13,852 research outputs found

    Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board

    Get PDF
    Purpose: To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging (DTI) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis.Conclusion: Despite the low statistical power (35%) due to the small sample size, the results showed that training with the balance board system modified the microstructure of superior cerebellar peduncles. The clinical improvement observed after training might be mediated by enhanced myelinationrelated processes, suggesting that high-intensity, taskoriented exercises could induce favorable microstructural changes in the brains of patients with multiple sclerosis.Materials and Methods: The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing.Results: There were relevant differences between patients and healthy control subjects in postural sway and DTI parameters (P <.05). Significant main effects of time by group interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = 20.381 to 0.401, P < .05). However, both clinical and DTI changes did not persist beyond 12 weeks after training

    Wavelet-based denoising for 3D OCT images

    Get PDF
    Optical coherence tomography produces high resolution medical images based on spatial and temporal coherence of the optical waves backscattered from the scanned tissue. However, the same coherence introduces speckle noise as well; this degrades the quality of acquired images. In this paper we propose a technique for noise reduction of 3D OCT images, where the 3D volume is considered as a sequence of 2D images, i.e., 2D slices in depth-lateral projection plane. In the proposed method we first perform recursive temporal filtering through the estimated motion trajectory between the 2D slices using noise-robust motion estimation/compensation scheme previously proposed for video denoising. The temporal filtering scheme reduces the noise level and adapts the motion compensation on it. Subsequently, we apply a spatial filter for speckle reduction in order to remove the remainder of noise in the 2D slices. In this scheme the spatial (2D) speckle-nature of noise in OCT is modeled and used for spatially adaptive denoising. Both the temporal and the spatial filter are wavelet-based techniques, where for the temporal filter two resolution scales are used and for the spatial one four resolution scales. The evaluation of the proposed denoising approach is done on demodulated 3D OCT images on different sources and of different resolution. For optimizing the parameters for best denoising performance fantom OCT images were used. The denoising performance of the proposed method was measured in terms of SNR, edge sharpness preservation and contrast-to-noise ratio. A comparison was made to the state-of-the-art methods for noise reduction in 2D OCT images, where the proposed approach showed to be advantageous in terms of both objective and subjective quality measures

    Investigating microstructural variation in the human hippocampus using non-negative matrix factorization

    No full text
    In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses

    Integrating IoT and Novel Approaches to Enhance Electromagnetic Image Quality using Modern Anisotropic Diffusion and Speckle Noise Reduction Techniques

    Get PDF
    Electromagnetic imaging is becoming more important in many sectors, and this requires high-quality pictures for reliable analysis. This study makes use of the complementary relationship between IoT and current image processing methods to improve the quality of electromagnetic images. The research presents a new framework for connecting Internet of Things sensors to imaging equipment, allowing for instantaneous input and adjustment. At the same time, the suggested system makes use of sophisticated anisotropic diffusion algorithms to bring out key details and hide noise in electromagnetic pictures. In addition, a cutting-edge technique for reducing speckle noise is used to combat this persistent issue in electromagnetic imaging. The effectiveness of the suggested system was determined via a comparison to standard imaging techniques. There was a noticeable improvement in visual sharpness, contrast, and overall clarity without any loss of information, as shown by the results. Incorporating IoT sensors also facilitated faster calibration and real-time modifications, which opened up new possibilities for use in contexts with a high degree of variation. In fields where electromagnetic imaging plays a crucial role, such as medicine, remote sensing, and aerospace, the ramifications of this study are far-reaching. Our research demonstrates how the Internet of Things (IoT) and cutting-edge image processing have the potential to dramatically improve the functionality and versatility of electromagnetic imaging systems

    Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    Get PDF
    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    Quantitative analysis of microscopy

    Get PDF
    Particle tracking is an essential tool for the study of dynamics of biological processes. The dynamics of these processes happens in three-dimensional (3D) space as the biological structures themselves are 3D. The focus of this thesis is on the development of single particle tracking methods for analysis of the dynamics of biological processes through the use of image processing techniques. Firstly, introduced is a novel particle tracking method that works with two-dimensional (2D) image data. This method uses the theory of Haar-like features for particle detection and trajectory linking is achieved using a combination of three Kalman filters within an interacting multiple models framework. The trajectory linking process utilises an extended state space variable which better describe the morphology and intensity profiles of the particles under investigation at their current position. This tracking method is validated using both 2D synthetically generated images as well as 2D experimentally collected images. It is shown that this method outperforms 14 other stateof-the-art methods. Next this method is used to analyse the dynamics of fluorescently labelled particles using a live-cell fluorescence microscopy technique, specifically a variant of the super-resolution (SR) method PALM, spt-PALM. From this application, conclusions about the organisation of the proteins under investigation at the cell membrane are drawn. Introduced next is a second particle tracking method which is highly efficient and capable of working with both 2D and 3D image data. This method uses a novel Haar-inspired feature for particle detection, drawing inspiration from the type of particles to be detected which are typically circular in 2D space and spherical in 3D image space. Trajectory linking in this method utilises a global nearest neighbour methodology incorporating both motion models to describe the motion of the particles under investigation and a further extended state space variable describing many more aspects of the particles to be linked. This method is validated using a variety of both 2D and 3D synthetic image data. The methods performance is compared with 14 other state-of-the-art methods showing it to be one of the best overall performing methods. Finally, analysis tools to study a SR image restoration method developed by our research group, referred to as Translation Microscopy (TRAM) are investigated [1]. TRAM can be implemented on any standardised microscope and deliver an improvement in resolution of up to 7-fold. However, the results from TRAM and other SR imaging methods require specialised tools to validate and analyse them. Tools have been developed to validate that TRAM performs correctly using a specially designed ground truth. Furthermore, through analysis of results on a biological sample corroborate other published results based on the size of biological structures, showing again that TRAM performs as expected.EPSC
    corecore