69,151 research outputs found

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    New constraints on data-closeness and needle map consistency for shape-from-shading

    Get PDF
    This paper makes two contributions to the problem of needle-map recovery using shape-from-shading. First, we provide a geometric update procedure which allows the image irradiance equation to be satisfied as a hard constraint. This not only improves the data closeness of the recovered needle-map, but also removes the necessity for extensive parameter tuning. Second, we exploit the improved ease of control of the new shape-from-shading process to investigate various types of needle-map consistency constraint. The first set of constraints are based on needle-map smoothness. The second avenue of investigation is to use curvature information to impose topographic constraints. Third, we explore ways in which the needle-map is recovered so as to be consistent with the image gradient field. In each case we explore a variety of robust error measures and consistency weighting schemes that can be used to impose the desired constraints on the recovered needle-map. We provide an experimental assessment of the new shape-from-shading framework on both real world images and synthetic images with known ground truth surface normals. The main conclusion drawn from our analysis is that the data-closeness constraint improves the efficiency of shape-from-shading and that both the topographic and gradient consistency constraints improve the fidelity of the recovered needle-map

    Terrain analysis using radar shape-from-shading

    Get PDF
    This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure

    Neural Face Editing with Intrinsic Image Disentangling

    Full text link
    Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other --- a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect of facial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number of facial editing applications.Comment: CVPR 2017 ora

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Towards automated visual flexible endoscope navigation

    Get PDF
    Background:\ud The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research.\ud Methods:\ud A systematic literature search was performed using three general search terms in two medical–technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included.\ud Results:\ud Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date.\ud Conclusions:\ud Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process
    • …
    corecore