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NewConstraints on Data-Closeness and Needle
MapConsistency for Shape-from-Shading

Philip L. Worthington and Edwin R. Hancock

AbstractÐThis paper makes two contributions to the problem of needle-map recovery using shape-from-shading. First, we provide a

geometric update procedure which allows the image irradiance equation to be satisfied as a hard constraint. This not only improves the

data closeness of the recovered needle-map, but also removes the necessity for extensive parameter tuning. Second, we exploit the

improved ease of control of the new shape-from-shading process to investigate various types of needle-map consistency constraint.

The first set of constraints are based on needle-map smoothness. The second avenue of investigation is to use curvature information

to impose topographic constraints. Third, we explore ways in which the needle-map is recovered so as to be consistent with the image

gradient field. In each case we explore a variety of robust error measures and consistency weighting schemes that can be used to

impose the desired constraints on the recovered needle-map. We provide an experimental assessment of the new shape-from-shading

framework on both real world images and synthetic images with known ground truth surface normals. The main conclusion drawn from

our analysis is that the data-closeness constraint improves the efficiency of shape-from-shading and that both the topographic and

gradient consistency constraints improve the fidelity of the recovered needle-map.

Index Terms±Shape-from-shading, hard constraints, curvature consistency, gradient consistency, robust statistics.

æ

1 INTRODUCTION

SHAPE-FROM-SHADING (SFS) has been a topic of sustained
research activity for over two decades. The process is

concerned with recovering local surface orientation from
variations in image radiance. In Marr's seminal work
detailing a framework for computer vision [21], shape-
from-shading is identified as providing a useful route to
understanding 3D surface shape from a single image.
Moreover, psychophysical motivation for the use of SFS
has recently been demonstrated through experiments on the
human vision system [17], [18].

From a computational viewpoint, SFS involves solving

the image irradiance equation (IIR) to recover a set of

surface normals, often described as the needle-map.

However, since the IIR is under-constrained, additional

constraints such as local smoothness of the needle-map

must be invoked for reasons of computational tractability.
One of the most popular approaches is to adopt a

regularization framework [6], [10], [12] and iteratively

recover the needle-map using an update equation derived

by applying variational calculus. The regularization func-

tional must ensure data-closeness by penalizing departures

from the IIR, while imposing smoothness on the recovered

needle-map. A fundamental obstacle to progress in energy

minimization approaches to shape-from-shading is the

failure, to-date, to develop a constraint function which is

uniquely minimized by a surface which closely matches the

true surface. The search for such a functional is hindered by

the nature of the minimization framework, which is usually

based upon regularization theory [27]. This requires careful
selection of constraint functions and, most significantly,
time-consuming experimentation to establish regularization
parameters and determine whether or not a given scheme is
numerically stable. In many cases, the conditions to ensure
numerical stability lead to severe model dominance.

1.1 Related Literature

Many different computational approaches to recovering
shape from shading have been proposed, falling into two
broad categories; local [25], [6], and global [9], [14], [10],
[28]. Local shading analysis involves taking small windows
of the image and recovering surface patches which are
subsequently quilted together. Local approaches tend to be
fast, but often require a priori surface height information,
such as the elevation of singular points [22], or the
linearization of the reflectance map [25]. On real world
images, the results of local SFS techniques are often noisy.

In contrast, global approaches attempt to recover the
entire surface, either through propagation of height
values from singular points of the surface, or by
minimization of some energy functional associated with
the estimated surface. Global propagation techniques
again require a priori height data for initialization,
whereas global minimization techniques may be devel-
oped which require only the image and a light source
direction estimate as input. Moreover, global minimiza-
tion techniques have been shown to be more generally
applicable to different types of input images, and more
robust to noise than either local techniques or global
propagation approaches [36]. With these factors in mind,
this paper focuses upon global minimization techniques.

A major criticism of many global approaches has been
their tendency to oversmooth the recovered surface; that is,
to lose detail, particularly in regions where the true surface
is discontinuous. Various approaches have been proposed
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to address this problem. For instance, Ferrie and Legarde [6]
have used curvature consistency to augment the more usual
constraint on smoothness. Zheng and Chellappa [37] apply
an intensity gradient constraint which penalizes discrepan-
cies between the rate of change of reflectance and the rate of
change of image intensity. Lee and Kuo [29] describe a
scheme based on a triangular-element surface model, in
which the smoothness constraint takes the form of a surface
stiffness.

Recently, Kimmel and Bruckstein [15] have shown how
the apparatus of level-set theory [29] can be used to solve
the Euler equations developed by Horn [9] to describe the
SFS problem. In this approach, a 3D function is propagated
on a grid. A level set of this function tracks the height
contours of the recovered shape. This builds upon earlier
work by Bruckstein [5], which propagated a single equal-
height contour in an image (e.g., a shoreline or horizon in a
landscape picture) to find the set of equal-height contours
defining the surface. In the level-set approach, the 3D
function evolves according to constraints which are
analogous to Huygen's wavefront propagation principle,
an idea borrowed from recent advances in computational
fluid dynamics.

1.2 Paper Outline

Existing work on shape-from-shading can be criticized on
two counts. First, the data-closeness constraint invariably
plays a relatively weak role in the recovery of the needle-
map, while the smoothness error dominates the process.
Second, the modeling of the smoothness constraint is
extremely simplistic. Most practical schemes opt for a
quadratic regularizer [10], [12]. This has the effect not only
of over-smoothing fine surface detail, but also of failing to
capture the differential or topographic structure of realistic
surfaces.

Several pieces of work aim explicitly to address these
criticisms. Ferrie and Lagarde [6] impose curvature con-
sistency on the surface as a postprocessing step. Their
method attempts to use topographic surface structure to
improve the global properties of the surface reconstruction,
without resorting to smoothing.

Horn [12] attempts to improve data-closeness by anneal-
ing the weight assigned to the smoothness regularizer as
convergence is approached. In a more recent paper [32], we
have applied the apparatus of robust statistics to modify
the strength of the smoothness constraint in a principled
manner. Robust error kernels are used in place of a
quadratic regularizer. Applying variational calculus to the
resulting regularized functional yields needle-map update
equations in which data-closeness plays a more significant
role.

The novel contribution of this paper is to furnish new
constraints on the recovery of the needle-map. The first
contribution is to impose data-closeness as a hard con-
straint. Our starting point is the observation that the IIR
constrains the surface normal to fall on a cone of ambiguity.
The axis of the cone is the light-source direction. This leads
to a simple geometric picture of iterative needle-map
recovery which can be visualized as remapping the surface
normals onto a cone of possible solutions. The second
contribution is to exploit this new framework to explore

more complex constraints on needle-map consistency. Here,
we show that both curvature consistency and gradient
consistency provide better constraints on the recovery of
faithful needle maps than the conventional quadratic
smoothness constraint of Horn and Brooks.

The structure of this paper is as follows: As an
introduction to the global recovery of shape from shading,
we briefly summarize the variational approach of Horn and
Brooks [10]. By considering its weaknesses, we identify the
main deficiencies of existing global minimization techni-
ques. We then present our framework for SFS and argue for
its validity and advantages in terms of addressing these
deficiencies. Subsequently, we develop several new con-
straints for SFS, including image gradient and curvature
consistency. Placing these constraints within the new
framework, we develop iterative update schemes to recover
the needle-map from an image. We compare the perfor-
mance of our new techniques against the Horn and Brooks
variational approach to SFS and other schemes from the
literature. Through detailed analysis using synthetic data,
we demonstrate the advantages of the new framework.
Improved performance on real images is also empirically
demonstrated.

2 THE VARIATIONAL APPROACH TO SFS

Central to shape-from-shading is the idea that local regions
in an image E�x; y� correspond to illuminated patches of a
piecewise continuous surface, z�x; y�. The measured bright-
ness E�x; y� will depend on the material properties of the
surface, the orientation of the surface at the coordinates
�x; y�, and the direction and strength of illumination.

The reflectance map, R�p; q� characterizes these properties,
and provides an explicit connection between the image and
the surface orientation. Surface orientation is described by
the components of the surface gradient in the x and y

direction, i.e., p � @z
@x

and q � @z
@y
. The shape from shading

problem is to recover the surface z�x; y� from the intensity
image E�x; y�. As an intermediate step, we may recover the
needle-map, or set of estimated local surface normals,
n�x; y�.

Needle-map recovery from a single intensity image is an
under-determined problem [22], [12], [2] which requires a
number of constraints and assumptions to be made. The
common assumptions are that the surface has ideal
Lambertian reflectance, constant albedo, and is illuminated
by a single point source at infinity. A further assumption is
that there are no interreflections, i.e., the light reflected by
one portion of the surface does not impinge on any other
part.

2.1 The Horn and Brooks Algorithm

The local surface normal may be written as n �
�ÿp;ÿq; 1�T ; where p � @z

@x
and q � @z

@y
. For a light source

at infinity, we can similarly write the light source direction
as s � �ÿpl;ÿql; 1�

T . If the surface is Lambertian the
reflectance map is given by

R�p; q� � n � s: �1�

The image irradiance equation [11] states that the
measured brightness of the image is proportional to the
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radiance at the corresponding point on the surface; that is,

just the value of R�p; q� for p; q corresponding to the

orientation of the surface. Normalizing both the image

intensity, E�x; y�, and the reflectance map, the constant of

proportionality becomes unity, and the image irradiance

equation is simply

E�x; y� � R�p; q�: �2�

Although the image irradiance equation succinctly

describes the mapping between the x; y coordinate space

of the image and the the p; q gradient space of the surface, it

provides insufficient constraints for the unique recovery of

the needle-map. To overcome this problem, a further

constraint must be applied. Usually, the needle-map is

assumed to vary smoothly.
The process of smooth surface recovery is posed as a

variational problem in which a global error functional is

minimized through the iterative adjustment of the needle

map. Surface normals are updated with a step size dictated

by Euler's equation. Here we consider the formulation of

Brooks and Horn [6] which is couched in terms of unit

surface normals. Their error functional is defined to be

I �

Z Z �

E�x; y� ÿ n � s�
�2

|���������������{z���������������}

BrightnessError

��
@n

@x



















2

�
@n

@y



















2
 !

|����������������{z����������������}

RegularizingTerm

dxdy: �3�

The terms @n
@x

and @n
@y

above are the directional derivatives

of the needle-map in the x and y directions respectively. The

magnitudes of these quantities are used to measure the

smoothness of the surface, with a large value indicating a

highly curved region. However, it should be noted that a

planar surface has @n
@x

� @n
@y

� 0 in this case.
The first term of (3) is the brightness error, which

encourages data-closeness of the measured image intensity

and the reflectance function. The regularizing term imposes

the smoothness constraint on the recovered surface nor-

mals, penalizing large local changes in surface orientation.

The constant � is a Lagrange multiplier. For numerical

stability, � must often be large, resulting in the smoothness

term dominating.
Minimization of the functional defined in (3) is accom-

plished by applying the calculus of variations [7] and

solving the resulting Euler equation. The general Euler

equation is

In ÿ
@

@x
Inx ÿ

@

@y
Iny � 0; �4�

where In is the result of taking the partial derivative of I

with respect to the surface normal, n. Similarly, Inx and Iny
are partial derivatives of I with respect to the quantities @n

@x

and @n
@y
; respectively.

Substituting (3) into the general Euler equation yields:

�

E ÿ n � s
�

s� �r2n � 0: �5�

Equation (5) is discretized using the following approxima-

tion to the Laplacian

n

r2n

o

i;j
�

4

�2

�

�ni;j ÿ ni;j

�

; �6�

where � is the spacing of pixel-sites on the lattice and �ni;j is
the local 4-neighborhood mean of the surface normals
around pixel position i; j,

�ni;j �
1

4

�

ni;j�1 � ni;jÿ1 � ni�1;j � niÿ1;j

�

: �7�

Discretizing (5) and rearranging, we obtain an update
equation to estimate the needle-map at epoch k� 1 using
the estimate at epoch k

n
k�1� �
i;j � �n

k� �
i;j �

�2

2�
Ei;j ÿ n

k� �
i;j � s

� �

s: �8�

2.2 Weaknesses of the Horn and Brooks Algorithm

The principal criticism of the Horn and Brooks algorithm,
and of similar approaches [14], [30], is its tendency to
oversmooth the recovered needle-map. Specifically, in (8),
the regularizing term dominates the data term. Since the
smoothness constraint is formulated in terms of the
directional derivatives of the needle-map, it is trivially
minimized by a flat surface. Thus, the conflict between the
data and the model leads to a strongly smoothed needle-
map and the loss of detail. The problem is exacerbated by
the need to select a conservative value for the Lagrange
multiplier in order to ensure numerical stability of the
scheme [12].

A further criticism of the Brooks and Horn algorithm
stems from the use of the Lagrange multiplier, which entails
parameter searching. To be confident that the scheme will
remain numerically stable for all expected input images, it
is often necessary to use a conservative value of the
parameter, exacerbating the oversmoothing problem.

In [31], [33], we introduced a novel application of robust
M-estimators to SFS in order to address the oversmoothing
problem. However, the improvements resulting from this
approach are obtained at the expense of introducing an
additional parameter to control the kernel width.

Hence, we see clear problems of model domination and
time consuming parameter selection in the literature.

3 A NOVEL FRAMEWORK FOR SFS

In this paper, we aim to address the criticisms detailed in
the previous section. Specifically, we wish to reduce model
dependence without requiring parameters or any informa-
tion in addition to the image and the light source direction.
Note that Pentland [26] developed a method to estimate the
light source direction from the image, so in fact only the
image is required.

In the variational approach to SFS due to Brooks and
Horn [4], the aim is to minimize a dual functional (3).
However, the aims of the terms of the functional are
different and competing. The smoothness term is mini-
mized by any planar surface. Thus, if the scheme is
initialized with the true needle-map, it will tend to ªwalk-
awayº as brightness error is traded for smoothness. Horn
[12] attempts to address this problem by increasing the
relative importance of the brightness error over successive
iterations. Here, however, we opt to treat the data-closeness
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and constraint terms separately [34], [35], in such a way that
data-closeness is always guaranteed; that is, the image
irradiance equation is treated as a hard constraint on the
problem. Hence, we have a valid needle-map which
satisfies the image irradiance equation at every iteration.
Subject to this constraint, the task becomes iteration toward
the true needle-map, using minimization of the smoothness
error or some other constraint functional. The need for a
weighting parameter is removed entirely.

Geometrically, we consider the image irradiance equa-
tion to define a cone of ambiguity about the light source
direction for each surface normal. The normals forming the
needle-map can only assume directions defined by this
cone, as shown in Fig. 1. At each iteration the updated
normal is free, as a result of the smoothing process, to lie
outside the cone, but is subsequently projected back onto
the closest vector lying on the cone.

3.1 Using the Image Irradiance Equation as a Hard
Constraint

The new framework requires us to minimize the constraint
functional

I �

Z Z

 n�x; y�;N�x; y�� �dxdy; �9�

while satisfying the hard constraint, imposed by the image
irradiance equation

Z Z

E ÿ n � s� �dxdy � 0: �10�

Here, N�x; y� is the set of local neighborhood vectors about
location �x; y�. For example, in terms of lattice coordinates
i; j, the 4-neighborhood of ni;j is defined as:

N � fni�1;j;niÿ1;j;ni;j�1;ni;jÿ1g: �11�

The function  n�x; y�;N�x; y�� � is a localized function of the
current surface normal estimates. The size of the neighbor-
hood may be varied according to the nature of  . Clearly, it
is possible to incorporate the hard data-closeness constraint
directly into  , but this needlessly complicates the mathe-

matics. Instead, we choose to impose the constraint after
each iteration by mapping the updated normals back to the
most similar normal lying on the cone.

If we take the smoothness constraint of Horn and Brooks
as an example, then

 n;N� � �
@n

@x



















2

�
@n

@y



















2

: �12�

Discretizing  n�x; y�;N�x; y�� � directly in terms of forward
differences yields the following equation in terms of ni;j and
its neighboring normals

 ni;j;Ni;j

ÿ �
� ni�1;j ÿ ni;j
ÿ �2

� ni;j�1 ÿ ni;j
ÿ �2

: �13�

In practice, to maintain symmetry, we take the mean of the
forward and backward difference results. We cannot use
the central difference because this does not include the
current normal, ni;j. Taking the mean yields

 ni;j;Ni;j

ÿ �
�

1

2
ni�1;j ÿ ni;j
ÿ �2

� ni;j�1 ÿ ni;j
ÿ �2

�

� ni;j ÿ niÿ1;j

ÿ �2
� ni;j ÿ ni;jÿ1

ÿ �2
�

:

�14�

We can again apply the calculus of variations, as
described by (4). Note that, having discretized prior to
differentiating, we have only the In component. However,
the same result can be obtained by performing the
discretization after differentiation. The operations are
shown in this order to motivate the definition of  in terms
of the neighborhood normals, N�x; y�. Thus, the discrete
Euler equation becomes

1

2
ÿ2 ni�1;j ÿ ni;j
ÿ �

ÿ 2 ni;j�1 ÿ ni;j
ÿ �ÿ

�2 ni;j ÿ niÿ1;j

ÿ �
� 2 ni;j ÿ ni;jÿ1

ÿ ��
� 0:

�15�

Rearranging, and substituting (7), yields

nk�1
i;j � �nki;j: �16�

In other words, we obtain a simple neighborhood aver-
aging, or smoothing action, which if left unchecked will

WORTHINGTON AND HANCOCK: NEW CONSTRAINTS ON DATA-CLOSENESS AND NEEDLE MAP CONSISTENCY FOR SHAPE-FROM-... 1253

Fig. 1. Comparison of update process for Horn and Brooks (left) and the new framework with the same smoothness constraint (right). Horn and

Brooks allows the updated normal to move away from the cone of ambiguity, sacrificing brightness error for smoothness. The movement in the light

source direction is asin the left-hand diagram, where a � �2

2�
E ÿ n � s� � from Equation (8). In contrast, the new framework forces the brightness error

to be satisfied by using the rotation matrix � to map the smoothness update to the closest point on the cone.



eventually lead to a flat surface. Note that this update
equation could be obtained from the Horn and Brooks
update equation simply by setting the brightness error to
zero in (8). Equally, we could obtain an identical update
equation using the constraint function

 n;N� � � nÿ �n� �2: �17�

Applying the hard constraint, for instance, in terms of a
rotation of the update back onto the cone of ambiguity, (16)
becomes

nk�1
i;j � ��nki;j; �18�

where � is a rotation matrix to map the updated normal to
the closest normal lying on the cone of ambiguity. Another
way to look at this, is that we allow the smoothness
constraint to select the direction of the normal estimate in
the image plane only, while fixing the angle between the
normal estimate and the light source direction.

To achieve the rotation, we define an axis perpendicular
to the intermediate update normal, �nki;j, and the light source
direction. The axis of rotation is found by taking the cross
product of the intermediate update with the light source
direction

u; v; w� �T � �nki;j � s: �19�

The angle of rotation is the difference between the angle
subtended by the intermediate update and the light source,
and the apex angle of the cone of ambiguity. Since the
image is normalized, the latter angle is simply cosÿ1 E,
giving a rotation angle of

� � ÿ cosÿ1
�nki;j � s

�nki;j













 sk k

0

B
@

1

C
A� cosÿ1 E: �20�

Hence, the rotation matrix is given by

� �
c� u2c0 ÿws� uvc0 vs� uwc0

ws� uvc0 c� v2c0 ÿus� vwc0

ÿvs� uwc0 us� vwc0 c� w2c0

0

@

1

A;

where

c � cos��� c0 � 1ÿ c s � sin���: �21�

Fig. 1 illustrates the update process, and compares it
with the Horn and Brooks update of (8).

3.2 Initialization

The new framework forces the surface normals to lie on the
cone defined by the image irradiance equation at each
iteration. Therefore, we choose an initialization which
ensures that the IIR (1) is satisfied at the outset. This differs
from the Horn and Brooks algorithm, which is usually
initialized by estimating the occluding boundary normals,
with all other normals set to point in the light source
direction.

We choose to initialize each normal such that its
projection onto the image plane lies in the opposite
direction to the image gradient direction, as shown in
Fig. 2. This results in an initialization with an implicit bias

toward convex rather than concave surfaces. In other

words, bright regions are assumed to correspond to peaks,

and the image gradient direction points toward these peaks.

Fig. 3 illustrates this bias.

4 ALTERNATIVE CONSTRAINTS

The novel framework developed in the preceding section,

using the smoothness constraint of Horn and Brooks,

reduces the problem of model dominance, and removes

the need to perform exhaustive parameter searches. Our

second contribution in this research is to develop new

methods of enforcing needle-map consistency. This is

motivated by previous work which has shown that the

traditional quadratic smoothness regularizer is ill-suited

to the SFS problem [33]. Remarkably little attention has

been focused upon alternatives to smoothness constraints

[6], [37].
Here, we describe three promising approaches. The first

is simply to modify the action of needle-map smoothness to

more adequately model the properties of real surfaces.

Second, we consider the topographic properties of surfaces

to develop consistency constraints based upon surface

curvature. Finally, we use higher order consistency between

the needle-map and image to ensure satisfaction of the

image irradiance equation in terms of image gradient as

well as intensity.

4.1 Surface Geometry Constraints

This class of constraints includes any which make direct

assumptions about the form of the surface. For instance, the

quadratic smoothness constraint of Horn and Brooks falls

into this category, since it assumes that the surface to be

recovered is the smoothest possible surface satisfying the

image irradiance equation, (1) subject to the criticisms of

Section 2.2. Similarly, the robust regularizer developed in

[32], [33] uses a modified version of this assumption. In

essence, it considers that the recovered surface should be

smooth, except where there is a high probability that a
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Fig. 2. The set of surface normals at a point which satisfy the Image

Irradiance equation define a cone such that E-n:s � 0: A normal from

this set is chosen such that the direction of its projection to the image
plane is opposite to the maxium intensity gradient direction, g:



discontinuity is present, in which case the smoothing is

reduced.
We define the robust regularizer constraint function as

 n;N� � � ��
@n

@x



















� �

� ��
@n

@y



















� �

; �22�

where ����� is a robust kernel defined on the residual � and

with width parameter �. Applying the calculus of varia-

tions, discretizing, and rearranging yields the general

update equation

n
�k�1�
i;j � �

@

@x
�0�

@n

@x



















� �

�
@

@y
�0�

@n

@y



















� �� �

; �23�

where

�0�
@n

@x



















� �

�
@

@nx
��

@n

@x



















� �� �

�0�
@n

@y



















� �

�
@

@ny
��

@n

@y



















� �� � : �24�

While the contents of the parentheses on the right hand

side of (23) appear at first glance to be a scalar, in fact the

differentiation of the robust kernel by a vector results in
another vector. Hence, (23) is dimensionally correct, as

demonstrated below using a specific instance of �����.
In [33] we experimented with several robust error

kernels, including Li's Adaptive Potential Functions [20],

and the Tukey [8] and Huber [13] estimators. However, the
sigmoidal derivative M-estimator, a continuous version of

Huber's estimator, proved to possess the best properties for

handling surface discontinuities, and is defined to be

����� �
�

�
log cosh

��

�

� �

: �25�

Substituting (25) into (23) yields the update equation

n
k�1� �
i;j � �

 

@n
�k�
i;j

@x























ÿ1

tanh
�

�

@n
�k�
i;j
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 !

n
�k�
i�1;j � n

�k�
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�
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sech2
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�
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The robust regularizer approach provides significantly

improved results over the simple Horn and Brooks

smoothness constraint, but at the expense of introducing

the parameter, �.

4.2 Curvature Consistency

Needle-map smoothness appears to be an over strong and
inappropriate constraint for shape from shading. This is

primarily because real surfaces are more likely to be

piecewise smooth; in other words, formed of smooth regions
separated by sharp discontinuities in depth or orientation.

The oversmoothing problem is exacerbated by the difficulty

of formulating the continuous concept of smoothness on a

WORTHINGTON AND HANCOCK: NEW CONSTRAINTS ON DATA-CLOSENESS AND NEEDLE MAP CONSISTENCY FOR SHAPE-FROM-... 1255

Fig 3. A 1D bright image patch surrounded by darker regions causes the
image gradient at surrounding locations to point toward the bright patch
(top). A bright patch corresponds to a region presenting a large area
toward the light source direction. Initializing the surface normals to point
in the same direction as the negative gradient means that the bright
region is always assumed to be a peak, as shown in the first diagram.
However, the bottom two diagrams also show valid surfaces which will
result in the same intensities, but for which the initialization will not work
well. Given the bas-relief ambiguity, there is no way to distinguish
between these possibilities, so we define our convention to assume the
first case.



discrete pixel lattice, as clearly illustrated by the fact that the
Horn and Brooks smoothness constraint is trivially mini-
mized by a needle-map corresponding to a planar surface.

In contrast, consider the well defined curvature char-
acteristics of most real world surfaces. Although the
curvature classes either side of a depth discontinuity may
be completely unrelated, this is not the case for an
orientation discontinuity. Orientation discontinuities usual-
ly correspond to ruts or ridges. Furthermore, the curvature
classes for locations either side of a rut or a ridge should be
the most similar classes, either trough or saddle rut for a
rut, or dome or saddle ridge for a ridge. This property of
smooth variation in class suggests that curvature consis-
tency may be a more appropriate constraint for SFS than
smoothness, which strongly penalizes legitimate orientation
discontinuities.

The use of a curvature consistency measure was
introduced to SFS by Ferrie and Lagarde [6]. They use
global consistency of principal curvatures [24] to refine the
surface estimate returned by local shading analysis.
Curvature consistency is formulated in terms of rotating
the local Darboux frame to ensure that the principal
curvature directions are locally consistent. Recently, Ange-
lopoulou [1] has recovered estimates of H ÿK labels using
photometric stereo under three different illumination
conditions.

One way of representing curvature information is to use
H ÿK labels, but these require us to set four thresholds to
define the classes in terms of the mean and Gaussian
curvatures. However, we propose to use curvature con-
sistency based upon the shape index of Koenderink and van
Doorn [16]. This is a measure which encodes the same
curvature class information as H ÿK labels in a single,
continuous representation, and has the further advantage of
not requiring any thresholds.

4.2.1 The Shape Index

We reformulate the definition of the shape index in terms of
the needle-map. This allows us to use the needle-map
directly, rather than needing to reconstruct the surface.

The differential structure of a surface is captured by the
Hessian matrix

H �
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can be substituted into (27) to give the local Hessian in
terms of the needle-map
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where � � �� �x and � � �� �y denote the x and y components of
the parenthesized vector, respectively.

The eigenvalues of the Hessian matrix, found by solving
the eigenvector equation Hÿ �Ij j � 0, are the principal

curvatures of the surface. In terms of surface normals, these

are given by
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Koenderink and van Doorn [16] defined the shape index

to be

� �
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�
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This may be expressed in terms of surface normals thus,
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Fig. 4 shows the range of shape index values, the type of

curvature which they represent, and the gray levels used to

display different shape index values.

4.2.2 Weighted Mean Using Curvature Consistency

A practical method of using curvature consistency is to use

a weighted mean process of the local normals in the update.

This follows logically from the update equation obtained

using the quadratic smoothness constraint and the robust

regularizer above. The idea is to weight in favor of ªgoodº

normals in the neighborhood. The selection of a criterion for

what constitutes a good normal is an open problem. In this

section, we investigate the use of curvature consistency to

determine the goodness of each neighborhood normal,

while later we investigate the use of image edge strength

measurements.
As stated above, since the shape index is a continuous,

angular measure, we expect it to vary gradually over a

smooth surface. For instance, with reference to Fig. 4, we

would not expect the shape index at adjacent pixels to differ

by more than one curvature class unless they lie on opposite

sides of a surface discontinuity. Since the over smoothing

effect of the quadratic smoothness constraint stems directly

from the indiscriminate averaging of normals lying across a

discontinuity, we anticipate that weighting according to

curvature consistency will reduce the problem in a

physically principled manner.
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Fig. 4. The shape index scale ranges from ÿ1 to 1 as shown. The shape
index values are encoded as a continuous range of grey level values

between 1 and 255, with grey level 0 being reserved for background and

flat regions (for which the shape index is undefined).



We note once again that (18) may be obtained using the
constraint function

 n;N� � � nÿ �n� �2 �31�

instead of the constraint on the magnitudes of the
directional derivatives of the needle-map used in (12).

From this observation, we propose a similar constraint as
follows:

 n;N� � � nÿ � N� �� �2; �32�

where ��N� is a weighted mean process defined on the
neighborhood normals as

��N� �

P

l2Nw1n1
P

l2Nw1

: �33�

To weight on the basis of curvature consistency we choose
weights of the form

wl � exp ÿ
�l ÿ ��
ÿ �2

2�2�

 !

; �34�

where �� and �� are, respectively, the mean and variance of

the shape index over the neighborhood.
Hence, a neighborhood normal with a shape index

similar to the neighborhood mean gains greater weight in

the averaging process than one with an outlying shape
index. The latter normal is assumed to lie on the opposite
side of a discontinuity from the majority of the neighbor-

hood, and therefore does not contribute significantly to the
weighted mean vector.

There is no need to apply the calculus of variations in

this case, as the functional based on the constraint of (32) is
trivially minimized, within the new framework, by the
update equation

n
�k�1�
i;j � �� Nk

i;j

� �

; �35�

where, once again, � is a rotation matrix to map the

intermediate update normal back onto the cone of solutions
to the IIR (21).

Normals which are associated with a large difference
from the neighborhood mean shape index are given small

weights in the update, reflecting the fact that they are
expected to lie on the opposite side of a discontinuity from

the majority of the neighborhood.
An alternative formulation uses weights calculated using

the Median Absolute Deviation (MAD) [8] in place of the
mean of the neighborhood shape index values

wl � exp ÿ
�l ÿmedian�
ÿ �2

2MAD2
�

 !

: �36�

This is intended to deal with the potential problem that, if

the neighborhood is evenly split by a discontinuity, the
mean shape index may not be representative of either set of

normals. Use of the median in this case forces the
comparison value to be representative of the set of normals
upon one side of the discontinuity or the other, but at the

expense of introducing a nonlinear process.

4.2.3 Adaptive Robust Regularizer Using Curvature

Consistency

We have also investigated the use of an adaptive robust

regularizer in conjunction with curvature consistency [35].

Here, instead of determining the individual weightings of

each normal in the neighborhood, we use the shape index

statistics to adaptively set the width of the robust kernel, �

(22), to be applied over the neighborhood. The kernel width

determines the level of smoothing applied to the neighbor-

hood. If the shape index of the neighborhood varies greatly

from the shape index at the center, then strong smoothing is

applied, whereas an already smoothly varying shape index

pattern receives less attention. Using the robust kernel of

(22) reduces the problem of oversmoothing if large

differences of shape index are present.
Once again, we have
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where, again, N is the set of local neighborhood normals

used to calculate the finite difference approximations to @n
@x

and @n
@y
.

Instead of a fixed kernel width, �, used in [32], [33], we

use the adaptive value

� � �0 exp ÿ
1

N

X

l2N

�l ÿ �c� �2

��2d

( )1
2

2

4
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5; �38�

where �c is the shape index associated with the central

normal of the neighborhood, ni;j, and ��d is the difference

in shape index between the center values of adjacent

curvature classes. The number of neighborhood normals

used in calculating the finite difference approximations to
@n
@x

and @n
@y

is denoted N , and �0 is a reference kernel width

which we set to unity. Using the scale of Fig. 4, ��d �
1
8
.

If the shape index varies significantly over the neighbor-

hood, a small value of � results, and the robust regularizer

saturates to produce a heavy smoothing effect. In contrast,

when the shape index values are already similar, the kernel

is widened so that little smoothing occurs.
The update equation is identical to (23), but with the

adaptive width parameter, �, of (38) substituted in.

4.3 Gradient Consistency

Zheng and Chellappa [37] used such an intensity gradient

constraint in conjunction with integrability. This constraint

ensured that the intensity gradient of the image recon-

structed from the needle-map matched the gradient of the

input image. However, this constraint is not useful in the

new framework since the reconstructed image always

precisely matches the input due to the application of the

image irradiance equation as a hard constraint. We there-

fore attempt to design constraints which use the needle-

map structure directly.
To formulate a gradient consistency constraint, we desire

to ensure that the image gradients in the x and y directions

match those of the needle-map. In other words, differentiat-

ing the image irradiance (1)
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Since the light source direction is constant with respect to x
and y, these equations simplify to
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respectively. We incorporate these equations into constraint
functions of similar forms to those investigated for
curvature consistency.

4.3.1 Weighted Mean Using Gradient Consistency

Using (40), we develop a similar constraint function to (32),
but with weights defined as

wl � exp ÿ
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Hence, a neighborhood normal which has low gradient
consistency is weighted less favorably than one which
matches the image gradient closely.

4.3.2 Adaptive Robust Regularizer Using Gradient

Consistency

Incorporating the gradient constraint into the robust
regularizer constraint function described in (22), we define
the adaptive kernel width to be the mean of the exponen-
tials of the gradient consistency
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If the image and needle-map gradients correspond well,
� is large and little smoothing is applied. However, if some
of the neighborhood normals exhibit large deviations from
image consistency, this causes the kernel to narrow,
reducing the influence of the inconsistent normals. If the
mean inconsistency is very large, the kernel narrows to the
point where all the neighborhood normals are in the
saturation region of the kernel, causing the algorithm to
revert to the Horn and Brooks smoothing process.

We experiment with two additional methods for adapt-
ing the value of �. In the first case, we use the root mean
value of the exponential consistencies as follows:
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X

12N
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s
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where wl is defined as in (41). This approach is motivated
by the same considerations as above, i.e., to widen the
kernel when the image and needle-map gradients corre-
spond well, and narrow it to increase the smoothing when
this is not the case. By taking the root mean instead of the
simple mean, we reduce the influence of outlying values of
wl on the kernel width.

We also experiment with a scheme which uses the
second derivatives of the image irradiance equation. Using
this approach, we relate the kernel width to the Laplacian of

the image. Thus, we attempt to obtain consistency on the
basis of local edge strength rather than the image gradient.
This yields an adaptive kernel width involving the
Laplacian of the image
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This edge-based approach has intuitive appeal as an
image edge is likely to correspond to a surface discontinuity
in many cases. If the mismatch between the local edge
strength and the needle-map second derivatives is large, the

kernel is narrowed to increase the smoothing, whereas if the
image and needle-map are consistent, little smoothing
occurs.

4.4 Summary of Investigated Constraints

Table 1 summarizes the constraint functions described in
the preceding sections, along with the update equations

which result from them. The new schemes are labeled
DD1-9 for Data Driven. Clearly, Table 1 is far from
exhaustive. Many more constraint functions are possible,
both within the categories considered here, and using other
properties of surfaces and images. However, the rapid
development of several alternatives to the smoothness
constraint shows the power of the new framework for
experimenting with different constraints.

5 EXPERIMENTS

We have performed extensive experiments upon synthetic
and real world images, using the SFS schemes summarized
in Table 1. We also compare with the Horn and Brooks
algorithm and two recent SFS schemes. These are the local
shape-from-shading algorithms of Bichsel and Pentland [3]
and Tsai and Shah [28]. The experimental work is divided
into three parts. We commence by showing surface
reconstructions and needle-maps delivered by the different

shape-from-shading algorithms. Next, we investigate the
iteration dependence of various performance measures.
Finally, we show some results on real-world images.

5.1 Synthetic Data

Fig. 5 illustrates the surfaces which can be recovered from
an image of two con-joined spheres. The figure compares
the SFS schemes developed in this paper with the
alternatives described above. Note that the Bichsel and
Pentland algorithm and the Tsai and Shah algorithm

recover a surface directly, while the Horn and Brooks
algorithm and the new framework recover needle-maps.
The latter must be integrated into a surface, which is an
open problem in itself. Here, we take the simplest possible
approach, summing the needle-map terms in the x and y

directions to yield two surfaces, then taking the mean of
these. This process is extremely sensitive to noise, so
surfaces recovered by this method are often poor. However,

we include surfaces in this paper because it is easier to
compare surfaces than needle-maps. Conversely, if we
calculate the needle-map from the surfaces generated by
Tsai and Sha or Bichsel and Pentland and compare on a
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TABLE 1
Summary of the Constraint Functions Developed Using the New Framework

DD1 and DD2 are surface geometric constraints. DD3-5 use curvature consistency, while DD6-9 are based upon gradient consistency.



needle-map basis (as in Figs. 6 and 7), the disadvantage is

transferred to these techniques.
Furthermore, to maintain a level playing field for

comparisons, we initialize the Horn and Brooks algorithm

using the new initialization of Section 3.2, unless explicitly

stated otherwise.
Qualitatively, the most interesting point of comparison

between methods is the degree to which junction detail is

preserved. The ability to recover discontinuities in the
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Fig. 5. Surface reconstruction results for a synthetic image of two co-joined spheres.
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Fig. 6. Comparison of the various Horn and Brooks-based techniques with Tsai and Shah and Bichsel and Pentland algorithms and of the validity of
the new framework and initialization. Top row: Synthetic input images. Second row: Results of applying Bichsel and Pentland algorithm. Third row:
Tsai and Shah algorithm. Fourth row: Traditional Horn and Brooks algorithm with occluding boundary initialization. Fifth row: Horn and Brooks
algorithm using new, gradient-based initialization. Bottom row: Results of using the smoothness constraint of Horn and Brooks within the new, data-
driven framework (DD1).
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Fig. 7. Comparison of differences between the recovered needle-maps and ground truth data for the results of Fig. 6. Top row: Synthetic input

images. Second row: Difference between ground truth and normals recovered using Bichsel and Pentland algorithm. Third row: Tsai and Shah
algorithm. Fourth row: Traditional Horn and Brooks algorithm. Fifth row: Horn and Brooks with new initialization. Bottom row: Horn and Brooks

smoothness constraint within the new, data-driven framework (DD1).



surface is important given that our primary motivations for
developing new constraint functions is to address the
problem of oversmoothing. For instance, in Fig. 5, the
important feature is the curve defined by the intersection of
the two spheres. The Horn and Brooks algorithm loses this
detail, while Tsai and Shah is noisy. Bichsel and Pentland
preserves the junction well, but distorts the spheres a little.
Of the new constraint functions, DD2 (robust smoothness
error), DD5 (robust use of curvature consistency with
adaptive kernel width), and, particularly, DD9 (robust use
of gradient consistency with adaptive kernel width) appear
to perform well. Empirically, it appears that the robust
kernel approach is more effective than the weighted mean
process. Also, the use of gradient consistency seems to yield
slightly better results than curvature consistency.

We now turn to the needle-maps delivered by the
different algorithms. In Fig. 6, we compare the needle-maps
recovered for three objects. These are a pair of co-joined
cones and a sphere impaled on an ellipsoid. We compare
the new framework with the traditional Horn and Brooks
algorithm. For simplicity, we use a quadratic constraint
function (i.e., DD1) rather than one of the more complicated
curvature consistency or gradient consistency constraints.
Also included in the comparison are the Tsai and Shah and
Bichsel and Pentland algorithms. For completeness, we
investigate the effect of using the Horn and Brooks
algorithm with the new initialization described in
Section 3.2.

We note that the Tsai and Shah algorithm results in a
noisy needle-map despite its relatively good surface
recovery, demonstrated in Fig. 5. The traditional Horn
and Brooks algorithm, using the occluding boundary
intialization, yields needle-maps which lack detail due to
oversmoothing, whereas, with the new intialization, it
recovers more structure. The new framework captures
much more detail, especially around the discontinuity in
the cone object. This extra detail is clear, even when using
the simple smoothness constraint of Horn and Brooks,
although it is also obvious that the quadratic smoothness
constraint, i.e., DD1, introduces some errors.

5.2 Performance Measures

In this section, we consider the iterative properties of the
new shape-from-shading scheme.

5.2.1 Accuracy and Convergence

Figs. 8 and 9 provide an empirical comparision of the
normal-error and constraint functional values. We compare
for the SFS algorithms which use the Horn and Brooks
quadratic smoothness constraint. Fig. 8 is the most
important since it shows how the normal error varies with
iteration number. This plot demonstrates that the data-
closeness constraint gives the smallest normal error. The
standard Horn and Brooks algorithm starts from a large
initial error and converges slowly. The new initialization
process improves the starting point, but convergence is still
much slower than the new shape-from-shading method.
However, it is worth noting that the minimum normal error
is still relatively high, of the order of 0.3 radians per normal
on average, or 20�.

Fig. 9 shows the value of the functional used in each case,
which is a measure often used in judging convergence in
the absence of ground truth data. However, we see that not
only do the functional values not possess distinct minima in
some cases, but there is little correspondence between the
functional value plots and the normal error plot of Fig. 8.
Although they begin with the same initialization, the new
framework reduces the functional value far below the
minimum value achieved by the modified Horn and Brooks
algorithm; indeed, even the traditional Horn and Brooks
algorithm performs better, in terms of minimizing the
constraint functional, than the modified version using
gradient initialization. This discrepancy is due to the fact
that the occluding boundary initialization yields zero
smoothness error everywhere except at the boundary,
where the smoothness error is large. The traditional Horn
and Brooks algorithm then propagates this boundary error
into the object interior, dissipating it along the way. Starting
with the new initialization gives nonzero smoothnes error
in the interior of the object, so the propagation/dissipation
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Fig. 8. Surface normal error for synthetic images, using DD1, the

traditional Horn and Brooks algorithm, and Horn and Brooks with the

new intialization.

Fig. 9. Constraint functional for synthetic images, using DD1, the

traditional Horn and Brooks algorithm, and Horn and Brooks with the

new initialization.



effect is reduced and the overall smoothness error can only

be reduced by reorganization of normals about their

respective cones of ambiguity.

These plots lead us to two conclusions. First, the Horn

and Brooks smoothness functional is not an appropriate

constraint upon the recovery of shape from shading.
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Fig. 10. Comparision of the behavior of various measures for Horn and Brooks, the robust regularizer algorithm of [33], and the new framework using

different constraint functions. In each case, the scales of the different measures have been scaled to give a maximum value of unity. Comparison of

the form and location of the minima of each measure allows us to qualitatively consider questions of termination (see text).



Second, even when using this constraint, the new frame-

work succeeds in minimizing the constraint more effec-

tively than the traditional Horn and Brooks algorithm.

5.2.2 Algorithm Comparison

We now turn our attention to the iterative behavior of the

different algorithms listed in Table 1. The results are

summarized in Fig. 10. Several quantities are plotted

against iteration number for the Horn and Brooks algo-

rithm, the Robust Regularizer approach of [33], and each of

the new framework schemes. In each case, the new

initialization of Section 3.2 is used. The measures used are

the normal-error, the surface reconstruction error, and the

value of the constraint is functional.
Essentially, there are two primary criteria for a suitable

SFS constraint function. The first is that it leads to a low

minimum value of normal error, while the second, often

overlooked, citerion is that there must be some method to

stop the algorithm. Ideally, we wish termination to occur as

closely as possible to the minimum of the normal error,

despite the fact that we will not ordinarily know at which
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Fig. 11. Needle-maps recovered from toy duck image.



iteration this will occur. In the absence of ground truth,
the obvious termination criterion is the minimization of
the functional. However, it is clear from Fig. 10 that the
minimization of the constraint functional is not an
appropriate stopping criterion. Neither, it appears, is the
average change in normals between iterations.

However, it is worth noting that, in the cases of most of
the new framework constraint functions, the termination
point is not critical since the normal error has only a shallow
minimum or continues to fall for many iterations at a
diminishing rate. Only curvature consistency measured
using the median absolute deviation, i.e., DD4, breaks this
pattern, exhibiting strange behavior wherein the normal
error increases after initialization. The poor performance of
DD4, which walks away from the initial needle-map
estimate, is explained by the nonlinear median process
incorporated in it, which appears to make it very
susceptible to local noise. This effect introduces orientation
errors at scales too small to be obvious in the surface
reconstruction of Fig. 5.

In the remaining cases, 100-200 iterations usually results
in a good approximation to the minimum of the normal
error. When the curvature and gradient consistency
schemes DD3, DD5, and DD9 are used, the minimum of
the functional value and the behavior of the curves suggest
that using the minimization of the functional as a termina-
tion criterion may be adequate.

Since the normal error is an absolute measure unaffected
by which constraint function is used and as all schemes use
the same initialization and, so, start with identical values of
normal error, we can compare these normalized values
directly. Doing so, we see that when the normal smoothness
and gradient consistency constraints are modeled using a
robust error kernel, i.e., schemes DD2 and DD6, are used,
then there is a reduction in the normal error by approxi-
mately 57 percent of the initial value. This value is lower
than the normal error achieved by the traditional Horn and
Brooks algorithm after 1,000 iterations. Hence, use of a
robust kernel appears more appropriate than a weighted
mean process and gradient consistency performs better, in
this case, than curvature consistency.

5.3 Real World Data

In Fig. 11, we illustrate the application of several of the SFS
schemes considered in this paper to real data. The image is
from the Columbia Object Image Library and contains real
world imperfections such as albedo changes, regions of
brightness saturation, and deviations from the Lambertian
assumption. Only four of the new constraint functons are
used, one each from the surface geometric and gradient
consistency categories and two curvature consistency
techniques. With the exception of DD3, they are all based
upon the use of the robust kernel approach.

In Fig. 11, the needle-map recovered by the Horn and
Brooks algorithm is seen to be extremely smooth, even
losing large-scale details such as the wing of the toy duck.
Both Bichsel and Pentland and Tsai and Shah algorithms
yield noisy needle-maps when these are calculated from the
recovered surfaces. The new framework schemes all per-
form well, recovering the wing while behaving well over
the smooth regions of the surface.

6 CONCLUSIONS

We have presented a novel framework for the shape-from-
shading problem which addresses the problem of model
dominance encountered using many traditional global
algorithms. Specifically, we ensure the fullest use of the
data available, namely the input image, by incorporating
the image irradiance equation as a hard constraint.

Our second contribution is to develop novel constraints
on needle-map consistency. These range from simple
modifications to the traditional smoothness constraint, to
topographic curvature and gradient consistency. Using
extensive experimentation upon synthetic and real shaded
images, we have demonstrated that several of these novel
constraints perform significantly better than various exist-
ing algorithms. Specifically, we find that incorporating an
adaptive robust kernel to control local smoothing yields
excellent results, especially when used in conjunction with
gradient consistency constraints.

Gradient consistency makes only relatively weak as-
sumptions about the surface physics. This is in contrast to
the curvature consistency techniques developed here as a
result of modeling the topographic properties of surfaces.
The slight advantage of the gradient consistency schemes
over the more complicated curvature consistency methods
suggests that we can obtain good results without recourse
to complex arguments about the behavior of real surfaces.

The in depth analysis of the SFS problem presented here
explicitly exposes the inadequacy of the traditional quad-
ratic smoothness constraint to the task of SFS recovery,
since finding the smoothest possible surface is demonstra-
bly not an appropriate goal. With the new framework, we
have demonstrated the development of principled, novel
constraint functions modeling the properties of real
surfaces. It is hoped that this research will stimulate the
search for still better constraints, possessing global minima
which more closely correspond to true surfaces.
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