 0.12913 1.0 3.40e− 05 1.00 0.0002 9.54e− 01 1.0 0.062 0.091 1.60e− 06 1 1.0 4.60e− 05 1 0.07 1 1.0 1 4.00e− 10 3.00e− 15 0.098

RES Output 12. High Quality.
0.01 0.05 0.1 0.5

0.05 2.90e− 07 − − −
0.1 < 2e− 16 5.80e− 05 − −
0.5 3.20e− 01 2.60e− 15 < 2e− 16 −
1.0 0.0047 < 2e− 16 < 2e− 16 0.3242
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Table D.14.: Pairwise Wilcoxon rank sum test unpaired with Bonferroni correction for assessing differences in perfor-
mance due to different α configurations, with different RES outputs. Evaluations corresponds to those in
Table C.8 where differences were significant. Micro-grid population is 4, 000.

RES Output 1. Low Quality RES Output 1. Medium Quality RES Output 1. High Quality RES Output 2. Low Quality RES Output 2. Medium Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.35e− 08 − − − 0.05 4.16e− 08 − − − 0.05 5.35e− 08 − − − 0.05 2.20e− 16 − − − 0.05 6.98e− 12 − − −
0.1 2.20e− 16 6.95e− 08 − − 0.1 2.20e− 16 1.50e− 09 − − 0.1 2.20e− 16 2.20e− 09 − − 0.1 2.20e− 16 2.06e− 15 − − 0.1 2.20e− 16 4.62e− 12 − −
0.5 2.20e− 16 2.20e− 16 5.12e− 04 − 0.5 2.20e− 16 2.03e− 14 5.05e− 01 − 0.5 2.20e− 16 5.25e− 07 1.00 − 0.5 2.20e− 16 4.90e− 02 4.73e− 11 − 0.5 6.27e− 16 4.99e− 01 8.61e− 11 −
1.0 2.20e− 16 8.45e− 06 1.00 6.62e− 07 1.0 2.20e− 16 2.37e− 05 2.46e− 02 9.42e− 07 1.0 1.21e− 11 7.39e− 01 4.49e− 06 8.04e− 06 1.0 2.20e− 16 4.37e− 02 2.18e− 13 1.00 1.0 1.20e− 12 8.61e− 01 2.21e− 16 7.55e− 05

RES Output 2. High Quality RES Output 3. Low Quality RES Output 3. Medium Quality RES Output 3. High Quality RES Output 4. Low Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.21e− 13 − − − 0.05 2.91e− 15 − − − 0.05 2.20e− 16 − − − 0.05 8.59e− 13 − − − 0.05 1.57e− 05 − − −
0.1 2.20e− 16 1.65e− 05 − − 0.1 2.20e− 16 7.33e− 02 − − 0.1 2.20e− 16 1.00 − − 0.1 2.20e− 16 8.05e− 03 − − 0.1 6.99e− 07 1.00 − −
0.5 2.20e− 16 3.95e− 01 2.66e− 09 − 0.5 3.34e− 11 5.37e− 02 3.14e− 10 − 0.5 2.20e− 16 3.23e− 05 5.96e− 10 − 0.5 2.20e− 16 2.31e− 01 9.91e− 02 − 0.5 1.00 1.02e− 09 5.09e− 16 −
1.0 2.20e− 16 4.86e− 02 3.70e− 10 1.00 1.0 7.16e− 08 2.66e− 10 2.20e− 16 1.59e− 05 1.0 5.15e− 11 4.91e− 13 2.20e− 16 9.81e− 05 1.0 5.67e− 15 1.00 9.29e− 07 6.92e− 03 1.0 1.00 3.64e− 15 2.20e− 16 1.20e− 02

RES Output 4. Medium Quality RES Output 4. High Quality RES Output 5. Low Quality RES Output 5. Medium Quality RES Output 5. High Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 2.20e− 16 − − − 0.05 1.11e− 05 − − − 0.05 2.20e− 16 − − − 0.05 2.20e− 16 − − − 0.05 7.55e− 16 − − −
0.1 2.20e− 16 1.72e− 03 − − 0.1 2.48e− 01 3.70e− 01 − − 0.1 2.20e− 16 1.67e− 08 − − 0.1 2.20e− 16 3.62e− 07 − − 0.1 2.20e− 16 5.50e− 10 − −
0.5 2.15e− 03 2.78e− 12 2.20e− 16 − 0.5 3.28e− 01 1.73e− 08 3.29e− 11 − 0.5 2.20e− 16 1.02e− 13 8.18e− 09 − 0.5 1.46e− 10 1.00 4.22e− 12 − 0.5 8.53e− 02 1.52e− 09 2.20e− 16 −
1.0 1.00 2.20e− 16 2.20e− 16 2.97e− 05 1.0 1.58e− 03 6.90e− 11 2.20e− 16 1.17e− 02 1.0 1.55e− 08 1.00 3.58e− 04 8.13e− 13 1.0 3.25e− 04 1.93e− 06 2.20e− 16 5.63e− 03 1.0 1.50e− 03 2.20e− 16 2.20e− 16 3.70e− 09

RES Output 6. Low Quality RES Output 6. Medium Quality RES Output 6. High Quality RES Output 7. Low Quality RES Output 7. Medium Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 7.49e− 10 − − − 0.05 5.18e− 14 − − − 0.05 2.20e− 16 − − − 0.05 4.90e− 07 − − − 0.05 1.45e− 07 − − −
0.1 2.20e− 16 6.02e− 06 − − 0.1 3.29e− 16 1.00 − − 0.1 2.20e− 16 2.81e− 07 − − 0.1 2.20e− 16 4.52e− 04 − − 0.1 1.14e− 15 1.04e− 04 − −
0.5 2.20e− 16 5.87e− 04 1.00 − 0.5 4.54e− 02 2.20e− 16 2.20e− 16 − 0.5 5.07e− 04 2.20e− 16 2.20e− 16 − 0.5 1.42e− 08 1.00 1.01e− 05 − 0.5 4.83e− 09 1.00 1.55e− 05 −
1.0 4.56e− 13 1.00 6.55e− 11 7.37e− 08 1.0 1.11e− 06 2.20e− 16 2.20e− 16 8.59e− 13 1.0 1.00 2.20e− 16 2.20e− 16 1.32e− 15 1.0 1.00 1.93e− 06 2.20e− 16 2.06e− 09 1.0 3.83e− 02 2.92e− 04 7.93e− 14 7.55e− 05

RES Output 7. High Quality RES Output 8. Low Quality RES Output 8. Medium Quality RES Output 8. High Quality RES Output 9. Low Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 7.63e− 12 − − − 0.05 4.48e− 03 − − − 0.05 4.97e− 04 − − − 0.05 8.84e− 04 − − − 0.05 2.20e− 16 − − −
0.1 2.20e− 16 1.27e− 08 − − 0.1 1.00 1.34e− 01 − − 0.1 2.38e− 02 1.00 − − 0.1 8.57e− 04 1.00 − − 0.1 2.20e− 16 2.20e− 16 − −
0.5 4.76e− 04 1.70e− 04 2.20e− 16 − 0.5 4.93e− 05 2.20e− 16 2.20e− 16 − 0.5 2.29e− 06 4.62e− 12 6.53e− 15 − 0.5 9.39e− 01 4.09e− 05 1.18e− 08 − 0.5 5.35e− 08 2.04e− 08 2.20e− 16 −
1.0 1.00 2.20e− 16 2.20e− 16 3.53e− 09 1.0 4.41e− 11 2.20e− 16 2.20e− 16 4.00e− 12 1.0 1.91e− 11 2.20e− 16 2.20e− 16 1.09e− 11 1.0 2.07e− 03 6.66e− 15 2.20e− 16 4.62e− 12 1.0 1.08e− 06 2.73e− 12 2.20e− 16 1.00

RES Output 9. Medium Quality RES Output 9. High Quality RES Output 10. Low Quality RES Output 10. Medium Quality RES Output 10. High Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.16e− 14 − − − 0.05 4.35e− 14 − − − 0.05 1.55e− 08 − − − 0.05 3.69e− 03 − − − 0.05 1.16e− 09 − − −
0.1 2.20e− 16 3.12e− 14 − − 0.1 2.20e− 16 1.60e− 09 − − 0.1 2.20e− 16 1.20e− 07 − − 0.1 2.20e− 16 2.40e− 08 − − 0.1 2.20e− 16 2.01e− 06 − −
0.5 2.20e− 16 1.00 2.20e− 16 − 0.5 8.00e− 10 1.42e− 02 2.20e− 16 − 0.5 2.76e− 05 1.00 8.75e− 04 − 0.5 2.46e− 03 1.00 1.86e− 05 − 0.5 6.62e− 03 8.79e− 01 8.23e− 07 −
1.0 9.43e− 13 1.07e− 01 2.20e− 16 2.98e− 01 1.0 1.48e− 06 6.81e− 05 2.20e− 16 6.21e− 01 1.0 3.74e− 02 1.00 5.39e− 09 4.29e− 01 1.0 1.00 1.00 4.10e− 08 3.59e− 01 1.0 1.00 1.08e− 06 1.02e− 13 1.91e− 02

RES Output 11. Low Quality RES Output 11. Medium Quality RES Output 11. High Quality RES Output 12. Low Quality RES Output 12. Medium Quality

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 1.67e− 07 − − − 0.05 2.20e− 16 − − − 0.05 1.24e− 12 − − − 0.05 1.94e− 09 − − − 0.05 2.20e− 16 − − −
0.1 2.20e− 16 1.39e− 05 − − 0.1 2.20e− 16 1.09e− 04 − − 0.1 2.20e− 16 3.78e− 11 − − 0.1 1.03e− 11 1.00 − − 0.1 2.20e− 16 1.69e− 05 − −
0.5 1.60e− 09 1.00 4.29e− 04 − 0.5 2.20e− 16 1.00 2.48e− 08 − 0.5 1.01e− 06 2.44e− 02 2.20e− 16 − 0.5 7.16e− 08 1.00 1.00 − 0.5 2.07e− 04 2.75e− 08 2.20e− 16 −
1.0 1.19e− 02 1.19e− 02 4.23e− 10 2.92e− 04 1.0 1.64e− 13 8.65e− 01 2.42e− 09 1.00 1.0 4.07e− 04 1.65e− 05 2.20e− 16 4.68e− 01 1.0 6.91e− 06 1.80e− 01 2.10e− 02 1.00 1.0 5.49e− 02 2.20e− 16 2.20e− 16 1.63e− 11

RES Output 12. High Quality

0.01 0.05 0.1 0.5

0.05 2.20e− 16 − − −
0.1 2.20e− 16 1.01e− 14 − −
0.5 3.08e− 04 2.20e− 16 2.20e− 16 −
1.0 2.64e− 13 2.20e− 16 2.20e− 16 1.07e− 05
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Table D.15.: Pairwise Wilcoxon rank sum test unpaired with Bonferroni correction for assessing differences in performance due to
different α configurations, with different RES outputs. Evaluations corresponds to those in Table C.9 where differences
were significant. Micro-grid population is 40, 000.

RES Output 1. Low Quality. RES Output 1. Medium Quality. RES Output 1. High Quality. RES Output 2. Low Quality. RES Output2. Medium Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 4.50e− 08 − − − 0.05 8.80e− 08 − − − 0.05 6.00e− 08 − − − 0.05 < 2e− 16 − − − 0.05 3.20e− 14 − − −
0.1 < 2e− 16 6.30e− 10 − − 0.1 < 2e− 16 1.10e− 10 − − 0.1 < 2e− 16 2.30e− 09 − − 0.1 < 2e− 16 < 2e− 16 − − 0.1 < 2e− 16 3.40e− 12 − −
0.5 < 2e− 16 < 2e− 16 0.00027 − 0.5 < 2e− 16 < 2e− 16 0.678 − 0.5 < 2e− 16 2.30e− 06 1 − 0.5 < 2e− 16 0.083 1.30e− 12 − 0.5 < 2e− 16 1 4.60e− 11 −
1.0 < 2e− 16 2.20e− 04 0.86522 8.70e− 10 1.0 < 2e− 16 1.10e− 06 2.00e− 03 3.30e− 08 1.0 1.30e− 13 2.88e− 01 7.10e− 05 0.00012 1.0 < 2e− 16 0.584 < 2e− 16 1 1.0 5.10e− 14 3.10e− 02 < 2e− 16 1.00e− 05

RES Output 2. High Quality. RES Output 3. Low Quality. RES Output 3. Medium Quality. RES Output 3. High Quality. RES Output 4. Low Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 2.5e− 14 − − − 0.05 1.2e− 14 − − − 0.05 < 2e− 16 − − − 0.05 5.10e− 12 − − − 0.05 0.0001 − − −
0.1 < 2e− 16 3.7e− 05 − − 0.1 7.1e− 15 0.035 − − 0.1 < 2e− 16 1 − − 0.1 < 2e− 16 3.70e− 03 − − 0.1 8.10e− 06 1 − −
0.5 < 2e− 16 0.0829 4.0e− 11 − 0.5 2.8e− 11 0.357 3.8e− 16 − 0.5 < 2e− 16 3.50e− 09 < 2e− 16 − 0.5 < 2e− 16 8.47e− 02 0.0647 − 0.5 1 3.10e− 09 < 2e− 16 −
1.0 < 2e− 16 0.0072 3.4e− 10 0.1460 1.0 2.0e− 09 1.1e− 06 < 2e− 16 4.2e− 05 1.0 6.50e− 14 < 2e− 16 < 2e− 16 7.10e− 10 1.0 1.90e− 15 1.00 5.80e− 08 0.0004 1.0 0.9934 1.20e− 14 < 2e− 16 0.0021

RES Output 4. Medium Quality. RES Output 4. High Quality. RES Output 5. Low Quality. RES Output 5. Meidum Quality. RES Output 5. High Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 < 2e− 16 − − − 0.05 3.0e− 07 − − − 0.05 < 2e− 16 − − − 0.05 < 2e− 16 − − − 0.05 < 2e− 16 − − −
0.1 < 2e− 16 0.0041 − − 0.1 0.5588 0.1239 − − 0.1 < 2e− 16 3.1e− 09 − − 0.1 < 2e− 16 1.0e− 06 − − 0.1 < 2e− 16 5.4e− 11 − −
0.5 0.0028 2.6e− 16 < 2e− 16 − 0.5 0.1181 1.4e− 08 1.1e− 11 − 0.5 < 2e− 16 3.6e− 13 1.5e− 11 − 0.5 6.5e− 13 1.000 1.0e− 11 − 0.5 0.0295 1.9e− 10 < 2e− 16 −
1.0 1 < 2e− 16 < 2e− 16 2.5e− 05 1.0 0.0017 1.6e− 10 < 2e− 16 0.0282 1.0 7.6e− 09 1 0.00071 1.6e− 15 1.0 6.9e− 07 3.4e− 06 < 2e− 16 0.014 1.0 0.0092 < 2e− 16 < 2e− 16 1.4e− 09

RES Output 6. Low Quality. RES Output 6. Medium Quality. RES Output 6. High Quality. RES Output 7. Low Quality. RES Output 7. Medium Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 4.4e− 11 − − − 0.05 7.7e− 15 − − − 0.05 < 2e− 16 − − − 0.05 1.4e− 06 − − − 0.05 3.8e− 07 − − −
0.1 < 2e− 16 3.9e− 07 − − 0.1 1.4e− 15 1.000 − − 0.1 < 2e− 16 2.5e− 10 − − 0.1 < 2e− 16 1.00 − − 0.1 7.0e− 16 0.00014 − −
0.5 < 2e− 16 2.5e− 05 1 − 0.5 0.072 < 2e− 16 < 2e− 16 − 0.5 0.02 < 2e− 16 < 2e− 16 − 0.5 1.4e− 08 1.00 9.2e− 06 − 0.5 2.6e− 09 100.000 0.00011 −
1.0 < 2e− 16 1 4.3e− 12 1.1e− 11 1.0 6.0e− 07 < 2e− 16 < 2e− 16 < 2e− 16 1.0 1.00 < 2e− 16 < 2e− 16 < 2e− 16 1.0 1.00 1.2e− 06 < 2e− 16 4.5e− 10 1.0 0.07823 0.00107 7.8e− 14 0.00010

RES Output 7. High Quality. RES Output 8. Low Quality. RES Output 8. Medium Quality. RES Output 8. High Quality. RES Output 9. Low Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 4.2e− 12 − − − 0.05 0.00224 − − − 0.05 8.5e− 06 − − − 0.05 0.00025 − − − 0.05 < 2e− 16 − − −
0.1 < 2e− 16 1.9e− 06 − − 0.1 100.000 0.26431 − − 0.1 0.0021 0.7468 − − 0.1 0.00098 100.000 − − 0.1 < 2e− 16 < 2e− 16 − −
0.5 0.0012 3.5e− 07 < 2e− 16 − 0.5 0.00018 < 2e− 16 < 2e− 16 − 0.5 8.4e− 09 1.8e− 12 1.3e− 15 − 0.5 0.27961 0.00327 3.3e− 05 − 0.5 5.7e− 08 1.6e− 12 < 2e− 16 −
1.0 0.2660 < 2e− 16 < 2e− 16 1.3e− 09 1.0 1.2e− 09 < 2e− 16 < 2e− 16 4.1e− 16 1.0 2.3e− 12 9.3e− 16 < 2e− 16 < 2e− 16 1.0 0.01448 < 2e− 16 < 2e− 16 < 2e− 16 1.0 5.9e− 06 7.7e− 15 < 2e− 16 1

RES Output 9. Medium Quality. RES Output 9. High Quality. RES Output 10. Low Quality. RES Output 10. Medium Quality. RES Output 10. High Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 < 2e− 16 − − − 0.05 2.7e− 14 − − − 0.05 4.0e− 11 − − − 0.05 5.9e− 07 − − − 0.05 4.1e− 12 − − −
0.1 < 2e− 16 2.1e− 15 − − 0.1 < 2e− 16 1.4e− 10 − − 0.1 < 2e− 16 6.1e− 07 − − 0.1 < 2e− 16 1.4e− 08 − − 0.1 < 2e− 16 9.4e− 08 − −
0.5 < 2e− 16 100.000 < 2e− 16 − 0.5 3.3e− 11 0.0058 < 2e− 16 − 0.5 1.3e− 05 0.771 0.013 − 0.5 0.0062 10.000 9.6e− 06 − 0.5 0.0076 1 4.3e− 07 −
1.0 2.2e− 12 0.00094 < 2e− 16 0.00181 1.0 5.1e− 07 1.3e− 05 < 2e− 16 0.3031 1.0 0.068 1.000 1.9e− 08 0.239 1.0 10.000 0.0020 2.3e− 10 0.0060 1.0 0.0727 3.9e− 08 4.6e− 15 0.0010

RES Output 11. Low Quality. RES Output 11. Medium Quality. RES Output 11. High Quality. RES Output 12. Low Quality. RES Output 12. Medium Quality.

0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

0.05 4.8e− 10 − − − 0.05 < 2e− 16 − − − 0.05 < 2e− 16 − − − 0.05 4.0e− 11 − − − 0.05 < 2e− 16 − − −
0.1 < 2e− 16 6.9e− 07 − − 0.1 < 2e− 16 1.7e− 09 − − 0.1 < 2e− 16 1.7e− 15 − − 0.1 4.5e− 13 1.00 − − 0.1 < 2e− 16 1.4e− 06 − −
0.5 3.5e− 12 10.000 3.7e− 06 − 0.5 < 2e− 16 1.000 9.8e− 13 − 0.5 7.4e− 13 0.0019 < 2e− 16 − 0.5 1.7e− 07 1 0.9735 − 0.5 0.00039 2.1e− 12 < 2e− 16 −
1.0 0.0089 0.0022 7.4e− 11 6.9e− 06 1.0 < 2e− 16 0.429 < 2e− 16 0.077 1.0 2.4e− 11 9.1e− 10 < 2e− 16 0.4766 1.0 1.3e− 06 0.2314 0.0069 1 1.0 2.9e− 05 < 2e− 16 < 2e− 16 < 2e− 16

RES Output 12. High Quality.
0.01 0.05 0.1 0.5

0.05 < 2e− 16 − − −
0.1 < 2e− 16 1.1e− 15 − −
0.5 0.00052 < 2e− 16 < 2e− 16 −
1.0 < 2e− 16 < 2e− 16 < 2e− 16 1.1e− 10
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Table D.16.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing scalability between SLC, CLP and
NLC. Evaluations corresponds to those in Table C.10 where differences are significant. Continues in Table D.17.

RES Output 1. 40 Households RES Output 1. 400 Households RES Output 1. 4.000 Households RES Output 1. 40.000 Households RES Output 2. 40 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 2. 400 Households RES Output 2. 4.000 Households RES Output 2. 40.000 Households RES Output 3. 40 Households RES Output 3. 400 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 3. 4.000 Households RES Output 3. 40.000 Households RES Output 4. 40 Households RES Output 4. 400 Households RES Output 4. 4.000 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 4. 40.000 Households RES Output 5. 40 Households RES Output 5. 400 Households RES Output 5. 4.000 Households RES Output 5. 40.000 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 6. 40 Households RES Output 6. 400 Households RES Output 6. 4.000 Households RES Output 6. 40.000 Households RES Output 7. 40 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

229



D
.

Post-H
oc

A
nalysis

Table D.17.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing scalability between SLC, CLP and
NLC. Evaluations corresponds to those in Table C.10 where differences are significant. Continuation from Table D.16.

RES Output 7. 400 Households RES Output 7. 4.000 Households RES Output 7. 40.000 Households RES Output 8. 40 Households RES Output 8. 400 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 8. 4.000 Households RES Output8. 40.000 Households RES Output 9. 40 Households RES Output 9. 400 Households RES Output 9. 4.000 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 9. 40.000 Households RES Output 10. 40 Households RES Output 10. 400 Households RES Output 10. 4.000 Households RES Output 5. 40.000 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 11. 40 Households RES Output 11. 400 Households RES Output 11. 4.000 Households RES Output 11. 40.000 Households RES Output 12. 40 Households

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

RES Output 12. 400 Households RES Output 12. 4.000 Households RES Output 12. 40.000 Households

CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16 SLC 2.20e− 16 2.20e− 16

230



Table D.18.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing the effect of dynamism in the
performance of SLC, CLP and NLC. Evaluations corresponds to those in Table C.11 where differences are significant.
Continues in Table D.19.

RES Output 1. Low Quality RES Output 1. Medium Quality RES Output 1.High Quality RES Output 2. Low Quality RES Output 2. Medium Quality

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 5.9e− 12 2.2e− 16 SLC 6.3e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 1.5e− 09

RES Output 2. High Quality RES Output 3. Low Quality RES Output 3. Medium Quality RES Output 3. High Quality RES Output 4. Low Quality

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 1.7e− 11 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 4. Medium Quality RES Output 4. High Quality RES Output 5. Low Quality RES Output 5. Medium Quality RES Output 5. High Flexibility

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 3.0e− 01 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 6. Low Quality RES Output 6. Medium Quality RES Output 6.High Quality RES Output 7. Low Quality RES Output 7. Medium Quality

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.8e− 07 2.2e− 16
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Table D.19.: Pairwise Wilcoxon rank-sum test unpaired with Bonferroni correction for assessing the effect of dynamism in the
performance of SLC, CLP and NLC. Evaluations corresponds to those in Table C.11 where differences are significant.
Continuation from Table D.19.

RES Output 7. High Quality RES Output 8. Low Quality RES Output 8. Medium Quality RES Output 8. High Quality RES Output 9. Low Quality

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 1.8e− 13 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 9. Medium Quality RES Output 9. High Quality RES Output 10. Low Quality RES Output 10. Medium Quality RES Output 10. High Flexibility

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 2.2e− 16 2.2e− 16 SLC 3.1e− 14 2.2e− 16 SLC 1.4e− 13 2.2e− 16 SLC 2.2e− 16 6.2e− 16 SLC 2.2e− 16 2.9e− 13

RES Output 11. Low Quality RES Output 11. Medium Quality RES Output 11.High Quality RES Output 12. Low Quality RES Output 12. Medium Quality

CLP NLC CLP NLC CLP NLC CLP NLC CLP NLC

NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 − NLC 2.20e− 16 −
SLC 9.8e− 06 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 2.2e− 16 2.2e− 16 SLC 4.7e− 02 2.2e− 16 SLC 2.2e− 16 2.2e− 16

RES Output 12. High Quality

CLP NLC

NLC 2.20e− 16 −
SLC 2.2e− 16 2.2e− 16
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Table D.20.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing signif-
icant differences as a consequence of different population sizes within groups specified in Table C.13 for each RES
output. Continues in Table D.21.

RES Output 1

α = 1.0 α = 0.5 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − −
4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 1.0 −
40.000 6.5e− 05 6.5e− 05 1.0 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 2.1e− 01 1.2e− 03

RES Output 2

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − −
4.000 6.5e− 05 7.8e− 04 − 4.000 6.5e− 05 6.3e− 03 − 4.000 6.5e− 05 2.6e− 04 − 4.000 6.5e− 05 6.3e− 03 − 4.000 6.5e− 05 2.3e− 02 − 4.000 6.5e− 05 1.0 −
40.000 6.5e− 05 1.3e− 04 6.3e− 01 40.000 6.5e− 05 1.9e− 03 1.0 40.000 6.5e− 05 6.5e− 05 1.0 40.000 6.5e− 05 4.4e− 03 1.0 40.000 6.5e− 05 9.0e− 03 1.0 40.000 6.5e− 05 1.0 2.6e− 04

RES Output 3

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.5e− 05 − − 400 2.6e− 04 − − 400 6.5e− 05 − − 400 1.3e− 04 − − 400 6.5e− 05 − − 400 1.7e− 02 − −
4.000 6.5e− 05 1.0 − 4.000 6.5e− 05 1.0 − 4.000 6.5e− 05 2.1e− 01 − 4.000 6.5e− 05 1.0 − 4.000 6.5e− 05 1.0 − 4.000 9.0e− 03 1.0 −
40.000 6.5e− 05 1.0 1.3e− 04 40.000 6.5e− 05 1.0 1.0 40.000 6.5e− 05 1.0 4.5e− 01 40.000 6.5e− 05 1.0 1.0 40.000 6.5e− 05 1.0 2.6e− 01 40.000 9.0e− 03 1.0 6.3e− 03

RES Output 4

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 1.2e− 03 − − 400 6.5e− 05 − − 400 4.1e− 02 − − 400 6.5e− 05 − − 400 1.2e− 03 − − 400 1.7e− 01 − −
4.000 6.5e− 05 5.4e− 02 − 4.000 6.5e− 05 1.4e− 01 − 4.000 1.3e− 02 9.9e− 01 − 4.000 6.5e− 05 1.0 − 4.000 1.3e− 04 1.0 − 4.000 1.0 3.8e− 01 −
40.000 6.5e− 05 1.7e− 02 1.0 40.000 6.5e− 05 1.4e− 01 6.3e− 01 40.000 2.3e− 02 1.0 5.4e− 01 40.000 6.5e− 05 1.0 2.6e− 01 40.000 6.5e− 05 1.0 1.0 40.000 1.0 9.0e− 03 1.7e− 02

RES Output 5

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − − 400 6.5e− 05 − −
4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 6.5e− 05 − 4.000 6.5e− 05 3.1e− 01 −
40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 6.5e− 05 6.5e− 05 40.000 6.5e− 05 1.4e− 01 6.5e− 05

RES Output 6

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 1.39e− 01 − − 400 4.10e− 02 − − 400 3.78e− 01 − − 400 4.35e− 03 − − 400 4.10e− 02 − − 400 2.13e− 01 − −
4.000 3.12e− 02 2.13e− 01 − 4.000 1.95e− 03 1.00 − 4.000 4.52e− 01 1.00 − 4.000 6.50e− 05 1.00 − 4.000 4.35e− 03 1.00 − 4.000 8.59e− 01 1.25e− 02 −
40.000 9.03e− 03 1.39e− 01 2.60e− 01 40.000 2.92e− 03 9.93e− 01 1.00 40.000 2.60e− 01 1.00 1.00 40.000 6.50e− 05 1.00 1.00 40.000 2.33e− 02 1.00 6.31e− 01 40.000 8.59e− 01 9.03e− 03 2.60e− 04
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Table D.21.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing signif-
icant differences as a consequence of different population sizes within groups specified in Table C.13 for each RES
output. Continuation from Table D.20.

RES Output 7

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − −
4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 1.00 −
40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 1.00 1.11e− 01

RES Output 8

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 4.10e− 02 − − 400 1.39e− 01 − − 400 1.11e− 01 − − 400 1.00 − − 400 7.38e− 01 − − 400 1.00 − −
4.000 9.03e− 03 6.31e− 01 − 4.000 1.95e− 03 1.00 − 4.000 1.39e− 01 8.59e− 01 − 4.000 1.00 1.00 − 4.000 8.59e− 01 1.00 − 4.000 1.00 1.39e− 01 −
40.000 9.03e− 03 8.59e− 01 1.00 40.000 2.60e− 04 1.00 1.00 40.000 1.39e− 01 8.59e− 01 1.00 40.000 1.00 1.00 1.00 40.000 8.59e− 01 3.15e− 01 1.00 40.000 8.59e− 01 1.11e− 01 1.00

RES Output 9

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − −
4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 9.03e− 03 −
40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 2.92e− 03 40.000 6.50e− 05 6.50e− 05 2.33e− 02 40.000 6.50e− 05 4.10e− 02 1.73e− 02

RES Output 10

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 1.30e− 04 − − 400 2.92e− 03 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − −
4.000 6.50e− 05 1.00 − 4.000 6.50e− 05 6.90e− 02 − 4.000 6.50e− 05 1.00 − 4.000 6.50e− 05 1.00 − 4.000 6.50e− 05 1.00 − 4.000 6.50e− 05 1.00 −
40.000 6.50e− 05 1.00 1.00 40.000 6.50e− 05 1.73e− 02 1.00 40.000 6.50e− 05 8.59e− 01 1.00 40.000 6.50e− 05 8.59e− 01 1.00 40.000 6.50e− 05 1.00 6.31e− 01 40.000 6.50e− 05 1.00 1.11e− 01

RES Output 11

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − −
4.000 6.50e− 05 2.60e− 04 − 4.000 6.50e− 05 4.55e− 04 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 1.00 −
40.000 6.50e− 05 6.50e− 05 8.59e− 01 40.000 6.50e− 05 6.50e− 05 7.38e− 01 40.000 6.50e− 05 6.50e− 05 1.00 40.000 6.50e− 05 6.50e− 05 1.11e− 01 40.000 6.50e− 05 6.50e− 05 6.90e− 02 40.000 6.50e− 05 1.00 8.59e− 01

RES Output 12

α = 1.0 α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.0

40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000 40 400 4.000

400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − − 400 6.50e− 05 − −
4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.50e− 05 − 4.000 6.50e− 05 6.30e− 03 −
40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 6.50e− 05 6.50e− 05 40.000 6.50e− 05 1.00 6.50e− 05
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Table D.22.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing signif-
icant differences as a consequence of different α configurations within groups specified in Table C.14 for each RES
output. Continues in Table D.23.

RES Output 1

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 5.8e− 02 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 2.3e− 02 − − − 0.05 1.6e− 04 1.6e− 04 − − −
0.1 6.5e− 04 1.0 1.0 − − 0.1 1.6e− 04 1.0 1.0 − − 0.1 1.6e− 04 5.8e− 02 1.0 − − 0.1 1.6e− 04 1.6e− 04 6.5e− 04 − −
0.5 1.0e− 01 1.1e− 02 1.0 1.0e− 01 − 0.5 1.6e− 04 1.1e− 02 3.2e− 04 2.3e− 02 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 1.0 7.3e− 03 1.0 2.3e− 02 1.0 1.0 1.6e− 04 1.9e− 03 1.6e− 04 3.2e− 04 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.1e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04

RES Output 2

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 5.8e− 02 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.0 5.3e− 01 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − −
0.1 1.0 5.8e− 02 1.0 − − 0.1 1.6e− 04 9.5e− 01 2.2e− 01 − − 0.1 1.6e− 04 1.0 1.0 − − 0.1 1.6e− 04 1.3e− 01 2.8e− 01 − −
0.5 7.9e− 01 6.5e− 04 3.5e− 01 9.5e− 01 − 0.5 1.6e− 04 1.3e− 01 1.6e− 02 1.0 − 0.5 1.6e− 04 3.1e− 03 6.5e− 04 6.5e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 3.5e− 01 3.2e− 04 1.3e− 01 1.0e− 01 1.0 1.0 6.5e− 04 1.9e− 03 6.5e− 04 7.8e− 02 1.3e− 01 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.0e− 01 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 4.9e− 03

RES Output 3

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.0 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.0 1.0 − − − 0.05 3.2e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − −
0.1 1.0 1.0 1.0 − − 0.1 3.2e− 04 1.0 1.0 − − 0.1 1.6e− 04 1.0 1.0 − − 0.1 1.6e− 04 1.0 1.0 − −
0.5 1.0 1.0 1.0 1.0 − 0.5 1.1e− 02 5.3e− 01 1.0 1.0 − 0.5 1.6e− 04 1.0e− 01 1.7e− 01 5.8e− 02 − 0.5 1.6e− 04 3.2e− 04 1.6e− 04 1.6e− 04 −
1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3e− 02 2.2e− 01 5.3e− 01 1.0 1.0 1.0 1.6e− 04 6.5e− 04 3.1e− 03 1.9e− 03 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04

RES Output 4

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.3e− 01 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.0 5.3e− 01 − − − 0.05 3.2e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − −
0.1 1.0 1.0 1.0 − − 0.1 1.1e− 03 1.0 1.0 − − 0.1 1.6e− 04 1.0 1.0 − − 0.1 1.6e− 04 1.0 1.0 − −
0.5 1.0 1.3e− 01 1.0 1.0 − 0.5 4.9e− 03 4.3e− 02 1.3e− 01 1.0 − 0.5 1.6e− 04 1.9e− 03 6.5e− 04 1.6e− 02 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 6.5e− 04 −
1.0 1.0 4.9e− 03 4.3e− 01 5.3e− 01 1.0 1.0 1.0 1.6e− 04 1.1e− 03 1.6e− 02 1.0 1.0 1.6e− 04 3.2e− 04 1.6e− 04 6.5e− 04 4.3e− 02 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04

RES Output 5

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.9e− 03 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 2.8e− 01 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 2.3e− 02 − − − 0.05 1.6e− 04 3.2e− 04 − − −
0.1 7.9e− 01 1.0 1.0 − − 0.1 1.6e− 04 5.3e− 01 1.0 − − 0.1 1.6e− 04 1.6e− 04 6.5e− 01 − − 0.1 1.6e− 04 1.6e− 04 3.1e− 02 − −
0.5 1.0 1.6e− 04 1.9e− 03 3.1e− 02 − 0.5 1.6e− 04 1.6e− 04 1.6e− 02 4.9e− 03 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 1.0 1.6e− 04 6.5e− 04 7.8e− 02 1.0 1.0 2.3e− 02 1.6e− 04 1.6e− 04 1.6e− 04 1.1e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 4.9e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04

RES Output 6

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.9e− 03 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 2.8e− 01 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 2.3e− 02 − − − 0.05 1.6e− 04 3.2e− 04 − − −
0.1 7.9e− 01 1.0 1.0 − − 0.1 1.6e− 04 5.3e− 01 1.0 − − 0.1 1.6e− 04 1.6e− 04 6.5e− 01 − − 0.1 1.6e− 04 1.6e− 04 3.1e− 02 − −
0.5 1.0 1.6e− 04 1.9e− 03 3.1e− 02 − 0.5 1.6e− 04 1.6e− 04 1.6e− 02 4.9e− 03 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 1.0 1.6e− 04 6.5e− 04 7.8e− 02 1.0 1.0 2.3e− 02 1.6e− 04 1.6e− 04 1.6e− 04 1.1e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 4.9e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04
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Table D.23.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing signif-
icant differences as a consequence of different α configurations within groups specified in Table C.14 for each RES
output. Continuation from Table D.22.

RES Output 7

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.0e− 01 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.3e− 01 1.0 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 2.2e− 01 − − − 0.05 1.6e− 04 5.3e− 01 − − −
0.1 1.6e− 02 1.0 1.0 − − 0.1 1.6e− 04 1.7e− 01 9.5e− 01 − − 0.1 1.6e− 04 4.3e− 02 1.7e− 01 − − 0.1 1.6e− 04 6.5e− 04 1.1e− 02 − −
0.5 1.0 1.0 3.5e− 01 2.8e− 01 − 0.5 1.6e− 04 1.1e− 03 1.9e− 03 5.8e− 02 − 0.5 1.6e− 04 1.6e− 04 3.2e− 04 7.3e− 03 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 1.0 2.3e− 02 1.1e− 02 1.6e− 04 1.0 1.0 3.1e− 03 1.6e− 04 1.6e− 04 1.6e− 04 4.3e− 01 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.3e− 01 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 4.9e− 03

RES Output 8

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.0 − − − − 0.01 1.0 − − − − 0.01 3.1e− 02 − − − − 0.01 3.2e− 04 − − − −
0.05 1.0 1.0 − − − 0.05 1.0 1.0 − − − 0.05 1.0 4.3e− 01 − − − 0.05 1.1e− 03 1.0 − − −
0.1 6.5e− 01 1.0 1.0 − − 0.1 1.0 1.0 1.0 − − 0.1 1.0 7.9e− 01 1.0 − − 0.1 1.1e− 03 5.3e− 01 1.0 − −
0.5 5.8e− 02 1.0 1.0 1.0 − 0.5 1.0e− 01 1.7e− 01 1.0 5.8e− 02 − 0.5 1.3e− 01 1.6e− 04 5.8e− 02 4.3e− 02 − 0.5 4.3e− 02 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 3.1e− 03 1.7e− 01 2.8e− 01 1.0 7.9e− 01 1.0 3.1e− 03 7.3e− 03 3.1e− 02 1.1e− 02 7.9e− 01 1.0 3.1e− 02 3.2e− 04 7.3e− 03 7.3e− 03 7.9e− 01 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 6.5e− 04

RES Output 9

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 7.3e− 03 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 2.2e− 01 − − − 0.05 1.6e− 04 1.0 − − − 0.05 1.6e− 04 1.0 − − −
0.1 3.1e− 03 1.0 4.3e− 01 − − 0.1 1.6e− 04 5.8e− 02 1.0 − − 0.1 1.6e− 04 4.3e− 01 1.0 − − 0.1 1.6e− 04 1.0 1.0 − −
0.5 7.3e− 03 1.0 3.1e− 02 1.0 − 0.5 1.6e− 04 1.6e− 04 1.9e− 03 1.9e− 03 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 5.8e− 02 3.5e− 01 1.1e− 02 1.0 1.0 1.0 1.6e− 04 1.6e− 04 6.5e− 04 6.5e− 04 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 7.8e− 02 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04

RES Output 10

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 1.0 − − − − 0.01 3.2e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.0 1.0 − − − 0.05 2.2e− 01 5.3e− 01 − − − 0.05 1.6e− 04 3.1e− 02 − − − 0.05 1.6e− 04 1.6e− 04 − − −
0.1 1.3e− 01 1.0 1.0 − − 0.1 7.3e− 03 7.8e− 02 1.0 − − 0.1 1.6e− 04 3.1e− 02 9.5e− 01 − − 0.1 1.6e− 04 1.6e− 04 3.2e− 04 − −
0.5 1.0 1.0 1.0 1.0 − 0.5 1.0 1.1e− 03 1.0 1.7e− 01 − 0.5 1.6e− 04 1.6e− 04 6.5e− 04 3.1e− 02 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 9.5e− 01 1.0 1.0 1.0 1.0 1.0 1.0 1.9e− 03 1.0 1.0 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 3.1e− 03 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.1e− 03

RES Output 11

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 5.3e− 01 − − − − 0.01 6.5e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 9.5e− 01 1.0 − − − 0.05 7.3e− 03 1.0 − − − 0.05 1.6e− 04 6.5e− 01 − − − 0.05 1.6e− 04 1.6e− 04 − − −
0.1 1.0 1.0 1.0 − − 0.1 7.3e− 03 1.0 1.0 − − 0.1 1.6e− 04 1.0 1.0 − − 0.1 1.6e− 04 1.6e− 04 1.6e− 02 − −
0.5 1.0 1.0 1.0 1.0 − 0.5 7.9e− 01 1.0e− 01 9.5e− 01 9.5e− 01 − 0.5 1.6e− 04 1.6e− 04 3.2e− 04 6.5e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.5e− 01 2.3e− 02 2.2e− 01 2.2e− 01 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 3.2e− 04 1.0 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04

RES Output 12

40 households 400 households 4.000 households 40.000 households

0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5 0.0 0.01 0.05 0.1 0.5

0.01 3.1e− 03 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − − 0.01 1.6e− 04 − − − −
0.05 1.9e− 03 1.0 − − − 0.05 1.6e− 04 1.0e− 01 − − − 0.05 1.6e− 04 7.9e− 01 − − − 0.05 1.6e− 04 1.6e− 04 − − −
0.1 2.3e− 02 1.0 1.0 − − 0.1 1.6e− 04 2.8e− 01 1.0 − − 0.1 1.6e− 04 1.1e− 03 1.3e− 01 − − 0.1 1.6e− 04 1.6e− 04 1.0 − −
0.5 1.0 1.7e− 01 2.8e− 01 1.0 − 0.5 1.6e− 04 1.6e− 04 6.5e− 04 6.5e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 − 0.5 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 −
1.0 5.3e− 01 1.6e− 04 3.2e− 04 1.1e− 03 5.8e− 02 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 3.1e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 4.9e− 03 1.0 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04 1.6e− 04
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Table D.24.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonfer-
roni. Post-hoc analysis for assessing significant differences as a consequence
of different population sizes within groups specified in Table C.15 for each
RES output. Continues in Table D.25.

RES Output 1

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0

RES Output 2

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 5.7e− 01

RES Output 3

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.0 − SLC-FK 1.0 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.0 1.0 SLC-FKd 5.2e− 02 1.0 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0

RES Output 4

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 4.3e− 03 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 5.2e− 02 1.0 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.3e− 04 SLC-FKd 1.9e− 04 3.2e− 05

RES Output 5

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 8.6e− 02 SLC-FKd 1.9e− 04 2.1e− 02 SLC-FKd 1.9e− 04 1.0

RES Output 6

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 4.3e− 01 SLC-FKd 1.9e− 04 1.1e− 01 SLC-FKd 1.9e− 04 3.2e− 05 SLC-FKd 1.9e− 04 3.2e− 05
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Table D.25.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonfer-
roni. Post-hoc analysis for assessing significant differences as a consequence
of different population sizes within groups specified in Table C.15 for each
RES output. Continuation in Table D.24.

RES Output 7

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 6.5e− 01 SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.0

RES Output 8

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 5.2e− 02 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 2.7e− 01 SLC-FKd 1.9e− 04 6.5e− 05 SLC-FKd 1.9e− 04 3.2e− 05

RES Output 9

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 2.3e− 01 SLC-FKd 1.9e− 04 9.4e− 01 SLC-FKd 1.9e− 04 1.0

RES Output 10

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 − SLC-FK 1.9e− 04 −
SLC-FKd 1.9e− 04 1.0 SLC-FKd 1.9e− 04 1.9e− 01 SLC-FKd 1.9e− 04 8.4e− 01 SLC-FKd 1.9e− 04 4.3e− 01

RES Output 11

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 3.2e− 05 − SLC-FK 6.2e− 04 − SLC-FK 3.2e− 03 − SLC-FK 6.5e− 05 −
SLC-FKd 3.2e− 05 1.0 SLC-FKd 1.3e− 04 1.0 SLC-FKd 1.2e− 02 8.4e− 01 SLC-FKd 3.2e− 05 1.0

RES Output 12

40 Households 400 Households 4.000 Households 40.000 Households

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 3.2e− 05 − SLC-FK 3.2e− 05 − SLC-FK 3.2e− 05 − SLC-FK 1.9e− 04 −
SLC-FKd 3.2e− 05 1.0 SLC-FKd 3.2e− 05 1.0 SLC-FKd 3.2e− 05 1.0 SLC-FKd 1.9e− 04 1.0
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Table D.26.: Pairwise comparison with unpaired Wilcoxon rank sum test with Bonferroni. Post-hoc analysis for assessing signifi-
cant differences between load scheduling strategies with different household load composition. Tests are performed
in cases where significant differences are found within groups in Table C.16 for each RES output.

RES Output 1. No EVs. RES Output 1. All Appliances. RES Output 2. No EVs. RES Output 2. All Appliances. RES Output 3. No EVs.

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 3.25e− 05 − SLC-FK 0.0002 − SLC-FK 3.25e− 05 − SLC-FK 0.0002 − SLC-FK 3.25e− 05 −
SLC-FKd 3.25e− 05 0.0345 SLC-FKd 0.0002 1 SLC-FKd 3.25e− 05 1 SLC-FKd 0.0002 1 SLC-FKd 3.25e− 05 0.6527

RES Output 3. All Appliances. RES Output 4. Only Washing Machines. RES Output 4. No EVs. RES Output 4. All Appliances. RES Output 5. Only Washing Machines.

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 0.0002 − SLC-FK 0.0864 − SLC-FK 3.25e− 05 − SLC-FK 0.0002 − SLC-FK 0.0697 −
SLC-FKd 0.0002 1 SLC-FKd 0.0256 1 SLC-FKd 3.25e− 05 0.0086 SLC-FKd 0.0002 0.0001 SLC-FKd 0.0205 0.5709

RES Output 5. No EVs. RES Output 5. All Appliances. RES Output 6. No EVs. RES Output 6. All Appliances. RES Output 7. No EVs.

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 0.1064 − SLC-FK 0.0002 − SLC-FK 3.25e− 05 − SLC-FK 0.0002 − SLC-FK 0.0556 −
SLC-FKd 0.0441 0.9450 SLC-FKd 0.0002 0.0205 SLC-FKd 3.25e− 05 0.0002 SLC-FKd 0.0002 3.25e− 05 SLC-FKd 0.0697 1

RES Output 7. All Appliances. RES Output 8. No EVs. RES Output 8. All Appliances. RES Output 9. No EVs. RES Output 9. All Appliances.

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 0.0002 − SLC-FK 3.25e− 05 − SLC-FK 0.0002 − SLC-FK 3.25e− 05 − SLC-FK 0.0002 −
SLC-FKd 0.0002 1 SLC-FKd 3.25e− 05 0.0205 SLC-FKd 0.0002 6.50e− 05 SLC-FKd 3.25e− 05 0.7424 SLC-FKd 0.0002 0.9450

RES Output 10. No EVs. RES Output 10. All Appliances. RES Output 11. No EVs. RES Output 11. All Appliances. RES Output 12. Only Washing Machine.

CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 3.25e− 05 − SLC-FK 0.0002 − SLC-FK 3.25e− 05 − SLC-FK 0.0032 − SLC-FK 0.0268 −
SLC-FKd 3.25e− 05 1 SLC-FKd 0.0002 0.8396 SLC-FKd 3.25e− 05 1 SLC-FKd 0.0117 0.8396 SLC-FKd 0.0015 0.3154

RES Output 12. No EVs. RES Output 12. All Appliances.

CLP-FK SLC-FK CLP-FK SLC-FK

SLC-FK 0.0086 − SLC-FK 3.25e− 05 −
SLC-FKd 0.0010 1 SLC-FKd 3.25e− 05 1
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Table E.1.: Summary of the results of the analysis of the scalability of SLC. Continues at Table E.2.

RES
Output Statistic

α
1.0 0.5 0.1 0.05 0.01

Population Population Population Population Population
40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000

1

Min. 17.5% 8.1% 6.9% 7.4% 18.1% 7.5% 6.6% 6.9% 17.8% 8.0% 6.4% 6.3% 18.0% 8.3% 7.2% 7.2% 18.5% 9.5% 8.1% 8.4%
1st Qu. 20.9% 10.5% 8.8% 8.6% 21.1% 10.2% 8.1% 7.8% 21.3% 10.2% 8.2% 7.8% 21.7% 10.7% 9.2% 9.0% 22.0% 11.5% 10.0% 9.7%
Median 22.2% 11.1% 9.2% 9.0% 22.2% 10.8% 8.7% 8.4% 22.7% 10.7% 9.0% 8.7% 23.1% 11.6% 9.9% 9.7% 23.6% 12.3% 10.7% 10.5%
3rd Qu. 23.8% 11.8% 9.8% 9.5% 23.6% 11.4% 9.2% 8.9% 24.1% 11.4% 9.6% 9.3% 24.7% 12.5% 10.5% 10.3% 25.0% 13.1% 11.3% 11.1%

Max. 29.7% 14.9% 11.7% 11.5% 27.5% 13.5% 11.1% 10.9% 29.1% 13.8% 11.1% 10.3% 30.5% 15.3% 11.6% 11.0% 31.3% 19.8% 17.0% 16.6%

2

Min. 19.9% 12.0% 12.0% 12.4% 19.2% 11.8% 11.0% 11.5% 19.0% 10.6% 10.8% 11.1% 18.3% 11.8% 11.9% 11.9% 19.4% 12.7% 12.8% 13.2%
1st Qu. 23.3% 14.5% 13.7% 13.7% 23.4% 14.3% 13.4% 13.4% 23.2% 13.3% 12.1% 12.0% 23.6% 14.6% 13.3% 13.1% 24.8% 16.1% 14.9% 14.8%
Median 24.8% 15.1% 14.2% 14.1% 24.8% 15.2% 13.9% 13.9% 24.9% 14.2% 12.7% 12.6% 25.3% 15.4% 14.0% 13.9% 26.6% 16.9% 15.6% 15.5%
3rd Qu. 26.4% 16.0% 14.6% 14.5% 26.4% 16.0% 14.4% 14.3% 26.9% 15.2% 13.5% 13.3% 27.4% 16.5% 15.0% 14.7% 28.1% 18.1% 16.4% 16.1%

Max. 32.4% 19.4% 18.4% 17.7% 32.6% 19.4% 18.5% 18.1% 33.0% 25.9% 22.8% 21.3% 34.5% 24.0% 23.8% 23.0% 38.5% 27.4% 24.8% 24.3%

3

Min. 20.7% 14.5% 16.5% 16.6% 20.2% 14.5% 15.7% 16.5% 20.7% 13.8% 14.9% 15.8% 21.1% 14.9% 14.8% 15.1% 20.6% 14.6% 14.8% 15.2%
1st Qu. 25.5% 17.9% 17.7% 17.5% 25.3% 17.8% 17.2% 17.1% 24.3% 17.2% 16.6% 16.4% 24.9% 17.3% 16.5% 16.3% 26.3% 18.8% 18.5% 18.4%
Median 27.4% 18.9% 18.1% 17.9% 27.1% 18.8% 17.6% 17.5% 26.5% 18.2% 17.1% 17.0% 26.6% 18.5% 17.4% 17.2% 28.3% 20.5% 19.7% 19.5%
3rd Qu. 29.5% 19.9% 18.6% 18.3% 28.9% 19.7% 18.2% 17.9% 28.3% 19.1% 17.6% 17.3% 29.0% 19.5% 18.3% 18.1% 30.7% 21.7% 20.8% 20.8%

Max. 37.5% 22.6% 20.3% 19.2% 38.5% 22.8% 19.4% 18.9% 36.2% 21.8% 18.9% 18.6% 36.0% 24.1% 20.7% 20.4% 39.2% 26.2% 23.1% 22.6%

4

Min. 20.6% 20.1% 21.9% 22.4% 21.4% 18.5% 20.5% 21.3% 19.8% 17.7% 19.2% 19.5% 17.2% 16.0% 19.0% 19.5% 20.3% 16.4% 18.9% 19.6%
1st Qu. 27.5% 23.0% 23.1% 23.1% 27.3% 22.2% 22.4% 22.4% 25.4% 21.0% 21.0% 21.0% 25.4% 21.0% 20.7% 20.8% 26.2% 21.8% 21.9% 21.8%
Median 30.2% 24.0% 23.6% 23.5% 29.3% 23.6% 23.1% 23.0% 27.9% 22.0% 21.6% 21.5% 27.8% 22.3% 21.6% 21.5% 28.8% 23.7% 23.3% 23.2%
3rd Qu. 32.8% 25.3% 24.2% 24.1% 32.1% 24.8% 24.0% 24.0% 30.2% 23.2% 22.3% 22.4% 30.4% 23.7% 22.8% 22.5% 31.0% 25.2% 24.5% 24.4%

Max. 42.6% 28.2% 27.5% 27.1% 40.3% 28.7% 27.3% 27.0% 41.3% 26.6% 24.8% 24.7% 38.0% 29.5% 26.9% 26.6% 38.8% 30.7% 28.8% 28.6%

5

Min. 17.8% 8.1% 7.5% 7.6% 16.7% 8.0% 6.9% 7.1% 15.6% 6.9% 5.5% 6.0% 17.9% 7.3% 6.4% 6.3% 16.1% 8.2% 7.4% 7.7%
1st Qu. 20.4% 10.3% 8.8% 8.8% 20.7% 9.7% 7.9% 7.8% 20.5% 9.2% 7.2% 7.0% 20.9% 9.6% 7.9% 7.8% 21.1% 10.6% 9.3% 9.2%
Median 21.7% 11.1% 9.6% 9.3% 21.8% 10.5% 8.6% 8.5% 21.9% 9.9% 8.0% 8.0% 22.5% 10.5% 8.9% 8.9% 22.6% 11.3% 10.1% 10.0%
3rd Qu. 23.2% 12.0% 10.5% 10.1% 23.2% 11.2% 9.5% 9.2% 23.2% 10.8% 8.7% 8.6% 23.8% 11.4% 9.5% 9.2% 24.4% 12.2% 10.8% 10.6%

Max. 29.3% 14.2% 13.6% 12.9% 29.7% 15.2% 12.6% 12.4% 29.9% 13.5% 10.2% 10.0% 28.6% 13.8% 10.6% 10.1% 28.4% 14.3% 12.0% 11.4%

6

Min. 21.8% 18.3% 18.9% 19.4% 20.4% 15.5% 17.9% 18.6% 18.0% 15.0% 15.5% 15.9% 18.0% 14.5% 15.1% 15.8% 19.1% 15.0% 16.5% 17.0%
1st Qu. 27.3% 20.6% 20.6% 20.6% 26.5% 20.0% 19.7% 19.7% 24.6% 18.0% 17.3% 17.2% 25.2% 18.5% 17.4% 17.4% 26.3% 20.2% 19.7% 19.6%
Median 29.4% 21.6% 21.1% 21.0% 28.6% 20.9% 20.2% 20.2% 26.6% 19.3% 18.0% 17.9% 27.5% 19.6% 18.9% 18.7% 28.7% 21.9% 21.3% 21.3%
3rd Qu. 31.5% 22.8% 21.5% 21.4% 31.0% 22.0% 20.8% 20.6% 29.4% 20.6% 19.6% 19.7% 30.0% 21.3% 20.2% 20.3% 30.9% 23.2% 22.2% 22.1%

Max. 42.6% 27.0% 22.8% 22.3% 40.1% 24.8% 22.6% 21.8% 37.7% 24.2% 22.0% 21.8% 38.6% 26.5% 23.9% 23.0% 40.9% 27.2% 25.0% 24.5%
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Table E.2.: Summary of the results of the analysis of the scability of SLC. Continuation from Table E.1.

RES
Output Statistic

α
1.0 0.5 0.1 0.05 0.01

Population Population Population Population Population
40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000 40 400 4, 000 40, 000

7

Min. 14.4% 9.2% 7.6% 7.8% 17.3% 8.1% 6.7% 6.9% 17.0% 7.4% 5.4% 5.4% 17.2% 7.6% 6.2% 6.2% 17.1% 8.3% 7.2% 7.3%
1st Qu. 20.9% 10.7% 9.1% 8.9% 20.8% 10.3% 8.2% 7.9% 20.8% 9.2% 7.1% 6.9% 20.9% 9.7% 7.6% 7.3% 21.6% 10.6% 8.8% 8.5%
Median 22.1% 11.4% 9.7% 9.7% 22.1% 10.9% 8.8% 8.7% 22.0% 10.0% 7.8% 7.5% 22.2% 10.6% 8.7% 8.5% 23.0% 11.8% 10.0% 9.6%
3rd Qu. 23.2% 12.0% 10.4% 10.3% 23.4% 11.6% 9.7% 9.7% 23.7% 10.8% 8.6% 8.4% 23.6% 11.5% 9.6% 9.4% 24.6% 13.0% 11.2% 11.0%

Max. 28.0% 14.3% 12.7% 11.5% 29.6% 14.9% 12.2% 11.3% 28.5% 14.8% 13.4% 12.7% 28.6% 16.7% 15.0% 14.4% 30.2% 18.6% 16.8% 15.9%

8

Min. 25.7% 28.0% 29.9% 30.7% 25.3% 25.9% 29.1% 29.8% 21.7% 23.3% 26.8% 27.0% 24.0% 22.6% 25.6% 26.2% 18.5% 23.8% 25.9% 26.5%
1st Qu. 35.6% 31.1% 31.2% 31.3% 34.3% 30.4% 30.4% 30.4% 31.5% 28.3% 28.1% 28.0% 31.8% 27.9% 27.3% 27.3% 31.8% 28.6% 28.3% 28.3%
Median 37.9% 32.0% 31.6% 31.5% 36.6% 31.5% 30.9% 30.8% 34.6% 29.7% 29.1% 28.8% 34.5% 29.4% 28.6% 28.5% 34.7% 30.1% 29.8% 30.0%
3rd Qu. 41.0% 33.1% 32.0% 31.8% 39.7% 32.6% 31.4% 31.2% 37.2% 31.4% 30.2% 30.3% 37.5% 31.1% 30.7% 30.7% 37.6% 32.3% 31.7% 31.6%

Max. 50.1% 36.6% 33.0% 32.4% 47.3% 35.1% 32.7% 31.9% 45.5% 35.1% 33.3% 32.2% 46.0% 37.1% 34.0% 32.8% 50.6% 36.8% 35.2% 34.5%

9

Min. 18.7% 9.9% 9.5% 9.3% 18.9% 8.6% 8.0% 8.0% 15.5% 8.3% 7.2% 7.4% 18.0% 9.5% 8.1% 8.4% 18.1% 9.7% 9.6% 9.8%
1st Qu. 21.6% 11.6% 10.3% 10.1% 21.6% 11.4% 10.2% 10.1% 21.4% 10.5% 8.3% 8.0% 22.3% 11.4% 9.4% 9.3% 22.7% 12.5% 10.7% 10.5%
Median 23.1% 12.2% 10.7% 10.5% 22.8% 12.1% 10.6% 10.4% 22.7% 11.1% 8.8% 8.4% 23.7% 12.2% 10.1% 9.8% 24.2% 13.3% 11.6% 11.2%
3rd Qu. 24.4% 12.9% 11.2% 11.1% 24.3% 12.8% 11.0% 10.7% 24.2% 12.0% 9.5% 9.3% 25.2% 13.0% 10.9% 10.6% 25.8% 14.2% 12.2% 11.9%

Max. 29.0% 14.7% 12.7% 12.3% 28.3% 14.4% 12.7% 12.3% 28.9% 16.2% 12.3% 12.0% 29.4% 15.4% 13.1% 12.1% 31.7% 17.7% 14.9% 14.7%

10

Min. 18.9% 12.1% 12.5% 13.2% 19.2% 12.8% 12.6% 13.1% 18.4% 12.2% 12.8% 12.9% 19.2% 12.7% 13.5% 13.7% 20.2% 13.9% 14.1% 14.6%
1st Qu. 23.1% 15.4% 14.8% 14.7% 23.2% 15.3% 14.5% 14.3% 23.3% 15.0% 14.1% 14.0% 24.1% 15.7% 14.9% 14.8% 24.9% 16.4% 15.6% 15.5%
Median 25.1% 16.6% 16.2% 16.3% 25.2% 16.4% 15.6% 15.6% 25.5% 16.0% 14.7% 14.6% 26.0% 16.7% 15.4% 15.3% 26.5% 17.4% 16.2% 16.0%
3rd Qu. 27.2% 17.7% 17.1% 17.1% 27.0% 17.5% 16.5% 16.3% 27.4% 17.1% 15.3% 15.2% 27.7% 17.9% 16.0% 15.8% 28.8% 18.5% 16.8% 16.7%

Max. 33.5% 20.3% 19.2% 18.8% 34.4% 20.9% 19.0% 18.8% 35.4% 21.0% 17.5% 16.6% 33.7% 21.7% 19.1% 18.8% 37.1% 24.9% 22.4% 22.0%

11

Min. 17.4% 8.4% 7.1% 7.5% 16.8% 8.0% 6.9% 7.4% 16.4% 7.7% 6.6% 6.8% 17.1% 7.7% 6.5% 6.8% 17.2% 8.1% 7.1% 7.8%
1st Qu. 20.5% 10.2% 8.3% 8.1% 20.7% 10.1% 8.2% 8.0% 20.8% 9.6% 7.5% 7.3% 21.1% 9.9% 8.1% 7.9% 21.5% 10.8% 9.1% 9.0%
Median 21.9% 11.0% 8.9% 8.5% 22.0% 10.8% 8.7% 8.5% 22.4% 10.2% 8.1% 7.7% 22.5% 10.8% 8.6% 8.3% 23.1% 11.8% 9.8% 9.5%
3rd Qu. 23.3% 12.0% 9.8% 9.7% 23.8% 11.5% 9.5% 9.3% 23.6% 11.2% 8.7% 8.2% 24.0% 11.8% 9.4% 9.1% 24.7% 12.8% 10.6% 10.5%

Max. 29.6% 15.3% 12.4% 11.1% 29.4% 13.9% 11.0% 10.4% 29.5% 15.0% 10.9% 10.6% 30.4% 15.1% 11.7% 10.6% 33.9% 15.8% 13.3% 12.3%

12

Min. 17.5% 8.8% 7.7% 7.9% 16.7% 8.9% 7.5% 7.8% 16.8% 7.0% 5.6% 5.2% 17.2% 7.1% 6.2% 5.9% 16.8% 8.1% 6.9% 7.5%
1st Qu. 20.9% 10.7% 9.1% 9.0% 20.9% 10.4% 8.6% 8.3% 20.5% 9.1% 6.8% 6.5% 20.9% 9.5% 7.5% 7.2% 21.3% 10.4% 8.6% 8.5%
Median 22.2% 11.3% 9.6% 9.6% 22.1% 11.0% 9.1% 8.8% 21.7% 10.0% 7.7% 7.5% 22.4% 10.2% 8.2% 8.0% 22.7% 11.4% 9.4% 9.0%
3rd Qu. 23.5% 11.9% 10.1% 9.9% 23.5% 11.7% 9.6% 9.4% 23.3% 10.9% 8.9% 8.6% 23.6% 11.2% 9.1% 9.0% 24.0% 12.3% 10.5% 10.4%

Max. 28.4% 14.5% 12.5% 12.1% 28.1% 14.4% 12.4% 12.2% 27.5% 13.7% 12.2% 11.7% 27.2% 14.8% 12.3% 11.9% 32.3% 16.0% 12.8% 12.1%
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Table E.3.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of 40
households. Continues in Table E.4.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

1

Min. 17.9% 7.3% 18.5% 18.8% 7.4% 18.5% 17.5% 7.3% 19.3%
1st Qu. 20.4% 9.0% 23.9% 21.0% 9.3% 23.9% 20.9% 9.0% 23.7%
Median 22.3% 9.9% 25.4% 21.8% 9.9% 25.4% 22.3% 9.8% 26.0%
3rd Qu. 24.4% 11.9% 27.6% 23.1% 11.5% 27.6% 23.9% 10.9% 27.8%

Max. 29.7% 24.3% 32.6% 26.2% 18.2% 32.6% 27.4% 19.4% 34.7%

2

Min. 19.2% 8.3% 21.9% 19.8% 7.9% 21.9% 20.1% 8.2% 21.6%
1st Qu. 23.2% 10.1% 27.8% 23.6% 10.0% 27.8% 23.3% 10.9% 28.2%
Median 24.6% 12.0% 30.3% 25.0% 12.0% 30.3% 24.7% 13.2% 30.4%
3rd Qu. 26.3% 14.2% 32.7% 26.5% 13.9% 32.7% 26.4% 16.0% 32.8%

Max. 31.8% 19.9% 40.1% 30.3% 20.1% 40.1% 30.5% 23.3% 39.2%

3

Min. 20.7% 8.1% 24.0% 21.4% 8.4% 24.0% 21.0% 9.3% 24.8%
1st Qu. 24.1% 12.4% 28.8% 24.5% 11.9% 28.8% 24.7% 12.9% 28.7%
Median 26.1% 14.4% 30.9% 26.5% 14.7% 30.9% 26.6% 14.7% 30.6%
3rd Qu. 27.6% 16.5% 33.8% 29.6% 17.1% 33.8% 28.2% 17.2% 33.5%

Max. 32.3% 28.4% 42.9% 34.9% 26.5% 42.9% 36.2% 27.0% 40.7%

4

Min. 20.3% 8.9% 29.1% 21.2% 9.0% 29.1% 21.2% 7.8% 30.5%
1st Qu. 24.8% 11.3% 38.2% 24.4% 11.8% 38.2% 25.7% 11.7% 39.0%
Median 27.1% 13.5% 41.2% 27.6% 14.2% 41.2% 28.3% 13.7% 41.5%
3rd Qu. 30.2% 15.8% 43.5% 30.6% 16.5% 43.5% 30.1% 15.8% 44.2%

Max. 36.1% 23.2% 52.1% 35.3% 25.8% 52.1% 35.6% 22.7% 51.3%

5

Min. 18.1% 7.9% 16.9% 17.3% 7.6% 16.9% 17.9% 6.5% 17.1%
1st Qu. 20.6% 9.4% 24.3% 20.3% 8.6% 24.3% 19.9% 8.2% 24.3%
Median 21.7% 10.7% 26.8% 21.6% 9.7% 26.8% 21.4% 8.9% 26.4%
3rd Qu. 23.6% 11.8% 28.3% 23.0% 11.0% 28.3% 22.6% 10.2% 28.2%

Max. 27.2% 18.1% 39.3% 29.9% 17.8% 39.3% 25.9% 14.4% 33.8%

6

Min. 21.9% 8.7% 30.0% 20.3% 9.2% 30.0% 18.0% 8.5% 28.2%
1st Qu. 25.2% 14.3% 35.4% 24.4% 13.1% 35.4% 24.2% 11.9% 36.5%
Median 27.9% 16.7% 38.8% 25.6% 15.8% 38.8% 26.3% 14.3% 39.4%
3rd Qu. 31.2% 20.1% 41.9% 29.1% 18.3% 41.9% 28.4% 17.2% 41.5%

Max. 37.7% 27.5% 48.5% 36.3% 26.4% 48.5% 34.7% 29.2% 47.9%
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Table E.4.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of 40
households. Continuation from Table E.3.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

7

Min. 17.7% 7.4% 21.7% 17.3% 7.0% 21.7% 17.8% 7.3% 20.0%
1st Qu. 20.6% 8.9% 25.9% 20.9% 9.1% 25.9% 20.6% 8.7% 25.6%
Median 21.7% 9.8% 28.1% 22.1% 10.2% 28.1% 21.9% 9.5% 28.5%
3rd Qu. 23.7% 10.8% 29.9% 23.2% 11.1% 29.9% 23.5% 10.8% 29.8%

Max. 28.5% 20.4% 36.6% 27.9% 17.2% 36.6% 26.5% 14.5% 34.8%

8

Min. 18.5% 14.9% 44.8% 24.8% 14.9% 44.8% 25.5% 14.9% 44.1%
1st Qu. 30.9% 20.3% 50.5% 31.5% 20.7% 50.5% 31.7% 21.1% 49.5%
Median 33.8% 23.8% 53.6% 34.3% 23.4% 53.6% 34.5% 23.6% 51.7%
3rd Qu. 36.4% 26.9% 55.9% 37.1% 27.7% 55.9% 36.8% 26.8% 55.2%

Max. 47.9% 40.4% 65.9% 43.5% 41.7% 65.9% 42.4% 33.3% 63.6%

9

Min. 17.8% 7.3% 19.7% 19.4% 7.1% 19.7% 18.0% 6.8% 19.9%
1st Qu. 20.7% 8.8% 24.5% 21.4% 8.9% 24.5% 21.4% 9.4% 23.8%
Median 22.6% 10.0% 25.9% 23.0% 9.5% 25.9% 22.4% 10.6% 25.8%
3rd Qu. 23.9% 11.2% 28.1% 24.4% 10.7% 28.1% 23.9% 12.8% 28.1%

Max. 28.9% 20.5% 33.1% 27.0% 18.0% 33.1% 28.9% 19.6% 35.6%

10

Min. 19.8% 9.3% 20.1% 19.2% 8.3% 20.1% 19.1% 8.7% 18.5%
1st Qu. 22.5% 12.2% 25.5% 23.2% 11.6% 25.5% 23.5% 13.1% 25.7%
Median 24.6% 13.8% 27.4% 25.1% 14.1% 27.4% 25.3% 15.9% 27.6%
3rd Qu. 26.5% 16.9% 29.9% 27.1% 16.9% 29.9% 26.9% 18.4% 29.5%

Max. 33.5% 26.5% 38.1% 34.0% 29.8% 38.1% 32.0% 28.8% 33.6%

11

Min. 17.4% 8.5% 19.5% 17.5% 7.6% 19.5% 17.4% 7.3% 18.3%
1st Qu. 20.7% 10.6% 23.8% 20.5% 9.1% 23.8% 20.5% 8.4% 23.6%
Median 22.2% 12.3% 26.2% 21.9% 9.9% 26.2% 21.8% 9.2% 26.1%
3rd Qu. 23.3% 14.6% 28.3% 23.2% 11.1% 28.3% 23.1% 10.7% 28.3%

Max. 27.5% 23.8% 33.7% 27.2% 16.8% 33.7% 29.6% 18.1% 34.2%

12

Min. 18.2% 7.6% 20.8% 16.8% 7.1% 20.8% 17.4% 7.4% 22.5%
1st Qu. 20.9% 10.4% 26.4% 20.3% 9.1% 26.4% 20.3% 8.3% 25.0%
Median 22.2% 11.8% 28.6% 21.7% 9.8% 28.6% 21.5% 9.0% 27.5%
3rd Qu. 23.6% 13.2% 29.6% 23.2% 10.7% 29.6% 22.9% 9.8% 29.5%

Max. 26.5% 18.3% 35.7% 27.5% 19.6% 35.7% 27.0% 13.9% 34.6%
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E. Summaries of Performance

Table E.5.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of 400
households. Continues in Table E.6.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

1

Min. 7.8% 2.4% 12.6% 7.5% 2.4% 12.6% 8.1% 2.4% 11.7%
1st Qu. 10.2% 3.7% 14.3% 10.1% 3.6% 14.3% 10.5% 3.3% 14.8%
Median 10.8% 6.1% 15.4% 10.7% 5.4% 15.4% 11.2% 4.6% 15.5%
3rd Qu. 11.4% 7.5% 16.4% 11.3% 6.5% 16.4% 12.0% 5.3% 16.5%

Max. 13.5% 12.7% 18.2% 12.9% 10.2% 18.2% 14.6% 10.7% 19.3%

2

Min. 10.8% 4.8% 17.3% 11.2% 3.9% 17.3% 10.6% 4.4% 19.0%
1st Qu. 13.5% 7.5% 21.0% 13.1% 7.5% 21.0% 13.3% 8.3% 21.0%
Median 14.2% 8.6% 21.8% 14.9% 8.7% 21.8% 14.5% 10.2% 21.7%
3rd Qu. 15.0% 9.7% 22.6% 15.4% 9.8% 22.6% 15.3% 12.2% 22.4%

Max. 17.2% 13.4% 24.3% 25.9% 13.9% 24.3% 19.9% 15.8% 25.2%

3

Min. 14.4% 5.9% 20.9% 15.1% 9.1% 20.9% 13.8% 7.7% 21.8%
1st Qu. 16.7% 11.5% 23.4% 17.3% 11.0% 23.4% 17.9% 11.1% 24.0%
Median 17.7% 12.6% 24.5% 18.1% 12.4% 24.5% 18.5% 12.3% 25.0%
3rd Qu. 18.8% 13.8% 25.4% 19.1% 13.6% 25.4% 19.4% 13.7% 26.0%

Max. 20.8% 19.1% 28.6% 20.8% 17.2% 28.6% 21.8% 18.5% 29.2%

4

Min. 18.6% 5.3% 34.8% 17.7% 5.4% 34.8% 16.0% 5.5% 34.9%
1st Qu. 21.3% 8.3% 37.4% 20.3% 8.7% 37.4% 20.8% 9.0% 36.8%
Median 22.4% 9.7% 38.3% 21.5% 9.6% 38.3% 22.4% 9.8% 38.1%
3rd Qu. 23.4% 11.1% 39.3% 22.6% 10.8% 39.3% 24.0% 10.8% 39.3%

Max. 26.6% 14.1% 41.7% 25.0% 13.9% 41.7% 28.2% 13.3% 41.5%

5

Min. 8.0% 4.6% 14.4% 6.9% 3.5% 14.4% 7.6% 1.6% 15.2%
1st Qu. 9.4% 6.5% 17.4% 8.9% 4.4% 17.4% 8.8% 2.0% 17.2%
Median 10.4% 7.6% 18.3% 9.8% 5.5% 18.3% 9.5% 2.5% 17.9%
3rd Qu. 11.1% 8.4% 19.3% 10.6% 6.6% 19.3% 10.2% 2.9% 18.7%

Max. 15.2% 12.2% 21.8% 13.5% 9.5% 21.8% 11.9% 4.1% 20.8%

6

Min. 16.5% 10.9% 31.8% 15.1% 10.2% 31.8% 16.0% 9.2% 31.4%
1st Qu. 19.2% 13.1% 34.6% 17.4% 12.2% 34.6% 17.5% 11.8% 34.3%
Median 20.6% 14.0% 35.3% 18.8% 13.3% 35.3% 18.8% 12.9% 35.3%
3rd Qu. 22.0% 14.9% 36.3% 20.0% 14.3% 36.3% 19.8% 14.0% 36.4%

Max. 24.2% 19.0% 39.3% 23.6% 17.2% 39.3% 22.6% 17.9% 37.9%
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Table E.6.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of 400
households. Continuation from Table E.5.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

7

Min. 7.4% 1.9% 15.7% 7.5% 1.9% 15.7% 7.7% 1.7% 16.0%
1st Qu. 9.1% 3.5% 19.0% 9.4% 3.6% 19.0% 9.3% 3.5% 19.2%
Median 10.1% 5.1% 20.0% 10.4% 5.9% 20.0% 9.8% 5.0% 20.0%
3rd Qu. 10.8% 6.6% 20.7% 11.3% 8.6% 20.7% 10.2% 6.1% 20.9%

Max. 14.8% 12.2% 24.5% 14.8% 10.8% 24.5% 12.6% 11.0% 25.3%

8

Min. 25.1% 19.2% 47.0% 22.6% 18.2% 47.0% 25.0% 18.3% 48.1%
1st Qu. 27.4% 21.5% 50.3% 27.8% 21.3% 50.3% 28.4% 21.1% 50.2%
Median 29.0% 22.5% 51.2% 29.7% 22.3% 51.2% 29.9% 22.3% 51.4%
3rd Qu. 30.3% 23.5% 52.2% 31.5% 23.3% 52.2% 31.5% 23.4% 52.5%

Max. 33.2% 25.7% 54.6% 37.1% 25.6% 54.6% 37.1% 26.6% 55.2%

9

Min. 8.3% 3.0% 13.0% 9.0% 2.7% 13.0% 8.7% 2.5% 13.6%
1st Qu. 10.2% 3.6% 15.1% 10.7% 3.6% 15.1% 10.4% 4.9% 15.1%
Median 10.9% 5.9% 15.9% 11.6% 5.1% 15.9% 11.3% 6.8% 16.1%
3rd Qu. 11.6% 7.6% 16.8% 12.4% 6.0% 16.8% 12.1% 8.0% 16.9%

Max. 13.4% 10.2% 19.0% 16.2% 10.1% 19.0% 14.7% 12.9% 20.0%

10

Min. 12.5% 5.5% 15.7% 12.2% 6.4% 15.7% 13.8% 5.5% 15.2%
1st Qu. 14.4% 9.7% 17.6% 15.0% 9.4% 17.6% 15.5% 10.5% 17.6%
Median 15.6% 11.7% 18.3% 16.0% 11.1% 18.3% 16.6% 12.4% 18.5%
3rd Qu. 16.5% 13.0% 19.0% 17.1% 12.8% 19.0% 17.6% 14.4% 19.2%

Max. 20.5% 19.9% 21.0% 19.9% 16.7% 21.0% 21.0% 18.4% 23.3%

11

Min. 8.4% 5.8% 13.6% 8.0% 3.9% 13.6% 7.7% 2.0% 13.3%
1st Qu. 10.0% 7.7% 15.5% 9.6% 4.5% 15.5% 9.0% 2.8% 15.3%
Median 10.9% 10.2% 16.4% 10.3% 5.4% 16.4% 9.8% 3.5% 16.4%
3rd Qu. 11.6% 12.1% 17.2% 10.9% 6.0% 17.2% 10.6% 4.0% 17.4%

Max. 15.0% 15.8% 21.2% 12.9% 8.7% 21.2% 12.9% 8.3% 20.7%

12

Min. 8.6% 5.9% 16.8% 7.5% 3.0% 16.8% 7.0% 1.7% 16.5%
1st Qu. 10.2% 7.5% 19.0% 9.4% 4.9% 19.0% 8.5% 2.1% 18.7%
Median 11.1% 8.9% 19.9% 10.0% 5.5% 19.9% 9.0% 2.5% 19.7%
3rd Qu. 12.0% 10.5% 21.0% 10.6% 6.2% 21.0% 9.7% 2.9% 20.8%

Max. 13.7% 12.9% 23.1% 12.5% 7.9% 23.1% 11.2% 4.3% 22.7%
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E. Summaries of Performance

Table E.7.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of
40, 000 households. Continues in Table E.8.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

1

Min. 7.1% 2.4% 13.7% 6.9% 2.5% 13.7% 7.6% 3.0% 13.6%
1st Qu. 7.9% 3.7% 14.0% 7.4% 3.5% 14.0% 8.6% 3.3% 13.9%
Median 8.4% 6.3% 14.1% 8.3% 5.4% 14.1% 9.1% 4.8% 14.1%
3rd Qu. 8.8% 8.1% 14.2% 8.7% 6.3% 14.2% 9.8% 5.3% 14.2%

Max. 9.8% 11.6% 14.4% 9.9% 10.1% 14.4% 11.5% 8.7% 14.5%

2

Min. 11.5% 6.3% 20.3% 11.2% 6.3% 20.3% 11.1% 6.2% 20.2%
1st Qu. 12.2% 7.3% 20.6% 11.6% 6.7% 20.6% 12.1% 7.2% 20.6%
Median 12.7% 8.5% 20.7% 13.3% 8.4% 20.7% 13.1% 10.1% 20.7%
3rd Qu. 13.2% 9.5% 20.8% 13.3% 9.6% 20.8% 13.3% 12.5% 20.8%

Max. 14.1% 11.1% 21.1% 21.3% 11.6% 21.1% 16.6% 14.0% 21.1%

3

Min. 15.9% 11.8% 23.4% 16.0% 11.7% 23.4% 15.9% 11.9% 23.4%
1st Qu. 16.2% 12.2% 23.7% 16.6% 12.1% 23.7% 16.4% 12.2% 23.7%
Median 16.6% 12.4% 23.8% 17.2% 12.4% 23.8% 17.3% 12.4% 23.9%
3rd Qu. 17.0% 12.5% 23.9% 17.7% 12.5% 23.9% 18.0% 12.5% 24.0%

Max. 17.6% 13.2% 24.3% 19.4% 14.0% 24.3% 18.6% 12.9% 24.2%

4

Min. 19.5% 7.6% 37.6% 19.5% 7.9% 37.6% 20.1% 7.7% 37.7%
1st Qu. 20.2% 8.1% 37.9% 20.8% 8.4% 37.9% 20.8% 8.2% 38.0%
Median 21.9% 9.1% 38.0% 21.2% 8.9% 38.0% 21.9% 8.9% 38.0%
3rd Qu. 22.9% 10.3% 38.1% 21.6% 9.0% 38.1% 24.0% 9.4% 38.2%

Max. 26.6% 11.7% 38.4% 23.0% 11.5% 38.4% 24.9% 11.0% 38.4%

5

Min. 7.1% 5.8% 16.7% 6.0% 3.6% 16.7% 6.1% 1.6% 16.6%
1st Qu. 7.4% 6.7% 16.9% 7.1% 4.7% 16.9% 6.7% 1.7% 16.9%
Median 8.2% 7.8% 17.0% 7.7% 5.8% 17.0% 7.1% 2.4% 17.0%
3rd Qu. 8.0% 8.5% 17.1% 8.6% 7.4% 17.1% 7.4% 2.8% 17.1%

Max. 11.8% 10.7% 17.4% 9.5% 8.0% 17.4% 8.7% 3.4% 17.4%

6

Min. 18.6% 12.6% 34.4% 15.8% 12.6% 34.4% 16.6% 12.3% 34.6%
1st Qu. 19.2% 13.4% 34.8% 16.4% 13.1% 34.8% 17.2% 12.6% 34.8%
Median 19.8% 13.9% 34.9% 17.7% 13.3% 34.9% 17.5% 12.7% 34.9%
3rd Qu. 20.8% 14.4% 35.0% 18.8% 13.4% 35.0% 17.9% 12.8% 35.0%

Max. 21.8% 15.8% 35.3% 20.6% 14.5% 35.3% 18.4% 13.2% 35.3%
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Table E.8.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of
40, 000 households. Continuation from Table E.7.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

7

Min. 5.4% 1.7% 18.8% 6.2% 1.9% 18.8% 5.8% 1.7% 18.9%
1st Qu. 6.9% 3.6% 19.1% 7.2% 2.9% 19.1% 6.7% 2.1% 19.1%
Median 7.7% 4.9% 19.2% 8.2% 5.6% 19.2% 7.2% 4.6% 19.2%
3rd Qu. 8.6% 6.2% 19.3% 8.5% 8.5% 19.3% 7.8% 5.7% 19.3%

Max. 9.1% 11.3% 19.6% 12.7% 9.5% 19.6% 8.7% 10.0% 19.6%

8

Min. 26.2% 21.9% 50.8% 26.7% 21.8% 50.8% 27.5% 21.8% 50.8%
1st Qu. 27.3% 22.2% 51.0% 27.3% 22.1% 51.0% 28.0% 22.2% 51.1%
Median 28.5% 22.4% 51.1% 29.0% 22.3% 51.1% 29.5% 22.4% 51.2%
3rd Qu. 30.1% 22.5% 51.3% 29.8% 22.4% 51.3% 30.9% 22.5% 51.3%

Max. 31.6% 22.9% 51.5% 32.8% 22.8% 51.5% 32.2% 22.9% 51.4%

9

Min. 7.7% 3.0% 13.5% 7.7% 2.6% 13.5% 7.4% 3.1% 13.6%
1st Qu. 8.0% 3.3% 13.9% 8.3% 3.0% 13.9% 7.7% 4.6% 13.9%
Median 8.4% 5.7% 14.0% 9.1% 4.5% 14.0% 8.8% 6.6% 14.0%
3rd Qu. 9.0% 7.7% 14.1% 9.8% 5.9% 14.1% 9.2% 8.1% 14.0%

Max. 9.5% 9.3% 14.4% 10.9% 7.9% 14.4% 12.0% 12.1% 14.4%

10

Min. 12.9% 9.0% 16.4% 13.6% 9.0% 16.4% 13.5% 9.3% 16.2%
1st Qu. 13.5% 9.9% 16.7% 14.3% 9.5% 16.7% 14.3% 10.0% 16.7%
Median 14.3% 11.5% 16.8% 14.7% 10.6% 16.8% 15.0% 11.9% 16.7%
3rd Qu. 15.0% 12.1% 16.9% 15.0% 11.6% 16.9% 15.5% 14.2% 16.9%

Max. 16.1% 17.9% 17.2% 16.6% 14.5% 17.2% 16.6% 14.8% 17.1%

11

Min. 7.3% 6.2% 14.7% 6.9% 3.9% 14.7% 6.8% 2.1% 14.8%
1st Qu. 7.9% 6.9% 15.0% 7.3% 4.2% 15.0% 7.1% 2.3% 15.0%
Median 8.7% 10.5% 15.1% 7.7% 5.3% 15.1% 7.4% 2.7% 15.1%
3rd Qu. 9.1% 12.9% 15.2% 8.0% 5.2% 15.2% 7.6% 3.0% 15.2%

Max. 10.6% 14.6% 15.5% 8.7% 8.5% 15.5% 8.2% 3.3% 15.6%

12

Min. 7.6% 7.1% 18.5% 6.2% 3.0% 18.5% 5.2% 1.6% 18.6%
1st Qu. 8.6% 8.0% 18.9% 6.8% 5.6% 18.9% 5.7% 2.0% 18.9%
Median 9.2% 9.2% 19.0% 7.4% 5.6% 19.0% 6.3% 2.3% 19.0%
3rd Qu. 9.6% 10.4% 19.1% 8.0% 6.1% 19.1% 6.6% 2.8% 19.1%

Max. 11.7% 12.3% 19.3% 8.6% 6.5% 19.3% 7.5% 3.1% 19.3%
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Table E.9.: Summary of the results of the performance tolerance to dynamism of SLC. Continues in Table E.10.

RES
Output Statistic

α
1.0 0.5 0.1 0.05 0.01

Forecast Category Forecast Category Forecast Category Forecast Category Forecast Category
Low Medium High Low Medium High Low Medium High Low Medium High Low Medium High

1

Min. 7.2% 6.9% 7.7% 7.3% 6.6% 7.1% 7.2% 6.4% 7.0% 7.9% 7.2% 7.5% 8.8% 8.1% 8.6%
1st Qu. 8.7% 8.7% 8.8% 8.2% 7.9% 7.9% 8.5% 8.2% 7.6% 9.3% 9.3% 8.7% 10.1% 10.0% 9.6%
Median 9.2% 9.2% 9.3% 8.6% 8.7% 8.7% 9.3% 8.8% 8.7% 10.0% 9.8% 9.8% 10.7% 10.7% 10.8%
3rd Qu. 9.9% 9.6% 9.9% 9.2% 9.1% 9.3% 9.8% 9.5% 9.4% 10.5% 10.5% 10.5% 11.1% 11.6% 11.2%

Max. 11.1% 10.6% 11.7% 10.1% 10.3% 11.1% 10.9% 10.8% 11.1% 11.2% 11.6% 11.4% 12.7% 12.9% 17.0%

2

Min. 12.0% 13.0% 12.4% 11.0% 12.5% 12.3% 11.0% 10.8% 10.8% 12.2% 11.9% 11.9% 14.3% 12.8% 13.7%
1st Qu. 13.4% 13.9% 13.9% 13.3% 13.4% 13.7% 12.1% 12.0% 12.2% 13.4% 13.5% 12.8% 14.9% 14.9% 14.7%
Median 13.9% 14.3% 14.4% 13.7% 13.9% 14.2% 12.7% 12.6% 12.7% 14.1% 14.1% 13.8% 15.5% 15.5% 15.7%
3rd Qu. 14.2% 14.8% 14.8% 14.2% 14.4% 14.6% 13.5% 13.5% 13.7% 15.0% 15.0% 14.8% 16.4% 16.2% 17.2%

Max. 14.8% 18.4% 15.8% 15.3% 18.5% 15.4% 14.9% 22.8% 16.9% 15.8% 23.8% 18.5% 17.1% 24.8% 19.5%

3

Min. 16.5% 17.1% 16.5% 15.7% 16.2% 15.8% 14.9% 15.4% 15.6% 15.0% 15.3% 14.8% 15.6% 16.1% 14.8%
1st Qu. 17.5% 17.8% 17.6% 17.0% 17.4% 17.3% 16.4% 16.8% 16.8% 16.3% 16.7% 16.5% 18.2% 18.6% 19.2%
Median 17.9% 18.3% 18.1% 17.4% 17.9% 17.7% 16.9% 17.2% 17.5% 17.3% 17.2% 18.7% 19.5% 19.1% 20.7%
3rd Qu. 18.4% 18.7% 18.7% 18.0% 18.3% 18.2% 17.2% 17.6% 18.1% 17.7% 17.8% 19.4% 20.3% 20.4% 21.4%

Max. 19.8% 20.3% 19.7% 19.4% 19.3% 19.1% 18.3% 18.7% 18.9% 18.6% 19.7% 20.7% 21.4% 21.8% 23.1%

4

Min. 21.9% 22.1% 22.0% 20.5% 21.0% 21.4% 19.7% 19.3% 19.2% 19.0% 19.7% 19.5% 18.9% 20.9% 20.1%
1st Qu. 23.2% 23.0% 23.2% 22.4% 22.3% 22.4% 21.0% 20.7% 21.6% 20.5% 21.0% 20.7% 21.6% 22.6% 21.7%
Median 23.6% 23.6% 23.7% 23.2% 22.8% 23.2% 21.5% 21.1% 22.2% 21.4% 21.8% 21.3% 23.2% 23.7% 22.2%
3rd Qu. 24.2% 24.2% 24.3% 23.9% 23.7% 24.1% 21.9% 21.9% 22.7% 22.8% 22.5% 23.8% 24.5% 24.4% 25.2%

Max. 27.5% 25.3% 25.6% 27.3% 25.4% 25.3% 24.8% 23.5% 24.1% 26.9% 23.8% 25.4% 28.8% 25.6% 27.0%

5

Min. 7.5% 7.5% 7.8% 6.9% 7.4% 7.1% 7.8% 5.7% 5.5% 8.3% 6.4% 6.7% 8.8% 7.9% 7.4%
1st Qu. 8.6% 8.9% 9.1% 7.5% 8.4% 8.3% 8.4% 7.2% 6.9% 8.9% 7.8% 7.4% 9.9% 9.7% 8.6%
Median 9.2% 9.8% 9.7% 7.9% 9.0% 8.9% 8.8% 7.7% 7.2% 9.3% 9.0% 7.9% 10.2% 10.6% 9.2%
3rd Qu. 10.2% 10.6% 10.6% 8.5% 9.7% 9.5% 9.2% 8.6% 7.7% 9.7% 9.7% 8.6% 10.7% 11.1% 9.8%

Max. 13.4% 13.6% 11.7% 12.6% 12.4% 11.0% 10.1% 10.2% 9.1% 10.6% 10.6% 10.5% 12.0% 11.8% 11.2%

6

Min. 18.9% 19.9% 19.7% 17.9% 18.3% 19.2% 17.3% 15.5% 16.1% 17.0% 15.1% 16.3% 19.5% 16.5% 19.1%
1st Qu. 20.2% 20.9% 20.7% 19.1% 20.0% 20.0% 19.1% 16.8% 17.2% 19.8% 16.6% 17.7% 21.5% 18.6% 20.0%
Median 20.8% 21.2% 21.0% 19.7% 20.5% 20.2% 19.9% 17.3% 17.7% 20.9% 17.2% 18.3% 22.4% 19.3% 21.0%
3rd Qu. 21.5% 21.6% 21.3% 20.8% 21.0% 20.7% 20.6% 18.0% 18.1% 22.0% 18.8% 19.4% 23.3% 21.6% 21.8%

Max. 22.8% 22.7% 22.8% 22.6% 21.9% 21.5% 22.0% 20.5% 19.3% 23.9% 21.2% 20.4% 25.0% 22.7% 23.2%
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Table E.10.: Summary of the results of the performance tolerance to dynamism of SLC. Continuation from Table E.9.

RES
Output Statistic

α
1.0 0.5 0.1 0.05 0.01

Forecast Category Forecast Category Forecast Category Forecast Category Forecast Category
Low Medium High Low Medium High Low Medium High Low Medium High Low Medium High

7

Min. 7.8% 7.6% 8.3% 6.8% 6.7% 7.3% 5.4% 5.9% 5.9% 6.2% 6.7% 6.2% 7.2% 7.5% 7.6%
1st Qu. 9.1% 9.0% 9.2% 8.0% 8.1% 8.2% 7.2% 7.4% 7.0% 7.6% 7.9% 7.5% 8.7% 9.2% 8.6%
Median 9.6% 9.8% 9.7% 8.6% 9.1% 8.8% 8.1% 8.1% 7.5% 8.8% 9.3% 8.4% 10.0% 10.6% 9.6%
3rd Qu. 10.3% 10.9% 10.3% 9.5% 9.9% 9.4% 8.8% 8.9% 8.0% 9.8% 9.8% 9.0% 10.8% 11.7% 10.4%

Max. 11.5% 12.7% 11.8% 10.6% 12.2% 11.4% 9.7% 13.4% 8.9% 11.5% 15.0% 10.3% 13.8% 16.8% 12.6%

8

Min. 30.0% 30.0% 29.9% 29.2% 29.1% 29.2% 26.9% 26.8% 26.8% 25.6% 26.3% 26.3% 25.9% 27.2% 27.6%
1st Qu. 31.3% 31.3% 31.1% 30.4% 30.5% 30.3% 28.0% 28.4% 28.1% 27.1% 27.5% 27.6% 27.6% 28.8% 28.9%
Median 31.7% 31.6% 31.5% 30.9% 31.0% 30.7% 28.9% 29.1% 29.3% 27.9% 28.7% 29.4% 28.8% 29.8% 30.2%
3rd Qu. 32.2% 32.0% 31.8% 31.4% 31.4% 31.2% 30.0% 30.2% 30.9% 30.3% 30.1% 31.1% 31.6% 31.0% 32.3%

Max. 33.0% 32.9% 32.6% 32.7% 32.2% 32.6% 31.6% 32.7% 33.3% 32.0% 34.0% 33.1% 34.1% 35.2% 34.3%

9

Min. 9.6% 10.0% 9.5% 8.0% 9.5% 9.1% 7.5% 7.8% 7.2% 8.1% 8.7% 8.2% 9.9% 10.0% 9.6%
1st Qu. 10.2% 10.5% 10.2% 10.1% 10.5% 10.0% 8.2% 8.6% 8.0% 9.4% 9.8% 9.2% 10.6% 11.2% 10.6%
Median 10.5% 10.9% 10.6% 10.6% 10.7% 10.5% 8.6% 9.4% 8.6% 9.8% 10.6% 10.0% 11.1% 11.8% 11.9%
3rd Qu. 11.0% 11.3% 11.3% 10.9% 11.0% 11.0% 9.1% 10.1% 9.6% 10.4% 11.3% 11.0% 11.6% 12.4% 12.5%

Max. 12.0% 12.2% 12.7% 11.6% 11.8% 12.7% 10.2% 11.5% 12.3% 11.2% 13.1% 12.8% 12.6% 13.9% 14.9%

10

Min. 12.5% 12.6% 13.3% 13.0% 12.6% 13.5% 12.8% 13.2% 12.9% 13.6% 13.5% 14.2% 14.1% 14.5% 14.6%
1st Qu. 14.5% 14.9% 15.9% 14.0% 14.7% 15.1% 13.7% 14.3% 14.4% 14.5% 15.0% 15.3% 15.2% 15.5% 16.1%
Median 15.1% 16.0% 16.8% 14.7% 15.6% 16.1% 14.2% 14.8% 15.0% 15.0% 15.5% 15.7% 15.9% 16.0% 16.6%
3rd Qu. 16.8% 16.8% 17.3% 16.4% 16.2% 16.8% 14.8% 15.2% 15.7% 15.5% 16.1% 16.2% 16.5% 16.8% 17.0%

Max. 19.2% 18.2% 19.1% 18.7% 18.3% 19.0% 16.7% 17.5% 17.0% 18.9% 19.1% 17.6% 22.4% 20.7% 18.7%

11

Min. 7.7% 7.1% 7.5% 7.5% 6.9% 7.3% 7.0% 6.6% 6.6% 7.7% 6.5% 6.5% 8.4% 7.1% 7.5%
1st Qu. 9.0% 8.1% 8.2% 8.9% 8.1% 8.0% 8.3% 7.6% 7.3% 8.8% 7.9% 7.8% 9.5% 9.5% 8.5%
Median 10.1% 8.7% 8.6% 9.6% 8.7% 8.5% 9.0% 8.0% 7.5% 9.6% 8.5% 8.2% 10.5% 10.1% 9.1%
3rd Qu. 10.7% 9.2% 9.0% 10.0% 9.1% 8.9% 9.5% 8.4% 7.9% 10.1% 9.1% 8.7% 11.7% 10.6% 9.7%

Max. 11.5% 12.4% 10.5% 11.0% 10.2% 10.5% 10.9% 9.2% 8.7% 11.7% 10.7% 9.7% 13.3% 12.4% 11.3%

12

Min. 7.7% 8.2% 8.1% 7.5% 7.8% 7.8% 7.5% 6.0% 5.6% 6.6% 6.5% 6.2% 7.8% 8.0% 6.9%
1st Qu. 9.0% 9.3% 8.9% 8.7% 8.5% 8.5% 8.8% 7.0% 6.1% 8.6% 7.6% 6.9% 10.1% 8.9% 8.1%
Median 9.9% 9.7% 9.3% 9.6% 8.9% 8.9% 9.3% 7.7% 6.5% 9.6% 8.4% 7.5% 10.8% 9.4% 8.5%
3rd Qu. 10.5% 10.1% 9.6% 10.5% 9.5% 9.3% 10.1% 8.4% 6.9% 10.3% 8.8% 7.9% 11.4% 10.1% 8.9%

Max. 12.5% 11.1% 10.7% 12.4% 10.2% 10.3% 12.2% 9.0% 8.6% 12.3% 10.5% 8.9% 12.8% 11.3% 10.7%
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Table E.11.: Summary of the results of the comparison of the scalability between SLC, CLP and NLC.

RES
Output Statistic

Population
RES
Output Statistic

Population
40 400 4, 000 40, 00 40 400 4, 000 40, 00

Strategy Strategy Strategy Strategy Strategy Strategy Strategy Strategy

SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC

1

Min. 17.5% 7.3% 17.6% 7.5% 2.4% 11.7% 6.6% 2.3% 12.7% 6.9% 2.4% 13.6%

7

Min. 17.3% 7.0% 20.0% 7.4% 1.7% 15.7% 5.4% 1.7% 17.9% 5.4% 1.7% 18.8%
1st Qu. 20.8% 9.0% 23.7% 10.2% 3.4% 14.5% 8.3% 3.5% 13.8% 8.1% 3.5% 14.0% 1st Qu. 20.6% 8.8% 25.7% 9.2% 3.5% 19.0% 7.1% 3.2% 18.9% 6.9% 2.9% 19.1%
Median 22.0% 9.9% 25.3% 10.9% 4.6% 15.4% 8.9% 4.9% 14.2% 8.6% 5.0% 14.1% Median 22.0% 9.8% 28.0% 10.0% 4.3% 20.1% 7.8% 3.8% 19.3% 7.5% 3.8% 19.2%
3rd Qu. 23.7% 11.5% 27.7% 11.5% 6.6% 16.4% 9.4% 6.5% 14.5% 9.1% 6.7% 14.2% 3rd Qu. 23.4% 11.0% 29.7% 10.8% 7.0% 20.9% 8.6% 6.8% 19.6% 8.4% 6.7% 19.3%

Max. 29.7% 24.3% 34.7% 14.6% 12.7% 19.3% 11.7% 11.6% 15.5% 11.5% 11.6% 14.5% Max. 28.5% 20.4% 36.6% 14.8% 12.2% 25.3% 13.4% 11.5% 20.4% 12.7% 11.3% 19.6%

2

Min. 19.2% 7.9% 21.6% 10.6% 3.9% 17.3% 10.8% 5.5% 19.2% 11.1% 6.2% 20.2%

8

Min. 18.5% 14.9% 39.3% 22.6% 18.2% 47.0% 25.6% 20.9% 50.0% 26.2% 21.8% 50.7%
1st Qu. 23.4% 10.2% 28.0% 13.3% 7.6% 21.1% 12.1% 7.2% 20.5% 12.0% 7.1% 20.6% 1st Qu. 31.4% 20.6% 50.1% 27.9% 21.3% 50.3% 27.5% 22.0% 50.8% 27.6% 22.2% 51.1%
Median 24.8% 12.3% 30.6% 14.2% 9.0% 22.0% 12.7% 8.7% 20.8% 12.6% 8.6% 20.7% Median 34.2% 23.5% 53.1% 29.4% 22.3% 51.4% 28.7% 22.3% 51.1% 28.6% 22.3% 51.1%
3rd Qu. 26.4% 14.6% 32.9% 15.2% 10.5% 22.9% 13.5% 10.3% 21.1% 13.3% 10.2% 20.8% 3rd Qu. 36.8% 27.1% 56.0% 31.1% 23.4% 52.4% 30.5% 22.7% 51.4% 30.6% 22.5% 51.3%

Max. 31.8% 23.3% 40.1% 25.9% 15.8% 26.7% 22.8% 14.3% 22.3% 21.3% 14.0% 21.1% Max. 47.9% 41.7% 65.9% 37.1% 26.6% 55.3% 34.0% 23.9% 52.9% 32.8% 22.9% 51.5%

3

Min. 20.7% 8.1% 21.5% 13.8% 5.9% 20.1% 14.9% 10.4% 22.3% 15.9% 11.7% 23.4%

9

Min. 17.8% 6.8% 19.7% 8.3% 2.5% 12.9% 7.2% 2.5% 12.6% 7.4% 2.6% 13.5%
1st Qu. 24.5% 12.4% 28.6% 17.2% 11.1% 23.6% 16.6% 11.9% 23.6% 16.3% 12.2% 23.7% 1st Qu. 21.3% 9.0% 24.4% 10.5% 3.9% 15.1% 8.3% 3.4% 13.9% 8.0% 3.3% 13.9%
Median 26.4% 14.5% 30.8% 18.2% 12.3% 24.7% 17.2% 12.3% 24.0% 16.9% 12.3% 23.9% Median 22.6% 9.9% 26.2% 11.1% 5.5% 15.9% 8.8% 5.6% 14.1% 8.4% 5.3% 14.0%
3rd Qu. 28.4% 16.9% 33.8% 19.1% 13.7% 25.8% 17.7% 12.8% 24.3% 17.5% 12.5% 24.0% 3rd Qu. 24.1% 11.5% 28.2% 12.0% 7.4% 16.9% 9.5% 7.3% 14.4% 9.3% 7.2% 14.1%

Max. 36.2% 28.4% 42.9% 21.8% 19.1% 29.2% 19.7% 14.3% 25.2% 19.4% 14.0% 24.3% Max. 28.9% 20.5% 40.4% 16.2% 12.9% 20.0% 12.3% 12.2% 15.2% 12.0% 12.1% 14.4%

4

Min. 20.3% 7.8% 29.1% 16.0% 5.3% 34.5% 19.0% 7.2% 36.7% 19.5% 7.6% 37.6%

10

Min. 19.1% 8.3% 18.5% 12.2% 5.5% 15.2% 12.8% 8.3% 15.6% 12.9% 9.0% 16.2%
1st Qu. 25.2% 11.7% 38.5% 20.8% 8.7% 37.1% 20.6% 8.2% 37.7% 20.7% 8.2% 37.9% 1st Qu. 23.0% 11.9% 25.5% 15.0% 9.7% 17.5% 14.1% 9.8% 16.6% 14.0% 9.8% 16.7%
Median 27.7% 13.8% 41.2% 21.9% 9.7% 38.2% 21.3% 8.8% 38.0% 21.1% 8.6% 38.0% Median 25.0% 14.5% 27.5% 16.0% 11.2% 18.3% 14.7% 10.5% 16.9% 14.6% 10.3% 16.8%
3rd Qu. 30.3% 16.0% 43.9% 23.3% 10.9% 39.2% 22.4% 9.5% 38.3% 22.3% 9.3% 38.1% 3rd Qu. 26.9% 17.6% 29.7% 17.1% 13.7% 19.2% 15.3% 12.5% 17.2% 15.2% 12.2% 16.9%

Max. 36.1% 25.8% 52.1% 28.2% 14.1% 41.9% 26.9% 12.3% 39.4% 26.6% 11.7% 38.6% Max. 34.0% 29.8% 38.1% 21.0% 19.9% 23.3% 17.5% 18.3% 18.4% 16.6% 17.9% 17.2%

5

Min. 17.3% 6.5% 16.9% 6.9% 1.6% 12.9% 5.5% 1.5% 15.8% 6.0% 1.6% 16.6%

11

Min. 17.4% 7.3% 18.3% 7.7% 2.0% 12.6% 6.6% 2.0% 13.7% 6.8% 2.1% 14.5%
1st Qu. 20.3% 8.7% 24.4% 9.1% 2.9% 17.2% 7.1% 2.9% 16.8% 7.0% 2.8% 16.9% 1st Qu. 20.5% 9.1% 23.7% 9.6% 3.9% 15.5% 7.5% 3.0% 14.9% 7.3% 3.0% 15.0%
Median 21.6% 9.8% 26.7% 9.8% 4.9% 17.9% 7.6% 5.6% 17.1% 7.5% 5.6% 17.0% Median 21.9% 10.4% 25.9% 10.2% 5.3% 16.3% 8.1% 4.8% 15.2% 7.7% 4.7% 15.1%
3rd Qu. 23.0% 11.1% 28.6% 10.6% 7.2% 19.0% 8.4% 7.6% 17.4% 8.0% 7.7% 17.1% 3rd Qu. 23.3% 12.0% 28.1% 11.2% 8.1% 17.3% 8.7% 8.2% 15.5% 8.2% 8.4% 15.2%

Max. 29.9% 18.1% 39.3% 15.2% 12.2% 21.8% 12.6% 11.0% 18.4% 11.8% 10.7% 17.4% Max. 29.6% 23.8% 36.0% 15.0% 15.8% 21.2% 10.9% 15.0% 16.8% 10.6% 14.6% 15.6%

6

Min. 18.0% 8.5% 28.2% 15.1% 9.2% 31.1% 15.1% 11.3% 33.8% 15.8% 12.3% 34.4%

12

Min. 16.8% 7.1% 17.9% 7.0% 1.7% 16.2% 5.6% 1.6% 17.4% 5.2% 1.6% 18.5%
1st Qu. 24.6% 13.2% 36.2% 17.9% 12.3% 34.4% 17.2% 12.8% 34.7% 17.2% 12.8% 34.8% 1st Qu. 20.5% 9.0% 25.4% 9.1% 2.9% 18.8% 6.8% 2.8% 18.8% 6.5% 2.8% 18.9%
Median 26.6% 15.7% 39.3% 19.2% 13.5% 35.5% 18.3% 13.2% 35.0% 18.1% 13.1% 34.9% Median 21.7% 10.0% 28.0% 10.0% 5.7% 19.7% 7.7% 5.8% 19.1% 7.5% 5.9% 19.0%
3rd Qu. 29.4% 18.6% 41.5% 20.7% 14.5% 36.4% 19.4% 13.7% 35.3% 19.3% 13.6% 35.0% 3rd Qu. 23.3% 11.5% 29.7% 10.9% 7.5% 20.8% 8.9% 7.6% 19.4% 8.6% 8.0% 19.1%

Max. 37.7% 29.2% 48.5% 24.2% 19.0% 39.3% 22.6% 15.6% 36.4% 21.8% 15.8% 35.4% Max. 27.5% 19.6% 36.5% 13.7% 12.9% 23.1% 12.2% 12.4% 20.2% 11.7% 12.3% 19.4%
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Table E.12.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of
4, 000 households. Continues in Table E.13.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

1

Min. 7.3% 2.3% 12.8% 6.6% 2.4% 12.8% 7.7% 2.8% 12.7%
1st Qu. 8.2% 3.5% 13.8% 7.9% 3.5% 13.8% 8.8% 3.3% 13.8%
Median 8.6% 6.2% 14.2% 8.7% 4.9% 14.2% 9.3% 4.4% 14.2%
3rd Qu. 9.2% 8.0% 14.5% 9.1% 6.2% 14.5% 9.9% 5.3% 14.4%

Max. 10.1% 11.6% 15.5% 10.3% 10.3% 15.5% 11.7% 9.1% 15.1%

2

Min. 11.0% 6.2% 19.4% 10.8% 6.1% 19.4% 10.8% 5.5% 19.5%
1st Qu. 12.1% 7.4% 20.5% 12.0% 7.0% 20.5% 12.2% 7.3% 20.5%
Median 12.7% 8.7% 20.8% 12.6% 8.4% 20.8% 12.7% 10.9% 20.8%
3rd Qu. 13.5% 9.4% 21.1% 13.5% 9.7% 21.1% 13.7% 12.6% 21.1%

Max. 14.9% 11.8% 22.3% 22.8% 11.8% 22.3% 16.9% 14.3% 22.0%

3

Min. 14.9% 11.0% 22.8% 15.3% 10.4% 22.8% 15.6% 11.2% 22.9%
1st Qu. 16.4% 11.9% 23.6% 16.7% 11.9% 23.6% 16.8% 12.1% 23.8%
Median 16.9% 12.2% 24.0% 17.2% 12.2% 24.0% 17.5% 12.4% 24.1%
3rd Qu. 17.2% 12.7% 24.3% 17.8% 12.7% 24.3% 18.1% 12.8% 24.4%

Max. 18.3% 14.1% 25.1% 19.7% 14.3% 25.1% 18.9% 13.7% 25.1%

4

Min. 19.0% 7.3% 36.7% 19.3% 7.4% 36.7% 19.5% 7.2% 36.9%
1st Qu. 20.5% 8.0% 37.7% 20.7% 8.3% 37.7% 20.7% 8.2% 37.8%
Median 21.4% 8.5% 38.0% 21.1% 8.8% 38.0% 21.3% 9.0% 38.0%
3rd Qu. 22.8% 10.4% 38.3% 21.9% 9.3% 38.3% 23.8% 9.7% 38.3%

Max. 26.9% 12.3% 39.1% 23.5% 12.2% 39.1% 25.4% 11.7% 39.4%

5

Min. 6.9% 5.5% 16.2% 5.7% 3.5% 16.2% 5.5% 1.5% 16.3%
1st Qu. 7.5% 6.5% 16.9% 7.2% 4.6% 16.9% 6.9% 1.7% 16.7%
Median 7.9% 7.8% 17.1% 7.7% 5.6% 17.1% 7.2% 2.3% 17.1%
3rd Qu. 8.5% 8.6% 17.5% 8.6% 7.2% 17.5% 7.7% 2.9% 17.4%

Max. 12.6% 11.0% 18.4% 10.2% 8.4% 18.4% 9.1% 3.5% 18.1%

6

Min. 17.9% 11.8% 33.9% 15.1% 12.0% 33.9% 16.1% 11.3% 33.8%
1st Qu. 19.1% 13.3% 34.6% 16.6% 13.0% 34.6% 17.2% 12.5% 34.7%
Median 19.7% 13.8% 35.1% 17.2% 13.3% 35.1% 17.7% 12.8% 34.9%
3rd Qu. 20.8% 14.5% 35.4% 18.8% 13.7% 35.4% 18.1% 13.1% 35.2%

Max. 22.6% 15.6% 36.0% 21.2% 14.9% 36.0% 19.3% 14.1% 36.1%
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E. Summaries of Performance

Table E.13.: Summary of the comparison of the performance tolerance to dy-
namism between SLC, CLP and NLC, with a population size of
4, 000 households. Continuation from Table E.12.

RES
Output Statistic

Forecast Category
Low Quality Medium Quality High Quality

Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC

7

Min. 5.4% 1.7% 18.0% 5.9% 1.8% 18.0% 5.9% 1.7% 17.9%
1st Qu. 7.2% 3.6% 18.9% 7.4% 3.2% 18.9% 7.0% 2.4% 19.0%
Median 8.1% 3.9% 19.3% 8.1% 4.9% 19.3% 7.5% 3.7% 19.4%
3rd Qu. 8.8% 6.2% 19.6% 8.9% 8.5% 19.6% 8.0% 5.7% 19.6%

Max. 9.7% 11.5% 20.4% 13.4% 10.0% 20.4% 8.9% 10.7% 20.3%

8

Min. 25.6% 21.1% 50.1% 26.3% 21.2% 50.1% 26.8% 20.9% 50.0%
1st Qu. 27.1% 21.9% 50.9% 27.5% 22.0% 50.9% 28.1% 22.0% 50.8%
Median 27.9% 22.2% 51.2% 28.7% 22.4% 51.2% 29.3% 22.4% 51.1%
3rd Qu. 30.3% 22.7% 51.5% 30.1% 22.7% 51.5% 30.9% 22.8% 51.4%

Max. 32.0% 23.7% 52.9% 34.0% 23.7% 52.9% 33.3% 23.9% 52.5%

9

Min. 7.5% 2.6% 13.2% 7.8% 2.5% 13.2% 7.2% 3.0% 12.6%
1st Qu. 8.2% 3.4% 13.8% 8.6% 3.2% 13.8% 8.0% 4.6% 13.9%
Median 8.6% 6.0% 14.1% 9.4% 4.1% 14.1% 8.6% 6.7% 14.2%
3rd Qu. 9.1% 7.6% 14.4% 10.1% 5.7% 14.4% 9.6% 8.1% 14.5%

Max. 10.2% 9.6% 15.2% 11.5% 8.8% 15.2% 12.3% 12.2% 15.1%

10

Min. 12.8% 8.3% 15.8% 13.2% 8.3% 15.8% 12.9% 8.6% 15.7%
1st Qu. 13.7% 9.9% 16.6% 14.3% 9.4% 16.6% 14.4% 10.1% 16.5%
Median 14.2% 10.4% 16.9% 14.8% 10.2% 16.9% 15.0% 11.3% 16.8%
3rd Qu. 14.8% 12.3% 17.1% 15.2% 11.6% 17.1% 15.7% 14.0% 17.3%

Max. 16.7% 18.3% 17.9% 17.5% 14.9% 17.9% 17.0% 15.8% 18.2%

11

Min. 7.0% 6.0% 13.7% 6.6% 3.7% 13.7% 6.6% 2.0% 13.9%
1st Qu. 8.3% 6.9% 14.9% 7.6% 4.3% 14.9% 7.3% 2.4% 14.9%
Median 9.0% 10.7% 15.1% 8.0% 4.8% 15.1% 7.5% 2.8% 15.2%
3rd Qu. 9.5% 12.8% 15.6% 8.4% 5.2% 15.6% 7.9% 3.0% 15.5%

Max. 10.9% 15.0% 16.8% 9.2% 8.5% 16.8% 8.7% 3.9% 16.2%

12

Min. 7.5% 6.8% 17.8% 6.0% 2.8% 17.8% 5.6% 1.6% 17.9%
1st Qu. 8.8% 7.7% 18.8% 7.0% 5.3% 18.8% 6.1% 2.0% 18.8%
Median 9.3% 8.6% 19.1% 7.7% 5.8% 19.1% 6.5% 2.4% 19.0%
3rd Qu. 10.1% 10.4% 19.4% 8.4% 6.1% 19.4% 6.9% 2.7% 19.3%

Max. 12.2% 12.4% 20.2% 9.0% 6.8% 20.2% 8.6% 3.4% 20.0%
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Table E.14.: Summary of the results of the comparison of performance accord-
ing to different levels of micro-grid load coverage between SLC,
CLP and NLC. 40% of the micro-grid load is considered flexible.

Load
Coverage Statistic

RES Output 1 RES Output 2 RES Output 3 RES Output 4 RES Output 5 RES Output 6

Strategy Strategy Strategy Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC

25

Min. 0.0% 0.0% 0.0% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1st Qu. 0.1% 0.1% 0.1% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.1% 0.1% 0.1% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3rd Qu. 0.2% 0.2% 0.2% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Max. 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

50

Min. 1.0% 1.0% 2.7% 1.4% 1.4% 4.1% 1.6% 1.0% 4.0% 0.0% 0.0% 6.1% 0.0% 0.0% 0.0% 0.4% 0.4% 1.0%
1st Qu. 1.1% 1.0% 3.3% 1.5% 1.5% 4.5% 2.6% 1.0% 4.9% 0.1% 0.1% 6.8% 0.0% 0.0% 0.0% 0.4% 0.4% 1.5%
Median 1.2% 1.1% 3.5% 1.5% 1.5% 4.6% 3.1% 1.1% 5.2% 0.2% 0.1% 7.1% 0.0% 0.0% 0.0% 0.4% 0.4% 1.6%
3rd Qu. 1.3% 1.1% 3.7% 1.5% 1.5% 4.6% 3.7% 1.1% 5.5% 0.3% 0.1% 7.3% 0.0% 0.0% 0.0% 0.4% 0.4% 1.8%

Max. 1.8% 1.1% 4.2% 2.6% 1.6% 4.9% 4.6% 1.8% 6.4% 1.3% 0.2% 8.2% 0.0% 0.0% 0.0% 0.4% 0.4% 2.4%

75

Min. 3.6% 1.6% 8.4% 3.8% 2.0% 9.9% 14.2% 11.0% 18.3% 12.7% 4.6% 24.5% 0.0% 0.0% 3.7% 8.0% 0.7% 19.0%
1st Qu. 5.2% 2.4% 9.0% 4.8% 2.1% 10.4% 15.4% 11.6% 18.9% 13.9% 5.5% 25.1% 0.1% 0.0% 4.2% 9.0% 1.1% 19.7%
Median 5.8% 2.7% 9.2% 5.1% 2.1% 10.6% 15.8% 11.8% 19.2% 14.4% 5.8% 25.3% 0.1% 0.0% 4.4% 9.4% 1.6% 19.9%
3rd Qu. 6.5% 3.0% 9.4% 5.7% 2.1% 10.8% 16.1% 12.0% 19.4% 14.9% 6.1% 25.5% 0.2% 0.0% 4.6% 9.9% 2.8% 20.1%

Max. 7.7% 4.0% 10.1% 10.2% 4.5% 11.5% 16.9% 12.7% 20.1% 17.7% 10.5% 26.3% 0.6% 1.3% 5.0% 11.4% 3.9% 20.7%

Load
Coverage Statistic

RES Output 7 RES Output 8 RES Output 9 RES Output 10 RES Output 11 RES Output 12

Strategy Strategy Strategy Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC

SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC

25

Min. 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1st Qu. 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3rd Qu. 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Max. 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

50

Min. 0.0% 0.0% 0.0% 2.7% 0.0% 18.5% 0.5% 0.5% 1.3% 0.8% 0.8% 2.6% 0.1% 0.1% 0.4% 0.1% 0.2% 0.3%
1st Qu. 0.0% 0.0% 0.0% 3.9% 0.0% 19.4% 0.6% 0.6% 1.4% 0.8% 0.8% 2.6% 0.2% 0.1% 0.5% 0.2% 0.2% 0.4%
Median 0.0% 0.0% 0.0% 4.3% 0.0% 19.7% 0.6% 0.6% 1.5% 0.8% 0.8% 2.7% 0.2% 0.2% 0.6% 0.2% 0.2% 0.5%
3rd Qu. 0.0% 0.0% 0.0% 4.7% 0.0% 20.0% 0.6% 0.6% 1.6% 0.8% 0.8% 2.7% 0.2% 0.2% 0.6% 0.3% 0.2% 0.5%

Max. 0.0% 0.0% 0.0% 5.8% 0.0% 21.0% 0.7% 0.7% 1.8% 0.9% 0.8% 2.8% 0.6% 0.2% 0.7% 0.3% 0.3% 0.8%

75

Min. 0.2% 0.2% 4.6% 23.0% 16.9% 38.1% 1.7% 1.1% 5.4% 1.9% 1.3% 5.5% 4.5% 1.2% 6.6% 0.7% 0.5% 6.8%
1st Qu. 0.3% 0.3% 5.0% 24.3% 17.6% 38.6% 2.6% 1.1% 5.7% 2.3% 1.3% 5.8% 5.9% 2.0% 7.4% 1.2% 0.5% 7.4%
Median 0.4% 0.3% 5.2% 24.7% 17.8% 38.8% 3.2% 1.2% 5.9% 2.7% 1.3% 5.9% 6.3% 2.3% 7.6% 1.4% 0.5% 7.6%
3rd Qu. 0.5% 0.3% 5.4% 25.2% 18.0% 38.9% 3.7% 1.2% 6.1% 3.2% 1.8% 6.0% 6.8% 2.9% 7.8% 2.0% 0.6% 7.8%

Max. 2.3% 0.4% 5.8% 26.6% 18.6% 39.6% 4.9% 2.0% 6.5% 4.2% 3.0% 6.4% 8.2% 4.9% 8.4% 3.1% 3.5% 8.3%
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Table E.15.: Summary of the results of the comparison of performance according to different levels of micro-grid load
flexibility between SLC, CLP and NLC. A 75% micro-grid load coverage is considered.

RES
Output Statistic

10% Flexibility 20% Flexibility 30% Flexibility 40% Flexibility
RES
Output Statistic

10% Flexibility 20% Flexibility 30% Flexibility 40% Flexibility

Strategy Strategy Strategy Strategy Strategy Strategy Strategy Strategy
SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC SLC CLP NLC

32

Min. 13.2% 12.5% 14.3% 9.6% 8.5% 11.8% 6.4% 4.5% 10.0% 3.6% 1.6% 8.4%

242

Min. 5.2% 2.1% 7.9% 1.2% 0.0% 5.6% 0.1% 0.1% 4.1% 0.2% 0.2% 4.6%
1st Qu. 13.5% 12.7% 14.5% 10.3% 8.8% 12.3% 7.5% 5.3% 10.5% 5.2% 2.4% 9.0% 1st Qu. 5.9% 2.5% 8.1% 2.1% 0.1% 5.9% 0.5% 0.1% 4.7% 0.3% 0.3% 5.0%
Median 13.7% 12.8% 14.6% 10.7% 9.0% 12.4% 8.0% 5.5% 10.6% 5.8% 2.7% 9.2% Median 6.1% 2.8% 8.1% 2.5% 0.2% 6.0% 0.6% 0.1% 4.8% 0.4% 0.3% 5.2%
3rd Qu. 13.8% 12.9% 14.6% 11.0% 9.1% 12.5% 8.5% 5.7% 10.8% 6.5% 3.0% 9.4% 3rd Qu. 6.2% 3.2% 8.2% 2.7% 0.5% 6.1% 0.8% 0.1% 5.0% 0.5% 0.3% 5.4%

Max. 14.4% 13.1% 14.8% 11.6% 9.5% 12.8% 9.7% 6.2% 11.2% 7.7% 4.0% 10.1% Max. 7.2% 4.7% 8.4% 4.5% 1.8% 6.5% 2.9% 0.4% 5.5% 2.3% 0.4% 5.8%

42

Min. 10.5% 8.8% 12.2% 7.4% 4.7% 10.6% 4.5% 2.0% 9.9% 3.8% 2.0% 9.9%

272

Min. 34.9% 32.7% 38.8% 31.0% 26.8% 38.5% 26.8% 21.6% 38.4% 23.0% 16.9% 38.1%
1st Qu. 11.1% 8.9% 12.3% 8.5% 4.9% 11.0% 6.2% 2.1% 10.2% 4.8% 2.1% 10.4% 1st Qu. 35.2% 32.9% 38.9% 31.4% 27.3% 38.8% 27.8% 22.2% 38.7% 24.3% 17.6% 38.6%
Median 11.2% 9.0% 12.4% 8.7% 5.0% 11.1% 6.6% 2.4% 10.4% 5.1% 2.1% 10.6% Median 35.3% 33.0% 39.0% 31.6% 27.4% 38.9% 28.1% 22.4% 38.8% 24.7% 17.8% 38.8%
3rd Qu. 11.4% 9.1% 12.4% 9.1% 5.2% 11.2% 7.0% 2.7% 10.5% 5.7% 2.1% 10.8% 3rd Qu. 35.5% 33.0% 39.0% 31.8% 27.6% 39.0% 28.4% 22.6% 39.0% 25.2% 18.0% 38.9%

Max. 12.4% 9.9% 12.6% 11.3% 7.1% 11.5% 10.6% 5.1% 10.9% 10.2% 4.5% 11.5% Max. 35.8% 33.2% 39.2% 32.7% 27.9% 39.3% 29.7% 23.2% 39.6% 26.6% 18.6% 39.6%

43

Min. 22.6% 21.4% 23.5% 19.5% 17.5% 21.5% 16.9% 14.0% 19.7% 14.2% 11.0% 18.3%

297

Min. 8.6% 7.6% 9.6% 5.4% 3.8% 7.8% 3.3% 1.0% 6.0% 1.7% 1.1% 5.4%
1st Qu. 22.9% 21.6% 23.7% 20.2% 18.0% 21.9% 17.7% 14.7% 20.4% 15.4% 11.6% 18.9% 1st Qu. 9.1% 7.9% 9.7% 6.7% 4.3% 8.0% 4.4% 1.3% 6.6% 2.6% 1.1% 5.7%
Median 23.0% 21.7% 23.7% 20.4% 18.1% 22.0% 18.0% 14.9% 20.5% 15.8% 11.8% 19.2% Median 9.3% 7.9% 9.8% 7.0% 4.4% 8.2% 5.0% 1.5% 6.7% 3.2% 1.2% 5.9%
3rd Qu. 23.1% 21.8% 23.8% 20.5% 18.3% 22.1% 18.3% 15.1% 20.7% 16.1% 12.0% 19.4% 3rd Qu. 9.4% 8.0% 9.9% 7.2% 4.6% 8.3% 5.3% 2.0% 6.9% 3.7% 1.2% 6.1%

Max. 23.3% 22.0% 23.9% 20.9% 18.6% 22.4% 18.9% 15.8% 21.3% 16.9% 12.7% 20.1% Max. 9.7% 8.1% 10.1% 7.8% 5.1% 8.5% 6.2% 3.1% 7.2% 4.9% 2.0% 6.5%

70

Min. 21.2% 18.7% 25.3% 18.1% 13.6% 24.9% 15.3% 9.0% 24.8% 12.7% 4.6% 24.5%

347

Min. 2.0% 1.2% 3.3% 1.9% 1.0% 3.7% 1.9% 1.1% 4.6% 1.9% 1.3% 5.5%
1st Qu. 21.7% 18.9% 25.5% 18.7% 13.9% 25.1% 16.1% 9.5% 25.1% 13.9% 5.5% 25.1% 1st Qu. 2.3% 1.3% 3.4% 2.2% 1.1% 3.9% 2.2% 1.2% 4.8% 2.3% 1.3% 5.8%
Median 22.0% 19.0% 25.5% 18.9% 14.1% 25.2% 16.5% 9.7% 25.2% 14.4% 5.8% 25.3% Median 2.5% 1.4% 3.5% 2.3% 1.1% 3.9% 2.5% 1.2% 4.9% 2.7% 1.3% 5.9%
3rd Qu. 22.4% 19.2% 25.6% 19.3% 14.2% 25.3% 17.0% 9.9% 25.4% 14.9% 6.1% 25.5% 3rd Qu. 2.7% 1.6% 3.5% 2.5% 1.2% 4.0% 2.8% 1.4% 5.0% 3.2% 1.8% 6.0%

Max. 22.8% 20.5% 25.7% 20.4% 16.5% 25.6% 18.7% 13.2% 25.9% 17.7% 10.5% 26.3% Max. 3.3% 2.7% 3.6% 3.2% 1.9% 4.1% 3.6% 2.3% 5.2% 4.2% 3.0% 6.4%

125

Min. 5.2% 1.2% 7.2% 1.8% 0.0% 5.5% 0.1% 0.0% 4.2% 0.0% 0.0% 3.7%

221

Min. 13.1% 11.9% 13.6% 10.1% 8.1% 11.1% 7.2% 4.2% 8.5% 4.5% 1.2% 6.6%
1st Qu. 5.5% 1.5% 7.5% 2.2% 0.0% 5.8% 0.4% 0.0% 4.7% 0.1% 0.0% 4.2% 1st Qu. 13.4% 12.1% 13.8% 10.6% 8.5% 11.4% 8.1% 5.0% 9.2% 5.9% 2.0% 7.4%
Median 5.6% 2.1% 7.5% 2.4% 0.1% 6.0% 0.6% 0.0% 4.9% 0.1% 0.0% 4.4% Median 13.5% 12.2% 13.9% 10.9% 8.6% 11.5% 8.4% 5.2% 9.4% 6.3% 2.3% 7.6%
3rd Qu. 5.7% 2.9% 7.6% 2.6% 0.7% 6.1% 0.7% 0.1% 5.1% 0.2% 0.0% 4.6% 3rd Qu. 13.6% 12.3% 13.9% 11.1% 8.7% 11.7% 8.8% 5.4% 9.5% 6.8% 2.9% 7.8%

Max. 6.0% 3.4% 7.8% 3.0% 1.7% 6.4% 1.2% 1.5% 5.6% 0.6% 1.3% 5.0% Max. 14.0% 12.5% 14.1% 11.6% 9.2% 11.9% 9.6% 6.4% 10.1% 8.2% 4.9% 8.4%

176

Min. 15.9% 13.3% 18.8% 13.3% 8.2% 19.0% 10.6% 3.7% 18.9% 8.0% 0.7% 19.0%

110

Min. 8.4% 4.7% 11.3% 4.2% 0.5% 9.1% 1.3% 0.4% 7.5% 0.7% 0.5% 6.8%
1st Qu. 16.4% 13.5% 19.1% 13.9% 8.5% 19.2% 11.4% 4.1% 19.4% 9.0% 1.1% 19.7% 1st Qu. 9.0% 5.0% 11.6% 5.0% 1.1% 9.4% 2.3% 0.5% 7.9% 1.2% 0.5% 7.4%
Median 16.6% 13.6% 19.1% 14.1% 8.7% 19.2% 11.8% 4.4% 19.5% 9.4% 1.6% 19.9% Median 9.3% 5.4% 11.6% 5.3% 1.5% 9.5% 2.7% 0.5% 8.1% 1.4% 0.5% 7.6%
3rd Qu. 16.7% 13.7% 19.2% 14.4% 8.8% 19.3% 12.1% 5.0% 19.7% 9.9% 2.8% 20.1% 3rd Qu. 9.4% 6.2% 11.7% 5.6% 2.3% 9.7% 3.3% 0.9% 8.2% 2.0% 0.6% 7.8%

Max. 17.0% 13.9% 19.3% 15.1% 9.4% 19.6% 13.0% 6.0% 20.0% 11.4% 3.9% 20.7% Max. 9.9% 7.7% 12.1% 6.8% 5.3% 10.0% 4.6% 3.9% 8.9% 3.1% 3.5% 8.3%
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Table E.16.: Summary of the results of the comparisons between SLC-FK, SLC-FKd and CLP-FK. Continues in Table
E.17.

RES
Output Statistic

40 400 4,000 40,000
SLC-FK SLC-FKd CLP-FK SLC-FK SLC-FKd CLP-FK SLC-FK SLC-FKd CLP-FK SLC-FK SLC-FKd CLP-FK

1

Min. 13.7% 13.0% 9.6% 4.3% 4.3% 2.2% 1.5% 1.5% 0.7% 0.6% 0.6% 0.4%
1st Qu. 14.3% 14.0% 9.6% 4.5% 4.5% 2.2% 1.6% 1.5% 0.7% 0.6% 0.6% 0.4%
Median 14.4% 14.2% 9.6% 4.6% 4.6% 2.2% 1.6% 1.6% 0.7% 0.6% 0.7% 0.4%
3rd Qu. 14.6% 14.8% 9.6% 4.7% 4.8% 2.2% 1.7% 1.6% 0.7% 0.7% 0.7% 0.4%

Max. 14.9% 15.5% 9.6% 5.9% 5.2% 2.2% 1.7% 1.8% 0.7% 0.7% 0.7% 0.4%

2

Min. 14.6% 14.1% 7.8% 7.7% 7.6% 4.3% 6.9% 7.3% 5.3% 7.5% 7.6% 5.6%
1st Qu. 15.0% 15.1% 7.8% 8.2% 8.1% 4.3% 7.2% 7.5% 5.3% 7.6% 7.7% 5.6%
Median 15.4% 15.4% 7.8% 8.6% 8.5% 4.3% 7.6% 7.7% 5.3% 7.7% 7.8% 5.6%
3rd Qu. 15.6% 15.8% 7.8% 8.9% 8.9% 4.3% 7.9% 8.0% 5.3% 7.8% 7.9% 5.6%

Max. 17.9% 20.9% 7.8% 9.9% 9.9% 4.3% 8.4% 8.1% 5.3% 8.0% 8.0% 5.6%

3

Min. 16.3% 16.2% 20.2% 12.4% 12.6% 15.5% 14.0% 13.9% 12.9% 15.0% 14.9% 12.6%
1st Qu. 18.0% 18.2% 20.2% 13.1% 13.3% 15.5% 14.1% 14.2% 12.9% 15.0% 15.0% 12.6%
Median 19.8% 19.9% 20.2% 14.8% 14.0% 15.5% 14.4% 14.8% 12.9% 15.1% 15.1% 12.6%
3rd Qu. 23.0% 22.9% 20.2% 15.9% 15.3% 15.5% 15.1% 15.0% 12.9% 15.1% 15.2% 12.6%

Max. 25.5% 26.4% 20.2% 17.0% 16.2% 15.5% 15.5% 15.6% 12.9% 15.3% 15.4% 12.6%

4

Min. 14.9% 15.7% 16.3% 12.8% 13.0% 7.8% 12.7% 14.7% 8.2% 14.0% 15.1% 7.2%
1st Qu. 17.1% 16.9% 16.3% 13.6% 13.5% 7.8% 13.6% 15.4% 8.2% 14.2% 15.4% 7.2%
Median 18.5% 18.3% 16.3% 14.4% 14.1% 7.8% 14.0% 15.7% 8.2% 14.3% 15.5% 7.2%
3rd Qu. 20.4% 19.6% 16.3% 14.8% 16.0% 7.8% 14.1% 15.9% 8.2% 14.4% 15.7% 7.2%

Max. 21.5% 20.1% 16.3% 16.6% 17.7% 7.8% 15.0% 16.6% 8.2% 14.5% 16.0% 7.2%

5

Min. 13.7% 13.7% 8.6% 4.3% 4.1% 1.1% 1.6% 1.7% 0.5% 0.7% 0.7% 0.5%
1st Qu. 14.2% 14.2% 8.6% 4.7% 4.6% 1.1% 1.7% 1.7% 0.5% 0.8% 0.8% 0.5%
Median 14.8% 14.6% 8.6% 4.8% 4.6% 1.1% 1.7% 1.7% 0.5% 0.8% 0.8% 0.5%
3rd Qu. 15.2% 15.0% 8.6% 4.9% 4.7% 1.1% 1.7% 1.8% 0.5% 0.8% 0.8% 0.5%

Max. 15.4% 17.2% 8.6% 5.2% 4.8% 1.1% 1.7% 1.8% 0.5% 0.8% 0.8% 0.5%

6

Min. 14.9% 15.2% 12.5% 14.2% 15.5% 12.0% 15.8% 17.1% 13.0% 16.2% 17.8% 12.4%
1st Qu. 16.7% 21.4% 12.5% 14.5% 16.5% 12.0% 15.9% 17.4% 13.0% 16.3% 18.0% 12.4%
Median 18.4% 23.6% 12.5% 16.2% 17.3% 12.0% 16.2% 17.6% 13.0% 16.4% 18.1% 12.4%
3rd Qu. 21.6% 25.6% 12.5% 16.6% 18.7% 12.0% 16.5% 18.2% 13.0% 16.5% 18.2% 12.4%

Max. 28.8% 27.0% 12.5% 19.8% 21.4% 12.0% 16.9% 19.3% 13.0% 16.7% 18.2% 12.4%
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Table E.17.: Summary of the results of the comparisons between SLC-FK, SLC-FKd and CLP-FK. Continuation from
Table E.16.

RES
Output Statistic

40 400 4,000 40,000
SLC-FK SLC-FKd CLP-FK SLC-FK SLC-FKd CLP-FK SLC-FK SLC-FKd CLP-FK SLC-FK SLC-FKd CLP-FK

7

Min. 13.5% 13.5% 8.0% 4.8% 4.5% 0.9% 1.8% 1.8% 0.7% 0.9% 0.9% 0.7%
1st Qu. 14.1% 13.9% 8.0% 4.8% 4.7% 0.9% 1.8% 1.8% 0.7% 1.0% 1.0% 0.7%
Median 14.7% 14.2% 8.0% 4.9% 4.8% 0.9% 1.9% 1.9% 0.7% 1.1% 1.1% 0.7%
3rd Qu. 15.2% 14.8% 8.0% 5.0% 5.0% 0.9% 2.0% 2.0% 0.7% 1.1% 1.1% 0.7%

Max. 15.5% 16.8% 8.0% 5.3% 6.2% 0.9% 2.3% 2.1% 0.7% 1.3% 1.2% 0.7%

8

Min. 21.9% 23.5% 23.1% 25.4% 26.3% 21.6% 26.4% 27.7% 22.6% 27.1% 28.0% 22.0%
1st Qu. 24.9% 26.5% 23.1% 25.6% 27.1% 21.6% 26.9% 28.2% 22.6% 27.4% 28.1% 22.0%
Median 26.8% 28.0% 23.1% 26.9% 28.2% 21.6% 27.3% 28.4% 22.6% 27.6% 28.3% 22.0%
3rd Qu. 32.0% 31.1% 23.1% 27.4% 29.6% 21.6% 27.6% 28.7% 22.6% 27.7% 28.5% 22.0%

Max. 40.4% 38.2% 23.1% 29.9% 30.8% 21.6% 27.8% 29.8% 22.6% 27.9% 28.6% 22.0%

9

Min. 13.4% 13.9% 7.3% 4.4% 5.0% 1.1% 2.5% 2.2% 1.1% 2.3% 2.5% 1.4%
1st Qu. 14.2% 14.6% 7.3% 4.9% 5.2% 1.1% 2.8% 2.6% 1.1% 2.4% 2.6% 1.4%
Median 15.0% 15.3% 7.3% 5.1% 5.5% 1.1% 3.0% 2.9% 1.1% 2.6% 2.6% 1.4%
3rd Qu. 15.7% 16.6% 7.3% 5.3% 5.6% 1.1% 3.2% 3.0% 1.1% 2.7% 2.7% 1.4%

Max. 18.9% 18.6% 7.3% 6.0% 6.7% 1.1% 3.3% 3.2% 1.1% 2.7% 2.7% 1.4%

10

Min. 16.0% 14.3% 7.0% 9.9% 9.9% 6.1% 10.1% 9.8% 8.5% 10.7% 10.8% 8.8%
1st Qu. 16.7% 16.2% 7.0% 10.3% 11.1% 6.1% 10.4% 10.6% 8.5% 10.8% 10.9% 8.8%
Median 17.9% 17.0% 7.0% 10.5% 12.3% 6.1% 10.7% 11.1% 8.5% 10.9% 10.9% 8.8%
3rd Qu. 19.3% 19.2% 7.0% 11.1% 13.2% 6.1% 10.8% 11.4% 8.5% 11.0% 11.0% 8.8%

Max. 24.1% 22.2% 7.0% 13.3% 13.7% 6.1% 11.6% 11.5% 8.5% 11.1% 11.1% 8.8%

11

Min. 13.8% 13.7% 6.9% 4.4% 4.9% 0.8% 2.4% 2.3% 1.0% 2.2% 2.6% 1.8%
1st Qu. 14.3% 14.7% 7.6% 5.1% 5.2% 1.4% 2.9% 2.6% 1.8% 2.6% 2.7% 1.9%
Median 14.8% 15.1% 8.8% 5.5% 5.3% 2.9% 3.0% 2.7% 2.1% 2.7% 2.7% 2.0%
3rd Qu. 17.1% 16.0% 10.3% 6.1% 5.6% 3.9% 3.4% 3.2% 2.6% 2.8% 2.8% 2.1%

Max. 18.9% 21.3% 12.5% 6.9% 7.1% 5.1% 4.1% 4.1% 3.0% 3.0% 3.0% 2.4%

12

Min. 13.4% 12.8% 6.0% 4.1% 4.1% 0.7% 1.4% 1.4% 0.2% 0.5% 0.5% 0.2%
1st Qu. 13.7% 14.3% 6.7% 4.3% 4.2% 0.7% 1.4% 1.5% 0.2% 0.6% 0.6% 0.2%
Median 14.4% 14.4% 7.3% 4.3% 4.5% 0.8% 1.5% 1.5% 0.3% 0.6% 0.6% 0.2%
3rd Qu. 14.6% 14.9% 7.6% 4.4% 4.5% 1.1% 1.5% 1.5% 0.3% 0.6% 0.6% 0.2%

Max. 15.6% 16.6% 9.1% 4.6% 4.7% 1.4% 1.5% 1.5% 0.3% 0.6% 0.6% 0.2%
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