10 research outputs found

    Analysis of Polder Polarization Measurements During Astex and Eucrex Experiments

    Get PDF
    Polarization is more sensitive than intensity to cloud microstructure such as the particle size and shape, and multiple scattering does not wash out features in polarization as effectively as it does in the intensity. Polarization measurements, particularly in the near IR, are potentially a valuable tool for cloud identification and for studies of the microphysics of clouds. The POLDER instrument is designed to provide wide field of view bidirectional images in polarized light. During the ASTEX-SOFIA campaign on June 12th, 1992, over the Atlantic Ocean (near the Azores Islands), images of homogeneous thick stratocumulus cloud fields were acquired. During the EUCREX'94 (April, 1994) campaign, the POLDER instrument was flying over the region of Brittany (France), taking observations of cirrus clouds. This study involves model studies and data analysis of POLDER observations. Both models and data analysis show that POLDER can be used to detect cloud thermodynamic phases. Model results show that polarized reflection in the Lamda =0.86 micron band is sensitive to cloud droplet sizes but not to cloud optical thickness. Comparison between model and data analysis reveals that cloud droplet sizes during ASTEX are about 5 microns, which agrees very well with the results of in situ measurements (4-5 microns). Knowing the retrieved cloud droplet sizes, the total reflected intensity of the POLDER measurements then can be used to retrieve cloud optical thickness. The close agreement between data analysis and model results during ASTEX also suggests the homogeneity of the cloud layer during that campaign

    Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1.

    Get PDF
    International audienceThis paper discusses the retrieval of ice crystal shapes of cirrus clouds on a global scale using observations collected with POLDER-1 (POLarization and Directionality of the Earth Reflectance) onboard the ADEOS-1 platform. The retrieval is based on polarized bidirectional observations made by POLDER. First, normalized polarized radiances are simulated for cirrus clouds composed of ice crystals that differ in shape and are randomly oriented in space. Different values of cloud optical depths, viewing geometries and solar zenith angles are used in the simulations. This sensitivity study shows that the normalized polarized radiance is highly sensitive to the shape of the scatterers for specific viewing geometries, and that it saturates after a few scattering events, which makes it rapidly independent of the optical depth of the cirrus clouds. Next, normalized polarized radiance observations obtained by POLDER have been selected, based on suitable viewing geometries and on the occurrence of thick cirrus clouds composed of particles randomly oriented in space. For various ice crystal shapes these observations are compared with calculated values pertaining to the same geometry, in order to determine the shape that best reproduces the measurements. The method is tested fully for the POLDER data collected on January 12, 1997. Thereafter, it is applied to six periods of 6 days of observations obtained in January, February, March, April, May, and June 1997. This study shows that the particle shape is highly variable with location and season, and that polycrystals and hexagonal columns are dominant at low latitudes, whereas hexagonal plates occur more frequently at high latitudes

    Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission

    Get PDF
    Instruments dedicated to aerosol monitoring are recently available and the POLDER (POLarization and Directionality of the Earth's Reflectances) instrument on board the PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) mission is one of them. By measuring the spectral, angular and polarization properties of the radiance at the top of the atmosphere, in coordination with the other A-Train instruments, PARASOL provides the aerosol optical depths (AOD) as well as several optical and microphysical aerosol properties. The instrument, the inversion schemes and the list of aerosol parameters are described. Examples of retrieved aerosol parameters are provided as well as innovative approaches and further inversion techniques

    Polarized light scattering by inhomogeneous hexagonal monocrystals. Validation with ADEOS-POLDER measurements

    Get PDF
    Various in situ measurements of the light-scattering diagram in ice clouds were performed with a new nephelometer during several airborne campaigns. These measurements were favorably compared with a theoretical scattering model called Inhomogeneous Hexagonal Monocrystal (IHM) model. This model consists in computing the scattering of light by an ensemble of randomly oriented hexagonal ice crystals containing spherical impurities of soot and air bubbles. It is achieved by using a combination of ray tracing, Mie theory, and Monte Carlo techniques and enables to retrieve the six independent elements of the scattering matrix. This good agreement between nephelometer measurements and IHM model provides an opportunity to use this model in order to analyze ADEOS-POLDER total and polarized reflectance measurements over ice clouds. POLDER uses an original concept to observe ice cloud properties, enabling to measure reflectances and polarized reflectances, for a given scene, under several (up to 14) viewing directions. A first analysis of ice cloud spherical albedoes over the terrestrial globe for November 10, 1996, and April 23, 1997, shows a rather good agreement between measurements and modeling. Moreover, polarized reflectances are also calculated and show a satisfactory agreement with measurements

    Characterizing Ice Cloud Particle Shape and Surface Roughness from Polarimetric Satellite Observations

    Get PDF
    The single scattering properties of ice cloud particles are inferred from spaceborne multi-angle satellite sensors with two newly developed noise-resilient retrieval techniques. The first presented method parameterizes the phase function and phase matrix elements by a few parameters to implement the maximum likelihood estimation in the retrieval system. The second method retrieves the renormalized phase function as a difference from a known phase function. The effect of noise is more predictable for both methods than the conventional “best-fit” method, which selects the best-fitting shape and surface roughness from a predetermined particle set. The first method is applied to the data from the Polarization and Directionality of the Earth’s Reflectance (POLDER) sensor. The retrieval results indicate that long column shape (ratio of basal face diameter to prism height greater than 9) with surface roughness parameter between 0.1 and 0.5 represents the extratropical observations well. Weak temperature dependence of the surface roughness is found in the extratropical data stratified by the cloud top temperature. The tropical retrieval was not successful, and the second method is applied to the Multi-angle Imaging Spectroradiometer (MISR) data. Short hexagonal column particles or their aggregates are found to match with estimated renormalized phase function. In addition to these results, the surface roughness simulation is summarized and the derivation of the δ-fit truncation technique for polarimetric radiative transfer is included

    Characterizing Ice Cloud Particle Shape and Surface Roughness from Polarimetric Satellite Observations

    Get PDF
    The single scattering properties of ice cloud particles are inferred from spaceborne multi-angle satellite sensors with two newly developed noise-resilient retrieval techniques. The first presented method parameterizes the phase function and phase matrix elements by a few parameters to implement the maximum likelihood estimation in the retrieval system. The second method retrieves the renormalized phase function as a difference from a known phase function. The effect of noise is more predictable for both methods than the conventional “best-fit” method, which selects the best-fitting shape and surface roughness from a predetermined particle set. The first method is applied to the data from the Polarization and Directionality of the Earth’s Reflectance (POLDER) sensor. The retrieval results indicate that long column shape (ratio of basal face diameter to prism height greater than 9) with surface roughness parameter between 0.1 and 0.5 represents the extratropical observations well. Weak temperature dependence of the surface roughness is found in the extratropical data stratified by the cloud top temperature. The tropical retrieval was not successful, and the second method is applied to the Multi-angle Imaging Spectroradiometer (MISR) data. Short hexagonal column particles or their aggregates are found to match with estimated renormalized phase function. In addition to these results, the surface roughness simulation is summarized and the derivation of the δ-fit truncation technique for polarimetric radiative transfer is included

    Characterizing Ice Cloud Particle Shape and Surface Roughness from Polarimetric Satellite Observations

    Get PDF
    The single scattering properties of ice cloud particles are inferred from spaceborne multi-angle satellite sensors with two newly developed noise-resilient retrieval techniques. The first presented method parameterizes the phase function and phase matrix elements by a few parameters to implement the maximum likelihood estimation in the retrieval system. The second method retrieves the renormalized phase function as a difference from a known phase function. The effect of noise is more predictable for both methods than the conventional “best-fit” method, which selects the best-fitting shape and surface roughness from a predetermined particle set. The first method is applied to the data from the Polarization and Directionality of the Earth’s Reflectance (POLDER) sensor. The retrieval results indicate that long column shape (ratio of basal face diameter to prism height greater than 9) with surface roughness parameter between 0.1 and 0.5 represents the extratropical observations well. Weak temperature dependence of the surface roughness is found in the extratropical data stratified by the cloud top temperature. The tropical retrieval was not successful, and the second method is applied to the Multi-angle Imaging Spectroradiometer (MISR) data. Short hexagonal column particles or their aggregates are found to match with estimated renormalized phase function. In addition to these results, the surface roughness simulation is summarized and the derivation of the δ-fit truncation technique for polarimetric radiative transfer is included

    Pre-Aerosol, Clouds, and Ocean Ecosystem (PACE) Mission Science Definition Team Report

    Get PDF
    We live in an era in which increasing climate variability is having measurable impact on marine ecosystems within our own lifespans. At the same time, an ever-growing human population requires increased access to and use of marine resources. To understand and be better prepared to respond to these challenges, we must expand our capabilities to investigate and monitor ecological and bio geo chemical processes in the oceans. In response to this imperative, the National Aeronautics and Space Administration (NASA) conceived the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission to provide new information for understanding the living ocean and for improving forecasts of Earth System variability. The PACE mission will achieve these objectives by making global ocean color measurements that are essential for understanding the carbon cycle and its inter-relationship with climate change, and by expanding our understanding about ocean ecology and biogeochemistry. PACE measurements will also extend ocean climate data records collected since the 1990s to document changes in the function of aquatic ecosystems as they respond to human activities and natural processes over short and long periods of time. These measurements are pivotal for differentiating natural variability from anthropogenic climate change effects and for understanding the interactions between these processes and various human uses of the ocean. PACE ocean science goals and measurement capabilities greatly exceed those of our heritage ocean color sensors, and are needed to address the many outstanding science questions developed by the oceanographic community over the past 40 years
    corecore