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GRAND VALLEY STATE UNIVERSITY 

ABSTRACT 

“INSPIRED DESIGN: USING 
INTERDISCIPLINARITY AND BIOMIMICRY 

FOR SOFTWARE INNOVATION” 

By Steven A. Korecki 

 

 This thesis presents research and proposes a framework for increasing the breadth and depth 

of interdisciplinary knowledge in the field of computer science.  The intent is to address an 

increasing problem of complexity in software and computing systems.  The approach is to 

equip software developers and computer scientists with a contextual perspective and a set of 

strategies for injecting innovation and creativity into the solutions they design by leveraging 

knowledge and models outside the traditional realm of computer science.  A review of current 

and historical forms of interdisciplinarity and biomimicry are presented to build that context.  

The strategies presented include interdisciplinary education, interdisciplinary collaboration, 

interdisciplinary tools, biomimetic design, and the creation of new pattern languages based on 

nature's design solutions.  Each of these strategies stems from and leads to an open exchange 

of knowledge across disciplinary boundaries.  When taken together, the knowledge and 

strategies presented here are intended to inspire and foster a paradigm that recognizes and 

harnesses the value of human and natural diversity as a source of innovation. 
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C h a p t e r  1  

1 INTRODUCTION 

The field of computer science has experienced an expanding influence on other 

fields of scientific and academic study.  General computing capabilities such as data 

processing, visualization, and communication as well as highly specialized software 

applications have lead to enormous breakthroughs in mathematics, natural science, social 

science, and more.  These advancements have been made through unprecedented access to 

information that was not previously been within human reach.  However, advancements in 

software have also introduced complexity issues that have the potential to affect nearly all 

sectors of society. 

To solve these problems of complexity, computer scientists must consider 

alternative approaches to developing more robust and sustainable software.  These 

alternative methods include interdisciplinary collaboration and exploratory search for better 

product and process models.  This research asserts that the natural world is an invaluable 

source of models that can inspire and teach computer scientist new and better ways of 

designing and developing software.   

There are already limited areas of interdisciplinary focus and bio-inspired design 

within computer science.  However, this thesis hopes to encourage many more areas of 

innovation by providing a deeper understanding of interdisciplinarity and biomimicry.  It 

also hopes to elevate early software related research on interdisciplinary innovation tools 

such as TRIZ.   
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1.1 Software Development Processes 

Software development is a creative design process which captures human 

knowledge in a precise executable language.  Like other design related fields, there are 

various approaches to this process.  Some are highly predictive in nature, like the waterfall 

model of development.  A waterfall process starts out with a long series of analysis and 

documentation steps which lead to an abstract design and finally an implementation.  Once 

an implementation has been realized, a series of testing phases take place which mirror the 

analysis phases.  An alternative approach to software development is based on iteration.  

Agile software development is an example which focuses on rapid development of 

executable code which is gradually evolved as new features are added and tested.  Like 

other development processes, software development can be enhanced through 

interdisciplinary involvement and idealized design models. 

1.2 A General Problem Solving Framework 

One of the fundamentals of software development is a problem solving framework 

like the one shown in Figure 1.  This simple framework illustrates an indirect problem 

solving process.  Through analysis a problem is typically articulated into a requirements 

document which is an explicit representation of the real world problem.  From this 

representation, a design can be modeled into a representation of a solution.  This 

representation can then be implemented into source code as a software application that is 

intended to solve the original real world problem.  If the implemented solution meets the 

original customer problem, then the process would be considered successful.   
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Figure 1: Problem Solving Framework from (Jorgensen, 2001). 

As simple as this process appears, it holds great power – for abstraction can be a 

means of taking a problem or solution from one field and making it apply to another.  That 

is, the abstraction layer becomes a common ground for experts in diverse fields to discuss 

in a common language the problems and solutions on which they work.  Abstraction is a 

key enabler for interdisciplinary problem solving and innovation. 

Problem Solving Framework

Problem Domain

Solution Domain

Representation  
of Solution

Representation 
of Problem

Problem Solution

Design

ImplementationAnalysis

1.3 The Nature of Knowledge 

Disciplinary knowledge is the result of hundreds of years of educational systems 

which have become increasingly specialized.  Although specialization is a powerful tool 

which leverages the power of individuals in a society, it also introduces fragmentation and 

discontinuity in individual and collective understanding.  It arguably undermines our ability 

to recognize the unity of knowledge and the natural world.  However, there has been a 

tremendous amount of success in bridging the disciplinary silos which have been created.  

Crossdisciplinary, multidisciplinary, interdisciplinary, and transdisciplinary activities all 
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represent different ways of approaching topics more holistically.  They can be implemented 

in educational programs, research activities, and problem solving. 

1.4 The Knowledge of Nature 

The natural world is the source and subject of nearly all human knowledge.  Nature 

is the most complex system known to man and it contains countless “designs” in the form 

of the biological species and environmental phenomena that make our world unique.  

Biomimicry is a maturing science of studying the designs, processes, and phenomena in 

nature as a source of inspiration for human creations.  It acknowledges nature as a model 

for us to imitate, a measure for us to evaluate our designs, and a mentor from which we can 

learn ((J. M. Benyus, 2002)). 

1.5 Topic and Organization of this thesis 

1.5.1 Objective 

First, our intent is to develop a new vision for collaborative software development 

that recognizes and exploits knowledge and models outside the traditional realm of 

computer science.  This vision or paradigm is developed through a survey of 

interdisciplinary literature and specific historical examples that illustrate the power of 

interdisciplinary knowledge. 

Second, we propose a framework for pursuing this vision.  This framework will 

identify specific strategies for increasing the breadth and depth of interdisciplinary 

knowledge and collaboration in the field of computer science to foster creativity and 

innovation in software development.  Creativity and innovation are essential for computer 

scientists and developers to meet the demands of our increasingly technological societies.  

Without it, we will be paralyzed by the complexity of the systems we create.  To better 

understand how such a framework could be implemented, we will explore 
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Interdisciplinarity and Biomimicry as models for innovation and problem solving.  This 

framework is not intended to be a panacea.  Rather, it will be a tool for software 

development teams to add to their arsenal. 

1.5.2 Benefits 

A shared vision and framework for interdisciplinary and collaborative software 

development may increase the level of creativity and innovation in software development 

teams.  This should potentially elevate the quality of the product which would ultimately 

benefit its intended end users and the IT professionals that may support it.  An 

interdisciplinary approach may also present opportunities to increase knowledge exchange 

among collaborators.  This type of exchange can enrich all parties and allow for more 

synergy between disciplines.  Participants may gain more opportunities to advance their 

respective fields by leveraging the knowledge, processes, and conventions learned during 

collaboration.  These collaborations would also help in the development of cross-

disciplinary social networks that can be drawn upon in the future.   

Computer Science is a field that can benefit from the experience of other fields that 

may often have a longer history.  Other disciplines, such as the classical sciences could 

benefit from an increased understanding of software technologies and the processes used to 

develop them. 

1.5.3 Approach 

First, we will develop a context for the challenges facing computer scientists, 

software developers, and members of a technological society.  Second, we will explore the 

various forms of interdisciplinary activities which will serve as a model for computer 

scientists.  Third, we will dive into nature inspired design and its methods as a source of 

innovation.  Biomimetics or biomimicry are established approaches to leverage designs that 
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have been proven successful in nature.  Fourth, we will review the current state of 

interdisciplinary and biomimetic software development.  Fifth, we will present a 

framework for software innovation based on the material presented in the previous 

chapters.  Sixth, we will present a case study of an interdisciplinary effort to develop a 

biomimetic software algorithm for task allocation based on the latest scientific research on 

honeybee specialization.  Finally, we will conclude with a summary of the contributions.   

1.5.4 Measurement 

The ideas put forth in this thesis have emerged from studying and connecting 

diverse subject areas.  A measure of success will be realized when the reader sees that 

seemingly unrelated topics can point to common patterns and simple truths.  Common 

underlying principles can by found throughout the natural world, technology, and society.  

Through observation and conscious abstraction, software developers can use these 

principles and patterns as a source of inspiration.   
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C h a p t e r  2  

2 A TRANSCENDENT PROBLEM OF COMPLEXITY 

A system is considered complicated if it can be described comprehensively as the 

sum of its parts, no matter how many there may be.  Computing systems are certainly 

complicated; however, more than that they are also complex.  A complex system is one that 

cannot be fully understood by analyzing the sum of is parts ((Reitsma, 2002)).  So it is with 

computing systems that contain or interact with so many interconnected pieces that the sum 

becomes unpredictable.  Industrialized societies are increasingly dependent on systems of 

systems whose emerging behavior cannot be fully understood. 

2.1 Computing Induced Challenges 

Computing systems and the data they contain are increasing in complexity at a 

tremendous rate.  Rampant IT growth, nearly ubiquitous network connectivity, and 

emerging technologies have impacted the daily lives of nearly everyone in the 

industrialized world and beyond.  The demands and expectations for IT systems are rising 

as they are integrated with one another and adopted into all facets of society.  Ultimately, 

the complexity of these interconnected systems and the immense volume of data they 

contain will strain the limits of human capacity to manage and interact with them.  This 

reality was acknowledged by IBM executive Paul Horn in 2001 when he stated: 
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“More than any other IT problem, this one—if it remains 

unsolved—will actually prevent us from moving to the next era of 

computing.  The obstacle is complexity… Dealing with it is the single most 

important challenge facing the IT industry.” – Paul Horn, IBM Senior Vice 

President and Director of Research (Ganek & Corbi, 2003) 

 

These powerful words set the stage for this challenge and hint toward an 

increasingly technology dependent future.  Robust, scalable, and networked software must 

be developed to manage and interact with the escalating complexity and ubiquity of 

computer-based technology.  To understand the scope of this challenge, it is worth taking a 

closer look at the nature of issues such as rampant IT growth, nearly ubiquitous network 

connectivity, and emerging technologies. 

2.1.1 Rampant IT Growth and Complexity 

Software developers and application providers are being faced with an 

unprecedented number of choices as they design and enhance their products.  New 

development paradigms have diverged from the traditional waterfall method to meet the 

rapidly changing demands of customers.  Proprietary and open source platforms have 

forced many companies to scrutinize their short-term and long-term development strategies 

and tools.  Source code is becoming more complex as developers choose to add new layers 

of abstraction and integration.  They must also select from an abundance of platform 

options.  For example, there are now more than 2500 high-level programming languages in 

use today.  This is a surprisingly high number when one considers that Fortran introduced 

itself as the first high-level programming language in the mid-1950s ((Kinnersley, 2006)).    
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That averages out to be approximately 50 new languages per year.  This diverse pallet of 

development tools has led to an even more diverse canvas of software applications that are 

produced by the IT industry to meet the needs of customers. 

Commercial and institutional customers are now faced with an IT explosion. To 

meet their own business needs, they have turned to IT systems to maximize efficiency and 

effectiveness.  They now demand more powerful, more scalable and more robust enterprise 

systems.  The IT industry has responded with more interdependent and distributed 

architectures.  Diverse layers of specialized software are integrated to develop highly 

complex computing ecosystems to meet the demands of businesses and organizations.   

As the number of systems increases, so does the need for interoperability between 

them.  Service-oriented architectures (SOA) leverage both proprietary and open standards 

to provide middleware integration that extends the life of legacy systems.  The net effect is 

that server software platforms grow and change as new ones are introduced.  The result of 

all this is an increase in the number of systems being managed and a continuous stream of 

maintenance.   

The growth of the Internet has dramatically impacted IT providers, systems, and 

customers.  Security to prevent and respond to hackers and malware are a drain on IT 

systems and personnel.  Viruses and vulnerabilities are responsible for data, resource, and 

time loss.  Personal, political, and institutional systems are under the constant threat of 

malicious attack.  Some threats are indiscriminant viruses, worms, and Trojan horses while 

others are precisely orchestrated attacks by hackers.  The Internet is a virtual battleground 

between the so called “white-hats” and “black-hats”. 
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2.1.2 Pervasive Software and Emergent Technology 

New technologies are being developed each day that are forming a pervasive 

demand for software.  Research organizations such as Gartner, Inc., The Institute for the 

Future (IFTF) and others monitor technology trends and make forecasts.  They have 

identified many common threads that indicate an increasing dependence on computer-

based technology as it becomes more and more ubiquitous in our daily lives.  Gartner’s 

annual “hype cycles” for emerging technologies (Fenn & al, 2006a) and human-computer 

interactions (Fenn & al, 2006b) describe technology maturity levels and forecasted 

adoption rates (See Figure 2).  Many of the technologies identified hold great potential to 

blur the lines between the physical and the virtual worlds.  Some examples include:  

Location-Aware technologies, mesh networks, speech recognition, RFID, IPv6, Virtual 

Reality, and Augmented Reality. 

 

Figure 2: Gartner Hype Cycle for Emerging Technologies 2006 (Fenn & 
al, 2006a).  Figure reprinted with permission from copyright owner. 
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The Institute for the Future tends to focus on macro trends that impact society.  It is 

often the case that these trends are inseparable from technology.  (IFTF, 2006) identifies 

three major waves of technology starting in the 1990s and continuing for nearly 50 years.  

These waves, shown in Figure 3 include communicating, sensing, and “sensemaking”.  The 

“Communicating” wave consists largely of the growth of the Internet.  We now find 

ourselves in the midst of the “sensing” wave.  This second wave describes the profound 

effect of sensing devices that bring information, awareness, and responsiveness to objects, 

places, and people.  Examples of the technologies behind this wave include RFID, wireless 

sensor networks, MEMS, and power harvesting technologies.  All of which are capable of 

feeding data streams into IT systems – which leads to the next wave.  The “sensemaking” 

wave represents the ability to make sense out of the vast amounts of information being 

generated.  This may be done with sophisticated mathematical models and simulations, 

sensory-rich user interfaces, and ubiquitous display technologies. 

 

 

 

 

Figure 3:  IFTF chart of major technology waves by decade (IFTF, 
2006).  Figure reprinted with permission from copyright owner. 
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The various technologies mentioned here are leading to a future where computing 

systems are integrated into commonplace objects and the background of the physical 

environment.  Sometimes called ubiquitous computing, pervasive computing, or ambient 

intelligence – the goal is to develop “context-aware” environments that will not only 

perceive us, but enhance our perception as well.  A new layer of digital information will 

overlay our world granting us a sort of “sixth sense,” allowing us to see relevant contextual 

information as we go about our daily activities.  No longer will we need to go to our 

technology, our technology will come to us.  The concept of cyberspace may ultimately 

fade, as it becomes indistinguishable from the physical space.   

The technologies described in this section seem to validate the potential for an 

increasingly technology enriched future.  A future that is highly dependent on highly 

functional, adaptive, and robust software.  Just as Microsoft Windows became a key to the 

adoption of the personal computer in the early 1990s, software will enable new technology 

platforms to emerge and be adopted forming an ever growing computing ecosystem.   

2.2 Human Limitations and Information Overload 

2.2.1 Volume of Information 

In an attempt to estimate the total amount of information that is created each year, 

(Lyman & al, 2003) calculated the amount of new information that was created in 2002 on 

four types of storage media: print, film, magnetic, and optical.  The key findings included: 

 

1. Print, film, magnetic, and optical storage media produced about 5 

Exabytes of new information in 2002. Ninety-two percent of the new 

information was stored on magnetic media, mostly in hard disks. 
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2. The amount of new information stored on paper, film, magnetic, and 

optical media has about doubled in the last three years. 

3. Information flows through electronic channels -- telephone, radio, TV, 

and the Internet – contained almost 18 Exabytes of new information in 

2002, three and a half times more than is recorded in storage media. 

Ninety eight percent of this total is the information sent and received in 

telephone calls - including both voice and data on both fixed lines and 

wireless. 

 

(Lyman & al, 2003) goes on to explain that an Exabyte is 1018 bytes and is 

equivalent to half a million libraries containing nineteen million books each.  Another 

estimated comparison is that five Exabytes of data is equivalent to “All words ever spoken 

by human beings.”  In other words, the amount of information created every year is beyond 

human comprehension.   

Both (Raskino, 2005) and (ACM, 2002) surveyed IT professionals and 

management personnel about the biggest issues their organizations face.  Respondents in 

both surveys indicated that information overload is a serious or potentially serious problem.  

(Leong & Basso, 2005) indicates that consumers and professionals alike are overwhelmed 

by the amount of communication they receive across numerous channels such as email, 

phone, IM, and fax.  These problems may get worse as new technologies pile into our daily 

lives. 
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2.2.2 Dealing with Complexity in IT 

Corporate and organizational IT departments are finding that managing increasingly 

complex computing systems is becoming too labor-intensive and prone to error.  It is 

estimated that one-third to one-half of a company’s total IT budget is spent preventing or 

recovering from crashes (Patterson et al., 2002).  Additionally, the requirements of highly 

available systems are straining the people who administer them.  The reality of human error 

increases the potential for costly outages that can impact a business.  Research shows that 

approximately 40% of computer system outages are caused by operator error and the 

reason is not because operators are not proficient.  Rather, the computing systems are too 

complex and difficult to understand. ((Ganek & Corbi, 2003) and sources) 

2.3 Societal Issues 

Societies are showing an increasing dependence on software technology.  It 

permeates nearly all aspects of our lives.  It is a central means of communication.  It is a 

repository of human knowledge, and it is a tool that enables an information based 

economy.  As its pervasiveness increases, there are also indications that there is an 

impending shortage of knowledge workers in the United States.  There is a concern that a 

shortage of computer scientists and engineers could leave companies stranded with legacy 

systems that are extremely difficult and costly to maintain. 

A digital divide is also emerging as industrialized nations forge forward into the 

information age and beyond.  Developing countries on the other hand, lack the economic 

power to compete.  They are still struggling to provide basic needs to populations in vast 

rural areas.  “One Laptop per Child” is a non-profit organization attempting to narrow this 

digital divide.  They are attempting to provide low cost computing systems (the $100 

laptop) to children in developing countries to educate and equip them with the tools to join 
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and contribute the information age.  It is unknown how diverse cultures will impact 

software as they embrace computing technology. 

2.4 The Challenge 

The challenges identified here can be summarized by saying that the problem of 

complexity in technology and specifically in computing software transcends the field of 

computer science.  Software development is a process riddled with pitfalls that lead to 

software quality and complexity issues.  These issues have physical, social, and 

philosophical impacts at individual, institutional, and societal levels.  The challenge for 

computer scientists is to respond to this problem.  Albert Einstein once said that “No 

problem can be solved from the same level of consciousness that created it.”  This 

statement is true for the problem of complexity in software.  One can infer that to solve this 

problem, one must transcend the level of thinking that created it.  One must be more 

innovative.  To do this, we must seek alternative methods of developing, managing, and 

interacting with computing systems.   
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C h a p t e r  3  

3 A BRIEF REVIEW OF INTERDISCIPLINARY COLLABORATION 

The many aspects of computing described in Chapter 2 make a compelling case that 

there are great challenges facing modern computer scientists.  The primary challenge is 

complexity.  The computing systems and the software they create are increasingly 

ubiquitous and critical with an impact on nearly all sectors of society.  Accordingly, all 

sectors of society should be concerned with addressing that challenge.  The challenge is far 

more than a technical one.  There are personal, social, political, economic, scientific, and 

environmental aspects to the challenge.   

Computer scientists are not equipped to address all aspects of technological 

complexity in isolation.  This challenge requires attention and cooperation from all 

disciplinary fields.  An inclusive and participative approach is necessary to innovate the 

future generations of software that will underpin technological societies.  Cross-

disciplinary, multidisciplinary, interdisciplinary, and transdisciplinary approaches can be 

used to organize this effort.  They can be used independently and in conjunction to address 

problems which transcend the narrow scope of disciplinary boundaries.  To better 

understand such approaches, this chapter will describe a brief history of disciplinary 

knowledge and the ways in which disciplinary boundaries can be crossed.  It will also 

highlight some individuals who have had a great impact on interdisciplinary activities.  As 

confirmed by (Klein, 2003) and (IFTF, 2006), crossing disciplinary boundaries will 

become imperative over the coming decades. 
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3.1 Segmentation of Modern Disciplines 

In higher education, a discipline refers to a specific branch of scholarly knowledge.  

The word “branch” is instrumental in this definition in that it alludes to the historical 

lineage and segmentation of modern disciplines.  Although early scientific and 

mathematical breakthroughs were made by people with broad expertise such as 

Archimedes, Leonardo da Vinci, Galileo Galilei, and Sir Isaac Newton – the last two 

hundred years have resulted in ever more fragmented silos of knowledge and discovery.  

The 19th century classical sciences of astronomy, physics, chemistry, geology, and 

medicine have evolved into thousands of specialized fields.  According to (Klein, 2003), by 

1990 approximately 8,000 scientific research topics could be identified and nearly 4000 

differentiated disciplines.  This trend is a function of the exponential increase in our 

collective human knowledge and individual human limitations.  It is simply not possible to 

be educated in all identified forms of scholarly knowledge like the historical “Renaissance 

Men” of the 14th to 16th centuries. 

3.2 Benefits of Specialization 

This increasing segmentation has come about through necessity and has led to 

tremendous advances in human understanding.  By organizing knowledge into specific 

disciplines, individuals with common interests have dedicated immeasurable time and 

effort into understanding the intricacies of the natural world.  Like a laser, it has focused 

the attention of talented and passionate individuals.  It has also focused funding from 

individuals, organizations, and governments.  Specialization has allowed new generations 

of experts to become educated on specific fields, thus leveraging the knowledge of those 

who have gone before.  
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“If I have seen further, it is by standing on the shoulders of giants.”  

– Sir Isaac Newton 1642-1727 

 

In a broad sense, specialization is a powerful strategy that has even been used in 

nature.  There are countless examples in the natural world of how specialization can be 

used to achieve goals that surpass the capabilities of an individual.  It is a principle pattern 

that has been proven successful (see sections 6.3.2.6 and 7.1). 

3.3 Pitfalls of Specialization 

Although specialization is born out of necessity and has great power, it is not 

without pitfalls.  First, deeply segmented disciplines have the potential to create tunnel 

vision, narrow minded views, and a tendency to reinvent the wheel.  Without a broader 

frame of reference, specialized disciplines color the lenses through which individuals 

perceive the world around them.  They evoke a learned bias which causes a one-

dimensional view of reality.  Put simply, “if all you have is a hammer, then everything 

looks like a nail.”  The impact of this single-sided vision is an over simplification of reality 

((Klein, 2003) & (Lattanzi, 1998)).  Furthermore, it impairs one’s ability to see the 

universality of nature that underlies diverging fields.  Second, communication barriers 

emerge as each field develops and evolves its own technical language.  Because of this, it is 

becoming increasingly difficult for individuals to participate and collaborate across 

disciplinary boundaries.  This divergence of fields and language is sometimes likened to 

the “Tower of Babel” ((Nicolescu, 2002)).  As the Biblical tale reveals, a lack of 

communication undermines our ability to realize potential.  In this case, the potential to 
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realize the full impact of knowledge and advancements made in isolated fields across 

disciplinary boundaries. 

3.4 Crossing Boundaries 

Educational reform and scientific advancement over the last 60 years have 

precipitated a great deal of crossing of disciplinary boundaries.  Recognizing that 

segmentation of disciplines and its limitations has led to various means of resolution.  

Although there is no consensus on terminology, there are several ways that the disciplines 

have been bridged.  For the purposes of this research, these means will be described using 

the terms “Crossdisciplinary”, “Multidisciplinary”, “Interdisciplinarity”, and 

“Transdisciplinarity”.  Each of these approaches can enrich a subject.  

3.4.1 Crossdisciplinarity 

According to (Seipel, 2004), a crossdisciplinary activity “views one discipline from 

the perspective of another, such as a Physics lab in which principles of physics are used to 

understand acoustics of music.”  In  (Klein, 2003), Klein defines crossdisciplinary  as “an 

adjective for any kind of crossing of disciplinary boundaries, sometimes formalized as 

"crossdisciplinarity" meaning axiomatic control from the viewpoint of one discipline, the 

solution of a problem, or creation of a new field”.  From these definitions, one can extract 

the concept of crossing disciplinary boundaries by using one discipline to explain another.  

For example, researching the ethics of engineering could be considered a crossdisciplinary 

activity. 

3.4.2 Multidisciplinarity 

Multidisciplinarity was described by Klein in (Klein, 2003) as “the juxtaposition of 

disciplines in an additive rather than integrative and interactive fashion, producing an 

encyclopedic alignment of multiple perspectives.”  Similarly, Nicolescu in (Nicolescu) 
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describes it as “studying a research topic not in only one discipline, but in several 

simultaneously.”  According to (Seipel, 2004), “multidisciplinary activity draws on the 

knowledge of several disciplines, each of which provides a different perspective on a 

problem or issue.”  The implication of these descriptions is that a multidisciplinary activity 

is performed by members of distinct disciplines without any attempt to integrate or 

assimilate the knowledge or activity from each one.  The literature often describes this as 

an additive form of crossing disciplines, as each component discipline’s contribution can 

stand alone.  In other words, the whole is equal to the sum of its parts. 

3.4.3 Interdisciplinarity 

Interdisciplinarity is perhaps the fastest growing means of crossing disciplines.  An 

increasing number of universities, research centers, and corporations are developing 

interdisciplinary programs as strategic initiatives.  What distinguishes these programs from 

the crossdisciplinary and multidisciplinary programs is their focus on integration.  It is a 

central focus of interdisciplinarity to develop people and knowledge that cross multiple 

disciplines.  In this manner, the knowledge creation becomes synergistic. 

Perhaps due to its widespread nature, interdisciplinarity has eluded a clear 

definition.  Klein defines it in (Klein, 2003) as “a label for a variety of interactions that aim 

to integrate concepts, methods, data, or epistemology of multiple disciplines around a 

particular question, theme, problem, or idea.”.  An interdisciplinary analysis is described by 

Seipel in (Seipel, 2004) as “drawing on the specialized knowledge, concepts, or tools of 

academic disciplines and integrating these pieces to create new knowledge or deeper 

understanding”.  Furthermore, Seipel states that “Interdisciplinary analysis requires 

integration of knowledge from the disciplines being brought to bear on an issue. 

Disciplinary knowledge, concepts, tools, and rules of investigation are considered, 
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contrasted, and combined in such a way that the resulting understanding is greater than 

simply the sum of its disciplinary parts.”  In (Nicolescu), Nicolescu states that 

interdisciplinarity is concerned with the transfer of methods from one discipline to another.   

Presumably, the inherent magnitude and diversity of interdisciplinary activities 

have provoked academics to create frameworks for characterizing it.  Nissani articulates the 

“realms” to which the term interdisciplinarity is most commonly applied.  The realms that 

have been identified help build an understanding of the nature of Interdisciplinarity.  These 

realms can be found in Table 1.   

 

Realm Description 
Interdisciplinary 
Knowledge 

Involves familiarity with distinctive components of two or more disciplines. 

Interdisciplinary 
Research 

Combining distinctive components of two or more disciplines while 
searching or creating new knowledge, operational procedures, or artistic 
expressions. 

Interdisciplinary 
Education 

Merges distinctive components of two or more disciplines in a single 
program of instruction. 

Interdisciplinary 
Theory 

Interdisciplinary knowledge, research, or education as its main objects of 
study. 

Table 1: The "Four Interdisciplinary Realms" according to (Nissani, 
1995). 

Nissani also proposed a set of criteria for ranking the richness of an 

Interdisciplinary effort.  He identified four variables which can be used for this ranking.  

These variables measured: the number of disciplines involved, the “distance” between 

them, the novelty and creativity involved in combining the disciplines, and the degree of 

integration between the disciplines.  Although there is some subjectivity in ranking an 

interdisciplinary pursuit by these variables, they do provide a deeper understanding of the 

nature of an effort. 
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Another attempt to rank aspects of interdisciplinarity was made by Nicolescu in 

(Nicolescu).  In his research, Nicolescu postulates that there are degrees of 

interdisciplinarity (see Table 2).  Like Nissani’s variables, quantifying the degrees of 

interdisciplinarity would be somewhat subjective, but helpful in understanding the potential 

of an interdisciplinary effort.    

 

Degree Description 
Degree of 
application 

The transfer of a method from one field into an application for another 
field.  For example, when the methods from nuclear physics were 
transferred to medicine it led to the appearance of new treatments for 
cancer. 

Epistemological 
degree 

The nature of the knowledge in one field being transferred to another 
field.  For example, transferring methods of formal logic to the area of 
general law to provoke an analysis of the epistemology of law. 

Degree of the 
generation of new 
disciplines 

The emergence of new disciplines as a result of combining knowledge 
from existing disciplines.  An example of this was when the methods of 
mathematics transferred to physics and the field of mathematical physics 
was formed. 
Table 2: The three degrees of Interdisciplinarity according to 
(Nissani, 1995). 

The definitions and perspectives identified here provide a starting point for 

understanding the approaches and potential for the interdisciplinarity.  It is a higher level 

concept than the other means described thus far; however, it is not the most comprehensive 

means being studied.   

3.4.4 Transdisciplinarity 

Transdisciplinarity is a concept that acknowledges the benefits of specialization and 

provides a framework for overcoming its pitfalls to meet broad societal needs.  Its most 

basic definition can be derived from the word itself.  The prefix “trans” means 

“transcendent” or something that goes across, through, or beyond something.  The root 

word “discipline”, as stated, refers to a “specific branch of scholarly knowledge”.  
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Therefore, transdisciplinarity is something that transcends specific branches of scholarly 

knowledge.  This “something” includes problems, solutions, knowledge, and more. 

Other definitions for transdisciplinarity prevail in the literature.  In (Seipel, 2004),  

Siepel cites a definition from Stemper describing transdisciplinary analysis as “concerned 

with the unity of intellectual frameworks beyond the disciplinary perspectives."  

Furthermore, Siepel states that it may “deal with philosophical questions about the nature 

of reality and the nature of knowledge systems that transcend discplines.”  In (Nicolescu), 

Nicolescu states that “transdisciplinarity concerns that which is at once between the 

disciplines, across the different disciplines, and beyond all discipline. Its goal is the 

understanding of the present world, of which one of the imperatives is the unity of 

knowledge.”  Finally, Klein performed a survey of many of these definitions in (Klein, 

2003).  As a result, she, proposed a definition to be “a higher stage of interaction [than 

crossdisciplinarity, multidisciplinarity, and interdisciplinarity] that entails an overarching 

framework that organizes knowledge in a new way and, in a new discourse, cooperation of 

multiple sectors of society and stakeholders in addressing complex problems.”  This 

definition attempts to incorporate the key aspects of transdisciplinarity that have evolved 

over the course of its history. 

Klein’s research in (Klein, 2003) also provided a contextual history of 

Transdisciplinarity and its diverse origins and applications.  These origins have been traced 

to many sources including a theory on knowledge production and a theory on an open 

structure of unity in complexity.  It has been used as a label for comprehensive frameworks 

like general systems theory, a descriptor of fields like philosophy, a type of educational 

reform, a form of holistic team-based collaborations, and a new approach to problem 
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solving.  Its formal origin is most prominently credited to the first international conference 

on interdisciplinarity which was sponsored by the Organization of Economic Cooperation 

and Development (OECD) and held September 7-12, 1970 in France.  The purpose of the 

conference was to examine the role of “pluridisciplinarity” and “interdisciplinarity” in the 

modern university.  This conference and its participants laid the ground work for decades 

of study on transdisciplinarity. 

Although there are diverse threads of meaning for transdisciplinarity, (Klein, 2003) 

was able to extract a series of shifts that help articulate a set of common themes.  These 

thematic shifts are reproduced in Table 3.  The left side of the table represents a sort of 

“status quo” disciplinary perspective.  The right side of the table seems to show a maturing 

view of reality that acknowledges its multidimensionality.   

 

Shift From: Shift To: 
segmentation boundary crossing and blurring 
fragmentation relationality 

unity integrative process 
homogeneity heterogeneity and hybridity 

isolation collaboration and cooperation 
simplicity complexity 
linearity non-linearity 

universality situated practices 
Table 3: Thematic shifts of Transdisciplinarity drawn from the 
historical definitions and discourses as identified by (Klein, 2003). 

The shifts identified in Table 3 show a transition from a narrow disciplinary 

perspective to a broader more inclusive view of reality.  They acknowledge a reality that 

consists of complex social interactions and natural ecosystems.  They also bring to light the 

epistemological implications of transdisciplinarity and bring into question our human 

ability to deal with transdisciplinarity.  According to (Klein, 2003), the problems that are 
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considered to be transdisciplinary are categorized as such because they are of mega size, 

complexity, and elusiveness.  An example of a transdisciplinary problem is that of 

environmental sustainability.  It is mega size, in that it can have global implications.  It is 

complex because it deals with the delicate balance of natural ecosystems, economics, 

public policy, chemistry, biology, and more.  Furthermore, it is elusive because there are so 

many interconnected considerations that it is incredibly difficult to understand the meaning 

of parameters and the impact of actions. 

3.5 Barriers to Crossing Disciplines 

3.5.1 Knowledge and Human-Factors 

This research has already alluded to the fact that crossing disciplinary boundaries 

can be a difficult task.  There are a number of factors that have been identified: 

 

1. Collective human knowledge is increasing at an exponential rate 

2. Proliferation of disciplinary fields 

3. Individual human limitations 

4. Increasing specialization narrows individual viewpoints 

5. Specialized technical language is a barrier to “outsiders” 

6. Problems that cross disciplines are both complicated and complex 

 

Additionally, there are many other human factors that can become a barrier to 

crossing disciplines.  People are diverse and human relations issues can hinder 

interdisciplinary activities.  People work differently, they are motivated differently, and 

they are all subject to different failure modes at times.  Sometimes these statements can be 
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true of organizations as well.  Industrial and organizational psychology is a disciplinary 

field that is dedicated to studying these issues. 

3.5.2 Organization, Tradition, and Disposition 

In his 1960 paper “How do we get there?” ((Steel, 1995)), Jack Steel (see 4.2.3 Jack 

Steele’s “Bionics”) identified some problems that can be encountered when crossing the 

disciplinary boundaries.  He illustrates a hypothetical (and rather amusing) relationship 

between engineers, biologists, and mathematicians in the then emerging interdisciplinary 

field of bionics.  He characterizes three main barriers which he refers to as organization, 

tradition, and disposition.  

First, the problem of organization is the difficulty in finding the right relationship 

between the disciplines.  Steel uses the metaphor of a box of electronic components and 

wires to represent the disciplines of mathematics, biology, and engineering as components 

of bionics.  In this metaphor, throwing the components into a pile does not lead to anything 

special.  However, putting them together in just the right relationship can form a radio.  The 

same components can also be put into other configurations to create new devices that serve 

other functions.  In this metaphor, the whole is greater than the sum of its parts.  Similarly, 

combining the disciplinary fields of bionics into different configurations can lead to new 

and interesting developments.  Furthermore, this metaphor can be extended to include a 

broader group of disciplinary experts who can be assembled into many configurations for 

interdisciplinary collaborations. 

Second, tradition is a problem because people presume certain relationships 

between these disciplinary fields.  Following the previous metaphor, one might see some 

components and automatically think of a radio.  However, if that is all they think of, then 

they miss the potential for other configurations that lead to new functions.  So it is with the 
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disciplinary fields.  A traditional configuration of the disciplines in Steel’s example would 

be that the engineer designs the equipment that the biologist uses to collect data for the 

mathematician to analyze.  Although this is valuable, one may miss the opportunity to 

consider how other configurations could be used to produce very interesting developments 

in other fields such as engineering.  The bottom line is that tradition does not promote the 

numerous potential disciplinary relationships that define can lead to new knowledge and 

problem solving.   

Third, disposition is a problem when one considers the stereotypical characteristics 

of a pure specialist in each of the three fields.  Steel conjectures that the biologist has a 

mind for observation and analysis rather than creativity, the engineer has a disdain for the 

messy multivariate complexity of nature, and the mathematician is satisfied with 

manipulating abstract symbols that have no link to reality.  Although, this analysis can be 

taken as rather tongue-in-cheek, it does illustrate certain biases that may be present.   

3.5.3 Educational barriers 

In the case of interdisciplinary educational programs, other risks become evident.  

On one hand an interdisciplinary program at the university level may run a risk of falling 

between the cracks as each parent discipline focuses on its own goals((Steel, 1995)).  On 

the other hand, multidisciplinary programs that fall under a disciplinary department may be 

influenced too much by its parent discipline and lose its symmetry ((Harkness, 2002)).  

Regardless, education is a primary factor for the success of interdisciplinary activities. 

3.6 Strategies for Crossing Disciplines 

Once the barriers to interdisciplinary activities have been identified, strategies can 

be taken to mitigate or overcome them.  The solutions that Steel identified to help 
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overcome the barriers for bionics ((Steel, 1995)) as a discipline were “unceasing education 

and explanation”, gadgets, and simple solutions.  These can be examined further. 

3.6.1 Education 

Almost by definition, education will aid in bridging the disciplines.  There are 

volumes written on the development of multidisciplinary, interdisciplinary, and other 

boundary crossing programs at the university level.  These programs can develop 

individuals with knowledge in more than one discipline who can pay the essential role of 

“translator”.  In (Steel, 1995), Steel makes it a point to discuss the importance of this role, 

but also acknowledges there are challenges to achieving it.  There can be a negative 

perception of being a “generalist” or so-called “jack-of-all-trades-master-of-none”. 

3.6.2 Demonstration 

Perhaps the most compelling method of justifying interdisciplinary efforts is to 

show success.  Academic, commercial, and governmental communities are more likely to 

be interested in interdisciplinary activities if they see results even on a small scale.  Starting 

out with small achievable goals can go a long way toward building credibility.  This has 

already taken place to a great extent and gained tremendous momentum.  One model of 

demonstration is the creation of centers of interdisciplinary research and applied 

knowledge.  There are many examples of this at universities and institutions including the 

Santa Fe Institute in New Mexico and the International Center for Transdisciplinary 

Research (CIRET) in France.   

3.7 Interdisciplinary Innovators and their Tools 

There are a number of systems and tools that have been developed to assist with 

interdisciplinary problems, collaborations, and knowledge transfer.  At a practical scale, 

modern Internet tools like the semantic web and text processing can assist in the transfer of 
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knowledge between the disciplines ((Kostoff, 2002)).  Additionally, knowledge 

management and social networking tools enable the discovery and flow of information both 

explicit and tacit.  On a larger scale, Norbert Wiener’s Cybernetics has had a great impact 

on interdisciplinary research.  It has provided a common framework and transdisciplinary 

language for the study of all types of systems whether biological, technical, organizational, 

and political ((Francois, 1999)).  A description of cybernetics and its history is beyond the 

scope of this research, but it contains powerful tool that can be leveraged going forward.  

Norbert Wiener himself is an excellent example of the power of interdisciplinary 

knowledge.  Another individual who is less widely known in the western world, but also 

made a great contribution to interdisciplinary knowledge transfer is Genrich Altshuller – 

the father of TRIZ. 

3.7.1 Genrich Altshuller’s TRIZ 

TRIZ is a Russian acronym for “Teorija Reshenija Izobretatel’skih Zadach” which 

loosely translates to “The Theory of Inventive Problem Solving”.  It was first developed in 

the 1940s and 1950s by Genrich Altshuller, an inventor whose bold tenacity for innovation 

was not always well received by the communist Russian establishment.  A brief but 

fascinating biography of Altshuller is available from Lerner in (Lerner, 1991).  Some 

highlights from this work are described here. 

Altshuller received his first patent for an underwater diving apparatus in 9th grade.  

He continued to invent and eventually began work in a Russian patent office reviewing 

patents.  This inspired him to do more than work on his own inventions.  Rather, he wanted 

to help others learn how to invent.  It was this desire that shaped the course of his life and 

the development of TRIZ.  In December of 1948 Altshuller acted on this desire and wrote a 

seemingly brash letter to his country’s leader, Joseph Stalin.  The letter stated that there was 
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“chaos and ignorance in the USSR’s approach to innovation and inventing” and that he had 

developed a theory that could help any engineer to invent.  This letter changed the course 

of Altshuller’s life as it eventually led to his arrest, imprisonment, and a captivating series 

of both tragic and fortunate events.  Throughout all of which, he continued to innovate and 

develop his theory of inventive problem solving which ultimately enabled him to survive 

the Russian gulags (forced labor camps).  While in these camps, he met many imprisoned 

scientists, lawyers, and architects who befriended him and taught him their fields as a 

distraction from prison life.  Eventually, Stalin passed away and Altshuller was freed.  In 

1956, he published his first paper titled “Psychology of Inventive Creativity”.  He 

continued his work studying world wide patents and concluded that invention derives from 

problem analysis that reveals contradictions.  Specifically, he determined that there were 

about 1500 contradictions that could be easily overcome by applying some common 

principles.  After many years of diligence, his ideas started to receive acceptance.  In 1969 

he published a book called Algorithm of Inventing which described 40 Principles and the 

first algorithm to solve complex inventive problems.  His ideas continued to develop and 

gain acceptance and in 1989 he formed the Russian TRIZ Association which has continued 

to grow even since his death in 1998.  TRIZ has become highly regarded for its success in 

transferring inventions and solutions from one field to another 

According to (Julian Vincent & Mann, 2002), TRIZ represents the largest study of 

human creativity ever conducted – encompassing 1500 person years of effort over the 

course of 50 years.  Nearly three million successful international patents were searched and 

ranked by inventiveness in an attempt to develop a system to classify all known solutions in 

terms of function.  This research inspired Altshuller to state three basic principles of TRIZ. 
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• Problems and solutions are repeated across industries and sciences. 

• Patterns of technical evolution are repeated across industries and sciences. 

• Innovations used scientific effects outside the field where they were developed. 

 

Altshuller’s research also observed that the most inventive solutions resolved a 

conflict between competing parameters known as “technical contradictions”. A technical 

contradiction is a pair of conflicting parameters of a system.  For example, strength-versus-

weight is a classic contradiction in structures.  The contradiction is that one must be traded 

for the other.  For one to achieve high strength, it is often the case that additional weight is 

required.  Conversely, for an object to be light weight, it is often the case that strength must 

be sacrificed.  However, there are many instances where inventions have achieved both 

high strength and light weight.  When one faces this type of problem, TRIZ tools can be 

used to facilitate a resolution to the problem. 

3.7.2 Basic Concepts of TRIZ 

TRIZ is a very structured and systematic approach to innovation.  At a high level, it 

follows the general problem solving framework (Figure 1) that was described in Section 

1.2.  However, what makes TRIZ unique is the effort that went into its development and the 

extensive set of tools that were created for it.  Figure 4 is an illustration of a classic TRIZ 

process from (Changquing, Zezheng, & Fei, 2005).  
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Figure 4: General TRIZ process overview from (Changquing, 
Zezheng, & Fei, 2005). 

TRIZ is a collection of tools and techniques that facilitate the creation of a 

functional problem definition which can then be correlated with a set of known innovative 

solutions that have solved similar functional problems.  This is done by mapping specific 

problems to generic problems which can be cross-referenced to their generic solutions 

using specific TRIZ tools.  Some of the fundamental tools of TRIZ were summarized in an 

illustration by (Loebmann, 2002) which is shown in Figure 5. 
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Figure 5: Categorized break-down of common TRIZ tools from 
(Loebmann, 2002). 

The tools shown are organized by their function.  The analysis tools are used to 

assist in problem definition.  The knowledge tools are large databases of specific solutions 

to specific problems.  The analogy tools are used to abstract problems so that they can be 

mapped to abstract solutions.  The vision tools are used to consider the potential of a 

specific solution.  Some of these tools will be described briefly. 

Two of the most common TRIZ tools for performing this cross-reference are the 

“Contradiction Matrix” and the “40 Inventive Principles”.  An excerpt of a Contradiction 

Matrix is shown in Figure 6.  A contradiction is defined as a pair of opposing parameters 

and an inventive solution is one that resolves that contradiction.  The row & column 

headings contain common contradiction parameters that tend to result in a design trade-off.  

Using these headings, one can locate cells in the body of the table containing references to 

the most inventive generic solutions.  The numbers in these cells correspond to entries in 

the list of “40 Inventive Principles”.  This list of only 40 inventive principles was the result 

of a comprehensive analysis that categorized and ranked the inventiveness of over 

3,000,000 international patents.  In TRIZ terms, this large pool of patents can be considered 

a “function” database which catalogs the various means of achieving a particular function. 
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Figure 6: A portion of the TRIZ Contradiction Matrix from (Domb, 
1997). 

A simple example of a classic TRIZ process using the Contradiction Matrix and 

Inventive Principles was described in (Salamatov, 2005).  This example has been 

reproduced in Table 4 for convenience.  One can start to appreciate the thoroughness of this 

structure and its potential for “inventive problem solving”.  It minimizes the trial-and-error 

approach to design in favor of a guided thought process.  Although this structure points an 

innovator in the right direction, it does not promise to make innovation easy.  There is still 

a great deal of critical thinking required to move from a generic solution to a specific one. 
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Step Description Example 
1 Select a product you want to improve. “I want to improve a coffee cup”. 
2 If product consists of many parts, try to 

separate and focus on a specific part 
which causes a problem. 

“A cup does not keep coffee warm for a 
long time.  Therefore, we are interested in 
a new design of a coffee cup, and not in 
improving the coffee beans or maker.” 

3 Identify a parameter you want to 
improve. 

“I want to keep coffee in the cup warm as 
long as possible.  In other words, to make 
the temperature of the coffee as stable as 
long as possible.” 

4 Propose any method which will improve 
your technical parameter. 

“I can keep coffee warm, for instance, by 
placing the cup on an electric heater.” 

5 Think of why you can not reach the 
desired improvement in a straightforward 
way by using the method proposed. 

“In the case of using the heater, more 
electric energy will be consumed.” 

6 Formulate a contradiction in the 
following form: “I want to improve the 
parameter X.  I can do it by doing (put 
what you can do) but the parameter Y 
gets worse.” 

“I want to improve the stability of the 
temperature of the coffee by providing 
external heating, but in this case energy 
consumption grows.” 

7 Use Altshuller’s [Contradiction] matrix. To improve: temperature.   
Gets worse: energy waste. 

8 Find a cell in the matrix which is the 
intersection of vertical column and 
horizontal row for respectively the 
parameters you selected. 

Improve: 17 – Temperature 
Worsening: 22 – Loss of energy 

9 Use the list of inventive principles. 21 – Skipping  
17 – Another dimension 
35 – Parameter changes 
38 – Strong oxidants 

10 Interpret the recommended inventive 
principles in terms of your product. 

 

11 If no solution can be found, change the 
parameter that gets worse and return to 
step 5. 

 

12 If no solution can be found, redefine the 
parameter that you want to improve and 
return to step 3. 

 

13 If the Altshuller’s Matrix does not help 
after several attempts, use Inventive 
Standards, Pointer to Physical effects, or 
ARIZ. 

 

Table 4: Steps and example of a classic TRIZ process using the 
Contradiction Matrix and Inventive Principles (Reproduced from 
(Salamatov, 2005)). 
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 Some of the other notable tools are Substance-Field (S-F) Analysis and the Law of 

Increasing Ideality.   S-F Analysis is a modeling technique to represent any technical 

system with a minimal number of elements.  Specifically, it expresses a system in terms of 

one object (S1) acting (F) on another object (S2).  The law of increasing ideality (also 

called the law of technical evolution) states that all successful innovations evolve in a 

direction of increasing ideality, where ideality is defined as more benefits, less cost, and 

less harm.  There are a multitude of other tools and procedures that facilitate a TRIZ 

process.  A full description of TRIZ and its tools is beyond the scope of this research, but 

additional information can be found in the bibliography.   
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C h a p t e r  4  

4 A BRIEF REVIEW OF NATURE INSPIRED DESIGN 

Software and other forms of design depend on innovation to meet growing and 

changing demands.  Incremental improvements are the basis for most software products 

today as they evolve from version to version.  New features are introduced and existing 

features are improved upon.  Breakthrough innovation, however, can be elusive.  It is rare 

and often based on esoteric individuals and teams who serendipitously arrive at an 

innovation.  Breakthrough innovations are almost, by definition, difficult to repeat.  This, 

however, has not stopped individuals and institutions from striving to create them.  To do 

this, some have turned to the natural world as a source of innovation.  Nature inspired 

design in its various forms is a growing source of innovation for many fields of design 

including computer science.  This chapter will provide a general overview to nature 

inspired design with its various forms and methodologies. 

4.1 Nature Inspired Design 

The natural world is the material world and its phenomena.  It is also commonly 

referred to as the cosmos, the universe, nature, or the world (Dictionary, 2004).  One can 

say with assurance that the natural world is by far the most complex system known to man.  

Its scale and diversity are beyond human measure at both the micro and macro levels.  All 

areas of science are focused on studying the intricacies of the natural world, and harnessing 

it where possible.  In spite of its innate complexity, there is an intrinsic order and balance to 

it.  The natural world is flexible and diverse.  It is dynamic and self-regulating.  It adheres 

to a set of natural laws that govern the existence and behavior of everything in it.  Whether 

one attributes the creation of the natural world to design or phenomena, it is undeniable that 
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it is the ultimate picture of systemic beauty and is the standard by which everything else is 

measured. 

A paradox of nature is that in its complexity is an innate simplicity.  Although 

nature is vast and intricate, it is not superfluous.  There is intent to every design in nature.  

Everything has a purpose and is uniquely designed to fulfill that purpose.  In (Bernsen, 

2004), Bernsen describes how simplicity is the guiding principle of designs in nature.  It 

furthermore states that nature “achieves simplicity in a demanding way by always 

acknowledging the complexity of the purpose at hand, whether in one single organism or in 

the interplay between a multitude of living species in a habitat.”  Highly regarded scientists 

have recognized the simplicity of nature’s designs and its intuitive value. 

 

Nature always tends to act in the simplest way. 

 – John Bernoulli (1696) 

 

Everything should be made as simple as possible, but not simpler.  

– Albert Einstein (1879-1955) 

  

Creative people have taken design inspiration from the natural world for centuries, 

if not millennia. Those that were able to recognize or capture the simplicity, efficiency, 

functionality, and beauty of nature’s designs in their own creations have taken their place in 

recorded history.  
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If one way be better than another, that you may be sure is Nature’s 

way. 

- Aristotle, Politics (350 B.C.) 

 

Human subtlety will never devise an invention more beautiful, more 

simple or more direct than does Nature, because in her inventions, nothing 

is lacking and nothing is superfluous.  

- Leonardo da Vinci (1452-1519) 

 

This fascination and appreciation for the elegance of nature’s designs have not 

diminished over time.  Modern innovators still seek inspiration and insight from the natural 

world. 

 

No matter what product you are designing, nature is always the best 

database. There is more in the world to be discovered than there is to be 

invented. 

- Franco Lodato (2004) 

 

These principles of nature inspired design have been and will continue to be used 

by artists, architects, designers, and engineers to drive innovation in many domains.  

Industrial design, material science, control systems, manufacturing are just a few popular 
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examples of fields that have benefited from mimicking nature.  Computer Science can be 

included in this list, and is one focus of this research. 

4.2 A Recent History of Nature Inspired Design 

Although it may not be possible to determine the true origins of nature inspired 

design, there are converging paths in recent history.  As scientific knowledge of nature 

increased in the early to mid-20th century, examples of nature inspired designs began to 

appear at the forefront of scientific research.  Experts of varied learning and 

interdisciplinary efforts drove much advancement.  By the mid-20th century, terms like 

“biomimetics” and “bionics” emerged in the United States as descriptors for nature inspired 

design.  These and other terms like “biomimicry”, “biologically inspired design”, and 

“bioinspired design” are now largely considered to be synonymous.  However, it is 

valuable to understand the major roots of these terms and the people who developed them.  

We intend to show that the advancements made in nature inspired innovation came forth 

through interdisciplinary applications, knowledge, and collaboration.  To begin, we will 

describe an example of nature inspired design that predates the terms described above. 

4.2.1 Warren McCulloch and Walter Pitts’ Artificial Neural Networks 

Artificial neural networks are self learning systems that are modeled after the 

interconnected system of cells called “neurons” in the human brain.  Their intent is to 

imitate the brain’s ability to “learn” from trial and error by recognizing relationships and 

patterns.  In other words, their purpose is to enable an artificial system to learn from 

experience, much like humans do.  This capability allows systems to be developed that can 

adapt to solve new problems without explicit coding by a trained developer.  This powerful 

paradigm has had significant success in various application areas including time series 
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prediction, decision making, pattern recognition, and data mining to name a few.  However, 

it was not these applications that drove the invention of artificial neural networks. 

The earliest work on artificial neural networks took place in 1943 by a 

neurophysiologist named Warren McCulloch and a mathematician named Walter Pitts 

(McNeil, 1992).  Together they modeled a simple neural network using electrical circuits 

and wrote a landmark paper called “A Logical Calculus Immanent in Nervous Activity”.  

The intent of their work was as much to develop an understanding of human thought as it 

was to develop an “experimental epistemology.”  The logical calculus they proposed 

attempted to provide a rigorous and materialistic description of neural activity. 

Because of this work, Warren McCulloch is now recognized as a pioneer in 

cybernetics, neurology, and the development of the computer.  McCulloch’s educational 

background is described by (APS, 2000).  He completed his bachelor’s degree in 

philosophy and psychology at Yale in 1921 and his masters in psychology from Columbia 

University in 1923.  He went on to receive his MD in 1927 from the College of Physicians 

and Surgeons in New York to further develop his understanding of the nervous system. 

Little biographical information is known about Walter Pitts.  He was only 20 years 

old with no formal college degree when he published the seminal paper with McCulloch.  

In spite of this, he had already worked with prominent scientists in logic and mathematical 

biology.  He was known for his aptitude in logic and mathematics and went on to 

contribute to early conferences on cybernetics in the 1940s and 1950s.  (Easterling, 2001) 

Together, McCulloch and Pitts made a powerful impact on the field of computer 

science without ever intending to do so.  Over 60 years ago, their attempts to better 
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understand human thought launched an entire new field of study leading to innovations that 

are still being developed today. 

4.2.2 Otto Schmitt’s “Biomimetics” 

Otto Schmitt, a man of varied learning and a talent for connections, is credited with 

coining the term “biomimetics”.  Born in St. Louis, Missouri in 1913, Schmitt grew up in a 

well educated family and was able to pursue interests in electrical engineering, biology, 

physics, and mathematics.  Schmitt’s formal training was as a scientist and he spent much 

of his career during the 1950s, 60s, and 70s as a faculty member at the University of 

Minnesota.  While there, he was uniquely appointed to a joint “biophysics” program 

between the biology and physics departments.  By 1957, he had conceived what would 

later be known as “biomimetics”.  He believed that fundamental biological phenomena can 

be understood in relatively simple physical and chemical terms once the painstaking effort 

has been made to study them adequately by quantitative biophysical methods ((Harkness, 

2002)).   This concept defined much of his career even from his early years.  His doctoral 

research included the development of a device that mimicked the electrical action of a 

nerve.  Later in his career, he and his students would continue this pursuit and perform 

extensive research into biological nervous systems including the extraction and testing of 

actual nerve fibers from squid, lobster, and other specimens. 

Schmitt spent a great deal of his career contributing to the field of “biophysics”.  In 

one of his papers called “The Emerging Science of Biophysics”, he described the topic as 

follows: 
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“Biophysics is not so much a subject matter as it is a point of view.  

It is an approach to problems of biological science utilizing the theory and 

technology of the physical sciences.  Conversely, biophysics is also a 

biologist’s approach to problems of physical science and engineering, 

although this aspect has largely been neglected.” (Harkness, 2002) 

 

Schmitt eventually designated the second point in this description with the word 

“biomimetics”.  It is not clear of the exact date which this word was first used, but it 

appeared in a conference paper that he wrote in 1969.  In 1974, the word made its first 

appearance in a dictionary with this definition: 

 

"the study of the formation, structure, or function of biologically 

produced substances and materials (as enzymes or silk) and biological 

mechanisms and processes (as protein synthesis or photosynthesis) 

especially for the purpose of synthesizing similar products by artificial 

mechanisms which mimic natural ones." (Harkness, 2002) 

 

Otto Schmitt’s contribution to the subsequent field of biomimetics was more than 

that of linguistics.  His broad expertise allowed him to draw meaningful connections 

between diverse academic disciplines.  This was true in both a technical and social 

capacity.  He was able to link concepts in nature with concepts in technology.  

Furthermore, he was a networking hub that facilitated professional and social connections 

between individuals and organizations.  Throughout his career at the University of 
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Minnesota, Schmitt traveled the nation and the world trying to establish biophysics as a 

unified discipline.  He played in important role in founding a number of professional 

organizations including the IEEE Engineering in Medicine and Biology Society, the 

Biophysical Society, the Biomedical Engineering Society, the Association for the 

Advancement of Medical Instrumentation, the International Federation of Medical and 

Biological Engineering, and the International Union of Pure and Applied Biophysics. 

(Harkness, 2002) 

4.2.3 Jack Steele’s “Bionics” 

The word “bionics” was coined by Jack Steele of the US Air Force at a Wright-

Patterson Air Force Base in Dayton, Ohio in 1960.  Steele was another man of varied 

learning and was born in 1924 in Lacon, Illinois.  He attended the University of Illinois in 

Champaign until he was drafted in 1943 into the Army Specialized Training Program.  He 

was trained at the Illinois Institute of Technology in engineering and then studied pre-

medicine at the University of Minnesota.  Upon discharge from the army in 1946, he 

completed medical school at Northwestern University Medical School.  During that time, 

he worked in a research fellowship with a Dr. Ray Snider to study the effects of drugs on a 

rabbit’s brain.  He also spent one summer studying atomic physics at the University of 

California at Berkeley.  He audited courses by Fermi and Oppenheimer and strove to better 

understand semiconductors for use in a “thinking machine”.  In 1951, he was drafted by the 

Army once again where he would serve as a doctor.  Starting out as a first Lieutenant, he 

retired from the Army as a Colonel in 1971.  (Gray, 1995) 

In August of 1958, Steele started using the term “bionics” to represent the use of 

biology to solve design and engineering problems.  This application of biology was not 

new, but had not been recognized as a formal discipline.  He believed that naming it would 
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facilitate its wider adoption as a field.  In June of 1959 the term was first documented in a 

letter to the Committee on Bioelectronics.  The term was constructed from the Greek word 

“bion” meaning a unit of life with an emphasis on function rather than form (“morphon”) 

and “ics” being a common suffix for areas of disciplinary studies as in mathematics and 

physics.  He defined the term as: 

 

“The discipline of using principles derived from living systems in 

the solution of design problems.” (Steel, 1995) 

 

Jack Steele was also a man of connections.  Not only did he connect the disciplines 

of biology, physics, mathematics, and engineering; he also formed interesting social 

connections.  During his research fellowship at Northwestern, Ray Snider introduced him 

to Warren McCulloch – the co-inventor of artificial neural networks (See section 4.2.1).  

Together, they would discuss neural operation, logic, and engineering.  Additionally, he 

was impacted by a brief meeting with Norbert Wiener, the man who created the field of 

Cybernetics.  He was impressed by Wiener’s conjecture that mathematics is at best an 

approximation of reality. 

4.2.4 Janine Benyus’ “Biomimicry” 

A more contemporary development in nature inspired design is the “biomimicry” 

movement renewed by Janine Benyus in 1997 with her book Biomimicry: Innovation 

Inspired by Nature.  Benyus is a biologist, author, and speaker from Stevensville, Montana 

who was educated at Rutgers University.  Her book and international lecture tours have 

been a catalyst for the awareness and adoption of biomimicry as a source of innovation.  
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Her dedication to biomimicry led her to found two organizations dedicated to advancing 

nature inspired design – the Biomimicry Guild and the Biomimicry Institute.  She and her 

organizations have become quite influential as advisors to many commercial, educational, 

and governmental organizations.  The Biomimicry Guild is a for-profit company founded 

in 1998.  It offers education, research, and consulting services to product development 

organizations, often in the form of a “Biologist at the Design Table”.  In this offering, a 

biologist is contracted to facilitate a “Biomimicry Design Process” to address a design 

problem through careful inspection of nature’s solution to similar problems.  (The 

Biomimicry Design Process is described in detail in section 4.4.)  The Biomimicry Institute 

was founded in late 2005 as a not-for-profit organization whose mission is to “promote the 

transfer of ideas, designs, and strategies from biology to sustainable human systems 

designs.”  Shortly after its establishment, the Biomimicry Institute embarked on an 

initiative with another environmental nonprofit organization called the Rocky Mountain 

Institute, to develop a “Biomimicry Database”.  The Biomimicry Database was designed to 

facilitate the aggregation and sharing of biomimicry knowledge, literature, and products.  

On February 22, 2006 Benyus hosted a “Biomimicry Portal Workshop” in Toronto, 

Ontario ((2006b)) to advance the development of this database.  Those invited to the 

workshop included leaders from the worlds of web search engines, open source, wikis, 

scientific publishing, ontology, digital libraries, as well as users from biology, engineering, 

design, etc.  An invitation to the workshop described the portal as “a bio-inspiration 

website where innovators can learn from nature's solutions, where biologists can find a 

whole new audience for their research, and where collaborators can cross-fertilize to create 
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sustainable, bio-inspired designs ((J. Benyus, 2005)).  The portal itself describes its purpose 

as: 

 

“The Biomimicry Database is intended as a tool to cross-pollinate 

biological knowledge across discipline boundaries. It will be a place where 

designers, architects, and engineers can search biological information, find 

experts, and collaborate, to find ideas that potentially solve their 

design/engineering challenges. It attempts to bridge the gaps of terminology 

and specialization that separate biologists, chemists, and other researchers 

from engineers and other developers in industry. It is a moderated open-

source tool, which makes it not only a knowledge source but also a 

collaboration forum for researchers in disparate fields.” (Biomimicry, 

2007)  

 

An alpha-prototype release of the Biomimicry Database was released in 2006 and 

can be found at http://database.biomimicry.org.  Its use of both biological and technical 

language allows nature’s solutions to be found by both biologists and engineers.  Thus, it 

serves as a sort of “Rosetta stone” to translate between these disciplinary fields.   

4.3 Facets of Nature Inspired Design 

Biomimicry, bionics, and nature inspired design have now been established as 

nearly synonymous terms that describe a concept where designers use the natural world as 

a source of innovation.  There are, however, several ways that this innovation can be mined 

and applied to human designs.  Podborschi & Vaculenco in (Podborschi & Vaculenco, 
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2005) and Lodato in (Lodato, 2005) describe five classifications of Bionics.  For 

convenience, these classifications are reproduced in Table 5. 

 

 

Classification Description 
Inspiration Used as a trigger for creativity (for example, the design of London’s 

Crystal Palace inspired by water lily) 
Abstraction The use of an isolated mechanism (for example, fiber reinforcement 

of composites) 
Non-Biological 
Analogy 

Functional mimicry (for example, modern planes and the use of 
airfoils) 

Partial Mimicry A modified version of the natural product (for example, artificial 
wood) 

Total Mimicry An object or a material or chemical structure that is indistinguishable 
from the natural product (for example, early attempts to construct 
flying machines) 

Table 5: Classifications of Bionics as described by (Podborschi & 
Vaculenco, 2005) and (Lodato, 2005). 

The classifications of Bionic methods range in both rigor and intent.  Each form has 

led to innovations and can be applied to problem solving design.  Inspiration is perhaps the 

least structured form of Biomimicry.  As stated, it simply triggers a creative idea that may 

not be representative of the inspiring natural element.  Total Mimicry is at the other end of 

the spectrum and is an attempt to essentially recreate a natural design through human 

means. 

Abstraction is a key form of Biomimetic design.  It involves the identification of an 

underlying principle in the natural world, then interpreting or translating it into a technical 

solution.  An excellent example of this is the design of products based on the “Lotus 

Effect”, which is a self-cleaning principle for surfaces abstracted from the Lotus plant.  

This unique plant has a remarkable quality in that dirt and grime do not to stick to its 

leaves.  It was observed that their textured surface kept a layer of air between soiling 
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particles and the leaf itself.  This layer of air prevents sticking so well that a drop of oil will 

roll off the surface of a Lotus leaf like a marble.  The underlying principle is now being 

designed into metal for self-cleaning surfaces.  

Beyond the classifications of nature inspired design, Benyus has described three 

aspects that frame the benefits of biomimicry (J. M. Benyus, 2002).  These aspects may 

help a designer formulate a point-of-view that guides them to leverage natural designs and 

processes as a source of innovation.  These aspects are shown in Table 6. 

 

Aspect Description 
Nature as Model Biomimicry is a new science that studies nature’s models then imitates 

or takes inspiration from these designs and processes to solve human 
problems. 

Nature as Measure Biomimicry uses an ecological standard to judge our innovations.  
After 3.8 billion years of evolution, nature has learned: What works.  
What is appropriate.  What lasts. 

Nature as Mentor Biomimicry is a new way of viewing and valuing nature.  It introduces 
an era based not on what we can extract from the natural world, but 
on what we can learn from it. 

Table 6: Aspects of Biomimicry according to (J. M. Benyus, 2002). 

“Nature as Model” is a practical aspect that establishes nature as a “database” of 

design ideas.  “Nature as Measure” is an interesting aspect that does not depend on using 

biomimicry.  Rather, it forces a designer to ask questions about the designs they do create.  

“Nature as Mentor” is a much more relational construct that fosters an appreciation for the 

natural world.  This appreciation should increase a designer’s awareness and respect for 

nature.  Thus, it fosters the first two aspects of biomimicry.  These aspects represent 

valuable thought processes that can be build the ground work for a global tipping point 

toward innovation, environmental sustainability, and green design. 
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4.4 Biomimetic Design Methodologies 

Although there is a great deal of literature that provides conceptual introductions or 

commentary on biomimicry, there are surprisingly few sources that discuss methodologies.  

Noted by (Julian  Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006), there is no 

general theory of biomimetics.  Seemingly every new biomimetic design is developed 

using its own unique process.  Regardless, there have been several attempts to capture the 

steps for biomimetic design.  “Bionic Association” is briefly described by (Changquing, 

Zezheng, & Fei, 2005), the “Bio-Design approach” is described by (Lodato, 2005), the 

“Biomimicry Design Process” is described by (Biomimicry, 2006a), and “Biomimetic 

TRIZ” is described by (Julian  Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006), 

(Julian Vincent & Mann, 2000), and (Julian Vincent & Mann, 2002).  Ultimately, all these 

processes provide steps for a design team to consider the question “How would nature 

solve this problem?” 

4.4.1 Bionic Association 

Bionic Association is an innovation methodology described by (Changquing, 

Zezheng, & Fei, 2005).  This much generalized approach recognizes that organisms are 

good examples of “correct” ways to solve problems.  Therefore, when one faces a design 

problem, simply look for an organism that solves that same problem and use it’s pertinent 

mechanism as a reference for the a new artificial design. 

Step Description 
1 Observe the organisms’ behavior carefully.  Take the phenomena of the organisms 

as the association objects. 
2 Analyze the mechanism of the phenomena of the organisms system. 

3 Analyze the practical problem.  Develop a bionic idea into a problem-solving 
method or product. 

Table 7: Steps in "Bionic Association" by (Changquing, Zezheng, & 
Fei, 2005). 
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4.4.2 The Bio-Design Approach 

 The Bio-Design Approach described by (Lodato, 2005) is nearly identical to 

Bionic Association, with the notable addition of translating the biological systems into a 

language familiar to the designers.  This important step begins to develop a mechanism for 

enhancing communication across domains and enables the possibility of codifying the 

knowledge gained during a design initiative for future reuse. 

 

Step Description 
1 Select features of a living organism that exceed current technological capabilities. 

2 Derive principles and processes responsible for their superiority. 

3 Develop models and methods to describe biological systems in terms useful to 
designers. 

4 Demonstrate the feasibility of translating this knowledge into dependable and 
efficient hardware. 

Table 8: Steps in the "Bio-Design approach" by (Lodato, 2005). 

Both (Bernsen, 2004) & (Lodato, 2005) feature an interesting example of the Bio-

Design process which is described here.  In 1989, an Italian sports equipment manufacturer 

named CAMP was about to celebrate 100 years of operation.  To celebrate the occasion 

they worked with designer Franco Lodato to redesign one of their core mountaineering 

products – the ice axe.  The design brief described the need for a multifunctional ice axe 

that is lightweight with high structural strength and a good grip and can be used in variable 

positions to penetrate ice.  It had to withstand the extreme conditions at altitudes over 5000 

meters and temperatures of -20C.  With that understanding, Lodato began the Bio-Design 

process as follows: 

Step 1:  Lodato contacted a Dr. Moja who was the director of the Natural Science 

Museum in Milan, Italy to help him identify living organisms that exceeded the 
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technological capabilities of a typical man-made “hammer”.  Two organisms emerged as 

prime examples: the rock lobster and the woodpecker.  A rock lobster is known to hammer 

mussels on rocks with an impact that produces sound waves over 120 dB.  A woodpecker 

weighing only 500g can deliver up to 25 hits per second with an impact of 25g/mm2, 

without damaging its spine or brain. 

Step 2: Lodato and team selected the woodpecker as the best model.  They 

determined that the woodpecker’s body was uniquely designed for this quick hammering 

motion which is capable of penetrating the hard surface of wood.  The design of its spine 

and the spring action of its tail, when used as a brace, allow it take advantage of its center 

of gravity as a point of leverage to create high rotational speeds.  The configuration of the 

bones in its skull also allows it to absorb the considerable stress associated with impact.  

These unique characteristics allow the woodpecker to use its whole body to effectively 

hammer a tree to withdraw insect larvae.  

Step 3: The model of the woodpecker represented principles of simple machines 

that were presumably familiar to designers.  Specifically, the woodpecker model 

incorporated the lever and the spring.  Using its center of gravity as the fulcrum of a lever, 

the woodpecker is able to create high rotational speed while reducing the amount of load 

applied to its body.  This speeds the blow, which according to Newton’s Third Law causes 

a repercussion.  The potential energy resulting from this repercussion is then stored in the 

spring action of the tail.  This spring action is then used to return the woodpecker’s beak to 

its original position at the point of impact over and over again in rapid succession.  In this 

specific case, the added curvature of the woodpecker’s spine is also used as a first-class 

lever and bar spring – thus improving the efficiency of the blow.  
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Step 4:   The principles learned here were then presumably translated into an 

effective design which was demonstrated through prototypes.  Eventually, these prototypes 

led to a final design which became highly successful for CAMP.  

The steps described for this example are just one of at least three bionic inspirations 

used during the Bio-Design effort of Lodato’s ice axe.  The second was a hinge mechanism 

that joins the aluminum point with the inner titanium core of the handle which was inspired 

by the two valves of a mollusk.  The third was the handle grip which was inspired by the 

epidermis of a shark. 

4.4.3 The Biomimicry Design Process 

The Biomimicry Institute has developed a design process described in 

(Biomimicry, 2006a) that can promote the transfer of ideas, designs, and strategies from 

biology to human systems designs.  This relatively detailed approach also introduces an 

important new step to enable communication across domains, albeit in an opposite order 

from the Bio-Design Approach.  The Biomimicry Design Process describes a step to 

translate the problem statement into biological terms, thus presenting more opportunity to 

leverage biologists to identify innovative solutions in nature.  Table 9 shows all seven steps 

in this process. 

Step Name Description 
1 Identify “Develop a Design Brief of the Human need” 
2 Translate “Biologize the question; ask the Design Brief from Nature’s perspective” 
3 Observe “Look for the champions in nature who answer/resolve your challenges” 
4 Abstract “Find the repeating patterns and processes within nature that achieve 

success” 
5 Apply “Develop ideas and solutions based on the natural models” 
6 Evaluate “How do your ideas compare to the successful principles of nature?” 
7 Identify “Develop and refine design briefs based on lessons learned from 

evaluation of life’s principles” 
Table 9: Steps of the Biomimicry Design Process (Biomimicry, 
2006a). 
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The steps in this process are also illustrated graphically in what is called the 

“Biomimicry Design Spiral” that is shown in Figure 7.  The image communicates the 

iterative (evolving) nature of this methodology by mapping the steps over the spiral design 

of a Nautilus shell.  The Nautilus shell is an appropriate symbol in that it is based on a 

spiral design with a ratio that is found throughout the natural world and human designs.  

This repeated design pattern consists of a Fibonacci Series of measurements that is so 

prolific, that it  has been dubbed “The Golden Ratio” ((Livio, 2002)).  A specific example 

of its use in biomimicry is a Mollusk-inspired fan developed by PAX Scientific (USA).  

This fan design has reportedly reduced energy requirements by up to 85% and noise by up 

to 75%. 
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Figure 7: Biomimicry Design Spiral by (Biomimicry, 2006a).  Figure 
reprinted with permission from copyright owner. 

Step 1 (Identify) is to develop a design brief that describes the real challenge at 

hand.  Essentially, this step is to document the requirements for the design in such a way 

that it does not imply a particular solution.  This is a traditional step in any design process, 

but it is worthwhile to give warning that it is a natural tendency to take preconceived 

notions that drive a particular solution.     

Step 2 (Translate) is to translate the design brief into a list of essential functions.  

These functions will then be used to generate biological questions from Nature’s 

perspective.  For example, it is beneficial to ask “How does Nature do this?” and “How 

does Nature NOT do this?” initially.  These questions can be expanded by placing 
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additional criteria or conditions under which the function is achieved.  For example, you 

might ask “How does nature achieve this function in this environment or under these 

specific climatic, social, or temporal conditions in this habitat?”  These questions will help 

to narrow down the field of search for natural models. 

Step 3 (Observe) is to look for biological designs that answer/resolve the challenges 

posted in the translation step.  Consider the problem from all angles in both a literal and 

metaphorical sense.  Next, seek organisms that are most challenged by it.  Seek to identify 

organisms whose very survival depends on their means to solve this design challenge.  

There are several approaches to doing this.  First, would be to research periodicals, 

literature, and textbooks on the subject.  Second, collaborate with Biologists and other 

specialists.  Their expertise can greatly enhance the quality and quantity of organisms 

identified.  Third, just take a walk outside and observe the organisms and ecosystems that 

may be doing what you want to do. 

Step 4 (Abstract) is to abstract repeating patterns and processes.  There are usually 

many examples of natural solutions to design challenges.  Some may be very similar and 

others quite different.  In this step, create a taxonomy of nature’s strategy.  After building 

this taxonomy, abstract the repeating principles that allow this strategy to overcome the 

design challenge at hand. 

Step 5 (Apply) is to generate a list of concepts that apply the lessons learned from 

the sources identified in step 4.  These concepts could be inspired by mimicking form, 

function, or ecosystem.  The deeper the understanding of the natural solution, the more 

likely it is that mimicry will work. 
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Step 6 (Evaluate) is to evaluate the concepts by comparing them to successful 

principles of nature.  There are many patterns and principles in nature when it comes to 

design.  For example, “Life builds from the bottom-up.”  This principle can be manifested 

through modularity, self-assembly, waste-free designs, and more.  In this step, evaluate the 

concepts generated in step 5 based on some successful natural principles.  Many of these 

natural principles were captured by the Biomimicry Guild in an illustration which has been 

reproduced in Figure 8.  

 

Figure 8: Illustration of life's principles from the Biomimicry Guild 2007 
(Biomimicry, 2007).  Figure reprinted with permission from copyright owner. 
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Step 7 is to begin the cycle again for refinement.  Take an iterative approach by 

repeating all the design steps in this process.  Nature itself operates with small feedback 

loops, continuous learning, and adaptation.  These principles are also part of many human 

design processes such as rapid prototyping and agile software development.  Frequent 

iterations with minor refinements can increase our learning, refine our designs, and mitigate 

risk. 

Another version of this evolving Biomimicry Design Process was introduced in late 

2007 on the Biomimicry Website (2007).  This refined process shown in Figure 9 replaces 

the “Identify” step with one called “Distill”.  The steps are very similar, but the newer step 

is simplified with and emphasis on the purpose of the design.  Furthermore, the “Observe” 

step has been renamed to “Discover”, which is perhaps more representative of the various 

ways one can learn about nature’s models.  Finally, the “Abstract”, and “Apply” steps have 

been replaced with a new step called “Emulate”.  Again, the new step appears to reflect a 

shift toward a simplified, but broader approach to mimicking the natural models through 

brainstorming and continuously scrutinizing the biological models. 
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Figure 9: An updated version of the Biomimicry Guild's Design Spiral 
found in (2007).  Figure reprinted with permission from copyright owner. 

4.4.4 Biomimetic TRIZ 

Biomimetic TRIZ was proposed by Vincent and Bogatyreva, et al in (Julian  

Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006), (Julian Vincent & Mann, 2000), 

(Julian Vincent & Mann, 2002) and (Bogatyrev, Pahl, & Vincent, 2002) and is perhaps the 

most structured and comprehensive approach to biomimicry.  Their approach extends an 

established method of systematic innovation called TRIZ which is recognized for its 

success in integrating knowledge from disparate domains.  Considering this, Biomimetic 

TRIZ may provide the most opportunities to enhance communication across domains.   
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The earliest reference to Biomimetic TRIZ can be found in (Julian Vincent & 

Mann, 2000), which describes an educational experiment of applying TRIZ processes to 

biology.  In this experiment, a class of biology students were given a couple of the classic 

TRIZ tools and asked to apply them to biological design problems.  This experiment 

implies that nature may face the same set of contradictions, but (Julian Vincent & Mann, 

2002) goes on to suggest that nature is not bound by the same set of Inventive Principles 

that have been identified in TRIZ.  In fact, (Julian  Vincent, Bogatyreva, Bogatyrev, 

Bowyer, & Pahl, 2006) indicates that there is only about a 12% similarity between 

biological solutions and technological solutions.   The important implication is that TRIZ is 

not a fully exhaustive system and that nature can provide us with many new ways to solve 

problems.  Based on this, Biomimetic TRIZ is an effort to expand the reach of TRIZ with a 

database of nature’s solutions.   

One of the first tools developed to extend TRIZ for biomimicry is the “Biological 

Effects Database” described in  (Bogatyrev, Pahl, & Vincent, 2002), which serves as a 

biological equivalent to the patent database used to develop classic TRIZ.  Its purpose is to 

catalog nature’s solutions by function.  To do this, it was necessary to expand certain TRIZ 

definitions.  Classic TRIZ defines a system as an energy source, an energy transformation 

device, and an engine and a controller.  In this definition, a human operator is considered 

part of the control subsystem.  For the purposes of Biomimetic TRIZ, alternate definitions 

were required.  First, a biological system was defined as “a living system that performs 

functions to realize its goals, while affecting the environment.”  A “biological function” 

then, is the action needed to achieve this goal or “biological effect”.  This facilitated a new 

definition for a “technical system”, which is a biological system in which some functions 
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are delegated to technical (non-living) devices.  The function of a technical system is the 

action needed to achieve the useful/desired future condition with the help of a technical 

device.  The result of the technical function is the technical effect.  These expanded 

concepts and definitions have facilitated the creation and functional organization of a 

biological database of nature’s solutions. 

Continuing work on Biomimetic TRIZ described in (Julian  Vincent, Bogatyreva, 

Bogatyrev, Bowyer, & Pahl, 2006) and its citations included an analysis of approximately 

500 biological phenomena covering over 270 functions and 2500 technical contradictions 

with their resolutions.  To aide in this analysis, Vincent, et al developed a framework based 

on six fields of operation which can describe all actions with any object.  Aligning to the 

maxim “things do things somewhere”, (Julian  Vincent, Bogatyreva, Bogatyrev, Bowyer, & 

Pahl, 2006) claims that these six fields of operation “re-organize and condense the TRIZ 

classification both of the features used to generate conflict statements and the inventive 

principles”.  This new framework was used to create two new tools: PRIZM and 

Biomimetic TRIZ.  PRIZM (the Russian acronym for “The Rules of Inventive Problem 

Solving Modernized”) is a new matrix for identifying the inventive principles of classic 

TRIZ.  BioTRIZ is a new matrix for identifying the inventive principles defined by the 

biological effects database.  These new tools of can be seen in Figure 10. 
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Figure 10: PRIZM and BioTRIZ matrices from (Julian  Vincent, 
Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006). 

The biological effects database, the PRIZM matrix, and the Biomimetic TRIZ 

matrix added to the classic TRIZ framework provide a powerful toolset for the 

development of biomimetic solutions.  They provide tangible and detailed access to natures 

solutions without requiring the involvement of a trained biologist.  They also provide the 

means for the methodology that was proposed in (Julian  Vincent, Bogatyreva, Bogatyrev, 

Bowyer, & Pahl, 2006).  The steps for this methodology have been reproduced in Table 10.   
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Step Description 
1 Define the problem in the most general, yet precise way. Avoid limiting terminology 

or thoughts. Then list the desirable and undesirable properties and functions. 
2 Analyze and understand the problem and so uncover the main conflicts or 

contradictions.  The technical conflicts are then identified in the TRIZ matrix 
2 and listed. Find the functional analogy in biology (look into the PRIZM) or go to 
the biological conflict matrix (Biomimetic TRIZ). 

3 Compare the solutions recommended by biology and TRIZ. Find the common 
solutions for biological and engineering fields. List the technical and biological 
principles thus recommended. 

4 Based on these common solutions, build a bridge from natural to technical design. To 
make the technical and biological systems compatible, make a list of their general 
recommended compositions. 

5 To create a completely new technology, add to the basic TRIZ principles some pure 
technical or pure biological ones. 

Table 10: Steps of Biomimetic TRIZ as described by (Julian  
Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006). 

A full description of classic and Biomimetic TRIZ is beyond the scope of this 

research.  The short lists of steps shown in Table 4 and Table 10 somewhat mask the 

complexity of these methodologies.  The structured tools and procedures of TRIZ are 

powerful, but often perceived as overwhelming to a beginner.  This may be due to its 

relatively recent introduction to the Western world.  Additional information on these 

methodologies can be found in (Bogatyrev, Pahl, & Vincent, 2002; Changquing, Zezheng, 

& Fei, 2005; Domb, 1997; Fullbright, 2004; Lerner, 1991; Loebmann, 2002; Mann, 2004; 

Nakagawa, 2005; Rea, 1999, 2001a, 2001b; Salamatov, 2005; Tate & Domb, 1997; TRIZJ, 

unknown; Julian  Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006; Julian Vincent 

& Mann, 2000, 2002).   
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4.4.5 Comparison of Biomimetic Methods 

Comparison of Biomimetic Methods

1. Bionic 
Association

2.  Bio-Design 
Approach

3.  Biomimicry 
Design Process

5.  Biomimetic 
TRIZ

4.  Biomimicry 
DP Revised

1. Observe the 
organisms’ behavior 
carefully.  Take the 
phenomena of the 
organisms as the 

association objects.

2. Analyze the 
mechanism of the 
phenomena of the 
organisms system.

3. Analyze the 
practical problem.  
Develop a bionic 

idea into a problem-
solving method or 

product.

1. Select features of 
a living organism 

that exceed current 
technological 
capabilities.

2. Derive principles 
and processes 

responsible for their 
superiority.

3. Develop models 
and methods to 

describe biological 
systems in terms 

useful to designers.

4. Demonstrate the 
feasibility of 

translating this 
knowledge into 
dependable and 

efficient hardware.

1. "Identify" --
Develop a Design 
Brief of the Human 

need.

2. "Translate" --
Biologize the 

question; ask the 
Design Brief from 

Nature’s perspective.

3. “Observe" -- Look 
for the champions in 
nature who answer/

resolve your 
challenges.

4. “Abstract" -- Find 
the repeating 
patterns and 

processes within 
nature that achieve 

success.

5. “Apply" -- Develop 
ideas and solutions 
based on the natural 

models.

6. “Evaluate" -- How 
do your ideas 

compare to the 
successful principles 

of nature?

7. Repeat

1.  Define the 
problem in the most 
general, yet precise 
way. Avoid limiting 

terminology or 
thoughts. Then list 
the desirable and 

undesirable 
properties and 

functions.

2.  Analyze and 
understand the 
problem and so 

uncover the main 
conflicts or 

contradictions.  The 
technical conflicts 

are then identified in 
the TRIZ matrix

2 and listed. Find the 
functional analogy in 
biology (look into the 
PRIZM) or go to the 

biological conflict 
matrix (BioTRIZ).

3.  Compare the 
solutions 

recommended by 
biology and TRIZ. 
Find the common 

solutions for 
biological and 

engineering fields. 
List the technical and 
biological principles 
thus recommended.

4.  Based on these 
common solutions, 
build a bridge from 
natural to technical 

design. To make the 
technical and 

biological systems 
compatible, make a 
list of their general 

recommended 
compositions.

5.  To create a 
completely new 

technology, add to 
the basic TRIZ 

principles some pure 
technical or pure 
biological ones.

1.  “Distill” the design 
function.

2. "Translate" --
Biologize the 

question; ask the 
Design Brief from 

Nature’s perspective.

3. “Discover" – Use 
all available means 

to look for the 
champions in nature 
who answer/resolve 

your challenges.

4. “Emulate" –
Emulate natures 

strategies based on 
multiple solutions, 
expert knowledge, 
and observations.

5. “Evaluate" -- How 
do your ideas 

compare to the 
successful principles 

of nature?

6. Repeat
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C h a p t e r  5  

5 CURRENT INTERDISCIPLINARY AND BIOMIMETIC COMPUTER SCIENCE 

This chapter will present the various ways computer science has been involved in 

crossing disciplinary boundaries in the context of the Chapters 3 & 4. 

5.1 Types of Disciplinary Crossings in Computer Science 

Interdisciplinary computer science abounds today.  This section will describe the 

various means this has taken place using the terms identified in Section 3.4.  

5.1.1 Crossdisciplinary Computer Science 

As described in Section 3.4.1, crossdisciplinarity is a way of describing or 

analyzing an aspect of a particular field through the lens of another field.  There are many 

examples where computer science has been analyzed in this way.  Three examples were 

presented at the InSITE 2004 conference on Information Science and IT Education.  First, 

Lenarcic performed an historical overview of “software psychology” in (Lenarcic, 2004), 

which discussed the various attempts that have been made to analyze computer 

programming from the perspective of psychology.  Second, Roussev examines software 

development from an Information Sciences point of view in (Roussev & Roussev, 2004).  

Third, Michalec introduces a novel look at computer science from a perspective of the arts 

in (Michalec & Banks, 2004) – specifically by comparing information systems 

development methodologies with the development of Jazz music.  These are just a few 

examples of how new perspectives have enriched the field of computer science through the 

use of crossdisciplinarity.   
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5.1.2 Multidisciplinary Computer Science 

As described in Section 3.4.2, multidisciplinarity is side-by-side approach to 

disciplinary activities.  From an educational perspective, most university level computer 

science programs are multidisciplinary in nature.  They require a student to take a balanced 

curriculum of undergraduate courses in science, mathematics, humanities, social sciences, 

etc.  Traditionally, these programs do not attempt to integrate these subjects.  Rather, a 

student is left to draw any connection between the topics on their own.  From a 

development perspective, there are many examples of multidisciplinary activities.  Almost 

any new commercial development project that incorporates software technology could be 

considered a multidisciplinary effort.  For example, a new electronic widget being 

developed would require a project team that includes members from marketing, 

engineering, operations, and software development to deliver an end product.    

5.1.3 Interdisciplinary Computer Science 

Interdisciplinary computer science is a broad area of interest.  At the time of this 

writing, a simple web search of the words “interdisciplinary computer science” resulted in 

over 1.1 million results.  Arguably, computer science has a role in nearly every discipline 

((Grasso, 2003)).  One can consider the role of computer science in the realms of 

interdisciplinarity knowledge, research, education, and theory which were identified by 

Nissani in (Nissani, 1995) and described in Section 3.4.3.  Furthermore, the application of 

these realms can be characterized by Nicolescu’s degrees of interdisciplinarity 

((Nicolescu)) which were also described in this section.  One could furthermore 

characterize the various efforts according to Nicolescu’s degrees of interdisciplinarity. 

In the realm of education, universities are increasingly offering interdisciplinary 

programs where students can choose a curriculum that integrates classes and research from 
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computer science and numerous other fields.  Graduates of such programs or people with 

equivalent experience are in great demand.  They can be subject matter experts in a specific 

area, and then use their computer science knowledge to manage or develop software 

solutions that can be applied to these specialized areas.  An example for the degree of 

application would be using genetic algorithms for optimization problems.  Bioinformatics, 

human factors application development, and computational biology would all be examples 

of the degree of generation of new disciplines. 

5.1.4 Transdisciplinary Computer Science 

Broadly speaking, technology introduces many issues into a society that can be 

considered transdisciplinary.  For example, understanding the role of Internet in society and 

its impact on individuals, groups, societies, economies, terrorism, military, politics and 

more is certainly a transdisciplinary effort.  But even more specific computer science based 

issues can be considered transdisciplinary.  In (Salazar, 2006), Salazar attempts to provide a 

transdisciplinary perspective on cyber worlds.  In it, he examines perspectives from 

computer science and engineering as well as social science research regarding the 

psychological, social and cultural aspects of cyber worlds.  It is clear that transdisciplinary 

approaches to research and problems will become increasingly more important as our 

society relies more and more on computing and networking technologies for nearly every 

facet of its being.   

5.2 Tools for Disciplinary Crossings in Computer Science 

5.2.1 TRIZ for Software 

Over the last nine years, there has been a quiet thread of research that is gradually 

attempting to apply the TRIZ innovation method to software development.  The first 

attempt to do so was made by Rea in (Rea, 1999).  His initial work in August 1999 for the 
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TRIZ Journal attempted to address the problem of synchronization in programming 

concurrency.  In this work, he performed a TRIZ analysis of the “Roller Coaster Problem”.  

Using the TRIZ process, he was able to identify “TRIZ Inventive Principle #24 – 

Mediator” to solve the problem.  The Mediator concept is similar to a “Monitor” in 

computer science that provides exclusive access to critical sections of code.  Thus, in this 

example he was able to use a TRIZ process to arrive at a known solution to the problem of 

concurrency.  The novelty of course, is that he used a problem solving system that had 

never been applied to computer science before.   

By 2001, Rea proposed software analogies for 34 of the 40 Inventive Principles 

from classic TRIZ.  His work in (Rea, 2001b) and (Rea, 2001a) was intended to accelerate 

the application of TRIZ to software.  In them, he draws parallels between the “physical” 

world and the “virtual” world of software.  The remaining 6 analogies were later developed 

by Fulbright in 2004 in (Fullbright, 2004).  Fulbright also summarized the complete list 

into a two tables, which have been reproduced in Figure 11 and  

Figure 12.  In these figures, the original TRIZ inventive principles are shown in the 

left-hand columns and the software analogy are shown in the right-hand columns. 

It is worth noting here that in (Rea, 2001b), Rea claims that his continued 

application of TRIZ to software led him to generate and submit 13 patent applications (The 

status of these patents could not be determined at the time of this writing). 
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Figure 11: List of Software Analogies for 1-20 TRIZ Inventive 
Principles from (Fullbright, 2004). 
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Figure 12: List of Software Analogies for 21-40 TRIZ Inventive 
Principles from (Fullbright, 2004). 
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Rea’s work in (Rea, 2002) continued to explore means of applying TRIZ to 

software.  In this journal article, he discusses the need for a structured innovation method in 

computer science to address complexity and to bridge the widening gaps between 

computing areas of focus in academia and in practice.  He asserts that although the 

application of TRIZ to software is in its infancy it has the potential to become that 

structured innovation method.  To facilitate this, his work in (Rea, 2002) is the 

enhancement of the TRIZ S-Field tool for use with software. 

Shortly after Fulbright completed the software analogies for the TRIZ Inventive 

Principles in 2004, Darrell Mann published an article on TRIZ for software in TRIZ 

Journal.  The article (Mann, 2004) indicates that there had been some opposition to the 

idea of applying TRIZ to software.  The two main arguments against it are that software 

development is an immature process that is more of an art than a science, and that the 40 

principles did not apply to software.  Mann’s research dismissed those arguments through 

his analysis of 40,000 software patents that validated the inventive principles for software.  

His research also included the adaptation and application of additional TRIZ tools.  

Ultimately, he identified seven TRIZ tools that showed the most promise which he 

categorized as either problem definition or solution generation tools.  The problem 

definition tools are (1) Ideal Final Result, (2) Problem Explorer, (3) Subversion Analysis, 

and (4) Contradiction Matrix.  The solution generation tools are (1) Inventive Principles, 

(2) Trends/Evolution Potential, and (3) ‘Self-X’.  A full description of these tools and how 

they relate to software are expected in Mann’s pending book titled “TRIZ for Software” 

which appears to be due for release in early to mid 2008. 
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5.2.2 TRIZ for Software Process Improvement 

In 2002, Stanbrook documented an attempt to apply TRIZ to the software 

development process using a software tool called TechOptimizer.  He describes this work 

in (Stanbrook, 2002).  In it, he used the TechOptimizer to analyze a typical waterfall 

development process using a TRIZ-based process analysis.  During this exercise, several 

suggestions were brought out such as the elimination of inspections and testing in favor of 

defect prevention methods.  This interesting validation for agile development is a source of 

future research. 

5.3 Disciplinary Crossing Computer Science 

Computer science has already benefited from the experiences and contributions of 

people with expertise in fields outside of traditional computer science.  Software design 

patterns and human-computer interactions are two examples that will be briefly introduced.  

5.3.1 Software Design Patterns and APIs 

Christopher Alexander originally developed the idea of “design patterns” in his 

1977 book titled A Pattern Language.  Surprisingly, he was a building architect, not a 

software architect.  His original work proposed an organized set of recurring problems and 

solutions in the architectural building field.  The book contained approximately 250 

patterns of solutions that were known to work.  This set of patterns was called a “pattern 

language”.  A pattern is comparable to a word in a spoken language.  The words stay the 

same, but they can be combined in different ways to make a sentence.   

In the late 1980s, Kent Beck and Ward Cunningham began applying the concept of 

a design pattern to object-oriented software.  They presented their work on (Beck & 

Cunningham, 1987) in 1987 at the Object-Oriented Programming, Systems, Languages & 

Applications (OOPSLA-87) conference sponsored by the Association for Computing 
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Machinery (ACM).  This seminal work proposed five initial object-oriented software 

design patterns.  Work continued on the development of design patterns and in 1994 the 

now famous Gang-Of-Four (Erich Gamma, Richard Helm, Ralph Johnson, and John 

Vlissides) published their book titled “Design Patterns: Elements of Reusable Object-

Oriented Software” ((Gamma, Helm, Johnson, & Vlissides, 1995)) which began a wide 

movement to develop and use software design patterns and pattern languages. 

Despite its moderate popularity in the following decade, software design patterns 

have not yet achieved ubiquity.  One criticism of design patterns is that they do not actually 

provide functional code which can be reused.  Rather, they are design abstractions that 

must be implemented (or re-implemented) for each new application.  This is arguably less 

desirable than software APIs that provide executable functions that can be readily 

leveraged by an application.  To address this issue, some work has been done by Meijer in 

(Meyer & Arnout, 2006) to componentized (i.e. develop APIs) software design patterns for 

direct use in applications. 

5.3.2 Human-Computer Interactions 

Human-computer interaction (HCI) is defined by (Hewett et al., 1992) of the ACM 

as “a discipline concerned with the design, evaluation and implementation of interactive 

computing systems for human use and with the study of major phenomena surrounding 

them.”  HCI is an interdisciplinary field which was spawned from areas of computer 

science such as computer graphics, operating systems, human factors, ergonomics, 

industrial engineering, cognitive psychology, and computing systems.  It has grown 

dramatically and continues to evolve.  There are many aspects of HCI that can be explored, 

but are beyond the scope of this research.  For further reading, please see (Hewett et al., 

1992). 
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An interdisciplinary field called Human-computer Interaction (HCI) has emerged to 

study relationship between humans and computers.  It is defined by (Hewett et al., 1992) of 

the ACM as “a discipline concerned with the design, evaluation and implementation of 

interactive computing systems for human use and with the study of major phenomena 

surrounding them.”  HCI is an interdisciplinary field which was spawned from areas of 

computer science such as computer graphics, operating systems, human factors, 

ergonomics, industrial engineering, cognitive psychology, and computing systems.  It has 

grown dramatically and continues to evolve.  There are many aspects of HCI that can be 

explored, but are beyond the scope of this research.  Many new technologies are emerging 

to enhance human-computer interactions.  Figure 13 shows the Gartner Hype Cycle for 

Human-Computer Interactions for 2006.  For further reading, please see (Hewett et al., 

1992). 
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Figure 13:  Gartner Hype Cycle for Human-Computer Interaction 2006 
(Fenn & al, 2006b).  Figure reprinted with permission from copyright owner. 

 

5.4 Biologically Inspired Computer Science 

There are already many examples of computer scientists taking inspiration from 

nature to achieve certain objectives.  Some of these objectives include fault tolerance, 

automation, optimization, and artificial life.  By recognizing the inspiration that nature has 

already brought to the field of computer science, one can see even more potential for taking 

inspiration from it in the future.  Nature’s designs are elegant and have been proven 

successful.  Figure 14 is a simple mind map which illustrates some of the many areas of 

computer science which have already been inspired from nature’s successful designs.  

More specific examples can be found in (Olariu & Zomaya, 2006). 
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Figure 14: Mind Map of biologically inspired subjects within 
Computer Science. (Korecki) 

5.4.1 Evolutionary Computation  

Larry Fogel is credited with developing the concept of evolutionary computing in 

1966 ((De Jong, 2008)).  He was influenced by Darwin’s theory and early work toward 

computational intelligence like (Friedberg, 1958).  Evolutionary computing (i.e. genetic 

programming) and genetic algorithms attempt to solve complex problems by introducing 

variation, selection, and heredity to populations of solutions and then evolving them so that 

desirable characteristics can be carried forward over time.  In the case of genetic 

algorithms, a problem is defined in mathematical terms which can be manipulated to find a 

best case scenario solution.  In the case of genetic programming, the population consists of 

computer programs that are recombined into new generations of software versions.  This 

"evolution" should lead to more complex, efficient, and functional behavior.  Evolutionary 

87 



Computation is typically categorized as a method of combinatorial optimization, which is 

an algorithmic approach to problem solving.   

The basic idea of combinatorial optimization is that a problem is defined in 

mathematical terms so that it can be manipulated in an iterative fashion to find a best case 

scenario solution.  Optimization techniques generally require three basic components.  (1) 

A representation or format potential solutions to a problem.  This representation ultimately 

defines the search space of all possible solutions.  (2) A mathematical expression of an 

objective to be achieved.  (3) An evaluation function which maps the search space of 

possible solutions to a set of numbers.  Each solution is assigned a numeric value that 

indicates its quality.  These three components allow you to clearly define a solution set and 

understand how one solution compares to another.   The role of optimization techniques 

then, is to search the set of all possible solutions for the best (maximized or minimized 

evaluation) solution without necessarily evaluating every possible solution.  To accomplish 

this, it is often the case where a random solution is selected and evaluated.  Once this has 

been done, a set of solutions that are very similar to the first are evaluated.  Solutions that 

are similar are considered to be in the same “neighborhood”.  The best solution in a 

neighborhood would be considered a “local optimum”.  The best solution in the entire set 

would be considered a “global optimum”.  There is often no way of knowing if an 

individual local optimum is also a global optimum. 
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C h a p t e r  6  

6 A FRAMEWORK FOR SOFTWARE INNOVATION 

As established in Chapter 2, the computing systems and the data they contain have 

increased in complexity to the point that we must seek alternative methods of developing, 

managing, and interacting with them.  These issues can only be approached holistically.  A 

purely one-dimensional technical approach will only exacerbate the problem.  In order to 

take a holistic approach we must introduce more intellectual diversity to the field of 

computer science through interdisciplinary education and collaboration (Chapter 3).  Only 

through the collaboration and intermixing of diverse perspectives can transcendent 

problems be solved.  To facilitate this interdisciplinary cooperation some specific tools can 

be used including TRIZ and Biomimicry.  TRIZ brings a structured approach to problem 

solving and a wide breadth of proven solution techniques.  Biomimicry brings an 

interdisciplinary perspective and opens a door (perhaps both figuratively and literally) to a 

world of innovative designs and solutions.  The real challenge for computer science is to 

integrate these concepts into its core foundations so that a new culture of collaboration and 

creative problem solving can be fostered. 

6.1 Interdisciplinary Participation and Education 

As described in sections 3.1, 3.2, and 3.3 the finite nature of the human mind 

requires individuals to specialize their knowledge.  The down side of this specialization is 

that the continuous nature of reality and unified knowledge becomes segmented and 

compartmentalized.  This compartmentalization causes deep silos of understanding that 

prevent the flow of knowledge and undermine unity. 
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However, it is the hypothesis of this research that this compartmentalization can be 

overcome or at least minimized through interdisciplinary collaboration.  Not by simply 

“throwing two cats in a bag”, but by deliberately soliciting participation from specialists 

with diverse fields of influence.  This participation can be practiced in academic 

environments, research environments, and even commercial environments.  Essentially, 

anywhere creative problem solving is required. 

6.1.1 Importance of Interdisciplinary Education 

Computer Science is a young discipline.  Modern computers and software have 

only been around for approximately 60 years.  Although it has a foundation in mathematics 

and engineering, it has in many ways departed from its origin.  It is a field constrained 

more by human intellect than by physical limitations of hardware.  As such, one will 

recognize the importance of drawing on all forms of human knowledge to enhance the 

creative application of computing systems.  This human knowledge is distributed across all 

of the academic and applied disciplines (and indeed across all humanity).  

As described in Section 3.6.1, Jack Steel (originator of Bionics) recognized the 

importance of interdisciplinary knowledge.  An individual educated in more than none 

discipline is positioned to play the essential role of “translator”.  As translator, they may 

have a fluency in two distinct disciplinary languages and paradigms.  They are uniquely 

placed at a crossroads where they can frame problems to their monodisciplinary peers on 

either side.  They can therefore become an essential link in the process for drawing out 

creative solutions that can transfer between the disciplines.  Considering the relative youth 

of computer science, one can expect that a great deal of the knowledge transfer will flow 

from the more mature fields to computer science.  Conversely, the advancements made in 
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computer science can renew and reenergize mature fields as it enables new methods of 

collecting, analyzing, and visualizing data (see Figure 3 and discussion in section 2.1.2). 

6.1.2 Intellectual Diversity and Solution Optimization 

The natural world is an excellent basis for the creation of uniqueness.  In genetics, a 

diverse pool of genes can be combined to create unique individuals.  The basis of genetic 

development starts out with a large pool of individual organisms in a population.  The 

genes of individuals are recombined for the creation of a new generation of that population.  

As a result, diverse and unique individuals are produced in each consecutive generation.  

Although some randomness occurs, the diversity of each generation is limited by the 

genetic material that was found in the first generation.  This genetic model has been 

recognized as a powerful optimization technique for mathematics and computer science.  

Genetic algorithms have been developed to identify optimized individual solutions from 

populations of solutions that are too numerous to evaluate comprehensively (see section 

5.4.1).   

With this powerful process in mind, consider the development of new innovations 

as an optimization problem.  This research anticipates that the genetic model also applies to 

the development of new ideas.  That is, intellectual diversity can be recombined for the 

creation of innovative solutions.  The diversity and uniqueness of the solutions created in a 

development effort is only limited by the intellectual capital that has been put into that 

effort.   

This paradigm can be applied to software development.  Consider for a moment 

that a software developer is capable of developing or “evolving” a software solution out of 

his own knowledge and experience.  Given a problem domain for a new application, a 

developer will draw on his or her expertise to develop and optimize the most suitable 
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solution they can think of to meet the requirements.  Put another way, the developer 

recombines their population of ideas to create a new generation of ideas that can form the 

basis of a solution.  The optimization is done through individual judgment.  It is obvious 

that the developer is unable to produce solutions whose elements are not within their basis 

of knowledge.   

The population of ideas for a solution is multiplied when a developer is part of a 

software development team.  Each member of the team can draw on their respective 

expertise and experience to propose more ideas.  Through collaboration, these ideas can be 

recombined to create an optimized group solution.  If the collaboration is successful, this 

optimized solution will be better than any of the solutions that an individual would have 

developed in isolation.  In other words, it is more likely to approach global maxima. 

For a creative process, diverse input enhances the likelihood of developing creative 

and unique output.  It is anticipated that intellectual diversity will enhance the likelihood of 

producing unique and creative solutions.  This paradigm forms an analogous case to 

increase the intellectual diversity of development teams.  

This paradigm also lends itself to iterative software development processes.   

Iterative development is a process which produces new generations of solutions on a 

relatively rapid rate.  The purpose is to gradually evolve solutions toward ideality.  The 

aspiration of iterative development is to realize the principle that was stated by Genrich 

Altshuller in his TRIZ law of increasing ideality (see section 3.7.2).  It states that any 

technical system will evolve in such a way as to increase benefit, reduce cost, and reduce 

harm.  In other words, it will continue to get better – not worse!  With iterative 
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development, the more rapidly each new generation is produced the more rapidly the 

system will improve. 

As an aside, this concept is common between technological and biological systems.  

In nature, if a system (or species) is not adapting to increased ideality to survive in its 

environment, then it is likely to become extinct.  So it is in technology, where a system 

becomes obsolete if it does not adapted and improved with time. 

6.2 Knowledge Transfer and Discovery 

Understanding the importance of interdisciplinary knowledge and collaboration is 

one thing, but practically implementing it is another.  The segmentation of modern 

disciplines (See section 3.1 and 3.3) has created communication barriers that are difficult to 

overcome.  Tools are necessary to facilitate this communication.   

6.2.1 Finding a Common Language 

A common language is essential for the transfer of ideas.  Computer science itself 

has arguably struggled to some degree with the concept of a common language even within 

its own disciplinary boundaries.  Rapidly changing technologies and software development 

platforms have fragmented practitioners (See section 2.1.1) into platform-centric silos.  

However, there have been some significant efforts to overcome this internal fragmentation.  

Software engineering principles have been developed which abstract concepts through 

technology independent approaches to requirements analysis and design.  Modeling tools 

such as UML offer a means for a more general problem solving approach.  Finally, 

software pattern languages have been developed to define common building blocks that 

facilitate solution reuse. 

The problem of exchanging knowledge between computer science and other 

disciplines is even more difficult.  Differing technical languages and thought are even 
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further removed when crossing disciplines.  Once again, this can be mitigated by 

interdisciplinary individuals acting as translators; however, these individuals are not always 

accessible.  In this case, tools from TRIZ (see section 3.7.1, 3.7.2, and 4.4.4) and the 

Biomimicry Database (see section 4.2.4) can be used to facilitate the transfer of knowledge 

across the disciplines.  In the case of TRIZ, common structured processes can be used to 

abstract problems, and then relate them to abstract solutions which cross disciplinary 

domains.  This layer of abstraction can act as a common ground for understanding between 

multidisciplinary teams.  In the case of the Biomimicry database, common problems are 

documented in the “native language” of two or more disciplines (specifically, engineering 

and biology) thus acting as a sort of “Rosetta Stone” between them.  Both of these 

approaches can be applied to computer science. 

6.2.2 Exchanging Language 

Another opportunity for knowledge transfer and discovery is for computer scientists 

to leverage some of the language tools, organizations, and nomenclatures from other 

disciplinary fields.  For example, biology is particularly good at developing and organizing 

taxonomies of entities (organisms).  Furthermore, biology is particularly interested in 

understanding the context (ecological environment) in which those entities exist.  

Biologists use the term “biome” to describe that context.  A biome is a major regional or 

global biotic community, such as a grassland or desert, characterized chiefly by the 

dominant forms of plant life and the prevailing climate.   

Computer scientists could share these constructs to better understand and organize 

their own domain of knowledge.  They too are concerned with the understanding of entities 

and context.  However, in this case the entities of interest are software, data, and processes.  

The context of concern is the technical, not ecological environment.  For example, a Linux, 
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Apache, MySQL, PHP (LAMP) environment could be considered a computing biome in 

which dynamic web pages exist.   

Conversely, it is also conceivable that some of the many software modeling tools 

such as UML (among others) may be able to enrich the language and organization of other 

disciplines.  UML is an excellent tool for communicating the design and architecture of 

systems at a high level.  It can represent functional models, structural models, and dynamic 

behavioral models in an explicit yet concise manner without getting weighed down in too 

much detail.  UML has already been leveraged outside of the software development field to 

some degree.  It has been used for business process modeling, systems engineering 

modeling, and organizational modeling.  It is not hard to conceive how this tool could be 

applied more broadly. 

6.2.3 Finding Common Solutions 

As described in section 5.3.1, pattern languages are collections of successful 

software design solutions. Regardless of whether a successful software design solution is 

captured as a pattern in a pattern language or componentized as an API, there is still the 

issue of visibility.  That is, software developers may or may not know about the existence 

of a solution or where to find it.  For design patterns, there are many pattern languages 

which have been developed including the one produced by the Gang-Of-Four.  These 

pattern languages are sometimes proprietary and other times public.  They may be 

published online or in books, but there is no single source that unites them.  It is possible 

that this problem could be addressed with tools that assist in the problem definition and 

discovery of known solutions – tools like those found in TRIZ.  

TRIZ shows great promise for transferring problem definitions and solutions across 

the disciplines (see section 5.2.1 and 5.2.2).  It is an established tool that has already been 
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used to map solutions across domains.  It has been applied to engineering and process 

development and draws knowledge from solutions that cross many disciplines.  Recent 

work to extend TRIZ to include biological and natural solutions is enriching the tool even 

further.  Further extending TRIZ to software will make it an even more powerful tool going 

forward.  Not only will this work benefit computer science, it will also enhance TRIZ and 

the other disciplines that use it. 

There appear to be several areas of software development where TRIZ could be 

applied.  First, TRIZ could be used to identify and locate software design patterns.  

Software pattern languages are just another source of known good solutions.  These pattern 

languages could be analyzed for their inventiveness principles much like patents were used 

to develop the 40 Inventive Principles of TRIZ.  There has already been work as described 

in section 5.2.1 which attempted to draw software analogies for the 40 principles.  

Additionally, Mann ((Mann, 2004)) started to analyze software patents, but there are many 

software solutions that have been defined for software pattern languages that were not 

analyzed.  By expanding the breadth of solutions that get fed into TRIZ, it may be possible 

to develop a means for defining common problems in software, then mapping them to 

known principles used to derive solutions.   

It is suspected that TRIZ would be relatively easy for computer scientists and 

practitioners to adopt.  Generally speaking, they are already proficient in techniques that 

model problems and solutions.  They are used to working with conceptual abstractions and 

algorithms.  It follows that individuals and organizations in the field of software should 

find a natural aptitude for working with TRIZ processes and tools.   
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6.2.4 Harnessing Serendipity and Systems of Innovation 

There is a classic debate amongst innovators over the idea that a systematic formula 

can be used for generating new ideas.  Some argue that they simply occur spontaneously 

for creative people.  However, one must consider that our knowledge, experiences, and 

interactions with each other and the world are the key elements that trigger creative thought 

processes and ideas.  Ideas are not created in a vacuum.  They come about either 

consciously or unconsciously as we continuously learn and form conceptual links between 

diverse ideas.  It is these conceptual (and neurological) links that facilitate those “Ah-ha!” 

moments of understanding and creativity. 

Genrich Altshuller (see section 3.7.1) defined a truly new (inventive) idea as one 

that utilized effects outside of the disciplinary field where that idea was being applied (see 

his third principle in section 3.7.1).  He arrived at this principle after evaluating over 2 

million patents, carefully identifying those that were the most inventive.  He perceived that 

inventive ideas were not simply enhancements to something, but rather radically new ideas 

that uniquely connected previously unrelated concepts.  One may conclude then that truly 

new ideas can be generated from the transfer of ideas from one field to another.  But how 

does this occur? 

Sometimes new ideas come about rather mysteriously.  This idea may just occur to 

an individual at an opportune moment though no specific effort was made to conceive it.  

This type of occurrence can be described as chance or serendipity. Serendipity is defined 

by the American Heritage Dictionary ([29]) as “the faculty of making fortunate discoveries 

by accident.”  A goal of many innovative organizations is to be “open to serendipity”.  

Though they cannot explain it, they attempt to foster an environment that capitalizes on 

chance ideas as they occur.   
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A more intentional approach to generating new ideas is through trial and error.  In 

(Salamatov, 2005), Salmatov asserts that the “trial and error” method is by far the most 

common approach to invention.  He uses Thomas Edison’s countless attempts to identify 

an adequate filament for the incandescent light bulb as a prime example of blind trial and 

error.   Edison’s research conducted over 6000 experiments before he discovered that a 

filament of charred bamboo (constructed from a Japanese fan-case which Edison borrowed 

from a lady at a ball) was able to burn for approximately 1200 hours.  Salmatov further 

asserts that most scientific approaches to innovation are simply a method of reducing the 

search space for trial and error innovation.  Sometimes accidental discoveries come about 

as a side-effect of a focused effort toward another goal.  

Another means of innovation is to bring together a multidisciplinary team of 

individuals to develop a solution to a problem.  The so-called “skunk-works” model of 

innovation made famous by Lockheed Martin for the advanced development of military 

aircraft.  This approach was notable for bringing together interdisciplinary individuals to 

focus on a problem without getting bogged down in bureaucracy.  Group techniques and 

brainstorming relate to this approach of innovation.  A key benefit of group creativity and 

brainstorming is the back-and-forth development of ideas.   

Altshuller’s work on TRIZ has been a successful attempt to move beyond the 

mystery of trial and error and serendipity to form a more structured and repeatable process 

for invention.  It provides a rigorous process which decomposes a problem for analysis, and 

then uses structured methods of identifying principles that can be applied in a solution (see 

section 3.7.1 and 3.7.2). 
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It appears that all four methods of innovation: serendipity, trial and error, skunk 

works, and TRIZ can all be successful for the generation of new ideas and innovations that 

are truly unique.  It is a hypothesis of this research that all four methods can work together 

synergistically.  The likelihood of creating innovative solutions can come about by forming 

multidisciplinary teams to perform both freeform and structured activities.  Furthermore, 

the interactions of such teams during those freeform and structured activities will actually 

enhance the chances that serendipitous inventions will occur.  Serendipity can be facilitated 

by encouraging interactions between people with diverse perspectives. 

6.3 Nature as a Product Model 

Software development is the science of defining the behavior of machines.  Great 

effort is taken to explicitly describe every step to be taken to accomplish a task.  

Ultimately, a computer scientist is trying to duplicate his or her own implicit knowledge of 

a process onto a machine that can perform a task in his or her stead.  The machine can in 

turn perform that task tirelessly and repetitively without complaint.   

Software is an incomplete implementation of a behavior conceived in the mind of a 

developer.  It is impossible for a developer to account for every situation or runtime event 

when designing an application.  Runtime errors occur that cannot be anticipated and are 

therefore not handled.  In this situation, the application fails.  However, if that error or 

unexpected event was presented to the developer of the application (or in some cases the 

end-user of the application), that person could select an appropriate way to handle it.  It is 

in this example that one can see that software tries to mimic human intellect, but ultimately 

falls short. 

If software is an incomplete implementation of a human behavior, then one must 

look at the source of that behavior.  How does mankind conceive of processes and 
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solutions?  Is the human brain the source of all knowledge, or does itself take lessons from 

a greater source?  Knowledge is by definition “the sum or range of what has been 

perceived, discovered, or learned (Dictionary, 2004).”  By this definition, one must 

consider the source of mankind’s learning – the natural world.  . 

The natural world is a source of great knowledge from which mankind has derived 

its own.  It is therefore reasonable to believe that much of our knowledge of processes and 

solutions have been derived from nature – either consciously or unconsciously.  The 

remaining sections of this chapter will examine the benefits for computer scientists to 

examine nature as a source of inspiration and some of patterns found in the natural world 

are being or could be leveraged by computer scientists. 

6.3.1 Biomimetic Software Designs and Patterns Languages 

There are many examples of software that are based on biologically inspired 

solutions (See section 5.4).  Evolutionary computation is one specific example that 

illustrates the value of seeking nature’s designs.  Based on this topic alone, practitioners 

and researchers can make a case for computer scientists to dive deeper into biology.  In 

(Lones & Tyrrell, 2001), Lones makes two key points for this.  First, evolutionary 

computation is already a useful application of biology to computer science.  Second, 

biology and computer science are both executable instructions that act on dynamic systems.  

These observations allude to the potential for biologically inspired software. 

There is an immense “database” of nature’s solutions that are harvestable by 

computer scientists.  These solutions constitute a spectrum of biomimicry that can be 

leveraged in software problem solving and design.  This spectrum of inspiration spans from 

very specific to very broad.  At one end of the spectrum, software can mimic a specific 

aspect of a single organism or set of organisms (ex. Ant Colony Optimization).  At the 

100 



other end of the spectrum, it can mimic a re-occurring pattern or principle that is found in 

many different types of organisms in different environments (ex. Swarms).  Arguably, 

these can all be considered design patterns in nature. 

In a pure sense, a software design pattern is just a way of documenting a known 

successful solution to common problems.  For software, there is typically a “rule of three” 

for design patterns.  That is, for a software design to be considered a pattern it must be 

found in at least three real world solutions.  It is however, possible to consider that software 

design patterns could be mined from nature’s database of solutions.  That is, rather than 

searching source code for a pattern to appear three times, one could look to nature to find a 

pattern that has been proven successful. 

This approach works very synergistically with the use of TRIZ as a set of tools.  

The 40 inventive principles are effectively the same as a pattern language.  In fact, they are 

arguably more powerful than a pattern language because they are comprehensive based on 

the entire population of the 3,000,000 patents used to develop them.  A software pattern 

language could not claim to be this comprehensive.  If solutions like software patents, 

APIs, pattern languages could be mined, it may be possible to identify new principles that 

do not currently fall in the list of 40.  If that were the case, the process would not only 

benefit computer science, but also enrich TRIZ itself. 

This becomes even more impressive when one considers the work being done by 

Julian Vincent on Biomimetic TRIZ.  If TRIZ continues to expand to incorporate solutions 

found in nature, it would be an excellent tool to facilitate biologically inspired software 

designs.  In this scenario, TRIZ becomes the new translator tool to migrate design solutions 

between computer science, engineering, biology, physics, chemistry and more. 
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6.3.2 Mining Some of Nature’s Patterns 

There are laws that govern the existence and behavior of the natural world.  There 

are also common patterns that seem to be ubiquitous in nature.  Some of these laws and 

patterns have already found application in the field of computer science and show promise 

for future developments. 

6.3.2.1 Autonomy 

Autonomy is a condition of independence.  In the natural world, every living 

organism has some level of autonomy.  That is, aside from Divinity there is no centralized 

control that sustains and coordinates everything.  Similarly, the Internet consists of 

independent computing systems.  Autonomy in computing systems can be measured by the 

amount of human intervention required to manage them.  Different types of computing 

systems are designed for varying levels of autonomy.  Figure 15 shows a sampling of 

computing systems and their relative autonomy. 

 

Figure 15: Computing platforms and their relative autonomy. (Korecki) 

As computing systems increase in complexity and number, it will be necessary to 

increase their autonomy.  Minimizing human intervention is also critical when considering 

the anticipated shortage of knowledge workers in the United States.   
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IBM Research has taken these notions seriously and in response began research 

efforts in 2001 to develop what they now call “Autonomic Computing”(Ganek & Corbi, 

2003).  Autonomic computing is set of integrated technologies that enable computing 

systems to manage themselves.  They are capable of self-configuration, self-healing, self-

optimization, and self-protection.  These ideas in themselves are a close metaphor to 

nature’s organisms.  Most living organisms are capable of sustaining themselves, growing, 

changing, and healing among other things.  These capabilities are what make them 

autonomous.  The need for autonomous systems will continue to grow as computing 

systems are further embedded and blended into all aspects of every day life. 

6.3.2.2 Intelligence 

Intelligence is the capacity to acquire and apply knowledge and reason 

((Dictionary, 2004)).  In the natural world, it allows organisms to make decisions that will 

help insure their survival.  At the lowest level, even simple organisms are able to act to 

insure self-preservation.  At the highest level of biological sophistication, the human brain 

is capable of complex learning, visualization, creativity, and deep levels of self-awareness. 

Artificial Intelligence (AI) appears to be one of the most well established 

disciplines of bioinspired design.  There are countless sources of information on the subject 

which are beyond the scope of this research.  However, at a broad level, AI is an attempt to 

mimic the brain with computing systems.  In (Hofstadter, 1979), Hofstadter contends that 

an image of “self” is essential for artificial intelligence.  He describes a spectrum of self-

awareness based on the richness of an entities image of itself.  Sophisticated self-aware 

systems have the potential to examine themselves and change their behavior based on that 

image.  These behaviors may even include self-modification or hereditary modifications.   
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6.3.2.3 Adaptation and Evolution 

Adaptation and evolution are essentially gradual improvements over time.  

Organisms in the natural world can adapt to changing environmental conditions to insure 

their survival, often through heredity.  In theory, evolution is a result of divergent 

adaptations, through generations of organisms, ultimately leading to different species.  At a 

cellular level, these changes can take place through cloning and mutation.   

In computer science, adaptation and evolution are realized at various levels.  At a 

very basic level, object-oriented software incorporates what it calls “inheritance”.  

Inheritance is the ability for one class of object to inherit properties from a higher class.  At 

a deeper level, computer scientists use the idea of adaptation and evolution as the basis for 

“evolutionary” computing (see section 5.4.1).  This "evolution" should lead to more 

complex, efficient, and functional behavior ((Michalewicz & Fogel, 2004)). 

6.3.2.4 Diversity 

On of nature’s more provocative and self-defining attributes is its diversity.  The 

UN Environment Programme’s Global Biodiversity Assessment (Dowdeswell, 1995) 

estimates that there are between 13 and 14 million species on earth, of which only 1.75 

million have been documented.  This diversity makes the natural world extremely robust.  

It is virtually impossible for a single threat to annihilate all organisms in nature.  They are 

too diverse, and therefore are not susceptible to the same things.  This concept is now being 

applied to modern agriculture as a way of combating disease in crops. 

Computing environments should strive for a similar diversity to establish a natural 

defense against threats.  Considering the hostile nature of malware (i.e. computer viruses, 

SPAM, Trojan Horses, and Botnets), the concept of diversity becomes quite relevant.  If 

every computer ran the same operating system on the same hardware, a single hostile 
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program could theoretically wipe them all out.  It is the responsibility of computer 

scientists and practitioners to provide enough diversity to prevent such a disaster. 

6.3.2.5 Community 

There are two forms of community in nature that can be examined as inspiration in 

computer science.  There are homogeneous communities which consist of like members 

and heterogeneous communities which consist of different members.  Natural examples of 

homogeneous communities include a swarm of bees, a herd of buffalo, or a flock of 

seagulls.  Heterogeneous communities consist of interdependent organisms of different 

species living in harmony to form an ecosystem.  These diverse species may have a variety 

of relationships with each other including symbiotic, parasitic, and predator-prey. 

It is possible for community structures to be implemented for computing systems.  

Current examples are multi-agent systems, grid computing systems, and multi-tiered 

architectures.  Local Area Networks are a good example of a heterogeneous community 

consisting of various types of PCs, servers, and peripherals.  As ubiquitous Internet access 

becomes a reality, communities of devices will continue to form and reform. 

6.3.2.6 Specialization 

Specialization may be the crowning development in the natural world.  It is 

specialization that has allowed many organisms to dominate their environments.  There are 

two aspects of specialization to consider: social and developmental.  Social specialization is 

an explicit form of community in which members perform specific tasks.  The formation of 

a social community enables certain tasks to be allocated to individuals within the 

community, thus freeing other individuals from having to perform those tasks themselves.  

Economies of scale can then be leveraged.  Honeybees are an example of this, as they have 

a division of labor defined within a hive.  For example, some bees are allocated to rear the 
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brood while others are allocated to foraging for pollen (see section 7.1).  Developmental 

specialization is the implicit anatomy of an organism consisting of specialized organs.   

Computing systems constitute both forms of specialization.  They are 

developmentally specialized because they consist of specialized sub-systems and software 

that work in concert to define a system.  Computing systems also conform to social 

specialization.  Within a community (LAN) of computing devices, certain systems are 

allocated as file servers, print servers, routers, PC clients, and more.  Software interacts 

with other systems.  As computing technology becomes even more embedded and 

ubiquitous, there will be a further increase of specialized computing systems performing 

dedicated functions. 

6.4 Nature as a Process Model 

Nature is in a continuous and unceasing state of change.  Individual organisms 

grow and adjust.  Species adapt to new conditions and environments.  Nature is incredibly 

robust and operates as a self-regulating system.  This happens through the development of 

individual organisms and interdependence of emergent communities of organisms. 

6.4.1 Organic Development Processes 

  There seem to be two important developmental principles which contribute to the 

power and adaptability of nature.  First, development happens gradually.  Second, nature’s 

designs are always functional.  These principles can be illustrated with the biological 

example of a fetus.  Even within the womb, a fetus develops functional organs very early.  

Within the first five weeks of development a primitive heart and circulatory system are 

formed and begin to function.  Other organs follow as they quickly develop and begin to 

serve their function.  Throughout the gestation these organs continue to develop and grow 

as they operate and sustain the life of the fetus. 
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These principles of gradualness and functionality can be easily mapped to software.  

In many ways, agile software development processes follow this approach.  Specifically, 

feature and test based development methodologies focus on generating a functional product 

as early as possible, then growing and adapting it with time.  New features are introduced 

gradually and are continually executed and exercised to verify the functionality and 

operation of the product. 

6.4.2 Emergent Development Processes 

Developmental processes not only occur for individual organisms, they also occur 

within communities of organisms.  Nature is very distributed and decentralized.  Insect 

societies are particularly good examples of this.  For example, ants are able to perform 

complex tasks though our perception is that they are only capable of executing a small set 

of simple commands.  These simple rules, when followed by an entire community facilitate 

the emergence of collective patterns.  For example, the construction of nests is an emergent 

effect of a process of called stigmergy.  There is no master intelligence that facilitates the 

design and construction of a nest; rather individual ants follow simple localized rules that 

lead to an emergent effect to produce the nest.  Specifically, stigmergy is a form of indirect 

communication where information is passed through the environment.  For the construction 

of a nest, an ant will transmit a chemical pheromone into a small ball of mud which it 

purposefully places.  Subsequent ants detect this pheromone and elect to perform a similar 

function.  As each ant contributes their ball of mud, an emergent structure starts to form 

until the entire nest is complete.  Ants also use stigmergy for other emergent development 

such as optimizing the most direct route to a food source. 

Arguably, open source projects could be considered to be an analog of stigmergy.  

An open source project is typically hosted on a public Internet website that has been started 
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by an individual with a particular concept.  Any developer that then finds this website can 

elect to contribute to the open source development of the concept.  If indeed a developer 

chooses to contribute, they would develop a portion of code and submit it to the project.  

This source code may then trigger other contributors to provide source code that builds on 

the original contribution.  In this way, an open source development can evolve in many 

different ways.  What emerges, however, is a complete product which was not necessarily 

guided by a single individual with a master plan.  

6.5 A Framework for Software Innovation 

A new framework for software innovation can be constructed from the diverse 

concepts contained in computer science, interdisciplinarity, and biomimicry.  A number of 

tools can be added to a computer scientist’s toolbox to facilitate the development of 

creative solutions that address the problems we are facing in the complexity of software 

and computing systems.  To address this, we must focus on seeking new approaches to the 

development of innovative software.  To do so, there are several strategies that can be used 

to facilitate creativity.   

First, continue to foster and grow interdisciplinary computer science educational 

programs.  This interdisciplinary knowledge will enable individuals to draw on expertise 

outside of computer science as well as fill the important role of translator on 

interdisciplinary teams.  

Second, solicit diverse disciplinary specialists to participate in the software 

development process from both inside and outside the problem domain.  The added 

interdisciplinary contributions will help facilitate creative solutions that surpass those of 

homogeneous teams of developers. 
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Third, leverage the structured problem definition and analysis tools of TRIZ.  TRIZ 

provides a number of structured processes and proven tools for problem analysis, solution 

knowledge, analogy, and vision (see section 3.7.2).  The concept of ideality and the TRIZ 

theory of technical evolution may facilitate a better understanding of the potential a given 

system has to improve. 

Fourth, seek inspirational models which can be leveraged or mimicked in the 

solution being developed.  Models can be found in diverse places even outside of computer 

science.  A particularly strong source of these solutions is the natural world.  Through the 

biomimicry design processes, one can seek proven solutions that can be applied to a 

software product.  Access to these models can be facilitated through first hand experience 

and research, consultation and participation from experts, and tools such as Biomimetic 

TRIZ (see section 4.4.4). 

Fifth, develop a pattern language of nature’s solutions.  As nature’s solutions are 

identified through biomimicry design processes, they should be abstracted and catalogued 

as design patterns that can be retrieved using tools like TRIZ (see section 3.7.2) and/or the 

Biomimicry Database (see section 4.2.4).  These contributions would also enrich TRIZ. 

Sixth, leverage nature inspired development processes that gradually evolve 

features to form fully functional and operational source code before moving on to other 

features.  This is a fundamental approach found in nature that validates current feature 

based development processes.  Additionally, nature’s processes are iterative and gradual.  

This also validates the agile focus on iterative development.   

Seventh, leverage interdisciplinary efforts to increase the bandwidth of 

communication between disciplinary fields.  Computer science is a young field that could 
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gain valuable learning from the experience of more mature disciplines.  Conversely, other 

disciplinary fields may be able to learn from the specialized knowledge that has been 

developed within the field of computer science. 

Cumulatively, these strategies have the potential to increase creativity, 

inventiveness, and innovation for computer science. 
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C h a p t e r  7  

7 A CASE STUDY ON HONEYBEE SPECIALIZATION 

An initial focus of this research was to pursue the development of a new software 

design pattern based on the behavior of honey bees.  The intent was to mimic the division 

of labor in a hive for task allocation on a distributed system.  This work soon revealed that 

the honeybee model was suited for the balancing two tasks across a population.  Attempts 

were made to scale it to N tasks, but this was problematic.  However, the elegance and 

efficiency of the model was still compelling for binary task allocation.  It was decided to 

continue development of the model.  This is somewhat counter to a typical process where 

models were sought out to meet a specific set of criteria, however, the exercise still 

illustrated the power of interdisciplinary collaboration and the potential for nature as a 

model.  It was difficult to find an application for the new design pattern; however, it did 

build an appreciation for value of collaborating across disciplines.  Working with Dr. 

Zachary Huang at Michigan State University was a wonderful example of how there can be 

a synergy between computer science and another field such as biology.  This chapter will 

present a detailed dive into implementing a honeybee simulation with a multiagent system. 

As discussed in section 3.1, knowledge and science have been organized into 

distinct disciplines.  In this paradigm, specialization is seen as a powerful problem-solving 

strategy.  So it is in nature, when one considers the diversity of living creatures and the 

highly visible specializations that are present at all levels.  Species, populations, and 

individuals all hold highly specialized niches in a broad ecosystem of life and the 

microcosm world in which they live.  A beautiful example of specialization in nature is the 

honeybee.  Honeybee colonies are very structured and dynamic populations where 
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individuals are highly specialized.  However, this specialization is complemented by a 

sophisticated model of social interaction.  In this chapter, we will drill deeply into the 

sophisticated regulatory interactions of honeybee specialization and the ways in which it 

shows the importance of social interaction.  We will then bridge this discussion into a new 

paradigm for collaborating in interdisciplinary teams. 

Advanced insect colonies such as those of honeybees have long been likened to a 

“super-organism” ((Huang & Robinson, 1992) and references).  A colony operates much 

like a complex organism in itself, but it is composed of many smaller organisms.  The 

individuals that compose the colony are relatively simple and cannot survive in isolation 

for extended periods of time.  However, when these simple individuals form a collective 

whole, they are able to achieve great feats.  Insect colonies are an excellent example of the 

whole being greater than the sum of its parts.   

This paradigm of a “super-organism” has great bearing on the field of computer 

science.  The artificial computing systems that we develop, although quite powerful in our 

own estimation, are countless levels of magnitude lower than nature’s biological computing 

systems.  They do not compare in complexity to DNA, in capacity to the human brain, or in 

ubiquity to nature.  The natural world has organisms that span all levels of complexity, and 

computer scientists can potentially learn from each of them.  The level of complexity at 

which an organism exists does not diminish the impact that organism can make.  The 

smallest and simplest organisms are capable of supporting life or devastating an entire 

ecosystem.  It is most often the case that simple organisms accomplish these great feats 

with sheer numbers.  Multitudes of simple organisms acting on local rules, based on local 
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information can achieve things that the most complex organism will never achieve while 

acting alone.   

Some scientists have proposed that organic life began with single-celled organisms.  

These cells eventually joined to form multi-celled organisms.  These single-celled 

organisms joined because there was an advantage to surviving in a community.  Once 

communities were formed, specialization became another advantageous technique for 

survival.  Resources could be dispatched to achieve economies of scale.   

It is possible that computer science is at an equivalent stage in its development.  It 

was once a study of stand-alone machines, but is now a field of networked, clustered, and 

distributed systems that are in constant communication.  Distributed computing systems are 

now enabling an exponential increase in processing power for a broad set of users.  Grid 

systems have surpassed supercomputer speeds by dividing large jobs into manageable parts 

and processing them in parallel.  The age of networking and community has replaced the 

age of isolated individuals. 

If we consider an organic paradigm further, we may gain insight into the 

possibilities of where computing systems may evolve into the future.  The possibilities are 

as endless as nature itself.  For this reason, computer scientists must broadly consider 

magnifying the capabilities of artificial computing systems by following nature’s lead.  In a 

world where communities of computing systems may achieve new levels of complexity, 

one must keep a keen eye on nature’s method of sustaining and regulating them.  They 

must be dynamic, robust, and self-organized.  When considering the parallels of nature and 

computer science, it is exciting to examine specific examples 
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7.1 A model of specialization in social honeybees 

7.1.1 Introduction to honeybee specialization 

The Western honeybee, Apis mellifera, is a provocative example of an insect that 

exists in communities.  A typical colony is composed of 15,000 to 40,000 bees with 

constant fluctuations in population size and age demography.  This variability can be due to 

colony development, time of year, food availability, predation pressure, and climatic 

conditions (Huang & Robinson, 1996).  In spite of this, honeybees are able to maintain a 

constant balance of critical hive functions such as rearing the young and foraging.  

Entomologists have spent years observing the mechanisms that make honeybee colonies so 

dynamic and robust.  The mechanisms for the division of labor in the hive have been of 

particular interest.   

It is necessary to understand the typical behavioral development of a worker bee 

before discussing the mechanisms for the division of labor in a colony.  Workers typically 

live for about 6 weeks and perform two major roles during that time.  The first 3 weeks of 

their adult lives are spent inside the nest rearing the young; the final 1-3 weeks are spent 

outside the nest foraging.  Logically, it is the bees which are in the final stages of their lives 

that assume the more dangerous role of leaving the nest.  Entomological research has 

established a direct correlation between the behavioral development of a worker bee and its 

responsibility to labor in brood care or foraging 

Although this temporal specialization exists under normal conditions, the ages at 

which a bee changes roles may vary drastically under certain conditions.  Research showed 

that behavioral development can be accelerated, retarded, or even reversed in response to 

changes in the colony or environmental conditions.  This research described in (Huang & 

Robinson, 1992) and (Huang & Robinson, 1996) led to the identification of two 
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mechanisms that regulate the behavioral plasticity, in a colony.  The first is precocious 

foraging, which is when a young worker leaves the nest to forage earlier than its normal 

behavioral development would typically allow. The second is regressive nursing, which is 

when an older “foraging” bee returns to the nest to resume brood care.   

(Huang & Robinson, 1996) studied how workers obtained the information that 

influenced their behavioral development.  Considering the size of a typical honeybee 

colony, it is unlikely that an individual worker has either the capacity or the means to 

determine the global state of its colony.  None the less, a colony has a “preferred state” and 

is “plastic” in the sense that it returns to this state after a disturbance.  Huang performed 

extensive empirical tests to introduce dramatic disturbances to the age-structure of a 

honeybee colony so he could study its plasticity.  In the first experiment, he depleted a 

colony of all of its foraging bees.  This resulted in precocious foraging.  In other words, 

young nursing bees left the hive early to make up for the lack of foragers.  In the second 

experiment he confined foragers to their hive.  This resulted in a slowed development of 

nursing bees.  In the third experiment, he removed all young bees from a colony.  This 

resulted in regressive nursing in many of the foraging bees.  These fascinating experiments 

were actually able to induce both mechanisms – precocious foraging and regressive nursing 

– by isolating young nursing bees from old foraging bees.  This indicated that social 

interaction was the local stimuli for balancing the division of labor in a colony of 

honeybees.  

7.1.2 Activator-Inhibitor Theory 

(Huang & Robinson, 1992) proposed an “activator-inhibitor” model to explain how 

the age structure of a colony can impact the behavioral development of honeybees through 

worker-worker interactions.  This model describes in detail how the social interactions 
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between honeybees impact the behavioral development of a worker and ultimately the 

division of labor in a colony.  In this model, the age that a worker first forages is 

determined by a ratio of chemical compounds.   

The two compounds that regulate the behavioral development of a honeybee 

worker are designated as an “activator” and an “inhibitor”.  The “activator” compound 

promotes the behavioral development of the worker.  (Huang & Robinson, 1992) identified 

this “activator” to be the honeybee Juvenile Hormone (JH).  JH is biosynthesized by a 

worker bee and increases in concentration with age.  As the JH concentration increases the 

behavioral and physiological development that comes with maturity are activated.  The 

“inhibitor” compound retards the behavioral development of a worker bee.  (Leoncini et al., 

2004) identified this inhibitor to be a pheromone known as ethyl oleate (EO).  This 

pheromone is transmitted from one worker to retard the behavioral development of another.  

A bee’s ability to create EO appears to increase with age so that older bees are able to 

inhibit the development of younger bees, but not vice versa. 

This inhibitor would be transferred from an older bee to a younger bee during social 

interaction inside the hive.  This interaction suppresses the behavioral development of the 

younger bees, thus keeping them in their nursing role inside the hive.  If, however, a colony 

was deficient in older bees, the social interactions would occur less frequently and some 

younger bees would receive less inhibitor.  These uninhibited young bees would 

consequently experience precocious development causing them to leave the hive early to 

forage.  Conversely, when a hive is deficient in younger bees, the older bees are able to 

inhibit each other to the point that some will revert back to brood care. 
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7.1.3 Discussion 

As discussed in the section 6.3.2.5, the community pattern exploits a so-called 

“economy of scale”.  That is, the large number of organisms in a community allows its 

members to perform specialized tasks to the exclusion of others.  This same economy of 

scale can be realized in distributed computing systems.  There are many techniques for 

distributing tasks across a set of computers.  Some are very rigid, by “hard-coding” each 

machine to perform a specific task.  Others are very complex and facilitate flexibility in 

task allocation.   

To find an elegant balance between simplicity, flexibility, and functionality, one 

must look no further than nature to see that these same design decisions have been made 

before.  The honeybee specialization is a simple example of balancing a set of entities 

between two states.  Their method of dividing labor has been proven successful and could 

be used for specific applications in computer science.  The potential for such a method 

starts to surface when one considers the possibilities of ubiquitous computing and ambient 

intelligence.  When very small and simple task specific computing systems are embedded 

in our environment, they could self-organize to perform supportive tasks.  A more 

immediate area of consideration could be new forms of software licensing, digital rights 

management (DRM), and data security.  The potential in these areas lies in the fact that the 

artifacts must be in one of two states: accessible or inaccessible. 

Although the honeybee model of specialization is binary in the sense that it 

balances between two states, there are many other types of communities in nature from 

which we can draw other examples of division of labor.  The untapped potential for 

inspiration is promising.  Not only is there a wealth of knowledge on the natural world 
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today, but mankind is continually uncovering new and exciting discoveries in the natural 

world from which computer scientists can learn. 

7.2 Social Specialization Design Pattern 

A simplified pattern can be extracted from the activator-inhibitor model for 

application as a software design pattern.  It actually follows the “rule of three”, except the 

instances of it can all be found in biology.  A variety of species of bees use this pattern.  

Furthermore, cellular biology research has shown indications that cellular development is 

also based on local stimuli between cells.   

• Pattern Name:  Social Specialization Design Pattern 

• Intent: To illustrate the use of biology as a model for task allocation in distributed 

or multiagent systems. 

• Also Known As: Activator-Inhibitor Specialization, or Honeybee Specialization 

• Motivation (Forces): A distributed and generalized election algorithm or for 

balancing two tasks between a group of independent agents. 

• Applicability:  Network communications, embedded systems, distributed systems, 

Digital Rights Management (DRM). 

• Structure: The class diagram in Figure 16 illustrates the structure of the Honeybee 

Specialization design pattern.  
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+getRoleThreshhold()
+setRoleThreshold()
+getRole()
+getInnerInhibitorLevel()
+addInnerInhibitorLevel()
+addExtraInhibitorLevel()
+step()
+getName()
+setName()

-DEFAULT_ACTIVATOR_LEVEL
-DEFAULT_ACTIVATOR_DELTA
-DEFAULT_INNER_INHIBITOR_LEVEL
-DEFAULT_INNER_INHIBITOR_DELTA
-DEFAULT_EXTRA_INHIBITOR_LEVEL
-DEFAULT_ROLE_THRESHOLD
-ROLE1
-ROLE2

<<interface>> HoneybeeIntf

+getActivatorInhibitorRatio() : float
+socialize() : float
+step()
+getRole() : int
+addInnerInhibitor()
+addExtraInhibitor()
+getRoleThreshhold() : float
+setRoleThreshhold()
+getInnerInhibitorLevel() : float
+initInnerInhibitorLevel()
+getName() : string
+setName()
+getActivatorDelta() : float
+setActivatorDelta() : float
+getInnerInhibitorDelta() : float
+setInnerInhibitorDelta()
+getAge() : int
+getAgeFirstForaging() : int
+isHasForaged() : bool
+setHasForaged()

Honeybee

 

Figure 16: Class diagram for the Social Specialization design pattern. 

• Participants: Honeybee Interface, Honeybee Instance 

• Collaboration: Multiple Honeybee instances are intended to interact or “socialize’ 

with each other.  Each Honeybee instance has an internal activator and inhibitor 

variables that is incremented with time.  When an interaction takes place the values 

of these inhibitor values are exchanged between the instances.  The younger 

instance reduces its activator value based on the inhibitor value from the older 

instance.  The internal ratio of activator/inhibitor determines the role of that 

Honeybee instance. 
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Figure 17: Activator-Inhibitor data flow from (Naug & Gadagkar, 1999) 

• Implementation: An implementation of this pattern can be done using a multiagent 

system such as RepastJ.  A simulation can be written that defines a space, a 

schedule, and an agent.  It can also be implemented on a set of peer-to-peer 

processes or distributed systems. 

• Sample Code:  See Appendix A. 

7.2.1 Application in Networking and Communications 

There is also potential in addressing the communication infrastructure of wireless 

devices.  Mesh networks have been an area of growing popularity.  In a mesh network, 

nodes can communicate with neighboring devices.  To reach distant devices, traffic is 

passed from neighboring device to neighboring device.  In some cases a node may act as a 

bridge to a long range communication channel such as the Internet.  This bridge node can 

then forward traffic from its local mesh network to the Internet.   

Consider the scenario where each node had the ability to uplink to the Internet, but 

only did so when necessary.   That is, if on a given mesh network, there were nodes that 

had an established Internet connection, then the other nodes on that network would route 

their traffic to it.  If on the other hand, there were no nodes connected to the Internet, or 

those that were connected were already near capacity, then it would establish its own 
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Internet connection and then offer it to other nodes.  This scenario maps nicely to the 

activator-inhibitor model if one considers a node to be like a worker bee.  This node may 

mature from a “young” node with only a local mesh connection to an “old” node with an 

Internet connection.  A mesh network like this could use the activator-inhibitor model of 

specialization to self-organize into a balanced ratio of local and bridged nodes dynamically 

to conserve bandwidth. 

In this scenario, a node would have both internal “activator” and “inhibitor” 

variables.  As the activator increased it would promote the behavioral development toward 

establishing its own Internet connection.  If this node was in isolation, it would quickly 

establish this connection.  If, however, it was in contact with a bridged node, that bridge 

would transmit an “inhibitor” message that retarded the development of the node and 

prevented it from establishing its own Internet connection.  This method of balancing 

connections would maximize the use of bandwidth for a network of devices.  This could be 

particularly useful in mobile wireless devices such as cell phones, laptop computers, 

embedded systems, and automotive applications.  It would maximize the utilization of 

bandwidth and reduce the strain of concurrent connections on the infrastructure. 

7.2.2 Application as a Distributed Election Algorithm 

Synchronization is a critical issue in the field of distributed computing.  It is often 

the case in a distributed system that one process be selected as a coordinator, initiator, or in 

some way perform a special role.  Having a single coordinator is particularly useful when 

trying to synchronize a set of distributed peer processes.   

Election algorithms are often used in distributed systems to designate one process 

among many to perform a special role – such as coordinator.  This is frequently the case 

when any process in the distributed system is capable of taking this special role, but it 
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doesn’t matter which one actually gets designated.  (Tanenbaum & Steen, 2002) discusses 

two common election algorithms: “The Bully Algorithm” and “The Ring Algorithm”.  

Both of these algorithms assume that each process has a unique numeric identifier.  

Furthermore, they both identify the process with the highest valued identifier as the 

coordinator.   

Although the Bully Algorithm and the Ring Algorithm are powerful tools, the 

activator-inhibitor model could be used in a more flexible way.  It is capable of electing N 

coordinators, which is the generalized version of electing a single coordinator.  The 

activator-inhibitor algorithm would be relatively simple to implement as an election 

algorithm.  It would perform the following steps: 

• Begin incrementing an “activator” variable upon startup. 

• The first node to reach the A/I threshold would become a coordinator. 

• This newly appointed coordinator would then begin inhibiting all other 

nodes to prevent them from doing the same thing. 

• This algorithm could be adjusted to support various numbers of 

coordinators. 

7.3 An early alternative to activator-inhibitor 

An early alternative to the activator-inhibitor was referenced in (Huang & 

Robinson, 1992).  Apparently (Lindauer, 1952) proposed that honeybee specialization was 

influenced by an interaction between a bee and the nest.  If we consider this concept in 

conjunction with the activator-inhibitor model, there may be some interesting implications.  

The basic idea here could be to allow the “nest” to inhibit its “bees” to keep them in a 

specific state.  In the absence of the nest, these “bees” could mature into a new state.  This 
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paradigm could be mapped into a client-server architecture.  That is, a client’s state (binary) 

could be regulated by its interaction with a server. 

7.3.1 Application in Data Security, DRM, and Software Licensing 

Data Security, DRM, and software licensing are matters of great concern today.  

Government agencies are facing stolen laptops with top secret information.  Media 

companies are losing revenue from illegal copying of their content.  Software companies 

are battling unlicensed use of their products.  There are a multitude of schemes and 

practices to deal with these issues, but there is an ever increasing “arms race” between the 

providers and hackers.  There is still a strong need for a way of managing approved use or 

information without hindering those that rightfully have access.   

There is a need to develop new models of security for highly sensitive data.  One 

approach would be to make data expire when lost or stolen.  The activator-inhibitor model 

of specialization could facilitate a “time-out” for data (“bees”) to expire or become 

unusable when it has been isolated from its source (“nest”).  In this way, data would start 

out as fully accessible, but as it matured it would naturally expire. 

To better understand this, let’s consider a simplified implementation using a 

replication-based system such as Lotus Notes.  In such a system, database files are 

replicated from a server to a local machine.  These local copies are essentially unregulated 

and could be compromised.  However, it would be possible to embed a monitoring 

application on the client system that manages an “activator-inhibitor” relationship with the 

server.  This monitor would automatically increment an “activator” variable on the client.  

This activator would ultimately trigger the monitor to expire the data.  This expiration 

could be enforced by encrypting or deleting the local replicas, depending on the need.  If 

however, the monitoring application is in communication with the Lotus Notes server, it 
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would receive “inhibitor” messages that would prevent the data from expiring.  In this way, 

the ratio of activator to inhibitor would regulate the accessibility of the local replicas. 

7.4 Social Inhibition in Interdisciplinary Collaboration 

Some generalizations can be made from the social inhibition theory that may have 

applications within the realm of interdisciplinary research.  A key concept to extract is that 

social interaction and communication are critical enablers of specialization.  So it is with 

human disciplinary specialization.  A specialist is allowed to be such because they do not 

have the burden of learning every function.  If each specialist was required to learn every 

role, the depth of knowledge in each area would suffer.  By collaborating with experts in 

other disciplinary fields, an individual is freed from having to learn the depths of that 

discipline.  
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C h a p t e r  8  

8 CONCLUSION 

8.1 Conclusion 

Human knowledge is continuously advancing.  Progress leads to new technological 

advances, which in turn facilitate further growth of knowledge.  Though beneficial, this 

cycle of knowledge and technology has increased the complexity of the human experience.  

Individuals deal with more information and technology then ever before.  Advancements in 

knowledge and technology have necessarily led to the formation and specialization of 

disciplinary knowledge.  This specialization has concentrated efforts to increase 

understanding; however, it has also led to fragmentation and isolation of disciplinary fields.  

This isolation can be responsible for narrow disciplinary viewpoints, communication 

barriers, and a tendency to reinvent the wheel.  This thesis identifies an opportunity to 

reconnect fragmented disciplinary knowledge through interdisciplinary collaboration.   

This opportunity is particularly relevant to computer science.  Computing systems 

and the software they run are some of the most pervasive and enabling technological 

advancements in history.  Software is the codification of human knowledge and processes 

and as such increases in complexity with that knowledge.  Software also introduces its own 

forms of complexity.  Rampant IT growth, source code complexity, pervasive software, 

and emerging technologies are pushing individual human limitations and have an impact on 

nearly all sectors of society.   

This thesis has proposed a vision for computer science that recognizes the problems 

of fragmented knowledge and systemic complexity.  This vision promotes knowledge 

sharing and the tearing down of walls between disciplinary silos.  It also builds an 
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appreciation for the natural world as a source of innovative and proven designs.  This 

vision has been established through the presentation of current and historical examples of 

individuals with interdisciplinary knowledge who have used nature as a source of 

inspiration.  Neurophysiologist Warren McCullough and mathematician Walter Pitts 

created the first Artificial Neural Networks.  Applied mathematician and electronics 

innovator Norbert Weiner originated Cybernetics.  Otto Schmitt, Jack Steel, and Janine 

Benyus have formalized and promoted Biomimetics, Bionics, and Biomimicry respectively 

to enhance human innovation.  Finally, Genrich Altshuller used his interdisciplinary 

knowledge and passion to develop the TRIZ theory of inventive problem solving which is 

now being extended by Julian Vincent to include nature’s solutions.  All of these people 

have diverse disciplinary knowledge and have used that knowledge to bridge disciplinary 

boundaries and leverage the natural world as a source of innovation.  It is through their 

examples that a new paradigm for software innovation has been presented.  

To realize this vision, a framework has been presented to provide strategies that will 

facilitate the open exchange of disciplinary knowledge and natural design models.  This 

framework includes interdisciplinary education, interdisciplinary collaboration, 

interdisciplinary tools, biomimetic design, and the creation of new pattern languages based 

on nature’s design solutions.  When taken together, the vision and strategies presented are 

intended to inspire and foster a paradigm that recognizes and harnesses the value of human 

and natural diversity as a source of innovation.  

8.2 Summary of Contributions 

This thesis has attempted to address the problems of complexity and fragmentation 

of knowledge by making the following contributions: 
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1. It has presented the historical development of disciplinary silos and the 

various approaches that have been developed to bridge them.  This 

development provides a context for the objectives of the thesis. 

2. It has presented an historical survey of nature inspired design and its 

methods to inform computer scientists of the value and means for using 

nature as a model for human innovation.  This model can be applied to 

the development of both software products and processes. 

3. It has proposed a vision for the open exchange of knowledge between 

disciplinary silos as a means to increase the breadth and depth of 

interdisciplinary knowledge in the field of computer science. 

4. It has proposed a framework to for injecting creativity and innovation in 

software development through interdisciplinary collaboration and nature 

inspired design.  This framework can be used as a means to realize the 

proposed vision. 

5. It has identified the use of specific tools as part of that framework.  These 

tools include the Russian “Theory of Inventive Problem Solving” called 

TRIZ as well as Cybernetics.  TRIZ has thus far had very limited 

application in software development, but shows promise for further 

advancement. 

6. It has proposed the creation of a new nature inspired pattern language as 

part of the proposed framework.  This pattern language may potentially 

be supplemented with UML and integrated with TRIZ to facilitate the 
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discovery of successful design solutions during a software development 

process. 

7. It has proposed a new “Honeybee Specialization” software design pattern as 

a case study of interdisciplinary collaboration and biomimetic design.  

This pattern was implemented in a multiagent simulation to control the 

division of labor between agents capable of performing two roles.  This 

design pattern shows promise for various applications including a new 

generalized election algorithm.   The simulation has also been shared 

with a preeminent biologists doing field research on honeybees and has 

the potential to enhance their understanding of biology.  This shows the 

opportunity for bidirectional enrichment of disciplinary collaboration. 

8.3 Future Research 

This research has breached a number of subjects on which careers can and have 

been built.  It has only been possible to scratch the surface of each of these to develop a 

high-level interdisciplinary knowledge.  Further research into crossdisciplinarity, 

multidisciplinarity, interdisciplinarity, transdisciplinarity, biomimicry, bionics, cybernetics, 

TRIZ, human-factors, human-computer interactions, and more would ultimately enrich this 

research further.  Ideally, all of this research should be expanded with the help of an 

interdisciplinary team.  With that understanding, there are a number of specific topics of 

interest for future research. 

• To better understand the contributions that Cybernetics can bring to the 

issues of interdisciplinary collaboration and software complexity.  There 

appear to be opportunities for Cybernetic theory to help inform the 
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organizational logistics of team formation and interactions.  Additionally, its 

constructs may aid in the development of more self-regulating software.  

• To validate the concepts put forth in this thesis by leading an 

interdisciplinary software development effort that takes the time to explore 

nature’s solutions for inspiration and innovation. 

• To monitor current and future research that attempts to adapt TRIZ for use 

in software development and apply it to a real world software development 

project. 

• To continue to explore the development of a software pattern language 

based on natural models.  Furthermore, to incorporate this pattern language 

into TRIZ so that common problems and solutions can be captured and 

reused. 

• To further explore the analogy between emergent software development 

processes and nature’s development processes. 

• To continue to develop and refine a software model of honeybee 

specialization.  Furthermore, to apply this development to a generalized 

election algorithm.  

• To continue the interdisciplinary collaboration with entomologists to enrich 

their understanding of honeybee specialization for use in biology.   
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A p p e n d i x  A  

APPENDIX A:  PARTIAL SOURCE CODE FOR SOCIAL SPECIALIZATION

/**  This interface defines the attributes and methods needed to implement division of labor based on the way 
natural honey bees divide labor in a hive. @author SKS832  */ 
public interface HoneyBeeIntf { 
/** The level of activator pheromone.  This cannot be affected by other  instances of the HoneyBeeIntf. */ 
 public float DEFAULT_ACTIVATOR_LEVEL=0.0F; 
/** The delta value that is added to the innerInhibitorLevel with each incremental step (of time). */  
 public float DEFAULT_ACTIVATOR_DELTA=1.0F; 
/** Level of internal inhibitor pheromone which cannot be affected by external instances of the HoneyBeeIntf. */
 public float DEFAULT_INNER_INHIBITOR_LEVEL=1.0F; 
/** The delta value that is added to the innerInhibitorLevel with each incremental step (of time). */ 
 public float DEFAULT_INNER_INHIBITOR_DELTA=1.0F; 
/** The level of external inhibitor pheromone which is received from other instances of HoneyBeeIntf. */ 
 public float DEFAULT_EXTRA_INHIBITOR_LEVEL=1.0F; 
/** The threshold of the activator/inhibitor ratio which separates the two roles. */ 
 public float DEFAULT_ROLE_THRESHOLD=15.0F; 
/** Constant that identifies the first role.  Ccorresponds to young honey bees in the hive. */ 
 public static final int ROLE1 = 1; 
/** Constant that identifies the second role. Corresponds to the role of older honey bees as foragers. */ 
 public static final int ROLE2 = 2; 
/**  @return The threshhold of the activator/inhibitor ratio which separates the two roles. */ 
 public float getRoleThreshold(); 
/**  Sets the value of the role threshhold. 
   * @param threshhold The threshhold of the activator/inhibitor ratio which separates the two roles.*/ 
 public void setRoleThreshold(float threshhold); 
/**   Possible values are defined by role constants ROLE1 and ROLE2. 
   * @return The role of the HoneyBeeIntf.  */ 
 public int getRole(); 
/**  Gets the value of the innerInhibitorLevel, which can be transmitted to the extraInhibitorLevel of another 
instance of  HoneyBeeIntf by passing it as a parameter to the addToExtraInhibitor  method of the other instance. 
* @return The level of internal inhibitor which cannot be affected by external instances of the HoneyBeeIntf. */ 
 public float getInnerInhibitorLevel(); 
/**  Resets the innerInhibitorLevel to its initial state.  Should be used immediately after a social interaction that 
transmitted this innerInhibitor to another instance of HoneyBeeIntf. */ 
 public void initInnerInhibitorLevel(); 
/**  Increments the innerInhibitorLevel by the value assigned to the innerInhibitorDelta.  Basically, this does the 
following calculation:  innerInhibitorLevel = innerInhibitorLevel + innerInhibitorDelta */ 
 public void addInnerInhibitor(); 
/**  Adds the value passed into the method to the extraInhibitorLevel. 
   * @param transmittedInhibitor Should correspond to the innerInhibitorLevel of the "other" instance of 
HoneyBeeIntf taking part in a social interaction with this instance.*/ 
 public void addExtraInhibitorLevel(float transmittedInhibitor); 
/** Advances this instance to the next state.  This step should increment both the activatorLevel and the 
innerInhibitorLevel by their corresponding delta values.  */ 
 public void step(); 
/**  Implement method to define interaction between the current instance of the HoneyBeeIntf with another 
instance of the HoneyBeeIntf. 
  * @param other The HoneyBeeIntf instance encountered for this social interaction. 
  * @return Resulting ratio of activator/inhibitor after the social interaction. */ 
 public float socialize(HoneyBeeIntf other); 
 public String getName(); 
 public void setName(String name); 
} 
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public class HoneyBee implements HoneyBeeIntf {
 public float socialize(HoneyBeeIntf other) { 
  System.out.println("HoneyBee.socialize(): " + HoneyBee.numberOfSocialInteractions++ 
    + " " + this.getName() +  
    " initiated contact with " + other.getName()); 
   
  // TODO There is a descrepency that occurs when the initiating agent 
  //  gets the inhibitor value of the other, before the other has incremented. 
   
  // Get the values of the other agent. 
  float otherInhibitToMe = other.getInnerInhibitorLevel(); 
   
  // Let the other inhibit me 
  this.addExtraInhibitorLevel(otherInhibitToMe); 
   
  // Inhibit the other with my inner pool of inhibitor 
  other.addExtraInhibitorLevel(this.getInnerInhibitorLevel()); 
   
  // QUESTION:  Should my inhibitor pool be diminished during an interaction? 
  //            Perhaps it is diminished slightly, fully, or not at all. 
  System.out.println("HoneyBee.socialize(): "   
    + this.getName() + " age=" + this.getAge() 
    + " A=" + this.activatorLevel + ", iI=" + this.innerInhibitLevel  
    + ", eI=" + this.extraInhibitLevel + ", A/I="  
    + this.getActivatorInhibitorRatio() + " Role=" + this.getRole()); 
   
  // If other has higher inhibitor level than me 
  if(otherInhibitToMe>this.getInnerInhibitorLevel()) { 
   // Reduce my activator and innerInhibitor level so I can't inhibit others as well. 
   this.addInnerInhibitor(-(2*this.getActivatorDelta())); 
   this.activatorLevel-=2*this.getActivatorDelta(); 
  }  
   
  // Reset the innerInhibitorLevel for me 
  //this.initInnerInhibitorLevel(); 
   
  // Reset the innerInhibitorLevel for other 
  //other.initInnerInhibitorLevel(); 
   
  return 0; 
 } 
 public void step() { 
  this.age++; 
  this.activatorLevel+=this.getActivatorDelta(); 
  this.innerInhibitLevel+=this.getInnerInhibitDelta(); 
  System.out.println("HoneyBee.step(): "   
    + this.getName() + " age=" + this.getAge() 
    + " A=" + this.activatorLevel + ", iI=" + this.innerInhibitLevel  
    + ", eI=" + this.extraInhibitLevel + ", A/I="  
    + this.getActivatorInhibitorRatio() + " Role=" + this.getRole()); 
 } 
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 public float getActivatorInhibitorRatio() {
  // TODO Should inner and extra inhibitors be sum in the ratio? 
  //float airatio = this.activatorLevel/this.extraInhibitLevel; 
  //System.out.println("HoneyBee.getRole(): airatio=" + airatio); 
  float a = this.activatorLevel; 
  //float i1 = this.innerInhibitLevel; 
  float i2 = (float)this.extraInhibitLevel; 
  return a/(i2); 
 }  
 
 public void addInnerInhibitor(float iiDelta) { 
  this.innerInhibitLevel = this.innerInhibitLevel + iiDelta; 
 } 
  
 public void addExtraInhibitorLevel(float transmittedInhibitor) { 
  this.extraInhibitLevel = this.extraInhibitLevel + transmittedInhibitor; 
 } 
 
 public void initInnerInhibitorLevel() { 
  // When this is zero, it causes a divide by zero for the a/i ratio of 
  // the other instance that is inhibited by this one. 
  this.innerInhibitLevel=0.0F; 
 } 
 
 /** 
  * Sets the age of first foraging.  This method will only set this value 
  * once during the lifespan of a HoneyBee instance. 
  *  
  * @param ageFirstForaging The ageFirstForaging to set. 
  * @return true=Age Set, false=Not set because this instance has already set this variable. 
  */ 
 public boolean setAgeFirstForaging(int ageFirstForaging) { 
  // Make sure this is the first transition to Role2. 
  if(this.ageFirstForaging==0) { 
   this.ageFirstForaging = ageFirstForaging; 
   this.setHasForaged(true); 
   System.out.println("HoneyBee.setAgeFirstForaging(): " + this.getName()  
     + " first foraged at age " + this.getAge()); 
   return true; 
  } else { 
   // This agent already has an age at first foraging. 
   return false; 
  } 
 } 
} 
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